1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * HIDPP protocol for Logitech receivers 4 * 5 * Copyright (c) 2011 Logitech (c) 6 * Copyright (c) 2012-2013 Google (c) 7 * Copyright (c) 2013-2014 Red Hat Inc. 8 */ 9 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/device.h> 14 #include <linux/input.h> 15 #include <linux/usb.h> 16 #include <linux/hid.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/sched.h> 20 #include <linux/sched/clock.h> 21 #include <linux/kfifo.h> 22 #include <linux/input/mt.h> 23 #include <linux/workqueue.h> 24 #include <linux/atomic.h> 25 #include <linux/fixp-arith.h> 26 #include <asm/unaligned.h> 27 #include "usbhid/usbhid.h" 28 #include "hid-ids.h" 29 30 MODULE_LICENSE("GPL"); 31 MODULE_AUTHOR("Benjamin Tissoires <benjamin.tissoires@gmail.com>"); 32 MODULE_AUTHOR("Nestor Lopez Casado <nlopezcasad@logitech.com>"); 33 34 static bool disable_raw_mode; 35 module_param(disable_raw_mode, bool, 0644); 36 MODULE_PARM_DESC(disable_raw_mode, 37 "Disable Raw mode reporting for touchpads and keep firmware gestures."); 38 39 static bool disable_tap_to_click; 40 module_param(disable_tap_to_click, bool, 0644); 41 MODULE_PARM_DESC(disable_tap_to_click, 42 "Disable Tap-To-Click mode reporting for touchpads (only on the K400 currently)."); 43 44 #define REPORT_ID_HIDPP_SHORT 0x10 45 #define REPORT_ID_HIDPP_LONG 0x11 46 #define REPORT_ID_HIDPP_VERY_LONG 0x12 47 48 #define HIDPP_REPORT_SHORT_LENGTH 7 49 #define HIDPP_REPORT_LONG_LENGTH 20 50 #define HIDPP_REPORT_VERY_LONG_MAX_LENGTH 64 51 52 #define HIDPP_REPORT_SHORT_SUPPORTED BIT(0) 53 #define HIDPP_REPORT_LONG_SUPPORTED BIT(1) 54 #define HIDPP_REPORT_VERY_LONG_SUPPORTED BIT(2) 55 56 #define HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS 0x03 57 #define HIDPP_SUB_ID_ROLLER 0x05 58 #define HIDPP_SUB_ID_MOUSE_EXTRA_BTNS 0x06 59 60 #define HIDPP_QUIRK_CLASS_WTP BIT(0) 61 #define HIDPP_QUIRK_CLASS_M560 BIT(1) 62 #define HIDPP_QUIRK_CLASS_K400 BIT(2) 63 #define HIDPP_QUIRK_CLASS_G920 BIT(3) 64 #define HIDPP_QUIRK_CLASS_K750 BIT(4) 65 66 /* bits 2..20 are reserved for classes */ 67 /* #define HIDPP_QUIRK_CONNECT_EVENTS BIT(21) disabled */ 68 #define HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS BIT(22) 69 #define HIDPP_QUIRK_NO_HIDINPUT BIT(23) 70 #define HIDPP_QUIRK_FORCE_OUTPUT_REPORTS BIT(24) 71 #define HIDPP_QUIRK_UNIFYING BIT(25) 72 #define HIDPP_QUIRK_HI_RES_SCROLL_1P0 BIT(26) 73 #define HIDPP_QUIRK_HI_RES_SCROLL_X2120 BIT(27) 74 #define HIDPP_QUIRK_HI_RES_SCROLL_X2121 BIT(28) 75 #define HIDPP_QUIRK_HIDPP_WHEELS BIT(29) 76 #define HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS BIT(30) 77 #define HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS BIT(31) 78 79 /* These are just aliases for now */ 80 #define HIDPP_QUIRK_KBD_SCROLL_WHEEL HIDPP_QUIRK_HIDPP_WHEELS 81 #define HIDPP_QUIRK_KBD_ZOOM_WHEEL HIDPP_QUIRK_HIDPP_WHEELS 82 83 /* Convenience constant to check for any high-res support. */ 84 #define HIDPP_QUIRK_HI_RES_SCROLL (HIDPP_QUIRK_HI_RES_SCROLL_1P0 | \ 85 HIDPP_QUIRK_HI_RES_SCROLL_X2120 | \ 86 HIDPP_QUIRK_HI_RES_SCROLL_X2121) 87 88 #define HIDPP_QUIRK_DELAYED_INIT HIDPP_QUIRK_NO_HIDINPUT 89 90 #define HIDPP_CAPABILITY_HIDPP10_BATTERY BIT(0) 91 #define HIDPP_CAPABILITY_HIDPP20_BATTERY BIT(1) 92 #define HIDPP_CAPABILITY_BATTERY_MILEAGE BIT(2) 93 #define HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS BIT(3) 94 #define HIDPP_CAPABILITY_BATTERY_VOLTAGE BIT(4) 95 #define HIDPP_CAPABILITY_BATTERY_PERCENTAGE BIT(5) 96 #define HIDPP_CAPABILITY_UNIFIED_BATTERY BIT(6) 97 98 #define lg_map_key_clear(c) hid_map_usage_clear(hi, usage, bit, max, EV_KEY, (c)) 99 100 /* 101 * There are two hidpp protocols in use, the first version hidpp10 is known 102 * as register access protocol or RAP, the second version hidpp20 is known as 103 * feature access protocol or FAP 104 * 105 * Most older devices (including the Unifying usb receiver) use the RAP protocol 106 * where as most newer devices use the FAP protocol. Both protocols are 107 * compatible with the underlying transport, which could be usb, Unifiying, or 108 * bluetooth. The message lengths are defined by the hid vendor specific report 109 * descriptor for the HIDPP_SHORT report type (total message lenth 7 bytes) and 110 * the HIDPP_LONG report type (total message length 20 bytes) 111 * 112 * The RAP protocol uses both report types, whereas the FAP only uses HIDPP_LONG 113 * messages. The Unifying receiver itself responds to RAP messages (device index 114 * is 0xFF for the receiver), and all messages (short or long) with a device 115 * index between 1 and 6 are passed untouched to the corresponding paired 116 * Unifying device. 117 * 118 * The paired device can be RAP or FAP, it will receive the message untouched 119 * from the Unifiying receiver. 120 */ 121 122 struct fap { 123 u8 feature_index; 124 u8 funcindex_clientid; 125 u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U]; 126 }; 127 128 struct rap { 129 u8 sub_id; 130 u8 reg_address; 131 u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U]; 132 }; 133 134 struct hidpp_report { 135 u8 report_id; 136 u8 device_index; 137 union { 138 struct fap fap; 139 struct rap rap; 140 u8 rawbytes[sizeof(struct fap)]; 141 }; 142 } __packed; 143 144 struct hidpp_battery { 145 u8 feature_index; 146 u8 solar_feature_index; 147 u8 voltage_feature_index; 148 struct power_supply_desc desc; 149 struct power_supply *ps; 150 char name[64]; 151 int status; 152 int capacity; 153 int level; 154 int voltage; 155 int charge_type; 156 bool online; 157 u8 supported_levels_1004; 158 }; 159 160 /** 161 * struct hidpp_scroll_counter - Utility class for processing high-resolution 162 * scroll events. 163 * @dev: the input device for which events should be reported. 164 * @wheel_multiplier: the scalar multiplier to be applied to each wheel event 165 * @remainder: counts the number of high-resolution units moved since the last 166 * low-resolution event (REL_WHEEL or REL_HWHEEL) was sent. Should 167 * only be used by class methods. 168 * @direction: direction of last movement (1 or -1) 169 * @last_time: last event time, used to reset remainder after inactivity 170 */ 171 struct hidpp_scroll_counter { 172 int wheel_multiplier; 173 int remainder; 174 int direction; 175 unsigned long long last_time; 176 }; 177 178 struct hidpp_device { 179 struct hid_device *hid_dev; 180 struct input_dev *input; 181 struct mutex send_mutex; 182 void *send_receive_buf; 183 char *name; /* will never be NULL and should not be freed */ 184 wait_queue_head_t wait; 185 int very_long_report_length; 186 bool answer_available; 187 u8 protocol_major; 188 u8 protocol_minor; 189 190 void *private_data; 191 192 struct work_struct work; 193 struct kfifo delayed_work_fifo; 194 atomic_t connected; 195 struct input_dev *delayed_input; 196 197 unsigned long quirks; 198 unsigned long capabilities; 199 u8 supported_reports; 200 201 struct hidpp_battery battery; 202 struct hidpp_scroll_counter vertical_wheel_counter; 203 204 u8 wireless_feature_index; 205 }; 206 207 /* HID++ 1.0 error codes */ 208 #define HIDPP_ERROR 0x8f 209 #define HIDPP_ERROR_SUCCESS 0x00 210 #define HIDPP_ERROR_INVALID_SUBID 0x01 211 #define HIDPP_ERROR_INVALID_ADRESS 0x02 212 #define HIDPP_ERROR_INVALID_VALUE 0x03 213 #define HIDPP_ERROR_CONNECT_FAIL 0x04 214 #define HIDPP_ERROR_TOO_MANY_DEVICES 0x05 215 #define HIDPP_ERROR_ALREADY_EXISTS 0x06 216 #define HIDPP_ERROR_BUSY 0x07 217 #define HIDPP_ERROR_UNKNOWN_DEVICE 0x08 218 #define HIDPP_ERROR_RESOURCE_ERROR 0x09 219 #define HIDPP_ERROR_REQUEST_UNAVAILABLE 0x0a 220 #define HIDPP_ERROR_INVALID_PARAM_VALUE 0x0b 221 #define HIDPP_ERROR_WRONG_PIN_CODE 0x0c 222 /* HID++ 2.0 error codes */ 223 #define HIDPP20_ERROR 0xff 224 225 static void hidpp_connect_event(struct hidpp_device *hidpp_dev); 226 227 static int __hidpp_send_report(struct hid_device *hdev, 228 struct hidpp_report *hidpp_report) 229 { 230 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 231 int fields_count, ret; 232 233 switch (hidpp_report->report_id) { 234 case REPORT_ID_HIDPP_SHORT: 235 fields_count = HIDPP_REPORT_SHORT_LENGTH; 236 break; 237 case REPORT_ID_HIDPP_LONG: 238 fields_count = HIDPP_REPORT_LONG_LENGTH; 239 break; 240 case REPORT_ID_HIDPP_VERY_LONG: 241 fields_count = hidpp->very_long_report_length; 242 break; 243 default: 244 return -ENODEV; 245 } 246 247 /* 248 * set the device_index as the receiver, it will be overwritten by 249 * hid_hw_request if needed 250 */ 251 hidpp_report->device_index = 0xff; 252 253 if (hidpp->quirks & HIDPP_QUIRK_FORCE_OUTPUT_REPORTS) { 254 ret = hid_hw_output_report(hdev, (u8 *)hidpp_report, fields_count); 255 } else { 256 ret = hid_hw_raw_request(hdev, hidpp_report->report_id, 257 (u8 *)hidpp_report, fields_count, HID_OUTPUT_REPORT, 258 HID_REQ_SET_REPORT); 259 } 260 261 return ret == fields_count ? 0 : -1; 262 } 263 264 /* 265 * hidpp_send_message_sync() returns 0 in case of success, and something else 266 * in case of a failure. 267 * - If ' something else' is positive, that means that an error has been raised 268 * by the protocol itself. 269 * - If ' something else' is negative, that means that we had a classic error 270 * (-ENOMEM, -EPIPE, etc...) 271 */ 272 static int hidpp_send_message_sync(struct hidpp_device *hidpp, 273 struct hidpp_report *message, 274 struct hidpp_report *response) 275 { 276 int ret; 277 278 mutex_lock(&hidpp->send_mutex); 279 280 hidpp->send_receive_buf = response; 281 hidpp->answer_available = false; 282 283 /* 284 * So that we can later validate the answer when it arrives 285 * in hidpp_raw_event 286 */ 287 *response = *message; 288 289 ret = __hidpp_send_report(hidpp->hid_dev, message); 290 291 if (ret) { 292 dbg_hid("__hidpp_send_report returned err: %d\n", ret); 293 memset(response, 0, sizeof(struct hidpp_report)); 294 goto exit; 295 } 296 297 if (!wait_event_timeout(hidpp->wait, hidpp->answer_available, 298 5*HZ)) { 299 dbg_hid("%s:timeout waiting for response\n", __func__); 300 memset(response, 0, sizeof(struct hidpp_report)); 301 ret = -ETIMEDOUT; 302 } 303 304 if (response->report_id == REPORT_ID_HIDPP_SHORT && 305 response->rap.sub_id == HIDPP_ERROR) { 306 ret = response->rap.params[1]; 307 dbg_hid("%s:got hidpp error %02X\n", __func__, ret); 308 goto exit; 309 } 310 311 if ((response->report_id == REPORT_ID_HIDPP_LONG || 312 response->report_id == REPORT_ID_HIDPP_VERY_LONG) && 313 response->fap.feature_index == HIDPP20_ERROR) { 314 ret = response->fap.params[1]; 315 dbg_hid("%s:got hidpp 2.0 error %02X\n", __func__, ret); 316 goto exit; 317 } 318 319 exit: 320 mutex_unlock(&hidpp->send_mutex); 321 return ret; 322 323 } 324 325 static int hidpp_send_fap_command_sync(struct hidpp_device *hidpp, 326 u8 feat_index, u8 funcindex_clientid, u8 *params, int param_count, 327 struct hidpp_report *response) 328 { 329 struct hidpp_report *message; 330 int ret; 331 332 if (param_count > sizeof(message->fap.params)) 333 return -EINVAL; 334 335 message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL); 336 if (!message) 337 return -ENOMEM; 338 339 if (param_count > (HIDPP_REPORT_LONG_LENGTH - 4)) 340 message->report_id = REPORT_ID_HIDPP_VERY_LONG; 341 else 342 message->report_id = REPORT_ID_HIDPP_LONG; 343 message->fap.feature_index = feat_index; 344 message->fap.funcindex_clientid = funcindex_clientid; 345 memcpy(&message->fap.params, params, param_count); 346 347 ret = hidpp_send_message_sync(hidpp, message, response); 348 kfree(message); 349 return ret; 350 } 351 352 static int hidpp_send_rap_command_sync(struct hidpp_device *hidpp_dev, 353 u8 report_id, u8 sub_id, u8 reg_address, u8 *params, int param_count, 354 struct hidpp_report *response) 355 { 356 struct hidpp_report *message; 357 int ret, max_count; 358 359 /* Send as long report if short reports are not supported. */ 360 if (report_id == REPORT_ID_HIDPP_SHORT && 361 !(hidpp_dev->supported_reports & HIDPP_REPORT_SHORT_SUPPORTED)) 362 report_id = REPORT_ID_HIDPP_LONG; 363 364 switch (report_id) { 365 case REPORT_ID_HIDPP_SHORT: 366 max_count = HIDPP_REPORT_SHORT_LENGTH - 4; 367 break; 368 case REPORT_ID_HIDPP_LONG: 369 max_count = HIDPP_REPORT_LONG_LENGTH - 4; 370 break; 371 case REPORT_ID_HIDPP_VERY_LONG: 372 max_count = hidpp_dev->very_long_report_length - 4; 373 break; 374 default: 375 return -EINVAL; 376 } 377 378 if (param_count > max_count) 379 return -EINVAL; 380 381 message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL); 382 if (!message) 383 return -ENOMEM; 384 message->report_id = report_id; 385 message->rap.sub_id = sub_id; 386 message->rap.reg_address = reg_address; 387 memcpy(&message->rap.params, params, param_count); 388 389 ret = hidpp_send_message_sync(hidpp_dev, message, response); 390 kfree(message); 391 return ret; 392 } 393 394 static void delayed_work_cb(struct work_struct *work) 395 { 396 struct hidpp_device *hidpp = container_of(work, struct hidpp_device, 397 work); 398 hidpp_connect_event(hidpp); 399 } 400 401 static inline bool hidpp_match_answer(struct hidpp_report *question, 402 struct hidpp_report *answer) 403 { 404 return (answer->fap.feature_index == question->fap.feature_index) && 405 (answer->fap.funcindex_clientid == question->fap.funcindex_clientid); 406 } 407 408 static inline bool hidpp_match_error(struct hidpp_report *question, 409 struct hidpp_report *answer) 410 { 411 return ((answer->rap.sub_id == HIDPP_ERROR) || 412 (answer->fap.feature_index == HIDPP20_ERROR)) && 413 (answer->fap.funcindex_clientid == question->fap.feature_index) && 414 (answer->fap.params[0] == question->fap.funcindex_clientid); 415 } 416 417 static inline bool hidpp_report_is_connect_event(struct hidpp_device *hidpp, 418 struct hidpp_report *report) 419 { 420 return (hidpp->wireless_feature_index && 421 (report->fap.feature_index == hidpp->wireless_feature_index)) || 422 ((report->report_id == REPORT_ID_HIDPP_SHORT) && 423 (report->rap.sub_id == 0x41)); 424 } 425 426 /* 427 * hidpp_prefix_name() prefixes the current given name with "Logitech ". 428 */ 429 static void hidpp_prefix_name(char **name, int name_length) 430 { 431 #define PREFIX_LENGTH 9 /* "Logitech " */ 432 433 int new_length; 434 char *new_name; 435 436 if (name_length > PREFIX_LENGTH && 437 strncmp(*name, "Logitech ", PREFIX_LENGTH) == 0) 438 /* The prefix has is already in the name */ 439 return; 440 441 new_length = PREFIX_LENGTH + name_length; 442 new_name = kzalloc(new_length, GFP_KERNEL); 443 if (!new_name) 444 return; 445 446 snprintf(new_name, new_length, "Logitech %s", *name); 447 448 kfree(*name); 449 450 *name = new_name; 451 } 452 453 /** 454 * hidpp_scroll_counter_handle_scroll() - Send high- and low-resolution scroll 455 * events given a high-resolution wheel 456 * movement. 457 * @input_dev: Pointer to the input device 458 * @counter: a hid_scroll_counter struct describing the wheel. 459 * @hi_res_value: the movement of the wheel, in the mouse's high-resolution 460 * units. 461 * 462 * Given a high-resolution movement, this function converts the movement into 463 * fractions of 120 and emits high-resolution scroll events for the input 464 * device. It also uses the multiplier from &struct hid_scroll_counter to 465 * emit low-resolution scroll events when appropriate for 466 * backwards-compatibility with userspace input libraries. 467 */ 468 static void hidpp_scroll_counter_handle_scroll(struct input_dev *input_dev, 469 struct hidpp_scroll_counter *counter, 470 int hi_res_value) 471 { 472 int low_res_value, remainder, direction; 473 unsigned long long now, previous; 474 475 hi_res_value = hi_res_value * 120/counter->wheel_multiplier; 476 input_report_rel(input_dev, REL_WHEEL_HI_RES, hi_res_value); 477 478 remainder = counter->remainder; 479 direction = hi_res_value > 0 ? 1 : -1; 480 481 now = sched_clock(); 482 previous = counter->last_time; 483 counter->last_time = now; 484 /* 485 * Reset the remainder after a period of inactivity or when the 486 * direction changes. This prevents the REL_WHEEL emulation point 487 * from sliding for devices that don't always provide the same 488 * number of movements per detent. 489 */ 490 if (now - previous > 1000000000 || direction != counter->direction) 491 remainder = 0; 492 493 counter->direction = direction; 494 remainder += hi_res_value; 495 496 /* Some wheels will rest 7/8ths of a detent from the previous detent 497 * after slow movement, so we want the threshold for low-res events to 498 * be in the middle between two detents (e.g. after 4/8ths) as 499 * opposed to on the detents themselves (8/8ths). 500 */ 501 if (abs(remainder) >= 60) { 502 /* Add (or subtract) 1 because we want to trigger when the wheel 503 * is half-way to the next detent (i.e. scroll 1 detent after a 504 * 1/2 detent movement, 2 detents after a 1 1/2 detent movement, 505 * etc.). 506 */ 507 low_res_value = remainder / 120; 508 if (low_res_value == 0) 509 low_res_value = (hi_res_value > 0 ? 1 : -1); 510 input_report_rel(input_dev, REL_WHEEL, low_res_value); 511 remainder -= low_res_value * 120; 512 } 513 counter->remainder = remainder; 514 } 515 516 /* -------------------------------------------------------------------------- */ 517 /* HIDP++ 1.0 commands */ 518 /* -------------------------------------------------------------------------- */ 519 520 #define HIDPP_SET_REGISTER 0x80 521 #define HIDPP_GET_REGISTER 0x81 522 #define HIDPP_SET_LONG_REGISTER 0x82 523 #define HIDPP_GET_LONG_REGISTER 0x83 524 525 /** 526 * hidpp10_set_register - Modify a HID++ 1.0 register. 527 * @hidpp_dev: the device to set the register on. 528 * @register_address: the address of the register to modify. 529 * @byte: the byte of the register to modify. Should be less than 3. 530 * @mask: mask of the bits to modify 531 * @value: new values for the bits in mask 532 * Return: 0 if successful, otherwise a negative error code. 533 */ 534 static int hidpp10_set_register(struct hidpp_device *hidpp_dev, 535 u8 register_address, u8 byte, u8 mask, u8 value) 536 { 537 struct hidpp_report response; 538 int ret; 539 u8 params[3] = { 0 }; 540 541 ret = hidpp_send_rap_command_sync(hidpp_dev, 542 REPORT_ID_HIDPP_SHORT, 543 HIDPP_GET_REGISTER, 544 register_address, 545 NULL, 0, &response); 546 if (ret) 547 return ret; 548 549 memcpy(params, response.rap.params, 3); 550 551 params[byte] &= ~mask; 552 params[byte] |= value & mask; 553 554 return hidpp_send_rap_command_sync(hidpp_dev, 555 REPORT_ID_HIDPP_SHORT, 556 HIDPP_SET_REGISTER, 557 register_address, 558 params, 3, &response); 559 } 560 561 #define HIDPP_REG_ENABLE_REPORTS 0x00 562 #define HIDPP_ENABLE_CONSUMER_REPORT BIT(0) 563 #define HIDPP_ENABLE_WHEEL_REPORT BIT(2) 564 #define HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT BIT(3) 565 #define HIDPP_ENABLE_BAT_REPORT BIT(4) 566 #define HIDPP_ENABLE_HWHEEL_REPORT BIT(5) 567 568 static int hidpp10_enable_battery_reporting(struct hidpp_device *hidpp_dev) 569 { 570 return hidpp10_set_register(hidpp_dev, HIDPP_REG_ENABLE_REPORTS, 0, 571 HIDPP_ENABLE_BAT_REPORT, HIDPP_ENABLE_BAT_REPORT); 572 } 573 574 #define HIDPP_REG_FEATURES 0x01 575 #define HIDPP_ENABLE_SPECIAL_BUTTON_FUNC BIT(1) 576 #define HIDPP_ENABLE_FAST_SCROLL BIT(6) 577 578 /* On HID++ 1.0 devices, high-res scroll was called "scrolling acceleration". */ 579 static int hidpp10_enable_scrolling_acceleration(struct hidpp_device *hidpp_dev) 580 { 581 return hidpp10_set_register(hidpp_dev, HIDPP_REG_FEATURES, 0, 582 HIDPP_ENABLE_FAST_SCROLL, HIDPP_ENABLE_FAST_SCROLL); 583 } 584 585 #define HIDPP_REG_BATTERY_STATUS 0x07 586 587 static int hidpp10_battery_status_map_level(u8 param) 588 { 589 int level; 590 591 switch (param) { 592 case 1 ... 2: 593 level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; 594 break; 595 case 3 ... 4: 596 level = POWER_SUPPLY_CAPACITY_LEVEL_LOW; 597 break; 598 case 5 ... 6: 599 level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; 600 break; 601 case 7: 602 level = POWER_SUPPLY_CAPACITY_LEVEL_HIGH; 603 break; 604 default: 605 level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 606 } 607 608 return level; 609 } 610 611 static int hidpp10_battery_status_map_status(u8 param) 612 { 613 int status; 614 615 switch (param) { 616 case 0x00: 617 /* discharging (in use) */ 618 status = POWER_SUPPLY_STATUS_DISCHARGING; 619 break; 620 case 0x21: /* (standard) charging */ 621 case 0x24: /* fast charging */ 622 case 0x25: /* slow charging */ 623 status = POWER_SUPPLY_STATUS_CHARGING; 624 break; 625 case 0x26: /* topping charge */ 626 case 0x22: /* charge complete */ 627 status = POWER_SUPPLY_STATUS_FULL; 628 break; 629 case 0x20: /* unknown */ 630 status = POWER_SUPPLY_STATUS_UNKNOWN; 631 break; 632 /* 633 * 0x01...0x1F = reserved (not charging) 634 * 0x23 = charging error 635 * 0x27..0xff = reserved 636 */ 637 default: 638 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 639 break; 640 } 641 642 return status; 643 } 644 645 static int hidpp10_query_battery_status(struct hidpp_device *hidpp) 646 { 647 struct hidpp_report response; 648 int ret, status; 649 650 ret = hidpp_send_rap_command_sync(hidpp, 651 REPORT_ID_HIDPP_SHORT, 652 HIDPP_GET_REGISTER, 653 HIDPP_REG_BATTERY_STATUS, 654 NULL, 0, &response); 655 if (ret) 656 return ret; 657 658 hidpp->battery.level = 659 hidpp10_battery_status_map_level(response.rap.params[0]); 660 status = hidpp10_battery_status_map_status(response.rap.params[1]); 661 hidpp->battery.status = status; 662 /* the capacity is only available when discharging or full */ 663 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 664 status == POWER_SUPPLY_STATUS_FULL; 665 666 return 0; 667 } 668 669 #define HIDPP_REG_BATTERY_MILEAGE 0x0D 670 671 static int hidpp10_battery_mileage_map_status(u8 param) 672 { 673 int status; 674 675 switch (param >> 6) { 676 case 0x00: 677 /* discharging (in use) */ 678 status = POWER_SUPPLY_STATUS_DISCHARGING; 679 break; 680 case 0x01: /* charging */ 681 status = POWER_SUPPLY_STATUS_CHARGING; 682 break; 683 case 0x02: /* charge complete */ 684 status = POWER_SUPPLY_STATUS_FULL; 685 break; 686 /* 687 * 0x03 = charging error 688 */ 689 default: 690 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 691 break; 692 } 693 694 return status; 695 } 696 697 static int hidpp10_query_battery_mileage(struct hidpp_device *hidpp) 698 { 699 struct hidpp_report response; 700 int ret, status; 701 702 ret = hidpp_send_rap_command_sync(hidpp, 703 REPORT_ID_HIDPP_SHORT, 704 HIDPP_GET_REGISTER, 705 HIDPP_REG_BATTERY_MILEAGE, 706 NULL, 0, &response); 707 if (ret) 708 return ret; 709 710 hidpp->battery.capacity = response.rap.params[0]; 711 status = hidpp10_battery_mileage_map_status(response.rap.params[2]); 712 hidpp->battery.status = status; 713 /* the capacity is only available when discharging or full */ 714 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 715 status == POWER_SUPPLY_STATUS_FULL; 716 717 return 0; 718 } 719 720 static int hidpp10_battery_event(struct hidpp_device *hidpp, u8 *data, int size) 721 { 722 struct hidpp_report *report = (struct hidpp_report *)data; 723 int status, capacity, level; 724 bool changed; 725 726 if (report->report_id != REPORT_ID_HIDPP_SHORT) 727 return 0; 728 729 switch (report->rap.sub_id) { 730 case HIDPP_REG_BATTERY_STATUS: 731 capacity = hidpp->battery.capacity; 732 level = hidpp10_battery_status_map_level(report->rawbytes[1]); 733 status = hidpp10_battery_status_map_status(report->rawbytes[2]); 734 break; 735 case HIDPP_REG_BATTERY_MILEAGE: 736 capacity = report->rap.params[0]; 737 level = hidpp->battery.level; 738 status = hidpp10_battery_mileage_map_status(report->rawbytes[3]); 739 break; 740 default: 741 return 0; 742 } 743 744 changed = capacity != hidpp->battery.capacity || 745 level != hidpp->battery.level || 746 status != hidpp->battery.status; 747 748 /* the capacity is only available when discharging or full */ 749 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 750 status == POWER_SUPPLY_STATUS_FULL; 751 752 if (changed) { 753 hidpp->battery.level = level; 754 hidpp->battery.status = status; 755 if (hidpp->battery.ps) 756 power_supply_changed(hidpp->battery.ps); 757 } 758 759 return 0; 760 } 761 762 #define HIDPP_REG_PAIRING_INFORMATION 0xB5 763 #define HIDPP_EXTENDED_PAIRING 0x30 764 #define HIDPP_DEVICE_NAME 0x40 765 766 static char *hidpp_unifying_get_name(struct hidpp_device *hidpp_dev) 767 { 768 struct hidpp_report response; 769 int ret; 770 u8 params[1] = { HIDPP_DEVICE_NAME }; 771 char *name; 772 int len; 773 774 ret = hidpp_send_rap_command_sync(hidpp_dev, 775 REPORT_ID_HIDPP_SHORT, 776 HIDPP_GET_LONG_REGISTER, 777 HIDPP_REG_PAIRING_INFORMATION, 778 params, 1, &response); 779 if (ret) 780 return NULL; 781 782 len = response.rap.params[1]; 783 784 if (2 + len > sizeof(response.rap.params)) 785 return NULL; 786 787 if (len < 4) /* logitech devices are usually at least Xddd */ 788 return NULL; 789 790 name = kzalloc(len + 1, GFP_KERNEL); 791 if (!name) 792 return NULL; 793 794 memcpy(name, &response.rap.params[2], len); 795 796 /* include the terminating '\0' */ 797 hidpp_prefix_name(&name, len + 1); 798 799 return name; 800 } 801 802 static int hidpp_unifying_get_serial(struct hidpp_device *hidpp, u32 *serial) 803 { 804 struct hidpp_report response; 805 int ret; 806 u8 params[1] = { HIDPP_EXTENDED_PAIRING }; 807 808 ret = hidpp_send_rap_command_sync(hidpp, 809 REPORT_ID_HIDPP_SHORT, 810 HIDPP_GET_LONG_REGISTER, 811 HIDPP_REG_PAIRING_INFORMATION, 812 params, 1, &response); 813 if (ret) 814 return ret; 815 816 /* 817 * We don't care about LE or BE, we will output it as a string 818 * with %4phD, so we need to keep the order. 819 */ 820 *serial = *((u32 *)&response.rap.params[1]); 821 return 0; 822 } 823 824 static int hidpp_unifying_init(struct hidpp_device *hidpp) 825 { 826 struct hid_device *hdev = hidpp->hid_dev; 827 const char *name; 828 u32 serial; 829 int ret; 830 831 ret = hidpp_unifying_get_serial(hidpp, &serial); 832 if (ret) 833 return ret; 834 835 snprintf(hdev->uniq, sizeof(hdev->uniq), "%04x-%4phD", 836 hdev->product, &serial); 837 dbg_hid("HID++ Unifying: Got serial: %s\n", hdev->uniq); 838 839 name = hidpp_unifying_get_name(hidpp); 840 if (!name) 841 return -EIO; 842 843 snprintf(hdev->name, sizeof(hdev->name), "%s", name); 844 dbg_hid("HID++ Unifying: Got name: %s\n", name); 845 846 kfree(name); 847 return 0; 848 } 849 850 /* -------------------------------------------------------------------------- */ 851 /* 0x0000: Root */ 852 /* -------------------------------------------------------------------------- */ 853 854 #define HIDPP_PAGE_ROOT 0x0000 855 #define HIDPP_PAGE_ROOT_IDX 0x00 856 857 #define CMD_ROOT_GET_FEATURE 0x01 858 #define CMD_ROOT_GET_PROTOCOL_VERSION 0x11 859 860 static int hidpp_root_get_feature(struct hidpp_device *hidpp, u16 feature, 861 u8 *feature_index, u8 *feature_type) 862 { 863 struct hidpp_report response; 864 int ret; 865 u8 params[2] = { feature >> 8, feature & 0x00FF }; 866 867 ret = hidpp_send_fap_command_sync(hidpp, 868 HIDPP_PAGE_ROOT_IDX, 869 CMD_ROOT_GET_FEATURE, 870 params, 2, &response); 871 if (ret) 872 return ret; 873 874 if (response.fap.params[0] == 0) 875 return -ENOENT; 876 877 *feature_index = response.fap.params[0]; 878 *feature_type = response.fap.params[1]; 879 880 return ret; 881 } 882 883 static int hidpp_root_get_protocol_version(struct hidpp_device *hidpp) 884 { 885 const u8 ping_byte = 0x5a; 886 u8 ping_data[3] = { 0, 0, ping_byte }; 887 struct hidpp_report response; 888 int ret; 889 890 ret = hidpp_send_rap_command_sync(hidpp, 891 REPORT_ID_HIDPP_SHORT, 892 HIDPP_PAGE_ROOT_IDX, 893 CMD_ROOT_GET_PROTOCOL_VERSION, 894 ping_data, sizeof(ping_data), &response); 895 896 if (ret == HIDPP_ERROR_INVALID_SUBID) { 897 hidpp->protocol_major = 1; 898 hidpp->protocol_minor = 0; 899 goto print_version; 900 } 901 902 /* the device might not be connected */ 903 if (ret == HIDPP_ERROR_RESOURCE_ERROR) 904 return -EIO; 905 906 if (ret > 0) { 907 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 908 __func__, ret); 909 return -EPROTO; 910 } 911 if (ret) 912 return ret; 913 914 if (response.rap.params[2] != ping_byte) { 915 hid_err(hidpp->hid_dev, "%s: ping mismatch 0x%02x != 0x%02x\n", 916 __func__, response.rap.params[2], ping_byte); 917 return -EPROTO; 918 } 919 920 hidpp->protocol_major = response.rap.params[0]; 921 hidpp->protocol_minor = response.rap.params[1]; 922 923 print_version: 924 hid_info(hidpp->hid_dev, "HID++ %u.%u device connected.\n", 925 hidpp->protocol_major, hidpp->protocol_minor); 926 return 0; 927 } 928 929 /* -------------------------------------------------------------------------- */ 930 /* 0x0005: GetDeviceNameType */ 931 /* -------------------------------------------------------------------------- */ 932 933 #define HIDPP_PAGE_GET_DEVICE_NAME_TYPE 0x0005 934 935 #define CMD_GET_DEVICE_NAME_TYPE_GET_COUNT 0x01 936 #define CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME 0x11 937 #define CMD_GET_DEVICE_NAME_TYPE_GET_TYPE 0x21 938 939 static int hidpp_devicenametype_get_count(struct hidpp_device *hidpp, 940 u8 feature_index, u8 *nameLength) 941 { 942 struct hidpp_report response; 943 int ret; 944 945 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 946 CMD_GET_DEVICE_NAME_TYPE_GET_COUNT, NULL, 0, &response); 947 948 if (ret > 0) { 949 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 950 __func__, ret); 951 return -EPROTO; 952 } 953 if (ret) 954 return ret; 955 956 *nameLength = response.fap.params[0]; 957 958 return ret; 959 } 960 961 static int hidpp_devicenametype_get_device_name(struct hidpp_device *hidpp, 962 u8 feature_index, u8 char_index, char *device_name, int len_buf) 963 { 964 struct hidpp_report response; 965 int ret, i; 966 int count; 967 968 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 969 CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME, &char_index, 1, 970 &response); 971 972 if (ret > 0) { 973 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 974 __func__, ret); 975 return -EPROTO; 976 } 977 if (ret) 978 return ret; 979 980 switch (response.report_id) { 981 case REPORT_ID_HIDPP_VERY_LONG: 982 count = hidpp->very_long_report_length - 4; 983 break; 984 case REPORT_ID_HIDPP_LONG: 985 count = HIDPP_REPORT_LONG_LENGTH - 4; 986 break; 987 case REPORT_ID_HIDPP_SHORT: 988 count = HIDPP_REPORT_SHORT_LENGTH - 4; 989 break; 990 default: 991 return -EPROTO; 992 } 993 994 if (len_buf < count) 995 count = len_buf; 996 997 for (i = 0; i < count; i++) 998 device_name[i] = response.fap.params[i]; 999 1000 return count; 1001 } 1002 1003 static char *hidpp_get_device_name(struct hidpp_device *hidpp) 1004 { 1005 u8 feature_type; 1006 u8 feature_index; 1007 u8 __name_length; 1008 char *name; 1009 unsigned index = 0; 1010 int ret; 1011 1012 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_GET_DEVICE_NAME_TYPE, 1013 &feature_index, &feature_type); 1014 if (ret) 1015 return NULL; 1016 1017 ret = hidpp_devicenametype_get_count(hidpp, feature_index, 1018 &__name_length); 1019 if (ret) 1020 return NULL; 1021 1022 name = kzalloc(__name_length + 1, GFP_KERNEL); 1023 if (!name) 1024 return NULL; 1025 1026 while (index < __name_length) { 1027 ret = hidpp_devicenametype_get_device_name(hidpp, 1028 feature_index, index, name + index, 1029 __name_length - index); 1030 if (ret <= 0) { 1031 kfree(name); 1032 return NULL; 1033 } 1034 index += ret; 1035 } 1036 1037 /* include the terminating '\0' */ 1038 hidpp_prefix_name(&name, __name_length + 1); 1039 1040 return name; 1041 } 1042 1043 /* -------------------------------------------------------------------------- */ 1044 /* 0x1000: Battery level status */ 1045 /* -------------------------------------------------------------------------- */ 1046 1047 #define HIDPP_PAGE_BATTERY_LEVEL_STATUS 0x1000 1048 1049 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS 0x00 1050 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY 0x10 1051 1052 #define EVENT_BATTERY_LEVEL_STATUS_BROADCAST 0x00 1053 1054 #define FLAG_BATTERY_LEVEL_DISABLE_OSD BIT(0) 1055 #define FLAG_BATTERY_LEVEL_MILEAGE BIT(1) 1056 #define FLAG_BATTERY_LEVEL_RECHARGEABLE BIT(2) 1057 1058 static int hidpp_map_battery_level(int capacity) 1059 { 1060 if (capacity < 11) 1061 return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; 1062 /* 1063 * The spec says this should be < 31 but some devices report 30 1064 * with brand new batteries and Windows reports 30 as "Good". 1065 */ 1066 else if (capacity < 30) 1067 return POWER_SUPPLY_CAPACITY_LEVEL_LOW; 1068 else if (capacity < 81) 1069 return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; 1070 return POWER_SUPPLY_CAPACITY_LEVEL_FULL; 1071 } 1072 1073 static int hidpp20_batterylevel_map_status_capacity(u8 data[3], int *capacity, 1074 int *next_capacity, 1075 int *level) 1076 { 1077 int status; 1078 1079 *capacity = data[0]; 1080 *next_capacity = data[1]; 1081 *level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 1082 1083 /* When discharging, we can rely on the device reported capacity. 1084 * For all other states the device reports 0 (unknown). 1085 */ 1086 switch (data[2]) { 1087 case 0: /* discharging (in use) */ 1088 status = POWER_SUPPLY_STATUS_DISCHARGING; 1089 *level = hidpp_map_battery_level(*capacity); 1090 break; 1091 case 1: /* recharging */ 1092 status = POWER_SUPPLY_STATUS_CHARGING; 1093 break; 1094 case 2: /* charge in final stage */ 1095 status = POWER_SUPPLY_STATUS_CHARGING; 1096 break; 1097 case 3: /* charge complete */ 1098 status = POWER_SUPPLY_STATUS_FULL; 1099 *level = POWER_SUPPLY_CAPACITY_LEVEL_FULL; 1100 *capacity = 100; 1101 break; 1102 case 4: /* recharging below optimal speed */ 1103 status = POWER_SUPPLY_STATUS_CHARGING; 1104 break; 1105 /* 5 = invalid battery type 1106 6 = thermal error 1107 7 = other charging error */ 1108 default: 1109 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 1110 break; 1111 } 1112 1113 return status; 1114 } 1115 1116 static int hidpp20_batterylevel_get_battery_capacity(struct hidpp_device *hidpp, 1117 u8 feature_index, 1118 int *status, 1119 int *capacity, 1120 int *next_capacity, 1121 int *level) 1122 { 1123 struct hidpp_report response; 1124 int ret; 1125 u8 *params = (u8 *)response.fap.params; 1126 1127 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1128 CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS, 1129 NULL, 0, &response); 1130 /* Ignore these intermittent errors */ 1131 if (ret == HIDPP_ERROR_RESOURCE_ERROR) 1132 return -EIO; 1133 if (ret > 0) { 1134 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1135 __func__, ret); 1136 return -EPROTO; 1137 } 1138 if (ret) 1139 return ret; 1140 1141 *status = hidpp20_batterylevel_map_status_capacity(params, capacity, 1142 next_capacity, 1143 level); 1144 1145 return 0; 1146 } 1147 1148 static int hidpp20_batterylevel_get_battery_info(struct hidpp_device *hidpp, 1149 u8 feature_index) 1150 { 1151 struct hidpp_report response; 1152 int ret; 1153 u8 *params = (u8 *)response.fap.params; 1154 unsigned int level_count, flags; 1155 1156 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1157 CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY, 1158 NULL, 0, &response); 1159 if (ret > 0) { 1160 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1161 __func__, ret); 1162 return -EPROTO; 1163 } 1164 if (ret) 1165 return ret; 1166 1167 level_count = params[0]; 1168 flags = params[1]; 1169 1170 if (level_count < 10 || !(flags & FLAG_BATTERY_LEVEL_MILEAGE)) 1171 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS; 1172 else 1173 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE; 1174 1175 return 0; 1176 } 1177 1178 static int hidpp20_query_battery_info_1000(struct hidpp_device *hidpp) 1179 { 1180 u8 feature_type; 1181 int ret; 1182 int status, capacity, next_capacity, level; 1183 1184 if (hidpp->battery.feature_index == 0xff) { 1185 ret = hidpp_root_get_feature(hidpp, 1186 HIDPP_PAGE_BATTERY_LEVEL_STATUS, 1187 &hidpp->battery.feature_index, 1188 &feature_type); 1189 if (ret) 1190 return ret; 1191 } 1192 1193 ret = hidpp20_batterylevel_get_battery_capacity(hidpp, 1194 hidpp->battery.feature_index, 1195 &status, &capacity, 1196 &next_capacity, &level); 1197 if (ret) 1198 return ret; 1199 1200 ret = hidpp20_batterylevel_get_battery_info(hidpp, 1201 hidpp->battery.feature_index); 1202 if (ret) 1203 return ret; 1204 1205 hidpp->battery.status = status; 1206 hidpp->battery.capacity = capacity; 1207 hidpp->battery.level = level; 1208 /* the capacity is only available when discharging or full */ 1209 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 1210 status == POWER_SUPPLY_STATUS_FULL; 1211 1212 return 0; 1213 } 1214 1215 static int hidpp20_battery_event_1000(struct hidpp_device *hidpp, 1216 u8 *data, int size) 1217 { 1218 struct hidpp_report *report = (struct hidpp_report *)data; 1219 int status, capacity, next_capacity, level; 1220 bool changed; 1221 1222 if (report->fap.feature_index != hidpp->battery.feature_index || 1223 report->fap.funcindex_clientid != EVENT_BATTERY_LEVEL_STATUS_BROADCAST) 1224 return 0; 1225 1226 status = hidpp20_batterylevel_map_status_capacity(report->fap.params, 1227 &capacity, 1228 &next_capacity, 1229 &level); 1230 1231 /* the capacity is only available when discharging or full */ 1232 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 1233 status == POWER_SUPPLY_STATUS_FULL; 1234 1235 changed = capacity != hidpp->battery.capacity || 1236 level != hidpp->battery.level || 1237 status != hidpp->battery.status; 1238 1239 if (changed) { 1240 hidpp->battery.level = level; 1241 hidpp->battery.capacity = capacity; 1242 hidpp->battery.status = status; 1243 if (hidpp->battery.ps) 1244 power_supply_changed(hidpp->battery.ps); 1245 } 1246 1247 return 0; 1248 } 1249 1250 /* -------------------------------------------------------------------------- */ 1251 /* 0x1001: Battery voltage */ 1252 /* -------------------------------------------------------------------------- */ 1253 1254 #define HIDPP_PAGE_BATTERY_VOLTAGE 0x1001 1255 1256 #define CMD_BATTERY_VOLTAGE_GET_BATTERY_VOLTAGE 0x00 1257 1258 #define EVENT_BATTERY_VOLTAGE_STATUS_BROADCAST 0x00 1259 1260 static int hidpp20_battery_map_status_voltage(u8 data[3], int *voltage, 1261 int *level, int *charge_type) 1262 { 1263 int status; 1264 1265 long flags = (long) data[2]; 1266 *level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 1267 1268 if (flags & 0x80) 1269 switch (flags & 0x07) { 1270 case 0: 1271 status = POWER_SUPPLY_STATUS_CHARGING; 1272 break; 1273 case 1: 1274 status = POWER_SUPPLY_STATUS_FULL; 1275 *level = POWER_SUPPLY_CAPACITY_LEVEL_FULL; 1276 break; 1277 case 2: 1278 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 1279 break; 1280 default: 1281 status = POWER_SUPPLY_STATUS_UNKNOWN; 1282 break; 1283 } 1284 else 1285 status = POWER_SUPPLY_STATUS_DISCHARGING; 1286 1287 *charge_type = POWER_SUPPLY_CHARGE_TYPE_STANDARD; 1288 if (test_bit(3, &flags)) { 1289 *charge_type = POWER_SUPPLY_CHARGE_TYPE_FAST; 1290 } 1291 if (test_bit(4, &flags)) { 1292 *charge_type = POWER_SUPPLY_CHARGE_TYPE_TRICKLE; 1293 } 1294 if (test_bit(5, &flags)) { 1295 *level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; 1296 } 1297 1298 *voltage = get_unaligned_be16(data); 1299 1300 return status; 1301 } 1302 1303 static int hidpp20_battery_get_battery_voltage(struct hidpp_device *hidpp, 1304 u8 feature_index, 1305 int *status, int *voltage, 1306 int *level, int *charge_type) 1307 { 1308 struct hidpp_report response; 1309 int ret; 1310 u8 *params = (u8 *)response.fap.params; 1311 1312 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1313 CMD_BATTERY_VOLTAGE_GET_BATTERY_VOLTAGE, 1314 NULL, 0, &response); 1315 1316 if (ret > 0) { 1317 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1318 __func__, ret); 1319 return -EPROTO; 1320 } 1321 if (ret) 1322 return ret; 1323 1324 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_VOLTAGE; 1325 1326 *status = hidpp20_battery_map_status_voltage(params, voltage, 1327 level, charge_type); 1328 1329 return 0; 1330 } 1331 1332 static int hidpp20_query_battery_voltage_info(struct hidpp_device *hidpp) 1333 { 1334 u8 feature_type; 1335 int ret; 1336 int status, voltage, level, charge_type; 1337 1338 if (hidpp->battery.voltage_feature_index == 0xff) { 1339 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_BATTERY_VOLTAGE, 1340 &hidpp->battery.voltage_feature_index, 1341 &feature_type); 1342 if (ret) 1343 return ret; 1344 } 1345 1346 ret = hidpp20_battery_get_battery_voltage(hidpp, 1347 hidpp->battery.voltage_feature_index, 1348 &status, &voltage, &level, &charge_type); 1349 1350 if (ret) 1351 return ret; 1352 1353 hidpp->battery.status = status; 1354 hidpp->battery.voltage = voltage; 1355 hidpp->battery.level = level; 1356 hidpp->battery.charge_type = charge_type; 1357 hidpp->battery.online = status != POWER_SUPPLY_STATUS_NOT_CHARGING; 1358 1359 return 0; 1360 } 1361 1362 static int hidpp20_battery_voltage_event(struct hidpp_device *hidpp, 1363 u8 *data, int size) 1364 { 1365 struct hidpp_report *report = (struct hidpp_report *)data; 1366 int status, voltage, level, charge_type; 1367 1368 if (report->fap.feature_index != hidpp->battery.voltage_feature_index || 1369 report->fap.funcindex_clientid != EVENT_BATTERY_VOLTAGE_STATUS_BROADCAST) 1370 return 0; 1371 1372 status = hidpp20_battery_map_status_voltage(report->fap.params, &voltage, 1373 &level, &charge_type); 1374 1375 hidpp->battery.online = status != POWER_SUPPLY_STATUS_NOT_CHARGING; 1376 1377 if (voltage != hidpp->battery.voltage || status != hidpp->battery.status) { 1378 hidpp->battery.voltage = voltage; 1379 hidpp->battery.status = status; 1380 hidpp->battery.level = level; 1381 hidpp->battery.charge_type = charge_type; 1382 if (hidpp->battery.ps) 1383 power_supply_changed(hidpp->battery.ps); 1384 } 1385 return 0; 1386 } 1387 1388 /* -------------------------------------------------------------------------- */ 1389 /* 0x1004: Unified battery */ 1390 /* -------------------------------------------------------------------------- */ 1391 1392 #define HIDPP_PAGE_UNIFIED_BATTERY 0x1004 1393 1394 #define CMD_UNIFIED_BATTERY_GET_CAPABILITIES 0x00 1395 #define CMD_UNIFIED_BATTERY_GET_STATUS 0x10 1396 1397 #define EVENT_UNIFIED_BATTERY_STATUS_EVENT 0x00 1398 1399 #define FLAG_UNIFIED_BATTERY_LEVEL_CRITICAL BIT(0) 1400 #define FLAG_UNIFIED_BATTERY_LEVEL_LOW BIT(1) 1401 #define FLAG_UNIFIED_BATTERY_LEVEL_GOOD BIT(2) 1402 #define FLAG_UNIFIED_BATTERY_LEVEL_FULL BIT(3) 1403 1404 #define FLAG_UNIFIED_BATTERY_FLAGS_RECHARGEABLE BIT(0) 1405 #define FLAG_UNIFIED_BATTERY_FLAGS_STATE_OF_CHARGE BIT(1) 1406 1407 static int hidpp20_unifiedbattery_get_capabilities(struct hidpp_device *hidpp, 1408 u8 feature_index) 1409 { 1410 struct hidpp_report response; 1411 int ret; 1412 u8 *params = (u8 *)response.fap.params; 1413 1414 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS || 1415 hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_PERCENTAGE) { 1416 /* we have already set the device capabilities, so let's skip */ 1417 return 0; 1418 } 1419 1420 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1421 CMD_UNIFIED_BATTERY_GET_CAPABILITIES, 1422 NULL, 0, &response); 1423 /* Ignore these intermittent errors */ 1424 if (ret == HIDPP_ERROR_RESOURCE_ERROR) 1425 return -EIO; 1426 if (ret > 0) { 1427 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1428 __func__, ret); 1429 return -EPROTO; 1430 } 1431 if (ret) 1432 return ret; 1433 1434 /* 1435 * If the device supports state of charge (battery percentage) we won't 1436 * export the battery level information. there are 4 possible battery 1437 * levels and they all are optional, this means that the device might 1438 * not support any of them, we are just better off with the battery 1439 * percentage. 1440 */ 1441 if (params[1] & FLAG_UNIFIED_BATTERY_FLAGS_STATE_OF_CHARGE) { 1442 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_PERCENTAGE; 1443 hidpp->battery.supported_levels_1004 = 0; 1444 } else { 1445 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS; 1446 hidpp->battery.supported_levels_1004 = params[0]; 1447 } 1448 1449 return 0; 1450 } 1451 1452 static int hidpp20_unifiedbattery_map_status(struct hidpp_device *hidpp, 1453 u8 charging_status, 1454 u8 external_power_status) 1455 { 1456 int status; 1457 1458 switch (charging_status) { 1459 case 0: /* discharging */ 1460 status = POWER_SUPPLY_STATUS_DISCHARGING; 1461 break; 1462 case 1: /* charging */ 1463 case 2: /* charging slow */ 1464 status = POWER_SUPPLY_STATUS_CHARGING; 1465 break; 1466 case 3: /* complete */ 1467 status = POWER_SUPPLY_STATUS_FULL; 1468 break; 1469 case 4: /* error */ 1470 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 1471 hid_info(hidpp->hid_dev, "%s: charging error", 1472 hidpp->name); 1473 break; 1474 default: 1475 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 1476 break; 1477 } 1478 1479 return status; 1480 } 1481 1482 static int hidpp20_unifiedbattery_map_level(struct hidpp_device *hidpp, 1483 u8 battery_level) 1484 { 1485 /* cler unsupported level bits */ 1486 battery_level &= hidpp->battery.supported_levels_1004; 1487 1488 if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_FULL) 1489 return POWER_SUPPLY_CAPACITY_LEVEL_FULL; 1490 else if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_GOOD) 1491 return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; 1492 else if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_LOW) 1493 return POWER_SUPPLY_CAPACITY_LEVEL_LOW; 1494 else if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_CRITICAL) 1495 return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; 1496 1497 return POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 1498 } 1499 1500 static int hidpp20_unifiedbattery_get_status(struct hidpp_device *hidpp, 1501 u8 feature_index, 1502 u8 *state_of_charge, 1503 int *status, 1504 int *level) 1505 { 1506 struct hidpp_report response; 1507 int ret; 1508 u8 *params = (u8 *)response.fap.params; 1509 1510 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1511 CMD_UNIFIED_BATTERY_GET_STATUS, 1512 NULL, 0, &response); 1513 /* Ignore these intermittent errors */ 1514 if (ret == HIDPP_ERROR_RESOURCE_ERROR) 1515 return -EIO; 1516 if (ret > 0) { 1517 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1518 __func__, ret); 1519 return -EPROTO; 1520 } 1521 if (ret) 1522 return ret; 1523 1524 *state_of_charge = params[0]; 1525 *status = hidpp20_unifiedbattery_map_status(hidpp, params[2], params[3]); 1526 *level = hidpp20_unifiedbattery_map_level(hidpp, params[1]); 1527 1528 return 0; 1529 } 1530 1531 static int hidpp20_query_battery_info_1004(struct hidpp_device *hidpp) 1532 { 1533 u8 feature_type; 1534 int ret; 1535 u8 state_of_charge; 1536 int status, level; 1537 1538 if (hidpp->battery.feature_index == 0xff) { 1539 ret = hidpp_root_get_feature(hidpp, 1540 HIDPP_PAGE_UNIFIED_BATTERY, 1541 &hidpp->battery.feature_index, 1542 &feature_type); 1543 if (ret) 1544 return ret; 1545 } 1546 1547 ret = hidpp20_unifiedbattery_get_capabilities(hidpp, 1548 hidpp->battery.feature_index); 1549 if (ret) 1550 return ret; 1551 1552 ret = hidpp20_unifiedbattery_get_status(hidpp, 1553 hidpp->battery.feature_index, 1554 &state_of_charge, 1555 &status, 1556 &level); 1557 if (ret) 1558 return ret; 1559 1560 hidpp->capabilities |= HIDPP_CAPABILITY_UNIFIED_BATTERY; 1561 hidpp->battery.capacity = state_of_charge; 1562 hidpp->battery.status = status; 1563 hidpp->battery.level = level; 1564 hidpp->battery.online = true; 1565 1566 return 0; 1567 } 1568 1569 static int hidpp20_battery_event_1004(struct hidpp_device *hidpp, 1570 u8 *data, int size) 1571 { 1572 struct hidpp_report *report = (struct hidpp_report *)data; 1573 u8 *params = (u8 *)report->fap.params; 1574 int state_of_charge, status, level; 1575 bool changed; 1576 1577 if (report->fap.feature_index != hidpp->battery.feature_index || 1578 report->fap.funcindex_clientid != EVENT_UNIFIED_BATTERY_STATUS_EVENT) 1579 return 0; 1580 1581 state_of_charge = params[0]; 1582 status = hidpp20_unifiedbattery_map_status(hidpp, params[2], params[3]); 1583 level = hidpp20_unifiedbattery_map_level(hidpp, params[1]); 1584 1585 changed = status != hidpp->battery.status || 1586 (state_of_charge != hidpp->battery.capacity && 1587 hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_PERCENTAGE) || 1588 (level != hidpp->battery.level && 1589 hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS); 1590 1591 if (changed) { 1592 hidpp->battery.capacity = state_of_charge; 1593 hidpp->battery.status = status; 1594 hidpp->battery.level = level; 1595 if (hidpp->battery.ps) 1596 power_supply_changed(hidpp->battery.ps); 1597 } 1598 1599 return 0; 1600 } 1601 1602 /* -------------------------------------------------------------------------- */ 1603 /* Battery feature helpers */ 1604 /* -------------------------------------------------------------------------- */ 1605 1606 static enum power_supply_property hidpp_battery_props[] = { 1607 POWER_SUPPLY_PROP_ONLINE, 1608 POWER_SUPPLY_PROP_STATUS, 1609 POWER_SUPPLY_PROP_SCOPE, 1610 POWER_SUPPLY_PROP_MODEL_NAME, 1611 POWER_SUPPLY_PROP_MANUFACTURER, 1612 POWER_SUPPLY_PROP_SERIAL_NUMBER, 1613 0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY, */ 1614 0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY_LEVEL, */ 1615 0, /* placeholder for POWER_SUPPLY_PROP_VOLTAGE_NOW, */ 1616 }; 1617 1618 static int hidpp_battery_get_property(struct power_supply *psy, 1619 enum power_supply_property psp, 1620 union power_supply_propval *val) 1621 { 1622 struct hidpp_device *hidpp = power_supply_get_drvdata(psy); 1623 int ret = 0; 1624 1625 switch(psp) { 1626 case POWER_SUPPLY_PROP_STATUS: 1627 val->intval = hidpp->battery.status; 1628 break; 1629 case POWER_SUPPLY_PROP_CAPACITY: 1630 val->intval = hidpp->battery.capacity; 1631 break; 1632 case POWER_SUPPLY_PROP_CAPACITY_LEVEL: 1633 val->intval = hidpp->battery.level; 1634 break; 1635 case POWER_SUPPLY_PROP_SCOPE: 1636 val->intval = POWER_SUPPLY_SCOPE_DEVICE; 1637 break; 1638 case POWER_SUPPLY_PROP_ONLINE: 1639 val->intval = hidpp->battery.online; 1640 break; 1641 case POWER_SUPPLY_PROP_MODEL_NAME: 1642 if (!strncmp(hidpp->name, "Logitech ", 9)) 1643 val->strval = hidpp->name + 9; 1644 else 1645 val->strval = hidpp->name; 1646 break; 1647 case POWER_SUPPLY_PROP_MANUFACTURER: 1648 val->strval = "Logitech"; 1649 break; 1650 case POWER_SUPPLY_PROP_SERIAL_NUMBER: 1651 val->strval = hidpp->hid_dev->uniq; 1652 break; 1653 case POWER_SUPPLY_PROP_VOLTAGE_NOW: 1654 /* hardware reports voltage in in mV. sysfs expects uV */ 1655 val->intval = hidpp->battery.voltage * 1000; 1656 break; 1657 case POWER_SUPPLY_PROP_CHARGE_TYPE: 1658 val->intval = hidpp->battery.charge_type; 1659 break; 1660 default: 1661 ret = -EINVAL; 1662 break; 1663 } 1664 1665 return ret; 1666 } 1667 1668 /* -------------------------------------------------------------------------- */ 1669 /* 0x1d4b: Wireless device status */ 1670 /* -------------------------------------------------------------------------- */ 1671 #define HIDPP_PAGE_WIRELESS_DEVICE_STATUS 0x1d4b 1672 1673 static int hidpp_set_wireless_feature_index(struct hidpp_device *hidpp) 1674 { 1675 u8 feature_type; 1676 int ret; 1677 1678 ret = hidpp_root_get_feature(hidpp, 1679 HIDPP_PAGE_WIRELESS_DEVICE_STATUS, 1680 &hidpp->wireless_feature_index, 1681 &feature_type); 1682 1683 return ret; 1684 } 1685 1686 /* -------------------------------------------------------------------------- */ 1687 /* 0x2120: Hi-resolution scrolling */ 1688 /* -------------------------------------------------------------------------- */ 1689 1690 #define HIDPP_PAGE_HI_RESOLUTION_SCROLLING 0x2120 1691 1692 #define CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE 0x10 1693 1694 static int hidpp_hrs_set_highres_scrolling_mode(struct hidpp_device *hidpp, 1695 bool enabled, u8 *multiplier) 1696 { 1697 u8 feature_index; 1698 u8 feature_type; 1699 int ret; 1700 u8 params[1]; 1701 struct hidpp_report response; 1702 1703 ret = hidpp_root_get_feature(hidpp, 1704 HIDPP_PAGE_HI_RESOLUTION_SCROLLING, 1705 &feature_index, 1706 &feature_type); 1707 if (ret) 1708 return ret; 1709 1710 params[0] = enabled ? BIT(0) : 0; 1711 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1712 CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE, 1713 params, sizeof(params), &response); 1714 if (ret) 1715 return ret; 1716 *multiplier = response.fap.params[1]; 1717 return 0; 1718 } 1719 1720 /* -------------------------------------------------------------------------- */ 1721 /* 0x2121: HiRes Wheel */ 1722 /* -------------------------------------------------------------------------- */ 1723 1724 #define HIDPP_PAGE_HIRES_WHEEL 0x2121 1725 1726 #define CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY 0x00 1727 #define CMD_HIRES_WHEEL_SET_WHEEL_MODE 0x20 1728 1729 static int hidpp_hrw_get_wheel_capability(struct hidpp_device *hidpp, 1730 u8 *multiplier) 1731 { 1732 u8 feature_index; 1733 u8 feature_type; 1734 int ret; 1735 struct hidpp_report response; 1736 1737 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL, 1738 &feature_index, &feature_type); 1739 if (ret) 1740 goto return_default; 1741 1742 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1743 CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY, 1744 NULL, 0, &response); 1745 if (ret) 1746 goto return_default; 1747 1748 *multiplier = response.fap.params[0]; 1749 return 0; 1750 return_default: 1751 hid_warn(hidpp->hid_dev, 1752 "Couldn't get wheel multiplier (error %d)\n", ret); 1753 return ret; 1754 } 1755 1756 static int hidpp_hrw_set_wheel_mode(struct hidpp_device *hidpp, bool invert, 1757 bool high_resolution, bool use_hidpp) 1758 { 1759 u8 feature_index; 1760 u8 feature_type; 1761 int ret; 1762 u8 params[1]; 1763 struct hidpp_report response; 1764 1765 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL, 1766 &feature_index, &feature_type); 1767 if (ret) 1768 return ret; 1769 1770 params[0] = (invert ? BIT(2) : 0) | 1771 (high_resolution ? BIT(1) : 0) | 1772 (use_hidpp ? BIT(0) : 0); 1773 1774 return hidpp_send_fap_command_sync(hidpp, feature_index, 1775 CMD_HIRES_WHEEL_SET_WHEEL_MODE, 1776 params, sizeof(params), &response); 1777 } 1778 1779 /* -------------------------------------------------------------------------- */ 1780 /* 0x4301: Solar Keyboard */ 1781 /* -------------------------------------------------------------------------- */ 1782 1783 #define HIDPP_PAGE_SOLAR_KEYBOARD 0x4301 1784 1785 #define CMD_SOLAR_SET_LIGHT_MEASURE 0x00 1786 1787 #define EVENT_SOLAR_BATTERY_BROADCAST 0x00 1788 #define EVENT_SOLAR_BATTERY_LIGHT_MEASURE 0x10 1789 #define EVENT_SOLAR_CHECK_LIGHT_BUTTON 0x20 1790 1791 static int hidpp_solar_request_battery_event(struct hidpp_device *hidpp) 1792 { 1793 struct hidpp_report response; 1794 u8 params[2] = { 1, 1 }; 1795 u8 feature_type; 1796 int ret; 1797 1798 if (hidpp->battery.feature_index == 0xff) { 1799 ret = hidpp_root_get_feature(hidpp, 1800 HIDPP_PAGE_SOLAR_KEYBOARD, 1801 &hidpp->battery.solar_feature_index, 1802 &feature_type); 1803 if (ret) 1804 return ret; 1805 } 1806 1807 ret = hidpp_send_fap_command_sync(hidpp, 1808 hidpp->battery.solar_feature_index, 1809 CMD_SOLAR_SET_LIGHT_MEASURE, 1810 params, 2, &response); 1811 if (ret > 0) { 1812 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1813 __func__, ret); 1814 return -EPROTO; 1815 } 1816 if (ret) 1817 return ret; 1818 1819 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE; 1820 1821 return 0; 1822 } 1823 1824 static int hidpp_solar_battery_event(struct hidpp_device *hidpp, 1825 u8 *data, int size) 1826 { 1827 struct hidpp_report *report = (struct hidpp_report *)data; 1828 int capacity, lux, status; 1829 u8 function; 1830 1831 function = report->fap.funcindex_clientid; 1832 1833 1834 if (report->fap.feature_index != hidpp->battery.solar_feature_index || 1835 !(function == EVENT_SOLAR_BATTERY_BROADCAST || 1836 function == EVENT_SOLAR_BATTERY_LIGHT_MEASURE || 1837 function == EVENT_SOLAR_CHECK_LIGHT_BUTTON)) 1838 return 0; 1839 1840 capacity = report->fap.params[0]; 1841 1842 switch (function) { 1843 case EVENT_SOLAR_BATTERY_LIGHT_MEASURE: 1844 lux = (report->fap.params[1] << 8) | report->fap.params[2]; 1845 if (lux > 200) 1846 status = POWER_SUPPLY_STATUS_CHARGING; 1847 else 1848 status = POWER_SUPPLY_STATUS_DISCHARGING; 1849 break; 1850 case EVENT_SOLAR_CHECK_LIGHT_BUTTON: 1851 default: 1852 if (capacity < hidpp->battery.capacity) 1853 status = POWER_SUPPLY_STATUS_DISCHARGING; 1854 else 1855 status = POWER_SUPPLY_STATUS_CHARGING; 1856 1857 } 1858 1859 if (capacity == 100) 1860 status = POWER_SUPPLY_STATUS_FULL; 1861 1862 hidpp->battery.online = true; 1863 if (capacity != hidpp->battery.capacity || 1864 status != hidpp->battery.status) { 1865 hidpp->battery.capacity = capacity; 1866 hidpp->battery.status = status; 1867 if (hidpp->battery.ps) 1868 power_supply_changed(hidpp->battery.ps); 1869 } 1870 1871 return 0; 1872 } 1873 1874 /* -------------------------------------------------------------------------- */ 1875 /* 0x6010: Touchpad FW items */ 1876 /* -------------------------------------------------------------------------- */ 1877 1878 #define HIDPP_PAGE_TOUCHPAD_FW_ITEMS 0x6010 1879 1880 #define CMD_TOUCHPAD_FW_ITEMS_SET 0x10 1881 1882 struct hidpp_touchpad_fw_items { 1883 uint8_t presence; 1884 uint8_t desired_state; 1885 uint8_t state; 1886 uint8_t persistent; 1887 }; 1888 1889 /* 1890 * send a set state command to the device by reading the current items->state 1891 * field. items is then filled with the current state. 1892 */ 1893 static int hidpp_touchpad_fw_items_set(struct hidpp_device *hidpp, 1894 u8 feature_index, 1895 struct hidpp_touchpad_fw_items *items) 1896 { 1897 struct hidpp_report response; 1898 int ret; 1899 u8 *params = (u8 *)response.fap.params; 1900 1901 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1902 CMD_TOUCHPAD_FW_ITEMS_SET, &items->state, 1, &response); 1903 1904 if (ret > 0) { 1905 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1906 __func__, ret); 1907 return -EPROTO; 1908 } 1909 if (ret) 1910 return ret; 1911 1912 items->presence = params[0]; 1913 items->desired_state = params[1]; 1914 items->state = params[2]; 1915 items->persistent = params[3]; 1916 1917 return 0; 1918 } 1919 1920 /* -------------------------------------------------------------------------- */ 1921 /* 0x6100: TouchPadRawXY */ 1922 /* -------------------------------------------------------------------------- */ 1923 1924 #define HIDPP_PAGE_TOUCHPAD_RAW_XY 0x6100 1925 1926 #define CMD_TOUCHPAD_GET_RAW_INFO 0x01 1927 #define CMD_TOUCHPAD_SET_RAW_REPORT_STATE 0x21 1928 1929 #define EVENT_TOUCHPAD_RAW_XY 0x00 1930 1931 #define TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT 0x01 1932 #define TOUCHPAD_RAW_XY_ORIGIN_UPPER_LEFT 0x03 1933 1934 struct hidpp_touchpad_raw_info { 1935 u16 x_size; 1936 u16 y_size; 1937 u8 z_range; 1938 u8 area_range; 1939 u8 timestamp_unit; 1940 u8 maxcontacts; 1941 u8 origin; 1942 u16 res; 1943 }; 1944 1945 struct hidpp_touchpad_raw_xy_finger { 1946 u8 contact_type; 1947 u8 contact_status; 1948 u16 x; 1949 u16 y; 1950 u8 z; 1951 u8 area; 1952 u8 finger_id; 1953 }; 1954 1955 struct hidpp_touchpad_raw_xy { 1956 u16 timestamp; 1957 struct hidpp_touchpad_raw_xy_finger fingers[2]; 1958 u8 spurious_flag; 1959 u8 end_of_frame; 1960 u8 finger_count; 1961 u8 button; 1962 }; 1963 1964 static int hidpp_touchpad_get_raw_info(struct hidpp_device *hidpp, 1965 u8 feature_index, struct hidpp_touchpad_raw_info *raw_info) 1966 { 1967 struct hidpp_report response; 1968 int ret; 1969 u8 *params = (u8 *)response.fap.params; 1970 1971 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1972 CMD_TOUCHPAD_GET_RAW_INFO, NULL, 0, &response); 1973 1974 if (ret > 0) { 1975 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1976 __func__, ret); 1977 return -EPROTO; 1978 } 1979 if (ret) 1980 return ret; 1981 1982 raw_info->x_size = get_unaligned_be16(¶ms[0]); 1983 raw_info->y_size = get_unaligned_be16(¶ms[2]); 1984 raw_info->z_range = params[4]; 1985 raw_info->area_range = params[5]; 1986 raw_info->maxcontacts = params[7]; 1987 raw_info->origin = params[8]; 1988 /* res is given in unit per inch */ 1989 raw_info->res = get_unaligned_be16(¶ms[13]) * 2 / 51; 1990 1991 return ret; 1992 } 1993 1994 static int hidpp_touchpad_set_raw_report_state(struct hidpp_device *hidpp_dev, 1995 u8 feature_index, bool send_raw_reports, 1996 bool sensor_enhanced_settings) 1997 { 1998 struct hidpp_report response; 1999 2000 /* 2001 * Params: 2002 * bit 0 - enable raw 2003 * bit 1 - 16bit Z, no area 2004 * bit 2 - enhanced sensitivity 2005 * bit 3 - width, height (4 bits each) instead of area 2006 * bit 4 - send raw + gestures (degrades smoothness) 2007 * remaining bits - reserved 2008 */ 2009 u8 params = send_raw_reports | (sensor_enhanced_settings << 2); 2010 2011 return hidpp_send_fap_command_sync(hidpp_dev, feature_index, 2012 CMD_TOUCHPAD_SET_RAW_REPORT_STATE, ¶ms, 1, &response); 2013 } 2014 2015 static void hidpp_touchpad_touch_event(u8 *data, 2016 struct hidpp_touchpad_raw_xy_finger *finger) 2017 { 2018 u8 x_m = data[0] << 2; 2019 u8 y_m = data[2] << 2; 2020 2021 finger->x = x_m << 6 | data[1]; 2022 finger->y = y_m << 6 | data[3]; 2023 2024 finger->contact_type = data[0] >> 6; 2025 finger->contact_status = data[2] >> 6; 2026 2027 finger->z = data[4]; 2028 finger->area = data[5]; 2029 finger->finger_id = data[6] >> 4; 2030 } 2031 2032 static void hidpp_touchpad_raw_xy_event(struct hidpp_device *hidpp_dev, 2033 u8 *data, struct hidpp_touchpad_raw_xy *raw_xy) 2034 { 2035 memset(raw_xy, 0, sizeof(struct hidpp_touchpad_raw_xy)); 2036 raw_xy->end_of_frame = data[8] & 0x01; 2037 raw_xy->spurious_flag = (data[8] >> 1) & 0x01; 2038 raw_xy->finger_count = data[15] & 0x0f; 2039 raw_xy->button = (data[8] >> 2) & 0x01; 2040 2041 if (raw_xy->finger_count) { 2042 hidpp_touchpad_touch_event(&data[2], &raw_xy->fingers[0]); 2043 hidpp_touchpad_touch_event(&data[9], &raw_xy->fingers[1]); 2044 } 2045 } 2046 2047 /* -------------------------------------------------------------------------- */ 2048 /* 0x8123: Force feedback support */ 2049 /* -------------------------------------------------------------------------- */ 2050 2051 #define HIDPP_FF_GET_INFO 0x01 2052 #define HIDPP_FF_RESET_ALL 0x11 2053 #define HIDPP_FF_DOWNLOAD_EFFECT 0x21 2054 #define HIDPP_FF_SET_EFFECT_STATE 0x31 2055 #define HIDPP_FF_DESTROY_EFFECT 0x41 2056 #define HIDPP_FF_GET_APERTURE 0x51 2057 #define HIDPP_FF_SET_APERTURE 0x61 2058 #define HIDPP_FF_GET_GLOBAL_GAINS 0x71 2059 #define HIDPP_FF_SET_GLOBAL_GAINS 0x81 2060 2061 #define HIDPP_FF_EFFECT_STATE_GET 0x00 2062 #define HIDPP_FF_EFFECT_STATE_STOP 0x01 2063 #define HIDPP_FF_EFFECT_STATE_PLAY 0x02 2064 #define HIDPP_FF_EFFECT_STATE_PAUSE 0x03 2065 2066 #define HIDPP_FF_EFFECT_CONSTANT 0x00 2067 #define HIDPP_FF_EFFECT_PERIODIC_SINE 0x01 2068 #define HIDPP_FF_EFFECT_PERIODIC_SQUARE 0x02 2069 #define HIDPP_FF_EFFECT_PERIODIC_TRIANGLE 0x03 2070 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP 0x04 2071 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN 0x05 2072 #define HIDPP_FF_EFFECT_SPRING 0x06 2073 #define HIDPP_FF_EFFECT_DAMPER 0x07 2074 #define HIDPP_FF_EFFECT_FRICTION 0x08 2075 #define HIDPP_FF_EFFECT_INERTIA 0x09 2076 #define HIDPP_FF_EFFECT_RAMP 0x0A 2077 2078 #define HIDPP_FF_EFFECT_AUTOSTART 0x80 2079 2080 #define HIDPP_FF_EFFECTID_NONE -1 2081 #define HIDPP_FF_EFFECTID_AUTOCENTER -2 2082 #define HIDPP_AUTOCENTER_PARAMS_LENGTH 18 2083 2084 #define HIDPP_FF_MAX_PARAMS 20 2085 #define HIDPP_FF_RESERVED_SLOTS 1 2086 2087 struct hidpp_ff_private_data { 2088 struct hidpp_device *hidpp; 2089 u8 feature_index; 2090 u8 version; 2091 u16 gain; 2092 s16 range; 2093 u8 slot_autocenter; 2094 u8 num_effects; 2095 int *effect_ids; 2096 struct workqueue_struct *wq; 2097 atomic_t workqueue_size; 2098 }; 2099 2100 struct hidpp_ff_work_data { 2101 struct work_struct work; 2102 struct hidpp_ff_private_data *data; 2103 int effect_id; 2104 u8 command; 2105 u8 params[HIDPP_FF_MAX_PARAMS]; 2106 u8 size; 2107 }; 2108 2109 static const signed short hidpp_ff_effects[] = { 2110 FF_CONSTANT, 2111 FF_PERIODIC, 2112 FF_SINE, 2113 FF_SQUARE, 2114 FF_SAW_UP, 2115 FF_SAW_DOWN, 2116 FF_TRIANGLE, 2117 FF_SPRING, 2118 FF_DAMPER, 2119 FF_AUTOCENTER, 2120 FF_GAIN, 2121 -1 2122 }; 2123 2124 static const signed short hidpp_ff_effects_v2[] = { 2125 FF_RAMP, 2126 FF_FRICTION, 2127 FF_INERTIA, 2128 -1 2129 }; 2130 2131 static const u8 HIDPP_FF_CONDITION_CMDS[] = { 2132 HIDPP_FF_EFFECT_SPRING, 2133 HIDPP_FF_EFFECT_FRICTION, 2134 HIDPP_FF_EFFECT_DAMPER, 2135 HIDPP_FF_EFFECT_INERTIA 2136 }; 2137 2138 static const char *HIDPP_FF_CONDITION_NAMES[] = { 2139 "spring", 2140 "friction", 2141 "damper", 2142 "inertia" 2143 }; 2144 2145 2146 static u8 hidpp_ff_find_effect(struct hidpp_ff_private_data *data, int effect_id) 2147 { 2148 int i; 2149 2150 for (i = 0; i < data->num_effects; i++) 2151 if (data->effect_ids[i] == effect_id) 2152 return i+1; 2153 2154 return 0; 2155 } 2156 2157 static void hidpp_ff_work_handler(struct work_struct *w) 2158 { 2159 struct hidpp_ff_work_data *wd = container_of(w, struct hidpp_ff_work_data, work); 2160 struct hidpp_ff_private_data *data = wd->data; 2161 struct hidpp_report response; 2162 u8 slot; 2163 int ret; 2164 2165 /* add slot number if needed */ 2166 switch (wd->effect_id) { 2167 case HIDPP_FF_EFFECTID_AUTOCENTER: 2168 wd->params[0] = data->slot_autocenter; 2169 break; 2170 case HIDPP_FF_EFFECTID_NONE: 2171 /* leave slot as zero */ 2172 break; 2173 default: 2174 /* find current slot for effect */ 2175 wd->params[0] = hidpp_ff_find_effect(data, wd->effect_id); 2176 break; 2177 } 2178 2179 /* send command and wait for reply */ 2180 ret = hidpp_send_fap_command_sync(data->hidpp, data->feature_index, 2181 wd->command, wd->params, wd->size, &response); 2182 2183 if (ret) { 2184 hid_err(data->hidpp->hid_dev, "Failed to send command to device!\n"); 2185 goto out; 2186 } 2187 2188 /* parse return data */ 2189 switch (wd->command) { 2190 case HIDPP_FF_DOWNLOAD_EFFECT: 2191 slot = response.fap.params[0]; 2192 if (slot > 0 && slot <= data->num_effects) { 2193 if (wd->effect_id >= 0) 2194 /* regular effect uploaded */ 2195 data->effect_ids[slot-1] = wd->effect_id; 2196 else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER) 2197 /* autocenter spring uploaded */ 2198 data->slot_autocenter = slot; 2199 } 2200 break; 2201 case HIDPP_FF_DESTROY_EFFECT: 2202 if (wd->effect_id >= 0) 2203 /* regular effect destroyed */ 2204 data->effect_ids[wd->params[0]-1] = -1; 2205 else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER) 2206 /* autocenter spring destoyed */ 2207 data->slot_autocenter = 0; 2208 break; 2209 case HIDPP_FF_SET_GLOBAL_GAINS: 2210 data->gain = (wd->params[0] << 8) + wd->params[1]; 2211 break; 2212 case HIDPP_FF_SET_APERTURE: 2213 data->range = (wd->params[0] << 8) + wd->params[1]; 2214 break; 2215 default: 2216 /* no action needed */ 2217 break; 2218 } 2219 2220 out: 2221 atomic_dec(&data->workqueue_size); 2222 kfree(wd); 2223 } 2224 2225 static int hidpp_ff_queue_work(struct hidpp_ff_private_data *data, int effect_id, u8 command, u8 *params, u8 size) 2226 { 2227 struct hidpp_ff_work_data *wd = kzalloc(sizeof(*wd), GFP_KERNEL); 2228 int s; 2229 2230 if (!wd) 2231 return -ENOMEM; 2232 2233 INIT_WORK(&wd->work, hidpp_ff_work_handler); 2234 2235 wd->data = data; 2236 wd->effect_id = effect_id; 2237 wd->command = command; 2238 wd->size = size; 2239 memcpy(wd->params, params, size); 2240 2241 atomic_inc(&data->workqueue_size); 2242 queue_work(data->wq, &wd->work); 2243 2244 /* warn about excessive queue size */ 2245 s = atomic_read(&data->workqueue_size); 2246 if (s >= 20 && s % 20 == 0) 2247 hid_warn(data->hidpp->hid_dev, "Force feedback command queue contains %d commands, causing substantial delays!", s); 2248 2249 return 0; 2250 } 2251 2252 static int hidpp_ff_upload_effect(struct input_dev *dev, struct ff_effect *effect, struct ff_effect *old) 2253 { 2254 struct hidpp_ff_private_data *data = dev->ff->private; 2255 u8 params[20]; 2256 u8 size; 2257 int force; 2258 2259 /* set common parameters */ 2260 params[2] = effect->replay.length >> 8; 2261 params[3] = effect->replay.length & 255; 2262 params[4] = effect->replay.delay >> 8; 2263 params[5] = effect->replay.delay & 255; 2264 2265 switch (effect->type) { 2266 case FF_CONSTANT: 2267 force = (effect->u.constant.level * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 2268 params[1] = HIDPP_FF_EFFECT_CONSTANT; 2269 params[6] = force >> 8; 2270 params[7] = force & 255; 2271 params[8] = effect->u.constant.envelope.attack_level >> 7; 2272 params[9] = effect->u.constant.envelope.attack_length >> 8; 2273 params[10] = effect->u.constant.envelope.attack_length & 255; 2274 params[11] = effect->u.constant.envelope.fade_level >> 7; 2275 params[12] = effect->u.constant.envelope.fade_length >> 8; 2276 params[13] = effect->u.constant.envelope.fade_length & 255; 2277 size = 14; 2278 dbg_hid("Uploading constant force level=%d in dir %d = %d\n", 2279 effect->u.constant.level, 2280 effect->direction, force); 2281 dbg_hid(" envelope attack=(%d, %d ms) fade=(%d, %d ms)\n", 2282 effect->u.constant.envelope.attack_level, 2283 effect->u.constant.envelope.attack_length, 2284 effect->u.constant.envelope.fade_level, 2285 effect->u.constant.envelope.fade_length); 2286 break; 2287 case FF_PERIODIC: 2288 { 2289 switch (effect->u.periodic.waveform) { 2290 case FF_SINE: 2291 params[1] = HIDPP_FF_EFFECT_PERIODIC_SINE; 2292 break; 2293 case FF_SQUARE: 2294 params[1] = HIDPP_FF_EFFECT_PERIODIC_SQUARE; 2295 break; 2296 case FF_SAW_UP: 2297 params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP; 2298 break; 2299 case FF_SAW_DOWN: 2300 params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN; 2301 break; 2302 case FF_TRIANGLE: 2303 params[1] = HIDPP_FF_EFFECT_PERIODIC_TRIANGLE; 2304 break; 2305 default: 2306 hid_err(data->hidpp->hid_dev, "Unexpected periodic waveform type %i!\n", effect->u.periodic.waveform); 2307 return -EINVAL; 2308 } 2309 force = (effect->u.periodic.magnitude * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 2310 params[6] = effect->u.periodic.magnitude >> 8; 2311 params[7] = effect->u.periodic.magnitude & 255; 2312 params[8] = effect->u.periodic.offset >> 8; 2313 params[9] = effect->u.periodic.offset & 255; 2314 params[10] = effect->u.periodic.period >> 8; 2315 params[11] = effect->u.periodic.period & 255; 2316 params[12] = effect->u.periodic.phase >> 8; 2317 params[13] = effect->u.periodic.phase & 255; 2318 params[14] = effect->u.periodic.envelope.attack_level >> 7; 2319 params[15] = effect->u.periodic.envelope.attack_length >> 8; 2320 params[16] = effect->u.periodic.envelope.attack_length & 255; 2321 params[17] = effect->u.periodic.envelope.fade_level >> 7; 2322 params[18] = effect->u.periodic.envelope.fade_length >> 8; 2323 params[19] = effect->u.periodic.envelope.fade_length & 255; 2324 size = 20; 2325 dbg_hid("Uploading periodic force mag=%d/dir=%d, offset=%d, period=%d ms, phase=%d\n", 2326 effect->u.periodic.magnitude, effect->direction, 2327 effect->u.periodic.offset, 2328 effect->u.periodic.period, 2329 effect->u.periodic.phase); 2330 dbg_hid(" envelope attack=(%d, %d ms) fade=(%d, %d ms)\n", 2331 effect->u.periodic.envelope.attack_level, 2332 effect->u.periodic.envelope.attack_length, 2333 effect->u.periodic.envelope.fade_level, 2334 effect->u.periodic.envelope.fade_length); 2335 break; 2336 } 2337 case FF_RAMP: 2338 params[1] = HIDPP_FF_EFFECT_RAMP; 2339 force = (effect->u.ramp.start_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 2340 params[6] = force >> 8; 2341 params[7] = force & 255; 2342 force = (effect->u.ramp.end_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 2343 params[8] = force >> 8; 2344 params[9] = force & 255; 2345 params[10] = effect->u.ramp.envelope.attack_level >> 7; 2346 params[11] = effect->u.ramp.envelope.attack_length >> 8; 2347 params[12] = effect->u.ramp.envelope.attack_length & 255; 2348 params[13] = effect->u.ramp.envelope.fade_level >> 7; 2349 params[14] = effect->u.ramp.envelope.fade_length >> 8; 2350 params[15] = effect->u.ramp.envelope.fade_length & 255; 2351 size = 16; 2352 dbg_hid("Uploading ramp force level=%d -> %d in dir %d = %d\n", 2353 effect->u.ramp.start_level, 2354 effect->u.ramp.end_level, 2355 effect->direction, force); 2356 dbg_hid(" envelope attack=(%d, %d ms) fade=(%d, %d ms)\n", 2357 effect->u.ramp.envelope.attack_level, 2358 effect->u.ramp.envelope.attack_length, 2359 effect->u.ramp.envelope.fade_level, 2360 effect->u.ramp.envelope.fade_length); 2361 break; 2362 case FF_FRICTION: 2363 case FF_INERTIA: 2364 case FF_SPRING: 2365 case FF_DAMPER: 2366 params[1] = HIDPP_FF_CONDITION_CMDS[effect->type - FF_SPRING]; 2367 params[6] = effect->u.condition[0].left_saturation >> 9; 2368 params[7] = (effect->u.condition[0].left_saturation >> 1) & 255; 2369 params[8] = effect->u.condition[0].left_coeff >> 8; 2370 params[9] = effect->u.condition[0].left_coeff & 255; 2371 params[10] = effect->u.condition[0].deadband >> 9; 2372 params[11] = (effect->u.condition[0].deadband >> 1) & 255; 2373 params[12] = effect->u.condition[0].center >> 8; 2374 params[13] = effect->u.condition[0].center & 255; 2375 params[14] = effect->u.condition[0].right_coeff >> 8; 2376 params[15] = effect->u.condition[0].right_coeff & 255; 2377 params[16] = effect->u.condition[0].right_saturation >> 9; 2378 params[17] = (effect->u.condition[0].right_saturation >> 1) & 255; 2379 size = 18; 2380 dbg_hid("Uploading %s force left coeff=%d, left sat=%d, right coeff=%d, right sat=%d\n", 2381 HIDPP_FF_CONDITION_NAMES[effect->type - FF_SPRING], 2382 effect->u.condition[0].left_coeff, 2383 effect->u.condition[0].left_saturation, 2384 effect->u.condition[0].right_coeff, 2385 effect->u.condition[0].right_saturation); 2386 dbg_hid(" deadband=%d, center=%d\n", 2387 effect->u.condition[0].deadband, 2388 effect->u.condition[0].center); 2389 break; 2390 default: 2391 hid_err(data->hidpp->hid_dev, "Unexpected force type %i!\n", effect->type); 2392 return -EINVAL; 2393 } 2394 2395 return hidpp_ff_queue_work(data, effect->id, HIDPP_FF_DOWNLOAD_EFFECT, params, size); 2396 } 2397 2398 static int hidpp_ff_playback(struct input_dev *dev, int effect_id, int value) 2399 { 2400 struct hidpp_ff_private_data *data = dev->ff->private; 2401 u8 params[2]; 2402 2403 params[1] = value ? HIDPP_FF_EFFECT_STATE_PLAY : HIDPP_FF_EFFECT_STATE_STOP; 2404 2405 dbg_hid("St%sing playback of effect %d.\n", value?"art":"opp", effect_id); 2406 2407 return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_SET_EFFECT_STATE, params, ARRAY_SIZE(params)); 2408 } 2409 2410 static int hidpp_ff_erase_effect(struct input_dev *dev, int effect_id) 2411 { 2412 struct hidpp_ff_private_data *data = dev->ff->private; 2413 u8 slot = 0; 2414 2415 dbg_hid("Erasing effect %d.\n", effect_id); 2416 2417 return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_DESTROY_EFFECT, &slot, 1); 2418 } 2419 2420 static void hidpp_ff_set_autocenter(struct input_dev *dev, u16 magnitude) 2421 { 2422 struct hidpp_ff_private_data *data = dev->ff->private; 2423 u8 params[HIDPP_AUTOCENTER_PARAMS_LENGTH]; 2424 2425 dbg_hid("Setting autocenter to %d.\n", magnitude); 2426 2427 /* start a standard spring effect */ 2428 params[1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART; 2429 /* zero delay and duration */ 2430 params[2] = params[3] = params[4] = params[5] = 0; 2431 /* set coeff to 25% of saturation */ 2432 params[8] = params[14] = magnitude >> 11; 2433 params[9] = params[15] = (magnitude >> 3) & 255; 2434 params[6] = params[16] = magnitude >> 9; 2435 params[7] = params[17] = (magnitude >> 1) & 255; 2436 /* zero deadband and center */ 2437 params[10] = params[11] = params[12] = params[13] = 0; 2438 2439 hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_AUTOCENTER, HIDPP_FF_DOWNLOAD_EFFECT, params, ARRAY_SIZE(params)); 2440 } 2441 2442 static void hidpp_ff_set_gain(struct input_dev *dev, u16 gain) 2443 { 2444 struct hidpp_ff_private_data *data = dev->ff->private; 2445 u8 params[4]; 2446 2447 dbg_hid("Setting gain to %d.\n", gain); 2448 2449 params[0] = gain >> 8; 2450 params[1] = gain & 255; 2451 params[2] = 0; /* no boost */ 2452 params[3] = 0; 2453 2454 hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_NONE, HIDPP_FF_SET_GLOBAL_GAINS, params, ARRAY_SIZE(params)); 2455 } 2456 2457 static ssize_t hidpp_ff_range_show(struct device *dev, struct device_attribute *attr, char *buf) 2458 { 2459 struct hid_device *hid = to_hid_device(dev); 2460 struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list); 2461 struct input_dev *idev = hidinput->input; 2462 struct hidpp_ff_private_data *data = idev->ff->private; 2463 2464 return scnprintf(buf, PAGE_SIZE, "%u\n", data->range); 2465 } 2466 2467 static ssize_t hidpp_ff_range_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) 2468 { 2469 struct hid_device *hid = to_hid_device(dev); 2470 struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list); 2471 struct input_dev *idev = hidinput->input; 2472 struct hidpp_ff_private_data *data = idev->ff->private; 2473 u8 params[2]; 2474 int range = simple_strtoul(buf, NULL, 10); 2475 2476 range = clamp(range, 180, 900); 2477 2478 params[0] = range >> 8; 2479 params[1] = range & 0x00FF; 2480 2481 hidpp_ff_queue_work(data, -1, HIDPP_FF_SET_APERTURE, params, ARRAY_SIZE(params)); 2482 2483 return count; 2484 } 2485 2486 static DEVICE_ATTR(range, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH, hidpp_ff_range_show, hidpp_ff_range_store); 2487 2488 static void hidpp_ff_destroy(struct ff_device *ff) 2489 { 2490 struct hidpp_ff_private_data *data = ff->private; 2491 struct hid_device *hid = data->hidpp->hid_dev; 2492 2493 hid_info(hid, "Unloading HID++ force feedback.\n"); 2494 2495 device_remove_file(&hid->dev, &dev_attr_range); 2496 destroy_workqueue(data->wq); 2497 kfree(data->effect_ids); 2498 } 2499 2500 static int hidpp_ff_init(struct hidpp_device *hidpp, 2501 struct hidpp_ff_private_data *data) 2502 { 2503 struct hid_device *hid = hidpp->hid_dev; 2504 struct hid_input *hidinput; 2505 struct input_dev *dev; 2506 const struct usb_device_descriptor *udesc = &(hid_to_usb_dev(hid)->descriptor); 2507 const u16 bcdDevice = le16_to_cpu(udesc->bcdDevice); 2508 struct ff_device *ff; 2509 int error, j, num_slots = data->num_effects; 2510 u8 version; 2511 2512 if (list_empty(&hid->inputs)) { 2513 hid_err(hid, "no inputs found\n"); 2514 return -ENODEV; 2515 } 2516 hidinput = list_entry(hid->inputs.next, struct hid_input, list); 2517 dev = hidinput->input; 2518 2519 if (!dev) { 2520 hid_err(hid, "Struct input_dev not set!\n"); 2521 return -EINVAL; 2522 } 2523 2524 /* Get firmware release */ 2525 version = bcdDevice & 255; 2526 2527 /* Set supported force feedback capabilities */ 2528 for (j = 0; hidpp_ff_effects[j] >= 0; j++) 2529 set_bit(hidpp_ff_effects[j], dev->ffbit); 2530 if (version > 1) 2531 for (j = 0; hidpp_ff_effects_v2[j] >= 0; j++) 2532 set_bit(hidpp_ff_effects_v2[j], dev->ffbit); 2533 2534 error = input_ff_create(dev, num_slots); 2535 2536 if (error) { 2537 hid_err(dev, "Failed to create FF device!\n"); 2538 return error; 2539 } 2540 /* 2541 * Create a copy of passed data, so we can transfer memory 2542 * ownership to FF core 2543 */ 2544 data = kmemdup(data, sizeof(*data), GFP_KERNEL); 2545 if (!data) 2546 return -ENOMEM; 2547 data->effect_ids = kcalloc(num_slots, sizeof(int), GFP_KERNEL); 2548 if (!data->effect_ids) { 2549 kfree(data); 2550 return -ENOMEM; 2551 } 2552 data->wq = create_singlethread_workqueue("hidpp-ff-sendqueue"); 2553 if (!data->wq) { 2554 kfree(data->effect_ids); 2555 kfree(data); 2556 return -ENOMEM; 2557 } 2558 2559 data->hidpp = hidpp; 2560 data->version = version; 2561 for (j = 0; j < num_slots; j++) 2562 data->effect_ids[j] = -1; 2563 2564 ff = dev->ff; 2565 ff->private = data; 2566 2567 ff->upload = hidpp_ff_upload_effect; 2568 ff->erase = hidpp_ff_erase_effect; 2569 ff->playback = hidpp_ff_playback; 2570 ff->set_gain = hidpp_ff_set_gain; 2571 ff->set_autocenter = hidpp_ff_set_autocenter; 2572 ff->destroy = hidpp_ff_destroy; 2573 2574 /* Create sysfs interface */ 2575 error = device_create_file(&(hidpp->hid_dev->dev), &dev_attr_range); 2576 if (error) 2577 hid_warn(hidpp->hid_dev, "Unable to create sysfs interface for \"range\", errno %d!\n", error); 2578 2579 /* init the hardware command queue */ 2580 atomic_set(&data->workqueue_size, 0); 2581 2582 hid_info(hid, "Force feedback support loaded (firmware release %d).\n", 2583 version); 2584 2585 return 0; 2586 } 2587 2588 /* ************************************************************************** */ 2589 /* */ 2590 /* Device Support */ 2591 /* */ 2592 /* ************************************************************************** */ 2593 2594 /* -------------------------------------------------------------------------- */ 2595 /* Touchpad HID++ devices */ 2596 /* -------------------------------------------------------------------------- */ 2597 2598 #define WTP_MANUAL_RESOLUTION 39 2599 2600 struct wtp_data { 2601 u16 x_size, y_size; 2602 u8 finger_count; 2603 u8 mt_feature_index; 2604 u8 button_feature_index; 2605 u8 maxcontacts; 2606 bool flip_y; 2607 unsigned int resolution; 2608 }; 2609 2610 static int wtp_input_mapping(struct hid_device *hdev, struct hid_input *hi, 2611 struct hid_field *field, struct hid_usage *usage, 2612 unsigned long **bit, int *max) 2613 { 2614 return -1; 2615 } 2616 2617 static void wtp_populate_input(struct hidpp_device *hidpp, 2618 struct input_dev *input_dev) 2619 { 2620 struct wtp_data *wd = hidpp->private_data; 2621 2622 __set_bit(EV_ABS, input_dev->evbit); 2623 __set_bit(EV_KEY, input_dev->evbit); 2624 __clear_bit(EV_REL, input_dev->evbit); 2625 __clear_bit(EV_LED, input_dev->evbit); 2626 2627 input_set_abs_params(input_dev, ABS_MT_POSITION_X, 0, wd->x_size, 0, 0); 2628 input_abs_set_res(input_dev, ABS_MT_POSITION_X, wd->resolution); 2629 input_set_abs_params(input_dev, ABS_MT_POSITION_Y, 0, wd->y_size, 0, 0); 2630 input_abs_set_res(input_dev, ABS_MT_POSITION_Y, wd->resolution); 2631 2632 /* Max pressure is not given by the devices, pick one */ 2633 input_set_abs_params(input_dev, ABS_MT_PRESSURE, 0, 50, 0, 0); 2634 2635 input_set_capability(input_dev, EV_KEY, BTN_LEFT); 2636 2637 if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) 2638 input_set_capability(input_dev, EV_KEY, BTN_RIGHT); 2639 else 2640 __set_bit(INPUT_PROP_BUTTONPAD, input_dev->propbit); 2641 2642 input_mt_init_slots(input_dev, wd->maxcontacts, INPUT_MT_POINTER | 2643 INPUT_MT_DROP_UNUSED); 2644 } 2645 2646 static void wtp_touch_event(struct hidpp_device *hidpp, 2647 struct hidpp_touchpad_raw_xy_finger *touch_report) 2648 { 2649 struct wtp_data *wd = hidpp->private_data; 2650 int slot; 2651 2652 if (!touch_report->finger_id || touch_report->contact_type) 2653 /* no actual data */ 2654 return; 2655 2656 slot = input_mt_get_slot_by_key(hidpp->input, touch_report->finger_id); 2657 2658 input_mt_slot(hidpp->input, slot); 2659 input_mt_report_slot_state(hidpp->input, MT_TOOL_FINGER, 2660 touch_report->contact_status); 2661 if (touch_report->contact_status) { 2662 input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_X, 2663 touch_report->x); 2664 input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_Y, 2665 wd->flip_y ? wd->y_size - touch_report->y : 2666 touch_report->y); 2667 input_event(hidpp->input, EV_ABS, ABS_MT_PRESSURE, 2668 touch_report->area); 2669 } 2670 } 2671 2672 static void wtp_send_raw_xy_event(struct hidpp_device *hidpp, 2673 struct hidpp_touchpad_raw_xy *raw) 2674 { 2675 int i; 2676 2677 for (i = 0; i < 2; i++) 2678 wtp_touch_event(hidpp, &(raw->fingers[i])); 2679 2680 if (raw->end_of_frame && 2681 !(hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS)) 2682 input_event(hidpp->input, EV_KEY, BTN_LEFT, raw->button); 2683 2684 if (raw->end_of_frame || raw->finger_count <= 2) { 2685 input_mt_sync_frame(hidpp->input); 2686 input_sync(hidpp->input); 2687 } 2688 } 2689 2690 static int wtp_mouse_raw_xy_event(struct hidpp_device *hidpp, u8 *data) 2691 { 2692 struct wtp_data *wd = hidpp->private_data; 2693 u8 c1_area = ((data[7] & 0xf) * (data[7] & 0xf) + 2694 (data[7] >> 4) * (data[7] >> 4)) / 2; 2695 u8 c2_area = ((data[13] & 0xf) * (data[13] & 0xf) + 2696 (data[13] >> 4) * (data[13] >> 4)) / 2; 2697 struct hidpp_touchpad_raw_xy raw = { 2698 .timestamp = data[1], 2699 .fingers = { 2700 { 2701 .contact_type = 0, 2702 .contact_status = !!data[7], 2703 .x = get_unaligned_le16(&data[3]), 2704 .y = get_unaligned_le16(&data[5]), 2705 .z = c1_area, 2706 .area = c1_area, 2707 .finger_id = data[2], 2708 }, { 2709 .contact_type = 0, 2710 .contact_status = !!data[13], 2711 .x = get_unaligned_le16(&data[9]), 2712 .y = get_unaligned_le16(&data[11]), 2713 .z = c2_area, 2714 .area = c2_area, 2715 .finger_id = data[8], 2716 } 2717 }, 2718 .finger_count = wd->maxcontacts, 2719 .spurious_flag = 0, 2720 .end_of_frame = (data[0] >> 7) == 0, 2721 .button = data[0] & 0x01, 2722 }; 2723 2724 wtp_send_raw_xy_event(hidpp, &raw); 2725 2726 return 1; 2727 } 2728 2729 static int wtp_raw_event(struct hid_device *hdev, u8 *data, int size) 2730 { 2731 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2732 struct wtp_data *wd = hidpp->private_data; 2733 struct hidpp_report *report = (struct hidpp_report *)data; 2734 struct hidpp_touchpad_raw_xy raw; 2735 2736 if (!wd || !hidpp->input) 2737 return 1; 2738 2739 switch (data[0]) { 2740 case 0x02: 2741 if (size < 2) { 2742 hid_err(hdev, "Received HID report of bad size (%d)", 2743 size); 2744 return 1; 2745 } 2746 if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) { 2747 input_event(hidpp->input, EV_KEY, BTN_LEFT, 2748 !!(data[1] & 0x01)); 2749 input_event(hidpp->input, EV_KEY, BTN_RIGHT, 2750 !!(data[1] & 0x02)); 2751 input_sync(hidpp->input); 2752 return 0; 2753 } else { 2754 if (size < 21) 2755 return 1; 2756 return wtp_mouse_raw_xy_event(hidpp, &data[7]); 2757 } 2758 case REPORT_ID_HIDPP_LONG: 2759 /* size is already checked in hidpp_raw_event. */ 2760 if ((report->fap.feature_index != wd->mt_feature_index) || 2761 (report->fap.funcindex_clientid != EVENT_TOUCHPAD_RAW_XY)) 2762 return 1; 2763 hidpp_touchpad_raw_xy_event(hidpp, data + 4, &raw); 2764 2765 wtp_send_raw_xy_event(hidpp, &raw); 2766 return 0; 2767 } 2768 2769 return 0; 2770 } 2771 2772 static int wtp_get_config(struct hidpp_device *hidpp) 2773 { 2774 struct wtp_data *wd = hidpp->private_data; 2775 struct hidpp_touchpad_raw_info raw_info = {0}; 2776 u8 feature_type; 2777 int ret; 2778 2779 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_TOUCHPAD_RAW_XY, 2780 &wd->mt_feature_index, &feature_type); 2781 if (ret) 2782 /* means that the device is not powered up */ 2783 return ret; 2784 2785 ret = hidpp_touchpad_get_raw_info(hidpp, wd->mt_feature_index, 2786 &raw_info); 2787 if (ret) 2788 return ret; 2789 2790 wd->x_size = raw_info.x_size; 2791 wd->y_size = raw_info.y_size; 2792 wd->maxcontacts = raw_info.maxcontacts; 2793 wd->flip_y = raw_info.origin == TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT; 2794 wd->resolution = raw_info.res; 2795 if (!wd->resolution) 2796 wd->resolution = WTP_MANUAL_RESOLUTION; 2797 2798 return 0; 2799 } 2800 2801 static int wtp_allocate(struct hid_device *hdev, const struct hid_device_id *id) 2802 { 2803 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2804 struct wtp_data *wd; 2805 2806 wd = devm_kzalloc(&hdev->dev, sizeof(struct wtp_data), 2807 GFP_KERNEL); 2808 if (!wd) 2809 return -ENOMEM; 2810 2811 hidpp->private_data = wd; 2812 2813 return 0; 2814 }; 2815 2816 static int wtp_connect(struct hid_device *hdev, bool connected) 2817 { 2818 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2819 struct wtp_data *wd = hidpp->private_data; 2820 int ret; 2821 2822 if (!wd->x_size) { 2823 ret = wtp_get_config(hidpp); 2824 if (ret) { 2825 hid_err(hdev, "Can not get wtp config: %d\n", ret); 2826 return ret; 2827 } 2828 } 2829 2830 return hidpp_touchpad_set_raw_report_state(hidpp, wd->mt_feature_index, 2831 true, true); 2832 } 2833 2834 /* ------------------------------------------------------------------------- */ 2835 /* Logitech M560 devices */ 2836 /* ------------------------------------------------------------------------- */ 2837 2838 /* 2839 * Logitech M560 protocol overview 2840 * 2841 * The Logitech M560 mouse, is designed for windows 8. When the middle and/or 2842 * the sides buttons are pressed, it sends some keyboard keys events 2843 * instead of buttons ones. 2844 * To complicate things further, the middle button keys sequence 2845 * is different from the odd press and the even press. 2846 * 2847 * forward button -> Super_R 2848 * backward button -> Super_L+'d' (press only) 2849 * middle button -> 1st time: Alt_L+SuperL+XF86TouchpadOff (press only) 2850 * 2nd time: left-click (press only) 2851 * NB: press-only means that when the button is pressed, the 2852 * KeyPress/ButtonPress and KeyRelease/ButtonRelease events are generated 2853 * together sequentially; instead when the button is released, no event is 2854 * generated ! 2855 * 2856 * With the command 2857 * 10<xx>0a 3500af03 (where <xx> is the mouse id), 2858 * the mouse reacts differently: 2859 * - it never sends a keyboard key event 2860 * - for the three mouse button it sends: 2861 * middle button press 11<xx>0a 3500af00... 2862 * side 1 button (forward) press 11<xx>0a 3500b000... 2863 * side 2 button (backward) press 11<xx>0a 3500ae00... 2864 * middle/side1/side2 button release 11<xx>0a 35000000... 2865 */ 2866 2867 static const u8 m560_config_parameter[] = {0x00, 0xaf, 0x03}; 2868 2869 /* how buttons are mapped in the report */ 2870 #define M560_MOUSE_BTN_LEFT 0x01 2871 #define M560_MOUSE_BTN_RIGHT 0x02 2872 #define M560_MOUSE_BTN_WHEEL_LEFT 0x08 2873 #define M560_MOUSE_BTN_WHEEL_RIGHT 0x10 2874 2875 #define M560_SUB_ID 0x0a 2876 #define M560_BUTTON_MODE_REGISTER 0x35 2877 2878 static int m560_send_config_command(struct hid_device *hdev, bool connected) 2879 { 2880 struct hidpp_report response; 2881 struct hidpp_device *hidpp_dev; 2882 2883 hidpp_dev = hid_get_drvdata(hdev); 2884 2885 return hidpp_send_rap_command_sync( 2886 hidpp_dev, 2887 REPORT_ID_HIDPP_SHORT, 2888 M560_SUB_ID, 2889 M560_BUTTON_MODE_REGISTER, 2890 (u8 *)m560_config_parameter, 2891 sizeof(m560_config_parameter), 2892 &response 2893 ); 2894 } 2895 2896 static int m560_raw_event(struct hid_device *hdev, u8 *data, int size) 2897 { 2898 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2899 2900 /* sanity check */ 2901 if (!hidpp->input) { 2902 hid_err(hdev, "error in parameter\n"); 2903 return -EINVAL; 2904 } 2905 2906 if (size < 7) { 2907 hid_err(hdev, "error in report\n"); 2908 return 0; 2909 } 2910 2911 if (data[0] == REPORT_ID_HIDPP_LONG && 2912 data[2] == M560_SUB_ID && data[6] == 0x00) { 2913 /* 2914 * m560 mouse report for middle, forward and backward button 2915 * 2916 * data[0] = 0x11 2917 * data[1] = device-id 2918 * data[2] = 0x0a 2919 * data[5] = 0xaf -> middle 2920 * 0xb0 -> forward 2921 * 0xae -> backward 2922 * 0x00 -> release all 2923 * data[6] = 0x00 2924 */ 2925 2926 switch (data[5]) { 2927 case 0xaf: 2928 input_report_key(hidpp->input, BTN_MIDDLE, 1); 2929 break; 2930 case 0xb0: 2931 input_report_key(hidpp->input, BTN_FORWARD, 1); 2932 break; 2933 case 0xae: 2934 input_report_key(hidpp->input, BTN_BACK, 1); 2935 break; 2936 case 0x00: 2937 input_report_key(hidpp->input, BTN_BACK, 0); 2938 input_report_key(hidpp->input, BTN_FORWARD, 0); 2939 input_report_key(hidpp->input, BTN_MIDDLE, 0); 2940 break; 2941 default: 2942 hid_err(hdev, "error in report\n"); 2943 return 0; 2944 } 2945 input_sync(hidpp->input); 2946 2947 } else if (data[0] == 0x02) { 2948 /* 2949 * Logitech M560 mouse report 2950 * 2951 * data[0] = type (0x02) 2952 * data[1..2] = buttons 2953 * data[3..5] = xy 2954 * data[6] = wheel 2955 */ 2956 2957 int v; 2958 2959 input_report_key(hidpp->input, BTN_LEFT, 2960 !!(data[1] & M560_MOUSE_BTN_LEFT)); 2961 input_report_key(hidpp->input, BTN_RIGHT, 2962 !!(data[1] & M560_MOUSE_BTN_RIGHT)); 2963 2964 if (data[1] & M560_MOUSE_BTN_WHEEL_LEFT) { 2965 input_report_rel(hidpp->input, REL_HWHEEL, -1); 2966 input_report_rel(hidpp->input, REL_HWHEEL_HI_RES, 2967 -120); 2968 } else if (data[1] & M560_MOUSE_BTN_WHEEL_RIGHT) { 2969 input_report_rel(hidpp->input, REL_HWHEEL, 1); 2970 input_report_rel(hidpp->input, REL_HWHEEL_HI_RES, 2971 120); 2972 } 2973 2974 v = hid_snto32(hid_field_extract(hdev, data+3, 0, 12), 12); 2975 input_report_rel(hidpp->input, REL_X, v); 2976 2977 v = hid_snto32(hid_field_extract(hdev, data+3, 12, 12), 12); 2978 input_report_rel(hidpp->input, REL_Y, v); 2979 2980 v = hid_snto32(data[6], 8); 2981 if (v != 0) 2982 hidpp_scroll_counter_handle_scroll(hidpp->input, 2983 &hidpp->vertical_wheel_counter, v); 2984 2985 input_sync(hidpp->input); 2986 } 2987 2988 return 1; 2989 } 2990 2991 static void m560_populate_input(struct hidpp_device *hidpp, 2992 struct input_dev *input_dev) 2993 { 2994 __set_bit(EV_KEY, input_dev->evbit); 2995 __set_bit(BTN_MIDDLE, input_dev->keybit); 2996 __set_bit(BTN_RIGHT, input_dev->keybit); 2997 __set_bit(BTN_LEFT, input_dev->keybit); 2998 __set_bit(BTN_BACK, input_dev->keybit); 2999 __set_bit(BTN_FORWARD, input_dev->keybit); 3000 3001 __set_bit(EV_REL, input_dev->evbit); 3002 __set_bit(REL_X, input_dev->relbit); 3003 __set_bit(REL_Y, input_dev->relbit); 3004 __set_bit(REL_WHEEL, input_dev->relbit); 3005 __set_bit(REL_HWHEEL, input_dev->relbit); 3006 __set_bit(REL_WHEEL_HI_RES, input_dev->relbit); 3007 __set_bit(REL_HWHEEL_HI_RES, input_dev->relbit); 3008 } 3009 3010 static int m560_input_mapping(struct hid_device *hdev, struct hid_input *hi, 3011 struct hid_field *field, struct hid_usage *usage, 3012 unsigned long **bit, int *max) 3013 { 3014 return -1; 3015 } 3016 3017 /* ------------------------------------------------------------------------- */ 3018 /* Logitech K400 devices */ 3019 /* ------------------------------------------------------------------------- */ 3020 3021 /* 3022 * The Logitech K400 keyboard has an embedded touchpad which is seen 3023 * as a mouse from the OS point of view. There is a hardware shortcut to disable 3024 * tap-to-click but the setting is not remembered accross reset, annoying some 3025 * users. 3026 * 3027 * We can toggle this feature from the host by using the feature 0x6010: 3028 * Touchpad FW items 3029 */ 3030 3031 struct k400_private_data { 3032 u8 feature_index; 3033 }; 3034 3035 static int k400_disable_tap_to_click(struct hidpp_device *hidpp) 3036 { 3037 struct k400_private_data *k400 = hidpp->private_data; 3038 struct hidpp_touchpad_fw_items items = {}; 3039 int ret; 3040 u8 feature_type; 3041 3042 if (!k400->feature_index) { 3043 ret = hidpp_root_get_feature(hidpp, 3044 HIDPP_PAGE_TOUCHPAD_FW_ITEMS, 3045 &k400->feature_index, &feature_type); 3046 if (ret) 3047 /* means that the device is not powered up */ 3048 return ret; 3049 } 3050 3051 ret = hidpp_touchpad_fw_items_set(hidpp, k400->feature_index, &items); 3052 if (ret) 3053 return ret; 3054 3055 return 0; 3056 } 3057 3058 static int k400_allocate(struct hid_device *hdev) 3059 { 3060 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3061 struct k400_private_data *k400; 3062 3063 k400 = devm_kzalloc(&hdev->dev, sizeof(struct k400_private_data), 3064 GFP_KERNEL); 3065 if (!k400) 3066 return -ENOMEM; 3067 3068 hidpp->private_data = k400; 3069 3070 return 0; 3071 }; 3072 3073 static int k400_connect(struct hid_device *hdev, bool connected) 3074 { 3075 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3076 3077 if (!disable_tap_to_click) 3078 return 0; 3079 3080 return k400_disable_tap_to_click(hidpp); 3081 } 3082 3083 /* ------------------------------------------------------------------------- */ 3084 /* Logitech G920 Driving Force Racing Wheel for Xbox One */ 3085 /* ------------------------------------------------------------------------- */ 3086 3087 #define HIDPP_PAGE_G920_FORCE_FEEDBACK 0x8123 3088 3089 static int g920_ff_set_autocenter(struct hidpp_device *hidpp, 3090 struct hidpp_ff_private_data *data) 3091 { 3092 struct hidpp_report response; 3093 u8 params[HIDPP_AUTOCENTER_PARAMS_LENGTH] = { 3094 [1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART, 3095 }; 3096 int ret; 3097 3098 /* initialize with zero autocenter to get wheel in usable state */ 3099 3100 dbg_hid("Setting autocenter to 0.\n"); 3101 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 3102 HIDPP_FF_DOWNLOAD_EFFECT, 3103 params, ARRAY_SIZE(params), 3104 &response); 3105 if (ret) 3106 hid_warn(hidpp->hid_dev, "Failed to autocenter device!\n"); 3107 else 3108 data->slot_autocenter = response.fap.params[0]; 3109 3110 return ret; 3111 } 3112 3113 static int g920_get_config(struct hidpp_device *hidpp, 3114 struct hidpp_ff_private_data *data) 3115 { 3116 struct hidpp_report response; 3117 u8 feature_type; 3118 int ret; 3119 3120 memset(data, 0, sizeof(*data)); 3121 3122 /* Find feature and store for later use */ 3123 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_G920_FORCE_FEEDBACK, 3124 &data->feature_index, &feature_type); 3125 if (ret) 3126 return ret; 3127 3128 /* Read number of slots available in device */ 3129 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 3130 HIDPP_FF_GET_INFO, 3131 NULL, 0, 3132 &response); 3133 if (ret) { 3134 if (ret < 0) 3135 return ret; 3136 hid_err(hidpp->hid_dev, 3137 "%s: received protocol error 0x%02x\n", __func__, ret); 3138 return -EPROTO; 3139 } 3140 3141 data->num_effects = response.fap.params[0] - HIDPP_FF_RESERVED_SLOTS; 3142 3143 /* reset all forces */ 3144 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 3145 HIDPP_FF_RESET_ALL, 3146 NULL, 0, 3147 &response); 3148 if (ret) 3149 hid_warn(hidpp->hid_dev, "Failed to reset all forces!\n"); 3150 3151 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 3152 HIDPP_FF_GET_APERTURE, 3153 NULL, 0, 3154 &response); 3155 if (ret) { 3156 hid_warn(hidpp->hid_dev, 3157 "Failed to read range from device!\n"); 3158 } 3159 data->range = ret ? 3160 900 : get_unaligned_be16(&response.fap.params[0]); 3161 3162 /* Read the current gain values */ 3163 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 3164 HIDPP_FF_GET_GLOBAL_GAINS, 3165 NULL, 0, 3166 &response); 3167 if (ret) 3168 hid_warn(hidpp->hid_dev, 3169 "Failed to read gain values from device!\n"); 3170 data->gain = ret ? 3171 0xffff : get_unaligned_be16(&response.fap.params[0]); 3172 3173 /* ignore boost value at response.fap.params[2] */ 3174 3175 return g920_ff_set_autocenter(hidpp, data); 3176 } 3177 3178 /* -------------------------------------------------------------------------- */ 3179 /* Logitech Dinovo Mini keyboard with builtin touchpad */ 3180 /* -------------------------------------------------------------------------- */ 3181 #define DINOVO_MINI_PRODUCT_ID 0xb30c 3182 3183 static int lg_dinovo_input_mapping(struct hid_device *hdev, struct hid_input *hi, 3184 struct hid_field *field, struct hid_usage *usage, 3185 unsigned long **bit, int *max) 3186 { 3187 if ((usage->hid & HID_USAGE_PAGE) != HID_UP_LOGIVENDOR) 3188 return 0; 3189 3190 switch (usage->hid & HID_USAGE) { 3191 case 0x00d: lg_map_key_clear(KEY_MEDIA); break; 3192 default: 3193 return 0; 3194 } 3195 return 1; 3196 } 3197 3198 /* -------------------------------------------------------------------------- */ 3199 /* HID++1.0 devices which use HID++ reports for their wheels */ 3200 /* -------------------------------------------------------------------------- */ 3201 static int hidpp10_wheel_connect(struct hidpp_device *hidpp) 3202 { 3203 return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0, 3204 HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT, 3205 HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT); 3206 } 3207 3208 static int hidpp10_wheel_raw_event(struct hidpp_device *hidpp, 3209 u8 *data, int size) 3210 { 3211 s8 value, hvalue; 3212 3213 if (!hidpp->input) 3214 return -EINVAL; 3215 3216 if (size < 7) 3217 return 0; 3218 3219 if (data[0] != REPORT_ID_HIDPP_SHORT || data[2] != HIDPP_SUB_ID_ROLLER) 3220 return 0; 3221 3222 value = data[3]; 3223 hvalue = data[4]; 3224 3225 input_report_rel(hidpp->input, REL_WHEEL, value); 3226 input_report_rel(hidpp->input, REL_WHEEL_HI_RES, value * 120); 3227 input_report_rel(hidpp->input, REL_HWHEEL, hvalue); 3228 input_report_rel(hidpp->input, REL_HWHEEL_HI_RES, hvalue * 120); 3229 input_sync(hidpp->input); 3230 3231 return 1; 3232 } 3233 3234 static void hidpp10_wheel_populate_input(struct hidpp_device *hidpp, 3235 struct input_dev *input_dev) 3236 { 3237 __set_bit(EV_REL, input_dev->evbit); 3238 __set_bit(REL_WHEEL, input_dev->relbit); 3239 __set_bit(REL_WHEEL_HI_RES, input_dev->relbit); 3240 __set_bit(REL_HWHEEL, input_dev->relbit); 3241 __set_bit(REL_HWHEEL_HI_RES, input_dev->relbit); 3242 } 3243 3244 /* -------------------------------------------------------------------------- */ 3245 /* HID++1.0 mice which use HID++ reports for extra mouse buttons */ 3246 /* -------------------------------------------------------------------------- */ 3247 static int hidpp10_extra_mouse_buttons_connect(struct hidpp_device *hidpp) 3248 { 3249 return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0, 3250 HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT, 3251 HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT); 3252 } 3253 3254 static int hidpp10_extra_mouse_buttons_raw_event(struct hidpp_device *hidpp, 3255 u8 *data, int size) 3256 { 3257 int i; 3258 3259 if (!hidpp->input) 3260 return -EINVAL; 3261 3262 if (size < 7) 3263 return 0; 3264 3265 if (data[0] != REPORT_ID_HIDPP_SHORT || 3266 data[2] != HIDPP_SUB_ID_MOUSE_EXTRA_BTNS) 3267 return 0; 3268 3269 /* 3270 * Buttons are either delivered through the regular mouse report *or* 3271 * through the extra buttons report. At least for button 6 how it is 3272 * delivered differs per receiver firmware version. Even receivers with 3273 * the same usb-id show different behavior, so we handle both cases. 3274 */ 3275 for (i = 0; i < 8; i++) 3276 input_report_key(hidpp->input, BTN_MOUSE + i, 3277 (data[3] & (1 << i))); 3278 3279 /* Some mice report events on button 9+, use BTN_MISC */ 3280 for (i = 0; i < 8; i++) 3281 input_report_key(hidpp->input, BTN_MISC + i, 3282 (data[4] & (1 << i))); 3283 3284 input_sync(hidpp->input); 3285 return 1; 3286 } 3287 3288 static void hidpp10_extra_mouse_buttons_populate_input( 3289 struct hidpp_device *hidpp, struct input_dev *input_dev) 3290 { 3291 /* BTN_MOUSE - BTN_MOUSE+7 are set already by the descriptor */ 3292 __set_bit(BTN_0, input_dev->keybit); 3293 __set_bit(BTN_1, input_dev->keybit); 3294 __set_bit(BTN_2, input_dev->keybit); 3295 __set_bit(BTN_3, input_dev->keybit); 3296 __set_bit(BTN_4, input_dev->keybit); 3297 __set_bit(BTN_5, input_dev->keybit); 3298 __set_bit(BTN_6, input_dev->keybit); 3299 __set_bit(BTN_7, input_dev->keybit); 3300 } 3301 3302 /* -------------------------------------------------------------------------- */ 3303 /* HID++1.0 kbds which only report 0x10xx consumer usages through sub-id 0x03 */ 3304 /* -------------------------------------------------------------------------- */ 3305 3306 /* Find the consumer-page input report desc and change Maximums to 0x107f */ 3307 static u8 *hidpp10_consumer_keys_report_fixup(struct hidpp_device *hidpp, 3308 u8 *_rdesc, unsigned int *rsize) 3309 { 3310 /* Note 0 terminated so we can use strnstr to search for this. */ 3311 static const char consumer_rdesc_start[] = { 3312 0x05, 0x0C, /* USAGE_PAGE (Consumer Devices) */ 3313 0x09, 0x01, /* USAGE (Consumer Control) */ 3314 0xA1, 0x01, /* COLLECTION (Application) */ 3315 0x85, 0x03, /* REPORT_ID = 3 */ 3316 0x75, 0x10, /* REPORT_SIZE (16) */ 3317 0x95, 0x02, /* REPORT_COUNT (2) */ 3318 0x15, 0x01, /* LOGICAL_MIN (1) */ 3319 0x26, 0x00 /* LOGICAL_MAX (... */ 3320 }; 3321 char *consumer_rdesc, *rdesc = (char *)_rdesc; 3322 unsigned int size; 3323 3324 consumer_rdesc = strnstr(rdesc, consumer_rdesc_start, *rsize); 3325 size = *rsize - (consumer_rdesc - rdesc); 3326 if (consumer_rdesc && size >= 25) { 3327 consumer_rdesc[15] = 0x7f; 3328 consumer_rdesc[16] = 0x10; 3329 consumer_rdesc[20] = 0x7f; 3330 consumer_rdesc[21] = 0x10; 3331 } 3332 return _rdesc; 3333 } 3334 3335 static int hidpp10_consumer_keys_connect(struct hidpp_device *hidpp) 3336 { 3337 return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0, 3338 HIDPP_ENABLE_CONSUMER_REPORT, 3339 HIDPP_ENABLE_CONSUMER_REPORT); 3340 } 3341 3342 static int hidpp10_consumer_keys_raw_event(struct hidpp_device *hidpp, 3343 u8 *data, int size) 3344 { 3345 u8 consumer_report[5]; 3346 3347 if (size < 7) 3348 return 0; 3349 3350 if (data[0] != REPORT_ID_HIDPP_SHORT || 3351 data[2] != HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS) 3352 return 0; 3353 3354 /* 3355 * Build a normal consumer report (3) out of the data, this detour 3356 * is necessary to get some keyboards to report their 0x10xx usages. 3357 */ 3358 consumer_report[0] = 0x03; 3359 memcpy(&consumer_report[1], &data[3], 4); 3360 /* We are called from atomic context */ 3361 hid_report_raw_event(hidpp->hid_dev, HID_INPUT_REPORT, 3362 consumer_report, 5, 1); 3363 3364 return 1; 3365 } 3366 3367 /* -------------------------------------------------------------------------- */ 3368 /* High-resolution scroll wheels */ 3369 /* -------------------------------------------------------------------------- */ 3370 3371 static int hi_res_scroll_enable(struct hidpp_device *hidpp) 3372 { 3373 int ret; 3374 u8 multiplier = 1; 3375 3376 if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2121) { 3377 ret = hidpp_hrw_set_wheel_mode(hidpp, false, true, false); 3378 if (ret == 0) 3379 ret = hidpp_hrw_get_wheel_capability(hidpp, &multiplier); 3380 } else if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2120) { 3381 ret = hidpp_hrs_set_highres_scrolling_mode(hidpp, true, 3382 &multiplier); 3383 } else /* if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_1P0) */ { 3384 ret = hidpp10_enable_scrolling_acceleration(hidpp); 3385 multiplier = 8; 3386 } 3387 if (ret) 3388 return ret; 3389 3390 if (multiplier == 0) 3391 multiplier = 1; 3392 3393 hidpp->vertical_wheel_counter.wheel_multiplier = multiplier; 3394 hid_dbg(hidpp->hid_dev, "wheel multiplier = %d\n", multiplier); 3395 return 0; 3396 } 3397 3398 /* -------------------------------------------------------------------------- */ 3399 /* Generic HID++ devices */ 3400 /* -------------------------------------------------------------------------- */ 3401 3402 static u8 *hidpp_report_fixup(struct hid_device *hdev, u8 *rdesc, 3403 unsigned int *rsize) 3404 { 3405 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3406 3407 if (!hidpp) 3408 return rdesc; 3409 3410 /* For 27 MHz keyboards the quirk gets set after hid_parse. */ 3411 if (hdev->group == HID_GROUP_LOGITECH_27MHZ_DEVICE || 3412 (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS)) 3413 rdesc = hidpp10_consumer_keys_report_fixup(hidpp, rdesc, rsize); 3414 3415 return rdesc; 3416 } 3417 3418 static int hidpp_input_mapping(struct hid_device *hdev, struct hid_input *hi, 3419 struct hid_field *field, struct hid_usage *usage, 3420 unsigned long **bit, int *max) 3421 { 3422 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3423 3424 if (!hidpp) 3425 return 0; 3426 3427 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) 3428 return wtp_input_mapping(hdev, hi, field, usage, bit, max); 3429 else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560 && 3430 field->application != HID_GD_MOUSE) 3431 return m560_input_mapping(hdev, hi, field, usage, bit, max); 3432 3433 if (hdev->product == DINOVO_MINI_PRODUCT_ID) 3434 return lg_dinovo_input_mapping(hdev, hi, field, usage, bit, max); 3435 3436 return 0; 3437 } 3438 3439 static int hidpp_input_mapped(struct hid_device *hdev, struct hid_input *hi, 3440 struct hid_field *field, struct hid_usage *usage, 3441 unsigned long **bit, int *max) 3442 { 3443 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3444 3445 if (!hidpp) 3446 return 0; 3447 3448 /* Ensure that Logitech G920 is not given a default fuzz/flat value */ 3449 if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) { 3450 if (usage->type == EV_ABS && (usage->code == ABS_X || 3451 usage->code == ABS_Y || usage->code == ABS_Z || 3452 usage->code == ABS_RZ)) { 3453 field->application = HID_GD_MULTIAXIS; 3454 } 3455 } 3456 3457 return 0; 3458 } 3459 3460 3461 static void hidpp_populate_input(struct hidpp_device *hidpp, 3462 struct input_dev *input) 3463 { 3464 hidpp->input = input; 3465 3466 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) 3467 wtp_populate_input(hidpp, input); 3468 else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) 3469 m560_populate_input(hidpp, input); 3470 3471 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) 3472 hidpp10_wheel_populate_input(hidpp, input); 3473 3474 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) 3475 hidpp10_extra_mouse_buttons_populate_input(hidpp, input); 3476 } 3477 3478 static int hidpp_input_configured(struct hid_device *hdev, 3479 struct hid_input *hidinput) 3480 { 3481 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3482 struct input_dev *input = hidinput->input; 3483 3484 if (!hidpp) 3485 return 0; 3486 3487 hidpp_populate_input(hidpp, input); 3488 3489 return 0; 3490 } 3491 3492 static int hidpp_raw_hidpp_event(struct hidpp_device *hidpp, u8 *data, 3493 int size) 3494 { 3495 struct hidpp_report *question = hidpp->send_receive_buf; 3496 struct hidpp_report *answer = hidpp->send_receive_buf; 3497 struct hidpp_report *report = (struct hidpp_report *)data; 3498 int ret; 3499 3500 /* 3501 * If the mutex is locked then we have a pending answer from a 3502 * previously sent command. 3503 */ 3504 if (unlikely(mutex_is_locked(&hidpp->send_mutex))) { 3505 /* 3506 * Check for a correct hidpp20 answer or the corresponding 3507 * error 3508 */ 3509 if (hidpp_match_answer(question, report) || 3510 hidpp_match_error(question, report)) { 3511 *answer = *report; 3512 hidpp->answer_available = true; 3513 wake_up(&hidpp->wait); 3514 /* 3515 * This was an answer to a command that this driver sent 3516 * We return 1 to hid-core to avoid forwarding the 3517 * command upstream as it has been treated by the driver 3518 */ 3519 3520 return 1; 3521 } 3522 } 3523 3524 if (unlikely(hidpp_report_is_connect_event(hidpp, report))) { 3525 atomic_set(&hidpp->connected, 3526 !(report->rap.params[0] & (1 << 6))); 3527 if (schedule_work(&hidpp->work) == 0) 3528 dbg_hid("%s: connect event already queued\n", __func__); 3529 return 1; 3530 } 3531 3532 if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) { 3533 ret = hidpp20_battery_event_1000(hidpp, data, size); 3534 if (ret != 0) 3535 return ret; 3536 ret = hidpp20_battery_event_1004(hidpp, data, size); 3537 if (ret != 0) 3538 return ret; 3539 ret = hidpp_solar_battery_event(hidpp, data, size); 3540 if (ret != 0) 3541 return ret; 3542 ret = hidpp20_battery_voltage_event(hidpp, data, size); 3543 if (ret != 0) 3544 return ret; 3545 } 3546 3547 if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) { 3548 ret = hidpp10_battery_event(hidpp, data, size); 3549 if (ret != 0) 3550 return ret; 3551 } 3552 3553 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) { 3554 ret = hidpp10_wheel_raw_event(hidpp, data, size); 3555 if (ret != 0) 3556 return ret; 3557 } 3558 3559 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) { 3560 ret = hidpp10_extra_mouse_buttons_raw_event(hidpp, data, size); 3561 if (ret != 0) 3562 return ret; 3563 } 3564 3565 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) { 3566 ret = hidpp10_consumer_keys_raw_event(hidpp, data, size); 3567 if (ret != 0) 3568 return ret; 3569 } 3570 3571 return 0; 3572 } 3573 3574 static int hidpp_raw_event(struct hid_device *hdev, struct hid_report *report, 3575 u8 *data, int size) 3576 { 3577 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3578 int ret = 0; 3579 3580 if (!hidpp) 3581 return 0; 3582 3583 /* Generic HID++ processing. */ 3584 switch (data[0]) { 3585 case REPORT_ID_HIDPP_VERY_LONG: 3586 if (size != hidpp->very_long_report_length) { 3587 hid_err(hdev, "received hid++ report of bad size (%d)", 3588 size); 3589 return 1; 3590 } 3591 ret = hidpp_raw_hidpp_event(hidpp, data, size); 3592 break; 3593 case REPORT_ID_HIDPP_LONG: 3594 if (size != HIDPP_REPORT_LONG_LENGTH) { 3595 hid_err(hdev, "received hid++ report of bad size (%d)", 3596 size); 3597 return 1; 3598 } 3599 ret = hidpp_raw_hidpp_event(hidpp, data, size); 3600 break; 3601 case REPORT_ID_HIDPP_SHORT: 3602 if (size != HIDPP_REPORT_SHORT_LENGTH) { 3603 hid_err(hdev, "received hid++ report of bad size (%d)", 3604 size); 3605 return 1; 3606 } 3607 ret = hidpp_raw_hidpp_event(hidpp, data, size); 3608 break; 3609 } 3610 3611 /* If no report is available for further processing, skip calling 3612 * raw_event of subclasses. */ 3613 if (ret != 0) 3614 return ret; 3615 3616 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) 3617 return wtp_raw_event(hdev, data, size); 3618 else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) 3619 return m560_raw_event(hdev, data, size); 3620 3621 return 0; 3622 } 3623 3624 static int hidpp_event(struct hid_device *hdev, struct hid_field *field, 3625 struct hid_usage *usage, __s32 value) 3626 { 3627 /* This function will only be called for scroll events, due to the 3628 * restriction imposed in hidpp_usages. 3629 */ 3630 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3631 struct hidpp_scroll_counter *counter; 3632 3633 if (!hidpp) 3634 return 0; 3635 3636 counter = &hidpp->vertical_wheel_counter; 3637 /* A scroll event may occur before the multiplier has been retrieved or 3638 * the input device set, or high-res scroll enabling may fail. In such 3639 * cases we must return early (falling back to default behaviour) to 3640 * avoid a crash in hidpp_scroll_counter_handle_scroll. 3641 */ 3642 if (!(hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) || value == 0 3643 || hidpp->input == NULL || counter->wheel_multiplier == 0) 3644 return 0; 3645 3646 hidpp_scroll_counter_handle_scroll(hidpp->input, counter, value); 3647 return 1; 3648 } 3649 3650 static int hidpp_initialize_battery(struct hidpp_device *hidpp) 3651 { 3652 static atomic_t battery_no = ATOMIC_INIT(0); 3653 struct power_supply_config cfg = { .drv_data = hidpp }; 3654 struct power_supply_desc *desc = &hidpp->battery.desc; 3655 enum power_supply_property *battery_props; 3656 struct hidpp_battery *battery; 3657 unsigned int num_battery_props; 3658 unsigned long n; 3659 int ret; 3660 3661 if (hidpp->battery.ps) 3662 return 0; 3663 3664 hidpp->battery.feature_index = 0xff; 3665 hidpp->battery.solar_feature_index = 0xff; 3666 hidpp->battery.voltage_feature_index = 0xff; 3667 3668 if (hidpp->protocol_major >= 2) { 3669 if (hidpp->quirks & HIDPP_QUIRK_CLASS_K750) 3670 ret = hidpp_solar_request_battery_event(hidpp); 3671 else { 3672 /* we only support one battery feature right now, so let's 3673 first check the ones that support battery level first 3674 and leave voltage for last */ 3675 ret = hidpp20_query_battery_info_1000(hidpp); 3676 if (ret) 3677 ret = hidpp20_query_battery_info_1004(hidpp); 3678 if (ret) 3679 ret = hidpp20_query_battery_voltage_info(hidpp); 3680 } 3681 3682 if (ret) 3683 return ret; 3684 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP20_BATTERY; 3685 } else { 3686 ret = hidpp10_query_battery_status(hidpp); 3687 if (ret) { 3688 ret = hidpp10_query_battery_mileage(hidpp); 3689 if (ret) 3690 return -ENOENT; 3691 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE; 3692 } else { 3693 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS; 3694 } 3695 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP10_BATTERY; 3696 } 3697 3698 battery_props = devm_kmemdup(&hidpp->hid_dev->dev, 3699 hidpp_battery_props, 3700 sizeof(hidpp_battery_props), 3701 GFP_KERNEL); 3702 if (!battery_props) 3703 return -ENOMEM; 3704 3705 num_battery_props = ARRAY_SIZE(hidpp_battery_props) - 3; 3706 3707 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE || 3708 hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_PERCENTAGE) 3709 battery_props[num_battery_props++] = 3710 POWER_SUPPLY_PROP_CAPACITY; 3711 3712 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS) 3713 battery_props[num_battery_props++] = 3714 POWER_SUPPLY_PROP_CAPACITY_LEVEL; 3715 3716 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_VOLTAGE) 3717 battery_props[num_battery_props++] = 3718 POWER_SUPPLY_PROP_VOLTAGE_NOW; 3719 3720 battery = &hidpp->battery; 3721 3722 n = atomic_inc_return(&battery_no) - 1; 3723 desc->properties = battery_props; 3724 desc->num_properties = num_battery_props; 3725 desc->get_property = hidpp_battery_get_property; 3726 sprintf(battery->name, "hidpp_battery_%ld", n); 3727 desc->name = battery->name; 3728 desc->type = POWER_SUPPLY_TYPE_BATTERY; 3729 desc->use_for_apm = 0; 3730 3731 battery->ps = devm_power_supply_register(&hidpp->hid_dev->dev, 3732 &battery->desc, 3733 &cfg); 3734 if (IS_ERR(battery->ps)) 3735 return PTR_ERR(battery->ps); 3736 3737 power_supply_powers(battery->ps, &hidpp->hid_dev->dev); 3738 3739 return ret; 3740 } 3741 3742 static void hidpp_overwrite_name(struct hid_device *hdev) 3743 { 3744 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3745 char *name; 3746 3747 if (hidpp->protocol_major < 2) 3748 return; 3749 3750 name = hidpp_get_device_name(hidpp); 3751 3752 if (!name) { 3753 hid_err(hdev, "unable to retrieve the name of the device"); 3754 } else { 3755 dbg_hid("HID++: Got name: %s\n", name); 3756 snprintf(hdev->name, sizeof(hdev->name), "%s", name); 3757 } 3758 3759 kfree(name); 3760 } 3761 3762 static int hidpp_input_open(struct input_dev *dev) 3763 { 3764 struct hid_device *hid = input_get_drvdata(dev); 3765 3766 return hid_hw_open(hid); 3767 } 3768 3769 static void hidpp_input_close(struct input_dev *dev) 3770 { 3771 struct hid_device *hid = input_get_drvdata(dev); 3772 3773 hid_hw_close(hid); 3774 } 3775 3776 static struct input_dev *hidpp_allocate_input(struct hid_device *hdev) 3777 { 3778 struct input_dev *input_dev = devm_input_allocate_device(&hdev->dev); 3779 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3780 3781 if (!input_dev) 3782 return NULL; 3783 3784 input_set_drvdata(input_dev, hdev); 3785 input_dev->open = hidpp_input_open; 3786 input_dev->close = hidpp_input_close; 3787 3788 input_dev->name = hidpp->name; 3789 input_dev->phys = hdev->phys; 3790 input_dev->uniq = hdev->uniq; 3791 input_dev->id.bustype = hdev->bus; 3792 input_dev->id.vendor = hdev->vendor; 3793 input_dev->id.product = hdev->product; 3794 input_dev->id.version = hdev->version; 3795 input_dev->dev.parent = &hdev->dev; 3796 3797 return input_dev; 3798 } 3799 3800 static void hidpp_connect_event(struct hidpp_device *hidpp) 3801 { 3802 struct hid_device *hdev = hidpp->hid_dev; 3803 int ret = 0; 3804 bool connected = atomic_read(&hidpp->connected); 3805 struct input_dev *input; 3806 char *name, *devm_name; 3807 3808 if (!connected) { 3809 if (hidpp->battery.ps) { 3810 hidpp->battery.online = false; 3811 hidpp->battery.status = POWER_SUPPLY_STATUS_UNKNOWN; 3812 hidpp->battery.level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 3813 power_supply_changed(hidpp->battery.ps); 3814 } 3815 return; 3816 } 3817 3818 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) { 3819 ret = wtp_connect(hdev, connected); 3820 if (ret) 3821 return; 3822 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) { 3823 ret = m560_send_config_command(hdev, connected); 3824 if (ret) 3825 return; 3826 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) { 3827 ret = k400_connect(hdev, connected); 3828 if (ret) 3829 return; 3830 } 3831 3832 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) { 3833 ret = hidpp10_wheel_connect(hidpp); 3834 if (ret) 3835 return; 3836 } 3837 3838 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) { 3839 ret = hidpp10_extra_mouse_buttons_connect(hidpp); 3840 if (ret) 3841 return; 3842 } 3843 3844 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) { 3845 ret = hidpp10_consumer_keys_connect(hidpp); 3846 if (ret) 3847 return; 3848 } 3849 3850 /* the device is already connected, we can ask for its name and 3851 * protocol */ 3852 if (!hidpp->protocol_major) { 3853 ret = hidpp_root_get_protocol_version(hidpp); 3854 if (ret) { 3855 hid_err(hdev, "Can not get the protocol version.\n"); 3856 return; 3857 } 3858 } 3859 3860 if (hidpp->name == hdev->name && hidpp->protocol_major >= 2) { 3861 name = hidpp_get_device_name(hidpp); 3862 if (name) { 3863 devm_name = devm_kasprintf(&hdev->dev, GFP_KERNEL, 3864 "%s", name); 3865 kfree(name); 3866 if (!devm_name) 3867 return; 3868 3869 hidpp->name = devm_name; 3870 } 3871 } 3872 3873 hidpp_initialize_battery(hidpp); 3874 3875 /* forward current battery state */ 3876 if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) { 3877 hidpp10_enable_battery_reporting(hidpp); 3878 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE) 3879 hidpp10_query_battery_mileage(hidpp); 3880 else 3881 hidpp10_query_battery_status(hidpp); 3882 } else if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) { 3883 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_VOLTAGE) 3884 hidpp20_query_battery_voltage_info(hidpp); 3885 else if (hidpp->capabilities & HIDPP_CAPABILITY_UNIFIED_BATTERY) 3886 hidpp20_query_battery_info_1004(hidpp); 3887 else 3888 hidpp20_query_battery_info_1000(hidpp); 3889 } 3890 if (hidpp->battery.ps) 3891 power_supply_changed(hidpp->battery.ps); 3892 3893 if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) 3894 hi_res_scroll_enable(hidpp); 3895 3896 if (!(hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) || hidpp->delayed_input) 3897 /* if the input nodes are already created, we can stop now */ 3898 return; 3899 3900 input = hidpp_allocate_input(hdev); 3901 if (!input) { 3902 hid_err(hdev, "cannot allocate new input device: %d\n", ret); 3903 return; 3904 } 3905 3906 hidpp_populate_input(hidpp, input); 3907 3908 ret = input_register_device(input); 3909 if (ret) 3910 input_free_device(input); 3911 3912 hidpp->delayed_input = input; 3913 } 3914 3915 static DEVICE_ATTR(builtin_power_supply, 0000, NULL, NULL); 3916 3917 static struct attribute *sysfs_attrs[] = { 3918 &dev_attr_builtin_power_supply.attr, 3919 NULL 3920 }; 3921 3922 static const struct attribute_group ps_attribute_group = { 3923 .attrs = sysfs_attrs 3924 }; 3925 3926 static int hidpp_get_report_length(struct hid_device *hdev, int id) 3927 { 3928 struct hid_report_enum *re; 3929 struct hid_report *report; 3930 3931 re = &(hdev->report_enum[HID_OUTPUT_REPORT]); 3932 report = re->report_id_hash[id]; 3933 if (!report) 3934 return 0; 3935 3936 return report->field[0]->report_count + 1; 3937 } 3938 3939 static u8 hidpp_validate_device(struct hid_device *hdev) 3940 { 3941 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3942 int id, report_length; 3943 u8 supported_reports = 0; 3944 3945 id = REPORT_ID_HIDPP_SHORT; 3946 report_length = hidpp_get_report_length(hdev, id); 3947 if (report_length) { 3948 if (report_length < HIDPP_REPORT_SHORT_LENGTH) 3949 goto bad_device; 3950 3951 supported_reports |= HIDPP_REPORT_SHORT_SUPPORTED; 3952 } 3953 3954 id = REPORT_ID_HIDPP_LONG; 3955 report_length = hidpp_get_report_length(hdev, id); 3956 if (report_length) { 3957 if (report_length < HIDPP_REPORT_LONG_LENGTH) 3958 goto bad_device; 3959 3960 supported_reports |= HIDPP_REPORT_LONG_SUPPORTED; 3961 } 3962 3963 id = REPORT_ID_HIDPP_VERY_LONG; 3964 report_length = hidpp_get_report_length(hdev, id); 3965 if (report_length) { 3966 if (report_length < HIDPP_REPORT_LONG_LENGTH || 3967 report_length > HIDPP_REPORT_VERY_LONG_MAX_LENGTH) 3968 goto bad_device; 3969 3970 supported_reports |= HIDPP_REPORT_VERY_LONG_SUPPORTED; 3971 hidpp->very_long_report_length = report_length; 3972 } 3973 3974 return supported_reports; 3975 3976 bad_device: 3977 hid_warn(hdev, "not enough values in hidpp report %d\n", id); 3978 return false; 3979 } 3980 3981 static bool hidpp_application_equals(struct hid_device *hdev, 3982 unsigned int application) 3983 { 3984 struct list_head *report_list; 3985 struct hid_report *report; 3986 3987 report_list = &hdev->report_enum[HID_INPUT_REPORT].report_list; 3988 report = list_first_entry_or_null(report_list, struct hid_report, list); 3989 return report && report->application == application; 3990 } 3991 3992 static int hidpp_probe(struct hid_device *hdev, const struct hid_device_id *id) 3993 { 3994 struct hidpp_device *hidpp; 3995 int ret; 3996 bool connected; 3997 unsigned int connect_mask = HID_CONNECT_DEFAULT; 3998 struct hidpp_ff_private_data data; 3999 4000 /* report_fixup needs drvdata to be set before we call hid_parse */ 4001 hidpp = devm_kzalloc(&hdev->dev, sizeof(*hidpp), GFP_KERNEL); 4002 if (!hidpp) 4003 return -ENOMEM; 4004 4005 hidpp->hid_dev = hdev; 4006 hidpp->name = hdev->name; 4007 hidpp->quirks = id->driver_data; 4008 hid_set_drvdata(hdev, hidpp); 4009 4010 ret = hid_parse(hdev); 4011 if (ret) { 4012 hid_err(hdev, "%s:parse failed\n", __func__); 4013 return ret; 4014 } 4015 4016 /* 4017 * Make sure the device is HID++ capable, otherwise treat as generic HID 4018 */ 4019 hidpp->supported_reports = hidpp_validate_device(hdev); 4020 4021 if (!hidpp->supported_reports) { 4022 hid_set_drvdata(hdev, NULL); 4023 devm_kfree(&hdev->dev, hidpp); 4024 return hid_hw_start(hdev, HID_CONNECT_DEFAULT); 4025 } 4026 4027 if (id->group == HID_GROUP_LOGITECH_DJ_DEVICE) 4028 hidpp->quirks |= HIDPP_QUIRK_UNIFYING; 4029 4030 if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE && 4031 hidpp_application_equals(hdev, HID_GD_MOUSE)) 4032 hidpp->quirks |= HIDPP_QUIRK_HIDPP_WHEELS | 4033 HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS; 4034 4035 if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE && 4036 hidpp_application_equals(hdev, HID_GD_KEYBOARD)) 4037 hidpp->quirks |= HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS; 4038 4039 if (disable_raw_mode) { 4040 hidpp->quirks &= ~HIDPP_QUIRK_CLASS_WTP; 4041 hidpp->quirks &= ~HIDPP_QUIRK_NO_HIDINPUT; 4042 } 4043 4044 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) { 4045 ret = wtp_allocate(hdev, id); 4046 if (ret) 4047 return ret; 4048 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) { 4049 ret = k400_allocate(hdev); 4050 if (ret) 4051 return ret; 4052 } 4053 4054 INIT_WORK(&hidpp->work, delayed_work_cb); 4055 mutex_init(&hidpp->send_mutex); 4056 init_waitqueue_head(&hidpp->wait); 4057 4058 /* indicates we are handling the battery properties in the kernel */ 4059 ret = sysfs_create_group(&hdev->dev.kobj, &ps_attribute_group); 4060 if (ret) 4061 hid_warn(hdev, "Cannot allocate sysfs group for %s\n", 4062 hdev->name); 4063 4064 /* 4065 * Plain USB connections need to actually call start and open 4066 * on the transport driver to allow incoming data. 4067 */ 4068 ret = hid_hw_start(hdev, 0); 4069 if (ret) { 4070 hid_err(hdev, "hw start failed\n"); 4071 goto hid_hw_start_fail; 4072 } 4073 4074 ret = hid_hw_open(hdev); 4075 if (ret < 0) { 4076 dev_err(&hdev->dev, "%s:hid_hw_open returned error:%d\n", 4077 __func__, ret); 4078 goto hid_hw_open_fail; 4079 } 4080 4081 /* Allow incoming packets */ 4082 hid_device_io_start(hdev); 4083 4084 if (hidpp->quirks & HIDPP_QUIRK_UNIFYING) 4085 hidpp_unifying_init(hidpp); 4086 4087 connected = hidpp_root_get_protocol_version(hidpp) == 0; 4088 atomic_set(&hidpp->connected, connected); 4089 if (!(hidpp->quirks & HIDPP_QUIRK_UNIFYING)) { 4090 if (!connected) { 4091 ret = -ENODEV; 4092 hid_err(hdev, "Device not connected"); 4093 goto hid_hw_init_fail; 4094 } 4095 4096 hidpp_overwrite_name(hdev); 4097 } 4098 4099 if (connected && hidpp->protocol_major >= 2) { 4100 ret = hidpp_set_wireless_feature_index(hidpp); 4101 if (ret == -ENOENT) 4102 hidpp->wireless_feature_index = 0; 4103 else if (ret) 4104 goto hid_hw_init_fail; 4105 } 4106 4107 if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)) { 4108 ret = wtp_get_config(hidpp); 4109 if (ret) 4110 goto hid_hw_init_fail; 4111 } else if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_G920)) { 4112 ret = g920_get_config(hidpp, &data); 4113 if (ret) 4114 goto hid_hw_init_fail; 4115 } 4116 4117 hidpp_connect_event(hidpp); 4118 4119 /* Reset the HID node state */ 4120 hid_device_io_stop(hdev); 4121 hid_hw_close(hdev); 4122 hid_hw_stop(hdev); 4123 4124 if (hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) 4125 connect_mask &= ~HID_CONNECT_HIDINPUT; 4126 4127 /* Now export the actual inputs and hidraw nodes to the world */ 4128 ret = hid_hw_start(hdev, connect_mask); 4129 if (ret) { 4130 hid_err(hdev, "%s:hid_hw_start returned error\n", __func__); 4131 goto hid_hw_start_fail; 4132 } 4133 4134 if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) { 4135 ret = hidpp_ff_init(hidpp, &data); 4136 if (ret) 4137 hid_warn(hidpp->hid_dev, 4138 "Unable to initialize force feedback support, errno %d\n", 4139 ret); 4140 } 4141 4142 return ret; 4143 4144 hid_hw_init_fail: 4145 hid_hw_close(hdev); 4146 hid_hw_open_fail: 4147 hid_hw_stop(hdev); 4148 hid_hw_start_fail: 4149 sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group); 4150 cancel_work_sync(&hidpp->work); 4151 mutex_destroy(&hidpp->send_mutex); 4152 return ret; 4153 } 4154 4155 static void hidpp_remove(struct hid_device *hdev) 4156 { 4157 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 4158 4159 if (!hidpp) 4160 return hid_hw_stop(hdev); 4161 4162 sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group); 4163 4164 hid_hw_stop(hdev); 4165 cancel_work_sync(&hidpp->work); 4166 mutex_destroy(&hidpp->send_mutex); 4167 } 4168 4169 #define LDJ_DEVICE(product) \ 4170 HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE, \ 4171 USB_VENDOR_ID_LOGITECH, (product)) 4172 4173 #define L27MHZ_DEVICE(product) \ 4174 HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_27MHZ_DEVICE, \ 4175 USB_VENDOR_ID_LOGITECH, (product)) 4176 4177 static const struct hid_device_id hidpp_devices[] = { 4178 { /* wireless touchpad */ 4179 LDJ_DEVICE(0x4011), 4180 .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT | 4181 HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS }, 4182 { /* wireless touchpad T650 */ 4183 LDJ_DEVICE(0x4101), 4184 .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT }, 4185 { /* wireless touchpad T651 */ 4186 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 4187 USB_DEVICE_ID_LOGITECH_T651), 4188 .driver_data = HIDPP_QUIRK_CLASS_WTP }, 4189 { /* Mouse Logitech Anywhere MX */ 4190 LDJ_DEVICE(0x1017), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 }, 4191 { /* Mouse Logitech Cube */ 4192 LDJ_DEVICE(0x4010), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 }, 4193 { /* Mouse Logitech M335 */ 4194 LDJ_DEVICE(0x4050), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4195 { /* Mouse Logitech M515 */ 4196 LDJ_DEVICE(0x4007), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 }, 4197 { /* Mouse logitech M560 */ 4198 LDJ_DEVICE(0x402d), 4199 .driver_data = HIDPP_QUIRK_DELAYED_INIT | HIDPP_QUIRK_CLASS_M560 4200 | HIDPP_QUIRK_HI_RES_SCROLL_X2120 }, 4201 { /* Mouse Logitech M705 (firmware RQM17) */ 4202 LDJ_DEVICE(0x101b), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 }, 4203 { /* Mouse Logitech M705 (firmware RQM67) */ 4204 LDJ_DEVICE(0x406d), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4205 { /* Mouse Logitech M720 */ 4206 LDJ_DEVICE(0x405e), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4207 { /* Mouse Logitech MX Anywhere 2 */ 4208 LDJ_DEVICE(0x404a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4209 { LDJ_DEVICE(0x4072), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4210 { LDJ_DEVICE(0xb013), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4211 { LDJ_DEVICE(0xb018), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4212 { LDJ_DEVICE(0xb01f), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4213 { /* Mouse Logitech MX Anywhere 2S */ 4214 LDJ_DEVICE(0x406a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4215 { /* Mouse Logitech MX Master */ 4216 LDJ_DEVICE(0x4041), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4217 { LDJ_DEVICE(0x4060), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4218 { LDJ_DEVICE(0x4071), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4219 { /* Mouse Logitech MX Master 2S */ 4220 LDJ_DEVICE(0x4069), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4221 { /* Mouse Logitech MX Master 3 */ 4222 LDJ_DEVICE(0x4082), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4223 { /* Mouse Logitech Performance MX */ 4224 LDJ_DEVICE(0x101a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 }, 4225 { /* Keyboard logitech K400 */ 4226 LDJ_DEVICE(0x4024), 4227 .driver_data = HIDPP_QUIRK_CLASS_K400 }, 4228 { /* Solar Keyboard Logitech K750 */ 4229 LDJ_DEVICE(0x4002), 4230 .driver_data = HIDPP_QUIRK_CLASS_K750 }, 4231 { /* Keyboard MX5000 (Bluetooth-receiver in HID proxy mode) */ 4232 LDJ_DEVICE(0xb305), 4233 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 4234 { /* Dinovo Edge (Bluetooth-receiver in HID proxy mode) */ 4235 LDJ_DEVICE(0xb309), 4236 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 4237 { /* Keyboard MX5500 (Bluetooth-receiver in HID proxy mode) */ 4238 LDJ_DEVICE(0xb30b), 4239 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 4240 4241 { LDJ_DEVICE(HID_ANY_ID) }, 4242 4243 { /* Keyboard LX501 (Y-RR53) */ 4244 L27MHZ_DEVICE(0x0049), 4245 .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL }, 4246 { /* Keyboard MX3000 (Y-RAM74) */ 4247 L27MHZ_DEVICE(0x0057), 4248 .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL }, 4249 { /* Keyboard MX3200 (Y-RAV80) */ 4250 L27MHZ_DEVICE(0x005c), 4251 .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL }, 4252 { /* S510 Media Remote */ 4253 L27MHZ_DEVICE(0x00fe), 4254 .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL }, 4255 4256 { L27MHZ_DEVICE(HID_ANY_ID) }, 4257 4258 { /* Logitech G403 Wireless Gaming Mouse over USB */ 4259 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC082) }, 4260 { /* Logitech G703 Gaming Mouse over USB */ 4261 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC087) }, 4262 { /* Logitech G703 Hero Gaming Mouse over USB */ 4263 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC090) }, 4264 { /* Logitech G900 Gaming Mouse over USB */ 4265 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC081) }, 4266 { /* Logitech G903 Gaming Mouse over USB */ 4267 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC086) }, 4268 { /* Logitech G903 Hero Gaming Mouse over USB */ 4269 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC091) }, 4270 { /* Logitech G920 Wheel over USB */ 4271 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G920_WHEEL), 4272 .driver_data = HIDPP_QUIRK_CLASS_G920 | HIDPP_QUIRK_FORCE_OUTPUT_REPORTS}, 4273 { /* Logitech G Pro Gaming Mouse over USB */ 4274 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC088) }, 4275 4276 { /* MX5000 keyboard over Bluetooth */ 4277 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb305), 4278 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 4279 { /* Dinovo Edge keyboard over Bluetooth */ 4280 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb309), 4281 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 4282 { /* MX5500 keyboard over Bluetooth */ 4283 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb30b), 4284 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 4285 { /* M-RCQ142 V470 Cordless Laser Mouse over Bluetooth */ 4286 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb008) }, 4287 { /* MX Master mouse over Bluetooth */ 4288 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb012), 4289 .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4290 { /* MX Ergo trackball over Bluetooth */ 4291 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb01d) }, 4292 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb01e), 4293 .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4294 { /* MX Master 3 mouse over Bluetooth */ 4295 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb023), 4296 .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4297 {} 4298 }; 4299 4300 MODULE_DEVICE_TABLE(hid, hidpp_devices); 4301 4302 static const struct hid_usage_id hidpp_usages[] = { 4303 { HID_GD_WHEEL, EV_REL, REL_WHEEL_HI_RES }, 4304 { HID_ANY_ID - 1, HID_ANY_ID - 1, HID_ANY_ID - 1} 4305 }; 4306 4307 static struct hid_driver hidpp_driver = { 4308 .name = "logitech-hidpp-device", 4309 .id_table = hidpp_devices, 4310 .report_fixup = hidpp_report_fixup, 4311 .probe = hidpp_probe, 4312 .remove = hidpp_remove, 4313 .raw_event = hidpp_raw_event, 4314 .usage_table = hidpp_usages, 4315 .event = hidpp_event, 4316 .input_configured = hidpp_input_configured, 4317 .input_mapping = hidpp_input_mapping, 4318 .input_mapped = hidpp_input_mapped, 4319 }; 4320 4321 module_hid_driver(hidpp_driver); 4322