1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  HIDPP protocol for Logitech receivers
4  *
5  *  Copyright (c) 2011 Logitech (c)
6  *  Copyright (c) 2012-2013 Google (c)
7  *  Copyright (c) 2013-2014 Red Hat Inc.
8  */
9 
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/device.h>
14 #include <linux/input.h>
15 #include <linux/usb.h>
16 #include <linux/hid.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/sched/clock.h>
21 #include <linux/kfifo.h>
22 #include <linux/input/mt.h>
23 #include <linux/workqueue.h>
24 #include <linux/atomic.h>
25 #include <linux/fixp-arith.h>
26 #include <asm/unaligned.h>
27 #include "usbhid/usbhid.h"
28 #include "hid-ids.h"
29 
30 MODULE_LICENSE("GPL");
31 MODULE_AUTHOR("Benjamin Tissoires <benjamin.tissoires@gmail.com>");
32 MODULE_AUTHOR("Nestor Lopez Casado <nlopezcasad@logitech.com>");
33 
34 static bool disable_raw_mode;
35 module_param(disable_raw_mode, bool, 0644);
36 MODULE_PARM_DESC(disable_raw_mode,
37 	"Disable Raw mode reporting for touchpads and keep firmware gestures.");
38 
39 static bool disable_tap_to_click;
40 module_param(disable_tap_to_click, bool, 0644);
41 MODULE_PARM_DESC(disable_tap_to_click,
42 	"Disable Tap-To-Click mode reporting for touchpads (only on the K400 currently).");
43 
44 #define REPORT_ID_HIDPP_SHORT			0x10
45 #define REPORT_ID_HIDPP_LONG			0x11
46 #define REPORT_ID_HIDPP_VERY_LONG		0x12
47 
48 #define HIDPP_REPORT_SHORT_LENGTH		7
49 #define HIDPP_REPORT_LONG_LENGTH		20
50 #define HIDPP_REPORT_VERY_LONG_MAX_LENGTH	64
51 
52 #define HIDPP_REPORT_SHORT_SUPPORTED		BIT(0)
53 #define HIDPP_REPORT_LONG_SUPPORTED		BIT(1)
54 #define HIDPP_REPORT_VERY_LONG_SUPPORTED	BIT(2)
55 
56 #define HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS	0x03
57 #define HIDPP_SUB_ID_ROLLER			0x05
58 #define HIDPP_SUB_ID_MOUSE_EXTRA_BTNS		0x06
59 
60 #define HIDPP_QUIRK_CLASS_WTP			BIT(0)
61 #define HIDPP_QUIRK_CLASS_M560			BIT(1)
62 #define HIDPP_QUIRK_CLASS_K400			BIT(2)
63 #define HIDPP_QUIRK_CLASS_G920			BIT(3)
64 #define HIDPP_QUIRK_CLASS_K750			BIT(4)
65 
66 /* bits 2..20 are reserved for classes */
67 /* #define HIDPP_QUIRK_CONNECT_EVENTS		BIT(21) disabled */
68 #define HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS	BIT(22)
69 #define HIDPP_QUIRK_NO_HIDINPUT			BIT(23)
70 #define HIDPP_QUIRK_FORCE_OUTPUT_REPORTS	BIT(24)
71 #define HIDPP_QUIRK_UNIFYING			BIT(25)
72 #define HIDPP_QUIRK_HI_RES_SCROLL_1P0		BIT(26)
73 #define HIDPP_QUIRK_HI_RES_SCROLL_X2120		BIT(27)
74 #define HIDPP_QUIRK_HI_RES_SCROLL_X2121		BIT(28)
75 #define HIDPP_QUIRK_HIDPP_WHEELS		BIT(29)
76 #define HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS	BIT(30)
77 #define HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS	BIT(31)
78 
79 /* These are just aliases for now */
80 #define HIDPP_QUIRK_KBD_SCROLL_WHEEL HIDPP_QUIRK_HIDPP_WHEELS
81 #define HIDPP_QUIRK_KBD_ZOOM_WHEEL   HIDPP_QUIRK_HIDPP_WHEELS
82 
83 /* Convenience constant to check for any high-res support. */
84 #define HIDPP_QUIRK_HI_RES_SCROLL	(HIDPP_QUIRK_HI_RES_SCROLL_1P0 | \
85 					 HIDPP_QUIRK_HI_RES_SCROLL_X2120 | \
86 					 HIDPP_QUIRK_HI_RES_SCROLL_X2121)
87 
88 #define HIDPP_QUIRK_DELAYED_INIT		HIDPP_QUIRK_NO_HIDINPUT
89 
90 #define HIDPP_CAPABILITY_HIDPP10_BATTERY	BIT(0)
91 #define HIDPP_CAPABILITY_HIDPP20_BATTERY	BIT(1)
92 #define HIDPP_CAPABILITY_BATTERY_MILEAGE	BIT(2)
93 #define HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS	BIT(3)
94 #define HIDPP_CAPABILITY_BATTERY_VOLTAGE	BIT(4)
95 #define HIDPP_CAPABILITY_BATTERY_PERCENTAGE	BIT(5)
96 #define HIDPP_CAPABILITY_UNIFIED_BATTERY	BIT(6)
97 
98 #define lg_map_key_clear(c)  hid_map_usage_clear(hi, usage, bit, max, EV_KEY, (c))
99 
100 /*
101  * There are two hidpp protocols in use, the first version hidpp10 is known
102  * as register access protocol or RAP, the second version hidpp20 is known as
103  * feature access protocol or FAP
104  *
105  * Most older devices (including the Unifying usb receiver) use the RAP protocol
106  * where as most newer devices use the FAP protocol. Both protocols are
107  * compatible with the underlying transport, which could be usb, Unifiying, or
108  * bluetooth. The message lengths are defined by the hid vendor specific report
109  * descriptor for the HIDPP_SHORT report type (total message lenth 7 bytes) and
110  * the HIDPP_LONG report type (total message length 20 bytes)
111  *
112  * The RAP protocol uses both report types, whereas the FAP only uses HIDPP_LONG
113  * messages. The Unifying receiver itself responds to RAP messages (device index
114  * is 0xFF for the receiver), and all messages (short or long) with a device
115  * index between 1 and 6 are passed untouched to the corresponding paired
116  * Unifying device.
117  *
118  * The paired device can be RAP or FAP, it will receive the message untouched
119  * from the Unifiying receiver.
120  */
121 
122 struct fap {
123 	u8 feature_index;
124 	u8 funcindex_clientid;
125 	u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U];
126 };
127 
128 struct rap {
129 	u8 sub_id;
130 	u8 reg_address;
131 	u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U];
132 };
133 
134 struct hidpp_report {
135 	u8 report_id;
136 	u8 device_index;
137 	union {
138 		struct fap fap;
139 		struct rap rap;
140 		u8 rawbytes[sizeof(struct fap)];
141 	};
142 } __packed;
143 
144 struct hidpp_battery {
145 	u8 feature_index;
146 	u8 solar_feature_index;
147 	u8 voltage_feature_index;
148 	struct power_supply_desc desc;
149 	struct power_supply *ps;
150 	char name[64];
151 	int status;
152 	int capacity;
153 	int level;
154 	int voltage;
155 	int charge_type;
156 	bool online;
157 	u8 supported_levels_1004;
158 };
159 
160 /**
161  * struct hidpp_scroll_counter - Utility class for processing high-resolution
162  *                             scroll events.
163  * @dev: the input device for which events should be reported.
164  * @wheel_multiplier: the scalar multiplier to be applied to each wheel event
165  * @remainder: counts the number of high-resolution units moved since the last
166  *             low-resolution event (REL_WHEEL or REL_HWHEEL) was sent. Should
167  *             only be used by class methods.
168  * @direction: direction of last movement (1 or -1)
169  * @last_time: last event time, used to reset remainder after inactivity
170  */
171 struct hidpp_scroll_counter {
172 	int wheel_multiplier;
173 	int remainder;
174 	int direction;
175 	unsigned long long last_time;
176 };
177 
178 struct hidpp_device {
179 	struct hid_device *hid_dev;
180 	struct input_dev *input;
181 	struct mutex send_mutex;
182 	void *send_receive_buf;
183 	char *name;		/* will never be NULL and should not be freed */
184 	wait_queue_head_t wait;
185 	int very_long_report_length;
186 	bool answer_available;
187 	u8 protocol_major;
188 	u8 protocol_minor;
189 
190 	void *private_data;
191 
192 	struct work_struct work;
193 	struct kfifo delayed_work_fifo;
194 	atomic_t connected;
195 	struct input_dev *delayed_input;
196 
197 	unsigned long quirks;
198 	unsigned long capabilities;
199 	u8 supported_reports;
200 
201 	struct hidpp_battery battery;
202 	struct hidpp_scroll_counter vertical_wheel_counter;
203 
204 	u8 wireless_feature_index;
205 };
206 
207 /* HID++ 1.0 error codes */
208 #define HIDPP_ERROR				0x8f
209 #define HIDPP_ERROR_SUCCESS			0x00
210 #define HIDPP_ERROR_INVALID_SUBID		0x01
211 #define HIDPP_ERROR_INVALID_ADRESS		0x02
212 #define HIDPP_ERROR_INVALID_VALUE		0x03
213 #define HIDPP_ERROR_CONNECT_FAIL		0x04
214 #define HIDPP_ERROR_TOO_MANY_DEVICES		0x05
215 #define HIDPP_ERROR_ALREADY_EXISTS		0x06
216 #define HIDPP_ERROR_BUSY			0x07
217 #define HIDPP_ERROR_UNKNOWN_DEVICE		0x08
218 #define HIDPP_ERROR_RESOURCE_ERROR		0x09
219 #define HIDPP_ERROR_REQUEST_UNAVAILABLE		0x0a
220 #define HIDPP_ERROR_INVALID_PARAM_VALUE		0x0b
221 #define HIDPP_ERROR_WRONG_PIN_CODE		0x0c
222 /* HID++ 2.0 error codes */
223 #define HIDPP20_ERROR				0xff
224 
225 static void hidpp_connect_event(struct hidpp_device *hidpp_dev);
226 
227 static int __hidpp_send_report(struct hid_device *hdev,
228 				struct hidpp_report *hidpp_report)
229 {
230 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
231 	int fields_count, ret;
232 
233 	switch (hidpp_report->report_id) {
234 	case REPORT_ID_HIDPP_SHORT:
235 		fields_count = HIDPP_REPORT_SHORT_LENGTH;
236 		break;
237 	case REPORT_ID_HIDPP_LONG:
238 		fields_count = HIDPP_REPORT_LONG_LENGTH;
239 		break;
240 	case REPORT_ID_HIDPP_VERY_LONG:
241 		fields_count = hidpp->very_long_report_length;
242 		break;
243 	default:
244 		return -ENODEV;
245 	}
246 
247 	/*
248 	 * set the device_index as the receiver, it will be overwritten by
249 	 * hid_hw_request if needed
250 	 */
251 	hidpp_report->device_index = 0xff;
252 
253 	if (hidpp->quirks & HIDPP_QUIRK_FORCE_OUTPUT_REPORTS) {
254 		ret = hid_hw_output_report(hdev, (u8 *)hidpp_report, fields_count);
255 	} else {
256 		ret = hid_hw_raw_request(hdev, hidpp_report->report_id,
257 			(u8 *)hidpp_report, fields_count, HID_OUTPUT_REPORT,
258 			HID_REQ_SET_REPORT);
259 	}
260 
261 	return ret == fields_count ? 0 : -1;
262 }
263 
264 /*
265  * hidpp_send_message_sync() returns 0 in case of success, and something else
266  * in case of a failure.
267  * - If ' something else' is positive, that means that an error has been raised
268  *   by the protocol itself.
269  * - If ' something else' is negative, that means that we had a classic error
270  *   (-ENOMEM, -EPIPE, etc...)
271  */
272 static int hidpp_send_message_sync(struct hidpp_device *hidpp,
273 	struct hidpp_report *message,
274 	struct hidpp_report *response)
275 {
276 	int ret;
277 
278 	mutex_lock(&hidpp->send_mutex);
279 
280 	hidpp->send_receive_buf = response;
281 	hidpp->answer_available = false;
282 
283 	/*
284 	 * So that we can later validate the answer when it arrives
285 	 * in hidpp_raw_event
286 	 */
287 	*response = *message;
288 
289 	ret = __hidpp_send_report(hidpp->hid_dev, message);
290 
291 	if (ret) {
292 		dbg_hid("__hidpp_send_report returned err: %d\n", ret);
293 		memset(response, 0, sizeof(struct hidpp_report));
294 		goto exit;
295 	}
296 
297 	if (!wait_event_timeout(hidpp->wait, hidpp->answer_available,
298 				5*HZ)) {
299 		dbg_hid("%s:timeout waiting for response\n", __func__);
300 		memset(response, 0, sizeof(struct hidpp_report));
301 		ret = -ETIMEDOUT;
302 	}
303 
304 	if (response->report_id == REPORT_ID_HIDPP_SHORT &&
305 	    response->rap.sub_id == HIDPP_ERROR) {
306 		ret = response->rap.params[1];
307 		dbg_hid("%s:got hidpp error %02X\n", __func__, ret);
308 		goto exit;
309 	}
310 
311 	if ((response->report_id == REPORT_ID_HIDPP_LONG ||
312 			response->report_id == REPORT_ID_HIDPP_VERY_LONG) &&
313 			response->fap.feature_index == HIDPP20_ERROR) {
314 		ret = response->fap.params[1];
315 		dbg_hid("%s:got hidpp 2.0 error %02X\n", __func__, ret);
316 		goto exit;
317 	}
318 
319 exit:
320 	mutex_unlock(&hidpp->send_mutex);
321 	return ret;
322 
323 }
324 
325 static int hidpp_send_fap_command_sync(struct hidpp_device *hidpp,
326 	u8 feat_index, u8 funcindex_clientid, u8 *params, int param_count,
327 	struct hidpp_report *response)
328 {
329 	struct hidpp_report *message;
330 	int ret;
331 
332 	if (param_count > sizeof(message->fap.params))
333 		return -EINVAL;
334 
335 	message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL);
336 	if (!message)
337 		return -ENOMEM;
338 
339 	if (param_count > (HIDPP_REPORT_LONG_LENGTH - 4))
340 		message->report_id = REPORT_ID_HIDPP_VERY_LONG;
341 	else
342 		message->report_id = REPORT_ID_HIDPP_LONG;
343 	message->fap.feature_index = feat_index;
344 	message->fap.funcindex_clientid = funcindex_clientid;
345 	memcpy(&message->fap.params, params, param_count);
346 
347 	ret = hidpp_send_message_sync(hidpp, message, response);
348 	kfree(message);
349 	return ret;
350 }
351 
352 static int hidpp_send_rap_command_sync(struct hidpp_device *hidpp_dev,
353 	u8 report_id, u8 sub_id, u8 reg_address, u8 *params, int param_count,
354 	struct hidpp_report *response)
355 {
356 	struct hidpp_report *message;
357 	int ret, max_count;
358 
359 	/* Send as long report if short reports are not supported. */
360 	if (report_id == REPORT_ID_HIDPP_SHORT &&
361 	    !(hidpp_dev->supported_reports & HIDPP_REPORT_SHORT_SUPPORTED))
362 		report_id = REPORT_ID_HIDPP_LONG;
363 
364 	switch (report_id) {
365 	case REPORT_ID_HIDPP_SHORT:
366 		max_count = HIDPP_REPORT_SHORT_LENGTH - 4;
367 		break;
368 	case REPORT_ID_HIDPP_LONG:
369 		max_count = HIDPP_REPORT_LONG_LENGTH - 4;
370 		break;
371 	case REPORT_ID_HIDPP_VERY_LONG:
372 		max_count = hidpp_dev->very_long_report_length - 4;
373 		break;
374 	default:
375 		return -EINVAL;
376 	}
377 
378 	if (param_count > max_count)
379 		return -EINVAL;
380 
381 	message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL);
382 	if (!message)
383 		return -ENOMEM;
384 	message->report_id = report_id;
385 	message->rap.sub_id = sub_id;
386 	message->rap.reg_address = reg_address;
387 	memcpy(&message->rap.params, params, param_count);
388 
389 	ret = hidpp_send_message_sync(hidpp_dev, message, response);
390 	kfree(message);
391 	return ret;
392 }
393 
394 static void delayed_work_cb(struct work_struct *work)
395 {
396 	struct hidpp_device *hidpp = container_of(work, struct hidpp_device,
397 							work);
398 	hidpp_connect_event(hidpp);
399 }
400 
401 static inline bool hidpp_match_answer(struct hidpp_report *question,
402 		struct hidpp_report *answer)
403 {
404 	return (answer->fap.feature_index == question->fap.feature_index) &&
405 	   (answer->fap.funcindex_clientid == question->fap.funcindex_clientid);
406 }
407 
408 static inline bool hidpp_match_error(struct hidpp_report *question,
409 		struct hidpp_report *answer)
410 {
411 	return ((answer->rap.sub_id == HIDPP_ERROR) ||
412 	    (answer->fap.feature_index == HIDPP20_ERROR)) &&
413 	    (answer->fap.funcindex_clientid == question->fap.feature_index) &&
414 	    (answer->fap.params[0] == question->fap.funcindex_clientid);
415 }
416 
417 static inline bool hidpp_report_is_connect_event(struct hidpp_device *hidpp,
418 		struct hidpp_report *report)
419 {
420 	return (hidpp->wireless_feature_index &&
421 		(report->fap.feature_index == hidpp->wireless_feature_index)) ||
422 		((report->report_id == REPORT_ID_HIDPP_SHORT) &&
423 		(report->rap.sub_id == 0x41));
424 }
425 
426 /*
427  * hidpp_prefix_name() prefixes the current given name with "Logitech ".
428  */
429 static void hidpp_prefix_name(char **name, int name_length)
430 {
431 #define PREFIX_LENGTH 9 /* "Logitech " */
432 
433 	int new_length;
434 	char *new_name;
435 
436 	if (name_length > PREFIX_LENGTH &&
437 	    strncmp(*name, "Logitech ", PREFIX_LENGTH) == 0)
438 		/* The prefix has is already in the name */
439 		return;
440 
441 	new_length = PREFIX_LENGTH + name_length;
442 	new_name = kzalloc(new_length, GFP_KERNEL);
443 	if (!new_name)
444 		return;
445 
446 	snprintf(new_name, new_length, "Logitech %s", *name);
447 
448 	kfree(*name);
449 
450 	*name = new_name;
451 }
452 
453 /**
454  * hidpp_scroll_counter_handle_scroll() - Send high- and low-resolution scroll
455  *                                        events given a high-resolution wheel
456  *                                        movement.
457  * @input_dev: Pointer to the input device
458  * @counter: a hid_scroll_counter struct describing the wheel.
459  * @hi_res_value: the movement of the wheel, in the mouse's high-resolution
460  *                units.
461  *
462  * Given a high-resolution movement, this function converts the movement into
463  * fractions of 120 and emits high-resolution scroll events for the input
464  * device. It also uses the multiplier from &struct hid_scroll_counter to
465  * emit low-resolution scroll events when appropriate for
466  * backwards-compatibility with userspace input libraries.
467  */
468 static void hidpp_scroll_counter_handle_scroll(struct input_dev *input_dev,
469 					       struct hidpp_scroll_counter *counter,
470 					       int hi_res_value)
471 {
472 	int low_res_value, remainder, direction;
473 	unsigned long long now, previous;
474 
475 	hi_res_value = hi_res_value * 120/counter->wheel_multiplier;
476 	input_report_rel(input_dev, REL_WHEEL_HI_RES, hi_res_value);
477 
478 	remainder = counter->remainder;
479 	direction = hi_res_value > 0 ? 1 : -1;
480 
481 	now = sched_clock();
482 	previous = counter->last_time;
483 	counter->last_time = now;
484 	/*
485 	 * Reset the remainder after a period of inactivity or when the
486 	 * direction changes. This prevents the REL_WHEEL emulation point
487 	 * from sliding for devices that don't always provide the same
488 	 * number of movements per detent.
489 	 */
490 	if (now - previous > 1000000000 || direction != counter->direction)
491 		remainder = 0;
492 
493 	counter->direction = direction;
494 	remainder += hi_res_value;
495 
496 	/* Some wheels will rest 7/8ths of a detent from the previous detent
497 	 * after slow movement, so we want the threshold for low-res events to
498 	 * be in the middle between two detents (e.g. after 4/8ths) as
499 	 * opposed to on the detents themselves (8/8ths).
500 	 */
501 	if (abs(remainder) >= 60) {
502 		/* Add (or subtract) 1 because we want to trigger when the wheel
503 		 * is half-way to the next detent (i.e. scroll 1 detent after a
504 		 * 1/2 detent movement, 2 detents after a 1 1/2 detent movement,
505 		 * etc.).
506 		 */
507 		low_res_value = remainder / 120;
508 		if (low_res_value == 0)
509 			low_res_value = (hi_res_value > 0 ? 1 : -1);
510 		input_report_rel(input_dev, REL_WHEEL, low_res_value);
511 		remainder -= low_res_value * 120;
512 	}
513 	counter->remainder = remainder;
514 }
515 
516 /* -------------------------------------------------------------------------- */
517 /* HIDP++ 1.0 commands                                                        */
518 /* -------------------------------------------------------------------------- */
519 
520 #define HIDPP_SET_REGISTER				0x80
521 #define HIDPP_GET_REGISTER				0x81
522 #define HIDPP_SET_LONG_REGISTER				0x82
523 #define HIDPP_GET_LONG_REGISTER				0x83
524 
525 /**
526  * hidpp10_set_register - Modify a HID++ 1.0 register.
527  * @hidpp_dev: the device to set the register on.
528  * @register_address: the address of the register to modify.
529  * @byte: the byte of the register to modify. Should be less than 3.
530  * @mask: mask of the bits to modify
531  * @value: new values for the bits in mask
532  * Return: 0 if successful, otherwise a negative error code.
533  */
534 static int hidpp10_set_register(struct hidpp_device *hidpp_dev,
535 	u8 register_address, u8 byte, u8 mask, u8 value)
536 {
537 	struct hidpp_report response;
538 	int ret;
539 	u8 params[3] = { 0 };
540 
541 	ret = hidpp_send_rap_command_sync(hidpp_dev,
542 					  REPORT_ID_HIDPP_SHORT,
543 					  HIDPP_GET_REGISTER,
544 					  register_address,
545 					  NULL, 0, &response);
546 	if (ret)
547 		return ret;
548 
549 	memcpy(params, response.rap.params, 3);
550 
551 	params[byte] &= ~mask;
552 	params[byte] |= value & mask;
553 
554 	return hidpp_send_rap_command_sync(hidpp_dev,
555 					   REPORT_ID_HIDPP_SHORT,
556 					   HIDPP_SET_REGISTER,
557 					   register_address,
558 					   params, 3, &response);
559 }
560 
561 #define HIDPP_REG_ENABLE_REPORTS			0x00
562 #define HIDPP_ENABLE_CONSUMER_REPORT			BIT(0)
563 #define HIDPP_ENABLE_WHEEL_REPORT			BIT(2)
564 #define HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT		BIT(3)
565 #define HIDPP_ENABLE_BAT_REPORT				BIT(4)
566 #define HIDPP_ENABLE_HWHEEL_REPORT			BIT(5)
567 
568 static int hidpp10_enable_battery_reporting(struct hidpp_device *hidpp_dev)
569 {
570 	return hidpp10_set_register(hidpp_dev, HIDPP_REG_ENABLE_REPORTS, 0,
571 			  HIDPP_ENABLE_BAT_REPORT, HIDPP_ENABLE_BAT_REPORT);
572 }
573 
574 #define HIDPP_REG_FEATURES				0x01
575 #define HIDPP_ENABLE_SPECIAL_BUTTON_FUNC		BIT(1)
576 #define HIDPP_ENABLE_FAST_SCROLL			BIT(6)
577 
578 /* On HID++ 1.0 devices, high-res scroll was called "scrolling acceleration". */
579 static int hidpp10_enable_scrolling_acceleration(struct hidpp_device *hidpp_dev)
580 {
581 	return hidpp10_set_register(hidpp_dev, HIDPP_REG_FEATURES, 0,
582 			  HIDPP_ENABLE_FAST_SCROLL, HIDPP_ENABLE_FAST_SCROLL);
583 }
584 
585 #define HIDPP_REG_BATTERY_STATUS			0x07
586 
587 static int hidpp10_battery_status_map_level(u8 param)
588 {
589 	int level;
590 
591 	switch (param) {
592 	case 1 ... 2:
593 		level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
594 		break;
595 	case 3 ... 4:
596 		level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
597 		break;
598 	case 5 ... 6:
599 		level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
600 		break;
601 	case 7:
602 		level = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
603 		break;
604 	default:
605 		level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
606 	}
607 
608 	return level;
609 }
610 
611 static int hidpp10_battery_status_map_status(u8 param)
612 {
613 	int status;
614 
615 	switch (param) {
616 	case 0x00:
617 		/* discharging (in use) */
618 		status = POWER_SUPPLY_STATUS_DISCHARGING;
619 		break;
620 	case 0x21: /* (standard) charging */
621 	case 0x24: /* fast charging */
622 	case 0x25: /* slow charging */
623 		status = POWER_SUPPLY_STATUS_CHARGING;
624 		break;
625 	case 0x26: /* topping charge */
626 	case 0x22: /* charge complete */
627 		status = POWER_SUPPLY_STATUS_FULL;
628 		break;
629 	case 0x20: /* unknown */
630 		status = POWER_SUPPLY_STATUS_UNKNOWN;
631 		break;
632 	/*
633 	 * 0x01...0x1F = reserved (not charging)
634 	 * 0x23 = charging error
635 	 * 0x27..0xff = reserved
636 	 */
637 	default:
638 		status = POWER_SUPPLY_STATUS_NOT_CHARGING;
639 		break;
640 	}
641 
642 	return status;
643 }
644 
645 static int hidpp10_query_battery_status(struct hidpp_device *hidpp)
646 {
647 	struct hidpp_report response;
648 	int ret, status;
649 
650 	ret = hidpp_send_rap_command_sync(hidpp,
651 					REPORT_ID_HIDPP_SHORT,
652 					HIDPP_GET_REGISTER,
653 					HIDPP_REG_BATTERY_STATUS,
654 					NULL, 0, &response);
655 	if (ret)
656 		return ret;
657 
658 	hidpp->battery.level =
659 		hidpp10_battery_status_map_level(response.rap.params[0]);
660 	status = hidpp10_battery_status_map_status(response.rap.params[1]);
661 	hidpp->battery.status = status;
662 	/* the capacity is only available when discharging or full */
663 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
664 				status == POWER_SUPPLY_STATUS_FULL;
665 
666 	return 0;
667 }
668 
669 #define HIDPP_REG_BATTERY_MILEAGE			0x0D
670 
671 static int hidpp10_battery_mileage_map_status(u8 param)
672 {
673 	int status;
674 
675 	switch (param >> 6) {
676 	case 0x00:
677 		/* discharging (in use) */
678 		status = POWER_SUPPLY_STATUS_DISCHARGING;
679 		break;
680 	case 0x01: /* charging */
681 		status = POWER_SUPPLY_STATUS_CHARGING;
682 		break;
683 	case 0x02: /* charge complete */
684 		status = POWER_SUPPLY_STATUS_FULL;
685 		break;
686 	/*
687 	 * 0x03 = charging error
688 	 */
689 	default:
690 		status = POWER_SUPPLY_STATUS_NOT_CHARGING;
691 		break;
692 	}
693 
694 	return status;
695 }
696 
697 static int hidpp10_query_battery_mileage(struct hidpp_device *hidpp)
698 {
699 	struct hidpp_report response;
700 	int ret, status;
701 
702 	ret = hidpp_send_rap_command_sync(hidpp,
703 					REPORT_ID_HIDPP_SHORT,
704 					HIDPP_GET_REGISTER,
705 					HIDPP_REG_BATTERY_MILEAGE,
706 					NULL, 0, &response);
707 	if (ret)
708 		return ret;
709 
710 	hidpp->battery.capacity = response.rap.params[0];
711 	status = hidpp10_battery_mileage_map_status(response.rap.params[2]);
712 	hidpp->battery.status = status;
713 	/* the capacity is only available when discharging or full */
714 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
715 				status == POWER_SUPPLY_STATUS_FULL;
716 
717 	return 0;
718 }
719 
720 static int hidpp10_battery_event(struct hidpp_device *hidpp, u8 *data, int size)
721 {
722 	struct hidpp_report *report = (struct hidpp_report *)data;
723 	int status, capacity, level;
724 	bool changed;
725 
726 	if (report->report_id != REPORT_ID_HIDPP_SHORT)
727 		return 0;
728 
729 	switch (report->rap.sub_id) {
730 	case HIDPP_REG_BATTERY_STATUS:
731 		capacity = hidpp->battery.capacity;
732 		level = hidpp10_battery_status_map_level(report->rawbytes[1]);
733 		status = hidpp10_battery_status_map_status(report->rawbytes[2]);
734 		break;
735 	case HIDPP_REG_BATTERY_MILEAGE:
736 		capacity = report->rap.params[0];
737 		level = hidpp->battery.level;
738 		status = hidpp10_battery_mileage_map_status(report->rawbytes[3]);
739 		break;
740 	default:
741 		return 0;
742 	}
743 
744 	changed = capacity != hidpp->battery.capacity ||
745 		  level != hidpp->battery.level ||
746 		  status != hidpp->battery.status;
747 
748 	/* the capacity is only available when discharging or full */
749 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
750 				status == POWER_SUPPLY_STATUS_FULL;
751 
752 	if (changed) {
753 		hidpp->battery.level = level;
754 		hidpp->battery.status = status;
755 		if (hidpp->battery.ps)
756 			power_supply_changed(hidpp->battery.ps);
757 	}
758 
759 	return 0;
760 }
761 
762 #define HIDPP_REG_PAIRING_INFORMATION			0xB5
763 #define HIDPP_EXTENDED_PAIRING				0x30
764 #define HIDPP_DEVICE_NAME				0x40
765 
766 static char *hidpp_unifying_get_name(struct hidpp_device *hidpp_dev)
767 {
768 	struct hidpp_report response;
769 	int ret;
770 	u8 params[1] = { HIDPP_DEVICE_NAME };
771 	char *name;
772 	int len;
773 
774 	ret = hidpp_send_rap_command_sync(hidpp_dev,
775 					REPORT_ID_HIDPP_SHORT,
776 					HIDPP_GET_LONG_REGISTER,
777 					HIDPP_REG_PAIRING_INFORMATION,
778 					params, 1, &response);
779 	if (ret)
780 		return NULL;
781 
782 	len = response.rap.params[1];
783 
784 	if (2 + len > sizeof(response.rap.params))
785 		return NULL;
786 
787 	if (len < 4) /* logitech devices are usually at least Xddd */
788 		return NULL;
789 
790 	name = kzalloc(len + 1, GFP_KERNEL);
791 	if (!name)
792 		return NULL;
793 
794 	memcpy(name, &response.rap.params[2], len);
795 
796 	/* include the terminating '\0' */
797 	hidpp_prefix_name(&name, len + 1);
798 
799 	return name;
800 }
801 
802 static int hidpp_unifying_get_serial(struct hidpp_device *hidpp, u32 *serial)
803 {
804 	struct hidpp_report response;
805 	int ret;
806 	u8 params[1] = { HIDPP_EXTENDED_PAIRING };
807 
808 	ret = hidpp_send_rap_command_sync(hidpp,
809 					REPORT_ID_HIDPP_SHORT,
810 					HIDPP_GET_LONG_REGISTER,
811 					HIDPP_REG_PAIRING_INFORMATION,
812 					params, 1, &response);
813 	if (ret)
814 		return ret;
815 
816 	/*
817 	 * We don't care about LE or BE, we will output it as a string
818 	 * with %4phD, so we need to keep the order.
819 	 */
820 	*serial = *((u32 *)&response.rap.params[1]);
821 	return 0;
822 }
823 
824 static int hidpp_unifying_init(struct hidpp_device *hidpp)
825 {
826 	struct hid_device *hdev = hidpp->hid_dev;
827 	const char *name;
828 	u32 serial;
829 	int ret;
830 
831 	ret = hidpp_unifying_get_serial(hidpp, &serial);
832 	if (ret)
833 		return ret;
834 
835 	snprintf(hdev->uniq, sizeof(hdev->uniq), "%04x-%4phD",
836 		 hdev->product, &serial);
837 	dbg_hid("HID++ Unifying: Got serial: %s\n", hdev->uniq);
838 
839 	name = hidpp_unifying_get_name(hidpp);
840 	if (!name)
841 		return -EIO;
842 
843 	snprintf(hdev->name, sizeof(hdev->name), "%s", name);
844 	dbg_hid("HID++ Unifying: Got name: %s\n", name);
845 
846 	kfree(name);
847 	return 0;
848 }
849 
850 /* -------------------------------------------------------------------------- */
851 /* 0x0000: Root                                                               */
852 /* -------------------------------------------------------------------------- */
853 
854 #define HIDPP_PAGE_ROOT					0x0000
855 #define HIDPP_PAGE_ROOT_IDX				0x00
856 
857 #define CMD_ROOT_GET_FEATURE				0x01
858 #define CMD_ROOT_GET_PROTOCOL_VERSION			0x11
859 
860 static int hidpp_root_get_feature(struct hidpp_device *hidpp, u16 feature,
861 	u8 *feature_index, u8 *feature_type)
862 {
863 	struct hidpp_report response;
864 	int ret;
865 	u8 params[2] = { feature >> 8, feature & 0x00FF };
866 
867 	ret = hidpp_send_fap_command_sync(hidpp,
868 			HIDPP_PAGE_ROOT_IDX,
869 			CMD_ROOT_GET_FEATURE,
870 			params, 2, &response);
871 	if (ret)
872 		return ret;
873 
874 	if (response.fap.params[0] == 0)
875 		return -ENOENT;
876 
877 	*feature_index = response.fap.params[0];
878 	*feature_type = response.fap.params[1];
879 
880 	return ret;
881 }
882 
883 static int hidpp_root_get_protocol_version(struct hidpp_device *hidpp)
884 {
885 	const u8 ping_byte = 0x5a;
886 	u8 ping_data[3] = { 0, 0, ping_byte };
887 	struct hidpp_report response;
888 	int ret;
889 
890 	ret = hidpp_send_rap_command_sync(hidpp,
891 			REPORT_ID_HIDPP_SHORT,
892 			HIDPP_PAGE_ROOT_IDX,
893 			CMD_ROOT_GET_PROTOCOL_VERSION,
894 			ping_data, sizeof(ping_data), &response);
895 
896 	if (ret == HIDPP_ERROR_INVALID_SUBID) {
897 		hidpp->protocol_major = 1;
898 		hidpp->protocol_minor = 0;
899 		goto print_version;
900 	}
901 
902 	/* the device might not be connected */
903 	if (ret == HIDPP_ERROR_RESOURCE_ERROR)
904 		return -EIO;
905 
906 	if (ret > 0) {
907 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
908 			__func__, ret);
909 		return -EPROTO;
910 	}
911 	if (ret)
912 		return ret;
913 
914 	if (response.rap.params[2] != ping_byte) {
915 		hid_err(hidpp->hid_dev, "%s: ping mismatch 0x%02x != 0x%02x\n",
916 			__func__, response.rap.params[2], ping_byte);
917 		return -EPROTO;
918 	}
919 
920 	hidpp->protocol_major = response.rap.params[0];
921 	hidpp->protocol_minor = response.rap.params[1];
922 
923 print_version:
924 	hid_info(hidpp->hid_dev, "HID++ %u.%u device connected.\n",
925 		 hidpp->protocol_major, hidpp->protocol_minor);
926 	return 0;
927 }
928 
929 /* -------------------------------------------------------------------------- */
930 /* 0x0005: GetDeviceNameType                                                  */
931 /* -------------------------------------------------------------------------- */
932 
933 #define HIDPP_PAGE_GET_DEVICE_NAME_TYPE			0x0005
934 
935 #define CMD_GET_DEVICE_NAME_TYPE_GET_COUNT		0x01
936 #define CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME	0x11
937 #define CMD_GET_DEVICE_NAME_TYPE_GET_TYPE		0x21
938 
939 static int hidpp_devicenametype_get_count(struct hidpp_device *hidpp,
940 	u8 feature_index, u8 *nameLength)
941 {
942 	struct hidpp_report response;
943 	int ret;
944 
945 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
946 		CMD_GET_DEVICE_NAME_TYPE_GET_COUNT, NULL, 0, &response);
947 
948 	if (ret > 0) {
949 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
950 			__func__, ret);
951 		return -EPROTO;
952 	}
953 	if (ret)
954 		return ret;
955 
956 	*nameLength = response.fap.params[0];
957 
958 	return ret;
959 }
960 
961 static int hidpp_devicenametype_get_device_name(struct hidpp_device *hidpp,
962 	u8 feature_index, u8 char_index, char *device_name, int len_buf)
963 {
964 	struct hidpp_report response;
965 	int ret, i;
966 	int count;
967 
968 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
969 		CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME, &char_index, 1,
970 		&response);
971 
972 	if (ret > 0) {
973 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
974 			__func__, ret);
975 		return -EPROTO;
976 	}
977 	if (ret)
978 		return ret;
979 
980 	switch (response.report_id) {
981 	case REPORT_ID_HIDPP_VERY_LONG:
982 		count = hidpp->very_long_report_length - 4;
983 		break;
984 	case REPORT_ID_HIDPP_LONG:
985 		count = HIDPP_REPORT_LONG_LENGTH - 4;
986 		break;
987 	case REPORT_ID_HIDPP_SHORT:
988 		count = HIDPP_REPORT_SHORT_LENGTH - 4;
989 		break;
990 	default:
991 		return -EPROTO;
992 	}
993 
994 	if (len_buf < count)
995 		count = len_buf;
996 
997 	for (i = 0; i < count; i++)
998 		device_name[i] = response.fap.params[i];
999 
1000 	return count;
1001 }
1002 
1003 static char *hidpp_get_device_name(struct hidpp_device *hidpp)
1004 {
1005 	u8 feature_type;
1006 	u8 feature_index;
1007 	u8 __name_length;
1008 	char *name;
1009 	unsigned index = 0;
1010 	int ret;
1011 
1012 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_GET_DEVICE_NAME_TYPE,
1013 		&feature_index, &feature_type);
1014 	if (ret)
1015 		return NULL;
1016 
1017 	ret = hidpp_devicenametype_get_count(hidpp, feature_index,
1018 		&__name_length);
1019 	if (ret)
1020 		return NULL;
1021 
1022 	name = kzalloc(__name_length + 1, GFP_KERNEL);
1023 	if (!name)
1024 		return NULL;
1025 
1026 	while (index < __name_length) {
1027 		ret = hidpp_devicenametype_get_device_name(hidpp,
1028 			feature_index, index, name + index,
1029 			__name_length - index);
1030 		if (ret <= 0) {
1031 			kfree(name);
1032 			return NULL;
1033 		}
1034 		index += ret;
1035 	}
1036 
1037 	/* include the terminating '\0' */
1038 	hidpp_prefix_name(&name, __name_length + 1);
1039 
1040 	return name;
1041 }
1042 
1043 /* -------------------------------------------------------------------------- */
1044 /* 0x1000: Battery level status                                               */
1045 /* -------------------------------------------------------------------------- */
1046 
1047 #define HIDPP_PAGE_BATTERY_LEVEL_STATUS				0x1000
1048 
1049 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS	0x00
1050 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY		0x10
1051 
1052 #define EVENT_BATTERY_LEVEL_STATUS_BROADCAST			0x00
1053 
1054 #define FLAG_BATTERY_LEVEL_DISABLE_OSD				BIT(0)
1055 #define FLAG_BATTERY_LEVEL_MILEAGE				BIT(1)
1056 #define FLAG_BATTERY_LEVEL_RECHARGEABLE				BIT(2)
1057 
1058 static int hidpp_map_battery_level(int capacity)
1059 {
1060 	if (capacity < 11)
1061 		return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1062 	/*
1063 	 * The spec says this should be < 31 but some devices report 30
1064 	 * with brand new batteries and Windows reports 30 as "Good".
1065 	 */
1066 	else if (capacity < 30)
1067 		return POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1068 	else if (capacity < 81)
1069 		return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1070 	return POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1071 }
1072 
1073 static int hidpp20_batterylevel_map_status_capacity(u8 data[3], int *capacity,
1074 						    int *next_capacity,
1075 						    int *level)
1076 {
1077 	int status;
1078 
1079 	*capacity = data[0];
1080 	*next_capacity = data[1];
1081 	*level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
1082 
1083 	/* When discharging, we can rely on the device reported capacity.
1084 	 * For all other states the device reports 0 (unknown).
1085 	 */
1086 	switch (data[2]) {
1087 		case 0: /* discharging (in use) */
1088 			status = POWER_SUPPLY_STATUS_DISCHARGING;
1089 			*level = hidpp_map_battery_level(*capacity);
1090 			break;
1091 		case 1: /* recharging */
1092 			status = POWER_SUPPLY_STATUS_CHARGING;
1093 			break;
1094 		case 2: /* charge in final stage */
1095 			status = POWER_SUPPLY_STATUS_CHARGING;
1096 			break;
1097 		case 3: /* charge complete */
1098 			status = POWER_SUPPLY_STATUS_FULL;
1099 			*level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1100 			*capacity = 100;
1101 			break;
1102 		case 4: /* recharging below optimal speed */
1103 			status = POWER_SUPPLY_STATUS_CHARGING;
1104 			break;
1105 		/* 5 = invalid battery type
1106 		   6 = thermal error
1107 		   7 = other charging error */
1108 		default:
1109 			status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1110 			break;
1111 	}
1112 
1113 	return status;
1114 }
1115 
1116 static int hidpp20_batterylevel_get_battery_capacity(struct hidpp_device *hidpp,
1117 						     u8 feature_index,
1118 						     int *status,
1119 						     int *capacity,
1120 						     int *next_capacity,
1121 						     int *level)
1122 {
1123 	struct hidpp_report response;
1124 	int ret;
1125 	u8 *params = (u8 *)response.fap.params;
1126 
1127 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1128 					  CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS,
1129 					  NULL, 0, &response);
1130 	/* Ignore these intermittent errors */
1131 	if (ret == HIDPP_ERROR_RESOURCE_ERROR)
1132 		return -EIO;
1133 	if (ret > 0) {
1134 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1135 			__func__, ret);
1136 		return -EPROTO;
1137 	}
1138 	if (ret)
1139 		return ret;
1140 
1141 	*status = hidpp20_batterylevel_map_status_capacity(params, capacity,
1142 							   next_capacity,
1143 							   level);
1144 
1145 	return 0;
1146 }
1147 
1148 static int hidpp20_batterylevel_get_battery_info(struct hidpp_device *hidpp,
1149 						  u8 feature_index)
1150 {
1151 	struct hidpp_report response;
1152 	int ret;
1153 	u8 *params = (u8 *)response.fap.params;
1154 	unsigned int level_count, flags;
1155 
1156 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1157 					  CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY,
1158 					  NULL, 0, &response);
1159 	if (ret > 0) {
1160 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1161 			__func__, ret);
1162 		return -EPROTO;
1163 	}
1164 	if (ret)
1165 		return ret;
1166 
1167 	level_count = params[0];
1168 	flags = params[1];
1169 
1170 	if (level_count < 10 || !(flags & FLAG_BATTERY_LEVEL_MILEAGE))
1171 		hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
1172 	else
1173 		hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
1174 
1175 	return 0;
1176 }
1177 
1178 static int hidpp20_query_battery_info_1000(struct hidpp_device *hidpp)
1179 {
1180 	u8 feature_type;
1181 	int ret;
1182 	int status, capacity, next_capacity, level;
1183 
1184 	if (hidpp->battery.feature_index == 0xff) {
1185 		ret = hidpp_root_get_feature(hidpp,
1186 					     HIDPP_PAGE_BATTERY_LEVEL_STATUS,
1187 					     &hidpp->battery.feature_index,
1188 					     &feature_type);
1189 		if (ret)
1190 			return ret;
1191 	}
1192 
1193 	ret = hidpp20_batterylevel_get_battery_capacity(hidpp,
1194 						hidpp->battery.feature_index,
1195 						&status, &capacity,
1196 						&next_capacity, &level);
1197 	if (ret)
1198 		return ret;
1199 
1200 	ret = hidpp20_batterylevel_get_battery_info(hidpp,
1201 						hidpp->battery.feature_index);
1202 	if (ret)
1203 		return ret;
1204 
1205 	hidpp->battery.status = status;
1206 	hidpp->battery.capacity = capacity;
1207 	hidpp->battery.level = level;
1208 	/* the capacity is only available when discharging or full */
1209 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
1210 				status == POWER_SUPPLY_STATUS_FULL;
1211 
1212 	return 0;
1213 }
1214 
1215 static int hidpp20_battery_event_1000(struct hidpp_device *hidpp,
1216 				 u8 *data, int size)
1217 {
1218 	struct hidpp_report *report = (struct hidpp_report *)data;
1219 	int status, capacity, next_capacity, level;
1220 	bool changed;
1221 
1222 	if (report->fap.feature_index != hidpp->battery.feature_index ||
1223 	    report->fap.funcindex_clientid != EVENT_BATTERY_LEVEL_STATUS_BROADCAST)
1224 		return 0;
1225 
1226 	status = hidpp20_batterylevel_map_status_capacity(report->fap.params,
1227 							  &capacity,
1228 							  &next_capacity,
1229 							  &level);
1230 
1231 	/* the capacity is only available when discharging or full */
1232 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
1233 				status == POWER_SUPPLY_STATUS_FULL;
1234 
1235 	changed = capacity != hidpp->battery.capacity ||
1236 		  level != hidpp->battery.level ||
1237 		  status != hidpp->battery.status;
1238 
1239 	if (changed) {
1240 		hidpp->battery.level = level;
1241 		hidpp->battery.capacity = capacity;
1242 		hidpp->battery.status = status;
1243 		if (hidpp->battery.ps)
1244 			power_supply_changed(hidpp->battery.ps);
1245 	}
1246 
1247 	return 0;
1248 }
1249 
1250 /* -------------------------------------------------------------------------- */
1251 /* 0x1001: Battery voltage                                                    */
1252 /* -------------------------------------------------------------------------- */
1253 
1254 #define HIDPP_PAGE_BATTERY_VOLTAGE 0x1001
1255 
1256 #define CMD_BATTERY_VOLTAGE_GET_BATTERY_VOLTAGE 0x00
1257 
1258 #define EVENT_BATTERY_VOLTAGE_STATUS_BROADCAST 0x00
1259 
1260 static int hidpp20_battery_map_status_voltage(u8 data[3], int *voltage,
1261 						int *level, int *charge_type)
1262 {
1263 	int status;
1264 
1265 	long flags = (long) data[2];
1266 	*level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
1267 
1268 	if (flags & 0x80)
1269 		switch (flags & 0x07) {
1270 		case 0:
1271 			status = POWER_SUPPLY_STATUS_CHARGING;
1272 			break;
1273 		case 1:
1274 			status = POWER_SUPPLY_STATUS_FULL;
1275 			*level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1276 			break;
1277 		case 2:
1278 			status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1279 			break;
1280 		default:
1281 			status = POWER_SUPPLY_STATUS_UNKNOWN;
1282 			break;
1283 		}
1284 	else
1285 		status = POWER_SUPPLY_STATUS_DISCHARGING;
1286 
1287 	*charge_type = POWER_SUPPLY_CHARGE_TYPE_STANDARD;
1288 	if (test_bit(3, &flags)) {
1289 		*charge_type = POWER_SUPPLY_CHARGE_TYPE_FAST;
1290 	}
1291 	if (test_bit(4, &flags)) {
1292 		*charge_type = POWER_SUPPLY_CHARGE_TYPE_TRICKLE;
1293 	}
1294 	if (test_bit(5, &flags)) {
1295 		*level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1296 	}
1297 
1298 	*voltage = get_unaligned_be16(data);
1299 
1300 	return status;
1301 }
1302 
1303 static int hidpp20_battery_get_battery_voltage(struct hidpp_device *hidpp,
1304 						 u8 feature_index,
1305 						 int *status, int *voltage,
1306 						 int *level, int *charge_type)
1307 {
1308 	struct hidpp_report response;
1309 	int ret;
1310 	u8 *params = (u8 *)response.fap.params;
1311 
1312 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1313 					  CMD_BATTERY_VOLTAGE_GET_BATTERY_VOLTAGE,
1314 					  NULL, 0, &response);
1315 
1316 	if (ret > 0) {
1317 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1318 			__func__, ret);
1319 		return -EPROTO;
1320 	}
1321 	if (ret)
1322 		return ret;
1323 
1324 	hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_VOLTAGE;
1325 
1326 	*status = hidpp20_battery_map_status_voltage(params, voltage,
1327 						     level, charge_type);
1328 
1329 	return 0;
1330 }
1331 
1332 static int hidpp20_query_battery_voltage_info(struct hidpp_device *hidpp)
1333 {
1334 	u8 feature_type;
1335 	int ret;
1336 	int status, voltage, level, charge_type;
1337 
1338 	if (hidpp->battery.voltage_feature_index == 0xff) {
1339 		ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_BATTERY_VOLTAGE,
1340 					     &hidpp->battery.voltage_feature_index,
1341 					     &feature_type);
1342 		if (ret)
1343 			return ret;
1344 	}
1345 
1346 	ret = hidpp20_battery_get_battery_voltage(hidpp,
1347 						  hidpp->battery.voltage_feature_index,
1348 						  &status, &voltage, &level, &charge_type);
1349 
1350 	if (ret)
1351 		return ret;
1352 
1353 	hidpp->battery.status = status;
1354 	hidpp->battery.voltage = voltage;
1355 	hidpp->battery.level = level;
1356 	hidpp->battery.charge_type = charge_type;
1357 	hidpp->battery.online = status != POWER_SUPPLY_STATUS_NOT_CHARGING;
1358 
1359 	return 0;
1360 }
1361 
1362 static int hidpp20_battery_voltage_event(struct hidpp_device *hidpp,
1363 					    u8 *data, int size)
1364 {
1365 	struct hidpp_report *report = (struct hidpp_report *)data;
1366 	int status, voltage, level, charge_type;
1367 
1368 	if (report->fap.feature_index != hidpp->battery.voltage_feature_index ||
1369 		report->fap.funcindex_clientid != EVENT_BATTERY_VOLTAGE_STATUS_BROADCAST)
1370 		return 0;
1371 
1372 	status = hidpp20_battery_map_status_voltage(report->fap.params, &voltage,
1373 						    &level, &charge_type);
1374 
1375 	hidpp->battery.online = status != POWER_SUPPLY_STATUS_NOT_CHARGING;
1376 
1377 	if (voltage != hidpp->battery.voltage || status != hidpp->battery.status) {
1378 		hidpp->battery.voltage = voltage;
1379 		hidpp->battery.status = status;
1380 		hidpp->battery.level = level;
1381 		hidpp->battery.charge_type = charge_type;
1382 		if (hidpp->battery.ps)
1383 			power_supply_changed(hidpp->battery.ps);
1384 	}
1385 	return 0;
1386 }
1387 
1388 /* -------------------------------------------------------------------------- */
1389 /* 0x1004: Unified battery                                                    */
1390 /* -------------------------------------------------------------------------- */
1391 
1392 #define HIDPP_PAGE_UNIFIED_BATTERY				0x1004
1393 
1394 #define CMD_UNIFIED_BATTERY_GET_CAPABILITIES			0x00
1395 #define CMD_UNIFIED_BATTERY_GET_STATUS				0x10
1396 
1397 #define EVENT_UNIFIED_BATTERY_STATUS_EVENT			0x00
1398 
1399 #define FLAG_UNIFIED_BATTERY_LEVEL_CRITICAL			BIT(0)
1400 #define FLAG_UNIFIED_BATTERY_LEVEL_LOW				BIT(1)
1401 #define FLAG_UNIFIED_BATTERY_LEVEL_GOOD				BIT(2)
1402 #define FLAG_UNIFIED_BATTERY_LEVEL_FULL				BIT(3)
1403 
1404 #define FLAG_UNIFIED_BATTERY_FLAGS_RECHARGEABLE			BIT(0)
1405 #define FLAG_UNIFIED_BATTERY_FLAGS_STATE_OF_CHARGE		BIT(1)
1406 
1407 static int hidpp20_unifiedbattery_get_capabilities(struct hidpp_device *hidpp,
1408 						   u8 feature_index)
1409 {
1410 	struct hidpp_report response;
1411 	int ret;
1412 	u8 *params = (u8 *)response.fap.params;
1413 
1414 	if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS ||
1415 	    hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_PERCENTAGE) {
1416 		/* we have already set the device capabilities, so let's skip */
1417 		return 0;
1418 	}
1419 
1420 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1421 					  CMD_UNIFIED_BATTERY_GET_CAPABILITIES,
1422 					  NULL, 0, &response);
1423 	/* Ignore these intermittent errors */
1424 	if (ret == HIDPP_ERROR_RESOURCE_ERROR)
1425 		return -EIO;
1426 	if (ret > 0) {
1427 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1428 			__func__, ret);
1429 		return -EPROTO;
1430 	}
1431 	if (ret)
1432 		return ret;
1433 
1434 	/*
1435 	 * If the device supports state of charge (battery percentage) we won't
1436 	 * export the battery level information. there are 4 possible battery
1437 	 * levels and they all are optional, this means that the device might
1438 	 * not support any of them, we are just better off with the battery
1439 	 * percentage.
1440 	 */
1441 	if (params[1] & FLAG_UNIFIED_BATTERY_FLAGS_STATE_OF_CHARGE) {
1442 		hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_PERCENTAGE;
1443 		hidpp->battery.supported_levels_1004 = 0;
1444 	} else {
1445 		hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
1446 		hidpp->battery.supported_levels_1004 = params[0];
1447 	}
1448 
1449 	return 0;
1450 }
1451 
1452 static int hidpp20_unifiedbattery_map_status(struct hidpp_device *hidpp,
1453 					     u8 charging_status,
1454 					     u8 external_power_status)
1455 {
1456 	int status;
1457 
1458 	switch (charging_status) {
1459 		case 0: /* discharging */
1460 			status = POWER_SUPPLY_STATUS_DISCHARGING;
1461 			break;
1462 		case 1: /* charging */
1463 		case 2: /* charging slow */
1464 			status = POWER_SUPPLY_STATUS_CHARGING;
1465 			break;
1466 		case 3: /* complete */
1467 			status = POWER_SUPPLY_STATUS_FULL;
1468 			break;
1469 		case 4: /* error */
1470 			status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1471 			hid_info(hidpp->hid_dev, "%s: charging error",
1472 				 hidpp->name);
1473 			break;
1474 		default:
1475 			status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1476 			break;
1477 	}
1478 
1479 	return status;
1480 }
1481 
1482 static int hidpp20_unifiedbattery_map_level(struct hidpp_device *hidpp,
1483 					    u8 battery_level)
1484 {
1485 	/* cler unsupported level bits */
1486 	battery_level &= hidpp->battery.supported_levels_1004;
1487 
1488 	if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_FULL)
1489 		return POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1490 	else if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_GOOD)
1491 		return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1492 	else if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_LOW)
1493 		return POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1494 	else if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_CRITICAL)
1495 		return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1496 
1497 	return POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
1498 }
1499 
1500 static int hidpp20_unifiedbattery_get_status(struct hidpp_device *hidpp,
1501 					     u8 feature_index,
1502 					     u8 *state_of_charge,
1503 					     int *status,
1504 					     int *level)
1505 {
1506 	struct hidpp_report response;
1507 	int ret;
1508 	u8 *params = (u8 *)response.fap.params;
1509 
1510 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1511 					  CMD_UNIFIED_BATTERY_GET_STATUS,
1512 					  NULL, 0, &response);
1513 	/* Ignore these intermittent errors */
1514 	if (ret == HIDPP_ERROR_RESOURCE_ERROR)
1515 		return -EIO;
1516 	if (ret > 0) {
1517 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1518 			__func__, ret);
1519 		return -EPROTO;
1520 	}
1521 	if (ret)
1522 		return ret;
1523 
1524 	*state_of_charge = params[0];
1525 	*status = hidpp20_unifiedbattery_map_status(hidpp, params[2], params[3]);
1526 	*level = hidpp20_unifiedbattery_map_level(hidpp, params[1]);
1527 
1528 	return 0;
1529 }
1530 
1531 static int hidpp20_query_battery_info_1004(struct hidpp_device *hidpp)
1532 {
1533 	u8 feature_type;
1534 	int ret;
1535 	u8 state_of_charge;
1536 	int status, level;
1537 
1538 	if (hidpp->battery.feature_index == 0xff) {
1539 		ret = hidpp_root_get_feature(hidpp,
1540 					     HIDPP_PAGE_UNIFIED_BATTERY,
1541 					     &hidpp->battery.feature_index,
1542 					     &feature_type);
1543 		if (ret)
1544 			return ret;
1545 	}
1546 
1547 	ret = hidpp20_unifiedbattery_get_capabilities(hidpp,
1548 					hidpp->battery.feature_index);
1549 	if (ret)
1550 		return ret;
1551 
1552 	ret = hidpp20_unifiedbattery_get_status(hidpp,
1553 						hidpp->battery.feature_index,
1554 						&state_of_charge,
1555 						&status,
1556 						&level);
1557 	if (ret)
1558 		return ret;
1559 
1560 	hidpp->capabilities |= HIDPP_CAPABILITY_UNIFIED_BATTERY;
1561 	hidpp->battery.capacity = state_of_charge;
1562 	hidpp->battery.status = status;
1563 	hidpp->battery.level = level;
1564 	hidpp->battery.online = true;
1565 
1566 	return 0;
1567 }
1568 
1569 static int hidpp20_battery_event_1004(struct hidpp_device *hidpp,
1570 				 u8 *data, int size)
1571 {
1572 	struct hidpp_report *report = (struct hidpp_report *)data;
1573 	u8 *params = (u8 *)report->fap.params;
1574 	int state_of_charge, status, level;
1575 	bool changed;
1576 
1577 	if (report->fap.feature_index != hidpp->battery.feature_index ||
1578 	    report->fap.funcindex_clientid != EVENT_UNIFIED_BATTERY_STATUS_EVENT)
1579 		return 0;
1580 
1581 	state_of_charge = params[0];
1582 	status = hidpp20_unifiedbattery_map_status(hidpp, params[2], params[3]);
1583 	level = hidpp20_unifiedbattery_map_level(hidpp, params[1]);
1584 
1585 	changed = status != hidpp->battery.status ||
1586 		  (state_of_charge != hidpp->battery.capacity &&
1587 		   hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_PERCENTAGE) ||
1588 		  (level != hidpp->battery.level &&
1589 		   hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS);
1590 
1591 	if (changed) {
1592 		hidpp->battery.capacity = state_of_charge;
1593 		hidpp->battery.status = status;
1594 		hidpp->battery.level = level;
1595 		if (hidpp->battery.ps)
1596 			power_supply_changed(hidpp->battery.ps);
1597 	}
1598 
1599 	return 0;
1600 }
1601 
1602 /* -------------------------------------------------------------------------- */
1603 /* Battery feature helpers                                                    */
1604 /* -------------------------------------------------------------------------- */
1605 
1606 static enum power_supply_property hidpp_battery_props[] = {
1607 	POWER_SUPPLY_PROP_ONLINE,
1608 	POWER_SUPPLY_PROP_STATUS,
1609 	POWER_SUPPLY_PROP_SCOPE,
1610 	POWER_SUPPLY_PROP_MODEL_NAME,
1611 	POWER_SUPPLY_PROP_MANUFACTURER,
1612 	POWER_SUPPLY_PROP_SERIAL_NUMBER,
1613 	0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY, */
1614 	0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY_LEVEL, */
1615 	0, /* placeholder for POWER_SUPPLY_PROP_VOLTAGE_NOW, */
1616 };
1617 
1618 static int hidpp_battery_get_property(struct power_supply *psy,
1619 				      enum power_supply_property psp,
1620 				      union power_supply_propval *val)
1621 {
1622 	struct hidpp_device *hidpp = power_supply_get_drvdata(psy);
1623 	int ret = 0;
1624 
1625 	switch(psp) {
1626 		case POWER_SUPPLY_PROP_STATUS:
1627 			val->intval = hidpp->battery.status;
1628 			break;
1629 		case POWER_SUPPLY_PROP_CAPACITY:
1630 			val->intval = hidpp->battery.capacity;
1631 			break;
1632 		case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
1633 			val->intval = hidpp->battery.level;
1634 			break;
1635 		case POWER_SUPPLY_PROP_SCOPE:
1636 			val->intval = POWER_SUPPLY_SCOPE_DEVICE;
1637 			break;
1638 		case POWER_SUPPLY_PROP_ONLINE:
1639 			val->intval = hidpp->battery.online;
1640 			break;
1641 		case POWER_SUPPLY_PROP_MODEL_NAME:
1642 			if (!strncmp(hidpp->name, "Logitech ", 9))
1643 				val->strval = hidpp->name + 9;
1644 			else
1645 				val->strval = hidpp->name;
1646 			break;
1647 		case POWER_SUPPLY_PROP_MANUFACTURER:
1648 			val->strval = "Logitech";
1649 			break;
1650 		case POWER_SUPPLY_PROP_SERIAL_NUMBER:
1651 			val->strval = hidpp->hid_dev->uniq;
1652 			break;
1653 		case POWER_SUPPLY_PROP_VOLTAGE_NOW:
1654 			/* hardware reports voltage in in mV. sysfs expects uV */
1655 			val->intval = hidpp->battery.voltage * 1000;
1656 			break;
1657 		case POWER_SUPPLY_PROP_CHARGE_TYPE:
1658 			val->intval = hidpp->battery.charge_type;
1659 			break;
1660 		default:
1661 			ret = -EINVAL;
1662 			break;
1663 	}
1664 
1665 	return ret;
1666 }
1667 
1668 /* -------------------------------------------------------------------------- */
1669 /* 0x1d4b: Wireless device status                                             */
1670 /* -------------------------------------------------------------------------- */
1671 #define HIDPP_PAGE_WIRELESS_DEVICE_STATUS			0x1d4b
1672 
1673 static int hidpp_set_wireless_feature_index(struct hidpp_device *hidpp)
1674 {
1675 	u8 feature_type;
1676 	int ret;
1677 
1678 	ret = hidpp_root_get_feature(hidpp,
1679 				     HIDPP_PAGE_WIRELESS_DEVICE_STATUS,
1680 				     &hidpp->wireless_feature_index,
1681 				     &feature_type);
1682 
1683 	return ret;
1684 }
1685 
1686 /* -------------------------------------------------------------------------- */
1687 /* 0x2120: Hi-resolution scrolling                                            */
1688 /* -------------------------------------------------------------------------- */
1689 
1690 #define HIDPP_PAGE_HI_RESOLUTION_SCROLLING			0x2120
1691 
1692 #define CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE	0x10
1693 
1694 static int hidpp_hrs_set_highres_scrolling_mode(struct hidpp_device *hidpp,
1695 	bool enabled, u8 *multiplier)
1696 {
1697 	u8 feature_index;
1698 	u8 feature_type;
1699 	int ret;
1700 	u8 params[1];
1701 	struct hidpp_report response;
1702 
1703 	ret = hidpp_root_get_feature(hidpp,
1704 				     HIDPP_PAGE_HI_RESOLUTION_SCROLLING,
1705 				     &feature_index,
1706 				     &feature_type);
1707 	if (ret)
1708 		return ret;
1709 
1710 	params[0] = enabled ? BIT(0) : 0;
1711 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1712 					  CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE,
1713 					  params, sizeof(params), &response);
1714 	if (ret)
1715 		return ret;
1716 	*multiplier = response.fap.params[1];
1717 	return 0;
1718 }
1719 
1720 /* -------------------------------------------------------------------------- */
1721 /* 0x2121: HiRes Wheel                                                        */
1722 /* -------------------------------------------------------------------------- */
1723 
1724 #define HIDPP_PAGE_HIRES_WHEEL		0x2121
1725 
1726 #define CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY	0x00
1727 #define CMD_HIRES_WHEEL_SET_WHEEL_MODE		0x20
1728 
1729 static int hidpp_hrw_get_wheel_capability(struct hidpp_device *hidpp,
1730 	u8 *multiplier)
1731 {
1732 	u8 feature_index;
1733 	u8 feature_type;
1734 	int ret;
1735 	struct hidpp_report response;
1736 
1737 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL,
1738 				     &feature_index, &feature_type);
1739 	if (ret)
1740 		goto return_default;
1741 
1742 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1743 					  CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY,
1744 					  NULL, 0, &response);
1745 	if (ret)
1746 		goto return_default;
1747 
1748 	*multiplier = response.fap.params[0];
1749 	return 0;
1750 return_default:
1751 	hid_warn(hidpp->hid_dev,
1752 		 "Couldn't get wheel multiplier (error %d)\n", ret);
1753 	return ret;
1754 }
1755 
1756 static int hidpp_hrw_set_wheel_mode(struct hidpp_device *hidpp, bool invert,
1757 	bool high_resolution, bool use_hidpp)
1758 {
1759 	u8 feature_index;
1760 	u8 feature_type;
1761 	int ret;
1762 	u8 params[1];
1763 	struct hidpp_report response;
1764 
1765 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL,
1766 				     &feature_index, &feature_type);
1767 	if (ret)
1768 		return ret;
1769 
1770 	params[0] = (invert          ? BIT(2) : 0) |
1771 		    (high_resolution ? BIT(1) : 0) |
1772 		    (use_hidpp       ? BIT(0) : 0);
1773 
1774 	return hidpp_send_fap_command_sync(hidpp, feature_index,
1775 					   CMD_HIRES_WHEEL_SET_WHEEL_MODE,
1776 					   params, sizeof(params), &response);
1777 }
1778 
1779 /* -------------------------------------------------------------------------- */
1780 /* 0x4301: Solar Keyboard                                                     */
1781 /* -------------------------------------------------------------------------- */
1782 
1783 #define HIDPP_PAGE_SOLAR_KEYBOARD			0x4301
1784 
1785 #define CMD_SOLAR_SET_LIGHT_MEASURE			0x00
1786 
1787 #define EVENT_SOLAR_BATTERY_BROADCAST			0x00
1788 #define EVENT_SOLAR_BATTERY_LIGHT_MEASURE		0x10
1789 #define EVENT_SOLAR_CHECK_LIGHT_BUTTON			0x20
1790 
1791 static int hidpp_solar_request_battery_event(struct hidpp_device *hidpp)
1792 {
1793 	struct hidpp_report response;
1794 	u8 params[2] = { 1, 1 };
1795 	u8 feature_type;
1796 	int ret;
1797 
1798 	if (hidpp->battery.feature_index == 0xff) {
1799 		ret = hidpp_root_get_feature(hidpp,
1800 					     HIDPP_PAGE_SOLAR_KEYBOARD,
1801 					     &hidpp->battery.solar_feature_index,
1802 					     &feature_type);
1803 		if (ret)
1804 			return ret;
1805 	}
1806 
1807 	ret = hidpp_send_fap_command_sync(hidpp,
1808 					  hidpp->battery.solar_feature_index,
1809 					  CMD_SOLAR_SET_LIGHT_MEASURE,
1810 					  params, 2, &response);
1811 	if (ret > 0) {
1812 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1813 			__func__, ret);
1814 		return -EPROTO;
1815 	}
1816 	if (ret)
1817 		return ret;
1818 
1819 	hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
1820 
1821 	return 0;
1822 }
1823 
1824 static int hidpp_solar_battery_event(struct hidpp_device *hidpp,
1825 				     u8 *data, int size)
1826 {
1827 	struct hidpp_report *report = (struct hidpp_report *)data;
1828 	int capacity, lux, status;
1829 	u8 function;
1830 
1831 	function = report->fap.funcindex_clientid;
1832 
1833 
1834 	if (report->fap.feature_index != hidpp->battery.solar_feature_index ||
1835 	    !(function == EVENT_SOLAR_BATTERY_BROADCAST ||
1836 	      function == EVENT_SOLAR_BATTERY_LIGHT_MEASURE ||
1837 	      function == EVENT_SOLAR_CHECK_LIGHT_BUTTON))
1838 		return 0;
1839 
1840 	capacity = report->fap.params[0];
1841 
1842 	switch (function) {
1843 	case EVENT_SOLAR_BATTERY_LIGHT_MEASURE:
1844 		lux = (report->fap.params[1] << 8) | report->fap.params[2];
1845 		if (lux > 200)
1846 			status = POWER_SUPPLY_STATUS_CHARGING;
1847 		else
1848 			status = POWER_SUPPLY_STATUS_DISCHARGING;
1849 		break;
1850 	case EVENT_SOLAR_CHECK_LIGHT_BUTTON:
1851 	default:
1852 		if (capacity < hidpp->battery.capacity)
1853 			status = POWER_SUPPLY_STATUS_DISCHARGING;
1854 		else
1855 			status = POWER_SUPPLY_STATUS_CHARGING;
1856 
1857 	}
1858 
1859 	if (capacity == 100)
1860 		status = POWER_SUPPLY_STATUS_FULL;
1861 
1862 	hidpp->battery.online = true;
1863 	if (capacity != hidpp->battery.capacity ||
1864 	    status != hidpp->battery.status) {
1865 		hidpp->battery.capacity = capacity;
1866 		hidpp->battery.status = status;
1867 		if (hidpp->battery.ps)
1868 			power_supply_changed(hidpp->battery.ps);
1869 	}
1870 
1871 	return 0;
1872 }
1873 
1874 /* -------------------------------------------------------------------------- */
1875 /* 0x6010: Touchpad FW items                                                  */
1876 /* -------------------------------------------------------------------------- */
1877 
1878 #define HIDPP_PAGE_TOUCHPAD_FW_ITEMS			0x6010
1879 
1880 #define CMD_TOUCHPAD_FW_ITEMS_SET			0x10
1881 
1882 struct hidpp_touchpad_fw_items {
1883 	uint8_t presence;
1884 	uint8_t desired_state;
1885 	uint8_t state;
1886 	uint8_t persistent;
1887 };
1888 
1889 /*
1890  * send a set state command to the device by reading the current items->state
1891  * field. items is then filled with the current state.
1892  */
1893 static int hidpp_touchpad_fw_items_set(struct hidpp_device *hidpp,
1894 				       u8 feature_index,
1895 				       struct hidpp_touchpad_fw_items *items)
1896 {
1897 	struct hidpp_report response;
1898 	int ret;
1899 	u8 *params = (u8 *)response.fap.params;
1900 
1901 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1902 		CMD_TOUCHPAD_FW_ITEMS_SET, &items->state, 1, &response);
1903 
1904 	if (ret > 0) {
1905 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1906 			__func__, ret);
1907 		return -EPROTO;
1908 	}
1909 	if (ret)
1910 		return ret;
1911 
1912 	items->presence = params[0];
1913 	items->desired_state = params[1];
1914 	items->state = params[2];
1915 	items->persistent = params[3];
1916 
1917 	return 0;
1918 }
1919 
1920 /* -------------------------------------------------------------------------- */
1921 /* 0x6100: TouchPadRawXY                                                      */
1922 /* -------------------------------------------------------------------------- */
1923 
1924 #define HIDPP_PAGE_TOUCHPAD_RAW_XY			0x6100
1925 
1926 #define CMD_TOUCHPAD_GET_RAW_INFO			0x01
1927 #define CMD_TOUCHPAD_SET_RAW_REPORT_STATE		0x21
1928 
1929 #define EVENT_TOUCHPAD_RAW_XY				0x00
1930 
1931 #define TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT		0x01
1932 #define TOUCHPAD_RAW_XY_ORIGIN_UPPER_LEFT		0x03
1933 
1934 struct hidpp_touchpad_raw_info {
1935 	u16 x_size;
1936 	u16 y_size;
1937 	u8 z_range;
1938 	u8 area_range;
1939 	u8 timestamp_unit;
1940 	u8 maxcontacts;
1941 	u8 origin;
1942 	u16 res;
1943 };
1944 
1945 struct hidpp_touchpad_raw_xy_finger {
1946 	u8 contact_type;
1947 	u8 contact_status;
1948 	u16 x;
1949 	u16 y;
1950 	u8 z;
1951 	u8 area;
1952 	u8 finger_id;
1953 };
1954 
1955 struct hidpp_touchpad_raw_xy {
1956 	u16 timestamp;
1957 	struct hidpp_touchpad_raw_xy_finger fingers[2];
1958 	u8 spurious_flag;
1959 	u8 end_of_frame;
1960 	u8 finger_count;
1961 	u8 button;
1962 };
1963 
1964 static int hidpp_touchpad_get_raw_info(struct hidpp_device *hidpp,
1965 	u8 feature_index, struct hidpp_touchpad_raw_info *raw_info)
1966 {
1967 	struct hidpp_report response;
1968 	int ret;
1969 	u8 *params = (u8 *)response.fap.params;
1970 
1971 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1972 		CMD_TOUCHPAD_GET_RAW_INFO, NULL, 0, &response);
1973 
1974 	if (ret > 0) {
1975 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1976 			__func__, ret);
1977 		return -EPROTO;
1978 	}
1979 	if (ret)
1980 		return ret;
1981 
1982 	raw_info->x_size = get_unaligned_be16(&params[0]);
1983 	raw_info->y_size = get_unaligned_be16(&params[2]);
1984 	raw_info->z_range = params[4];
1985 	raw_info->area_range = params[5];
1986 	raw_info->maxcontacts = params[7];
1987 	raw_info->origin = params[8];
1988 	/* res is given in unit per inch */
1989 	raw_info->res = get_unaligned_be16(&params[13]) * 2 / 51;
1990 
1991 	return ret;
1992 }
1993 
1994 static int hidpp_touchpad_set_raw_report_state(struct hidpp_device *hidpp_dev,
1995 		u8 feature_index, bool send_raw_reports,
1996 		bool sensor_enhanced_settings)
1997 {
1998 	struct hidpp_report response;
1999 
2000 	/*
2001 	 * Params:
2002 	 *   bit 0 - enable raw
2003 	 *   bit 1 - 16bit Z, no area
2004 	 *   bit 2 - enhanced sensitivity
2005 	 *   bit 3 - width, height (4 bits each) instead of area
2006 	 *   bit 4 - send raw + gestures (degrades smoothness)
2007 	 *   remaining bits - reserved
2008 	 */
2009 	u8 params = send_raw_reports | (sensor_enhanced_settings << 2);
2010 
2011 	return hidpp_send_fap_command_sync(hidpp_dev, feature_index,
2012 		CMD_TOUCHPAD_SET_RAW_REPORT_STATE, &params, 1, &response);
2013 }
2014 
2015 static void hidpp_touchpad_touch_event(u8 *data,
2016 	struct hidpp_touchpad_raw_xy_finger *finger)
2017 {
2018 	u8 x_m = data[0] << 2;
2019 	u8 y_m = data[2] << 2;
2020 
2021 	finger->x = x_m << 6 | data[1];
2022 	finger->y = y_m << 6 | data[3];
2023 
2024 	finger->contact_type = data[0] >> 6;
2025 	finger->contact_status = data[2] >> 6;
2026 
2027 	finger->z = data[4];
2028 	finger->area = data[5];
2029 	finger->finger_id = data[6] >> 4;
2030 }
2031 
2032 static void hidpp_touchpad_raw_xy_event(struct hidpp_device *hidpp_dev,
2033 		u8 *data, struct hidpp_touchpad_raw_xy *raw_xy)
2034 {
2035 	memset(raw_xy, 0, sizeof(struct hidpp_touchpad_raw_xy));
2036 	raw_xy->end_of_frame = data[8] & 0x01;
2037 	raw_xy->spurious_flag = (data[8] >> 1) & 0x01;
2038 	raw_xy->finger_count = data[15] & 0x0f;
2039 	raw_xy->button = (data[8] >> 2) & 0x01;
2040 
2041 	if (raw_xy->finger_count) {
2042 		hidpp_touchpad_touch_event(&data[2], &raw_xy->fingers[0]);
2043 		hidpp_touchpad_touch_event(&data[9], &raw_xy->fingers[1]);
2044 	}
2045 }
2046 
2047 /* -------------------------------------------------------------------------- */
2048 /* 0x8123: Force feedback support                                             */
2049 /* -------------------------------------------------------------------------- */
2050 
2051 #define HIDPP_FF_GET_INFO		0x01
2052 #define HIDPP_FF_RESET_ALL		0x11
2053 #define HIDPP_FF_DOWNLOAD_EFFECT	0x21
2054 #define HIDPP_FF_SET_EFFECT_STATE	0x31
2055 #define HIDPP_FF_DESTROY_EFFECT		0x41
2056 #define HIDPP_FF_GET_APERTURE		0x51
2057 #define HIDPP_FF_SET_APERTURE		0x61
2058 #define HIDPP_FF_GET_GLOBAL_GAINS	0x71
2059 #define HIDPP_FF_SET_GLOBAL_GAINS	0x81
2060 
2061 #define HIDPP_FF_EFFECT_STATE_GET	0x00
2062 #define HIDPP_FF_EFFECT_STATE_STOP	0x01
2063 #define HIDPP_FF_EFFECT_STATE_PLAY	0x02
2064 #define HIDPP_FF_EFFECT_STATE_PAUSE	0x03
2065 
2066 #define HIDPP_FF_EFFECT_CONSTANT	0x00
2067 #define HIDPP_FF_EFFECT_PERIODIC_SINE		0x01
2068 #define HIDPP_FF_EFFECT_PERIODIC_SQUARE		0x02
2069 #define HIDPP_FF_EFFECT_PERIODIC_TRIANGLE	0x03
2070 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP	0x04
2071 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN	0x05
2072 #define HIDPP_FF_EFFECT_SPRING		0x06
2073 #define HIDPP_FF_EFFECT_DAMPER		0x07
2074 #define HIDPP_FF_EFFECT_FRICTION	0x08
2075 #define HIDPP_FF_EFFECT_INERTIA		0x09
2076 #define HIDPP_FF_EFFECT_RAMP		0x0A
2077 
2078 #define HIDPP_FF_EFFECT_AUTOSTART	0x80
2079 
2080 #define HIDPP_FF_EFFECTID_NONE		-1
2081 #define HIDPP_FF_EFFECTID_AUTOCENTER	-2
2082 #define HIDPP_AUTOCENTER_PARAMS_LENGTH	18
2083 
2084 #define HIDPP_FF_MAX_PARAMS	20
2085 #define HIDPP_FF_RESERVED_SLOTS	1
2086 
2087 struct hidpp_ff_private_data {
2088 	struct hidpp_device *hidpp;
2089 	u8 feature_index;
2090 	u8 version;
2091 	u16 gain;
2092 	s16 range;
2093 	u8 slot_autocenter;
2094 	u8 num_effects;
2095 	int *effect_ids;
2096 	struct workqueue_struct *wq;
2097 	atomic_t workqueue_size;
2098 };
2099 
2100 struct hidpp_ff_work_data {
2101 	struct work_struct work;
2102 	struct hidpp_ff_private_data *data;
2103 	int effect_id;
2104 	u8 command;
2105 	u8 params[HIDPP_FF_MAX_PARAMS];
2106 	u8 size;
2107 };
2108 
2109 static const signed short hidpp_ff_effects[] = {
2110 	FF_CONSTANT,
2111 	FF_PERIODIC,
2112 	FF_SINE,
2113 	FF_SQUARE,
2114 	FF_SAW_UP,
2115 	FF_SAW_DOWN,
2116 	FF_TRIANGLE,
2117 	FF_SPRING,
2118 	FF_DAMPER,
2119 	FF_AUTOCENTER,
2120 	FF_GAIN,
2121 	-1
2122 };
2123 
2124 static const signed short hidpp_ff_effects_v2[] = {
2125 	FF_RAMP,
2126 	FF_FRICTION,
2127 	FF_INERTIA,
2128 	-1
2129 };
2130 
2131 static const u8 HIDPP_FF_CONDITION_CMDS[] = {
2132 	HIDPP_FF_EFFECT_SPRING,
2133 	HIDPP_FF_EFFECT_FRICTION,
2134 	HIDPP_FF_EFFECT_DAMPER,
2135 	HIDPP_FF_EFFECT_INERTIA
2136 };
2137 
2138 static const char *HIDPP_FF_CONDITION_NAMES[] = {
2139 	"spring",
2140 	"friction",
2141 	"damper",
2142 	"inertia"
2143 };
2144 
2145 
2146 static u8 hidpp_ff_find_effect(struct hidpp_ff_private_data *data, int effect_id)
2147 {
2148 	int i;
2149 
2150 	for (i = 0; i < data->num_effects; i++)
2151 		if (data->effect_ids[i] == effect_id)
2152 			return i+1;
2153 
2154 	return 0;
2155 }
2156 
2157 static void hidpp_ff_work_handler(struct work_struct *w)
2158 {
2159 	struct hidpp_ff_work_data *wd = container_of(w, struct hidpp_ff_work_data, work);
2160 	struct hidpp_ff_private_data *data = wd->data;
2161 	struct hidpp_report response;
2162 	u8 slot;
2163 	int ret;
2164 
2165 	/* add slot number if needed */
2166 	switch (wd->effect_id) {
2167 	case HIDPP_FF_EFFECTID_AUTOCENTER:
2168 		wd->params[0] = data->slot_autocenter;
2169 		break;
2170 	case HIDPP_FF_EFFECTID_NONE:
2171 		/* leave slot as zero */
2172 		break;
2173 	default:
2174 		/* find current slot for effect */
2175 		wd->params[0] = hidpp_ff_find_effect(data, wd->effect_id);
2176 		break;
2177 	}
2178 
2179 	/* send command and wait for reply */
2180 	ret = hidpp_send_fap_command_sync(data->hidpp, data->feature_index,
2181 		wd->command, wd->params, wd->size, &response);
2182 
2183 	if (ret) {
2184 		hid_err(data->hidpp->hid_dev, "Failed to send command to device!\n");
2185 		goto out;
2186 	}
2187 
2188 	/* parse return data */
2189 	switch (wd->command) {
2190 	case HIDPP_FF_DOWNLOAD_EFFECT:
2191 		slot = response.fap.params[0];
2192 		if (slot > 0 && slot <= data->num_effects) {
2193 			if (wd->effect_id >= 0)
2194 				/* regular effect uploaded */
2195 				data->effect_ids[slot-1] = wd->effect_id;
2196 			else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER)
2197 				/* autocenter spring uploaded */
2198 				data->slot_autocenter = slot;
2199 		}
2200 		break;
2201 	case HIDPP_FF_DESTROY_EFFECT:
2202 		if (wd->effect_id >= 0)
2203 			/* regular effect destroyed */
2204 			data->effect_ids[wd->params[0]-1] = -1;
2205 		else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER)
2206 			/* autocenter spring destoyed */
2207 			data->slot_autocenter = 0;
2208 		break;
2209 	case HIDPP_FF_SET_GLOBAL_GAINS:
2210 		data->gain = (wd->params[0] << 8) + wd->params[1];
2211 		break;
2212 	case HIDPP_FF_SET_APERTURE:
2213 		data->range = (wd->params[0] << 8) + wd->params[1];
2214 		break;
2215 	default:
2216 		/* no action needed */
2217 		break;
2218 	}
2219 
2220 out:
2221 	atomic_dec(&data->workqueue_size);
2222 	kfree(wd);
2223 }
2224 
2225 static int hidpp_ff_queue_work(struct hidpp_ff_private_data *data, int effect_id, u8 command, u8 *params, u8 size)
2226 {
2227 	struct hidpp_ff_work_data *wd = kzalloc(sizeof(*wd), GFP_KERNEL);
2228 	int s;
2229 
2230 	if (!wd)
2231 		return -ENOMEM;
2232 
2233 	INIT_WORK(&wd->work, hidpp_ff_work_handler);
2234 
2235 	wd->data = data;
2236 	wd->effect_id = effect_id;
2237 	wd->command = command;
2238 	wd->size = size;
2239 	memcpy(wd->params, params, size);
2240 
2241 	atomic_inc(&data->workqueue_size);
2242 	queue_work(data->wq, &wd->work);
2243 
2244 	/* warn about excessive queue size */
2245 	s = atomic_read(&data->workqueue_size);
2246 	if (s >= 20 && s % 20 == 0)
2247 		hid_warn(data->hidpp->hid_dev, "Force feedback command queue contains %d commands, causing substantial delays!", s);
2248 
2249 	return 0;
2250 }
2251 
2252 static int hidpp_ff_upload_effect(struct input_dev *dev, struct ff_effect *effect, struct ff_effect *old)
2253 {
2254 	struct hidpp_ff_private_data *data = dev->ff->private;
2255 	u8 params[20];
2256 	u8 size;
2257 	int force;
2258 
2259 	/* set common parameters */
2260 	params[2] = effect->replay.length >> 8;
2261 	params[3] = effect->replay.length & 255;
2262 	params[4] = effect->replay.delay >> 8;
2263 	params[5] = effect->replay.delay & 255;
2264 
2265 	switch (effect->type) {
2266 	case FF_CONSTANT:
2267 		force = (effect->u.constant.level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2268 		params[1] = HIDPP_FF_EFFECT_CONSTANT;
2269 		params[6] = force >> 8;
2270 		params[7] = force & 255;
2271 		params[8] = effect->u.constant.envelope.attack_level >> 7;
2272 		params[9] = effect->u.constant.envelope.attack_length >> 8;
2273 		params[10] = effect->u.constant.envelope.attack_length & 255;
2274 		params[11] = effect->u.constant.envelope.fade_level >> 7;
2275 		params[12] = effect->u.constant.envelope.fade_length >> 8;
2276 		params[13] = effect->u.constant.envelope.fade_length & 255;
2277 		size = 14;
2278 		dbg_hid("Uploading constant force level=%d in dir %d = %d\n",
2279 				effect->u.constant.level,
2280 				effect->direction, force);
2281 		dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
2282 				effect->u.constant.envelope.attack_level,
2283 				effect->u.constant.envelope.attack_length,
2284 				effect->u.constant.envelope.fade_level,
2285 				effect->u.constant.envelope.fade_length);
2286 		break;
2287 	case FF_PERIODIC:
2288 	{
2289 		switch (effect->u.periodic.waveform) {
2290 		case FF_SINE:
2291 			params[1] = HIDPP_FF_EFFECT_PERIODIC_SINE;
2292 			break;
2293 		case FF_SQUARE:
2294 			params[1] = HIDPP_FF_EFFECT_PERIODIC_SQUARE;
2295 			break;
2296 		case FF_SAW_UP:
2297 			params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP;
2298 			break;
2299 		case FF_SAW_DOWN:
2300 			params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN;
2301 			break;
2302 		case FF_TRIANGLE:
2303 			params[1] = HIDPP_FF_EFFECT_PERIODIC_TRIANGLE;
2304 			break;
2305 		default:
2306 			hid_err(data->hidpp->hid_dev, "Unexpected periodic waveform type %i!\n", effect->u.periodic.waveform);
2307 			return -EINVAL;
2308 		}
2309 		force = (effect->u.periodic.magnitude * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2310 		params[6] = effect->u.periodic.magnitude >> 8;
2311 		params[7] = effect->u.periodic.magnitude & 255;
2312 		params[8] = effect->u.periodic.offset >> 8;
2313 		params[9] = effect->u.periodic.offset & 255;
2314 		params[10] = effect->u.periodic.period >> 8;
2315 		params[11] = effect->u.periodic.period & 255;
2316 		params[12] = effect->u.periodic.phase >> 8;
2317 		params[13] = effect->u.periodic.phase & 255;
2318 		params[14] = effect->u.periodic.envelope.attack_level >> 7;
2319 		params[15] = effect->u.periodic.envelope.attack_length >> 8;
2320 		params[16] = effect->u.periodic.envelope.attack_length & 255;
2321 		params[17] = effect->u.periodic.envelope.fade_level >> 7;
2322 		params[18] = effect->u.periodic.envelope.fade_length >> 8;
2323 		params[19] = effect->u.periodic.envelope.fade_length & 255;
2324 		size = 20;
2325 		dbg_hid("Uploading periodic force mag=%d/dir=%d, offset=%d, period=%d ms, phase=%d\n",
2326 				effect->u.periodic.magnitude, effect->direction,
2327 				effect->u.periodic.offset,
2328 				effect->u.periodic.period,
2329 				effect->u.periodic.phase);
2330 		dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
2331 				effect->u.periodic.envelope.attack_level,
2332 				effect->u.periodic.envelope.attack_length,
2333 				effect->u.periodic.envelope.fade_level,
2334 				effect->u.periodic.envelope.fade_length);
2335 		break;
2336 	}
2337 	case FF_RAMP:
2338 		params[1] = HIDPP_FF_EFFECT_RAMP;
2339 		force = (effect->u.ramp.start_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2340 		params[6] = force >> 8;
2341 		params[7] = force & 255;
2342 		force = (effect->u.ramp.end_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2343 		params[8] = force >> 8;
2344 		params[9] = force & 255;
2345 		params[10] = effect->u.ramp.envelope.attack_level >> 7;
2346 		params[11] = effect->u.ramp.envelope.attack_length >> 8;
2347 		params[12] = effect->u.ramp.envelope.attack_length & 255;
2348 		params[13] = effect->u.ramp.envelope.fade_level >> 7;
2349 		params[14] = effect->u.ramp.envelope.fade_length >> 8;
2350 		params[15] = effect->u.ramp.envelope.fade_length & 255;
2351 		size = 16;
2352 		dbg_hid("Uploading ramp force level=%d -> %d in dir %d = %d\n",
2353 				effect->u.ramp.start_level,
2354 				effect->u.ramp.end_level,
2355 				effect->direction, force);
2356 		dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
2357 				effect->u.ramp.envelope.attack_level,
2358 				effect->u.ramp.envelope.attack_length,
2359 				effect->u.ramp.envelope.fade_level,
2360 				effect->u.ramp.envelope.fade_length);
2361 		break;
2362 	case FF_FRICTION:
2363 	case FF_INERTIA:
2364 	case FF_SPRING:
2365 	case FF_DAMPER:
2366 		params[1] = HIDPP_FF_CONDITION_CMDS[effect->type - FF_SPRING];
2367 		params[6] = effect->u.condition[0].left_saturation >> 9;
2368 		params[7] = (effect->u.condition[0].left_saturation >> 1) & 255;
2369 		params[8] = effect->u.condition[0].left_coeff >> 8;
2370 		params[9] = effect->u.condition[0].left_coeff & 255;
2371 		params[10] = effect->u.condition[0].deadband >> 9;
2372 		params[11] = (effect->u.condition[0].deadband >> 1) & 255;
2373 		params[12] = effect->u.condition[0].center >> 8;
2374 		params[13] = effect->u.condition[0].center & 255;
2375 		params[14] = effect->u.condition[0].right_coeff >> 8;
2376 		params[15] = effect->u.condition[0].right_coeff & 255;
2377 		params[16] = effect->u.condition[0].right_saturation >> 9;
2378 		params[17] = (effect->u.condition[0].right_saturation >> 1) & 255;
2379 		size = 18;
2380 		dbg_hid("Uploading %s force left coeff=%d, left sat=%d, right coeff=%d, right sat=%d\n",
2381 				HIDPP_FF_CONDITION_NAMES[effect->type - FF_SPRING],
2382 				effect->u.condition[0].left_coeff,
2383 				effect->u.condition[0].left_saturation,
2384 				effect->u.condition[0].right_coeff,
2385 				effect->u.condition[0].right_saturation);
2386 		dbg_hid("          deadband=%d, center=%d\n",
2387 				effect->u.condition[0].deadband,
2388 				effect->u.condition[0].center);
2389 		break;
2390 	default:
2391 		hid_err(data->hidpp->hid_dev, "Unexpected force type %i!\n", effect->type);
2392 		return -EINVAL;
2393 	}
2394 
2395 	return hidpp_ff_queue_work(data, effect->id, HIDPP_FF_DOWNLOAD_EFFECT, params, size);
2396 }
2397 
2398 static int hidpp_ff_playback(struct input_dev *dev, int effect_id, int value)
2399 {
2400 	struct hidpp_ff_private_data *data = dev->ff->private;
2401 	u8 params[2];
2402 
2403 	params[1] = value ? HIDPP_FF_EFFECT_STATE_PLAY : HIDPP_FF_EFFECT_STATE_STOP;
2404 
2405 	dbg_hid("St%sing playback of effect %d.\n", value?"art":"opp", effect_id);
2406 
2407 	return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_SET_EFFECT_STATE, params, ARRAY_SIZE(params));
2408 }
2409 
2410 static int hidpp_ff_erase_effect(struct input_dev *dev, int effect_id)
2411 {
2412 	struct hidpp_ff_private_data *data = dev->ff->private;
2413 	u8 slot = 0;
2414 
2415 	dbg_hid("Erasing effect %d.\n", effect_id);
2416 
2417 	return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_DESTROY_EFFECT, &slot, 1);
2418 }
2419 
2420 static void hidpp_ff_set_autocenter(struct input_dev *dev, u16 magnitude)
2421 {
2422 	struct hidpp_ff_private_data *data = dev->ff->private;
2423 	u8 params[HIDPP_AUTOCENTER_PARAMS_LENGTH];
2424 
2425 	dbg_hid("Setting autocenter to %d.\n", magnitude);
2426 
2427 	/* start a standard spring effect */
2428 	params[1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART;
2429 	/* zero delay and duration */
2430 	params[2] = params[3] = params[4] = params[5] = 0;
2431 	/* set coeff to 25% of saturation */
2432 	params[8] = params[14] = magnitude >> 11;
2433 	params[9] = params[15] = (magnitude >> 3) & 255;
2434 	params[6] = params[16] = magnitude >> 9;
2435 	params[7] = params[17] = (magnitude >> 1) & 255;
2436 	/* zero deadband and center */
2437 	params[10] = params[11] = params[12] = params[13] = 0;
2438 
2439 	hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_AUTOCENTER, HIDPP_FF_DOWNLOAD_EFFECT, params, ARRAY_SIZE(params));
2440 }
2441 
2442 static void hidpp_ff_set_gain(struct input_dev *dev, u16 gain)
2443 {
2444 	struct hidpp_ff_private_data *data = dev->ff->private;
2445 	u8 params[4];
2446 
2447 	dbg_hid("Setting gain to %d.\n", gain);
2448 
2449 	params[0] = gain >> 8;
2450 	params[1] = gain & 255;
2451 	params[2] = 0; /* no boost */
2452 	params[3] = 0;
2453 
2454 	hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_NONE, HIDPP_FF_SET_GLOBAL_GAINS, params, ARRAY_SIZE(params));
2455 }
2456 
2457 static ssize_t hidpp_ff_range_show(struct device *dev, struct device_attribute *attr, char *buf)
2458 {
2459 	struct hid_device *hid = to_hid_device(dev);
2460 	struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2461 	struct input_dev *idev = hidinput->input;
2462 	struct hidpp_ff_private_data *data = idev->ff->private;
2463 
2464 	return scnprintf(buf, PAGE_SIZE, "%u\n", data->range);
2465 }
2466 
2467 static ssize_t hidpp_ff_range_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
2468 {
2469 	struct hid_device *hid = to_hid_device(dev);
2470 	struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2471 	struct input_dev *idev = hidinput->input;
2472 	struct hidpp_ff_private_data *data = idev->ff->private;
2473 	u8 params[2];
2474 	int range = simple_strtoul(buf, NULL, 10);
2475 
2476 	range = clamp(range, 180, 900);
2477 
2478 	params[0] = range >> 8;
2479 	params[1] = range & 0x00FF;
2480 
2481 	hidpp_ff_queue_work(data, -1, HIDPP_FF_SET_APERTURE, params, ARRAY_SIZE(params));
2482 
2483 	return count;
2484 }
2485 
2486 static DEVICE_ATTR(range, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH, hidpp_ff_range_show, hidpp_ff_range_store);
2487 
2488 static void hidpp_ff_destroy(struct ff_device *ff)
2489 {
2490 	struct hidpp_ff_private_data *data = ff->private;
2491 	struct hid_device *hid = data->hidpp->hid_dev;
2492 
2493 	hid_info(hid, "Unloading HID++ force feedback.\n");
2494 
2495 	device_remove_file(&hid->dev, &dev_attr_range);
2496 	destroy_workqueue(data->wq);
2497 	kfree(data->effect_ids);
2498 }
2499 
2500 static int hidpp_ff_init(struct hidpp_device *hidpp,
2501 			 struct hidpp_ff_private_data *data)
2502 {
2503 	struct hid_device *hid = hidpp->hid_dev;
2504 	struct hid_input *hidinput;
2505 	struct input_dev *dev;
2506 	const struct usb_device_descriptor *udesc = &(hid_to_usb_dev(hid)->descriptor);
2507 	const u16 bcdDevice = le16_to_cpu(udesc->bcdDevice);
2508 	struct ff_device *ff;
2509 	int error, j, num_slots = data->num_effects;
2510 	u8 version;
2511 
2512 	if (list_empty(&hid->inputs)) {
2513 		hid_err(hid, "no inputs found\n");
2514 		return -ENODEV;
2515 	}
2516 	hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2517 	dev = hidinput->input;
2518 
2519 	if (!dev) {
2520 		hid_err(hid, "Struct input_dev not set!\n");
2521 		return -EINVAL;
2522 	}
2523 
2524 	/* Get firmware release */
2525 	version = bcdDevice & 255;
2526 
2527 	/* Set supported force feedback capabilities */
2528 	for (j = 0; hidpp_ff_effects[j] >= 0; j++)
2529 		set_bit(hidpp_ff_effects[j], dev->ffbit);
2530 	if (version > 1)
2531 		for (j = 0; hidpp_ff_effects_v2[j] >= 0; j++)
2532 			set_bit(hidpp_ff_effects_v2[j], dev->ffbit);
2533 
2534 	error = input_ff_create(dev, num_slots);
2535 
2536 	if (error) {
2537 		hid_err(dev, "Failed to create FF device!\n");
2538 		return error;
2539 	}
2540 	/*
2541 	 * Create a copy of passed data, so we can transfer memory
2542 	 * ownership to FF core
2543 	 */
2544 	data = kmemdup(data, sizeof(*data), GFP_KERNEL);
2545 	if (!data)
2546 		return -ENOMEM;
2547 	data->effect_ids = kcalloc(num_slots, sizeof(int), GFP_KERNEL);
2548 	if (!data->effect_ids) {
2549 		kfree(data);
2550 		return -ENOMEM;
2551 	}
2552 	data->wq = create_singlethread_workqueue("hidpp-ff-sendqueue");
2553 	if (!data->wq) {
2554 		kfree(data->effect_ids);
2555 		kfree(data);
2556 		return -ENOMEM;
2557 	}
2558 
2559 	data->hidpp = hidpp;
2560 	data->version = version;
2561 	for (j = 0; j < num_slots; j++)
2562 		data->effect_ids[j] = -1;
2563 
2564 	ff = dev->ff;
2565 	ff->private = data;
2566 
2567 	ff->upload = hidpp_ff_upload_effect;
2568 	ff->erase = hidpp_ff_erase_effect;
2569 	ff->playback = hidpp_ff_playback;
2570 	ff->set_gain = hidpp_ff_set_gain;
2571 	ff->set_autocenter = hidpp_ff_set_autocenter;
2572 	ff->destroy = hidpp_ff_destroy;
2573 
2574 	/* Create sysfs interface */
2575 	error = device_create_file(&(hidpp->hid_dev->dev), &dev_attr_range);
2576 	if (error)
2577 		hid_warn(hidpp->hid_dev, "Unable to create sysfs interface for \"range\", errno %d!\n", error);
2578 
2579 	/* init the hardware command queue */
2580 	atomic_set(&data->workqueue_size, 0);
2581 
2582 	hid_info(hid, "Force feedback support loaded (firmware release %d).\n",
2583 		 version);
2584 
2585 	return 0;
2586 }
2587 
2588 /* ************************************************************************** */
2589 /*                                                                            */
2590 /* Device Support                                                             */
2591 /*                                                                            */
2592 /* ************************************************************************** */
2593 
2594 /* -------------------------------------------------------------------------- */
2595 /* Touchpad HID++ devices                                                     */
2596 /* -------------------------------------------------------------------------- */
2597 
2598 #define WTP_MANUAL_RESOLUTION				39
2599 
2600 struct wtp_data {
2601 	u16 x_size, y_size;
2602 	u8 finger_count;
2603 	u8 mt_feature_index;
2604 	u8 button_feature_index;
2605 	u8 maxcontacts;
2606 	bool flip_y;
2607 	unsigned int resolution;
2608 };
2609 
2610 static int wtp_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2611 		struct hid_field *field, struct hid_usage *usage,
2612 		unsigned long **bit, int *max)
2613 {
2614 	return -1;
2615 }
2616 
2617 static void wtp_populate_input(struct hidpp_device *hidpp,
2618 			       struct input_dev *input_dev)
2619 {
2620 	struct wtp_data *wd = hidpp->private_data;
2621 
2622 	__set_bit(EV_ABS, input_dev->evbit);
2623 	__set_bit(EV_KEY, input_dev->evbit);
2624 	__clear_bit(EV_REL, input_dev->evbit);
2625 	__clear_bit(EV_LED, input_dev->evbit);
2626 
2627 	input_set_abs_params(input_dev, ABS_MT_POSITION_X, 0, wd->x_size, 0, 0);
2628 	input_abs_set_res(input_dev, ABS_MT_POSITION_X, wd->resolution);
2629 	input_set_abs_params(input_dev, ABS_MT_POSITION_Y, 0, wd->y_size, 0, 0);
2630 	input_abs_set_res(input_dev, ABS_MT_POSITION_Y, wd->resolution);
2631 
2632 	/* Max pressure is not given by the devices, pick one */
2633 	input_set_abs_params(input_dev, ABS_MT_PRESSURE, 0, 50, 0, 0);
2634 
2635 	input_set_capability(input_dev, EV_KEY, BTN_LEFT);
2636 
2637 	if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS)
2638 		input_set_capability(input_dev, EV_KEY, BTN_RIGHT);
2639 	else
2640 		__set_bit(INPUT_PROP_BUTTONPAD, input_dev->propbit);
2641 
2642 	input_mt_init_slots(input_dev, wd->maxcontacts, INPUT_MT_POINTER |
2643 		INPUT_MT_DROP_UNUSED);
2644 }
2645 
2646 static void wtp_touch_event(struct hidpp_device *hidpp,
2647 	struct hidpp_touchpad_raw_xy_finger *touch_report)
2648 {
2649 	struct wtp_data *wd = hidpp->private_data;
2650 	int slot;
2651 
2652 	if (!touch_report->finger_id || touch_report->contact_type)
2653 		/* no actual data */
2654 		return;
2655 
2656 	slot = input_mt_get_slot_by_key(hidpp->input, touch_report->finger_id);
2657 
2658 	input_mt_slot(hidpp->input, slot);
2659 	input_mt_report_slot_state(hidpp->input, MT_TOOL_FINGER,
2660 					touch_report->contact_status);
2661 	if (touch_report->contact_status) {
2662 		input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_X,
2663 				touch_report->x);
2664 		input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_Y,
2665 				wd->flip_y ? wd->y_size - touch_report->y :
2666 					     touch_report->y);
2667 		input_event(hidpp->input, EV_ABS, ABS_MT_PRESSURE,
2668 				touch_report->area);
2669 	}
2670 }
2671 
2672 static void wtp_send_raw_xy_event(struct hidpp_device *hidpp,
2673 		struct hidpp_touchpad_raw_xy *raw)
2674 {
2675 	int i;
2676 
2677 	for (i = 0; i < 2; i++)
2678 		wtp_touch_event(hidpp, &(raw->fingers[i]));
2679 
2680 	if (raw->end_of_frame &&
2681 	    !(hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS))
2682 		input_event(hidpp->input, EV_KEY, BTN_LEFT, raw->button);
2683 
2684 	if (raw->end_of_frame || raw->finger_count <= 2) {
2685 		input_mt_sync_frame(hidpp->input);
2686 		input_sync(hidpp->input);
2687 	}
2688 }
2689 
2690 static int wtp_mouse_raw_xy_event(struct hidpp_device *hidpp, u8 *data)
2691 {
2692 	struct wtp_data *wd = hidpp->private_data;
2693 	u8 c1_area = ((data[7] & 0xf) * (data[7] & 0xf) +
2694 		      (data[7] >> 4) * (data[7] >> 4)) / 2;
2695 	u8 c2_area = ((data[13] & 0xf) * (data[13] & 0xf) +
2696 		      (data[13] >> 4) * (data[13] >> 4)) / 2;
2697 	struct hidpp_touchpad_raw_xy raw = {
2698 		.timestamp = data[1],
2699 		.fingers = {
2700 			{
2701 				.contact_type = 0,
2702 				.contact_status = !!data[7],
2703 				.x = get_unaligned_le16(&data[3]),
2704 				.y = get_unaligned_le16(&data[5]),
2705 				.z = c1_area,
2706 				.area = c1_area,
2707 				.finger_id = data[2],
2708 			}, {
2709 				.contact_type = 0,
2710 				.contact_status = !!data[13],
2711 				.x = get_unaligned_le16(&data[9]),
2712 				.y = get_unaligned_le16(&data[11]),
2713 				.z = c2_area,
2714 				.area = c2_area,
2715 				.finger_id = data[8],
2716 			}
2717 		},
2718 		.finger_count = wd->maxcontacts,
2719 		.spurious_flag = 0,
2720 		.end_of_frame = (data[0] >> 7) == 0,
2721 		.button = data[0] & 0x01,
2722 	};
2723 
2724 	wtp_send_raw_xy_event(hidpp, &raw);
2725 
2726 	return 1;
2727 }
2728 
2729 static int wtp_raw_event(struct hid_device *hdev, u8 *data, int size)
2730 {
2731 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2732 	struct wtp_data *wd = hidpp->private_data;
2733 	struct hidpp_report *report = (struct hidpp_report *)data;
2734 	struct hidpp_touchpad_raw_xy raw;
2735 
2736 	if (!wd || !hidpp->input)
2737 		return 1;
2738 
2739 	switch (data[0]) {
2740 	case 0x02:
2741 		if (size < 2) {
2742 			hid_err(hdev, "Received HID report of bad size (%d)",
2743 				size);
2744 			return 1;
2745 		}
2746 		if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) {
2747 			input_event(hidpp->input, EV_KEY, BTN_LEFT,
2748 					!!(data[1] & 0x01));
2749 			input_event(hidpp->input, EV_KEY, BTN_RIGHT,
2750 					!!(data[1] & 0x02));
2751 			input_sync(hidpp->input);
2752 			return 0;
2753 		} else {
2754 			if (size < 21)
2755 				return 1;
2756 			return wtp_mouse_raw_xy_event(hidpp, &data[7]);
2757 		}
2758 	case REPORT_ID_HIDPP_LONG:
2759 		/* size is already checked in hidpp_raw_event. */
2760 		if ((report->fap.feature_index != wd->mt_feature_index) ||
2761 		    (report->fap.funcindex_clientid != EVENT_TOUCHPAD_RAW_XY))
2762 			return 1;
2763 		hidpp_touchpad_raw_xy_event(hidpp, data + 4, &raw);
2764 
2765 		wtp_send_raw_xy_event(hidpp, &raw);
2766 		return 0;
2767 	}
2768 
2769 	return 0;
2770 }
2771 
2772 static int wtp_get_config(struct hidpp_device *hidpp)
2773 {
2774 	struct wtp_data *wd = hidpp->private_data;
2775 	struct hidpp_touchpad_raw_info raw_info = {0};
2776 	u8 feature_type;
2777 	int ret;
2778 
2779 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_TOUCHPAD_RAW_XY,
2780 		&wd->mt_feature_index, &feature_type);
2781 	if (ret)
2782 		/* means that the device is not powered up */
2783 		return ret;
2784 
2785 	ret = hidpp_touchpad_get_raw_info(hidpp, wd->mt_feature_index,
2786 		&raw_info);
2787 	if (ret)
2788 		return ret;
2789 
2790 	wd->x_size = raw_info.x_size;
2791 	wd->y_size = raw_info.y_size;
2792 	wd->maxcontacts = raw_info.maxcontacts;
2793 	wd->flip_y = raw_info.origin == TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT;
2794 	wd->resolution = raw_info.res;
2795 	if (!wd->resolution)
2796 		wd->resolution = WTP_MANUAL_RESOLUTION;
2797 
2798 	return 0;
2799 }
2800 
2801 static int wtp_allocate(struct hid_device *hdev, const struct hid_device_id *id)
2802 {
2803 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2804 	struct wtp_data *wd;
2805 
2806 	wd = devm_kzalloc(&hdev->dev, sizeof(struct wtp_data),
2807 			GFP_KERNEL);
2808 	if (!wd)
2809 		return -ENOMEM;
2810 
2811 	hidpp->private_data = wd;
2812 
2813 	return 0;
2814 };
2815 
2816 static int wtp_connect(struct hid_device *hdev, bool connected)
2817 {
2818 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2819 	struct wtp_data *wd = hidpp->private_data;
2820 	int ret;
2821 
2822 	if (!wd->x_size) {
2823 		ret = wtp_get_config(hidpp);
2824 		if (ret) {
2825 			hid_err(hdev, "Can not get wtp config: %d\n", ret);
2826 			return ret;
2827 		}
2828 	}
2829 
2830 	return hidpp_touchpad_set_raw_report_state(hidpp, wd->mt_feature_index,
2831 			true, true);
2832 }
2833 
2834 /* ------------------------------------------------------------------------- */
2835 /* Logitech M560 devices                                                     */
2836 /* ------------------------------------------------------------------------- */
2837 
2838 /*
2839  * Logitech M560 protocol overview
2840  *
2841  * The Logitech M560 mouse, is designed for windows 8. When the middle and/or
2842  * the sides buttons are pressed, it sends some keyboard keys events
2843  * instead of buttons ones.
2844  * To complicate things further, the middle button keys sequence
2845  * is different from the odd press and the even press.
2846  *
2847  * forward button -> Super_R
2848  * backward button -> Super_L+'d' (press only)
2849  * middle button -> 1st time: Alt_L+SuperL+XF86TouchpadOff (press only)
2850  *                  2nd time: left-click (press only)
2851  * NB: press-only means that when the button is pressed, the
2852  * KeyPress/ButtonPress and KeyRelease/ButtonRelease events are generated
2853  * together sequentially; instead when the button is released, no event is
2854  * generated !
2855  *
2856  * With the command
2857  *	10<xx>0a 3500af03 (where <xx> is the mouse id),
2858  * the mouse reacts differently:
2859  * - it never sends a keyboard key event
2860  * - for the three mouse button it sends:
2861  *	middle button               press   11<xx>0a 3500af00...
2862  *	side 1 button (forward)     press   11<xx>0a 3500b000...
2863  *	side 2 button (backward)    press   11<xx>0a 3500ae00...
2864  *	middle/side1/side2 button   release 11<xx>0a 35000000...
2865  */
2866 
2867 static const u8 m560_config_parameter[] = {0x00, 0xaf, 0x03};
2868 
2869 /* how buttons are mapped in the report */
2870 #define M560_MOUSE_BTN_LEFT		0x01
2871 #define M560_MOUSE_BTN_RIGHT		0x02
2872 #define M560_MOUSE_BTN_WHEEL_LEFT	0x08
2873 #define M560_MOUSE_BTN_WHEEL_RIGHT	0x10
2874 
2875 #define M560_SUB_ID			0x0a
2876 #define M560_BUTTON_MODE_REGISTER	0x35
2877 
2878 static int m560_send_config_command(struct hid_device *hdev, bool connected)
2879 {
2880 	struct hidpp_report response;
2881 	struct hidpp_device *hidpp_dev;
2882 
2883 	hidpp_dev = hid_get_drvdata(hdev);
2884 
2885 	return hidpp_send_rap_command_sync(
2886 		hidpp_dev,
2887 		REPORT_ID_HIDPP_SHORT,
2888 		M560_SUB_ID,
2889 		M560_BUTTON_MODE_REGISTER,
2890 		(u8 *)m560_config_parameter,
2891 		sizeof(m560_config_parameter),
2892 		&response
2893 	);
2894 }
2895 
2896 static int m560_raw_event(struct hid_device *hdev, u8 *data, int size)
2897 {
2898 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2899 
2900 	/* sanity check */
2901 	if (!hidpp->input) {
2902 		hid_err(hdev, "error in parameter\n");
2903 		return -EINVAL;
2904 	}
2905 
2906 	if (size < 7) {
2907 		hid_err(hdev, "error in report\n");
2908 		return 0;
2909 	}
2910 
2911 	if (data[0] == REPORT_ID_HIDPP_LONG &&
2912 	    data[2] == M560_SUB_ID && data[6] == 0x00) {
2913 		/*
2914 		 * m560 mouse report for middle, forward and backward button
2915 		 *
2916 		 * data[0] = 0x11
2917 		 * data[1] = device-id
2918 		 * data[2] = 0x0a
2919 		 * data[5] = 0xaf -> middle
2920 		 *	     0xb0 -> forward
2921 		 *	     0xae -> backward
2922 		 *	     0x00 -> release all
2923 		 * data[6] = 0x00
2924 		 */
2925 
2926 		switch (data[5]) {
2927 		case 0xaf:
2928 			input_report_key(hidpp->input, BTN_MIDDLE, 1);
2929 			break;
2930 		case 0xb0:
2931 			input_report_key(hidpp->input, BTN_FORWARD, 1);
2932 			break;
2933 		case 0xae:
2934 			input_report_key(hidpp->input, BTN_BACK, 1);
2935 			break;
2936 		case 0x00:
2937 			input_report_key(hidpp->input, BTN_BACK, 0);
2938 			input_report_key(hidpp->input, BTN_FORWARD, 0);
2939 			input_report_key(hidpp->input, BTN_MIDDLE, 0);
2940 			break;
2941 		default:
2942 			hid_err(hdev, "error in report\n");
2943 			return 0;
2944 		}
2945 		input_sync(hidpp->input);
2946 
2947 	} else if (data[0] == 0x02) {
2948 		/*
2949 		 * Logitech M560 mouse report
2950 		 *
2951 		 * data[0] = type (0x02)
2952 		 * data[1..2] = buttons
2953 		 * data[3..5] = xy
2954 		 * data[6] = wheel
2955 		 */
2956 
2957 		int v;
2958 
2959 		input_report_key(hidpp->input, BTN_LEFT,
2960 			!!(data[1] & M560_MOUSE_BTN_LEFT));
2961 		input_report_key(hidpp->input, BTN_RIGHT,
2962 			!!(data[1] & M560_MOUSE_BTN_RIGHT));
2963 
2964 		if (data[1] & M560_MOUSE_BTN_WHEEL_LEFT) {
2965 			input_report_rel(hidpp->input, REL_HWHEEL, -1);
2966 			input_report_rel(hidpp->input, REL_HWHEEL_HI_RES,
2967 					 -120);
2968 		} else if (data[1] & M560_MOUSE_BTN_WHEEL_RIGHT) {
2969 			input_report_rel(hidpp->input, REL_HWHEEL, 1);
2970 			input_report_rel(hidpp->input, REL_HWHEEL_HI_RES,
2971 					 120);
2972 		}
2973 
2974 		v = hid_snto32(hid_field_extract(hdev, data+3, 0, 12), 12);
2975 		input_report_rel(hidpp->input, REL_X, v);
2976 
2977 		v = hid_snto32(hid_field_extract(hdev, data+3, 12, 12), 12);
2978 		input_report_rel(hidpp->input, REL_Y, v);
2979 
2980 		v = hid_snto32(data[6], 8);
2981 		if (v != 0)
2982 			hidpp_scroll_counter_handle_scroll(hidpp->input,
2983 					&hidpp->vertical_wheel_counter, v);
2984 
2985 		input_sync(hidpp->input);
2986 	}
2987 
2988 	return 1;
2989 }
2990 
2991 static void m560_populate_input(struct hidpp_device *hidpp,
2992 				struct input_dev *input_dev)
2993 {
2994 	__set_bit(EV_KEY, input_dev->evbit);
2995 	__set_bit(BTN_MIDDLE, input_dev->keybit);
2996 	__set_bit(BTN_RIGHT, input_dev->keybit);
2997 	__set_bit(BTN_LEFT, input_dev->keybit);
2998 	__set_bit(BTN_BACK, input_dev->keybit);
2999 	__set_bit(BTN_FORWARD, input_dev->keybit);
3000 
3001 	__set_bit(EV_REL, input_dev->evbit);
3002 	__set_bit(REL_X, input_dev->relbit);
3003 	__set_bit(REL_Y, input_dev->relbit);
3004 	__set_bit(REL_WHEEL, input_dev->relbit);
3005 	__set_bit(REL_HWHEEL, input_dev->relbit);
3006 	__set_bit(REL_WHEEL_HI_RES, input_dev->relbit);
3007 	__set_bit(REL_HWHEEL_HI_RES, input_dev->relbit);
3008 }
3009 
3010 static int m560_input_mapping(struct hid_device *hdev, struct hid_input *hi,
3011 		struct hid_field *field, struct hid_usage *usage,
3012 		unsigned long **bit, int *max)
3013 {
3014 	return -1;
3015 }
3016 
3017 /* ------------------------------------------------------------------------- */
3018 /* Logitech K400 devices                                                     */
3019 /* ------------------------------------------------------------------------- */
3020 
3021 /*
3022  * The Logitech K400 keyboard has an embedded touchpad which is seen
3023  * as a mouse from the OS point of view. There is a hardware shortcut to disable
3024  * tap-to-click but the setting is not remembered accross reset, annoying some
3025  * users.
3026  *
3027  * We can toggle this feature from the host by using the feature 0x6010:
3028  * Touchpad FW items
3029  */
3030 
3031 struct k400_private_data {
3032 	u8 feature_index;
3033 };
3034 
3035 static int k400_disable_tap_to_click(struct hidpp_device *hidpp)
3036 {
3037 	struct k400_private_data *k400 = hidpp->private_data;
3038 	struct hidpp_touchpad_fw_items items = {};
3039 	int ret;
3040 	u8 feature_type;
3041 
3042 	if (!k400->feature_index) {
3043 		ret = hidpp_root_get_feature(hidpp,
3044 			HIDPP_PAGE_TOUCHPAD_FW_ITEMS,
3045 			&k400->feature_index, &feature_type);
3046 		if (ret)
3047 			/* means that the device is not powered up */
3048 			return ret;
3049 	}
3050 
3051 	ret = hidpp_touchpad_fw_items_set(hidpp, k400->feature_index, &items);
3052 	if (ret)
3053 		return ret;
3054 
3055 	return 0;
3056 }
3057 
3058 static int k400_allocate(struct hid_device *hdev)
3059 {
3060 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3061 	struct k400_private_data *k400;
3062 
3063 	k400 = devm_kzalloc(&hdev->dev, sizeof(struct k400_private_data),
3064 			    GFP_KERNEL);
3065 	if (!k400)
3066 		return -ENOMEM;
3067 
3068 	hidpp->private_data = k400;
3069 
3070 	return 0;
3071 };
3072 
3073 static int k400_connect(struct hid_device *hdev, bool connected)
3074 {
3075 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3076 
3077 	if (!disable_tap_to_click)
3078 		return 0;
3079 
3080 	return k400_disable_tap_to_click(hidpp);
3081 }
3082 
3083 /* ------------------------------------------------------------------------- */
3084 /* Logitech G920 Driving Force Racing Wheel for Xbox One                     */
3085 /* ------------------------------------------------------------------------- */
3086 
3087 #define HIDPP_PAGE_G920_FORCE_FEEDBACK			0x8123
3088 
3089 static int g920_ff_set_autocenter(struct hidpp_device *hidpp,
3090 				  struct hidpp_ff_private_data *data)
3091 {
3092 	struct hidpp_report response;
3093 	u8 params[HIDPP_AUTOCENTER_PARAMS_LENGTH] = {
3094 		[1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART,
3095 	};
3096 	int ret;
3097 
3098 	/* initialize with zero autocenter to get wheel in usable state */
3099 
3100 	dbg_hid("Setting autocenter to 0.\n");
3101 	ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
3102 					  HIDPP_FF_DOWNLOAD_EFFECT,
3103 					  params, ARRAY_SIZE(params),
3104 					  &response);
3105 	if (ret)
3106 		hid_warn(hidpp->hid_dev, "Failed to autocenter device!\n");
3107 	else
3108 		data->slot_autocenter = response.fap.params[0];
3109 
3110 	return ret;
3111 }
3112 
3113 static int g920_get_config(struct hidpp_device *hidpp,
3114 			   struct hidpp_ff_private_data *data)
3115 {
3116 	struct hidpp_report response;
3117 	u8 feature_type;
3118 	int ret;
3119 
3120 	memset(data, 0, sizeof(*data));
3121 
3122 	/* Find feature and store for later use */
3123 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_G920_FORCE_FEEDBACK,
3124 				     &data->feature_index, &feature_type);
3125 	if (ret)
3126 		return ret;
3127 
3128 	/* Read number of slots available in device */
3129 	ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
3130 					  HIDPP_FF_GET_INFO,
3131 					  NULL, 0,
3132 					  &response);
3133 	if (ret) {
3134 		if (ret < 0)
3135 			return ret;
3136 		hid_err(hidpp->hid_dev,
3137 			"%s: received protocol error 0x%02x\n", __func__, ret);
3138 		return -EPROTO;
3139 	}
3140 
3141 	data->num_effects = response.fap.params[0] - HIDPP_FF_RESERVED_SLOTS;
3142 
3143 	/* reset all forces */
3144 	ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
3145 					  HIDPP_FF_RESET_ALL,
3146 					  NULL, 0,
3147 					  &response);
3148 	if (ret)
3149 		hid_warn(hidpp->hid_dev, "Failed to reset all forces!\n");
3150 
3151 	ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
3152 					  HIDPP_FF_GET_APERTURE,
3153 					  NULL, 0,
3154 					  &response);
3155 	if (ret) {
3156 		hid_warn(hidpp->hid_dev,
3157 			 "Failed to read range from device!\n");
3158 	}
3159 	data->range = ret ?
3160 		900 : get_unaligned_be16(&response.fap.params[0]);
3161 
3162 	/* Read the current gain values */
3163 	ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
3164 					  HIDPP_FF_GET_GLOBAL_GAINS,
3165 					  NULL, 0,
3166 					  &response);
3167 	if (ret)
3168 		hid_warn(hidpp->hid_dev,
3169 			 "Failed to read gain values from device!\n");
3170 	data->gain = ret ?
3171 		0xffff : get_unaligned_be16(&response.fap.params[0]);
3172 
3173 	/* ignore boost value at response.fap.params[2] */
3174 
3175 	return g920_ff_set_autocenter(hidpp, data);
3176 }
3177 
3178 /* -------------------------------------------------------------------------- */
3179 /* Logitech Dinovo Mini keyboard with builtin touchpad                        */
3180 /* -------------------------------------------------------------------------- */
3181 #define DINOVO_MINI_PRODUCT_ID		0xb30c
3182 
3183 static int lg_dinovo_input_mapping(struct hid_device *hdev, struct hid_input *hi,
3184 		struct hid_field *field, struct hid_usage *usage,
3185 		unsigned long **bit, int *max)
3186 {
3187 	if ((usage->hid & HID_USAGE_PAGE) != HID_UP_LOGIVENDOR)
3188 		return 0;
3189 
3190 	switch (usage->hid & HID_USAGE) {
3191 	case 0x00d: lg_map_key_clear(KEY_MEDIA);	break;
3192 	default:
3193 		return 0;
3194 	}
3195 	return 1;
3196 }
3197 
3198 /* -------------------------------------------------------------------------- */
3199 /* HID++1.0 devices which use HID++ reports for their wheels                  */
3200 /* -------------------------------------------------------------------------- */
3201 static int hidpp10_wheel_connect(struct hidpp_device *hidpp)
3202 {
3203 	return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
3204 			HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT,
3205 			HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT);
3206 }
3207 
3208 static int hidpp10_wheel_raw_event(struct hidpp_device *hidpp,
3209 				   u8 *data, int size)
3210 {
3211 	s8 value, hvalue;
3212 
3213 	if (!hidpp->input)
3214 		return -EINVAL;
3215 
3216 	if (size < 7)
3217 		return 0;
3218 
3219 	if (data[0] != REPORT_ID_HIDPP_SHORT || data[2] != HIDPP_SUB_ID_ROLLER)
3220 		return 0;
3221 
3222 	value = data[3];
3223 	hvalue = data[4];
3224 
3225 	input_report_rel(hidpp->input, REL_WHEEL, value);
3226 	input_report_rel(hidpp->input, REL_WHEEL_HI_RES, value * 120);
3227 	input_report_rel(hidpp->input, REL_HWHEEL, hvalue);
3228 	input_report_rel(hidpp->input, REL_HWHEEL_HI_RES, hvalue * 120);
3229 	input_sync(hidpp->input);
3230 
3231 	return 1;
3232 }
3233 
3234 static void hidpp10_wheel_populate_input(struct hidpp_device *hidpp,
3235 					 struct input_dev *input_dev)
3236 {
3237 	__set_bit(EV_REL, input_dev->evbit);
3238 	__set_bit(REL_WHEEL, input_dev->relbit);
3239 	__set_bit(REL_WHEEL_HI_RES, input_dev->relbit);
3240 	__set_bit(REL_HWHEEL, input_dev->relbit);
3241 	__set_bit(REL_HWHEEL_HI_RES, input_dev->relbit);
3242 }
3243 
3244 /* -------------------------------------------------------------------------- */
3245 /* HID++1.0 mice which use HID++ reports for extra mouse buttons              */
3246 /* -------------------------------------------------------------------------- */
3247 static int hidpp10_extra_mouse_buttons_connect(struct hidpp_device *hidpp)
3248 {
3249 	return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
3250 				    HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT,
3251 				    HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT);
3252 }
3253 
3254 static int hidpp10_extra_mouse_buttons_raw_event(struct hidpp_device *hidpp,
3255 				    u8 *data, int size)
3256 {
3257 	int i;
3258 
3259 	if (!hidpp->input)
3260 		return -EINVAL;
3261 
3262 	if (size < 7)
3263 		return 0;
3264 
3265 	if (data[0] != REPORT_ID_HIDPP_SHORT ||
3266 	    data[2] != HIDPP_SUB_ID_MOUSE_EXTRA_BTNS)
3267 		return 0;
3268 
3269 	/*
3270 	 * Buttons are either delivered through the regular mouse report *or*
3271 	 * through the extra buttons report. At least for button 6 how it is
3272 	 * delivered differs per receiver firmware version. Even receivers with
3273 	 * the same usb-id show different behavior, so we handle both cases.
3274 	 */
3275 	for (i = 0; i < 8; i++)
3276 		input_report_key(hidpp->input, BTN_MOUSE + i,
3277 				 (data[3] & (1 << i)));
3278 
3279 	/* Some mice report events on button 9+, use BTN_MISC */
3280 	for (i = 0; i < 8; i++)
3281 		input_report_key(hidpp->input, BTN_MISC + i,
3282 				 (data[4] & (1 << i)));
3283 
3284 	input_sync(hidpp->input);
3285 	return 1;
3286 }
3287 
3288 static void hidpp10_extra_mouse_buttons_populate_input(
3289 			struct hidpp_device *hidpp, struct input_dev *input_dev)
3290 {
3291 	/* BTN_MOUSE - BTN_MOUSE+7 are set already by the descriptor */
3292 	__set_bit(BTN_0, input_dev->keybit);
3293 	__set_bit(BTN_1, input_dev->keybit);
3294 	__set_bit(BTN_2, input_dev->keybit);
3295 	__set_bit(BTN_3, input_dev->keybit);
3296 	__set_bit(BTN_4, input_dev->keybit);
3297 	__set_bit(BTN_5, input_dev->keybit);
3298 	__set_bit(BTN_6, input_dev->keybit);
3299 	__set_bit(BTN_7, input_dev->keybit);
3300 }
3301 
3302 /* -------------------------------------------------------------------------- */
3303 /* HID++1.0 kbds which only report 0x10xx consumer usages through sub-id 0x03 */
3304 /* -------------------------------------------------------------------------- */
3305 
3306 /* Find the consumer-page input report desc and change Maximums to 0x107f */
3307 static u8 *hidpp10_consumer_keys_report_fixup(struct hidpp_device *hidpp,
3308 					      u8 *_rdesc, unsigned int *rsize)
3309 {
3310 	/* Note 0 terminated so we can use strnstr to search for this. */
3311 	static const char consumer_rdesc_start[] = {
3312 		0x05, 0x0C,	/* USAGE_PAGE (Consumer Devices)       */
3313 		0x09, 0x01,	/* USAGE (Consumer Control)            */
3314 		0xA1, 0x01,	/* COLLECTION (Application)            */
3315 		0x85, 0x03,	/* REPORT_ID = 3                       */
3316 		0x75, 0x10,	/* REPORT_SIZE (16)                    */
3317 		0x95, 0x02,	/* REPORT_COUNT (2)                    */
3318 		0x15, 0x01,	/* LOGICAL_MIN (1)                     */
3319 		0x26, 0x00	/* LOGICAL_MAX (...                    */
3320 	};
3321 	char *consumer_rdesc, *rdesc = (char *)_rdesc;
3322 	unsigned int size;
3323 
3324 	consumer_rdesc = strnstr(rdesc, consumer_rdesc_start, *rsize);
3325 	size = *rsize - (consumer_rdesc - rdesc);
3326 	if (consumer_rdesc && size >= 25) {
3327 		consumer_rdesc[15] = 0x7f;
3328 		consumer_rdesc[16] = 0x10;
3329 		consumer_rdesc[20] = 0x7f;
3330 		consumer_rdesc[21] = 0x10;
3331 	}
3332 	return _rdesc;
3333 }
3334 
3335 static int hidpp10_consumer_keys_connect(struct hidpp_device *hidpp)
3336 {
3337 	return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
3338 				    HIDPP_ENABLE_CONSUMER_REPORT,
3339 				    HIDPP_ENABLE_CONSUMER_REPORT);
3340 }
3341 
3342 static int hidpp10_consumer_keys_raw_event(struct hidpp_device *hidpp,
3343 					   u8 *data, int size)
3344 {
3345 	u8 consumer_report[5];
3346 
3347 	if (size < 7)
3348 		return 0;
3349 
3350 	if (data[0] != REPORT_ID_HIDPP_SHORT ||
3351 	    data[2] != HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS)
3352 		return 0;
3353 
3354 	/*
3355 	 * Build a normal consumer report (3) out of the data, this detour
3356 	 * is necessary to get some keyboards to report their 0x10xx usages.
3357 	 */
3358 	consumer_report[0] = 0x03;
3359 	memcpy(&consumer_report[1], &data[3], 4);
3360 	/* We are called from atomic context */
3361 	hid_report_raw_event(hidpp->hid_dev, HID_INPUT_REPORT,
3362 			     consumer_report, 5, 1);
3363 
3364 	return 1;
3365 }
3366 
3367 /* -------------------------------------------------------------------------- */
3368 /* High-resolution scroll wheels                                              */
3369 /* -------------------------------------------------------------------------- */
3370 
3371 static int hi_res_scroll_enable(struct hidpp_device *hidpp)
3372 {
3373 	int ret;
3374 	u8 multiplier = 1;
3375 
3376 	if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2121) {
3377 		ret = hidpp_hrw_set_wheel_mode(hidpp, false, true, false);
3378 		if (ret == 0)
3379 			ret = hidpp_hrw_get_wheel_capability(hidpp, &multiplier);
3380 	} else if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2120) {
3381 		ret = hidpp_hrs_set_highres_scrolling_mode(hidpp, true,
3382 							   &multiplier);
3383 	} else /* if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_1P0) */ {
3384 		ret = hidpp10_enable_scrolling_acceleration(hidpp);
3385 		multiplier = 8;
3386 	}
3387 	if (ret)
3388 		return ret;
3389 
3390 	if (multiplier == 0)
3391 		multiplier = 1;
3392 
3393 	hidpp->vertical_wheel_counter.wheel_multiplier = multiplier;
3394 	hid_dbg(hidpp->hid_dev, "wheel multiplier = %d\n", multiplier);
3395 	return 0;
3396 }
3397 
3398 /* -------------------------------------------------------------------------- */
3399 /* Generic HID++ devices                                                      */
3400 /* -------------------------------------------------------------------------- */
3401 
3402 static u8 *hidpp_report_fixup(struct hid_device *hdev, u8 *rdesc,
3403 			      unsigned int *rsize)
3404 {
3405 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3406 
3407 	if (!hidpp)
3408 		return rdesc;
3409 
3410 	/* For 27 MHz keyboards the quirk gets set after hid_parse. */
3411 	if (hdev->group == HID_GROUP_LOGITECH_27MHZ_DEVICE ||
3412 	    (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS))
3413 		rdesc = hidpp10_consumer_keys_report_fixup(hidpp, rdesc, rsize);
3414 
3415 	return rdesc;
3416 }
3417 
3418 static int hidpp_input_mapping(struct hid_device *hdev, struct hid_input *hi,
3419 		struct hid_field *field, struct hid_usage *usage,
3420 		unsigned long **bit, int *max)
3421 {
3422 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3423 
3424 	if (!hidpp)
3425 		return 0;
3426 
3427 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
3428 		return wtp_input_mapping(hdev, hi, field, usage, bit, max);
3429 	else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560 &&
3430 			field->application != HID_GD_MOUSE)
3431 		return m560_input_mapping(hdev, hi, field, usage, bit, max);
3432 
3433 	if (hdev->product == DINOVO_MINI_PRODUCT_ID)
3434 		return lg_dinovo_input_mapping(hdev, hi, field, usage, bit, max);
3435 
3436 	return 0;
3437 }
3438 
3439 static int hidpp_input_mapped(struct hid_device *hdev, struct hid_input *hi,
3440 		struct hid_field *field, struct hid_usage *usage,
3441 		unsigned long **bit, int *max)
3442 {
3443 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3444 
3445 	if (!hidpp)
3446 		return 0;
3447 
3448 	/* Ensure that Logitech G920 is not given a default fuzz/flat value */
3449 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
3450 		if (usage->type == EV_ABS && (usage->code == ABS_X ||
3451 				usage->code == ABS_Y || usage->code == ABS_Z ||
3452 				usage->code == ABS_RZ)) {
3453 			field->application = HID_GD_MULTIAXIS;
3454 		}
3455 	}
3456 
3457 	return 0;
3458 }
3459 
3460 
3461 static void hidpp_populate_input(struct hidpp_device *hidpp,
3462 				 struct input_dev *input)
3463 {
3464 	hidpp->input = input;
3465 
3466 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
3467 		wtp_populate_input(hidpp, input);
3468 	else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560)
3469 		m560_populate_input(hidpp, input);
3470 
3471 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS)
3472 		hidpp10_wheel_populate_input(hidpp, input);
3473 
3474 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS)
3475 		hidpp10_extra_mouse_buttons_populate_input(hidpp, input);
3476 }
3477 
3478 static int hidpp_input_configured(struct hid_device *hdev,
3479 				struct hid_input *hidinput)
3480 {
3481 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3482 	struct input_dev *input = hidinput->input;
3483 
3484 	if (!hidpp)
3485 		return 0;
3486 
3487 	hidpp_populate_input(hidpp, input);
3488 
3489 	return 0;
3490 }
3491 
3492 static int hidpp_raw_hidpp_event(struct hidpp_device *hidpp, u8 *data,
3493 		int size)
3494 {
3495 	struct hidpp_report *question = hidpp->send_receive_buf;
3496 	struct hidpp_report *answer = hidpp->send_receive_buf;
3497 	struct hidpp_report *report = (struct hidpp_report *)data;
3498 	int ret;
3499 
3500 	/*
3501 	 * If the mutex is locked then we have a pending answer from a
3502 	 * previously sent command.
3503 	 */
3504 	if (unlikely(mutex_is_locked(&hidpp->send_mutex))) {
3505 		/*
3506 		 * Check for a correct hidpp20 answer or the corresponding
3507 		 * error
3508 		 */
3509 		if (hidpp_match_answer(question, report) ||
3510 				hidpp_match_error(question, report)) {
3511 			*answer = *report;
3512 			hidpp->answer_available = true;
3513 			wake_up(&hidpp->wait);
3514 			/*
3515 			 * This was an answer to a command that this driver sent
3516 			 * We return 1 to hid-core to avoid forwarding the
3517 			 * command upstream as it has been treated by the driver
3518 			 */
3519 
3520 			return 1;
3521 		}
3522 	}
3523 
3524 	if (unlikely(hidpp_report_is_connect_event(hidpp, report))) {
3525 		atomic_set(&hidpp->connected,
3526 				!(report->rap.params[0] & (1 << 6)));
3527 		if (schedule_work(&hidpp->work) == 0)
3528 			dbg_hid("%s: connect event already queued\n", __func__);
3529 		return 1;
3530 	}
3531 
3532 	if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) {
3533 		ret = hidpp20_battery_event_1000(hidpp, data, size);
3534 		if (ret != 0)
3535 			return ret;
3536 		ret = hidpp20_battery_event_1004(hidpp, data, size);
3537 		if (ret != 0)
3538 			return ret;
3539 		ret = hidpp_solar_battery_event(hidpp, data, size);
3540 		if (ret != 0)
3541 			return ret;
3542 		ret = hidpp20_battery_voltage_event(hidpp, data, size);
3543 		if (ret != 0)
3544 			return ret;
3545 	}
3546 
3547 	if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) {
3548 		ret = hidpp10_battery_event(hidpp, data, size);
3549 		if (ret != 0)
3550 			return ret;
3551 	}
3552 
3553 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) {
3554 		ret = hidpp10_wheel_raw_event(hidpp, data, size);
3555 		if (ret != 0)
3556 			return ret;
3557 	}
3558 
3559 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) {
3560 		ret = hidpp10_extra_mouse_buttons_raw_event(hidpp, data, size);
3561 		if (ret != 0)
3562 			return ret;
3563 	}
3564 
3565 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) {
3566 		ret = hidpp10_consumer_keys_raw_event(hidpp, data, size);
3567 		if (ret != 0)
3568 			return ret;
3569 	}
3570 
3571 	return 0;
3572 }
3573 
3574 static int hidpp_raw_event(struct hid_device *hdev, struct hid_report *report,
3575 		u8 *data, int size)
3576 {
3577 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3578 	int ret = 0;
3579 
3580 	if (!hidpp)
3581 		return 0;
3582 
3583 	/* Generic HID++ processing. */
3584 	switch (data[0]) {
3585 	case REPORT_ID_HIDPP_VERY_LONG:
3586 		if (size != hidpp->very_long_report_length) {
3587 			hid_err(hdev, "received hid++ report of bad size (%d)",
3588 				size);
3589 			return 1;
3590 		}
3591 		ret = hidpp_raw_hidpp_event(hidpp, data, size);
3592 		break;
3593 	case REPORT_ID_HIDPP_LONG:
3594 		if (size != HIDPP_REPORT_LONG_LENGTH) {
3595 			hid_err(hdev, "received hid++ report of bad size (%d)",
3596 				size);
3597 			return 1;
3598 		}
3599 		ret = hidpp_raw_hidpp_event(hidpp, data, size);
3600 		break;
3601 	case REPORT_ID_HIDPP_SHORT:
3602 		if (size != HIDPP_REPORT_SHORT_LENGTH) {
3603 			hid_err(hdev, "received hid++ report of bad size (%d)",
3604 				size);
3605 			return 1;
3606 		}
3607 		ret = hidpp_raw_hidpp_event(hidpp, data, size);
3608 		break;
3609 	}
3610 
3611 	/* If no report is available for further processing, skip calling
3612 	 * raw_event of subclasses. */
3613 	if (ret != 0)
3614 		return ret;
3615 
3616 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
3617 		return wtp_raw_event(hdev, data, size);
3618 	else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560)
3619 		return m560_raw_event(hdev, data, size);
3620 
3621 	return 0;
3622 }
3623 
3624 static int hidpp_event(struct hid_device *hdev, struct hid_field *field,
3625 	struct hid_usage *usage, __s32 value)
3626 {
3627 	/* This function will only be called for scroll events, due to the
3628 	 * restriction imposed in hidpp_usages.
3629 	 */
3630 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3631 	struct hidpp_scroll_counter *counter;
3632 
3633 	if (!hidpp)
3634 		return 0;
3635 
3636 	counter = &hidpp->vertical_wheel_counter;
3637 	/* A scroll event may occur before the multiplier has been retrieved or
3638 	 * the input device set, or high-res scroll enabling may fail. In such
3639 	 * cases we must return early (falling back to default behaviour) to
3640 	 * avoid a crash in hidpp_scroll_counter_handle_scroll.
3641 	 */
3642 	if (!(hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) || value == 0
3643 	    || hidpp->input == NULL || counter->wheel_multiplier == 0)
3644 		return 0;
3645 
3646 	hidpp_scroll_counter_handle_scroll(hidpp->input, counter, value);
3647 	return 1;
3648 }
3649 
3650 static int hidpp_initialize_battery(struct hidpp_device *hidpp)
3651 {
3652 	static atomic_t battery_no = ATOMIC_INIT(0);
3653 	struct power_supply_config cfg = { .drv_data = hidpp };
3654 	struct power_supply_desc *desc = &hidpp->battery.desc;
3655 	enum power_supply_property *battery_props;
3656 	struct hidpp_battery *battery;
3657 	unsigned int num_battery_props;
3658 	unsigned long n;
3659 	int ret;
3660 
3661 	if (hidpp->battery.ps)
3662 		return 0;
3663 
3664 	hidpp->battery.feature_index = 0xff;
3665 	hidpp->battery.solar_feature_index = 0xff;
3666 	hidpp->battery.voltage_feature_index = 0xff;
3667 
3668 	if (hidpp->protocol_major >= 2) {
3669 		if (hidpp->quirks & HIDPP_QUIRK_CLASS_K750)
3670 			ret = hidpp_solar_request_battery_event(hidpp);
3671 		else {
3672 			/* we only support one battery feature right now, so let's
3673 			   first check the ones that support battery level first
3674 			   and leave voltage for last */
3675 			ret = hidpp20_query_battery_info_1000(hidpp);
3676 			if (ret)
3677 				ret = hidpp20_query_battery_info_1004(hidpp);
3678 			if (ret)
3679 				ret = hidpp20_query_battery_voltage_info(hidpp);
3680 		}
3681 
3682 		if (ret)
3683 			return ret;
3684 		hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP20_BATTERY;
3685 	} else {
3686 		ret = hidpp10_query_battery_status(hidpp);
3687 		if (ret) {
3688 			ret = hidpp10_query_battery_mileage(hidpp);
3689 			if (ret)
3690 				return -ENOENT;
3691 			hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
3692 		} else {
3693 			hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
3694 		}
3695 		hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP10_BATTERY;
3696 	}
3697 
3698 	battery_props = devm_kmemdup(&hidpp->hid_dev->dev,
3699 				     hidpp_battery_props,
3700 				     sizeof(hidpp_battery_props),
3701 				     GFP_KERNEL);
3702 	if (!battery_props)
3703 		return -ENOMEM;
3704 
3705 	num_battery_props = ARRAY_SIZE(hidpp_battery_props) - 3;
3706 
3707 	if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE ||
3708 	    hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_PERCENTAGE)
3709 		battery_props[num_battery_props++] =
3710 				POWER_SUPPLY_PROP_CAPACITY;
3711 
3712 	if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS)
3713 		battery_props[num_battery_props++] =
3714 				POWER_SUPPLY_PROP_CAPACITY_LEVEL;
3715 
3716 	if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_VOLTAGE)
3717 		battery_props[num_battery_props++] =
3718 			POWER_SUPPLY_PROP_VOLTAGE_NOW;
3719 
3720 	battery = &hidpp->battery;
3721 
3722 	n = atomic_inc_return(&battery_no) - 1;
3723 	desc->properties = battery_props;
3724 	desc->num_properties = num_battery_props;
3725 	desc->get_property = hidpp_battery_get_property;
3726 	sprintf(battery->name, "hidpp_battery_%ld", n);
3727 	desc->name = battery->name;
3728 	desc->type = POWER_SUPPLY_TYPE_BATTERY;
3729 	desc->use_for_apm = 0;
3730 
3731 	battery->ps = devm_power_supply_register(&hidpp->hid_dev->dev,
3732 						 &battery->desc,
3733 						 &cfg);
3734 	if (IS_ERR(battery->ps))
3735 		return PTR_ERR(battery->ps);
3736 
3737 	power_supply_powers(battery->ps, &hidpp->hid_dev->dev);
3738 
3739 	return ret;
3740 }
3741 
3742 static void hidpp_overwrite_name(struct hid_device *hdev)
3743 {
3744 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3745 	char *name;
3746 
3747 	if (hidpp->protocol_major < 2)
3748 		return;
3749 
3750 	name = hidpp_get_device_name(hidpp);
3751 
3752 	if (!name) {
3753 		hid_err(hdev, "unable to retrieve the name of the device");
3754 	} else {
3755 		dbg_hid("HID++: Got name: %s\n", name);
3756 		snprintf(hdev->name, sizeof(hdev->name), "%s", name);
3757 	}
3758 
3759 	kfree(name);
3760 }
3761 
3762 static int hidpp_input_open(struct input_dev *dev)
3763 {
3764 	struct hid_device *hid = input_get_drvdata(dev);
3765 
3766 	return hid_hw_open(hid);
3767 }
3768 
3769 static void hidpp_input_close(struct input_dev *dev)
3770 {
3771 	struct hid_device *hid = input_get_drvdata(dev);
3772 
3773 	hid_hw_close(hid);
3774 }
3775 
3776 static struct input_dev *hidpp_allocate_input(struct hid_device *hdev)
3777 {
3778 	struct input_dev *input_dev = devm_input_allocate_device(&hdev->dev);
3779 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3780 
3781 	if (!input_dev)
3782 		return NULL;
3783 
3784 	input_set_drvdata(input_dev, hdev);
3785 	input_dev->open = hidpp_input_open;
3786 	input_dev->close = hidpp_input_close;
3787 
3788 	input_dev->name = hidpp->name;
3789 	input_dev->phys = hdev->phys;
3790 	input_dev->uniq = hdev->uniq;
3791 	input_dev->id.bustype = hdev->bus;
3792 	input_dev->id.vendor  = hdev->vendor;
3793 	input_dev->id.product = hdev->product;
3794 	input_dev->id.version = hdev->version;
3795 	input_dev->dev.parent = &hdev->dev;
3796 
3797 	return input_dev;
3798 }
3799 
3800 static void hidpp_connect_event(struct hidpp_device *hidpp)
3801 {
3802 	struct hid_device *hdev = hidpp->hid_dev;
3803 	int ret = 0;
3804 	bool connected = atomic_read(&hidpp->connected);
3805 	struct input_dev *input;
3806 	char *name, *devm_name;
3807 
3808 	if (!connected) {
3809 		if (hidpp->battery.ps) {
3810 			hidpp->battery.online = false;
3811 			hidpp->battery.status = POWER_SUPPLY_STATUS_UNKNOWN;
3812 			hidpp->battery.level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
3813 			power_supply_changed(hidpp->battery.ps);
3814 		}
3815 		return;
3816 	}
3817 
3818 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) {
3819 		ret = wtp_connect(hdev, connected);
3820 		if (ret)
3821 			return;
3822 	} else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) {
3823 		ret = m560_send_config_command(hdev, connected);
3824 		if (ret)
3825 			return;
3826 	} else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) {
3827 		ret = k400_connect(hdev, connected);
3828 		if (ret)
3829 			return;
3830 	}
3831 
3832 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) {
3833 		ret = hidpp10_wheel_connect(hidpp);
3834 		if (ret)
3835 			return;
3836 	}
3837 
3838 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) {
3839 		ret = hidpp10_extra_mouse_buttons_connect(hidpp);
3840 		if (ret)
3841 			return;
3842 	}
3843 
3844 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) {
3845 		ret = hidpp10_consumer_keys_connect(hidpp);
3846 		if (ret)
3847 			return;
3848 	}
3849 
3850 	/* the device is already connected, we can ask for its name and
3851 	 * protocol */
3852 	if (!hidpp->protocol_major) {
3853 		ret = hidpp_root_get_protocol_version(hidpp);
3854 		if (ret) {
3855 			hid_err(hdev, "Can not get the protocol version.\n");
3856 			return;
3857 		}
3858 	}
3859 
3860 	if (hidpp->name == hdev->name && hidpp->protocol_major >= 2) {
3861 		name = hidpp_get_device_name(hidpp);
3862 		if (name) {
3863 			devm_name = devm_kasprintf(&hdev->dev, GFP_KERNEL,
3864 						   "%s", name);
3865 			kfree(name);
3866 			if (!devm_name)
3867 				return;
3868 
3869 			hidpp->name = devm_name;
3870 		}
3871 	}
3872 
3873 	hidpp_initialize_battery(hidpp);
3874 
3875 	/* forward current battery state */
3876 	if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) {
3877 		hidpp10_enable_battery_reporting(hidpp);
3878 		if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE)
3879 			hidpp10_query_battery_mileage(hidpp);
3880 		else
3881 			hidpp10_query_battery_status(hidpp);
3882 	} else if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) {
3883 		if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_VOLTAGE)
3884 			hidpp20_query_battery_voltage_info(hidpp);
3885 		else if (hidpp->capabilities & HIDPP_CAPABILITY_UNIFIED_BATTERY)
3886 			hidpp20_query_battery_info_1004(hidpp);
3887 		else
3888 			hidpp20_query_battery_info_1000(hidpp);
3889 	}
3890 	if (hidpp->battery.ps)
3891 		power_supply_changed(hidpp->battery.ps);
3892 
3893 	if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL)
3894 		hi_res_scroll_enable(hidpp);
3895 
3896 	if (!(hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) || hidpp->delayed_input)
3897 		/* if the input nodes are already created, we can stop now */
3898 		return;
3899 
3900 	input = hidpp_allocate_input(hdev);
3901 	if (!input) {
3902 		hid_err(hdev, "cannot allocate new input device: %d\n", ret);
3903 		return;
3904 	}
3905 
3906 	hidpp_populate_input(hidpp, input);
3907 
3908 	ret = input_register_device(input);
3909 	if (ret)
3910 		input_free_device(input);
3911 
3912 	hidpp->delayed_input = input;
3913 }
3914 
3915 static DEVICE_ATTR(builtin_power_supply, 0000, NULL, NULL);
3916 
3917 static struct attribute *sysfs_attrs[] = {
3918 	&dev_attr_builtin_power_supply.attr,
3919 	NULL
3920 };
3921 
3922 static const struct attribute_group ps_attribute_group = {
3923 	.attrs = sysfs_attrs
3924 };
3925 
3926 static int hidpp_get_report_length(struct hid_device *hdev, int id)
3927 {
3928 	struct hid_report_enum *re;
3929 	struct hid_report *report;
3930 
3931 	re = &(hdev->report_enum[HID_OUTPUT_REPORT]);
3932 	report = re->report_id_hash[id];
3933 	if (!report)
3934 		return 0;
3935 
3936 	return report->field[0]->report_count + 1;
3937 }
3938 
3939 static u8 hidpp_validate_device(struct hid_device *hdev)
3940 {
3941 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3942 	int id, report_length;
3943 	u8 supported_reports = 0;
3944 
3945 	id = REPORT_ID_HIDPP_SHORT;
3946 	report_length = hidpp_get_report_length(hdev, id);
3947 	if (report_length) {
3948 		if (report_length < HIDPP_REPORT_SHORT_LENGTH)
3949 			goto bad_device;
3950 
3951 		supported_reports |= HIDPP_REPORT_SHORT_SUPPORTED;
3952 	}
3953 
3954 	id = REPORT_ID_HIDPP_LONG;
3955 	report_length = hidpp_get_report_length(hdev, id);
3956 	if (report_length) {
3957 		if (report_length < HIDPP_REPORT_LONG_LENGTH)
3958 			goto bad_device;
3959 
3960 		supported_reports |= HIDPP_REPORT_LONG_SUPPORTED;
3961 	}
3962 
3963 	id = REPORT_ID_HIDPP_VERY_LONG;
3964 	report_length = hidpp_get_report_length(hdev, id);
3965 	if (report_length) {
3966 		if (report_length < HIDPP_REPORT_LONG_LENGTH ||
3967 		    report_length > HIDPP_REPORT_VERY_LONG_MAX_LENGTH)
3968 			goto bad_device;
3969 
3970 		supported_reports |= HIDPP_REPORT_VERY_LONG_SUPPORTED;
3971 		hidpp->very_long_report_length = report_length;
3972 	}
3973 
3974 	return supported_reports;
3975 
3976 bad_device:
3977 	hid_warn(hdev, "not enough values in hidpp report %d\n", id);
3978 	return false;
3979 }
3980 
3981 static bool hidpp_application_equals(struct hid_device *hdev,
3982 				     unsigned int application)
3983 {
3984 	struct list_head *report_list;
3985 	struct hid_report *report;
3986 
3987 	report_list = &hdev->report_enum[HID_INPUT_REPORT].report_list;
3988 	report = list_first_entry_or_null(report_list, struct hid_report, list);
3989 	return report && report->application == application;
3990 }
3991 
3992 static int hidpp_probe(struct hid_device *hdev, const struct hid_device_id *id)
3993 {
3994 	struct hidpp_device *hidpp;
3995 	int ret;
3996 	bool connected;
3997 	unsigned int connect_mask = HID_CONNECT_DEFAULT;
3998 	struct hidpp_ff_private_data data;
3999 
4000 	/* report_fixup needs drvdata to be set before we call hid_parse */
4001 	hidpp = devm_kzalloc(&hdev->dev, sizeof(*hidpp), GFP_KERNEL);
4002 	if (!hidpp)
4003 		return -ENOMEM;
4004 
4005 	hidpp->hid_dev = hdev;
4006 	hidpp->name = hdev->name;
4007 	hidpp->quirks = id->driver_data;
4008 	hid_set_drvdata(hdev, hidpp);
4009 
4010 	ret = hid_parse(hdev);
4011 	if (ret) {
4012 		hid_err(hdev, "%s:parse failed\n", __func__);
4013 		return ret;
4014 	}
4015 
4016 	/*
4017 	 * Make sure the device is HID++ capable, otherwise treat as generic HID
4018 	 */
4019 	hidpp->supported_reports = hidpp_validate_device(hdev);
4020 
4021 	if (!hidpp->supported_reports) {
4022 		hid_set_drvdata(hdev, NULL);
4023 		devm_kfree(&hdev->dev, hidpp);
4024 		return hid_hw_start(hdev, HID_CONNECT_DEFAULT);
4025 	}
4026 
4027 	if (id->group == HID_GROUP_LOGITECH_DJ_DEVICE)
4028 		hidpp->quirks |= HIDPP_QUIRK_UNIFYING;
4029 
4030 	if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE &&
4031 	    hidpp_application_equals(hdev, HID_GD_MOUSE))
4032 		hidpp->quirks |= HIDPP_QUIRK_HIDPP_WHEELS |
4033 				 HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS;
4034 
4035 	if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE &&
4036 	    hidpp_application_equals(hdev, HID_GD_KEYBOARD))
4037 		hidpp->quirks |= HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS;
4038 
4039 	if (disable_raw_mode) {
4040 		hidpp->quirks &= ~HIDPP_QUIRK_CLASS_WTP;
4041 		hidpp->quirks &= ~HIDPP_QUIRK_NO_HIDINPUT;
4042 	}
4043 
4044 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) {
4045 		ret = wtp_allocate(hdev, id);
4046 		if (ret)
4047 			return ret;
4048 	} else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) {
4049 		ret = k400_allocate(hdev);
4050 		if (ret)
4051 			return ret;
4052 	}
4053 
4054 	INIT_WORK(&hidpp->work, delayed_work_cb);
4055 	mutex_init(&hidpp->send_mutex);
4056 	init_waitqueue_head(&hidpp->wait);
4057 
4058 	/* indicates we are handling the battery properties in the kernel */
4059 	ret = sysfs_create_group(&hdev->dev.kobj, &ps_attribute_group);
4060 	if (ret)
4061 		hid_warn(hdev, "Cannot allocate sysfs group for %s\n",
4062 			 hdev->name);
4063 
4064 	/*
4065 	 * Plain USB connections need to actually call start and open
4066 	 * on the transport driver to allow incoming data.
4067 	 */
4068 	ret = hid_hw_start(hdev, 0);
4069 	if (ret) {
4070 		hid_err(hdev, "hw start failed\n");
4071 		goto hid_hw_start_fail;
4072 	}
4073 
4074 	ret = hid_hw_open(hdev);
4075 	if (ret < 0) {
4076 		dev_err(&hdev->dev, "%s:hid_hw_open returned error:%d\n",
4077 			__func__, ret);
4078 		goto hid_hw_open_fail;
4079 	}
4080 
4081 	/* Allow incoming packets */
4082 	hid_device_io_start(hdev);
4083 
4084 	if (hidpp->quirks & HIDPP_QUIRK_UNIFYING)
4085 		hidpp_unifying_init(hidpp);
4086 
4087 	connected = hidpp_root_get_protocol_version(hidpp) == 0;
4088 	atomic_set(&hidpp->connected, connected);
4089 	if (!(hidpp->quirks & HIDPP_QUIRK_UNIFYING)) {
4090 		if (!connected) {
4091 			ret = -ENODEV;
4092 			hid_err(hdev, "Device not connected");
4093 			goto hid_hw_init_fail;
4094 		}
4095 
4096 		hidpp_overwrite_name(hdev);
4097 	}
4098 
4099 	if (connected && hidpp->protocol_major >= 2) {
4100 		ret = hidpp_set_wireless_feature_index(hidpp);
4101 		if (ret == -ENOENT)
4102 			hidpp->wireless_feature_index = 0;
4103 		else if (ret)
4104 			goto hid_hw_init_fail;
4105 	}
4106 
4107 	if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)) {
4108 		ret = wtp_get_config(hidpp);
4109 		if (ret)
4110 			goto hid_hw_init_fail;
4111 	} else if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_G920)) {
4112 		ret = g920_get_config(hidpp, &data);
4113 		if (ret)
4114 			goto hid_hw_init_fail;
4115 	}
4116 
4117 	hidpp_connect_event(hidpp);
4118 
4119 	/* Reset the HID node state */
4120 	hid_device_io_stop(hdev);
4121 	hid_hw_close(hdev);
4122 	hid_hw_stop(hdev);
4123 
4124 	if (hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT)
4125 		connect_mask &= ~HID_CONNECT_HIDINPUT;
4126 
4127 	/* Now export the actual inputs and hidraw nodes to the world */
4128 	ret = hid_hw_start(hdev, connect_mask);
4129 	if (ret) {
4130 		hid_err(hdev, "%s:hid_hw_start returned error\n", __func__);
4131 		goto hid_hw_start_fail;
4132 	}
4133 
4134 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
4135 		ret = hidpp_ff_init(hidpp, &data);
4136 		if (ret)
4137 			hid_warn(hidpp->hid_dev,
4138 		     "Unable to initialize force feedback support, errno %d\n",
4139 				 ret);
4140 	}
4141 
4142 	return ret;
4143 
4144 hid_hw_init_fail:
4145 	hid_hw_close(hdev);
4146 hid_hw_open_fail:
4147 	hid_hw_stop(hdev);
4148 hid_hw_start_fail:
4149 	sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group);
4150 	cancel_work_sync(&hidpp->work);
4151 	mutex_destroy(&hidpp->send_mutex);
4152 	return ret;
4153 }
4154 
4155 static void hidpp_remove(struct hid_device *hdev)
4156 {
4157 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
4158 
4159 	if (!hidpp)
4160 		return hid_hw_stop(hdev);
4161 
4162 	sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group);
4163 
4164 	hid_hw_stop(hdev);
4165 	cancel_work_sync(&hidpp->work);
4166 	mutex_destroy(&hidpp->send_mutex);
4167 }
4168 
4169 #define LDJ_DEVICE(product) \
4170 	HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE, \
4171 		   USB_VENDOR_ID_LOGITECH, (product))
4172 
4173 #define L27MHZ_DEVICE(product) \
4174 	HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_27MHZ_DEVICE, \
4175 		   USB_VENDOR_ID_LOGITECH, (product))
4176 
4177 static const struct hid_device_id hidpp_devices[] = {
4178 	{ /* wireless touchpad */
4179 	  LDJ_DEVICE(0x4011),
4180 	  .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT |
4181 			 HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS },
4182 	{ /* wireless touchpad T650 */
4183 	  LDJ_DEVICE(0x4101),
4184 	  .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT },
4185 	{ /* wireless touchpad T651 */
4186 	  HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH,
4187 		USB_DEVICE_ID_LOGITECH_T651),
4188 	  .driver_data = HIDPP_QUIRK_CLASS_WTP },
4189 	{ /* Mouse Logitech Anywhere MX */
4190 	  LDJ_DEVICE(0x1017), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
4191 	{ /* Mouse Logitech Cube */
4192 	  LDJ_DEVICE(0x4010), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
4193 	{ /* Mouse Logitech M335 */
4194 	  LDJ_DEVICE(0x4050), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4195 	{ /* Mouse Logitech M515 */
4196 	  LDJ_DEVICE(0x4007), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
4197 	{ /* Mouse logitech M560 */
4198 	  LDJ_DEVICE(0x402d),
4199 	  .driver_data = HIDPP_QUIRK_DELAYED_INIT | HIDPP_QUIRK_CLASS_M560
4200 		| HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
4201 	{ /* Mouse Logitech M705 (firmware RQM17) */
4202 	  LDJ_DEVICE(0x101b), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
4203 	{ /* Mouse Logitech M705 (firmware RQM67) */
4204 	  LDJ_DEVICE(0x406d), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4205 	{ /* Mouse Logitech M720 */
4206 	  LDJ_DEVICE(0x405e), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4207 	{ /* Mouse Logitech MX Anywhere 2 */
4208 	  LDJ_DEVICE(0x404a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4209 	{ LDJ_DEVICE(0x4072), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4210 	{ LDJ_DEVICE(0xb013), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4211 	{ LDJ_DEVICE(0xb018), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4212 	{ LDJ_DEVICE(0xb01f), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4213 	{ /* Mouse Logitech MX Anywhere 2S */
4214 	  LDJ_DEVICE(0x406a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4215 	{ /* Mouse Logitech MX Master */
4216 	  LDJ_DEVICE(0x4041), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4217 	{ LDJ_DEVICE(0x4060), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4218 	{ LDJ_DEVICE(0x4071), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4219 	{ /* Mouse Logitech MX Master 2S */
4220 	  LDJ_DEVICE(0x4069), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4221 	{ /* Mouse Logitech MX Master 3 */
4222 	  LDJ_DEVICE(0x4082), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4223 	{ /* Mouse Logitech Performance MX */
4224 	  LDJ_DEVICE(0x101a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
4225 	{ /* Keyboard logitech K400 */
4226 	  LDJ_DEVICE(0x4024),
4227 	  .driver_data = HIDPP_QUIRK_CLASS_K400 },
4228 	{ /* Solar Keyboard Logitech K750 */
4229 	  LDJ_DEVICE(0x4002),
4230 	  .driver_data = HIDPP_QUIRK_CLASS_K750 },
4231 	{ /* Keyboard MX5000 (Bluetooth-receiver in HID proxy mode) */
4232 	  LDJ_DEVICE(0xb305),
4233 	  .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4234 	{ /* Dinovo Edge (Bluetooth-receiver in HID proxy mode) */
4235 	  LDJ_DEVICE(0xb309),
4236 	  .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4237 	{ /* Keyboard MX5500 (Bluetooth-receiver in HID proxy mode) */
4238 	  LDJ_DEVICE(0xb30b),
4239 	  .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4240 
4241 	{ LDJ_DEVICE(HID_ANY_ID) },
4242 
4243 	{ /* Keyboard LX501 (Y-RR53) */
4244 	  L27MHZ_DEVICE(0x0049),
4245 	  .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL },
4246 	{ /* Keyboard MX3000 (Y-RAM74) */
4247 	  L27MHZ_DEVICE(0x0057),
4248 	  .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL },
4249 	{ /* Keyboard MX3200 (Y-RAV80) */
4250 	  L27MHZ_DEVICE(0x005c),
4251 	  .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL },
4252 	{ /* S510 Media Remote */
4253 	  L27MHZ_DEVICE(0x00fe),
4254 	  .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL },
4255 
4256 	{ L27MHZ_DEVICE(HID_ANY_ID) },
4257 
4258 	{ /* Logitech G403 Wireless Gaming Mouse over USB */
4259 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC082) },
4260 	{ /* Logitech G703 Gaming Mouse over USB */
4261 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC087) },
4262 	{ /* Logitech G703 Hero Gaming Mouse over USB */
4263 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC090) },
4264 	{ /* Logitech G900 Gaming Mouse over USB */
4265 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC081) },
4266 	{ /* Logitech G903 Gaming Mouse over USB */
4267 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC086) },
4268 	{ /* Logitech G903 Hero Gaming Mouse over USB */
4269 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC091) },
4270 	{ /* Logitech G920 Wheel over USB */
4271 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G920_WHEEL),
4272 		.driver_data = HIDPP_QUIRK_CLASS_G920 | HIDPP_QUIRK_FORCE_OUTPUT_REPORTS},
4273 	{ /* Logitech G Pro Gaming Mouse over USB */
4274 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC088) },
4275 
4276 	{ /* MX5000 keyboard over Bluetooth */
4277 	  HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb305),
4278 	  .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4279 	{ /* Dinovo Edge keyboard over Bluetooth */
4280 	  HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb309),
4281 	  .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4282 	{ /* MX5500 keyboard over Bluetooth */
4283 	  HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb30b),
4284 	  .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4285 	{ /* M-RCQ142 V470 Cordless Laser Mouse over Bluetooth */
4286 	  HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb008) },
4287 	{ /* MX Master mouse over Bluetooth */
4288 	  HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb012),
4289 	  .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4290 	{ /* MX Ergo trackball over Bluetooth */
4291 	  HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb01d) },
4292 	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb01e),
4293 	  .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4294 	{ /* MX Master 3 mouse over Bluetooth */
4295 	  HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb023),
4296 	  .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4297 	{}
4298 };
4299 
4300 MODULE_DEVICE_TABLE(hid, hidpp_devices);
4301 
4302 static const struct hid_usage_id hidpp_usages[] = {
4303 	{ HID_GD_WHEEL, EV_REL, REL_WHEEL_HI_RES },
4304 	{ HID_ANY_ID - 1, HID_ANY_ID - 1, HID_ANY_ID - 1}
4305 };
4306 
4307 static struct hid_driver hidpp_driver = {
4308 	.name = "logitech-hidpp-device",
4309 	.id_table = hidpp_devices,
4310 	.report_fixup = hidpp_report_fixup,
4311 	.probe = hidpp_probe,
4312 	.remove = hidpp_remove,
4313 	.raw_event = hidpp_raw_event,
4314 	.usage_table = hidpp_usages,
4315 	.event = hidpp_event,
4316 	.input_configured = hidpp_input_configured,
4317 	.input_mapping = hidpp_input_mapping,
4318 	.input_mapped = hidpp_input_mapped,
4319 };
4320 
4321 module_hid_driver(hidpp_driver);
4322