1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * HIDPP protocol for Logitech Unifying receivers 4 * 5 * Copyright (c) 2011 Logitech (c) 6 * Copyright (c) 2012-2013 Google (c) 7 * Copyright (c) 2013-2014 Red Hat Inc. 8 */ 9 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/device.h> 14 #include <linux/input.h> 15 #include <linux/usb.h> 16 #include <linux/hid.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/sched.h> 20 #include <linux/sched/clock.h> 21 #include <linux/kfifo.h> 22 #include <linux/input/mt.h> 23 #include <linux/workqueue.h> 24 #include <linux/atomic.h> 25 #include <linux/fixp-arith.h> 26 #include <asm/unaligned.h> 27 #include "usbhid/usbhid.h" 28 #include "hid-ids.h" 29 30 MODULE_LICENSE("GPL"); 31 MODULE_AUTHOR("Benjamin Tissoires <benjamin.tissoires@gmail.com>"); 32 MODULE_AUTHOR("Nestor Lopez Casado <nlopezcasad@logitech.com>"); 33 34 static bool disable_raw_mode; 35 module_param(disable_raw_mode, bool, 0644); 36 MODULE_PARM_DESC(disable_raw_mode, 37 "Disable Raw mode reporting for touchpads and keep firmware gestures."); 38 39 static bool disable_tap_to_click; 40 module_param(disable_tap_to_click, bool, 0644); 41 MODULE_PARM_DESC(disable_tap_to_click, 42 "Disable Tap-To-Click mode reporting for touchpads (only on the K400 currently)."); 43 44 #define REPORT_ID_HIDPP_SHORT 0x10 45 #define REPORT_ID_HIDPP_LONG 0x11 46 #define REPORT_ID_HIDPP_VERY_LONG 0x12 47 48 #define HIDPP_REPORT_SHORT_LENGTH 7 49 #define HIDPP_REPORT_LONG_LENGTH 20 50 #define HIDPP_REPORT_VERY_LONG_MAX_LENGTH 64 51 52 #define HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS 0x03 53 #define HIDPP_SUB_ID_ROLLER 0x05 54 #define HIDPP_SUB_ID_MOUSE_EXTRA_BTNS 0x06 55 56 #define HIDPP_QUIRK_CLASS_WTP BIT(0) 57 #define HIDPP_QUIRK_CLASS_M560 BIT(1) 58 #define HIDPP_QUIRK_CLASS_K400 BIT(2) 59 #define HIDPP_QUIRK_CLASS_G920 BIT(3) 60 #define HIDPP_QUIRK_CLASS_K750 BIT(4) 61 62 /* bits 2..20 are reserved for classes */ 63 /* #define HIDPP_QUIRK_CONNECT_EVENTS BIT(21) disabled */ 64 #define HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS BIT(22) 65 #define HIDPP_QUIRK_NO_HIDINPUT BIT(23) 66 #define HIDPP_QUIRK_FORCE_OUTPUT_REPORTS BIT(24) 67 #define HIDPP_QUIRK_UNIFYING BIT(25) 68 #define HIDPP_QUIRK_HI_RES_SCROLL_1P0 BIT(26) 69 #define HIDPP_QUIRK_HI_RES_SCROLL_X2120 BIT(27) 70 #define HIDPP_QUIRK_HI_RES_SCROLL_X2121 BIT(28) 71 #define HIDPP_QUIRK_HIDPP_WHEELS BIT(29) 72 #define HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS BIT(30) 73 #define HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS BIT(31) 74 75 /* These are just aliases for now */ 76 #define HIDPP_QUIRK_KBD_SCROLL_WHEEL HIDPP_QUIRK_HIDPP_WHEELS 77 #define HIDPP_QUIRK_KBD_ZOOM_WHEEL HIDPP_QUIRK_HIDPP_WHEELS 78 79 /* Convenience constant to check for any high-res support. */ 80 #define HIDPP_QUIRK_HI_RES_SCROLL (HIDPP_QUIRK_HI_RES_SCROLL_1P0 | \ 81 HIDPP_QUIRK_HI_RES_SCROLL_X2120 | \ 82 HIDPP_QUIRK_HI_RES_SCROLL_X2121) 83 84 #define HIDPP_QUIRK_DELAYED_INIT HIDPP_QUIRK_NO_HIDINPUT 85 86 #define HIDPP_CAPABILITY_HIDPP10_BATTERY BIT(0) 87 #define HIDPP_CAPABILITY_HIDPP20_BATTERY BIT(1) 88 #define HIDPP_CAPABILITY_BATTERY_MILEAGE BIT(2) 89 #define HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS BIT(3) 90 91 /* 92 * There are two hidpp protocols in use, the first version hidpp10 is known 93 * as register access protocol or RAP, the second version hidpp20 is known as 94 * feature access protocol or FAP 95 * 96 * Most older devices (including the Unifying usb receiver) use the RAP protocol 97 * where as most newer devices use the FAP protocol. Both protocols are 98 * compatible with the underlying transport, which could be usb, Unifiying, or 99 * bluetooth. The message lengths are defined by the hid vendor specific report 100 * descriptor for the HIDPP_SHORT report type (total message lenth 7 bytes) and 101 * the HIDPP_LONG report type (total message length 20 bytes) 102 * 103 * The RAP protocol uses both report types, whereas the FAP only uses HIDPP_LONG 104 * messages. The Unifying receiver itself responds to RAP messages (device index 105 * is 0xFF for the receiver), and all messages (short or long) with a device 106 * index between 1 and 6 are passed untouched to the corresponding paired 107 * Unifying device. 108 * 109 * The paired device can be RAP or FAP, it will receive the message untouched 110 * from the Unifiying receiver. 111 */ 112 113 struct fap { 114 u8 feature_index; 115 u8 funcindex_clientid; 116 u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U]; 117 }; 118 119 struct rap { 120 u8 sub_id; 121 u8 reg_address; 122 u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U]; 123 }; 124 125 struct hidpp_report { 126 u8 report_id; 127 u8 device_index; 128 union { 129 struct fap fap; 130 struct rap rap; 131 u8 rawbytes[sizeof(struct fap)]; 132 }; 133 } __packed; 134 135 struct hidpp_battery { 136 u8 feature_index; 137 u8 solar_feature_index; 138 struct power_supply_desc desc; 139 struct power_supply *ps; 140 char name[64]; 141 int status; 142 int capacity; 143 int level; 144 bool online; 145 }; 146 147 /** 148 * struct hidpp_scroll_counter - Utility class for processing high-resolution 149 * scroll events. 150 * @dev: the input device for which events should be reported. 151 * @wheel_multiplier: the scalar multiplier to be applied to each wheel event 152 * @remainder: counts the number of high-resolution units moved since the last 153 * low-resolution event (REL_WHEEL or REL_HWHEEL) was sent. Should 154 * only be used by class methods. 155 * @direction: direction of last movement (1 or -1) 156 * @last_time: last event time, used to reset remainder after inactivity 157 */ 158 struct hidpp_scroll_counter { 159 int wheel_multiplier; 160 int remainder; 161 int direction; 162 unsigned long long last_time; 163 }; 164 165 struct hidpp_device { 166 struct hid_device *hid_dev; 167 struct input_dev *input; 168 struct mutex send_mutex; 169 void *send_receive_buf; 170 char *name; /* will never be NULL and should not be freed */ 171 wait_queue_head_t wait; 172 int very_long_report_length; 173 bool answer_available; 174 u8 protocol_major; 175 u8 protocol_minor; 176 177 void *private_data; 178 179 struct work_struct work; 180 struct kfifo delayed_work_fifo; 181 atomic_t connected; 182 struct input_dev *delayed_input; 183 184 unsigned long quirks; 185 unsigned long capabilities; 186 187 struct hidpp_battery battery; 188 struct hidpp_scroll_counter vertical_wheel_counter; 189 }; 190 191 /* HID++ 1.0 error codes */ 192 #define HIDPP_ERROR 0x8f 193 #define HIDPP_ERROR_SUCCESS 0x00 194 #define HIDPP_ERROR_INVALID_SUBID 0x01 195 #define HIDPP_ERROR_INVALID_ADRESS 0x02 196 #define HIDPP_ERROR_INVALID_VALUE 0x03 197 #define HIDPP_ERROR_CONNECT_FAIL 0x04 198 #define HIDPP_ERROR_TOO_MANY_DEVICES 0x05 199 #define HIDPP_ERROR_ALREADY_EXISTS 0x06 200 #define HIDPP_ERROR_BUSY 0x07 201 #define HIDPP_ERROR_UNKNOWN_DEVICE 0x08 202 #define HIDPP_ERROR_RESOURCE_ERROR 0x09 203 #define HIDPP_ERROR_REQUEST_UNAVAILABLE 0x0a 204 #define HIDPP_ERROR_INVALID_PARAM_VALUE 0x0b 205 #define HIDPP_ERROR_WRONG_PIN_CODE 0x0c 206 /* HID++ 2.0 error codes */ 207 #define HIDPP20_ERROR 0xff 208 209 static void hidpp_connect_event(struct hidpp_device *hidpp_dev); 210 211 static int __hidpp_send_report(struct hid_device *hdev, 212 struct hidpp_report *hidpp_report) 213 { 214 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 215 int fields_count, ret; 216 217 switch (hidpp_report->report_id) { 218 case REPORT_ID_HIDPP_SHORT: 219 fields_count = HIDPP_REPORT_SHORT_LENGTH; 220 break; 221 case REPORT_ID_HIDPP_LONG: 222 fields_count = HIDPP_REPORT_LONG_LENGTH; 223 break; 224 case REPORT_ID_HIDPP_VERY_LONG: 225 fields_count = hidpp->very_long_report_length; 226 break; 227 default: 228 return -ENODEV; 229 } 230 231 /* 232 * set the device_index as the receiver, it will be overwritten by 233 * hid_hw_request if needed 234 */ 235 hidpp_report->device_index = 0xff; 236 237 if (hidpp->quirks & HIDPP_QUIRK_FORCE_OUTPUT_REPORTS) { 238 ret = hid_hw_output_report(hdev, (u8 *)hidpp_report, fields_count); 239 } else { 240 ret = hid_hw_raw_request(hdev, hidpp_report->report_id, 241 (u8 *)hidpp_report, fields_count, HID_OUTPUT_REPORT, 242 HID_REQ_SET_REPORT); 243 } 244 245 return ret == fields_count ? 0 : -1; 246 } 247 248 /** 249 * hidpp_send_message_sync() returns 0 in case of success, and something else 250 * in case of a failure. 251 * - If ' something else' is positive, that means that an error has been raised 252 * by the protocol itself. 253 * - If ' something else' is negative, that means that we had a classic error 254 * (-ENOMEM, -EPIPE, etc...) 255 */ 256 static int hidpp_send_message_sync(struct hidpp_device *hidpp, 257 struct hidpp_report *message, 258 struct hidpp_report *response) 259 { 260 int ret; 261 262 mutex_lock(&hidpp->send_mutex); 263 264 hidpp->send_receive_buf = response; 265 hidpp->answer_available = false; 266 267 /* 268 * So that we can later validate the answer when it arrives 269 * in hidpp_raw_event 270 */ 271 *response = *message; 272 273 ret = __hidpp_send_report(hidpp->hid_dev, message); 274 275 if (ret) { 276 dbg_hid("__hidpp_send_report returned err: %d\n", ret); 277 memset(response, 0, sizeof(struct hidpp_report)); 278 goto exit; 279 } 280 281 if (!wait_event_timeout(hidpp->wait, hidpp->answer_available, 282 5*HZ)) { 283 dbg_hid("%s:timeout waiting for response\n", __func__); 284 memset(response, 0, sizeof(struct hidpp_report)); 285 ret = -ETIMEDOUT; 286 } 287 288 if (response->report_id == REPORT_ID_HIDPP_SHORT && 289 response->rap.sub_id == HIDPP_ERROR) { 290 ret = response->rap.params[1]; 291 dbg_hid("%s:got hidpp error %02X\n", __func__, ret); 292 goto exit; 293 } 294 295 if ((response->report_id == REPORT_ID_HIDPP_LONG || 296 response->report_id == REPORT_ID_HIDPP_VERY_LONG) && 297 response->fap.feature_index == HIDPP20_ERROR) { 298 ret = response->fap.params[1]; 299 dbg_hid("%s:got hidpp 2.0 error %02X\n", __func__, ret); 300 goto exit; 301 } 302 303 exit: 304 mutex_unlock(&hidpp->send_mutex); 305 return ret; 306 307 } 308 309 static int hidpp_send_fap_command_sync(struct hidpp_device *hidpp, 310 u8 feat_index, u8 funcindex_clientid, u8 *params, int param_count, 311 struct hidpp_report *response) 312 { 313 struct hidpp_report *message; 314 int ret; 315 316 if (param_count > sizeof(message->fap.params)) 317 return -EINVAL; 318 319 message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL); 320 if (!message) 321 return -ENOMEM; 322 323 if (param_count > (HIDPP_REPORT_LONG_LENGTH - 4)) 324 message->report_id = REPORT_ID_HIDPP_VERY_LONG; 325 else 326 message->report_id = REPORT_ID_HIDPP_LONG; 327 message->fap.feature_index = feat_index; 328 message->fap.funcindex_clientid = funcindex_clientid; 329 memcpy(&message->fap.params, params, param_count); 330 331 ret = hidpp_send_message_sync(hidpp, message, response); 332 kfree(message); 333 return ret; 334 } 335 336 static int hidpp_send_rap_command_sync(struct hidpp_device *hidpp_dev, 337 u8 report_id, u8 sub_id, u8 reg_address, u8 *params, int param_count, 338 struct hidpp_report *response) 339 { 340 struct hidpp_report *message; 341 int ret, max_count; 342 343 switch (report_id) { 344 case REPORT_ID_HIDPP_SHORT: 345 max_count = HIDPP_REPORT_SHORT_LENGTH - 4; 346 break; 347 case REPORT_ID_HIDPP_LONG: 348 max_count = HIDPP_REPORT_LONG_LENGTH - 4; 349 break; 350 case REPORT_ID_HIDPP_VERY_LONG: 351 max_count = hidpp_dev->very_long_report_length - 4; 352 break; 353 default: 354 return -EINVAL; 355 } 356 357 if (param_count > max_count) 358 return -EINVAL; 359 360 message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL); 361 if (!message) 362 return -ENOMEM; 363 message->report_id = report_id; 364 message->rap.sub_id = sub_id; 365 message->rap.reg_address = reg_address; 366 memcpy(&message->rap.params, params, param_count); 367 368 ret = hidpp_send_message_sync(hidpp_dev, message, response); 369 kfree(message); 370 return ret; 371 } 372 373 static void delayed_work_cb(struct work_struct *work) 374 { 375 struct hidpp_device *hidpp = container_of(work, struct hidpp_device, 376 work); 377 hidpp_connect_event(hidpp); 378 } 379 380 static inline bool hidpp_match_answer(struct hidpp_report *question, 381 struct hidpp_report *answer) 382 { 383 return (answer->fap.feature_index == question->fap.feature_index) && 384 (answer->fap.funcindex_clientid == question->fap.funcindex_clientid); 385 } 386 387 static inline bool hidpp_match_error(struct hidpp_report *question, 388 struct hidpp_report *answer) 389 { 390 return ((answer->rap.sub_id == HIDPP_ERROR) || 391 (answer->fap.feature_index == HIDPP20_ERROR)) && 392 (answer->fap.funcindex_clientid == question->fap.feature_index) && 393 (answer->fap.params[0] == question->fap.funcindex_clientid); 394 } 395 396 static inline bool hidpp_report_is_connect_event(struct hidpp_report *report) 397 { 398 return (report->report_id == REPORT_ID_HIDPP_SHORT) && 399 (report->rap.sub_id == 0x41); 400 } 401 402 /** 403 * hidpp_prefix_name() prefixes the current given name with "Logitech ". 404 */ 405 static void hidpp_prefix_name(char **name, int name_length) 406 { 407 #define PREFIX_LENGTH 9 /* "Logitech " */ 408 409 int new_length; 410 char *new_name; 411 412 if (name_length > PREFIX_LENGTH && 413 strncmp(*name, "Logitech ", PREFIX_LENGTH) == 0) 414 /* The prefix has is already in the name */ 415 return; 416 417 new_length = PREFIX_LENGTH + name_length; 418 new_name = kzalloc(new_length, GFP_KERNEL); 419 if (!new_name) 420 return; 421 422 snprintf(new_name, new_length, "Logitech %s", *name); 423 424 kfree(*name); 425 426 *name = new_name; 427 } 428 429 /** 430 * hidpp_scroll_counter_handle_scroll() - Send high- and low-resolution scroll 431 * events given a high-resolution wheel 432 * movement. 433 * @counter: a hid_scroll_counter struct describing the wheel. 434 * @hi_res_value: the movement of the wheel, in the mouse's high-resolution 435 * units. 436 * 437 * Given a high-resolution movement, this function converts the movement into 438 * fractions of 120 and emits high-resolution scroll events for the input 439 * device. It also uses the multiplier from &struct hid_scroll_counter to 440 * emit low-resolution scroll events when appropriate for 441 * backwards-compatibility with userspace input libraries. 442 */ 443 static void hidpp_scroll_counter_handle_scroll(struct input_dev *input_dev, 444 struct hidpp_scroll_counter *counter, 445 int hi_res_value) 446 { 447 int low_res_value, remainder, direction; 448 unsigned long long now, previous; 449 450 hi_res_value = hi_res_value * 120/counter->wheel_multiplier; 451 input_report_rel(input_dev, REL_WHEEL_HI_RES, hi_res_value); 452 453 remainder = counter->remainder; 454 direction = hi_res_value > 0 ? 1 : -1; 455 456 now = sched_clock(); 457 previous = counter->last_time; 458 counter->last_time = now; 459 /* 460 * Reset the remainder after a period of inactivity or when the 461 * direction changes. This prevents the REL_WHEEL emulation point 462 * from sliding for devices that don't always provide the same 463 * number of movements per detent. 464 */ 465 if (now - previous > 1000000000 || direction != counter->direction) 466 remainder = 0; 467 468 counter->direction = direction; 469 remainder += hi_res_value; 470 471 /* Some wheels will rest 7/8ths of a detent from the previous detent 472 * after slow movement, so we want the threshold for low-res events to 473 * be in the middle between two detents (e.g. after 4/8ths) as 474 * opposed to on the detents themselves (8/8ths). 475 */ 476 if (abs(remainder) >= 60) { 477 /* Add (or subtract) 1 because we want to trigger when the wheel 478 * is half-way to the next detent (i.e. scroll 1 detent after a 479 * 1/2 detent movement, 2 detents after a 1 1/2 detent movement, 480 * etc.). 481 */ 482 low_res_value = remainder / 120; 483 if (low_res_value == 0) 484 low_res_value = (hi_res_value > 0 ? 1 : -1); 485 input_report_rel(input_dev, REL_WHEEL, low_res_value); 486 remainder -= low_res_value * 120; 487 } 488 counter->remainder = remainder; 489 } 490 491 /* -------------------------------------------------------------------------- */ 492 /* HIDP++ 1.0 commands */ 493 /* -------------------------------------------------------------------------- */ 494 495 #define HIDPP_SET_REGISTER 0x80 496 #define HIDPP_GET_REGISTER 0x81 497 #define HIDPP_SET_LONG_REGISTER 0x82 498 #define HIDPP_GET_LONG_REGISTER 0x83 499 500 /** 501 * hidpp10_set_register - Modify a HID++ 1.0 register. 502 * @hidpp_dev: the device to set the register on. 503 * @register_address: the address of the register to modify. 504 * @byte: the byte of the register to modify. Should be less than 3. 505 * @mask: mask of the bits to modify 506 * @value: new values for the bits in mask 507 * Return: 0 if successful, otherwise a negative error code. 508 */ 509 static int hidpp10_set_register(struct hidpp_device *hidpp_dev, 510 u8 register_address, u8 byte, u8 mask, u8 value) 511 { 512 struct hidpp_report response; 513 int ret; 514 u8 params[3] = { 0 }; 515 516 ret = hidpp_send_rap_command_sync(hidpp_dev, 517 REPORT_ID_HIDPP_SHORT, 518 HIDPP_GET_REGISTER, 519 register_address, 520 NULL, 0, &response); 521 if (ret) 522 return ret; 523 524 memcpy(params, response.rap.params, 3); 525 526 params[byte] &= ~mask; 527 params[byte] |= value & mask; 528 529 return hidpp_send_rap_command_sync(hidpp_dev, 530 REPORT_ID_HIDPP_SHORT, 531 HIDPP_SET_REGISTER, 532 register_address, 533 params, 3, &response); 534 } 535 536 #define HIDPP_REG_ENABLE_REPORTS 0x00 537 #define HIDPP_ENABLE_CONSUMER_REPORT BIT(0) 538 #define HIDPP_ENABLE_WHEEL_REPORT BIT(2) 539 #define HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT BIT(3) 540 #define HIDPP_ENABLE_BAT_REPORT BIT(4) 541 #define HIDPP_ENABLE_HWHEEL_REPORT BIT(5) 542 543 static int hidpp10_enable_battery_reporting(struct hidpp_device *hidpp_dev) 544 { 545 return hidpp10_set_register(hidpp_dev, HIDPP_REG_ENABLE_REPORTS, 0, 546 HIDPP_ENABLE_BAT_REPORT, HIDPP_ENABLE_BAT_REPORT); 547 } 548 549 #define HIDPP_REG_FEATURES 0x01 550 #define HIDPP_ENABLE_SPECIAL_BUTTON_FUNC BIT(1) 551 #define HIDPP_ENABLE_FAST_SCROLL BIT(6) 552 553 /* On HID++ 1.0 devices, high-res scroll was called "scrolling acceleration". */ 554 static int hidpp10_enable_scrolling_acceleration(struct hidpp_device *hidpp_dev) 555 { 556 return hidpp10_set_register(hidpp_dev, HIDPP_REG_FEATURES, 0, 557 HIDPP_ENABLE_FAST_SCROLL, HIDPP_ENABLE_FAST_SCROLL); 558 } 559 560 #define HIDPP_REG_BATTERY_STATUS 0x07 561 562 static int hidpp10_battery_status_map_level(u8 param) 563 { 564 int level; 565 566 switch (param) { 567 case 1 ... 2: 568 level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; 569 break; 570 case 3 ... 4: 571 level = POWER_SUPPLY_CAPACITY_LEVEL_LOW; 572 break; 573 case 5 ... 6: 574 level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; 575 break; 576 case 7: 577 level = POWER_SUPPLY_CAPACITY_LEVEL_HIGH; 578 break; 579 default: 580 level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 581 } 582 583 return level; 584 } 585 586 static int hidpp10_battery_status_map_status(u8 param) 587 { 588 int status; 589 590 switch (param) { 591 case 0x00: 592 /* discharging (in use) */ 593 status = POWER_SUPPLY_STATUS_DISCHARGING; 594 break; 595 case 0x21: /* (standard) charging */ 596 case 0x24: /* fast charging */ 597 case 0x25: /* slow charging */ 598 status = POWER_SUPPLY_STATUS_CHARGING; 599 break; 600 case 0x26: /* topping charge */ 601 case 0x22: /* charge complete */ 602 status = POWER_SUPPLY_STATUS_FULL; 603 break; 604 case 0x20: /* unknown */ 605 status = POWER_SUPPLY_STATUS_UNKNOWN; 606 break; 607 /* 608 * 0x01...0x1F = reserved (not charging) 609 * 0x23 = charging error 610 * 0x27..0xff = reserved 611 */ 612 default: 613 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 614 break; 615 } 616 617 return status; 618 } 619 620 static int hidpp10_query_battery_status(struct hidpp_device *hidpp) 621 { 622 struct hidpp_report response; 623 int ret, status; 624 625 ret = hidpp_send_rap_command_sync(hidpp, 626 REPORT_ID_HIDPP_SHORT, 627 HIDPP_GET_REGISTER, 628 HIDPP_REG_BATTERY_STATUS, 629 NULL, 0, &response); 630 if (ret) 631 return ret; 632 633 hidpp->battery.level = 634 hidpp10_battery_status_map_level(response.rap.params[0]); 635 status = hidpp10_battery_status_map_status(response.rap.params[1]); 636 hidpp->battery.status = status; 637 /* the capacity is only available when discharging or full */ 638 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 639 status == POWER_SUPPLY_STATUS_FULL; 640 641 return 0; 642 } 643 644 #define HIDPP_REG_BATTERY_MILEAGE 0x0D 645 646 static int hidpp10_battery_mileage_map_status(u8 param) 647 { 648 int status; 649 650 switch (param >> 6) { 651 case 0x00: 652 /* discharging (in use) */ 653 status = POWER_SUPPLY_STATUS_DISCHARGING; 654 break; 655 case 0x01: /* charging */ 656 status = POWER_SUPPLY_STATUS_CHARGING; 657 break; 658 case 0x02: /* charge complete */ 659 status = POWER_SUPPLY_STATUS_FULL; 660 break; 661 /* 662 * 0x03 = charging error 663 */ 664 default: 665 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 666 break; 667 } 668 669 return status; 670 } 671 672 static int hidpp10_query_battery_mileage(struct hidpp_device *hidpp) 673 { 674 struct hidpp_report response; 675 int ret, status; 676 677 ret = hidpp_send_rap_command_sync(hidpp, 678 REPORT_ID_HIDPP_SHORT, 679 HIDPP_GET_REGISTER, 680 HIDPP_REG_BATTERY_MILEAGE, 681 NULL, 0, &response); 682 if (ret) 683 return ret; 684 685 hidpp->battery.capacity = response.rap.params[0]; 686 status = hidpp10_battery_mileage_map_status(response.rap.params[2]); 687 hidpp->battery.status = status; 688 /* the capacity is only available when discharging or full */ 689 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 690 status == POWER_SUPPLY_STATUS_FULL; 691 692 return 0; 693 } 694 695 static int hidpp10_battery_event(struct hidpp_device *hidpp, u8 *data, int size) 696 { 697 struct hidpp_report *report = (struct hidpp_report *)data; 698 int status, capacity, level; 699 bool changed; 700 701 if (report->report_id != REPORT_ID_HIDPP_SHORT) 702 return 0; 703 704 switch (report->rap.sub_id) { 705 case HIDPP_REG_BATTERY_STATUS: 706 capacity = hidpp->battery.capacity; 707 level = hidpp10_battery_status_map_level(report->rawbytes[1]); 708 status = hidpp10_battery_status_map_status(report->rawbytes[2]); 709 break; 710 case HIDPP_REG_BATTERY_MILEAGE: 711 capacity = report->rap.params[0]; 712 level = hidpp->battery.level; 713 status = hidpp10_battery_mileage_map_status(report->rawbytes[3]); 714 break; 715 default: 716 return 0; 717 } 718 719 changed = capacity != hidpp->battery.capacity || 720 level != hidpp->battery.level || 721 status != hidpp->battery.status; 722 723 /* the capacity is only available when discharging or full */ 724 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 725 status == POWER_SUPPLY_STATUS_FULL; 726 727 if (changed) { 728 hidpp->battery.level = level; 729 hidpp->battery.status = status; 730 if (hidpp->battery.ps) 731 power_supply_changed(hidpp->battery.ps); 732 } 733 734 return 0; 735 } 736 737 #define HIDPP_REG_PAIRING_INFORMATION 0xB5 738 #define HIDPP_EXTENDED_PAIRING 0x30 739 #define HIDPP_DEVICE_NAME 0x40 740 741 static char *hidpp_unifying_get_name(struct hidpp_device *hidpp_dev) 742 { 743 struct hidpp_report response; 744 int ret; 745 u8 params[1] = { HIDPP_DEVICE_NAME }; 746 char *name; 747 int len; 748 749 ret = hidpp_send_rap_command_sync(hidpp_dev, 750 REPORT_ID_HIDPP_SHORT, 751 HIDPP_GET_LONG_REGISTER, 752 HIDPP_REG_PAIRING_INFORMATION, 753 params, 1, &response); 754 if (ret) 755 return NULL; 756 757 len = response.rap.params[1]; 758 759 if (2 + len > sizeof(response.rap.params)) 760 return NULL; 761 762 if (len < 4) /* logitech devices are usually at least Xddd */ 763 return NULL; 764 765 name = kzalloc(len + 1, GFP_KERNEL); 766 if (!name) 767 return NULL; 768 769 memcpy(name, &response.rap.params[2], len); 770 771 /* include the terminating '\0' */ 772 hidpp_prefix_name(&name, len + 1); 773 774 return name; 775 } 776 777 static int hidpp_unifying_get_serial(struct hidpp_device *hidpp, u32 *serial) 778 { 779 struct hidpp_report response; 780 int ret; 781 u8 params[1] = { HIDPP_EXTENDED_PAIRING }; 782 783 ret = hidpp_send_rap_command_sync(hidpp, 784 REPORT_ID_HIDPP_SHORT, 785 HIDPP_GET_LONG_REGISTER, 786 HIDPP_REG_PAIRING_INFORMATION, 787 params, 1, &response); 788 if (ret) 789 return ret; 790 791 /* 792 * We don't care about LE or BE, we will output it as a string 793 * with %4phD, so we need to keep the order. 794 */ 795 *serial = *((u32 *)&response.rap.params[1]); 796 return 0; 797 } 798 799 static int hidpp_unifying_init(struct hidpp_device *hidpp) 800 { 801 struct hid_device *hdev = hidpp->hid_dev; 802 const char *name; 803 u32 serial; 804 int ret; 805 806 ret = hidpp_unifying_get_serial(hidpp, &serial); 807 if (ret) 808 return ret; 809 810 snprintf(hdev->uniq, sizeof(hdev->uniq), "%04x-%4phD", 811 hdev->product, &serial); 812 dbg_hid("HID++ Unifying: Got serial: %s\n", hdev->uniq); 813 814 name = hidpp_unifying_get_name(hidpp); 815 if (!name) 816 return -EIO; 817 818 snprintf(hdev->name, sizeof(hdev->name), "%s", name); 819 dbg_hid("HID++ Unifying: Got name: %s\n", name); 820 821 kfree(name); 822 return 0; 823 } 824 825 /* -------------------------------------------------------------------------- */ 826 /* 0x0000: Root */ 827 /* -------------------------------------------------------------------------- */ 828 829 #define HIDPP_PAGE_ROOT 0x0000 830 #define HIDPP_PAGE_ROOT_IDX 0x00 831 832 #define CMD_ROOT_GET_FEATURE 0x01 833 #define CMD_ROOT_GET_PROTOCOL_VERSION 0x11 834 835 static int hidpp_root_get_feature(struct hidpp_device *hidpp, u16 feature, 836 u8 *feature_index, u8 *feature_type) 837 { 838 struct hidpp_report response; 839 int ret; 840 u8 params[2] = { feature >> 8, feature & 0x00FF }; 841 842 ret = hidpp_send_fap_command_sync(hidpp, 843 HIDPP_PAGE_ROOT_IDX, 844 CMD_ROOT_GET_FEATURE, 845 params, 2, &response); 846 if (ret) 847 return ret; 848 849 if (response.fap.params[0] == 0) 850 return -ENOENT; 851 852 *feature_index = response.fap.params[0]; 853 *feature_type = response.fap.params[1]; 854 855 return ret; 856 } 857 858 static int hidpp_root_get_protocol_version(struct hidpp_device *hidpp) 859 { 860 const u8 ping_byte = 0x5a; 861 u8 ping_data[3] = { 0, 0, ping_byte }; 862 struct hidpp_report response; 863 int ret; 864 865 ret = hidpp_send_rap_command_sync(hidpp, 866 REPORT_ID_HIDPP_SHORT, 867 HIDPP_PAGE_ROOT_IDX, 868 CMD_ROOT_GET_PROTOCOL_VERSION, 869 ping_data, sizeof(ping_data), &response); 870 871 if (ret == HIDPP_ERROR_INVALID_SUBID) { 872 hidpp->protocol_major = 1; 873 hidpp->protocol_minor = 0; 874 goto print_version; 875 } 876 877 /* the device might not be connected */ 878 if (ret == HIDPP_ERROR_RESOURCE_ERROR) 879 return -EIO; 880 881 if (ret > 0) { 882 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 883 __func__, ret); 884 return -EPROTO; 885 } 886 if (ret) 887 return ret; 888 889 if (response.rap.params[2] != ping_byte) { 890 hid_err(hidpp->hid_dev, "%s: ping mismatch 0x%02x != 0x%02x\n", 891 __func__, response.rap.params[2], ping_byte); 892 return -EPROTO; 893 } 894 895 hidpp->protocol_major = response.rap.params[0]; 896 hidpp->protocol_minor = response.rap.params[1]; 897 898 print_version: 899 hid_info(hidpp->hid_dev, "HID++ %u.%u device connected.\n", 900 hidpp->protocol_major, hidpp->protocol_minor); 901 return 0; 902 } 903 904 /* -------------------------------------------------------------------------- */ 905 /* 0x0005: GetDeviceNameType */ 906 /* -------------------------------------------------------------------------- */ 907 908 #define HIDPP_PAGE_GET_DEVICE_NAME_TYPE 0x0005 909 910 #define CMD_GET_DEVICE_NAME_TYPE_GET_COUNT 0x01 911 #define CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME 0x11 912 #define CMD_GET_DEVICE_NAME_TYPE_GET_TYPE 0x21 913 914 static int hidpp_devicenametype_get_count(struct hidpp_device *hidpp, 915 u8 feature_index, u8 *nameLength) 916 { 917 struct hidpp_report response; 918 int ret; 919 920 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 921 CMD_GET_DEVICE_NAME_TYPE_GET_COUNT, NULL, 0, &response); 922 923 if (ret > 0) { 924 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 925 __func__, ret); 926 return -EPROTO; 927 } 928 if (ret) 929 return ret; 930 931 *nameLength = response.fap.params[0]; 932 933 return ret; 934 } 935 936 static int hidpp_devicenametype_get_device_name(struct hidpp_device *hidpp, 937 u8 feature_index, u8 char_index, char *device_name, int len_buf) 938 { 939 struct hidpp_report response; 940 int ret, i; 941 int count; 942 943 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 944 CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME, &char_index, 1, 945 &response); 946 947 if (ret > 0) { 948 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 949 __func__, ret); 950 return -EPROTO; 951 } 952 if (ret) 953 return ret; 954 955 switch (response.report_id) { 956 case REPORT_ID_HIDPP_VERY_LONG: 957 count = hidpp->very_long_report_length - 4; 958 break; 959 case REPORT_ID_HIDPP_LONG: 960 count = HIDPP_REPORT_LONG_LENGTH - 4; 961 break; 962 case REPORT_ID_HIDPP_SHORT: 963 count = HIDPP_REPORT_SHORT_LENGTH - 4; 964 break; 965 default: 966 return -EPROTO; 967 } 968 969 if (len_buf < count) 970 count = len_buf; 971 972 for (i = 0; i < count; i++) 973 device_name[i] = response.fap.params[i]; 974 975 return count; 976 } 977 978 static char *hidpp_get_device_name(struct hidpp_device *hidpp) 979 { 980 u8 feature_type; 981 u8 feature_index; 982 u8 __name_length; 983 char *name; 984 unsigned index = 0; 985 int ret; 986 987 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_GET_DEVICE_NAME_TYPE, 988 &feature_index, &feature_type); 989 if (ret) 990 return NULL; 991 992 ret = hidpp_devicenametype_get_count(hidpp, feature_index, 993 &__name_length); 994 if (ret) 995 return NULL; 996 997 name = kzalloc(__name_length + 1, GFP_KERNEL); 998 if (!name) 999 return NULL; 1000 1001 while (index < __name_length) { 1002 ret = hidpp_devicenametype_get_device_name(hidpp, 1003 feature_index, index, name + index, 1004 __name_length - index); 1005 if (ret <= 0) { 1006 kfree(name); 1007 return NULL; 1008 } 1009 index += ret; 1010 } 1011 1012 /* include the terminating '\0' */ 1013 hidpp_prefix_name(&name, __name_length + 1); 1014 1015 return name; 1016 } 1017 1018 /* -------------------------------------------------------------------------- */ 1019 /* 0x1000: Battery level status */ 1020 /* -------------------------------------------------------------------------- */ 1021 1022 #define HIDPP_PAGE_BATTERY_LEVEL_STATUS 0x1000 1023 1024 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS 0x00 1025 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY 0x10 1026 1027 #define EVENT_BATTERY_LEVEL_STATUS_BROADCAST 0x00 1028 1029 #define FLAG_BATTERY_LEVEL_DISABLE_OSD BIT(0) 1030 #define FLAG_BATTERY_LEVEL_MILEAGE BIT(1) 1031 #define FLAG_BATTERY_LEVEL_RECHARGEABLE BIT(2) 1032 1033 static int hidpp_map_battery_level(int capacity) 1034 { 1035 if (capacity < 11) 1036 return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; 1037 /* 1038 * The spec says this should be < 31 but some devices report 30 1039 * with brand new batteries and Windows reports 30 as "Good". 1040 */ 1041 else if (capacity < 30) 1042 return POWER_SUPPLY_CAPACITY_LEVEL_LOW; 1043 else if (capacity < 81) 1044 return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; 1045 return POWER_SUPPLY_CAPACITY_LEVEL_FULL; 1046 } 1047 1048 static int hidpp20_batterylevel_map_status_capacity(u8 data[3], int *capacity, 1049 int *next_capacity, 1050 int *level) 1051 { 1052 int status; 1053 1054 *capacity = data[0]; 1055 *next_capacity = data[1]; 1056 *level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 1057 1058 /* When discharging, we can rely on the device reported capacity. 1059 * For all other states the device reports 0 (unknown). 1060 */ 1061 switch (data[2]) { 1062 case 0: /* discharging (in use) */ 1063 status = POWER_SUPPLY_STATUS_DISCHARGING; 1064 *level = hidpp_map_battery_level(*capacity); 1065 break; 1066 case 1: /* recharging */ 1067 status = POWER_SUPPLY_STATUS_CHARGING; 1068 break; 1069 case 2: /* charge in final stage */ 1070 status = POWER_SUPPLY_STATUS_CHARGING; 1071 break; 1072 case 3: /* charge complete */ 1073 status = POWER_SUPPLY_STATUS_FULL; 1074 *level = POWER_SUPPLY_CAPACITY_LEVEL_FULL; 1075 *capacity = 100; 1076 break; 1077 case 4: /* recharging below optimal speed */ 1078 status = POWER_SUPPLY_STATUS_CHARGING; 1079 break; 1080 /* 5 = invalid battery type 1081 6 = thermal error 1082 7 = other charging error */ 1083 default: 1084 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 1085 break; 1086 } 1087 1088 return status; 1089 } 1090 1091 static int hidpp20_batterylevel_get_battery_capacity(struct hidpp_device *hidpp, 1092 u8 feature_index, 1093 int *status, 1094 int *capacity, 1095 int *next_capacity, 1096 int *level) 1097 { 1098 struct hidpp_report response; 1099 int ret; 1100 u8 *params = (u8 *)response.fap.params; 1101 1102 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1103 CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS, 1104 NULL, 0, &response); 1105 /* Ignore these intermittent errors */ 1106 if (ret == HIDPP_ERROR_RESOURCE_ERROR) 1107 return -EIO; 1108 if (ret > 0) { 1109 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1110 __func__, ret); 1111 return -EPROTO; 1112 } 1113 if (ret) 1114 return ret; 1115 1116 *status = hidpp20_batterylevel_map_status_capacity(params, capacity, 1117 next_capacity, 1118 level); 1119 1120 return 0; 1121 } 1122 1123 static int hidpp20_batterylevel_get_battery_info(struct hidpp_device *hidpp, 1124 u8 feature_index) 1125 { 1126 struct hidpp_report response; 1127 int ret; 1128 u8 *params = (u8 *)response.fap.params; 1129 unsigned int level_count, flags; 1130 1131 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1132 CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY, 1133 NULL, 0, &response); 1134 if (ret > 0) { 1135 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1136 __func__, ret); 1137 return -EPROTO; 1138 } 1139 if (ret) 1140 return ret; 1141 1142 level_count = params[0]; 1143 flags = params[1]; 1144 1145 if (level_count < 10 || !(flags & FLAG_BATTERY_LEVEL_MILEAGE)) 1146 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS; 1147 else 1148 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE; 1149 1150 return 0; 1151 } 1152 1153 static int hidpp20_query_battery_info(struct hidpp_device *hidpp) 1154 { 1155 u8 feature_type; 1156 int ret; 1157 int status, capacity, next_capacity, level; 1158 1159 if (hidpp->battery.feature_index == 0xff) { 1160 ret = hidpp_root_get_feature(hidpp, 1161 HIDPP_PAGE_BATTERY_LEVEL_STATUS, 1162 &hidpp->battery.feature_index, 1163 &feature_type); 1164 if (ret) 1165 return ret; 1166 } 1167 1168 ret = hidpp20_batterylevel_get_battery_capacity(hidpp, 1169 hidpp->battery.feature_index, 1170 &status, &capacity, 1171 &next_capacity, &level); 1172 if (ret) 1173 return ret; 1174 1175 ret = hidpp20_batterylevel_get_battery_info(hidpp, 1176 hidpp->battery.feature_index); 1177 if (ret) 1178 return ret; 1179 1180 hidpp->battery.status = status; 1181 hidpp->battery.capacity = capacity; 1182 hidpp->battery.level = level; 1183 /* the capacity is only available when discharging or full */ 1184 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 1185 status == POWER_SUPPLY_STATUS_FULL; 1186 1187 return 0; 1188 } 1189 1190 static int hidpp20_battery_event(struct hidpp_device *hidpp, 1191 u8 *data, int size) 1192 { 1193 struct hidpp_report *report = (struct hidpp_report *)data; 1194 int status, capacity, next_capacity, level; 1195 bool changed; 1196 1197 if (report->fap.feature_index != hidpp->battery.feature_index || 1198 report->fap.funcindex_clientid != EVENT_BATTERY_LEVEL_STATUS_BROADCAST) 1199 return 0; 1200 1201 status = hidpp20_batterylevel_map_status_capacity(report->fap.params, 1202 &capacity, 1203 &next_capacity, 1204 &level); 1205 1206 /* the capacity is only available when discharging or full */ 1207 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 1208 status == POWER_SUPPLY_STATUS_FULL; 1209 1210 changed = capacity != hidpp->battery.capacity || 1211 level != hidpp->battery.level || 1212 status != hidpp->battery.status; 1213 1214 if (changed) { 1215 hidpp->battery.level = level; 1216 hidpp->battery.capacity = capacity; 1217 hidpp->battery.status = status; 1218 if (hidpp->battery.ps) 1219 power_supply_changed(hidpp->battery.ps); 1220 } 1221 1222 return 0; 1223 } 1224 1225 static enum power_supply_property hidpp_battery_props[] = { 1226 POWER_SUPPLY_PROP_ONLINE, 1227 POWER_SUPPLY_PROP_STATUS, 1228 POWER_SUPPLY_PROP_SCOPE, 1229 POWER_SUPPLY_PROP_MODEL_NAME, 1230 POWER_SUPPLY_PROP_MANUFACTURER, 1231 POWER_SUPPLY_PROP_SERIAL_NUMBER, 1232 0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY, */ 1233 0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY_LEVEL, */ 1234 }; 1235 1236 static int hidpp_battery_get_property(struct power_supply *psy, 1237 enum power_supply_property psp, 1238 union power_supply_propval *val) 1239 { 1240 struct hidpp_device *hidpp = power_supply_get_drvdata(psy); 1241 int ret = 0; 1242 1243 switch(psp) { 1244 case POWER_SUPPLY_PROP_STATUS: 1245 val->intval = hidpp->battery.status; 1246 break; 1247 case POWER_SUPPLY_PROP_CAPACITY: 1248 val->intval = hidpp->battery.capacity; 1249 break; 1250 case POWER_SUPPLY_PROP_CAPACITY_LEVEL: 1251 val->intval = hidpp->battery.level; 1252 break; 1253 case POWER_SUPPLY_PROP_SCOPE: 1254 val->intval = POWER_SUPPLY_SCOPE_DEVICE; 1255 break; 1256 case POWER_SUPPLY_PROP_ONLINE: 1257 val->intval = hidpp->battery.online; 1258 break; 1259 case POWER_SUPPLY_PROP_MODEL_NAME: 1260 if (!strncmp(hidpp->name, "Logitech ", 9)) 1261 val->strval = hidpp->name + 9; 1262 else 1263 val->strval = hidpp->name; 1264 break; 1265 case POWER_SUPPLY_PROP_MANUFACTURER: 1266 val->strval = "Logitech"; 1267 break; 1268 case POWER_SUPPLY_PROP_SERIAL_NUMBER: 1269 val->strval = hidpp->hid_dev->uniq; 1270 break; 1271 default: 1272 ret = -EINVAL; 1273 break; 1274 } 1275 1276 return ret; 1277 } 1278 1279 /* -------------------------------------------------------------------------- */ 1280 /* 0x2120: Hi-resolution scrolling */ 1281 /* -------------------------------------------------------------------------- */ 1282 1283 #define HIDPP_PAGE_HI_RESOLUTION_SCROLLING 0x2120 1284 1285 #define CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE 0x10 1286 1287 static int hidpp_hrs_set_highres_scrolling_mode(struct hidpp_device *hidpp, 1288 bool enabled, u8 *multiplier) 1289 { 1290 u8 feature_index; 1291 u8 feature_type; 1292 int ret; 1293 u8 params[1]; 1294 struct hidpp_report response; 1295 1296 ret = hidpp_root_get_feature(hidpp, 1297 HIDPP_PAGE_HI_RESOLUTION_SCROLLING, 1298 &feature_index, 1299 &feature_type); 1300 if (ret) 1301 return ret; 1302 1303 params[0] = enabled ? BIT(0) : 0; 1304 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1305 CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE, 1306 params, sizeof(params), &response); 1307 if (ret) 1308 return ret; 1309 *multiplier = response.fap.params[1]; 1310 return 0; 1311 } 1312 1313 /* -------------------------------------------------------------------------- */ 1314 /* 0x2121: HiRes Wheel */ 1315 /* -------------------------------------------------------------------------- */ 1316 1317 #define HIDPP_PAGE_HIRES_WHEEL 0x2121 1318 1319 #define CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY 0x00 1320 #define CMD_HIRES_WHEEL_SET_WHEEL_MODE 0x20 1321 1322 static int hidpp_hrw_get_wheel_capability(struct hidpp_device *hidpp, 1323 u8 *multiplier) 1324 { 1325 u8 feature_index; 1326 u8 feature_type; 1327 int ret; 1328 struct hidpp_report response; 1329 1330 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL, 1331 &feature_index, &feature_type); 1332 if (ret) 1333 goto return_default; 1334 1335 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1336 CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY, 1337 NULL, 0, &response); 1338 if (ret) 1339 goto return_default; 1340 1341 *multiplier = response.fap.params[0]; 1342 return 0; 1343 return_default: 1344 hid_warn(hidpp->hid_dev, 1345 "Couldn't get wheel multiplier (error %d)\n", ret); 1346 return ret; 1347 } 1348 1349 static int hidpp_hrw_set_wheel_mode(struct hidpp_device *hidpp, bool invert, 1350 bool high_resolution, bool use_hidpp) 1351 { 1352 u8 feature_index; 1353 u8 feature_type; 1354 int ret; 1355 u8 params[1]; 1356 struct hidpp_report response; 1357 1358 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL, 1359 &feature_index, &feature_type); 1360 if (ret) 1361 return ret; 1362 1363 params[0] = (invert ? BIT(2) : 0) | 1364 (high_resolution ? BIT(1) : 0) | 1365 (use_hidpp ? BIT(0) : 0); 1366 1367 return hidpp_send_fap_command_sync(hidpp, feature_index, 1368 CMD_HIRES_WHEEL_SET_WHEEL_MODE, 1369 params, sizeof(params), &response); 1370 } 1371 1372 /* -------------------------------------------------------------------------- */ 1373 /* 0x4301: Solar Keyboard */ 1374 /* -------------------------------------------------------------------------- */ 1375 1376 #define HIDPP_PAGE_SOLAR_KEYBOARD 0x4301 1377 1378 #define CMD_SOLAR_SET_LIGHT_MEASURE 0x00 1379 1380 #define EVENT_SOLAR_BATTERY_BROADCAST 0x00 1381 #define EVENT_SOLAR_BATTERY_LIGHT_MEASURE 0x10 1382 #define EVENT_SOLAR_CHECK_LIGHT_BUTTON 0x20 1383 1384 static int hidpp_solar_request_battery_event(struct hidpp_device *hidpp) 1385 { 1386 struct hidpp_report response; 1387 u8 params[2] = { 1, 1 }; 1388 u8 feature_type; 1389 int ret; 1390 1391 if (hidpp->battery.feature_index == 0xff) { 1392 ret = hidpp_root_get_feature(hidpp, 1393 HIDPP_PAGE_SOLAR_KEYBOARD, 1394 &hidpp->battery.solar_feature_index, 1395 &feature_type); 1396 if (ret) 1397 return ret; 1398 } 1399 1400 ret = hidpp_send_fap_command_sync(hidpp, 1401 hidpp->battery.solar_feature_index, 1402 CMD_SOLAR_SET_LIGHT_MEASURE, 1403 params, 2, &response); 1404 if (ret > 0) { 1405 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1406 __func__, ret); 1407 return -EPROTO; 1408 } 1409 if (ret) 1410 return ret; 1411 1412 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE; 1413 1414 return 0; 1415 } 1416 1417 static int hidpp_solar_battery_event(struct hidpp_device *hidpp, 1418 u8 *data, int size) 1419 { 1420 struct hidpp_report *report = (struct hidpp_report *)data; 1421 int capacity, lux, status; 1422 u8 function; 1423 1424 function = report->fap.funcindex_clientid; 1425 1426 1427 if (report->fap.feature_index != hidpp->battery.solar_feature_index || 1428 !(function == EVENT_SOLAR_BATTERY_BROADCAST || 1429 function == EVENT_SOLAR_BATTERY_LIGHT_MEASURE || 1430 function == EVENT_SOLAR_CHECK_LIGHT_BUTTON)) 1431 return 0; 1432 1433 capacity = report->fap.params[0]; 1434 1435 switch (function) { 1436 case EVENT_SOLAR_BATTERY_LIGHT_MEASURE: 1437 lux = (report->fap.params[1] << 8) | report->fap.params[2]; 1438 if (lux > 200) 1439 status = POWER_SUPPLY_STATUS_CHARGING; 1440 else 1441 status = POWER_SUPPLY_STATUS_DISCHARGING; 1442 break; 1443 case EVENT_SOLAR_CHECK_LIGHT_BUTTON: 1444 default: 1445 if (capacity < hidpp->battery.capacity) 1446 status = POWER_SUPPLY_STATUS_DISCHARGING; 1447 else 1448 status = POWER_SUPPLY_STATUS_CHARGING; 1449 1450 } 1451 1452 if (capacity == 100) 1453 status = POWER_SUPPLY_STATUS_FULL; 1454 1455 hidpp->battery.online = true; 1456 if (capacity != hidpp->battery.capacity || 1457 status != hidpp->battery.status) { 1458 hidpp->battery.capacity = capacity; 1459 hidpp->battery.status = status; 1460 if (hidpp->battery.ps) 1461 power_supply_changed(hidpp->battery.ps); 1462 } 1463 1464 return 0; 1465 } 1466 1467 /* -------------------------------------------------------------------------- */ 1468 /* 0x6010: Touchpad FW items */ 1469 /* -------------------------------------------------------------------------- */ 1470 1471 #define HIDPP_PAGE_TOUCHPAD_FW_ITEMS 0x6010 1472 1473 #define CMD_TOUCHPAD_FW_ITEMS_SET 0x10 1474 1475 struct hidpp_touchpad_fw_items { 1476 uint8_t presence; 1477 uint8_t desired_state; 1478 uint8_t state; 1479 uint8_t persistent; 1480 }; 1481 1482 /** 1483 * send a set state command to the device by reading the current items->state 1484 * field. items is then filled with the current state. 1485 */ 1486 static int hidpp_touchpad_fw_items_set(struct hidpp_device *hidpp, 1487 u8 feature_index, 1488 struct hidpp_touchpad_fw_items *items) 1489 { 1490 struct hidpp_report response; 1491 int ret; 1492 u8 *params = (u8 *)response.fap.params; 1493 1494 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1495 CMD_TOUCHPAD_FW_ITEMS_SET, &items->state, 1, &response); 1496 1497 if (ret > 0) { 1498 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1499 __func__, ret); 1500 return -EPROTO; 1501 } 1502 if (ret) 1503 return ret; 1504 1505 items->presence = params[0]; 1506 items->desired_state = params[1]; 1507 items->state = params[2]; 1508 items->persistent = params[3]; 1509 1510 return 0; 1511 } 1512 1513 /* -------------------------------------------------------------------------- */ 1514 /* 0x6100: TouchPadRawXY */ 1515 /* -------------------------------------------------------------------------- */ 1516 1517 #define HIDPP_PAGE_TOUCHPAD_RAW_XY 0x6100 1518 1519 #define CMD_TOUCHPAD_GET_RAW_INFO 0x01 1520 #define CMD_TOUCHPAD_SET_RAW_REPORT_STATE 0x21 1521 1522 #define EVENT_TOUCHPAD_RAW_XY 0x00 1523 1524 #define TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT 0x01 1525 #define TOUCHPAD_RAW_XY_ORIGIN_UPPER_LEFT 0x03 1526 1527 struct hidpp_touchpad_raw_info { 1528 u16 x_size; 1529 u16 y_size; 1530 u8 z_range; 1531 u8 area_range; 1532 u8 timestamp_unit; 1533 u8 maxcontacts; 1534 u8 origin; 1535 u16 res; 1536 }; 1537 1538 struct hidpp_touchpad_raw_xy_finger { 1539 u8 contact_type; 1540 u8 contact_status; 1541 u16 x; 1542 u16 y; 1543 u8 z; 1544 u8 area; 1545 u8 finger_id; 1546 }; 1547 1548 struct hidpp_touchpad_raw_xy { 1549 u16 timestamp; 1550 struct hidpp_touchpad_raw_xy_finger fingers[2]; 1551 u8 spurious_flag; 1552 u8 end_of_frame; 1553 u8 finger_count; 1554 u8 button; 1555 }; 1556 1557 static int hidpp_touchpad_get_raw_info(struct hidpp_device *hidpp, 1558 u8 feature_index, struct hidpp_touchpad_raw_info *raw_info) 1559 { 1560 struct hidpp_report response; 1561 int ret; 1562 u8 *params = (u8 *)response.fap.params; 1563 1564 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1565 CMD_TOUCHPAD_GET_RAW_INFO, NULL, 0, &response); 1566 1567 if (ret > 0) { 1568 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1569 __func__, ret); 1570 return -EPROTO; 1571 } 1572 if (ret) 1573 return ret; 1574 1575 raw_info->x_size = get_unaligned_be16(¶ms[0]); 1576 raw_info->y_size = get_unaligned_be16(¶ms[2]); 1577 raw_info->z_range = params[4]; 1578 raw_info->area_range = params[5]; 1579 raw_info->maxcontacts = params[7]; 1580 raw_info->origin = params[8]; 1581 /* res is given in unit per inch */ 1582 raw_info->res = get_unaligned_be16(¶ms[13]) * 2 / 51; 1583 1584 return ret; 1585 } 1586 1587 static int hidpp_touchpad_set_raw_report_state(struct hidpp_device *hidpp_dev, 1588 u8 feature_index, bool send_raw_reports, 1589 bool sensor_enhanced_settings) 1590 { 1591 struct hidpp_report response; 1592 1593 /* 1594 * Params: 1595 * bit 0 - enable raw 1596 * bit 1 - 16bit Z, no area 1597 * bit 2 - enhanced sensitivity 1598 * bit 3 - width, height (4 bits each) instead of area 1599 * bit 4 - send raw + gestures (degrades smoothness) 1600 * remaining bits - reserved 1601 */ 1602 u8 params = send_raw_reports | (sensor_enhanced_settings << 2); 1603 1604 return hidpp_send_fap_command_sync(hidpp_dev, feature_index, 1605 CMD_TOUCHPAD_SET_RAW_REPORT_STATE, ¶ms, 1, &response); 1606 } 1607 1608 static void hidpp_touchpad_touch_event(u8 *data, 1609 struct hidpp_touchpad_raw_xy_finger *finger) 1610 { 1611 u8 x_m = data[0] << 2; 1612 u8 y_m = data[2] << 2; 1613 1614 finger->x = x_m << 6 | data[1]; 1615 finger->y = y_m << 6 | data[3]; 1616 1617 finger->contact_type = data[0] >> 6; 1618 finger->contact_status = data[2] >> 6; 1619 1620 finger->z = data[4]; 1621 finger->area = data[5]; 1622 finger->finger_id = data[6] >> 4; 1623 } 1624 1625 static void hidpp_touchpad_raw_xy_event(struct hidpp_device *hidpp_dev, 1626 u8 *data, struct hidpp_touchpad_raw_xy *raw_xy) 1627 { 1628 memset(raw_xy, 0, sizeof(struct hidpp_touchpad_raw_xy)); 1629 raw_xy->end_of_frame = data[8] & 0x01; 1630 raw_xy->spurious_flag = (data[8] >> 1) & 0x01; 1631 raw_xy->finger_count = data[15] & 0x0f; 1632 raw_xy->button = (data[8] >> 2) & 0x01; 1633 1634 if (raw_xy->finger_count) { 1635 hidpp_touchpad_touch_event(&data[2], &raw_xy->fingers[0]); 1636 hidpp_touchpad_touch_event(&data[9], &raw_xy->fingers[1]); 1637 } 1638 } 1639 1640 /* -------------------------------------------------------------------------- */ 1641 /* 0x8123: Force feedback support */ 1642 /* -------------------------------------------------------------------------- */ 1643 1644 #define HIDPP_FF_GET_INFO 0x01 1645 #define HIDPP_FF_RESET_ALL 0x11 1646 #define HIDPP_FF_DOWNLOAD_EFFECT 0x21 1647 #define HIDPP_FF_SET_EFFECT_STATE 0x31 1648 #define HIDPP_FF_DESTROY_EFFECT 0x41 1649 #define HIDPP_FF_GET_APERTURE 0x51 1650 #define HIDPP_FF_SET_APERTURE 0x61 1651 #define HIDPP_FF_GET_GLOBAL_GAINS 0x71 1652 #define HIDPP_FF_SET_GLOBAL_GAINS 0x81 1653 1654 #define HIDPP_FF_EFFECT_STATE_GET 0x00 1655 #define HIDPP_FF_EFFECT_STATE_STOP 0x01 1656 #define HIDPP_FF_EFFECT_STATE_PLAY 0x02 1657 #define HIDPP_FF_EFFECT_STATE_PAUSE 0x03 1658 1659 #define HIDPP_FF_EFFECT_CONSTANT 0x00 1660 #define HIDPP_FF_EFFECT_PERIODIC_SINE 0x01 1661 #define HIDPP_FF_EFFECT_PERIODIC_SQUARE 0x02 1662 #define HIDPP_FF_EFFECT_PERIODIC_TRIANGLE 0x03 1663 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP 0x04 1664 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN 0x05 1665 #define HIDPP_FF_EFFECT_SPRING 0x06 1666 #define HIDPP_FF_EFFECT_DAMPER 0x07 1667 #define HIDPP_FF_EFFECT_FRICTION 0x08 1668 #define HIDPP_FF_EFFECT_INERTIA 0x09 1669 #define HIDPP_FF_EFFECT_RAMP 0x0A 1670 1671 #define HIDPP_FF_EFFECT_AUTOSTART 0x80 1672 1673 #define HIDPP_FF_EFFECTID_NONE -1 1674 #define HIDPP_FF_EFFECTID_AUTOCENTER -2 1675 #define HIDPP_AUTOCENTER_PARAMS_LENGTH 18 1676 1677 #define HIDPP_FF_MAX_PARAMS 20 1678 #define HIDPP_FF_RESERVED_SLOTS 1 1679 1680 struct hidpp_ff_private_data { 1681 struct hidpp_device *hidpp; 1682 u8 feature_index; 1683 u8 version; 1684 u16 gain; 1685 s16 range; 1686 u8 slot_autocenter; 1687 u8 num_effects; 1688 int *effect_ids; 1689 struct workqueue_struct *wq; 1690 atomic_t workqueue_size; 1691 }; 1692 1693 struct hidpp_ff_work_data { 1694 struct work_struct work; 1695 struct hidpp_ff_private_data *data; 1696 int effect_id; 1697 u8 command; 1698 u8 params[HIDPP_FF_MAX_PARAMS]; 1699 u8 size; 1700 }; 1701 1702 static const signed short hidpp_ff_effects[] = { 1703 FF_CONSTANT, 1704 FF_PERIODIC, 1705 FF_SINE, 1706 FF_SQUARE, 1707 FF_SAW_UP, 1708 FF_SAW_DOWN, 1709 FF_TRIANGLE, 1710 FF_SPRING, 1711 FF_DAMPER, 1712 FF_AUTOCENTER, 1713 FF_GAIN, 1714 -1 1715 }; 1716 1717 static const signed short hidpp_ff_effects_v2[] = { 1718 FF_RAMP, 1719 FF_FRICTION, 1720 FF_INERTIA, 1721 -1 1722 }; 1723 1724 static const u8 HIDPP_FF_CONDITION_CMDS[] = { 1725 HIDPP_FF_EFFECT_SPRING, 1726 HIDPP_FF_EFFECT_FRICTION, 1727 HIDPP_FF_EFFECT_DAMPER, 1728 HIDPP_FF_EFFECT_INERTIA 1729 }; 1730 1731 static const char *HIDPP_FF_CONDITION_NAMES[] = { 1732 "spring", 1733 "friction", 1734 "damper", 1735 "inertia" 1736 }; 1737 1738 1739 static u8 hidpp_ff_find_effect(struct hidpp_ff_private_data *data, int effect_id) 1740 { 1741 int i; 1742 1743 for (i = 0; i < data->num_effects; i++) 1744 if (data->effect_ids[i] == effect_id) 1745 return i+1; 1746 1747 return 0; 1748 } 1749 1750 static void hidpp_ff_work_handler(struct work_struct *w) 1751 { 1752 struct hidpp_ff_work_data *wd = container_of(w, struct hidpp_ff_work_data, work); 1753 struct hidpp_ff_private_data *data = wd->data; 1754 struct hidpp_report response; 1755 u8 slot; 1756 int ret; 1757 1758 /* add slot number if needed */ 1759 switch (wd->effect_id) { 1760 case HIDPP_FF_EFFECTID_AUTOCENTER: 1761 wd->params[0] = data->slot_autocenter; 1762 break; 1763 case HIDPP_FF_EFFECTID_NONE: 1764 /* leave slot as zero */ 1765 break; 1766 default: 1767 /* find current slot for effect */ 1768 wd->params[0] = hidpp_ff_find_effect(data, wd->effect_id); 1769 break; 1770 } 1771 1772 /* send command and wait for reply */ 1773 ret = hidpp_send_fap_command_sync(data->hidpp, data->feature_index, 1774 wd->command, wd->params, wd->size, &response); 1775 1776 if (ret) { 1777 hid_err(data->hidpp->hid_dev, "Failed to send command to device!\n"); 1778 goto out; 1779 } 1780 1781 /* parse return data */ 1782 switch (wd->command) { 1783 case HIDPP_FF_DOWNLOAD_EFFECT: 1784 slot = response.fap.params[0]; 1785 if (slot > 0 && slot <= data->num_effects) { 1786 if (wd->effect_id >= 0) 1787 /* regular effect uploaded */ 1788 data->effect_ids[slot-1] = wd->effect_id; 1789 else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER) 1790 /* autocenter spring uploaded */ 1791 data->slot_autocenter = slot; 1792 } 1793 break; 1794 case HIDPP_FF_DESTROY_EFFECT: 1795 if (wd->effect_id >= 0) 1796 /* regular effect destroyed */ 1797 data->effect_ids[wd->params[0]-1] = -1; 1798 else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER) 1799 /* autocenter spring destoyed */ 1800 data->slot_autocenter = 0; 1801 break; 1802 case HIDPP_FF_SET_GLOBAL_GAINS: 1803 data->gain = (wd->params[0] << 8) + wd->params[1]; 1804 break; 1805 case HIDPP_FF_SET_APERTURE: 1806 data->range = (wd->params[0] << 8) + wd->params[1]; 1807 break; 1808 default: 1809 /* no action needed */ 1810 break; 1811 } 1812 1813 out: 1814 atomic_dec(&data->workqueue_size); 1815 kfree(wd); 1816 } 1817 1818 static int hidpp_ff_queue_work(struct hidpp_ff_private_data *data, int effect_id, u8 command, u8 *params, u8 size) 1819 { 1820 struct hidpp_ff_work_data *wd = kzalloc(sizeof(*wd), GFP_KERNEL); 1821 int s; 1822 1823 if (!wd) 1824 return -ENOMEM; 1825 1826 INIT_WORK(&wd->work, hidpp_ff_work_handler); 1827 1828 wd->data = data; 1829 wd->effect_id = effect_id; 1830 wd->command = command; 1831 wd->size = size; 1832 memcpy(wd->params, params, size); 1833 1834 atomic_inc(&data->workqueue_size); 1835 queue_work(data->wq, &wd->work); 1836 1837 /* warn about excessive queue size */ 1838 s = atomic_read(&data->workqueue_size); 1839 if (s >= 20 && s % 20 == 0) 1840 hid_warn(data->hidpp->hid_dev, "Force feedback command queue contains %d commands, causing substantial delays!", s); 1841 1842 return 0; 1843 } 1844 1845 static int hidpp_ff_upload_effect(struct input_dev *dev, struct ff_effect *effect, struct ff_effect *old) 1846 { 1847 struct hidpp_ff_private_data *data = dev->ff->private; 1848 u8 params[20]; 1849 u8 size; 1850 int force; 1851 1852 /* set common parameters */ 1853 params[2] = effect->replay.length >> 8; 1854 params[3] = effect->replay.length & 255; 1855 params[4] = effect->replay.delay >> 8; 1856 params[5] = effect->replay.delay & 255; 1857 1858 switch (effect->type) { 1859 case FF_CONSTANT: 1860 force = (effect->u.constant.level * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 1861 params[1] = HIDPP_FF_EFFECT_CONSTANT; 1862 params[6] = force >> 8; 1863 params[7] = force & 255; 1864 params[8] = effect->u.constant.envelope.attack_level >> 7; 1865 params[9] = effect->u.constant.envelope.attack_length >> 8; 1866 params[10] = effect->u.constant.envelope.attack_length & 255; 1867 params[11] = effect->u.constant.envelope.fade_level >> 7; 1868 params[12] = effect->u.constant.envelope.fade_length >> 8; 1869 params[13] = effect->u.constant.envelope.fade_length & 255; 1870 size = 14; 1871 dbg_hid("Uploading constant force level=%d in dir %d = %d\n", 1872 effect->u.constant.level, 1873 effect->direction, force); 1874 dbg_hid(" envelope attack=(%d, %d ms) fade=(%d, %d ms)\n", 1875 effect->u.constant.envelope.attack_level, 1876 effect->u.constant.envelope.attack_length, 1877 effect->u.constant.envelope.fade_level, 1878 effect->u.constant.envelope.fade_length); 1879 break; 1880 case FF_PERIODIC: 1881 { 1882 switch (effect->u.periodic.waveform) { 1883 case FF_SINE: 1884 params[1] = HIDPP_FF_EFFECT_PERIODIC_SINE; 1885 break; 1886 case FF_SQUARE: 1887 params[1] = HIDPP_FF_EFFECT_PERIODIC_SQUARE; 1888 break; 1889 case FF_SAW_UP: 1890 params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP; 1891 break; 1892 case FF_SAW_DOWN: 1893 params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN; 1894 break; 1895 case FF_TRIANGLE: 1896 params[1] = HIDPP_FF_EFFECT_PERIODIC_TRIANGLE; 1897 break; 1898 default: 1899 hid_err(data->hidpp->hid_dev, "Unexpected periodic waveform type %i!\n", effect->u.periodic.waveform); 1900 return -EINVAL; 1901 } 1902 force = (effect->u.periodic.magnitude * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 1903 params[6] = effect->u.periodic.magnitude >> 8; 1904 params[7] = effect->u.periodic.magnitude & 255; 1905 params[8] = effect->u.periodic.offset >> 8; 1906 params[9] = effect->u.periodic.offset & 255; 1907 params[10] = effect->u.periodic.period >> 8; 1908 params[11] = effect->u.periodic.period & 255; 1909 params[12] = effect->u.periodic.phase >> 8; 1910 params[13] = effect->u.periodic.phase & 255; 1911 params[14] = effect->u.periodic.envelope.attack_level >> 7; 1912 params[15] = effect->u.periodic.envelope.attack_length >> 8; 1913 params[16] = effect->u.periodic.envelope.attack_length & 255; 1914 params[17] = effect->u.periodic.envelope.fade_level >> 7; 1915 params[18] = effect->u.periodic.envelope.fade_length >> 8; 1916 params[19] = effect->u.periodic.envelope.fade_length & 255; 1917 size = 20; 1918 dbg_hid("Uploading periodic force mag=%d/dir=%d, offset=%d, period=%d ms, phase=%d\n", 1919 effect->u.periodic.magnitude, effect->direction, 1920 effect->u.periodic.offset, 1921 effect->u.periodic.period, 1922 effect->u.periodic.phase); 1923 dbg_hid(" envelope attack=(%d, %d ms) fade=(%d, %d ms)\n", 1924 effect->u.periodic.envelope.attack_level, 1925 effect->u.periodic.envelope.attack_length, 1926 effect->u.periodic.envelope.fade_level, 1927 effect->u.periodic.envelope.fade_length); 1928 break; 1929 } 1930 case FF_RAMP: 1931 params[1] = HIDPP_FF_EFFECT_RAMP; 1932 force = (effect->u.ramp.start_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 1933 params[6] = force >> 8; 1934 params[7] = force & 255; 1935 force = (effect->u.ramp.end_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 1936 params[8] = force >> 8; 1937 params[9] = force & 255; 1938 params[10] = effect->u.ramp.envelope.attack_level >> 7; 1939 params[11] = effect->u.ramp.envelope.attack_length >> 8; 1940 params[12] = effect->u.ramp.envelope.attack_length & 255; 1941 params[13] = effect->u.ramp.envelope.fade_level >> 7; 1942 params[14] = effect->u.ramp.envelope.fade_length >> 8; 1943 params[15] = effect->u.ramp.envelope.fade_length & 255; 1944 size = 16; 1945 dbg_hid("Uploading ramp force level=%d -> %d in dir %d = %d\n", 1946 effect->u.ramp.start_level, 1947 effect->u.ramp.end_level, 1948 effect->direction, force); 1949 dbg_hid(" envelope attack=(%d, %d ms) fade=(%d, %d ms)\n", 1950 effect->u.ramp.envelope.attack_level, 1951 effect->u.ramp.envelope.attack_length, 1952 effect->u.ramp.envelope.fade_level, 1953 effect->u.ramp.envelope.fade_length); 1954 break; 1955 case FF_FRICTION: 1956 case FF_INERTIA: 1957 case FF_SPRING: 1958 case FF_DAMPER: 1959 params[1] = HIDPP_FF_CONDITION_CMDS[effect->type - FF_SPRING]; 1960 params[6] = effect->u.condition[0].left_saturation >> 9; 1961 params[7] = (effect->u.condition[0].left_saturation >> 1) & 255; 1962 params[8] = effect->u.condition[0].left_coeff >> 8; 1963 params[9] = effect->u.condition[0].left_coeff & 255; 1964 params[10] = effect->u.condition[0].deadband >> 9; 1965 params[11] = (effect->u.condition[0].deadband >> 1) & 255; 1966 params[12] = effect->u.condition[0].center >> 8; 1967 params[13] = effect->u.condition[0].center & 255; 1968 params[14] = effect->u.condition[0].right_coeff >> 8; 1969 params[15] = effect->u.condition[0].right_coeff & 255; 1970 params[16] = effect->u.condition[0].right_saturation >> 9; 1971 params[17] = (effect->u.condition[0].right_saturation >> 1) & 255; 1972 size = 18; 1973 dbg_hid("Uploading %s force left coeff=%d, left sat=%d, right coeff=%d, right sat=%d\n", 1974 HIDPP_FF_CONDITION_NAMES[effect->type - FF_SPRING], 1975 effect->u.condition[0].left_coeff, 1976 effect->u.condition[0].left_saturation, 1977 effect->u.condition[0].right_coeff, 1978 effect->u.condition[0].right_saturation); 1979 dbg_hid(" deadband=%d, center=%d\n", 1980 effect->u.condition[0].deadband, 1981 effect->u.condition[0].center); 1982 break; 1983 default: 1984 hid_err(data->hidpp->hid_dev, "Unexpected force type %i!\n", effect->type); 1985 return -EINVAL; 1986 } 1987 1988 return hidpp_ff_queue_work(data, effect->id, HIDPP_FF_DOWNLOAD_EFFECT, params, size); 1989 } 1990 1991 static int hidpp_ff_playback(struct input_dev *dev, int effect_id, int value) 1992 { 1993 struct hidpp_ff_private_data *data = dev->ff->private; 1994 u8 params[2]; 1995 1996 params[1] = value ? HIDPP_FF_EFFECT_STATE_PLAY : HIDPP_FF_EFFECT_STATE_STOP; 1997 1998 dbg_hid("St%sing playback of effect %d.\n", value?"art":"opp", effect_id); 1999 2000 return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_SET_EFFECT_STATE, params, ARRAY_SIZE(params)); 2001 } 2002 2003 static int hidpp_ff_erase_effect(struct input_dev *dev, int effect_id) 2004 { 2005 struct hidpp_ff_private_data *data = dev->ff->private; 2006 u8 slot = 0; 2007 2008 dbg_hid("Erasing effect %d.\n", effect_id); 2009 2010 return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_DESTROY_EFFECT, &slot, 1); 2011 } 2012 2013 static void hidpp_ff_set_autocenter(struct input_dev *dev, u16 magnitude) 2014 { 2015 struct hidpp_ff_private_data *data = dev->ff->private; 2016 u8 params[HIDPP_AUTOCENTER_PARAMS_LENGTH]; 2017 2018 dbg_hid("Setting autocenter to %d.\n", magnitude); 2019 2020 /* start a standard spring effect */ 2021 params[1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART; 2022 /* zero delay and duration */ 2023 params[2] = params[3] = params[4] = params[5] = 0; 2024 /* set coeff to 25% of saturation */ 2025 params[8] = params[14] = magnitude >> 11; 2026 params[9] = params[15] = (magnitude >> 3) & 255; 2027 params[6] = params[16] = magnitude >> 9; 2028 params[7] = params[17] = (magnitude >> 1) & 255; 2029 /* zero deadband and center */ 2030 params[10] = params[11] = params[12] = params[13] = 0; 2031 2032 hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_AUTOCENTER, HIDPP_FF_DOWNLOAD_EFFECT, params, ARRAY_SIZE(params)); 2033 } 2034 2035 static void hidpp_ff_set_gain(struct input_dev *dev, u16 gain) 2036 { 2037 struct hidpp_ff_private_data *data = dev->ff->private; 2038 u8 params[4]; 2039 2040 dbg_hid("Setting gain to %d.\n", gain); 2041 2042 params[0] = gain >> 8; 2043 params[1] = gain & 255; 2044 params[2] = 0; /* no boost */ 2045 params[3] = 0; 2046 2047 hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_NONE, HIDPP_FF_SET_GLOBAL_GAINS, params, ARRAY_SIZE(params)); 2048 } 2049 2050 static ssize_t hidpp_ff_range_show(struct device *dev, struct device_attribute *attr, char *buf) 2051 { 2052 struct hid_device *hid = to_hid_device(dev); 2053 struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list); 2054 struct input_dev *idev = hidinput->input; 2055 struct hidpp_ff_private_data *data = idev->ff->private; 2056 2057 return scnprintf(buf, PAGE_SIZE, "%u\n", data->range); 2058 } 2059 2060 static ssize_t hidpp_ff_range_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) 2061 { 2062 struct hid_device *hid = to_hid_device(dev); 2063 struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list); 2064 struct input_dev *idev = hidinput->input; 2065 struct hidpp_ff_private_data *data = idev->ff->private; 2066 u8 params[2]; 2067 int range = simple_strtoul(buf, NULL, 10); 2068 2069 range = clamp(range, 180, 900); 2070 2071 params[0] = range >> 8; 2072 params[1] = range & 0x00FF; 2073 2074 hidpp_ff_queue_work(data, -1, HIDPP_FF_SET_APERTURE, params, ARRAY_SIZE(params)); 2075 2076 return count; 2077 } 2078 2079 static DEVICE_ATTR(range, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH, hidpp_ff_range_show, hidpp_ff_range_store); 2080 2081 static void hidpp_ff_destroy(struct ff_device *ff) 2082 { 2083 struct hidpp_ff_private_data *data = ff->private; 2084 struct hid_device *hid = data->hidpp->hid_dev; 2085 2086 hid_info(hid, "Unloading HID++ force feedback.\n"); 2087 2088 device_remove_file(&hid->dev, &dev_attr_range); 2089 destroy_workqueue(data->wq); 2090 kfree(data->effect_ids); 2091 } 2092 2093 static int hidpp_ff_init(struct hidpp_device *hidpp, 2094 struct hidpp_ff_private_data *data) 2095 { 2096 struct hid_device *hid = hidpp->hid_dev; 2097 struct hid_input *hidinput; 2098 struct input_dev *dev; 2099 const struct usb_device_descriptor *udesc = &(hid_to_usb_dev(hid)->descriptor); 2100 const u16 bcdDevice = le16_to_cpu(udesc->bcdDevice); 2101 struct ff_device *ff; 2102 int error, j, num_slots = data->num_effects; 2103 u8 version; 2104 2105 if (list_empty(&hid->inputs)) { 2106 hid_err(hid, "no inputs found\n"); 2107 return -ENODEV; 2108 } 2109 hidinput = list_entry(hid->inputs.next, struct hid_input, list); 2110 dev = hidinput->input; 2111 2112 if (!dev) { 2113 hid_err(hid, "Struct input_dev not set!\n"); 2114 return -EINVAL; 2115 } 2116 2117 /* Get firmware release */ 2118 version = bcdDevice & 255; 2119 2120 /* Set supported force feedback capabilities */ 2121 for (j = 0; hidpp_ff_effects[j] >= 0; j++) 2122 set_bit(hidpp_ff_effects[j], dev->ffbit); 2123 if (version > 1) 2124 for (j = 0; hidpp_ff_effects_v2[j] >= 0; j++) 2125 set_bit(hidpp_ff_effects_v2[j], dev->ffbit); 2126 2127 error = input_ff_create(dev, num_slots); 2128 2129 if (error) { 2130 hid_err(dev, "Failed to create FF device!\n"); 2131 return error; 2132 } 2133 /* 2134 * Create a copy of passed data, so we can transfer memory 2135 * ownership to FF core 2136 */ 2137 data = kmemdup(data, sizeof(*data), GFP_KERNEL); 2138 if (!data) 2139 return -ENOMEM; 2140 data->effect_ids = kcalloc(num_slots, sizeof(int), GFP_KERNEL); 2141 if (!data->effect_ids) { 2142 kfree(data); 2143 return -ENOMEM; 2144 } 2145 data->wq = create_singlethread_workqueue("hidpp-ff-sendqueue"); 2146 if (!data->wq) { 2147 kfree(data->effect_ids); 2148 kfree(data); 2149 return -ENOMEM; 2150 } 2151 2152 data->hidpp = hidpp; 2153 data->version = version; 2154 for (j = 0; j < num_slots; j++) 2155 data->effect_ids[j] = -1; 2156 2157 ff = dev->ff; 2158 ff->private = data; 2159 2160 ff->upload = hidpp_ff_upload_effect; 2161 ff->erase = hidpp_ff_erase_effect; 2162 ff->playback = hidpp_ff_playback; 2163 ff->set_gain = hidpp_ff_set_gain; 2164 ff->set_autocenter = hidpp_ff_set_autocenter; 2165 ff->destroy = hidpp_ff_destroy; 2166 2167 /* Create sysfs interface */ 2168 error = device_create_file(&(hidpp->hid_dev->dev), &dev_attr_range); 2169 if (error) 2170 hid_warn(hidpp->hid_dev, "Unable to create sysfs interface for \"range\", errno %d!\n", error); 2171 2172 /* init the hardware command queue */ 2173 atomic_set(&data->workqueue_size, 0); 2174 2175 hid_info(hid, "Force feedback support loaded (firmware release %d).\n", 2176 version); 2177 2178 return 0; 2179 } 2180 2181 /* ************************************************************************** */ 2182 /* */ 2183 /* Device Support */ 2184 /* */ 2185 /* ************************************************************************** */ 2186 2187 /* -------------------------------------------------------------------------- */ 2188 /* Touchpad HID++ devices */ 2189 /* -------------------------------------------------------------------------- */ 2190 2191 #define WTP_MANUAL_RESOLUTION 39 2192 2193 struct wtp_data { 2194 u16 x_size, y_size; 2195 u8 finger_count; 2196 u8 mt_feature_index; 2197 u8 button_feature_index; 2198 u8 maxcontacts; 2199 bool flip_y; 2200 unsigned int resolution; 2201 }; 2202 2203 static int wtp_input_mapping(struct hid_device *hdev, struct hid_input *hi, 2204 struct hid_field *field, struct hid_usage *usage, 2205 unsigned long **bit, int *max) 2206 { 2207 return -1; 2208 } 2209 2210 static void wtp_populate_input(struct hidpp_device *hidpp, 2211 struct input_dev *input_dev) 2212 { 2213 struct wtp_data *wd = hidpp->private_data; 2214 2215 __set_bit(EV_ABS, input_dev->evbit); 2216 __set_bit(EV_KEY, input_dev->evbit); 2217 __clear_bit(EV_REL, input_dev->evbit); 2218 __clear_bit(EV_LED, input_dev->evbit); 2219 2220 input_set_abs_params(input_dev, ABS_MT_POSITION_X, 0, wd->x_size, 0, 0); 2221 input_abs_set_res(input_dev, ABS_MT_POSITION_X, wd->resolution); 2222 input_set_abs_params(input_dev, ABS_MT_POSITION_Y, 0, wd->y_size, 0, 0); 2223 input_abs_set_res(input_dev, ABS_MT_POSITION_Y, wd->resolution); 2224 2225 /* Max pressure is not given by the devices, pick one */ 2226 input_set_abs_params(input_dev, ABS_MT_PRESSURE, 0, 50, 0, 0); 2227 2228 input_set_capability(input_dev, EV_KEY, BTN_LEFT); 2229 2230 if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) 2231 input_set_capability(input_dev, EV_KEY, BTN_RIGHT); 2232 else 2233 __set_bit(INPUT_PROP_BUTTONPAD, input_dev->propbit); 2234 2235 input_mt_init_slots(input_dev, wd->maxcontacts, INPUT_MT_POINTER | 2236 INPUT_MT_DROP_UNUSED); 2237 } 2238 2239 static void wtp_touch_event(struct hidpp_device *hidpp, 2240 struct hidpp_touchpad_raw_xy_finger *touch_report) 2241 { 2242 struct wtp_data *wd = hidpp->private_data; 2243 int slot; 2244 2245 if (!touch_report->finger_id || touch_report->contact_type) 2246 /* no actual data */ 2247 return; 2248 2249 slot = input_mt_get_slot_by_key(hidpp->input, touch_report->finger_id); 2250 2251 input_mt_slot(hidpp->input, slot); 2252 input_mt_report_slot_state(hidpp->input, MT_TOOL_FINGER, 2253 touch_report->contact_status); 2254 if (touch_report->contact_status) { 2255 input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_X, 2256 touch_report->x); 2257 input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_Y, 2258 wd->flip_y ? wd->y_size - touch_report->y : 2259 touch_report->y); 2260 input_event(hidpp->input, EV_ABS, ABS_MT_PRESSURE, 2261 touch_report->area); 2262 } 2263 } 2264 2265 static void wtp_send_raw_xy_event(struct hidpp_device *hidpp, 2266 struct hidpp_touchpad_raw_xy *raw) 2267 { 2268 int i; 2269 2270 for (i = 0; i < 2; i++) 2271 wtp_touch_event(hidpp, &(raw->fingers[i])); 2272 2273 if (raw->end_of_frame && 2274 !(hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS)) 2275 input_event(hidpp->input, EV_KEY, BTN_LEFT, raw->button); 2276 2277 if (raw->end_of_frame || raw->finger_count <= 2) { 2278 input_mt_sync_frame(hidpp->input); 2279 input_sync(hidpp->input); 2280 } 2281 } 2282 2283 static int wtp_mouse_raw_xy_event(struct hidpp_device *hidpp, u8 *data) 2284 { 2285 struct wtp_data *wd = hidpp->private_data; 2286 u8 c1_area = ((data[7] & 0xf) * (data[7] & 0xf) + 2287 (data[7] >> 4) * (data[7] >> 4)) / 2; 2288 u8 c2_area = ((data[13] & 0xf) * (data[13] & 0xf) + 2289 (data[13] >> 4) * (data[13] >> 4)) / 2; 2290 struct hidpp_touchpad_raw_xy raw = { 2291 .timestamp = data[1], 2292 .fingers = { 2293 { 2294 .contact_type = 0, 2295 .contact_status = !!data[7], 2296 .x = get_unaligned_le16(&data[3]), 2297 .y = get_unaligned_le16(&data[5]), 2298 .z = c1_area, 2299 .area = c1_area, 2300 .finger_id = data[2], 2301 }, { 2302 .contact_type = 0, 2303 .contact_status = !!data[13], 2304 .x = get_unaligned_le16(&data[9]), 2305 .y = get_unaligned_le16(&data[11]), 2306 .z = c2_area, 2307 .area = c2_area, 2308 .finger_id = data[8], 2309 } 2310 }, 2311 .finger_count = wd->maxcontacts, 2312 .spurious_flag = 0, 2313 .end_of_frame = (data[0] >> 7) == 0, 2314 .button = data[0] & 0x01, 2315 }; 2316 2317 wtp_send_raw_xy_event(hidpp, &raw); 2318 2319 return 1; 2320 } 2321 2322 static int wtp_raw_event(struct hid_device *hdev, u8 *data, int size) 2323 { 2324 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2325 struct wtp_data *wd = hidpp->private_data; 2326 struct hidpp_report *report = (struct hidpp_report *)data; 2327 struct hidpp_touchpad_raw_xy raw; 2328 2329 if (!wd || !hidpp->input) 2330 return 1; 2331 2332 switch (data[0]) { 2333 case 0x02: 2334 if (size < 2) { 2335 hid_err(hdev, "Received HID report of bad size (%d)", 2336 size); 2337 return 1; 2338 } 2339 if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) { 2340 input_event(hidpp->input, EV_KEY, BTN_LEFT, 2341 !!(data[1] & 0x01)); 2342 input_event(hidpp->input, EV_KEY, BTN_RIGHT, 2343 !!(data[1] & 0x02)); 2344 input_sync(hidpp->input); 2345 return 0; 2346 } else { 2347 if (size < 21) 2348 return 1; 2349 return wtp_mouse_raw_xy_event(hidpp, &data[7]); 2350 } 2351 case REPORT_ID_HIDPP_LONG: 2352 /* size is already checked in hidpp_raw_event. */ 2353 if ((report->fap.feature_index != wd->mt_feature_index) || 2354 (report->fap.funcindex_clientid != EVENT_TOUCHPAD_RAW_XY)) 2355 return 1; 2356 hidpp_touchpad_raw_xy_event(hidpp, data + 4, &raw); 2357 2358 wtp_send_raw_xy_event(hidpp, &raw); 2359 return 0; 2360 } 2361 2362 return 0; 2363 } 2364 2365 static int wtp_get_config(struct hidpp_device *hidpp) 2366 { 2367 struct wtp_data *wd = hidpp->private_data; 2368 struct hidpp_touchpad_raw_info raw_info = {0}; 2369 u8 feature_type; 2370 int ret; 2371 2372 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_TOUCHPAD_RAW_XY, 2373 &wd->mt_feature_index, &feature_type); 2374 if (ret) 2375 /* means that the device is not powered up */ 2376 return ret; 2377 2378 ret = hidpp_touchpad_get_raw_info(hidpp, wd->mt_feature_index, 2379 &raw_info); 2380 if (ret) 2381 return ret; 2382 2383 wd->x_size = raw_info.x_size; 2384 wd->y_size = raw_info.y_size; 2385 wd->maxcontacts = raw_info.maxcontacts; 2386 wd->flip_y = raw_info.origin == TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT; 2387 wd->resolution = raw_info.res; 2388 if (!wd->resolution) 2389 wd->resolution = WTP_MANUAL_RESOLUTION; 2390 2391 return 0; 2392 } 2393 2394 static int wtp_allocate(struct hid_device *hdev, const struct hid_device_id *id) 2395 { 2396 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2397 struct wtp_data *wd; 2398 2399 wd = devm_kzalloc(&hdev->dev, sizeof(struct wtp_data), 2400 GFP_KERNEL); 2401 if (!wd) 2402 return -ENOMEM; 2403 2404 hidpp->private_data = wd; 2405 2406 return 0; 2407 }; 2408 2409 static int wtp_connect(struct hid_device *hdev, bool connected) 2410 { 2411 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2412 struct wtp_data *wd = hidpp->private_data; 2413 int ret; 2414 2415 if (!wd->x_size) { 2416 ret = wtp_get_config(hidpp); 2417 if (ret) { 2418 hid_err(hdev, "Can not get wtp config: %d\n", ret); 2419 return ret; 2420 } 2421 } 2422 2423 return hidpp_touchpad_set_raw_report_state(hidpp, wd->mt_feature_index, 2424 true, true); 2425 } 2426 2427 /* ------------------------------------------------------------------------- */ 2428 /* Logitech M560 devices */ 2429 /* ------------------------------------------------------------------------- */ 2430 2431 /* 2432 * Logitech M560 protocol overview 2433 * 2434 * The Logitech M560 mouse, is designed for windows 8. When the middle and/or 2435 * the sides buttons are pressed, it sends some keyboard keys events 2436 * instead of buttons ones. 2437 * To complicate things further, the middle button keys sequence 2438 * is different from the odd press and the even press. 2439 * 2440 * forward button -> Super_R 2441 * backward button -> Super_L+'d' (press only) 2442 * middle button -> 1st time: Alt_L+SuperL+XF86TouchpadOff (press only) 2443 * 2nd time: left-click (press only) 2444 * NB: press-only means that when the button is pressed, the 2445 * KeyPress/ButtonPress and KeyRelease/ButtonRelease events are generated 2446 * together sequentially; instead when the button is released, no event is 2447 * generated ! 2448 * 2449 * With the command 2450 * 10<xx>0a 3500af03 (where <xx> is the mouse id), 2451 * the mouse reacts differently: 2452 * - it never sends a keyboard key event 2453 * - for the three mouse button it sends: 2454 * middle button press 11<xx>0a 3500af00... 2455 * side 1 button (forward) press 11<xx>0a 3500b000... 2456 * side 2 button (backward) press 11<xx>0a 3500ae00... 2457 * middle/side1/side2 button release 11<xx>0a 35000000... 2458 */ 2459 2460 static const u8 m560_config_parameter[] = {0x00, 0xaf, 0x03}; 2461 2462 /* how buttons are mapped in the report */ 2463 #define M560_MOUSE_BTN_LEFT 0x01 2464 #define M560_MOUSE_BTN_RIGHT 0x02 2465 #define M560_MOUSE_BTN_WHEEL_LEFT 0x08 2466 #define M560_MOUSE_BTN_WHEEL_RIGHT 0x10 2467 2468 #define M560_SUB_ID 0x0a 2469 #define M560_BUTTON_MODE_REGISTER 0x35 2470 2471 static int m560_send_config_command(struct hid_device *hdev, bool connected) 2472 { 2473 struct hidpp_report response; 2474 struct hidpp_device *hidpp_dev; 2475 2476 hidpp_dev = hid_get_drvdata(hdev); 2477 2478 return hidpp_send_rap_command_sync( 2479 hidpp_dev, 2480 REPORT_ID_HIDPP_SHORT, 2481 M560_SUB_ID, 2482 M560_BUTTON_MODE_REGISTER, 2483 (u8 *)m560_config_parameter, 2484 sizeof(m560_config_parameter), 2485 &response 2486 ); 2487 } 2488 2489 static int m560_raw_event(struct hid_device *hdev, u8 *data, int size) 2490 { 2491 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2492 2493 /* sanity check */ 2494 if (!hidpp->input) { 2495 hid_err(hdev, "error in parameter\n"); 2496 return -EINVAL; 2497 } 2498 2499 if (size < 7) { 2500 hid_err(hdev, "error in report\n"); 2501 return 0; 2502 } 2503 2504 if (data[0] == REPORT_ID_HIDPP_LONG && 2505 data[2] == M560_SUB_ID && data[6] == 0x00) { 2506 /* 2507 * m560 mouse report for middle, forward and backward button 2508 * 2509 * data[0] = 0x11 2510 * data[1] = device-id 2511 * data[2] = 0x0a 2512 * data[5] = 0xaf -> middle 2513 * 0xb0 -> forward 2514 * 0xae -> backward 2515 * 0x00 -> release all 2516 * data[6] = 0x00 2517 */ 2518 2519 switch (data[5]) { 2520 case 0xaf: 2521 input_report_key(hidpp->input, BTN_MIDDLE, 1); 2522 break; 2523 case 0xb0: 2524 input_report_key(hidpp->input, BTN_FORWARD, 1); 2525 break; 2526 case 0xae: 2527 input_report_key(hidpp->input, BTN_BACK, 1); 2528 break; 2529 case 0x00: 2530 input_report_key(hidpp->input, BTN_BACK, 0); 2531 input_report_key(hidpp->input, BTN_FORWARD, 0); 2532 input_report_key(hidpp->input, BTN_MIDDLE, 0); 2533 break; 2534 default: 2535 hid_err(hdev, "error in report\n"); 2536 return 0; 2537 } 2538 input_sync(hidpp->input); 2539 2540 } else if (data[0] == 0x02) { 2541 /* 2542 * Logitech M560 mouse report 2543 * 2544 * data[0] = type (0x02) 2545 * data[1..2] = buttons 2546 * data[3..5] = xy 2547 * data[6] = wheel 2548 */ 2549 2550 int v; 2551 2552 input_report_key(hidpp->input, BTN_LEFT, 2553 !!(data[1] & M560_MOUSE_BTN_LEFT)); 2554 input_report_key(hidpp->input, BTN_RIGHT, 2555 !!(data[1] & M560_MOUSE_BTN_RIGHT)); 2556 2557 if (data[1] & M560_MOUSE_BTN_WHEEL_LEFT) { 2558 input_report_rel(hidpp->input, REL_HWHEEL, -1); 2559 input_report_rel(hidpp->input, REL_HWHEEL_HI_RES, 2560 -120); 2561 } else if (data[1] & M560_MOUSE_BTN_WHEEL_RIGHT) { 2562 input_report_rel(hidpp->input, REL_HWHEEL, 1); 2563 input_report_rel(hidpp->input, REL_HWHEEL_HI_RES, 2564 120); 2565 } 2566 2567 v = hid_snto32(hid_field_extract(hdev, data+3, 0, 12), 12); 2568 input_report_rel(hidpp->input, REL_X, v); 2569 2570 v = hid_snto32(hid_field_extract(hdev, data+3, 12, 12), 12); 2571 input_report_rel(hidpp->input, REL_Y, v); 2572 2573 v = hid_snto32(data[6], 8); 2574 if (v != 0) 2575 hidpp_scroll_counter_handle_scroll(hidpp->input, 2576 &hidpp->vertical_wheel_counter, v); 2577 2578 input_sync(hidpp->input); 2579 } 2580 2581 return 1; 2582 } 2583 2584 static void m560_populate_input(struct hidpp_device *hidpp, 2585 struct input_dev *input_dev) 2586 { 2587 __set_bit(EV_KEY, input_dev->evbit); 2588 __set_bit(BTN_MIDDLE, input_dev->keybit); 2589 __set_bit(BTN_RIGHT, input_dev->keybit); 2590 __set_bit(BTN_LEFT, input_dev->keybit); 2591 __set_bit(BTN_BACK, input_dev->keybit); 2592 __set_bit(BTN_FORWARD, input_dev->keybit); 2593 2594 __set_bit(EV_REL, input_dev->evbit); 2595 __set_bit(REL_X, input_dev->relbit); 2596 __set_bit(REL_Y, input_dev->relbit); 2597 __set_bit(REL_WHEEL, input_dev->relbit); 2598 __set_bit(REL_HWHEEL, input_dev->relbit); 2599 __set_bit(REL_WHEEL_HI_RES, input_dev->relbit); 2600 __set_bit(REL_HWHEEL_HI_RES, input_dev->relbit); 2601 } 2602 2603 static int m560_input_mapping(struct hid_device *hdev, struct hid_input *hi, 2604 struct hid_field *field, struct hid_usage *usage, 2605 unsigned long **bit, int *max) 2606 { 2607 return -1; 2608 } 2609 2610 /* ------------------------------------------------------------------------- */ 2611 /* Logitech K400 devices */ 2612 /* ------------------------------------------------------------------------- */ 2613 2614 /* 2615 * The Logitech K400 keyboard has an embedded touchpad which is seen 2616 * as a mouse from the OS point of view. There is a hardware shortcut to disable 2617 * tap-to-click but the setting is not remembered accross reset, annoying some 2618 * users. 2619 * 2620 * We can toggle this feature from the host by using the feature 0x6010: 2621 * Touchpad FW items 2622 */ 2623 2624 struct k400_private_data { 2625 u8 feature_index; 2626 }; 2627 2628 static int k400_disable_tap_to_click(struct hidpp_device *hidpp) 2629 { 2630 struct k400_private_data *k400 = hidpp->private_data; 2631 struct hidpp_touchpad_fw_items items = {}; 2632 int ret; 2633 u8 feature_type; 2634 2635 if (!k400->feature_index) { 2636 ret = hidpp_root_get_feature(hidpp, 2637 HIDPP_PAGE_TOUCHPAD_FW_ITEMS, 2638 &k400->feature_index, &feature_type); 2639 if (ret) 2640 /* means that the device is not powered up */ 2641 return ret; 2642 } 2643 2644 ret = hidpp_touchpad_fw_items_set(hidpp, k400->feature_index, &items); 2645 if (ret) 2646 return ret; 2647 2648 return 0; 2649 } 2650 2651 static int k400_allocate(struct hid_device *hdev) 2652 { 2653 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2654 struct k400_private_data *k400; 2655 2656 k400 = devm_kzalloc(&hdev->dev, sizeof(struct k400_private_data), 2657 GFP_KERNEL); 2658 if (!k400) 2659 return -ENOMEM; 2660 2661 hidpp->private_data = k400; 2662 2663 return 0; 2664 }; 2665 2666 static int k400_connect(struct hid_device *hdev, bool connected) 2667 { 2668 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2669 2670 if (!disable_tap_to_click) 2671 return 0; 2672 2673 return k400_disable_tap_to_click(hidpp); 2674 } 2675 2676 /* ------------------------------------------------------------------------- */ 2677 /* Logitech G920 Driving Force Racing Wheel for Xbox One */ 2678 /* ------------------------------------------------------------------------- */ 2679 2680 #define HIDPP_PAGE_G920_FORCE_FEEDBACK 0x8123 2681 2682 static int g920_ff_set_autocenter(struct hidpp_device *hidpp, 2683 struct hidpp_ff_private_data *data) 2684 { 2685 struct hidpp_report response; 2686 u8 params[HIDPP_AUTOCENTER_PARAMS_LENGTH] = { 2687 [1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART, 2688 }; 2689 int ret; 2690 2691 /* initialize with zero autocenter to get wheel in usable state */ 2692 2693 dbg_hid("Setting autocenter to 0.\n"); 2694 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 2695 HIDPP_FF_DOWNLOAD_EFFECT, 2696 params, ARRAY_SIZE(params), 2697 &response); 2698 if (ret) 2699 hid_warn(hidpp->hid_dev, "Failed to autocenter device!\n"); 2700 else 2701 data->slot_autocenter = response.fap.params[0]; 2702 2703 return ret; 2704 } 2705 2706 static int g920_get_config(struct hidpp_device *hidpp, 2707 struct hidpp_ff_private_data *data) 2708 { 2709 struct hidpp_report response; 2710 u8 feature_type; 2711 int ret; 2712 2713 memset(data, 0, sizeof(*data)); 2714 2715 /* Find feature and store for later use */ 2716 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_G920_FORCE_FEEDBACK, 2717 &data->feature_index, &feature_type); 2718 if (ret) 2719 return ret; 2720 2721 /* Read number of slots available in device */ 2722 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 2723 HIDPP_FF_GET_INFO, 2724 NULL, 0, 2725 &response); 2726 if (ret) { 2727 if (ret < 0) 2728 return ret; 2729 hid_err(hidpp->hid_dev, 2730 "%s: received protocol error 0x%02x\n", __func__, ret); 2731 return -EPROTO; 2732 } 2733 2734 data->num_effects = response.fap.params[0] - HIDPP_FF_RESERVED_SLOTS; 2735 2736 /* reset all forces */ 2737 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 2738 HIDPP_FF_RESET_ALL, 2739 NULL, 0, 2740 &response); 2741 if (ret) 2742 hid_warn(hidpp->hid_dev, "Failed to reset all forces!\n"); 2743 2744 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 2745 HIDPP_FF_GET_APERTURE, 2746 NULL, 0, 2747 &response); 2748 if (ret) { 2749 hid_warn(hidpp->hid_dev, 2750 "Failed to read range from device!\n"); 2751 } 2752 data->range = ret ? 2753 900 : get_unaligned_be16(&response.fap.params[0]); 2754 2755 /* Read the current gain values */ 2756 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 2757 HIDPP_FF_GET_GLOBAL_GAINS, 2758 NULL, 0, 2759 &response); 2760 if (ret) 2761 hid_warn(hidpp->hid_dev, 2762 "Failed to read gain values from device!\n"); 2763 data->gain = ret ? 2764 0xffff : get_unaligned_be16(&response.fap.params[0]); 2765 2766 /* ignore boost value at response.fap.params[2] */ 2767 2768 return g920_ff_set_autocenter(hidpp, data); 2769 } 2770 2771 /* -------------------------------------------------------------------------- */ 2772 /* HID++1.0 devices which use HID++ reports for their wheels */ 2773 /* -------------------------------------------------------------------------- */ 2774 static int hidpp10_wheel_connect(struct hidpp_device *hidpp) 2775 { 2776 return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0, 2777 HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT, 2778 HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT); 2779 } 2780 2781 static int hidpp10_wheel_raw_event(struct hidpp_device *hidpp, 2782 u8 *data, int size) 2783 { 2784 s8 value, hvalue; 2785 2786 if (!hidpp->input) 2787 return -EINVAL; 2788 2789 if (size < 7) 2790 return 0; 2791 2792 if (data[0] != REPORT_ID_HIDPP_SHORT || data[2] != HIDPP_SUB_ID_ROLLER) 2793 return 0; 2794 2795 value = data[3]; 2796 hvalue = data[4]; 2797 2798 input_report_rel(hidpp->input, REL_WHEEL, value); 2799 input_report_rel(hidpp->input, REL_WHEEL_HI_RES, value * 120); 2800 input_report_rel(hidpp->input, REL_HWHEEL, hvalue); 2801 input_report_rel(hidpp->input, REL_HWHEEL_HI_RES, hvalue * 120); 2802 input_sync(hidpp->input); 2803 2804 return 1; 2805 } 2806 2807 static void hidpp10_wheel_populate_input(struct hidpp_device *hidpp, 2808 struct input_dev *input_dev) 2809 { 2810 __set_bit(EV_REL, input_dev->evbit); 2811 __set_bit(REL_WHEEL, input_dev->relbit); 2812 __set_bit(REL_WHEEL_HI_RES, input_dev->relbit); 2813 __set_bit(REL_HWHEEL, input_dev->relbit); 2814 __set_bit(REL_HWHEEL_HI_RES, input_dev->relbit); 2815 } 2816 2817 /* -------------------------------------------------------------------------- */ 2818 /* HID++1.0 mice which use HID++ reports for extra mouse buttons */ 2819 /* -------------------------------------------------------------------------- */ 2820 static int hidpp10_extra_mouse_buttons_connect(struct hidpp_device *hidpp) 2821 { 2822 return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0, 2823 HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT, 2824 HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT); 2825 } 2826 2827 static int hidpp10_extra_mouse_buttons_raw_event(struct hidpp_device *hidpp, 2828 u8 *data, int size) 2829 { 2830 int i; 2831 2832 if (!hidpp->input) 2833 return -EINVAL; 2834 2835 if (size < 7) 2836 return 0; 2837 2838 if (data[0] != REPORT_ID_HIDPP_SHORT || 2839 data[2] != HIDPP_SUB_ID_MOUSE_EXTRA_BTNS) 2840 return 0; 2841 2842 /* 2843 * Buttons are either delivered through the regular mouse report *or* 2844 * through the extra buttons report. At least for button 6 how it is 2845 * delivered differs per receiver firmware version. Even receivers with 2846 * the same usb-id show different behavior, so we handle both cases. 2847 */ 2848 for (i = 0; i < 8; i++) 2849 input_report_key(hidpp->input, BTN_MOUSE + i, 2850 (data[3] & (1 << i))); 2851 2852 /* Some mice report events on button 9+, use BTN_MISC */ 2853 for (i = 0; i < 8; i++) 2854 input_report_key(hidpp->input, BTN_MISC + i, 2855 (data[4] & (1 << i))); 2856 2857 input_sync(hidpp->input); 2858 return 1; 2859 } 2860 2861 static void hidpp10_extra_mouse_buttons_populate_input( 2862 struct hidpp_device *hidpp, struct input_dev *input_dev) 2863 { 2864 /* BTN_MOUSE - BTN_MOUSE+7 are set already by the descriptor */ 2865 __set_bit(BTN_0, input_dev->keybit); 2866 __set_bit(BTN_1, input_dev->keybit); 2867 __set_bit(BTN_2, input_dev->keybit); 2868 __set_bit(BTN_3, input_dev->keybit); 2869 __set_bit(BTN_4, input_dev->keybit); 2870 __set_bit(BTN_5, input_dev->keybit); 2871 __set_bit(BTN_6, input_dev->keybit); 2872 __set_bit(BTN_7, input_dev->keybit); 2873 } 2874 2875 /* -------------------------------------------------------------------------- */ 2876 /* HID++1.0 kbds which only report 0x10xx consumer usages through sub-id 0x03 */ 2877 /* -------------------------------------------------------------------------- */ 2878 2879 /* Find the consumer-page input report desc and change Maximums to 0x107f */ 2880 static u8 *hidpp10_consumer_keys_report_fixup(struct hidpp_device *hidpp, 2881 u8 *_rdesc, unsigned int *rsize) 2882 { 2883 /* Note 0 terminated so we can use strnstr to search for this. */ 2884 static const char consumer_rdesc_start[] = { 2885 0x05, 0x0C, /* USAGE_PAGE (Consumer Devices) */ 2886 0x09, 0x01, /* USAGE (Consumer Control) */ 2887 0xA1, 0x01, /* COLLECTION (Application) */ 2888 0x85, 0x03, /* REPORT_ID = 3 */ 2889 0x75, 0x10, /* REPORT_SIZE (16) */ 2890 0x95, 0x02, /* REPORT_COUNT (2) */ 2891 0x15, 0x01, /* LOGICAL_MIN (1) */ 2892 0x26, 0x00 /* LOGICAL_MAX (... */ 2893 }; 2894 char *consumer_rdesc, *rdesc = (char *)_rdesc; 2895 unsigned int size; 2896 2897 consumer_rdesc = strnstr(rdesc, consumer_rdesc_start, *rsize); 2898 size = *rsize - (consumer_rdesc - rdesc); 2899 if (consumer_rdesc && size >= 25) { 2900 consumer_rdesc[15] = 0x7f; 2901 consumer_rdesc[16] = 0x10; 2902 consumer_rdesc[20] = 0x7f; 2903 consumer_rdesc[21] = 0x10; 2904 } 2905 return _rdesc; 2906 } 2907 2908 static int hidpp10_consumer_keys_connect(struct hidpp_device *hidpp) 2909 { 2910 return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0, 2911 HIDPP_ENABLE_CONSUMER_REPORT, 2912 HIDPP_ENABLE_CONSUMER_REPORT); 2913 } 2914 2915 static int hidpp10_consumer_keys_raw_event(struct hidpp_device *hidpp, 2916 u8 *data, int size) 2917 { 2918 u8 consumer_report[5]; 2919 2920 if (size < 7) 2921 return 0; 2922 2923 if (data[0] != REPORT_ID_HIDPP_SHORT || 2924 data[2] != HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS) 2925 return 0; 2926 2927 /* 2928 * Build a normal consumer report (3) out of the data, this detour 2929 * is necessary to get some keyboards to report their 0x10xx usages. 2930 */ 2931 consumer_report[0] = 0x03; 2932 memcpy(&consumer_report[1], &data[3], 4); 2933 /* We are called from atomic context */ 2934 hid_report_raw_event(hidpp->hid_dev, HID_INPUT_REPORT, 2935 consumer_report, 5, 1); 2936 2937 return 1; 2938 } 2939 2940 /* -------------------------------------------------------------------------- */ 2941 /* High-resolution scroll wheels */ 2942 /* -------------------------------------------------------------------------- */ 2943 2944 static int hi_res_scroll_enable(struct hidpp_device *hidpp) 2945 { 2946 int ret; 2947 u8 multiplier = 1; 2948 2949 if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2121) { 2950 ret = hidpp_hrw_set_wheel_mode(hidpp, false, true, false); 2951 if (ret == 0) 2952 ret = hidpp_hrw_get_wheel_capability(hidpp, &multiplier); 2953 } else if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2120) { 2954 ret = hidpp_hrs_set_highres_scrolling_mode(hidpp, true, 2955 &multiplier); 2956 } else /* if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_1P0) */ { 2957 ret = hidpp10_enable_scrolling_acceleration(hidpp); 2958 multiplier = 8; 2959 } 2960 if (ret) 2961 return ret; 2962 2963 if (multiplier == 0) 2964 multiplier = 1; 2965 2966 hidpp->vertical_wheel_counter.wheel_multiplier = multiplier; 2967 hid_info(hidpp->hid_dev, "multiplier = %d\n", multiplier); 2968 return 0; 2969 } 2970 2971 /* -------------------------------------------------------------------------- */ 2972 /* Generic HID++ devices */ 2973 /* -------------------------------------------------------------------------- */ 2974 2975 static u8 *hidpp_report_fixup(struct hid_device *hdev, u8 *rdesc, 2976 unsigned int *rsize) 2977 { 2978 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2979 2980 if (!hidpp) 2981 return rdesc; 2982 2983 /* For 27 MHz keyboards the quirk gets set after hid_parse. */ 2984 if (hdev->group == HID_GROUP_LOGITECH_27MHZ_DEVICE || 2985 (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS)) 2986 rdesc = hidpp10_consumer_keys_report_fixup(hidpp, rdesc, rsize); 2987 2988 return rdesc; 2989 } 2990 2991 static int hidpp_input_mapping(struct hid_device *hdev, struct hid_input *hi, 2992 struct hid_field *field, struct hid_usage *usage, 2993 unsigned long **bit, int *max) 2994 { 2995 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2996 2997 if (!hidpp) 2998 return 0; 2999 3000 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) 3001 return wtp_input_mapping(hdev, hi, field, usage, bit, max); 3002 else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560 && 3003 field->application != HID_GD_MOUSE) 3004 return m560_input_mapping(hdev, hi, field, usage, bit, max); 3005 3006 return 0; 3007 } 3008 3009 static int hidpp_input_mapped(struct hid_device *hdev, struct hid_input *hi, 3010 struct hid_field *field, struct hid_usage *usage, 3011 unsigned long **bit, int *max) 3012 { 3013 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3014 3015 if (!hidpp) 3016 return 0; 3017 3018 /* Ensure that Logitech G920 is not given a default fuzz/flat value */ 3019 if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) { 3020 if (usage->type == EV_ABS && (usage->code == ABS_X || 3021 usage->code == ABS_Y || usage->code == ABS_Z || 3022 usage->code == ABS_RZ)) { 3023 field->application = HID_GD_MULTIAXIS; 3024 } 3025 } 3026 3027 return 0; 3028 } 3029 3030 3031 static void hidpp_populate_input(struct hidpp_device *hidpp, 3032 struct input_dev *input) 3033 { 3034 hidpp->input = input; 3035 3036 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) 3037 wtp_populate_input(hidpp, input); 3038 else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) 3039 m560_populate_input(hidpp, input); 3040 3041 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) 3042 hidpp10_wheel_populate_input(hidpp, input); 3043 3044 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) 3045 hidpp10_extra_mouse_buttons_populate_input(hidpp, input); 3046 } 3047 3048 static int hidpp_input_configured(struct hid_device *hdev, 3049 struct hid_input *hidinput) 3050 { 3051 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3052 struct input_dev *input = hidinput->input; 3053 3054 if (!hidpp) 3055 return 0; 3056 3057 hidpp_populate_input(hidpp, input); 3058 3059 return 0; 3060 } 3061 3062 static int hidpp_raw_hidpp_event(struct hidpp_device *hidpp, u8 *data, 3063 int size) 3064 { 3065 struct hidpp_report *question = hidpp->send_receive_buf; 3066 struct hidpp_report *answer = hidpp->send_receive_buf; 3067 struct hidpp_report *report = (struct hidpp_report *)data; 3068 int ret; 3069 3070 /* 3071 * If the mutex is locked then we have a pending answer from a 3072 * previously sent command. 3073 */ 3074 if (unlikely(mutex_is_locked(&hidpp->send_mutex))) { 3075 /* 3076 * Check for a correct hidpp20 answer or the corresponding 3077 * error 3078 */ 3079 if (hidpp_match_answer(question, report) || 3080 hidpp_match_error(question, report)) { 3081 *answer = *report; 3082 hidpp->answer_available = true; 3083 wake_up(&hidpp->wait); 3084 /* 3085 * This was an answer to a command that this driver sent 3086 * We return 1 to hid-core to avoid forwarding the 3087 * command upstream as it has been treated by the driver 3088 */ 3089 3090 return 1; 3091 } 3092 } 3093 3094 if (unlikely(hidpp_report_is_connect_event(report))) { 3095 atomic_set(&hidpp->connected, 3096 !(report->rap.params[0] & (1 << 6))); 3097 if (schedule_work(&hidpp->work) == 0) 3098 dbg_hid("%s: connect event already queued\n", __func__); 3099 return 1; 3100 } 3101 3102 if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) { 3103 ret = hidpp20_battery_event(hidpp, data, size); 3104 if (ret != 0) 3105 return ret; 3106 ret = hidpp_solar_battery_event(hidpp, data, size); 3107 if (ret != 0) 3108 return ret; 3109 } 3110 3111 if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) { 3112 ret = hidpp10_battery_event(hidpp, data, size); 3113 if (ret != 0) 3114 return ret; 3115 } 3116 3117 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) { 3118 ret = hidpp10_wheel_raw_event(hidpp, data, size); 3119 if (ret != 0) 3120 return ret; 3121 } 3122 3123 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) { 3124 ret = hidpp10_extra_mouse_buttons_raw_event(hidpp, data, size); 3125 if (ret != 0) 3126 return ret; 3127 } 3128 3129 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) { 3130 ret = hidpp10_consumer_keys_raw_event(hidpp, data, size); 3131 if (ret != 0) 3132 return ret; 3133 } 3134 3135 return 0; 3136 } 3137 3138 static int hidpp_raw_event(struct hid_device *hdev, struct hid_report *report, 3139 u8 *data, int size) 3140 { 3141 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3142 int ret = 0; 3143 3144 if (!hidpp) 3145 return 0; 3146 3147 /* Generic HID++ processing. */ 3148 switch (data[0]) { 3149 case REPORT_ID_HIDPP_VERY_LONG: 3150 if (size != hidpp->very_long_report_length) { 3151 hid_err(hdev, "received hid++ report of bad size (%d)", 3152 size); 3153 return 1; 3154 } 3155 ret = hidpp_raw_hidpp_event(hidpp, data, size); 3156 break; 3157 case REPORT_ID_HIDPP_LONG: 3158 if (size != HIDPP_REPORT_LONG_LENGTH) { 3159 hid_err(hdev, "received hid++ report of bad size (%d)", 3160 size); 3161 return 1; 3162 } 3163 ret = hidpp_raw_hidpp_event(hidpp, data, size); 3164 break; 3165 case REPORT_ID_HIDPP_SHORT: 3166 if (size != HIDPP_REPORT_SHORT_LENGTH) { 3167 hid_err(hdev, "received hid++ report of bad size (%d)", 3168 size); 3169 return 1; 3170 } 3171 ret = hidpp_raw_hidpp_event(hidpp, data, size); 3172 break; 3173 } 3174 3175 /* If no report is available for further processing, skip calling 3176 * raw_event of subclasses. */ 3177 if (ret != 0) 3178 return ret; 3179 3180 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) 3181 return wtp_raw_event(hdev, data, size); 3182 else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) 3183 return m560_raw_event(hdev, data, size); 3184 3185 return 0; 3186 } 3187 3188 static int hidpp_event(struct hid_device *hdev, struct hid_field *field, 3189 struct hid_usage *usage, __s32 value) 3190 { 3191 /* This function will only be called for scroll events, due to the 3192 * restriction imposed in hidpp_usages. 3193 */ 3194 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3195 struct hidpp_scroll_counter *counter; 3196 3197 if (!hidpp) 3198 return 0; 3199 3200 counter = &hidpp->vertical_wheel_counter; 3201 /* A scroll event may occur before the multiplier has been retrieved or 3202 * the input device set, or high-res scroll enabling may fail. In such 3203 * cases we must return early (falling back to default behaviour) to 3204 * avoid a crash in hidpp_scroll_counter_handle_scroll. 3205 */ 3206 if (!(hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) || value == 0 3207 || hidpp->input == NULL || counter->wheel_multiplier == 0) 3208 return 0; 3209 3210 hidpp_scroll_counter_handle_scroll(hidpp->input, counter, value); 3211 return 1; 3212 } 3213 3214 static int hidpp_initialize_battery(struct hidpp_device *hidpp) 3215 { 3216 static atomic_t battery_no = ATOMIC_INIT(0); 3217 struct power_supply_config cfg = { .drv_data = hidpp }; 3218 struct power_supply_desc *desc = &hidpp->battery.desc; 3219 enum power_supply_property *battery_props; 3220 struct hidpp_battery *battery; 3221 unsigned int num_battery_props; 3222 unsigned long n; 3223 int ret; 3224 3225 if (hidpp->battery.ps) 3226 return 0; 3227 3228 hidpp->battery.feature_index = 0xff; 3229 hidpp->battery.solar_feature_index = 0xff; 3230 3231 if (hidpp->protocol_major >= 2) { 3232 if (hidpp->quirks & HIDPP_QUIRK_CLASS_K750) 3233 ret = hidpp_solar_request_battery_event(hidpp); 3234 else 3235 ret = hidpp20_query_battery_info(hidpp); 3236 3237 if (ret) 3238 return ret; 3239 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP20_BATTERY; 3240 } else { 3241 ret = hidpp10_query_battery_status(hidpp); 3242 if (ret) { 3243 ret = hidpp10_query_battery_mileage(hidpp); 3244 if (ret) 3245 return -ENOENT; 3246 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE; 3247 } else { 3248 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS; 3249 } 3250 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP10_BATTERY; 3251 } 3252 3253 battery_props = devm_kmemdup(&hidpp->hid_dev->dev, 3254 hidpp_battery_props, 3255 sizeof(hidpp_battery_props), 3256 GFP_KERNEL); 3257 if (!battery_props) 3258 return -ENOMEM; 3259 3260 num_battery_props = ARRAY_SIZE(hidpp_battery_props) - 2; 3261 3262 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE) 3263 battery_props[num_battery_props++] = 3264 POWER_SUPPLY_PROP_CAPACITY; 3265 3266 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS) 3267 battery_props[num_battery_props++] = 3268 POWER_SUPPLY_PROP_CAPACITY_LEVEL; 3269 3270 battery = &hidpp->battery; 3271 3272 n = atomic_inc_return(&battery_no) - 1; 3273 desc->properties = battery_props; 3274 desc->num_properties = num_battery_props; 3275 desc->get_property = hidpp_battery_get_property; 3276 sprintf(battery->name, "hidpp_battery_%ld", n); 3277 desc->name = battery->name; 3278 desc->type = POWER_SUPPLY_TYPE_BATTERY; 3279 desc->use_for_apm = 0; 3280 3281 battery->ps = devm_power_supply_register(&hidpp->hid_dev->dev, 3282 &battery->desc, 3283 &cfg); 3284 if (IS_ERR(battery->ps)) 3285 return PTR_ERR(battery->ps); 3286 3287 power_supply_powers(battery->ps, &hidpp->hid_dev->dev); 3288 3289 return ret; 3290 } 3291 3292 static void hidpp_overwrite_name(struct hid_device *hdev) 3293 { 3294 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3295 char *name; 3296 3297 if (hidpp->protocol_major < 2) 3298 return; 3299 3300 name = hidpp_get_device_name(hidpp); 3301 3302 if (!name) { 3303 hid_err(hdev, "unable to retrieve the name of the device"); 3304 } else { 3305 dbg_hid("HID++: Got name: %s\n", name); 3306 snprintf(hdev->name, sizeof(hdev->name), "%s", name); 3307 } 3308 3309 kfree(name); 3310 } 3311 3312 static int hidpp_input_open(struct input_dev *dev) 3313 { 3314 struct hid_device *hid = input_get_drvdata(dev); 3315 3316 return hid_hw_open(hid); 3317 } 3318 3319 static void hidpp_input_close(struct input_dev *dev) 3320 { 3321 struct hid_device *hid = input_get_drvdata(dev); 3322 3323 hid_hw_close(hid); 3324 } 3325 3326 static struct input_dev *hidpp_allocate_input(struct hid_device *hdev) 3327 { 3328 struct input_dev *input_dev = devm_input_allocate_device(&hdev->dev); 3329 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3330 3331 if (!input_dev) 3332 return NULL; 3333 3334 input_set_drvdata(input_dev, hdev); 3335 input_dev->open = hidpp_input_open; 3336 input_dev->close = hidpp_input_close; 3337 3338 input_dev->name = hidpp->name; 3339 input_dev->phys = hdev->phys; 3340 input_dev->uniq = hdev->uniq; 3341 input_dev->id.bustype = hdev->bus; 3342 input_dev->id.vendor = hdev->vendor; 3343 input_dev->id.product = hdev->product; 3344 input_dev->id.version = hdev->version; 3345 input_dev->dev.parent = &hdev->dev; 3346 3347 return input_dev; 3348 } 3349 3350 static void hidpp_connect_event(struct hidpp_device *hidpp) 3351 { 3352 struct hid_device *hdev = hidpp->hid_dev; 3353 int ret = 0; 3354 bool connected = atomic_read(&hidpp->connected); 3355 struct input_dev *input; 3356 char *name, *devm_name; 3357 3358 if (!connected) { 3359 if (hidpp->battery.ps) { 3360 hidpp->battery.online = false; 3361 hidpp->battery.status = POWER_SUPPLY_STATUS_UNKNOWN; 3362 hidpp->battery.level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 3363 power_supply_changed(hidpp->battery.ps); 3364 } 3365 return; 3366 } 3367 3368 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) { 3369 ret = wtp_connect(hdev, connected); 3370 if (ret) 3371 return; 3372 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) { 3373 ret = m560_send_config_command(hdev, connected); 3374 if (ret) 3375 return; 3376 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) { 3377 ret = k400_connect(hdev, connected); 3378 if (ret) 3379 return; 3380 } 3381 3382 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) { 3383 ret = hidpp10_wheel_connect(hidpp); 3384 if (ret) 3385 return; 3386 } 3387 3388 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) { 3389 ret = hidpp10_extra_mouse_buttons_connect(hidpp); 3390 if (ret) 3391 return; 3392 } 3393 3394 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) { 3395 ret = hidpp10_consumer_keys_connect(hidpp); 3396 if (ret) 3397 return; 3398 } 3399 3400 /* the device is already connected, we can ask for its name and 3401 * protocol */ 3402 if (!hidpp->protocol_major) { 3403 ret = hidpp_root_get_protocol_version(hidpp); 3404 if (ret) { 3405 hid_err(hdev, "Can not get the protocol version.\n"); 3406 return; 3407 } 3408 } 3409 3410 if (hidpp->name == hdev->name && hidpp->protocol_major >= 2) { 3411 name = hidpp_get_device_name(hidpp); 3412 if (name) { 3413 devm_name = devm_kasprintf(&hdev->dev, GFP_KERNEL, 3414 "%s", name); 3415 kfree(name); 3416 if (!devm_name) 3417 return; 3418 3419 hidpp->name = devm_name; 3420 } 3421 } 3422 3423 hidpp_initialize_battery(hidpp); 3424 3425 /* forward current battery state */ 3426 if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) { 3427 hidpp10_enable_battery_reporting(hidpp); 3428 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE) 3429 hidpp10_query_battery_mileage(hidpp); 3430 else 3431 hidpp10_query_battery_status(hidpp); 3432 } else if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) { 3433 hidpp20_query_battery_info(hidpp); 3434 } 3435 if (hidpp->battery.ps) 3436 power_supply_changed(hidpp->battery.ps); 3437 3438 if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) 3439 hi_res_scroll_enable(hidpp); 3440 3441 if (!(hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) || hidpp->delayed_input) 3442 /* if the input nodes are already created, we can stop now */ 3443 return; 3444 3445 input = hidpp_allocate_input(hdev); 3446 if (!input) { 3447 hid_err(hdev, "cannot allocate new input device: %d\n", ret); 3448 return; 3449 } 3450 3451 hidpp_populate_input(hidpp, input); 3452 3453 ret = input_register_device(input); 3454 if (ret) 3455 input_free_device(input); 3456 3457 hidpp->delayed_input = input; 3458 } 3459 3460 static DEVICE_ATTR(builtin_power_supply, 0000, NULL, NULL); 3461 3462 static struct attribute *sysfs_attrs[] = { 3463 &dev_attr_builtin_power_supply.attr, 3464 NULL 3465 }; 3466 3467 static const struct attribute_group ps_attribute_group = { 3468 .attrs = sysfs_attrs 3469 }; 3470 3471 static int hidpp_get_report_length(struct hid_device *hdev, int id) 3472 { 3473 struct hid_report_enum *re; 3474 struct hid_report *report; 3475 3476 re = &(hdev->report_enum[HID_OUTPUT_REPORT]); 3477 report = re->report_id_hash[id]; 3478 if (!report) 3479 return 0; 3480 3481 return report->field[0]->report_count + 1; 3482 } 3483 3484 static bool hidpp_validate_device(struct hid_device *hdev) 3485 { 3486 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3487 int id, report_length, supported_reports = 0; 3488 3489 id = REPORT_ID_HIDPP_SHORT; 3490 report_length = hidpp_get_report_length(hdev, id); 3491 if (report_length) { 3492 if (report_length < HIDPP_REPORT_SHORT_LENGTH) 3493 goto bad_device; 3494 3495 supported_reports++; 3496 } 3497 3498 id = REPORT_ID_HIDPP_LONG; 3499 report_length = hidpp_get_report_length(hdev, id); 3500 if (report_length) { 3501 if (report_length < HIDPP_REPORT_LONG_LENGTH) 3502 goto bad_device; 3503 3504 supported_reports++; 3505 } 3506 3507 id = REPORT_ID_HIDPP_VERY_LONG; 3508 report_length = hidpp_get_report_length(hdev, id); 3509 if (report_length) { 3510 if (report_length < HIDPP_REPORT_LONG_LENGTH || 3511 report_length > HIDPP_REPORT_VERY_LONG_MAX_LENGTH) 3512 goto bad_device; 3513 3514 supported_reports++; 3515 hidpp->very_long_report_length = report_length; 3516 } 3517 3518 return supported_reports; 3519 3520 bad_device: 3521 hid_warn(hdev, "not enough values in hidpp report %d\n", id); 3522 return false; 3523 } 3524 3525 static bool hidpp_application_equals(struct hid_device *hdev, 3526 unsigned int application) 3527 { 3528 struct list_head *report_list; 3529 struct hid_report *report; 3530 3531 report_list = &hdev->report_enum[HID_INPUT_REPORT].report_list; 3532 report = list_first_entry_or_null(report_list, struct hid_report, list); 3533 return report && report->application == application; 3534 } 3535 3536 static int hidpp_probe(struct hid_device *hdev, const struct hid_device_id *id) 3537 { 3538 struct hidpp_device *hidpp; 3539 int ret; 3540 bool connected; 3541 unsigned int connect_mask = HID_CONNECT_DEFAULT; 3542 struct hidpp_ff_private_data data; 3543 3544 /* report_fixup needs drvdata to be set before we call hid_parse */ 3545 hidpp = devm_kzalloc(&hdev->dev, sizeof(*hidpp), GFP_KERNEL); 3546 if (!hidpp) 3547 return -ENOMEM; 3548 3549 hidpp->hid_dev = hdev; 3550 hidpp->name = hdev->name; 3551 hidpp->quirks = id->driver_data; 3552 hid_set_drvdata(hdev, hidpp); 3553 3554 ret = hid_parse(hdev); 3555 if (ret) { 3556 hid_err(hdev, "%s:parse failed\n", __func__); 3557 return ret; 3558 } 3559 3560 /* 3561 * Make sure the device is HID++ capable, otherwise treat as generic HID 3562 */ 3563 if (!hidpp_validate_device(hdev)) { 3564 hid_set_drvdata(hdev, NULL); 3565 devm_kfree(&hdev->dev, hidpp); 3566 return hid_hw_start(hdev, HID_CONNECT_DEFAULT); 3567 } 3568 3569 if (id->group == HID_GROUP_LOGITECH_DJ_DEVICE) 3570 hidpp->quirks |= HIDPP_QUIRK_UNIFYING; 3571 3572 if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE && 3573 hidpp_application_equals(hdev, HID_GD_MOUSE)) 3574 hidpp->quirks |= HIDPP_QUIRK_HIDPP_WHEELS | 3575 HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS; 3576 3577 if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE && 3578 hidpp_application_equals(hdev, HID_GD_KEYBOARD)) 3579 hidpp->quirks |= HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS; 3580 3581 if (disable_raw_mode) { 3582 hidpp->quirks &= ~HIDPP_QUIRK_CLASS_WTP; 3583 hidpp->quirks &= ~HIDPP_QUIRK_NO_HIDINPUT; 3584 } 3585 3586 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) { 3587 ret = wtp_allocate(hdev, id); 3588 if (ret) 3589 return ret; 3590 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) { 3591 ret = k400_allocate(hdev); 3592 if (ret) 3593 return ret; 3594 } 3595 3596 INIT_WORK(&hidpp->work, delayed_work_cb); 3597 mutex_init(&hidpp->send_mutex); 3598 init_waitqueue_head(&hidpp->wait); 3599 3600 /* indicates we are handling the battery properties in the kernel */ 3601 ret = sysfs_create_group(&hdev->dev.kobj, &ps_attribute_group); 3602 if (ret) 3603 hid_warn(hdev, "Cannot allocate sysfs group for %s\n", 3604 hdev->name); 3605 3606 /* 3607 * Plain USB connections need to actually call start and open 3608 * on the transport driver to allow incoming data. 3609 */ 3610 ret = hid_hw_start(hdev, 0); 3611 if (ret) { 3612 hid_err(hdev, "hw start failed\n"); 3613 goto hid_hw_start_fail; 3614 } 3615 3616 ret = hid_hw_open(hdev); 3617 if (ret < 0) { 3618 dev_err(&hdev->dev, "%s:hid_hw_open returned error:%d\n", 3619 __func__, ret); 3620 hid_hw_stop(hdev); 3621 goto hid_hw_open_fail; 3622 } 3623 3624 /* Allow incoming packets */ 3625 hid_device_io_start(hdev); 3626 3627 if (hidpp->quirks & HIDPP_QUIRK_UNIFYING) 3628 hidpp_unifying_init(hidpp); 3629 3630 connected = hidpp_root_get_protocol_version(hidpp) == 0; 3631 atomic_set(&hidpp->connected, connected); 3632 if (!(hidpp->quirks & HIDPP_QUIRK_UNIFYING)) { 3633 if (!connected) { 3634 ret = -ENODEV; 3635 hid_err(hdev, "Device not connected"); 3636 goto hid_hw_init_fail; 3637 } 3638 3639 hidpp_overwrite_name(hdev); 3640 } 3641 3642 if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)) { 3643 ret = wtp_get_config(hidpp); 3644 if (ret) 3645 goto hid_hw_init_fail; 3646 } else if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_G920)) { 3647 ret = g920_get_config(hidpp, &data); 3648 if (ret) 3649 goto hid_hw_init_fail; 3650 } 3651 3652 hidpp_connect_event(hidpp); 3653 3654 /* Reset the HID node state */ 3655 hid_device_io_stop(hdev); 3656 hid_hw_close(hdev); 3657 hid_hw_stop(hdev); 3658 3659 if (hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) 3660 connect_mask &= ~HID_CONNECT_HIDINPUT; 3661 3662 /* Now export the actual inputs and hidraw nodes to the world */ 3663 ret = hid_hw_start(hdev, connect_mask); 3664 if (ret) { 3665 hid_err(hdev, "%s:hid_hw_start returned error\n", __func__); 3666 goto hid_hw_start_fail; 3667 } 3668 3669 if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) { 3670 ret = hidpp_ff_init(hidpp, &data); 3671 if (ret) 3672 hid_warn(hidpp->hid_dev, 3673 "Unable to initialize force feedback support, errno %d\n", 3674 ret); 3675 } 3676 3677 return ret; 3678 3679 hid_hw_init_fail: 3680 hid_hw_close(hdev); 3681 hid_hw_open_fail: 3682 hid_hw_stop(hdev); 3683 hid_hw_start_fail: 3684 sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group); 3685 cancel_work_sync(&hidpp->work); 3686 mutex_destroy(&hidpp->send_mutex); 3687 return ret; 3688 } 3689 3690 static void hidpp_remove(struct hid_device *hdev) 3691 { 3692 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3693 3694 if (!hidpp) 3695 return hid_hw_stop(hdev); 3696 3697 sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group); 3698 3699 hid_hw_stop(hdev); 3700 cancel_work_sync(&hidpp->work); 3701 mutex_destroy(&hidpp->send_mutex); 3702 } 3703 3704 #define LDJ_DEVICE(product) \ 3705 HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE, \ 3706 USB_VENDOR_ID_LOGITECH, (product)) 3707 3708 #define L27MHZ_DEVICE(product) \ 3709 HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_27MHZ_DEVICE, \ 3710 USB_VENDOR_ID_LOGITECH, (product)) 3711 3712 static const struct hid_device_id hidpp_devices[] = { 3713 { /* wireless touchpad */ 3714 LDJ_DEVICE(0x4011), 3715 .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT | 3716 HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS }, 3717 { /* wireless touchpad T650 */ 3718 LDJ_DEVICE(0x4101), 3719 .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT }, 3720 { /* wireless touchpad T651 */ 3721 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 3722 USB_DEVICE_ID_LOGITECH_T651), 3723 .driver_data = HIDPP_QUIRK_CLASS_WTP }, 3724 { /* Mouse Logitech Anywhere MX */ 3725 LDJ_DEVICE(0x1017), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 }, 3726 { /* Mouse Logitech Cube */ 3727 LDJ_DEVICE(0x4010), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 }, 3728 { /* Mouse Logitech M335 */ 3729 LDJ_DEVICE(0x4050), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3730 { /* Mouse Logitech M515 */ 3731 LDJ_DEVICE(0x4007), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 }, 3732 { /* Mouse logitech M560 */ 3733 LDJ_DEVICE(0x402d), 3734 .driver_data = HIDPP_QUIRK_DELAYED_INIT | HIDPP_QUIRK_CLASS_M560 3735 | HIDPP_QUIRK_HI_RES_SCROLL_X2120 }, 3736 { /* Mouse Logitech M705 (firmware RQM17) */ 3737 LDJ_DEVICE(0x101b), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 }, 3738 { /* Mouse Logitech M705 (firmware RQM67) */ 3739 LDJ_DEVICE(0x406d), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3740 { /* Mouse Logitech M720 */ 3741 LDJ_DEVICE(0x405e), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3742 { /* Mouse Logitech MX Anywhere 2 */ 3743 LDJ_DEVICE(0x404a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3744 { LDJ_DEVICE(0xb013), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3745 { LDJ_DEVICE(0xb018), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3746 { LDJ_DEVICE(0xb01f), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3747 { /* Mouse Logitech MX Anywhere 2S */ 3748 LDJ_DEVICE(0x406a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3749 { /* Mouse Logitech MX Master */ 3750 LDJ_DEVICE(0x4041), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3751 { LDJ_DEVICE(0x4060), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3752 { LDJ_DEVICE(0x4071), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3753 { /* Mouse Logitech MX Master 2S */ 3754 LDJ_DEVICE(0x4069), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3755 { /* Mouse Logitech Performance MX */ 3756 LDJ_DEVICE(0x101a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 }, 3757 { /* Keyboard logitech K400 */ 3758 LDJ_DEVICE(0x4024), 3759 .driver_data = HIDPP_QUIRK_CLASS_K400 }, 3760 { /* Solar Keyboard Logitech K750 */ 3761 LDJ_DEVICE(0x4002), 3762 .driver_data = HIDPP_QUIRK_CLASS_K750 }, 3763 { /* Keyboard MX5000 (Bluetooth-receiver in HID proxy mode) */ 3764 LDJ_DEVICE(0xb305), 3765 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 3766 { /* Keyboard MX5500 (Bluetooth-receiver in HID proxy mode) */ 3767 LDJ_DEVICE(0xb30b), 3768 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 3769 3770 { LDJ_DEVICE(HID_ANY_ID) }, 3771 3772 { /* Keyboard LX501 (Y-RR53) */ 3773 L27MHZ_DEVICE(0x0049), 3774 .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL }, 3775 { /* Keyboard MX3000 (Y-RAM74) */ 3776 L27MHZ_DEVICE(0x0057), 3777 .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL }, 3778 { /* Keyboard MX3200 (Y-RAV80) */ 3779 L27MHZ_DEVICE(0x005c), 3780 .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL }, 3781 { /* S510 Media Remote */ 3782 L27MHZ_DEVICE(0x00fe), 3783 .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL }, 3784 3785 { L27MHZ_DEVICE(HID_ANY_ID) }, 3786 3787 { /* Logitech G403 Wireless Gaming Mouse over USB */ 3788 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC082) }, 3789 { /* Logitech G703 Gaming Mouse over USB */ 3790 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC087) }, 3791 { /* Logitech G703 Hero Gaming Mouse over USB */ 3792 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC090) }, 3793 { /* Logitech G900 Gaming Mouse over USB */ 3794 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC081) }, 3795 { /* Logitech G903 Gaming Mouse over USB */ 3796 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC086) }, 3797 { /* Logitech G903 Hero Gaming Mouse over USB */ 3798 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC091) }, 3799 { /* Logitech G920 Wheel over USB */ 3800 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G920_WHEEL), 3801 .driver_data = HIDPP_QUIRK_CLASS_G920 | HIDPP_QUIRK_FORCE_OUTPUT_REPORTS}, 3802 { /* Logitech G Pro Gaming Mouse over USB */ 3803 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC088) }, 3804 3805 { /* MX5000 keyboard over Bluetooth */ 3806 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb305), 3807 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 3808 { /* MX5500 keyboard over Bluetooth */ 3809 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb30b), 3810 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 3811 {} 3812 }; 3813 3814 MODULE_DEVICE_TABLE(hid, hidpp_devices); 3815 3816 static const struct hid_usage_id hidpp_usages[] = { 3817 { HID_GD_WHEEL, EV_REL, REL_WHEEL_HI_RES }, 3818 { HID_ANY_ID - 1, HID_ANY_ID - 1, HID_ANY_ID - 1} 3819 }; 3820 3821 static struct hid_driver hidpp_driver = { 3822 .name = "logitech-hidpp-device", 3823 .id_table = hidpp_devices, 3824 .report_fixup = hidpp_report_fixup, 3825 .probe = hidpp_probe, 3826 .remove = hidpp_remove, 3827 .raw_event = hidpp_raw_event, 3828 .usage_table = hidpp_usages, 3829 .event = hidpp_event, 3830 .input_configured = hidpp_input_configured, 3831 .input_mapping = hidpp_input_mapping, 3832 .input_mapped = hidpp_input_mapped, 3833 }; 3834 3835 module_hid_driver(hidpp_driver); 3836