xref: /openbmc/linux/drivers/hid/hid-logitech-hidpp.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  HIDPP protocol for Logitech Unifying receivers
4  *
5  *  Copyright (c) 2011 Logitech (c)
6  *  Copyright (c) 2012-2013 Google (c)
7  *  Copyright (c) 2013-2014 Red Hat Inc.
8  */
9 
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/device.h>
14 #include <linux/input.h>
15 #include <linux/usb.h>
16 #include <linux/hid.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/sched/clock.h>
21 #include <linux/kfifo.h>
22 #include <linux/input/mt.h>
23 #include <linux/workqueue.h>
24 #include <linux/atomic.h>
25 #include <linux/fixp-arith.h>
26 #include <asm/unaligned.h>
27 #include "usbhid/usbhid.h"
28 #include "hid-ids.h"
29 
30 MODULE_LICENSE("GPL");
31 MODULE_AUTHOR("Benjamin Tissoires <benjamin.tissoires@gmail.com>");
32 MODULE_AUTHOR("Nestor Lopez Casado <nlopezcasad@logitech.com>");
33 
34 static bool disable_raw_mode;
35 module_param(disable_raw_mode, bool, 0644);
36 MODULE_PARM_DESC(disable_raw_mode,
37 	"Disable Raw mode reporting for touchpads and keep firmware gestures.");
38 
39 static bool disable_tap_to_click;
40 module_param(disable_tap_to_click, bool, 0644);
41 MODULE_PARM_DESC(disable_tap_to_click,
42 	"Disable Tap-To-Click mode reporting for touchpads (only on the K400 currently).");
43 
44 #define REPORT_ID_HIDPP_SHORT			0x10
45 #define REPORT_ID_HIDPP_LONG			0x11
46 #define REPORT_ID_HIDPP_VERY_LONG		0x12
47 
48 #define HIDPP_REPORT_SHORT_LENGTH		7
49 #define HIDPP_REPORT_LONG_LENGTH		20
50 #define HIDPP_REPORT_VERY_LONG_MAX_LENGTH	64
51 
52 #define HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS	0x03
53 #define HIDPP_SUB_ID_ROLLER			0x05
54 #define HIDPP_SUB_ID_MOUSE_EXTRA_BTNS		0x06
55 
56 #define HIDPP_QUIRK_CLASS_WTP			BIT(0)
57 #define HIDPP_QUIRK_CLASS_M560			BIT(1)
58 #define HIDPP_QUIRK_CLASS_K400			BIT(2)
59 #define HIDPP_QUIRK_CLASS_G920			BIT(3)
60 #define HIDPP_QUIRK_CLASS_K750			BIT(4)
61 
62 /* bits 2..20 are reserved for classes */
63 /* #define HIDPP_QUIRK_CONNECT_EVENTS		BIT(21) disabled */
64 #define HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS	BIT(22)
65 #define HIDPP_QUIRK_NO_HIDINPUT			BIT(23)
66 #define HIDPP_QUIRK_FORCE_OUTPUT_REPORTS	BIT(24)
67 #define HIDPP_QUIRK_UNIFYING			BIT(25)
68 #define HIDPP_QUIRK_HI_RES_SCROLL_1P0		BIT(26)
69 #define HIDPP_QUIRK_HI_RES_SCROLL_X2120		BIT(27)
70 #define HIDPP_QUIRK_HI_RES_SCROLL_X2121		BIT(28)
71 #define HIDPP_QUIRK_HIDPP_WHEELS		BIT(29)
72 #define HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS	BIT(30)
73 #define HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS	BIT(31)
74 
75 /* These are just aliases for now */
76 #define HIDPP_QUIRK_KBD_SCROLL_WHEEL HIDPP_QUIRK_HIDPP_WHEELS
77 #define HIDPP_QUIRK_KBD_ZOOM_WHEEL   HIDPP_QUIRK_HIDPP_WHEELS
78 
79 /* Convenience constant to check for any high-res support. */
80 #define HIDPP_QUIRK_HI_RES_SCROLL	(HIDPP_QUIRK_HI_RES_SCROLL_1P0 | \
81 					 HIDPP_QUIRK_HI_RES_SCROLL_X2120 | \
82 					 HIDPP_QUIRK_HI_RES_SCROLL_X2121)
83 
84 #define HIDPP_QUIRK_DELAYED_INIT		HIDPP_QUIRK_NO_HIDINPUT
85 
86 #define HIDPP_CAPABILITY_HIDPP10_BATTERY	BIT(0)
87 #define HIDPP_CAPABILITY_HIDPP20_BATTERY	BIT(1)
88 #define HIDPP_CAPABILITY_BATTERY_MILEAGE	BIT(2)
89 #define HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS	BIT(3)
90 
91 /*
92  * There are two hidpp protocols in use, the first version hidpp10 is known
93  * as register access protocol or RAP, the second version hidpp20 is known as
94  * feature access protocol or FAP
95  *
96  * Most older devices (including the Unifying usb receiver) use the RAP protocol
97  * where as most newer devices use the FAP protocol. Both protocols are
98  * compatible with the underlying transport, which could be usb, Unifiying, or
99  * bluetooth. The message lengths are defined by the hid vendor specific report
100  * descriptor for the HIDPP_SHORT report type (total message lenth 7 bytes) and
101  * the HIDPP_LONG report type (total message length 20 bytes)
102  *
103  * The RAP protocol uses both report types, whereas the FAP only uses HIDPP_LONG
104  * messages. The Unifying receiver itself responds to RAP messages (device index
105  * is 0xFF for the receiver), and all messages (short or long) with a device
106  * index between 1 and 6 are passed untouched to the corresponding paired
107  * Unifying device.
108  *
109  * The paired device can be RAP or FAP, it will receive the message untouched
110  * from the Unifiying receiver.
111  */
112 
113 struct fap {
114 	u8 feature_index;
115 	u8 funcindex_clientid;
116 	u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U];
117 };
118 
119 struct rap {
120 	u8 sub_id;
121 	u8 reg_address;
122 	u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U];
123 };
124 
125 struct hidpp_report {
126 	u8 report_id;
127 	u8 device_index;
128 	union {
129 		struct fap fap;
130 		struct rap rap;
131 		u8 rawbytes[sizeof(struct fap)];
132 	};
133 } __packed;
134 
135 struct hidpp_battery {
136 	u8 feature_index;
137 	u8 solar_feature_index;
138 	struct power_supply_desc desc;
139 	struct power_supply *ps;
140 	char name[64];
141 	int status;
142 	int capacity;
143 	int level;
144 	bool online;
145 };
146 
147 /**
148  * struct hidpp_scroll_counter - Utility class for processing high-resolution
149  *                             scroll events.
150  * @dev: the input device for which events should be reported.
151  * @wheel_multiplier: the scalar multiplier to be applied to each wheel event
152  * @remainder: counts the number of high-resolution units moved since the last
153  *             low-resolution event (REL_WHEEL or REL_HWHEEL) was sent. Should
154  *             only be used by class methods.
155  * @direction: direction of last movement (1 or -1)
156  * @last_time: last event time, used to reset remainder after inactivity
157  */
158 struct hidpp_scroll_counter {
159 	int wheel_multiplier;
160 	int remainder;
161 	int direction;
162 	unsigned long long last_time;
163 };
164 
165 struct hidpp_device {
166 	struct hid_device *hid_dev;
167 	struct input_dev *input;
168 	struct mutex send_mutex;
169 	void *send_receive_buf;
170 	char *name;		/* will never be NULL and should not be freed */
171 	wait_queue_head_t wait;
172 	int very_long_report_length;
173 	bool answer_available;
174 	u8 protocol_major;
175 	u8 protocol_minor;
176 
177 	void *private_data;
178 
179 	struct work_struct work;
180 	struct kfifo delayed_work_fifo;
181 	atomic_t connected;
182 	struct input_dev *delayed_input;
183 
184 	unsigned long quirks;
185 	unsigned long capabilities;
186 
187 	struct hidpp_battery battery;
188 	struct hidpp_scroll_counter vertical_wheel_counter;
189 };
190 
191 /* HID++ 1.0 error codes */
192 #define HIDPP_ERROR				0x8f
193 #define HIDPP_ERROR_SUCCESS			0x00
194 #define HIDPP_ERROR_INVALID_SUBID		0x01
195 #define HIDPP_ERROR_INVALID_ADRESS		0x02
196 #define HIDPP_ERROR_INVALID_VALUE		0x03
197 #define HIDPP_ERROR_CONNECT_FAIL		0x04
198 #define HIDPP_ERROR_TOO_MANY_DEVICES		0x05
199 #define HIDPP_ERROR_ALREADY_EXISTS		0x06
200 #define HIDPP_ERROR_BUSY			0x07
201 #define HIDPP_ERROR_UNKNOWN_DEVICE		0x08
202 #define HIDPP_ERROR_RESOURCE_ERROR		0x09
203 #define HIDPP_ERROR_REQUEST_UNAVAILABLE		0x0a
204 #define HIDPP_ERROR_INVALID_PARAM_VALUE		0x0b
205 #define HIDPP_ERROR_WRONG_PIN_CODE		0x0c
206 /* HID++ 2.0 error codes */
207 #define HIDPP20_ERROR				0xff
208 
209 static void hidpp_connect_event(struct hidpp_device *hidpp_dev);
210 
211 static int __hidpp_send_report(struct hid_device *hdev,
212 				struct hidpp_report *hidpp_report)
213 {
214 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
215 	int fields_count, ret;
216 
217 	switch (hidpp_report->report_id) {
218 	case REPORT_ID_HIDPP_SHORT:
219 		fields_count = HIDPP_REPORT_SHORT_LENGTH;
220 		break;
221 	case REPORT_ID_HIDPP_LONG:
222 		fields_count = HIDPP_REPORT_LONG_LENGTH;
223 		break;
224 	case REPORT_ID_HIDPP_VERY_LONG:
225 		fields_count = hidpp->very_long_report_length;
226 		break;
227 	default:
228 		return -ENODEV;
229 	}
230 
231 	/*
232 	 * set the device_index as the receiver, it will be overwritten by
233 	 * hid_hw_request if needed
234 	 */
235 	hidpp_report->device_index = 0xff;
236 
237 	if (hidpp->quirks & HIDPP_QUIRK_FORCE_OUTPUT_REPORTS) {
238 		ret = hid_hw_output_report(hdev, (u8 *)hidpp_report, fields_count);
239 	} else {
240 		ret = hid_hw_raw_request(hdev, hidpp_report->report_id,
241 			(u8 *)hidpp_report, fields_count, HID_OUTPUT_REPORT,
242 			HID_REQ_SET_REPORT);
243 	}
244 
245 	return ret == fields_count ? 0 : -1;
246 }
247 
248 /**
249  * hidpp_send_message_sync() returns 0 in case of success, and something else
250  * in case of a failure.
251  * - If ' something else' is positive, that means that an error has been raised
252  *   by the protocol itself.
253  * - If ' something else' is negative, that means that we had a classic error
254  *   (-ENOMEM, -EPIPE, etc...)
255  */
256 static int hidpp_send_message_sync(struct hidpp_device *hidpp,
257 	struct hidpp_report *message,
258 	struct hidpp_report *response)
259 {
260 	int ret;
261 
262 	mutex_lock(&hidpp->send_mutex);
263 
264 	hidpp->send_receive_buf = response;
265 	hidpp->answer_available = false;
266 
267 	/*
268 	 * So that we can later validate the answer when it arrives
269 	 * in hidpp_raw_event
270 	 */
271 	*response = *message;
272 
273 	ret = __hidpp_send_report(hidpp->hid_dev, message);
274 
275 	if (ret) {
276 		dbg_hid("__hidpp_send_report returned err: %d\n", ret);
277 		memset(response, 0, sizeof(struct hidpp_report));
278 		goto exit;
279 	}
280 
281 	if (!wait_event_timeout(hidpp->wait, hidpp->answer_available,
282 				5*HZ)) {
283 		dbg_hid("%s:timeout waiting for response\n", __func__);
284 		memset(response, 0, sizeof(struct hidpp_report));
285 		ret = -ETIMEDOUT;
286 	}
287 
288 	if (response->report_id == REPORT_ID_HIDPP_SHORT &&
289 	    response->rap.sub_id == HIDPP_ERROR) {
290 		ret = response->rap.params[1];
291 		dbg_hid("%s:got hidpp error %02X\n", __func__, ret);
292 		goto exit;
293 	}
294 
295 	if ((response->report_id == REPORT_ID_HIDPP_LONG ||
296 			response->report_id == REPORT_ID_HIDPP_VERY_LONG) &&
297 			response->fap.feature_index == HIDPP20_ERROR) {
298 		ret = response->fap.params[1];
299 		dbg_hid("%s:got hidpp 2.0 error %02X\n", __func__, ret);
300 		goto exit;
301 	}
302 
303 exit:
304 	mutex_unlock(&hidpp->send_mutex);
305 	return ret;
306 
307 }
308 
309 static int hidpp_send_fap_command_sync(struct hidpp_device *hidpp,
310 	u8 feat_index, u8 funcindex_clientid, u8 *params, int param_count,
311 	struct hidpp_report *response)
312 {
313 	struct hidpp_report *message;
314 	int ret;
315 
316 	if (param_count > sizeof(message->fap.params))
317 		return -EINVAL;
318 
319 	message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL);
320 	if (!message)
321 		return -ENOMEM;
322 
323 	if (param_count > (HIDPP_REPORT_LONG_LENGTH - 4))
324 		message->report_id = REPORT_ID_HIDPP_VERY_LONG;
325 	else
326 		message->report_id = REPORT_ID_HIDPP_LONG;
327 	message->fap.feature_index = feat_index;
328 	message->fap.funcindex_clientid = funcindex_clientid;
329 	memcpy(&message->fap.params, params, param_count);
330 
331 	ret = hidpp_send_message_sync(hidpp, message, response);
332 	kfree(message);
333 	return ret;
334 }
335 
336 static int hidpp_send_rap_command_sync(struct hidpp_device *hidpp_dev,
337 	u8 report_id, u8 sub_id, u8 reg_address, u8 *params, int param_count,
338 	struct hidpp_report *response)
339 {
340 	struct hidpp_report *message;
341 	int ret, max_count;
342 
343 	switch (report_id) {
344 	case REPORT_ID_HIDPP_SHORT:
345 		max_count = HIDPP_REPORT_SHORT_LENGTH - 4;
346 		break;
347 	case REPORT_ID_HIDPP_LONG:
348 		max_count = HIDPP_REPORT_LONG_LENGTH - 4;
349 		break;
350 	case REPORT_ID_HIDPP_VERY_LONG:
351 		max_count = hidpp_dev->very_long_report_length - 4;
352 		break;
353 	default:
354 		return -EINVAL;
355 	}
356 
357 	if (param_count > max_count)
358 		return -EINVAL;
359 
360 	message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL);
361 	if (!message)
362 		return -ENOMEM;
363 	message->report_id = report_id;
364 	message->rap.sub_id = sub_id;
365 	message->rap.reg_address = reg_address;
366 	memcpy(&message->rap.params, params, param_count);
367 
368 	ret = hidpp_send_message_sync(hidpp_dev, message, response);
369 	kfree(message);
370 	return ret;
371 }
372 
373 static void delayed_work_cb(struct work_struct *work)
374 {
375 	struct hidpp_device *hidpp = container_of(work, struct hidpp_device,
376 							work);
377 	hidpp_connect_event(hidpp);
378 }
379 
380 static inline bool hidpp_match_answer(struct hidpp_report *question,
381 		struct hidpp_report *answer)
382 {
383 	return (answer->fap.feature_index == question->fap.feature_index) &&
384 	   (answer->fap.funcindex_clientid == question->fap.funcindex_clientid);
385 }
386 
387 static inline bool hidpp_match_error(struct hidpp_report *question,
388 		struct hidpp_report *answer)
389 {
390 	return ((answer->rap.sub_id == HIDPP_ERROR) ||
391 	    (answer->fap.feature_index == HIDPP20_ERROR)) &&
392 	    (answer->fap.funcindex_clientid == question->fap.feature_index) &&
393 	    (answer->fap.params[0] == question->fap.funcindex_clientid);
394 }
395 
396 static inline bool hidpp_report_is_connect_event(struct hidpp_report *report)
397 {
398 	return (report->report_id == REPORT_ID_HIDPP_SHORT) &&
399 		(report->rap.sub_id == 0x41);
400 }
401 
402 /**
403  * hidpp_prefix_name() prefixes the current given name with "Logitech ".
404  */
405 static void hidpp_prefix_name(char **name, int name_length)
406 {
407 #define PREFIX_LENGTH 9 /* "Logitech " */
408 
409 	int new_length;
410 	char *new_name;
411 
412 	if (name_length > PREFIX_LENGTH &&
413 	    strncmp(*name, "Logitech ", PREFIX_LENGTH) == 0)
414 		/* The prefix has is already in the name */
415 		return;
416 
417 	new_length = PREFIX_LENGTH + name_length;
418 	new_name = kzalloc(new_length, GFP_KERNEL);
419 	if (!new_name)
420 		return;
421 
422 	snprintf(new_name, new_length, "Logitech %s", *name);
423 
424 	kfree(*name);
425 
426 	*name = new_name;
427 }
428 
429 /**
430  * hidpp_scroll_counter_handle_scroll() - Send high- and low-resolution scroll
431  *                                        events given a high-resolution wheel
432  *                                        movement.
433  * @counter: a hid_scroll_counter struct describing the wheel.
434  * @hi_res_value: the movement of the wheel, in the mouse's high-resolution
435  *                units.
436  *
437  * Given a high-resolution movement, this function converts the movement into
438  * fractions of 120 and emits high-resolution scroll events for the input
439  * device. It also uses the multiplier from &struct hid_scroll_counter to
440  * emit low-resolution scroll events when appropriate for
441  * backwards-compatibility with userspace input libraries.
442  */
443 static void hidpp_scroll_counter_handle_scroll(struct input_dev *input_dev,
444 					       struct hidpp_scroll_counter *counter,
445 					       int hi_res_value)
446 {
447 	int low_res_value, remainder, direction;
448 	unsigned long long now, previous;
449 
450 	hi_res_value = hi_res_value * 120/counter->wheel_multiplier;
451 	input_report_rel(input_dev, REL_WHEEL_HI_RES, hi_res_value);
452 
453 	remainder = counter->remainder;
454 	direction = hi_res_value > 0 ? 1 : -1;
455 
456 	now = sched_clock();
457 	previous = counter->last_time;
458 	counter->last_time = now;
459 	/*
460 	 * Reset the remainder after a period of inactivity or when the
461 	 * direction changes. This prevents the REL_WHEEL emulation point
462 	 * from sliding for devices that don't always provide the same
463 	 * number of movements per detent.
464 	 */
465 	if (now - previous > 1000000000 || direction != counter->direction)
466 		remainder = 0;
467 
468 	counter->direction = direction;
469 	remainder += hi_res_value;
470 
471 	/* Some wheels will rest 7/8ths of a detent from the previous detent
472 	 * after slow movement, so we want the threshold for low-res events to
473 	 * be in the middle between two detents (e.g. after 4/8ths) as
474 	 * opposed to on the detents themselves (8/8ths).
475 	 */
476 	if (abs(remainder) >= 60) {
477 		/* Add (or subtract) 1 because we want to trigger when the wheel
478 		 * is half-way to the next detent (i.e. scroll 1 detent after a
479 		 * 1/2 detent movement, 2 detents after a 1 1/2 detent movement,
480 		 * etc.).
481 		 */
482 		low_res_value = remainder / 120;
483 		if (low_res_value == 0)
484 			low_res_value = (hi_res_value > 0 ? 1 : -1);
485 		input_report_rel(input_dev, REL_WHEEL, low_res_value);
486 		remainder -= low_res_value * 120;
487 	}
488 	counter->remainder = remainder;
489 }
490 
491 /* -------------------------------------------------------------------------- */
492 /* HIDP++ 1.0 commands                                                        */
493 /* -------------------------------------------------------------------------- */
494 
495 #define HIDPP_SET_REGISTER				0x80
496 #define HIDPP_GET_REGISTER				0x81
497 #define HIDPP_SET_LONG_REGISTER				0x82
498 #define HIDPP_GET_LONG_REGISTER				0x83
499 
500 /**
501  * hidpp10_set_register - Modify a HID++ 1.0 register.
502  * @hidpp_dev: the device to set the register on.
503  * @register_address: the address of the register to modify.
504  * @byte: the byte of the register to modify. Should be less than 3.
505  * @mask: mask of the bits to modify
506  * @value: new values for the bits in mask
507  * Return: 0 if successful, otherwise a negative error code.
508  */
509 static int hidpp10_set_register(struct hidpp_device *hidpp_dev,
510 	u8 register_address, u8 byte, u8 mask, u8 value)
511 {
512 	struct hidpp_report response;
513 	int ret;
514 	u8 params[3] = { 0 };
515 
516 	ret = hidpp_send_rap_command_sync(hidpp_dev,
517 					  REPORT_ID_HIDPP_SHORT,
518 					  HIDPP_GET_REGISTER,
519 					  register_address,
520 					  NULL, 0, &response);
521 	if (ret)
522 		return ret;
523 
524 	memcpy(params, response.rap.params, 3);
525 
526 	params[byte] &= ~mask;
527 	params[byte] |= value & mask;
528 
529 	return hidpp_send_rap_command_sync(hidpp_dev,
530 					   REPORT_ID_HIDPP_SHORT,
531 					   HIDPP_SET_REGISTER,
532 					   register_address,
533 					   params, 3, &response);
534 }
535 
536 #define HIDPP_REG_ENABLE_REPORTS			0x00
537 #define HIDPP_ENABLE_CONSUMER_REPORT			BIT(0)
538 #define HIDPP_ENABLE_WHEEL_REPORT			BIT(2)
539 #define HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT		BIT(3)
540 #define HIDPP_ENABLE_BAT_REPORT				BIT(4)
541 #define HIDPP_ENABLE_HWHEEL_REPORT			BIT(5)
542 
543 static int hidpp10_enable_battery_reporting(struct hidpp_device *hidpp_dev)
544 {
545 	return hidpp10_set_register(hidpp_dev, HIDPP_REG_ENABLE_REPORTS, 0,
546 			  HIDPP_ENABLE_BAT_REPORT, HIDPP_ENABLE_BAT_REPORT);
547 }
548 
549 #define HIDPP_REG_FEATURES				0x01
550 #define HIDPP_ENABLE_SPECIAL_BUTTON_FUNC		BIT(1)
551 #define HIDPP_ENABLE_FAST_SCROLL			BIT(6)
552 
553 /* On HID++ 1.0 devices, high-res scroll was called "scrolling acceleration". */
554 static int hidpp10_enable_scrolling_acceleration(struct hidpp_device *hidpp_dev)
555 {
556 	return hidpp10_set_register(hidpp_dev, HIDPP_REG_FEATURES, 0,
557 			  HIDPP_ENABLE_FAST_SCROLL, HIDPP_ENABLE_FAST_SCROLL);
558 }
559 
560 #define HIDPP_REG_BATTERY_STATUS			0x07
561 
562 static int hidpp10_battery_status_map_level(u8 param)
563 {
564 	int level;
565 
566 	switch (param) {
567 	case 1 ... 2:
568 		level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
569 		break;
570 	case 3 ... 4:
571 		level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
572 		break;
573 	case 5 ... 6:
574 		level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
575 		break;
576 	case 7:
577 		level = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
578 		break;
579 	default:
580 		level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
581 	}
582 
583 	return level;
584 }
585 
586 static int hidpp10_battery_status_map_status(u8 param)
587 {
588 	int status;
589 
590 	switch (param) {
591 	case 0x00:
592 		/* discharging (in use) */
593 		status = POWER_SUPPLY_STATUS_DISCHARGING;
594 		break;
595 	case 0x21: /* (standard) charging */
596 	case 0x24: /* fast charging */
597 	case 0x25: /* slow charging */
598 		status = POWER_SUPPLY_STATUS_CHARGING;
599 		break;
600 	case 0x26: /* topping charge */
601 	case 0x22: /* charge complete */
602 		status = POWER_SUPPLY_STATUS_FULL;
603 		break;
604 	case 0x20: /* unknown */
605 		status = POWER_SUPPLY_STATUS_UNKNOWN;
606 		break;
607 	/*
608 	 * 0x01...0x1F = reserved (not charging)
609 	 * 0x23 = charging error
610 	 * 0x27..0xff = reserved
611 	 */
612 	default:
613 		status = POWER_SUPPLY_STATUS_NOT_CHARGING;
614 		break;
615 	}
616 
617 	return status;
618 }
619 
620 static int hidpp10_query_battery_status(struct hidpp_device *hidpp)
621 {
622 	struct hidpp_report response;
623 	int ret, status;
624 
625 	ret = hidpp_send_rap_command_sync(hidpp,
626 					REPORT_ID_HIDPP_SHORT,
627 					HIDPP_GET_REGISTER,
628 					HIDPP_REG_BATTERY_STATUS,
629 					NULL, 0, &response);
630 	if (ret)
631 		return ret;
632 
633 	hidpp->battery.level =
634 		hidpp10_battery_status_map_level(response.rap.params[0]);
635 	status = hidpp10_battery_status_map_status(response.rap.params[1]);
636 	hidpp->battery.status = status;
637 	/* the capacity is only available when discharging or full */
638 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
639 				status == POWER_SUPPLY_STATUS_FULL;
640 
641 	return 0;
642 }
643 
644 #define HIDPP_REG_BATTERY_MILEAGE			0x0D
645 
646 static int hidpp10_battery_mileage_map_status(u8 param)
647 {
648 	int status;
649 
650 	switch (param >> 6) {
651 	case 0x00:
652 		/* discharging (in use) */
653 		status = POWER_SUPPLY_STATUS_DISCHARGING;
654 		break;
655 	case 0x01: /* charging */
656 		status = POWER_SUPPLY_STATUS_CHARGING;
657 		break;
658 	case 0x02: /* charge complete */
659 		status = POWER_SUPPLY_STATUS_FULL;
660 		break;
661 	/*
662 	 * 0x03 = charging error
663 	 */
664 	default:
665 		status = POWER_SUPPLY_STATUS_NOT_CHARGING;
666 		break;
667 	}
668 
669 	return status;
670 }
671 
672 static int hidpp10_query_battery_mileage(struct hidpp_device *hidpp)
673 {
674 	struct hidpp_report response;
675 	int ret, status;
676 
677 	ret = hidpp_send_rap_command_sync(hidpp,
678 					REPORT_ID_HIDPP_SHORT,
679 					HIDPP_GET_REGISTER,
680 					HIDPP_REG_BATTERY_MILEAGE,
681 					NULL, 0, &response);
682 	if (ret)
683 		return ret;
684 
685 	hidpp->battery.capacity = response.rap.params[0];
686 	status = hidpp10_battery_mileage_map_status(response.rap.params[2]);
687 	hidpp->battery.status = status;
688 	/* the capacity is only available when discharging or full */
689 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
690 				status == POWER_SUPPLY_STATUS_FULL;
691 
692 	return 0;
693 }
694 
695 static int hidpp10_battery_event(struct hidpp_device *hidpp, u8 *data, int size)
696 {
697 	struct hidpp_report *report = (struct hidpp_report *)data;
698 	int status, capacity, level;
699 	bool changed;
700 
701 	if (report->report_id != REPORT_ID_HIDPP_SHORT)
702 		return 0;
703 
704 	switch (report->rap.sub_id) {
705 	case HIDPP_REG_BATTERY_STATUS:
706 		capacity = hidpp->battery.capacity;
707 		level = hidpp10_battery_status_map_level(report->rawbytes[1]);
708 		status = hidpp10_battery_status_map_status(report->rawbytes[2]);
709 		break;
710 	case HIDPP_REG_BATTERY_MILEAGE:
711 		capacity = report->rap.params[0];
712 		level = hidpp->battery.level;
713 		status = hidpp10_battery_mileage_map_status(report->rawbytes[3]);
714 		break;
715 	default:
716 		return 0;
717 	}
718 
719 	changed = capacity != hidpp->battery.capacity ||
720 		  level != hidpp->battery.level ||
721 		  status != hidpp->battery.status;
722 
723 	/* the capacity is only available when discharging or full */
724 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
725 				status == POWER_SUPPLY_STATUS_FULL;
726 
727 	if (changed) {
728 		hidpp->battery.level = level;
729 		hidpp->battery.status = status;
730 		if (hidpp->battery.ps)
731 			power_supply_changed(hidpp->battery.ps);
732 	}
733 
734 	return 0;
735 }
736 
737 #define HIDPP_REG_PAIRING_INFORMATION			0xB5
738 #define HIDPP_EXTENDED_PAIRING				0x30
739 #define HIDPP_DEVICE_NAME				0x40
740 
741 static char *hidpp_unifying_get_name(struct hidpp_device *hidpp_dev)
742 {
743 	struct hidpp_report response;
744 	int ret;
745 	u8 params[1] = { HIDPP_DEVICE_NAME };
746 	char *name;
747 	int len;
748 
749 	ret = hidpp_send_rap_command_sync(hidpp_dev,
750 					REPORT_ID_HIDPP_SHORT,
751 					HIDPP_GET_LONG_REGISTER,
752 					HIDPP_REG_PAIRING_INFORMATION,
753 					params, 1, &response);
754 	if (ret)
755 		return NULL;
756 
757 	len = response.rap.params[1];
758 
759 	if (2 + len > sizeof(response.rap.params))
760 		return NULL;
761 
762 	if (len < 4) /* logitech devices are usually at least Xddd */
763 		return NULL;
764 
765 	name = kzalloc(len + 1, GFP_KERNEL);
766 	if (!name)
767 		return NULL;
768 
769 	memcpy(name, &response.rap.params[2], len);
770 
771 	/* include the terminating '\0' */
772 	hidpp_prefix_name(&name, len + 1);
773 
774 	return name;
775 }
776 
777 static int hidpp_unifying_get_serial(struct hidpp_device *hidpp, u32 *serial)
778 {
779 	struct hidpp_report response;
780 	int ret;
781 	u8 params[1] = { HIDPP_EXTENDED_PAIRING };
782 
783 	ret = hidpp_send_rap_command_sync(hidpp,
784 					REPORT_ID_HIDPP_SHORT,
785 					HIDPP_GET_LONG_REGISTER,
786 					HIDPP_REG_PAIRING_INFORMATION,
787 					params, 1, &response);
788 	if (ret)
789 		return ret;
790 
791 	/*
792 	 * We don't care about LE or BE, we will output it as a string
793 	 * with %4phD, so we need to keep the order.
794 	 */
795 	*serial = *((u32 *)&response.rap.params[1]);
796 	return 0;
797 }
798 
799 static int hidpp_unifying_init(struct hidpp_device *hidpp)
800 {
801 	struct hid_device *hdev = hidpp->hid_dev;
802 	const char *name;
803 	u32 serial;
804 	int ret;
805 
806 	ret = hidpp_unifying_get_serial(hidpp, &serial);
807 	if (ret)
808 		return ret;
809 
810 	snprintf(hdev->uniq, sizeof(hdev->uniq), "%04x-%4phD",
811 		 hdev->product, &serial);
812 	dbg_hid("HID++ Unifying: Got serial: %s\n", hdev->uniq);
813 
814 	name = hidpp_unifying_get_name(hidpp);
815 	if (!name)
816 		return -EIO;
817 
818 	snprintf(hdev->name, sizeof(hdev->name), "%s", name);
819 	dbg_hid("HID++ Unifying: Got name: %s\n", name);
820 
821 	kfree(name);
822 	return 0;
823 }
824 
825 /* -------------------------------------------------------------------------- */
826 /* 0x0000: Root                                                               */
827 /* -------------------------------------------------------------------------- */
828 
829 #define HIDPP_PAGE_ROOT					0x0000
830 #define HIDPP_PAGE_ROOT_IDX				0x00
831 
832 #define CMD_ROOT_GET_FEATURE				0x01
833 #define CMD_ROOT_GET_PROTOCOL_VERSION			0x11
834 
835 static int hidpp_root_get_feature(struct hidpp_device *hidpp, u16 feature,
836 	u8 *feature_index, u8 *feature_type)
837 {
838 	struct hidpp_report response;
839 	int ret;
840 	u8 params[2] = { feature >> 8, feature & 0x00FF };
841 
842 	ret = hidpp_send_fap_command_sync(hidpp,
843 			HIDPP_PAGE_ROOT_IDX,
844 			CMD_ROOT_GET_FEATURE,
845 			params, 2, &response);
846 	if (ret)
847 		return ret;
848 
849 	if (response.fap.params[0] == 0)
850 		return -ENOENT;
851 
852 	*feature_index = response.fap.params[0];
853 	*feature_type = response.fap.params[1];
854 
855 	return ret;
856 }
857 
858 static int hidpp_root_get_protocol_version(struct hidpp_device *hidpp)
859 {
860 	const u8 ping_byte = 0x5a;
861 	u8 ping_data[3] = { 0, 0, ping_byte };
862 	struct hidpp_report response;
863 	int ret;
864 
865 	ret = hidpp_send_rap_command_sync(hidpp,
866 			REPORT_ID_HIDPP_SHORT,
867 			HIDPP_PAGE_ROOT_IDX,
868 			CMD_ROOT_GET_PROTOCOL_VERSION,
869 			ping_data, sizeof(ping_data), &response);
870 
871 	if (ret == HIDPP_ERROR_INVALID_SUBID) {
872 		hidpp->protocol_major = 1;
873 		hidpp->protocol_minor = 0;
874 		goto print_version;
875 	}
876 
877 	/* the device might not be connected */
878 	if (ret == HIDPP_ERROR_RESOURCE_ERROR)
879 		return -EIO;
880 
881 	if (ret > 0) {
882 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
883 			__func__, ret);
884 		return -EPROTO;
885 	}
886 	if (ret)
887 		return ret;
888 
889 	if (response.rap.params[2] != ping_byte) {
890 		hid_err(hidpp->hid_dev, "%s: ping mismatch 0x%02x != 0x%02x\n",
891 			__func__, response.rap.params[2], ping_byte);
892 		return -EPROTO;
893 	}
894 
895 	hidpp->protocol_major = response.rap.params[0];
896 	hidpp->protocol_minor = response.rap.params[1];
897 
898 print_version:
899 	hid_info(hidpp->hid_dev, "HID++ %u.%u device connected.\n",
900 		 hidpp->protocol_major, hidpp->protocol_minor);
901 	return 0;
902 }
903 
904 /* -------------------------------------------------------------------------- */
905 /* 0x0005: GetDeviceNameType                                                  */
906 /* -------------------------------------------------------------------------- */
907 
908 #define HIDPP_PAGE_GET_DEVICE_NAME_TYPE			0x0005
909 
910 #define CMD_GET_DEVICE_NAME_TYPE_GET_COUNT		0x01
911 #define CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME	0x11
912 #define CMD_GET_DEVICE_NAME_TYPE_GET_TYPE		0x21
913 
914 static int hidpp_devicenametype_get_count(struct hidpp_device *hidpp,
915 	u8 feature_index, u8 *nameLength)
916 {
917 	struct hidpp_report response;
918 	int ret;
919 
920 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
921 		CMD_GET_DEVICE_NAME_TYPE_GET_COUNT, NULL, 0, &response);
922 
923 	if (ret > 0) {
924 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
925 			__func__, ret);
926 		return -EPROTO;
927 	}
928 	if (ret)
929 		return ret;
930 
931 	*nameLength = response.fap.params[0];
932 
933 	return ret;
934 }
935 
936 static int hidpp_devicenametype_get_device_name(struct hidpp_device *hidpp,
937 	u8 feature_index, u8 char_index, char *device_name, int len_buf)
938 {
939 	struct hidpp_report response;
940 	int ret, i;
941 	int count;
942 
943 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
944 		CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME, &char_index, 1,
945 		&response);
946 
947 	if (ret > 0) {
948 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
949 			__func__, ret);
950 		return -EPROTO;
951 	}
952 	if (ret)
953 		return ret;
954 
955 	switch (response.report_id) {
956 	case REPORT_ID_HIDPP_VERY_LONG:
957 		count = hidpp->very_long_report_length - 4;
958 		break;
959 	case REPORT_ID_HIDPP_LONG:
960 		count = HIDPP_REPORT_LONG_LENGTH - 4;
961 		break;
962 	case REPORT_ID_HIDPP_SHORT:
963 		count = HIDPP_REPORT_SHORT_LENGTH - 4;
964 		break;
965 	default:
966 		return -EPROTO;
967 	}
968 
969 	if (len_buf < count)
970 		count = len_buf;
971 
972 	for (i = 0; i < count; i++)
973 		device_name[i] = response.fap.params[i];
974 
975 	return count;
976 }
977 
978 static char *hidpp_get_device_name(struct hidpp_device *hidpp)
979 {
980 	u8 feature_type;
981 	u8 feature_index;
982 	u8 __name_length;
983 	char *name;
984 	unsigned index = 0;
985 	int ret;
986 
987 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_GET_DEVICE_NAME_TYPE,
988 		&feature_index, &feature_type);
989 	if (ret)
990 		return NULL;
991 
992 	ret = hidpp_devicenametype_get_count(hidpp, feature_index,
993 		&__name_length);
994 	if (ret)
995 		return NULL;
996 
997 	name = kzalloc(__name_length + 1, GFP_KERNEL);
998 	if (!name)
999 		return NULL;
1000 
1001 	while (index < __name_length) {
1002 		ret = hidpp_devicenametype_get_device_name(hidpp,
1003 			feature_index, index, name + index,
1004 			__name_length - index);
1005 		if (ret <= 0) {
1006 			kfree(name);
1007 			return NULL;
1008 		}
1009 		index += ret;
1010 	}
1011 
1012 	/* include the terminating '\0' */
1013 	hidpp_prefix_name(&name, __name_length + 1);
1014 
1015 	return name;
1016 }
1017 
1018 /* -------------------------------------------------------------------------- */
1019 /* 0x1000: Battery level status                                               */
1020 /* -------------------------------------------------------------------------- */
1021 
1022 #define HIDPP_PAGE_BATTERY_LEVEL_STATUS				0x1000
1023 
1024 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS	0x00
1025 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY		0x10
1026 
1027 #define EVENT_BATTERY_LEVEL_STATUS_BROADCAST			0x00
1028 
1029 #define FLAG_BATTERY_LEVEL_DISABLE_OSD				BIT(0)
1030 #define FLAG_BATTERY_LEVEL_MILEAGE				BIT(1)
1031 #define FLAG_BATTERY_LEVEL_RECHARGEABLE				BIT(2)
1032 
1033 static int hidpp_map_battery_level(int capacity)
1034 {
1035 	if (capacity < 11)
1036 		return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1037 	/*
1038 	 * The spec says this should be < 31 but some devices report 30
1039 	 * with brand new batteries and Windows reports 30 as "Good".
1040 	 */
1041 	else if (capacity < 30)
1042 		return POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1043 	else if (capacity < 81)
1044 		return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1045 	return POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1046 }
1047 
1048 static int hidpp20_batterylevel_map_status_capacity(u8 data[3], int *capacity,
1049 						    int *next_capacity,
1050 						    int *level)
1051 {
1052 	int status;
1053 
1054 	*capacity = data[0];
1055 	*next_capacity = data[1];
1056 	*level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
1057 
1058 	/* When discharging, we can rely on the device reported capacity.
1059 	 * For all other states the device reports 0 (unknown).
1060 	 */
1061 	switch (data[2]) {
1062 		case 0: /* discharging (in use) */
1063 			status = POWER_SUPPLY_STATUS_DISCHARGING;
1064 			*level = hidpp_map_battery_level(*capacity);
1065 			break;
1066 		case 1: /* recharging */
1067 			status = POWER_SUPPLY_STATUS_CHARGING;
1068 			break;
1069 		case 2: /* charge in final stage */
1070 			status = POWER_SUPPLY_STATUS_CHARGING;
1071 			break;
1072 		case 3: /* charge complete */
1073 			status = POWER_SUPPLY_STATUS_FULL;
1074 			*level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1075 			*capacity = 100;
1076 			break;
1077 		case 4: /* recharging below optimal speed */
1078 			status = POWER_SUPPLY_STATUS_CHARGING;
1079 			break;
1080 		/* 5 = invalid battery type
1081 		   6 = thermal error
1082 		   7 = other charging error */
1083 		default:
1084 			status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1085 			break;
1086 	}
1087 
1088 	return status;
1089 }
1090 
1091 static int hidpp20_batterylevel_get_battery_capacity(struct hidpp_device *hidpp,
1092 						     u8 feature_index,
1093 						     int *status,
1094 						     int *capacity,
1095 						     int *next_capacity,
1096 						     int *level)
1097 {
1098 	struct hidpp_report response;
1099 	int ret;
1100 	u8 *params = (u8 *)response.fap.params;
1101 
1102 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1103 					  CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS,
1104 					  NULL, 0, &response);
1105 	if (ret > 0) {
1106 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1107 			__func__, ret);
1108 		return -EPROTO;
1109 	}
1110 	if (ret)
1111 		return ret;
1112 
1113 	*status = hidpp20_batterylevel_map_status_capacity(params, capacity,
1114 							   next_capacity,
1115 							   level);
1116 
1117 	return 0;
1118 }
1119 
1120 static int hidpp20_batterylevel_get_battery_info(struct hidpp_device *hidpp,
1121 						  u8 feature_index)
1122 {
1123 	struct hidpp_report response;
1124 	int ret;
1125 	u8 *params = (u8 *)response.fap.params;
1126 	unsigned int level_count, flags;
1127 
1128 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1129 					  CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY,
1130 					  NULL, 0, &response);
1131 	if (ret > 0) {
1132 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1133 			__func__, ret);
1134 		return -EPROTO;
1135 	}
1136 	if (ret)
1137 		return ret;
1138 
1139 	level_count = params[0];
1140 	flags = params[1];
1141 
1142 	if (level_count < 10 || !(flags & FLAG_BATTERY_LEVEL_MILEAGE))
1143 		hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
1144 	else
1145 		hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
1146 
1147 	return 0;
1148 }
1149 
1150 static int hidpp20_query_battery_info(struct hidpp_device *hidpp)
1151 {
1152 	u8 feature_type;
1153 	int ret;
1154 	int status, capacity, next_capacity, level;
1155 
1156 	if (hidpp->battery.feature_index == 0xff) {
1157 		ret = hidpp_root_get_feature(hidpp,
1158 					     HIDPP_PAGE_BATTERY_LEVEL_STATUS,
1159 					     &hidpp->battery.feature_index,
1160 					     &feature_type);
1161 		if (ret)
1162 			return ret;
1163 	}
1164 
1165 	ret = hidpp20_batterylevel_get_battery_capacity(hidpp,
1166 						hidpp->battery.feature_index,
1167 						&status, &capacity,
1168 						&next_capacity, &level);
1169 	if (ret)
1170 		return ret;
1171 
1172 	ret = hidpp20_batterylevel_get_battery_info(hidpp,
1173 						hidpp->battery.feature_index);
1174 	if (ret)
1175 		return ret;
1176 
1177 	hidpp->battery.status = status;
1178 	hidpp->battery.capacity = capacity;
1179 	hidpp->battery.level = level;
1180 	/* the capacity is only available when discharging or full */
1181 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
1182 				status == POWER_SUPPLY_STATUS_FULL;
1183 
1184 	return 0;
1185 }
1186 
1187 static int hidpp20_battery_event(struct hidpp_device *hidpp,
1188 				 u8 *data, int size)
1189 {
1190 	struct hidpp_report *report = (struct hidpp_report *)data;
1191 	int status, capacity, next_capacity, level;
1192 	bool changed;
1193 
1194 	if (report->fap.feature_index != hidpp->battery.feature_index ||
1195 	    report->fap.funcindex_clientid != EVENT_BATTERY_LEVEL_STATUS_BROADCAST)
1196 		return 0;
1197 
1198 	status = hidpp20_batterylevel_map_status_capacity(report->fap.params,
1199 							  &capacity,
1200 							  &next_capacity,
1201 							  &level);
1202 
1203 	/* the capacity is only available when discharging or full */
1204 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
1205 				status == POWER_SUPPLY_STATUS_FULL;
1206 
1207 	changed = capacity != hidpp->battery.capacity ||
1208 		  level != hidpp->battery.level ||
1209 		  status != hidpp->battery.status;
1210 
1211 	if (changed) {
1212 		hidpp->battery.level = level;
1213 		hidpp->battery.capacity = capacity;
1214 		hidpp->battery.status = status;
1215 		if (hidpp->battery.ps)
1216 			power_supply_changed(hidpp->battery.ps);
1217 	}
1218 
1219 	return 0;
1220 }
1221 
1222 static enum power_supply_property hidpp_battery_props[] = {
1223 	POWER_SUPPLY_PROP_ONLINE,
1224 	POWER_SUPPLY_PROP_STATUS,
1225 	POWER_SUPPLY_PROP_SCOPE,
1226 	POWER_SUPPLY_PROP_MODEL_NAME,
1227 	POWER_SUPPLY_PROP_MANUFACTURER,
1228 	POWER_SUPPLY_PROP_SERIAL_NUMBER,
1229 	0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY, */
1230 	0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY_LEVEL, */
1231 };
1232 
1233 static int hidpp_battery_get_property(struct power_supply *psy,
1234 				      enum power_supply_property psp,
1235 				      union power_supply_propval *val)
1236 {
1237 	struct hidpp_device *hidpp = power_supply_get_drvdata(psy);
1238 	int ret = 0;
1239 
1240 	switch(psp) {
1241 		case POWER_SUPPLY_PROP_STATUS:
1242 			val->intval = hidpp->battery.status;
1243 			break;
1244 		case POWER_SUPPLY_PROP_CAPACITY:
1245 			val->intval = hidpp->battery.capacity;
1246 			break;
1247 		case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
1248 			val->intval = hidpp->battery.level;
1249 			break;
1250 		case POWER_SUPPLY_PROP_SCOPE:
1251 			val->intval = POWER_SUPPLY_SCOPE_DEVICE;
1252 			break;
1253 		case POWER_SUPPLY_PROP_ONLINE:
1254 			val->intval = hidpp->battery.online;
1255 			break;
1256 		case POWER_SUPPLY_PROP_MODEL_NAME:
1257 			if (!strncmp(hidpp->name, "Logitech ", 9))
1258 				val->strval = hidpp->name + 9;
1259 			else
1260 				val->strval = hidpp->name;
1261 			break;
1262 		case POWER_SUPPLY_PROP_MANUFACTURER:
1263 			val->strval = "Logitech";
1264 			break;
1265 		case POWER_SUPPLY_PROP_SERIAL_NUMBER:
1266 			val->strval = hidpp->hid_dev->uniq;
1267 			break;
1268 		default:
1269 			ret = -EINVAL;
1270 			break;
1271 	}
1272 
1273 	return ret;
1274 }
1275 
1276 /* -------------------------------------------------------------------------- */
1277 /* 0x2120: Hi-resolution scrolling                                            */
1278 /* -------------------------------------------------------------------------- */
1279 
1280 #define HIDPP_PAGE_HI_RESOLUTION_SCROLLING			0x2120
1281 
1282 #define CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE	0x10
1283 
1284 static int hidpp_hrs_set_highres_scrolling_mode(struct hidpp_device *hidpp,
1285 	bool enabled, u8 *multiplier)
1286 {
1287 	u8 feature_index;
1288 	u8 feature_type;
1289 	int ret;
1290 	u8 params[1];
1291 	struct hidpp_report response;
1292 
1293 	ret = hidpp_root_get_feature(hidpp,
1294 				     HIDPP_PAGE_HI_RESOLUTION_SCROLLING,
1295 				     &feature_index,
1296 				     &feature_type);
1297 	if (ret)
1298 		return ret;
1299 
1300 	params[0] = enabled ? BIT(0) : 0;
1301 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1302 					  CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE,
1303 					  params, sizeof(params), &response);
1304 	if (ret)
1305 		return ret;
1306 	*multiplier = response.fap.params[1];
1307 	return 0;
1308 }
1309 
1310 /* -------------------------------------------------------------------------- */
1311 /* 0x2121: HiRes Wheel                                                        */
1312 /* -------------------------------------------------------------------------- */
1313 
1314 #define HIDPP_PAGE_HIRES_WHEEL		0x2121
1315 
1316 #define CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY	0x00
1317 #define CMD_HIRES_WHEEL_SET_WHEEL_MODE		0x20
1318 
1319 static int hidpp_hrw_get_wheel_capability(struct hidpp_device *hidpp,
1320 	u8 *multiplier)
1321 {
1322 	u8 feature_index;
1323 	u8 feature_type;
1324 	int ret;
1325 	struct hidpp_report response;
1326 
1327 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL,
1328 				     &feature_index, &feature_type);
1329 	if (ret)
1330 		goto return_default;
1331 
1332 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1333 					  CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY,
1334 					  NULL, 0, &response);
1335 	if (ret)
1336 		goto return_default;
1337 
1338 	*multiplier = response.fap.params[0];
1339 	return 0;
1340 return_default:
1341 	hid_warn(hidpp->hid_dev,
1342 		 "Couldn't get wheel multiplier (error %d)\n", ret);
1343 	return ret;
1344 }
1345 
1346 static int hidpp_hrw_set_wheel_mode(struct hidpp_device *hidpp, bool invert,
1347 	bool high_resolution, bool use_hidpp)
1348 {
1349 	u8 feature_index;
1350 	u8 feature_type;
1351 	int ret;
1352 	u8 params[1];
1353 	struct hidpp_report response;
1354 
1355 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL,
1356 				     &feature_index, &feature_type);
1357 	if (ret)
1358 		return ret;
1359 
1360 	params[0] = (invert          ? BIT(2) : 0) |
1361 		    (high_resolution ? BIT(1) : 0) |
1362 		    (use_hidpp       ? BIT(0) : 0);
1363 
1364 	return hidpp_send_fap_command_sync(hidpp, feature_index,
1365 					   CMD_HIRES_WHEEL_SET_WHEEL_MODE,
1366 					   params, sizeof(params), &response);
1367 }
1368 
1369 /* -------------------------------------------------------------------------- */
1370 /* 0x4301: Solar Keyboard                                                     */
1371 /* -------------------------------------------------------------------------- */
1372 
1373 #define HIDPP_PAGE_SOLAR_KEYBOARD			0x4301
1374 
1375 #define CMD_SOLAR_SET_LIGHT_MEASURE			0x00
1376 
1377 #define EVENT_SOLAR_BATTERY_BROADCAST			0x00
1378 #define EVENT_SOLAR_BATTERY_LIGHT_MEASURE		0x10
1379 #define EVENT_SOLAR_CHECK_LIGHT_BUTTON			0x20
1380 
1381 static int hidpp_solar_request_battery_event(struct hidpp_device *hidpp)
1382 {
1383 	struct hidpp_report response;
1384 	u8 params[2] = { 1, 1 };
1385 	u8 feature_type;
1386 	int ret;
1387 
1388 	if (hidpp->battery.feature_index == 0xff) {
1389 		ret = hidpp_root_get_feature(hidpp,
1390 					     HIDPP_PAGE_SOLAR_KEYBOARD,
1391 					     &hidpp->battery.solar_feature_index,
1392 					     &feature_type);
1393 		if (ret)
1394 			return ret;
1395 	}
1396 
1397 	ret = hidpp_send_fap_command_sync(hidpp,
1398 					  hidpp->battery.solar_feature_index,
1399 					  CMD_SOLAR_SET_LIGHT_MEASURE,
1400 					  params, 2, &response);
1401 	if (ret > 0) {
1402 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1403 			__func__, ret);
1404 		return -EPROTO;
1405 	}
1406 	if (ret)
1407 		return ret;
1408 
1409 	hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
1410 
1411 	return 0;
1412 }
1413 
1414 static int hidpp_solar_battery_event(struct hidpp_device *hidpp,
1415 				     u8 *data, int size)
1416 {
1417 	struct hidpp_report *report = (struct hidpp_report *)data;
1418 	int capacity, lux, status;
1419 	u8 function;
1420 
1421 	function = report->fap.funcindex_clientid;
1422 
1423 
1424 	if (report->fap.feature_index != hidpp->battery.solar_feature_index ||
1425 	    !(function == EVENT_SOLAR_BATTERY_BROADCAST ||
1426 	      function == EVENT_SOLAR_BATTERY_LIGHT_MEASURE ||
1427 	      function == EVENT_SOLAR_CHECK_LIGHT_BUTTON))
1428 		return 0;
1429 
1430 	capacity = report->fap.params[0];
1431 
1432 	switch (function) {
1433 	case EVENT_SOLAR_BATTERY_LIGHT_MEASURE:
1434 		lux = (report->fap.params[1] << 8) | report->fap.params[2];
1435 		if (lux > 200)
1436 			status = POWER_SUPPLY_STATUS_CHARGING;
1437 		else
1438 			status = POWER_SUPPLY_STATUS_DISCHARGING;
1439 		break;
1440 	case EVENT_SOLAR_CHECK_LIGHT_BUTTON:
1441 	default:
1442 		if (capacity < hidpp->battery.capacity)
1443 			status = POWER_SUPPLY_STATUS_DISCHARGING;
1444 		else
1445 			status = POWER_SUPPLY_STATUS_CHARGING;
1446 
1447 	}
1448 
1449 	if (capacity == 100)
1450 		status = POWER_SUPPLY_STATUS_FULL;
1451 
1452 	hidpp->battery.online = true;
1453 	if (capacity != hidpp->battery.capacity ||
1454 	    status != hidpp->battery.status) {
1455 		hidpp->battery.capacity = capacity;
1456 		hidpp->battery.status = status;
1457 		if (hidpp->battery.ps)
1458 			power_supply_changed(hidpp->battery.ps);
1459 	}
1460 
1461 	return 0;
1462 }
1463 
1464 /* -------------------------------------------------------------------------- */
1465 /* 0x6010: Touchpad FW items                                                  */
1466 /* -------------------------------------------------------------------------- */
1467 
1468 #define HIDPP_PAGE_TOUCHPAD_FW_ITEMS			0x6010
1469 
1470 #define CMD_TOUCHPAD_FW_ITEMS_SET			0x10
1471 
1472 struct hidpp_touchpad_fw_items {
1473 	uint8_t presence;
1474 	uint8_t desired_state;
1475 	uint8_t state;
1476 	uint8_t persistent;
1477 };
1478 
1479 /**
1480  * send a set state command to the device by reading the current items->state
1481  * field. items is then filled with the current state.
1482  */
1483 static int hidpp_touchpad_fw_items_set(struct hidpp_device *hidpp,
1484 				       u8 feature_index,
1485 				       struct hidpp_touchpad_fw_items *items)
1486 {
1487 	struct hidpp_report response;
1488 	int ret;
1489 	u8 *params = (u8 *)response.fap.params;
1490 
1491 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1492 		CMD_TOUCHPAD_FW_ITEMS_SET, &items->state, 1, &response);
1493 
1494 	if (ret > 0) {
1495 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1496 			__func__, ret);
1497 		return -EPROTO;
1498 	}
1499 	if (ret)
1500 		return ret;
1501 
1502 	items->presence = params[0];
1503 	items->desired_state = params[1];
1504 	items->state = params[2];
1505 	items->persistent = params[3];
1506 
1507 	return 0;
1508 }
1509 
1510 /* -------------------------------------------------------------------------- */
1511 /* 0x6100: TouchPadRawXY                                                      */
1512 /* -------------------------------------------------------------------------- */
1513 
1514 #define HIDPP_PAGE_TOUCHPAD_RAW_XY			0x6100
1515 
1516 #define CMD_TOUCHPAD_GET_RAW_INFO			0x01
1517 #define CMD_TOUCHPAD_SET_RAW_REPORT_STATE		0x21
1518 
1519 #define EVENT_TOUCHPAD_RAW_XY				0x00
1520 
1521 #define TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT		0x01
1522 #define TOUCHPAD_RAW_XY_ORIGIN_UPPER_LEFT		0x03
1523 
1524 struct hidpp_touchpad_raw_info {
1525 	u16 x_size;
1526 	u16 y_size;
1527 	u8 z_range;
1528 	u8 area_range;
1529 	u8 timestamp_unit;
1530 	u8 maxcontacts;
1531 	u8 origin;
1532 	u16 res;
1533 };
1534 
1535 struct hidpp_touchpad_raw_xy_finger {
1536 	u8 contact_type;
1537 	u8 contact_status;
1538 	u16 x;
1539 	u16 y;
1540 	u8 z;
1541 	u8 area;
1542 	u8 finger_id;
1543 };
1544 
1545 struct hidpp_touchpad_raw_xy {
1546 	u16 timestamp;
1547 	struct hidpp_touchpad_raw_xy_finger fingers[2];
1548 	u8 spurious_flag;
1549 	u8 end_of_frame;
1550 	u8 finger_count;
1551 	u8 button;
1552 };
1553 
1554 static int hidpp_touchpad_get_raw_info(struct hidpp_device *hidpp,
1555 	u8 feature_index, struct hidpp_touchpad_raw_info *raw_info)
1556 {
1557 	struct hidpp_report response;
1558 	int ret;
1559 	u8 *params = (u8 *)response.fap.params;
1560 
1561 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1562 		CMD_TOUCHPAD_GET_RAW_INFO, NULL, 0, &response);
1563 
1564 	if (ret > 0) {
1565 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1566 			__func__, ret);
1567 		return -EPROTO;
1568 	}
1569 	if (ret)
1570 		return ret;
1571 
1572 	raw_info->x_size = get_unaligned_be16(&params[0]);
1573 	raw_info->y_size = get_unaligned_be16(&params[2]);
1574 	raw_info->z_range = params[4];
1575 	raw_info->area_range = params[5];
1576 	raw_info->maxcontacts = params[7];
1577 	raw_info->origin = params[8];
1578 	/* res is given in unit per inch */
1579 	raw_info->res = get_unaligned_be16(&params[13]) * 2 / 51;
1580 
1581 	return ret;
1582 }
1583 
1584 static int hidpp_touchpad_set_raw_report_state(struct hidpp_device *hidpp_dev,
1585 		u8 feature_index, bool send_raw_reports,
1586 		bool sensor_enhanced_settings)
1587 {
1588 	struct hidpp_report response;
1589 
1590 	/*
1591 	 * Params:
1592 	 *   bit 0 - enable raw
1593 	 *   bit 1 - 16bit Z, no area
1594 	 *   bit 2 - enhanced sensitivity
1595 	 *   bit 3 - width, height (4 bits each) instead of area
1596 	 *   bit 4 - send raw + gestures (degrades smoothness)
1597 	 *   remaining bits - reserved
1598 	 */
1599 	u8 params = send_raw_reports | (sensor_enhanced_settings << 2);
1600 
1601 	return hidpp_send_fap_command_sync(hidpp_dev, feature_index,
1602 		CMD_TOUCHPAD_SET_RAW_REPORT_STATE, &params, 1, &response);
1603 }
1604 
1605 static void hidpp_touchpad_touch_event(u8 *data,
1606 	struct hidpp_touchpad_raw_xy_finger *finger)
1607 {
1608 	u8 x_m = data[0] << 2;
1609 	u8 y_m = data[2] << 2;
1610 
1611 	finger->x = x_m << 6 | data[1];
1612 	finger->y = y_m << 6 | data[3];
1613 
1614 	finger->contact_type = data[0] >> 6;
1615 	finger->contact_status = data[2] >> 6;
1616 
1617 	finger->z = data[4];
1618 	finger->area = data[5];
1619 	finger->finger_id = data[6] >> 4;
1620 }
1621 
1622 static void hidpp_touchpad_raw_xy_event(struct hidpp_device *hidpp_dev,
1623 		u8 *data, struct hidpp_touchpad_raw_xy *raw_xy)
1624 {
1625 	memset(raw_xy, 0, sizeof(struct hidpp_touchpad_raw_xy));
1626 	raw_xy->end_of_frame = data[8] & 0x01;
1627 	raw_xy->spurious_flag = (data[8] >> 1) & 0x01;
1628 	raw_xy->finger_count = data[15] & 0x0f;
1629 	raw_xy->button = (data[8] >> 2) & 0x01;
1630 
1631 	if (raw_xy->finger_count) {
1632 		hidpp_touchpad_touch_event(&data[2], &raw_xy->fingers[0]);
1633 		hidpp_touchpad_touch_event(&data[9], &raw_xy->fingers[1]);
1634 	}
1635 }
1636 
1637 /* -------------------------------------------------------------------------- */
1638 /* 0x8123: Force feedback support                                             */
1639 /* -------------------------------------------------------------------------- */
1640 
1641 #define HIDPP_FF_GET_INFO		0x01
1642 #define HIDPP_FF_RESET_ALL		0x11
1643 #define HIDPP_FF_DOWNLOAD_EFFECT	0x21
1644 #define HIDPP_FF_SET_EFFECT_STATE	0x31
1645 #define HIDPP_FF_DESTROY_EFFECT		0x41
1646 #define HIDPP_FF_GET_APERTURE		0x51
1647 #define HIDPP_FF_SET_APERTURE		0x61
1648 #define HIDPP_FF_GET_GLOBAL_GAINS	0x71
1649 #define HIDPP_FF_SET_GLOBAL_GAINS	0x81
1650 
1651 #define HIDPP_FF_EFFECT_STATE_GET	0x00
1652 #define HIDPP_FF_EFFECT_STATE_STOP	0x01
1653 #define HIDPP_FF_EFFECT_STATE_PLAY	0x02
1654 #define HIDPP_FF_EFFECT_STATE_PAUSE	0x03
1655 
1656 #define HIDPP_FF_EFFECT_CONSTANT	0x00
1657 #define HIDPP_FF_EFFECT_PERIODIC_SINE		0x01
1658 #define HIDPP_FF_EFFECT_PERIODIC_SQUARE		0x02
1659 #define HIDPP_FF_EFFECT_PERIODIC_TRIANGLE	0x03
1660 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP	0x04
1661 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN	0x05
1662 #define HIDPP_FF_EFFECT_SPRING		0x06
1663 #define HIDPP_FF_EFFECT_DAMPER		0x07
1664 #define HIDPP_FF_EFFECT_FRICTION	0x08
1665 #define HIDPP_FF_EFFECT_INERTIA		0x09
1666 #define HIDPP_FF_EFFECT_RAMP		0x0A
1667 
1668 #define HIDPP_FF_EFFECT_AUTOSTART	0x80
1669 
1670 #define HIDPP_FF_EFFECTID_NONE		-1
1671 #define HIDPP_FF_EFFECTID_AUTOCENTER	-2
1672 
1673 #define HIDPP_FF_MAX_PARAMS	20
1674 #define HIDPP_FF_RESERVED_SLOTS	1
1675 
1676 struct hidpp_ff_private_data {
1677 	struct hidpp_device *hidpp;
1678 	u8 feature_index;
1679 	u8 version;
1680 	u16 gain;
1681 	s16 range;
1682 	u8 slot_autocenter;
1683 	u8 num_effects;
1684 	int *effect_ids;
1685 	struct workqueue_struct *wq;
1686 	atomic_t workqueue_size;
1687 };
1688 
1689 struct hidpp_ff_work_data {
1690 	struct work_struct work;
1691 	struct hidpp_ff_private_data *data;
1692 	int effect_id;
1693 	u8 command;
1694 	u8 params[HIDPP_FF_MAX_PARAMS];
1695 	u8 size;
1696 };
1697 
1698 static const signed short hidpp_ff_effects[] = {
1699 	FF_CONSTANT,
1700 	FF_PERIODIC,
1701 	FF_SINE,
1702 	FF_SQUARE,
1703 	FF_SAW_UP,
1704 	FF_SAW_DOWN,
1705 	FF_TRIANGLE,
1706 	FF_SPRING,
1707 	FF_DAMPER,
1708 	FF_AUTOCENTER,
1709 	FF_GAIN,
1710 	-1
1711 };
1712 
1713 static const signed short hidpp_ff_effects_v2[] = {
1714 	FF_RAMP,
1715 	FF_FRICTION,
1716 	FF_INERTIA,
1717 	-1
1718 };
1719 
1720 static const u8 HIDPP_FF_CONDITION_CMDS[] = {
1721 	HIDPP_FF_EFFECT_SPRING,
1722 	HIDPP_FF_EFFECT_FRICTION,
1723 	HIDPP_FF_EFFECT_DAMPER,
1724 	HIDPP_FF_EFFECT_INERTIA
1725 };
1726 
1727 static const char *HIDPP_FF_CONDITION_NAMES[] = {
1728 	"spring",
1729 	"friction",
1730 	"damper",
1731 	"inertia"
1732 };
1733 
1734 
1735 static u8 hidpp_ff_find_effect(struct hidpp_ff_private_data *data, int effect_id)
1736 {
1737 	int i;
1738 
1739 	for (i = 0; i < data->num_effects; i++)
1740 		if (data->effect_ids[i] == effect_id)
1741 			return i+1;
1742 
1743 	return 0;
1744 }
1745 
1746 static void hidpp_ff_work_handler(struct work_struct *w)
1747 {
1748 	struct hidpp_ff_work_data *wd = container_of(w, struct hidpp_ff_work_data, work);
1749 	struct hidpp_ff_private_data *data = wd->data;
1750 	struct hidpp_report response;
1751 	u8 slot;
1752 	int ret;
1753 
1754 	/* add slot number if needed */
1755 	switch (wd->effect_id) {
1756 	case HIDPP_FF_EFFECTID_AUTOCENTER:
1757 		wd->params[0] = data->slot_autocenter;
1758 		break;
1759 	case HIDPP_FF_EFFECTID_NONE:
1760 		/* leave slot as zero */
1761 		break;
1762 	default:
1763 		/* find current slot for effect */
1764 		wd->params[0] = hidpp_ff_find_effect(data, wd->effect_id);
1765 		break;
1766 	}
1767 
1768 	/* send command and wait for reply */
1769 	ret = hidpp_send_fap_command_sync(data->hidpp, data->feature_index,
1770 		wd->command, wd->params, wd->size, &response);
1771 
1772 	if (ret) {
1773 		hid_err(data->hidpp->hid_dev, "Failed to send command to device!\n");
1774 		goto out;
1775 	}
1776 
1777 	/* parse return data */
1778 	switch (wd->command) {
1779 	case HIDPP_FF_DOWNLOAD_EFFECT:
1780 		slot = response.fap.params[0];
1781 		if (slot > 0 && slot <= data->num_effects) {
1782 			if (wd->effect_id >= 0)
1783 				/* regular effect uploaded */
1784 				data->effect_ids[slot-1] = wd->effect_id;
1785 			else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER)
1786 				/* autocenter spring uploaded */
1787 				data->slot_autocenter = slot;
1788 		}
1789 		break;
1790 	case HIDPP_FF_DESTROY_EFFECT:
1791 		if (wd->effect_id >= 0)
1792 			/* regular effect destroyed */
1793 			data->effect_ids[wd->params[0]-1] = -1;
1794 		else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER)
1795 			/* autocenter spring destoyed */
1796 			data->slot_autocenter = 0;
1797 		break;
1798 	case HIDPP_FF_SET_GLOBAL_GAINS:
1799 		data->gain = (wd->params[0] << 8) + wd->params[1];
1800 		break;
1801 	case HIDPP_FF_SET_APERTURE:
1802 		data->range = (wd->params[0] << 8) + wd->params[1];
1803 		break;
1804 	default:
1805 		/* no action needed */
1806 		break;
1807 	}
1808 
1809 out:
1810 	atomic_dec(&data->workqueue_size);
1811 	kfree(wd);
1812 }
1813 
1814 static int hidpp_ff_queue_work(struct hidpp_ff_private_data *data, int effect_id, u8 command, u8 *params, u8 size)
1815 {
1816 	struct hidpp_ff_work_data *wd = kzalloc(sizeof(*wd), GFP_KERNEL);
1817 	int s;
1818 
1819 	if (!wd)
1820 		return -ENOMEM;
1821 
1822 	INIT_WORK(&wd->work, hidpp_ff_work_handler);
1823 
1824 	wd->data = data;
1825 	wd->effect_id = effect_id;
1826 	wd->command = command;
1827 	wd->size = size;
1828 	memcpy(wd->params, params, size);
1829 
1830 	atomic_inc(&data->workqueue_size);
1831 	queue_work(data->wq, &wd->work);
1832 
1833 	/* warn about excessive queue size */
1834 	s = atomic_read(&data->workqueue_size);
1835 	if (s >= 20 && s % 20 == 0)
1836 		hid_warn(data->hidpp->hid_dev, "Force feedback command queue contains %d commands, causing substantial delays!", s);
1837 
1838 	return 0;
1839 }
1840 
1841 static int hidpp_ff_upload_effect(struct input_dev *dev, struct ff_effect *effect, struct ff_effect *old)
1842 {
1843 	struct hidpp_ff_private_data *data = dev->ff->private;
1844 	u8 params[20];
1845 	u8 size;
1846 	int force;
1847 
1848 	/* set common parameters */
1849 	params[2] = effect->replay.length >> 8;
1850 	params[3] = effect->replay.length & 255;
1851 	params[4] = effect->replay.delay >> 8;
1852 	params[5] = effect->replay.delay & 255;
1853 
1854 	switch (effect->type) {
1855 	case FF_CONSTANT:
1856 		force = (effect->u.constant.level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
1857 		params[1] = HIDPP_FF_EFFECT_CONSTANT;
1858 		params[6] = force >> 8;
1859 		params[7] = force & 255;
1860 		params[8] = effect->u.constant.envelope.attack_level >> 7;
1861 		params[9] = effect->u.constant.envelope.attack_length >> 8;
1862 		params[10] = effect->u.constant.envelope.attack_length & 255;
1863 		params[11] = effect->u.constant.envelope.fade_level >> 7;
1864 		params[12] = effect->u.constant.envelope.fade_length >> 8;
1865 		params[13] = effect->u.constant.envelope.fade_length & 255;
1866 		size = 14;
1867 		dbg_hid("Uploading constant force level=%d in dir %d = %d\n",
1868 				effect->u.constant.level,
1869 				effect->direction, force);
1870 		dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
1871 				effect->u.constant.envelope.attack_level,
1872 				effect->u.constant.envelope.attack_length,
1873 				effect->u.constant.envelope.fade_level,
1874 				effect->u.constant.envelope.fade_length);
1875 		break;
1876 	case FF_PERIODIC:
1877 	{
1878 		switch (effect->u.periodic.waveform) {
1879 		case FF_SINE:
1880 			params[1] = HIDPP_FF_EFFECT_PERIODIC_SINE;
1881 			break;
1882 		case FF_SQUARE:
1883 			params[1] = HIDPP_FF_EFFECT_PERIODIC_SQUARE;
1884 			break;
1885 		case FF_SAW_UP:
1886 			params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP;
1887 			break;
1888 		case FF_SAW_DOWN:
1889 			params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN;
1890 			break;
1891 		case FF_TRIANGLE:
1892 			params[1] = HIDPP_FF_EFFECT_PERIODIC_TRIANGLE;
1893 			break;
1894 		default:
1895 			hid_err(data->hidpp->hid_dev, "Unexpected periodic waveform type %i!\n", effect->u.periodic.waveform);
1896 			return -EINVAL;
1897 		}
1898 		force = (effect->u.periodic.magnitude * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
1899 		params[6] = effect->u.periodic.magnitude >> 8;
1900 		params[7] = effect->u.periodic.magnitude & 255;
1901 		params[8] = effect->u.periodic.offset >> 8;
1902 		params[9] = effect->u.periodic.offset & 255;
1903 		params[10] = effect->u.periodic.period >> 8;
1904 		params[11] = effect->u.periodic.period & 255;
1905 		params[12] = effect->u.periodic.phase >> 8;
1906 		params[13] = effect->u.periodic.phase & 255;
1907 		params[14] = effect->u.periodic.envelope.attack_level >> 7;
1908 		params[15] = effect->u.periodic.envelope.attack_length >> 8;
1909 		params[16] = effect->u.periodic.envelope.attack_length & 255;
1910 		params[17] = effect->u.periodic.envelope.fade_level >> 7;
1911 		params[18] = effect->u.periodic.envelope.fade_length >> 8;
1912 		params[19] = effect->u.periodic.envelope.fade_length & 255;
1913 		size = 20;
1914 		dbg_hid("Uploading periodic force mag=%d/dir=%d, offset=%d, period=%d ms, phase=%d\n",
1915 				effect->u.periodic.magnitude, effect->direction,
1916 				effect->u.periodic.offset,
1917 				effect->u.periodic.period,
1918 				effect->u.periodic.phase);
1919 		dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
1920 				effect->u.periodic.envelope.attack_level,
1921 				effect->u.periodic.envelope.attack_length,
1922 				effect->u.periodic.envelope.fade_level,
1923 				effect->u.periodic.envelope.fade_length);
1924 		break;
1925 	}
1926 	case FF_RAMP:
1927 		params[1] = HIDPP_FF_EFFECT_RAMP;
1928 		force = (effect->u.ramp.start_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
1929 		params[6] = force >> 8;
1930 		params[7] = force & 255;
1931 		force = (effect->u.ramp.end_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
1932 		params[8] = force >> 8;
1933 		params[9] = force & 255;
1934 		params[10] = effect->u.ramp.envelope.attack_level >> 7;
1935 		params[11] = effect->u.ramp.envelope.attack_length >> 8;
1936 		params[12] = effect->u.ramp.envelope.attack_length & 255;
1937 		params[13] = effect->u.ramp.envelope.fade_level >> 7;
1938 		params[14] = effect->u.ramp.envelope.fade_length >> 8;
1939 		params[15] = effect->u.ramp.envelope.fade_length & 255;
1940 		size = 16;
1941 		dbg_hid("Uploading ramp force level=%d -> %d in dir %d = %d\n",
1942 				effect->u.ramp.start_level,
1943 				effect->u.ramp.end_level,
1944 				effect->direction, force);
1945 		dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
1946 				effect->u.ramp.envelope.attack_level,
1947 				effect->u.ramp.envelope.attack_length,
1948 				effect->u.ramp.envelope.fade_level,
1949 				effect->u.ramp.envelope.fade_length);
1950 		break;
1951 	case FF_FRICTION:
1952 	case FF_INERTIA:
1953 	case FF_SPRING:
1954 	case FF_DAMPER:
1955 		params[1] = HIDPP_FF_CONDITION_CMDS[effect->type - FF_SPRING];
1956 		params[6] = effect->u.condition[0].left_saturation >> 9;
1957 		params[7] = (effect->u.condition[0].left_saturation >> 1) & 255;
1958 		params[8] = effect->u.condition[0].left_coeff >> 8;
1959 		params[9] = effect->u.condition[0].left_coeff & 255;
1960 		params[10] = effect->u.condition[0].deadband >> 9;
1961 		params[11] = (effect->u.condition[0].deadband >> 1) & 255;
1962 		params[12] = effect->u.condition[0].center >> 8;
1963 		params[13] = effect->u.condition[0].center & 255;
1964 		params[14] = effect->u.condition[0].right_coeff >> 8;
1965 		params[15] = effect->u.condition[0].right_coeff & 255;
1966 		params[16] = effect->u.condition[0].right_saturation >> 9;
1967 		params[17] = (effect->u.condition[0].right_saturation >> 1) & 255;
1968 		size = 18;
1969 		dbg_hid("Uploading %s force left coeff=%d, left sat=%d, right coeff=%d, right sat=%d\n",
1970 				HIDPP_FF_CONDITION_NAMES[effect->type - FF_SPRING],
1971 				effect->u.condition[0].left_coeff,
1972 				effect->u.condition[0].left_saturation,
1973 				effect->u.condition[0].right_coeff,
1974 				effect->u.condition[0].right_saturation);
1975 		dbg_hid("          deadband=%d, center=%d\n",
1976 				effect->u.condition[0].deadband,
1977 				effect->u.condition[0].center);
1978 		break;
1979 	default:
1980 		hid_err(data->hidpp->hid_dev, "Unexpected force type %i!\n", effect->type);
1981 		return -EINVAL;
1982 	}
1983 
1984 	return hidpp_ff_queue_work(data, effect->id, HIDPP_FF_DOWNLOAD_EFFECT, params, size);
1985 }
1986 
1987 static int hidpp_ff_playback(struct input_dev *dev, int effect_id, int value)
1988 {
1989 	struct hidpp_ff_private_data *data = dev->ff->private;
1990 	u8 params[2];
1991 
1992 	params[1] = value ? HIDPP_FF_EFFECT_STATE_PLAY : HIDPP_FF_EFFECT_STATE_STOP;
1993 
1994 	dbg_hid("St%sing playback of effect %d.\n", value?"art":"opp", effect_id);
1995 
1996 	return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_SET_EFFECT_STATE, params, ARRAY_SIZE(params));
1997 }
1998 
1999 static int hidpp_ff_erase_effect(struct input_dev *dev, int effect_id)
2000 {
2001 	struct hidpp_ff_private_data *data = dev->ff->private;
2002 	u8 slot = 0;
2003 
2004 	dbg_hid("Erasing effect %d.\n", effect_id);
2005 
2006 	return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_DESTROY_EFFECT, &slot, 1);
2007 }
2008 
2009 static void hidpp_ff_set_autocenter(struct input_dev *dev, u16 magnitude)
2010 {
2011 	struct hidpp_ff_private_data *data = dev->ff->private;
2012 	u8 params[18];
2013 
2014 	dbg_hid("Setting autocenter to %d.\n", magnitude);
2015 
2016 	/* start a standard spring effect */
2017 	params[1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART;
2018 	/* zero delay and duration */
2019 	params[2] = params[3] = params[4] = params[5] = 0;
2020 	/* set coeff to 25% of saturation */
2021 	params[8] = params[14] = magnitude >> 11;
2022 	params[9] = params[15] = (magnitude >> 3) & 255;
2023 	params[6] = params[16] = magnitude >> 9;
2024 	params[7] = params[17] = (magnitude >> 1) & 255;
2025 	/* zero deadband and center */
2026 	params[10] = params[11] = params[12] = params[13] = 0;
2027 
2028 	hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_AUTOCENTER, HIDPP_FF_DOWNLOAD_EFFECT, params, ARRAY_SIZE(params));
2029 }
2030 
2031 static void hidpp_ff_set_gain(struct input_dev *dev, u16 gain)
2032 {
2033 	struct hidpp_ff_private_data *data = dev->ff->private;
2034 	u8 params[4];
2035 
2036 	dbg_hid("Setting gain to %d.\n", gain);
2037 
2038 	params[0] = gain >> 8;
2039 	params[1] = gain & 255;
2040 	params[2] = 0; /* no boost */
2041 	params[3] = 0;
2042 
2043 	hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_NONE, HIDPP_FF_SET_GLOBAL_GAINS, params, ARRAY_SIZE(params));
2044 }
2045 
2046 static ssize_t hidpp_ff_range_show(struct device *dev, struct device_attribute *attr, char *buf)
2047 {
2048 	struct hid_device *hid = to_hid_device(dev);
2049 	struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2050 	struct input_dev *idev = hidinput->input;
2051 	struct hidpp_ff_private_data *data = idev->ff->private;
2052 
2053 	return scnprintf(buf, PAGE_SIZE, "%u\n", data->range);
2054 }
2055 
2056 static ssize_t hidpp_ff_range_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
2057 {
2058 	struct hid_device *hid = to_hid_device(dev);
2059 	struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2060 	struct input_dev *idev = hidinput->input;
2061 	struct hidpp_ff_private_data *data = idev->ff->private;
2062 	u8 params[2];
2063 	int range = simple_strtoul(buf, NULL, 10);
2064 
2065 	range = clamp(range, 180, 900);
2066 
2067 	params[0] = range >> 8;
2068 	params[1] = range & 0x00FF;
2069 
2070 	hidpp_ff_queue_work(data, -1, HIDPP_FF_SET_APERTURE, params, ARRAY_SIZE(params));
2071 
2072 	return count;
2073 }
2074 
2075 static DEVICE_ATTR(range, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH, hidpp_ff_range_show, hidpp_ff_range_store);
2076 
2077 static void hidpp_ff_destroy(struct ff_device *ff)
2078 {
2079 	struct hidpp_ff_private_data *data = ff->private;
2080 
2081 	kfree(data->effect_ids);
2082 }
2083 
2084 static int hidpp_ff_init(struct hidpp_device *hidpp, u8 feature_index)
2085 {
2086 	struct hid_device *hid = hidpp->hid_dev;
2087 	struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2088 	struct input_dev *dev = hidinput->input;
2089 	const struct usb_device_descriptor *udesc = &(hid_to_usb_dev(hid)->descriptor);
2090 	const u16 bcdDevice = le16_to_cpu(udesc->bcdDevice);
2091 	struct ff_device *ff;
2092 	struct hidpp_report response;
2093 	struct hidpp_ff_private_data *data;
2094 	int error, j, num_slots;
2095 	u8 version;
2096 
2097 	if (!dev) {
2098 		hid_err(hid, "Struct input_dev not set!\n");
2099 		return -EINVAL;
2100 	}
2101 
2102 	/* Get firmware release */
2103 	version = bcdDevice & 255;
2104 
2105 	/* Set supported force feedback capabilities */
2106 	for (j = 0; hidpp_ff_effects[j] >= 0; j++)
2107 		set_bit(hidpp_ff_effects[j], dev->ffbit);
2108 	if (version > 1)
2109 		for (j = 0; hidpp_ff_effects_v2[j] >= 0; j++)
2110 			set_bit(hidpp_ff_effects_v2[j], dev->ffbit);
2111 
2112 	/* Read number of slots available in device */
2113 	error = hidpp_send_fap_command_sync(hidpp, feature_index,
2114 		HIDPP_FF_GET_INFO, NULL, 0, &response);
2115 	if (error) {
2116 		if (error < 0)
2117 			return error;
2118 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
2119 			__func__, error);
2120 		return -EPROTO;
2121 	}
2122 
2123 	num_slots = response.fap.params[0] - HIDPP_FF_RESERVED_SLOTS;
2124 
2125 	error = input_ff_create(dev, num_slots);
2126 
2127 	if (error) {
2128 		hid_err(dev, "Failed to create FF device!\n");
2129 		return error;
2130 	}
2131 
2132 	data = kzalloc(sizeof(*data), GFP_KERNEL);
2133 	if (!data)
2134 		return -ENOMEM;
2135 	data->effect_ids = kcalloc(num_slots, sizeof(int), GFP_KERNEL);
2136 	if (!data->effect_ids) {
2137 		kfree(data);
2138 		return -ENOMEM;
2139 	}
2140 	data->wq = create_singlethread_workqueue("hidpp-ff-sendqueue");
2141 	if (!data->wq) {
2142 		kfree(data->effect_ids);
2143 		kfree(data);
2144 		return -ENOMEM;
2145 	}
2146 
2147 	data->hidpp = hidpp;
2148 	data->feature_index = feature_index;
2149 	data->version = version;
2150 	data->slot_autocenter = 0;
2151 	data->num_effects = num_slots;
2152 	for (j = 0; j < num_slots; j++)
2153 		data->effect_ids[j] = -1;
2154 
2155 	ff = dev->ff;
2156 	ff->private = data;
2157 
2158 	ff->upload = hidpp_ff_upload_effect;
2159 	ff->erase = hidpp_ff_erase_effect;
2160 	ff->playback = hidpp_ff_playback;
2161 	ff->set_gain = hidpp_ff_set_gain;
2162 	ff->set_autocenter = hidpp_ff_set_autocenter;
2163 	ff->destroy = hidpp_ff_destroy;
2164 
2165 
2166 	/* reset all forces */
2167 	error = hidpp_send_fap_command_sync(hidpp, feature_index,
2168 		HIDPP_FF_RESET_ALL, NULL, 0, &response);
2169 
2170 	/* Read current Range */
2171 	error = hidpp_send_fap_command_sync(hidpp, feature_index,
2172 		HIDPP_FF_GET_APERTURE, NULL, 0, &response);
2173 	if (error)
2174 		hid_warn(hidpp->hid_dev, "Failed to read range from device!\n");
2175 	data->range = error ? 900 : get_unaligned_be16(&response.fap.params[0]);
2176 
2177 	/* Create sysfs interface */
2178 	error = device_create_file(&(hidpp->hid_dev->dev), &dev_attr_range);
2179 	if (error)
2180 		hid_warn(hidpp->hid_dev, "Unable to create sysfs interface for \"range\", errno %d!\n", error);
2181 
2182 	/* Read the current gain values */
2183 	error = hidpp_send_fap_command_sync(hidpp, feature_index,
2184 		HIDPP_FF_GET_GLOBAL_GAINS, NULL, 0, &response);
2185 	if (error)
2186 		hid_warn(hidpp->hid_dev, "Failed to read gain values from device!\n");
2187 	data->gain = error ? 0xffff : get_unaligned_be16(&response.fap.params[0]);
2188 	/* ignore boost value at response.fap.params[2] */
2189 
2190 	/* init the hardware command queue */
2191 	atomic_set(&data->workqueue_size, 0);
2192 
2193 	/* initialize with zero autocenter to get wheel in usable state */
2194 	hidpp_ff_set_autocenter(dev, 0);
2195 
2196 	hid_info(hid, "Force feedback support loaded (firmware release %d).\n",
2197 		 version);
2198 
2199 	return 0;
2200 }
2201 
2202 static int hidpp_ff_deinit(struct hid_device *hid)
2203 {
2204 	struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2205 	struct input_dev *dev = hidinput->input;
2206 	struct hidpp_ff_private_data *data;
2207 
2208 	if (!dev) {
2209 		hid_err(hid, "Struct input_dev not found!\n");
2210 		return -EINVAL;
2211 	}
2212 
2213 	hid_info(hid, "Unloading HID++ force feedback.\n");
2214 	data = dev->ff->private;
2215 	if (!data) {
2216 		hid_err(hid, "Private data not found!\n");
2217 		return -EINVAL;
2218 	}
2219 
2220 	destroy_workqueue(data->wq);
2221 	device_remove_file(&hid->dev, &dev_attr_range);
2222 
2223 	return 0;
2224 }
2225 
2226 
2227 /* ************************************************************************** */
2228 /*                                                                            */
2229 /* Device Support                                                             */
2230 /*                                                                            */
2231 /* ************************************************************************** */
2232 
2233 /* -------------------------------------------------------------------------- */
2234 /* Touchpad HID++ devices                                                     */
2235 /* -------------------------------------------------------------------------- */
2236 
2237 #define WTP_MANUAL_RESOLUTION				39
2238 
2239 struct wtp_data {
2240 	u16 x_size, y_size;
2241 	u8 finger_count;
2242 	u8 mt_feature_index;
2243 	u8 button_feature_index;
2244 	u8 maxcontacts;
2245 	bool flip_y;
2246 	unsigned int resolution;
2247 };
2248 
2249 static int wtp_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2250 		struct hid_field *field, struct hid_usage *usage,
2251 		unsigned long **bit, int *max)
2252 {
2253 	return -1;
2254 }
2255 
2256 static void wtp_populate_input(struct hidpp_device *hidpp,
2257 			       struct input_dev *input_dev)
2258 {
2259 	struct wtp_data *wd = hidpp->private_data;
2260 
2261 	__set_bit(EV_ABS, input_dev->evbit);
2262 	__set_bit(EV_KEY, input_dev->evbit);
2263 	__clear_bit(EV_REL, input_dev->evbit);
2264 	__clear_bit(EV_LED, input_dev->evbit);
2265 
2266 	input_set_abs_params(input_dev, ABS_MT_POSITION_X, 0, wd->x_size, 0, 0);
2267 	input_abs_set_res(input_dev, ABS_MT_POSITION_X, wd->resolution);
2268 	input_set_abs_params(input_dev, ABS_MT_POSITION_Y, 0, wd->y_size, 0, 0);
2269 	input_abs_set_res(input_dev, ABS_MT_POSITION_Y, wd->resolution);
2270 
2271 	/* Max pressure is not given by the devices, pick one */
2272 	input_set_abs_params(input_dev, ABS_MT_PRESSURE, 0, 50, 0, 0);
2273 
2274 	input_set_capability(input_dev, EV_KEY, BTN_LEFT);
2275 
2276 	if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS)
2277 		input_set_capability(input_dev, EV_KEY, BTN_RIGHT);
2278 	else
2279 		__set_bit(INPUT_PROP_BUTTONPAD, input_dev->propbit);
2280 
2281 	input_mt_init_slots(input_dev, wd->maxcontacts, INPUT_MT_POINTER |
2282 		INPUT_MT_DROP_UNUSED);
2283 }
2284 
2285 static void wtp_touch_event(struct hidpp_device *hidpp,
2286 	struct hidpp_touchpad_raw_xy_finger *touch_report)
2287 {
2288 	struct wtp_data *wd = hidpp->private_data;
2289 	int slot;
2290 
2291 	if (!touch_report->finger_id || touch_report->contact_type)
2292 		/* no actual data */
2293 		return;
2294 
2295 	slot = input_mt_get_slot_by_key(hidpp->input, touch_report->finger_id);
2296 
2297 	input_mt_slot(hidpp->input, slot);
2298 	input_mt_report_slot_state(hidpp->input, MT_TOOL_FINGER,
2299 					touch_report->contact_status);
2300 	if (touch_report->contact_status) {
2301 		input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_X,
2302 				touch_report->x);
2303 		input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_Y,
2304 				wd->flip_y ? wd->y_size - touch_report->y :
2305 					     touch_report->y);
2306 		input_event(hidpp->input, EV_ABS, ABS_MT_PRESSURE,
2307 				touch_report->area);
2308 	}
2309 }
2310 
2311 static void wtp_send_raw_xy_event(struct hidpp_device *hidpp,
2312 		struct hidpp_touchpad_raw_xy *raw)
2313 {
2314 	int i;
2315 
2316 	for (i = 0; i < 2; i++)
2317 		wtp_touch_event(hidpp, &(raw->fingers[i]));
2318 
2319 	if (raw->end_of_frame &&
2320 	    !(hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS))
2321 		input_event(hidpp->input, EV_KEY, BTN_LEFT, raw->button);
2322 
2323 	if (raw->end_of_frame || raw->finger_count <= 2) {
2324 		input_mt_sync_frame(hidpp->input);
2325 		input_sync(hidpp->input);
2326 	}
2327 }
2328 
2329 static int wtp_mouse_raw_xy_event(struct hidpp_device *hidpp, u8 *data)
2330 {
2331 	struct wtp_data *wd = hidpp->private_data;
2332 	u8 c1_area = ((data[7] & 0xf) * (data[7] & 0xf) +
2333 		      (data[7] >> 4) * (data[7] >> 4)) / 2;
2334 	u8 c2_area = ((data[13] & 0xf) * (data[13] & 0xf) +
2335 		      (data[13] >> 4) * (data[13] >> 4)) / 2;
2336 	struct hidpp_touchpad_raw_xy raw = {
2337 		.timestamp = data[1],
2338 		.fingers = {
2339 			{
2340 				.contact_type = 0,
2341 				.contact_status = !!data[7],
2342 				.x = get_unaligned_le16(&data[3]),
2343 				.y = get_unaligned_le16(&data[5]),
2344 				.z = c1_area,
2345 				.area = c1_area,
2346 				.finger_id = data[2],
2347 			}, {
2348 				.contact_type = 0,
2349 				.contact_status = !!data[13],
2350 				.x = get_unaligned_le16(&data[9]),
2351 				.y = get_unaligned_le16(&data[11]),
2352 				.z = c2_area,
2353 				.area = c2_area,
2354 				.finger_id = data[8],
2355 			}
2356 		},
2357 		.finger_count = wd->maxcontacts,
2358 		.spurious_flag = 0,
2359 		.end_of_frame = (data[0] >> 7) == 0,
2360 		.button = data[0] & 0x01,
2361 	};
2362 
2363 	wtp_send_raw_xy_event(hidpp, &raw);
2364 
2365 	return 1;
2366 }
2367 
2368 static int wtp_raw_event(struct hid_device *hdev, u8 *data, int size)
2369 {
2370 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2371 	struct wtp_data *wd = hidpp->private_data;
2372 	struct hidpp_report *report = (struct hidpp_report *)data;
2373 	struct hidpp_touchpad_raw_xy raw;
2374 
2375 	if (!wd || !hidpp->input)
2376 		return 1;
2377 
2378 	switch (data[0]) {
2379 	case 0x02:
2380 		if (size < 2) {
2381 			hid_err(hdev, "Received HID report of bad size (%d)",
2382 				size);
2383 			return 1;
2384 		}
2385 		if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) {
2386 			input_event(hidpp->input, EV_KEY, BTN_LEFT,
2387 					!!(data[1] & 0x01));
2388 			input_event(hidpp->input, EV_KEY, BTN_RIGHT,
2389 					!!(data[1] & 0x02));
2390 			input_sync(hidpp->input);
2391 			return 0;
2392 		} else {
2393 			if (size < 21)
2394 				return 1;
2395 			return wtp_mouse_raw_xy_event(hidpp, &data[7]);
2396 		}
2397 	case REPORT_ID_HIDPP_LONG:
2398 		/* size is already checked in hidpp_raw_event. */
2399 		if ((report->fap.feature_index != wd->mt_feature_index) ||
2400 		    (report->fap.funcindex_clientid != EVENT_TOUCHPAD_RAW_XY))
2401 			return 1;
2402 		hidpp_touchpad_raw_xy_event(hidpp, data + 4, &raw);
2403 
2404 		wtp_send_raw_xy_event(hidpp, &raw);
2405 		return 0;
2406 	}
2407 
2408 	return 0;
2409 }
2410 
2411 static int wtp_get_config(struct hidpp_device *hidpp)
2412 {
2413 	struct wtp_data *wd = hidpp->private_data;
2414 	struct hidpp_touchpad_raw_info raw_info = {0};
2415 	u8 feature_type;
2416 	int ret;
2417 
2418 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_TOUCHPAD_RAW_XY,
2419 		&wd->mt_feature_index, &feature_type);
2420 	if (ret)
2421 		/* means that the device is not powered up */
2422 		return ret;
2423 
2424 	ret = hidpp_touchpad_get_raw_info(hidpp, wd->mt_feature_index,
2425 		&raw_info);
2426 	if (ret)
2427 		return ret;
2428 
2429 	wd->x_size = raw_info.x_size;
2430 	wd->y_size = raw_info.y_size;
2431 	wd->maxcontacts = raw_info.maxcontacts;
2432 	wd->flip_y = raw_info.origin == TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT;
2433 	wd->resolution = raw_info.res;
2434 	if (!wd->resolution)
2435 		wd->resolution = WTP_MANUAL_RESOLUTION;
2436 
2437 	return 0;
2438 }
2439 
2440 static int wtp_allocate(struct hid_device *hdev, const struct hid_device_id *id)
2441 {
2442 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2443 	struct wtp_data *wd;
2444 
2445 	wd = devm_kzalloc(&hdev->dev, sizeof(struct wtp_data),
2446 			GFP_KERNEL);
2447 	if (!wd)
2448 		return -ENOMEM;
2449 
2450 	hidpp->private_data = wd;
2451 
2452 	return 0;
2453 };
2454 
2455 static int wtp_connect(struct hid_device *hdev, bool connected)
2456 {
2457 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2458 	struct wtp_data *wd = hidpp->private_data;
2459 	int ret;
2460 
2461 	if (!wd->x_size) {
2462 		ret = wtp_get_config(hidpp);
2463 		if (ret) {
2464 			hid_err(hdev, "Can not get wtp config: %d\n", ret);
2465 			return ret;
2466 		}
2467 	}
2468 
2469 	return hidpp_touchpad_set_raw_report_state(hidpp, wd->mt_feature_index,
2470 			true, true);
2471 }
2472 
2473 /* ------------------------------------------------------------------------- */
2474 /* Logitech M560 devices                                                     */
2475 /* ------------------------------------------------------------------------- */
2476 
2477 /*
2478  * Logitech M560 protocol overview
2479  *
2480  * The Logitech M560 mouse, is designed for windows 8. When the middle and/or
2481  * the sides buttons are pressed, it sends some keyboard keys events
2482  * instead of buttons ones.
2483  * To complicate things further, the middle button keys sequence
2484  * is different from the odd press and the even press.
2485  *
2486  * forward button -> Super_R
2487  * backward button -> Super_L+'d' (press only)
2488  * middle button -> 1st time: Alt_L+SuperL+XF86TouchpadOff (press only)
2489  *                  2nd time: left-click (press only)
2490  * NB: press-only means that when the button is pressed, the
2491  * KeyPress/ButtonPress and KeyRelease/ButtonRelease events are generated
2492  * together sequentially; instead when the button is released, no event is
2493  * generated !
2494  *
2495  * With the command
2496  *	10<xx>0a 3500af03 (where <xx> is the mouse id),
2497  * the mouse reacts differently:
2498  * - it never sends a keyboard key event
2499  * - for the three mouse button it sends:
2500  *	middle button               press   11<xx>0a 3500af00...
2501  *	side 1 button (forward)     press   11<xx>0a 3500b000...
2502  *	side 2 button (backward)    press   11<xx>0a 3500ae00...
2503  *	middle/side1/side2 button   release 11<xx>0a 35000000...
2504  */
2505 
2506 static const u8 m560_config_parameter[] = {0x00, 0xaf, 0x03};
2507 
2508 /* how buttons are mapped in the report */
2509 #define M560_MOUSE_BTN_LEFT		0x01
2510 #define M560_MOUSE_BTN_RIGHT		0x02
2511 #define M560_MOUSE_BTN_WHEEL_LEFT	0x08
2512 #define M560_MOUSE_BTN_WHEEL_RIGHT	0x10
2513 
2514 #define M560_SUB_ID			0x0a
2515 #define M560_BUTTON_MODE_REGISTER	0x35
2516 
2517 static int m560_send_config_command(struct hid_device *hdev, bool connected)
2518 {
2519 	struct hidpp_report response;
2520 	struct hidpp_device *hidpp_dev;
2521 
2522 	hidpp_dev = hid_get_drvdata(hdev);
2523 
2524 	return hidpp_send_rap_command_sync(
2525 		hidpp_dev,
2526 		REPORT_ID_HIDPP_SHORT,
2527 		M560_SUB_ID,
2528 		M560_BUTTON_MODE_REGISTER,
2529 		(u8 *)m560_config_parameter,
2530 		sizeof(m560_config_parameter),
2531 		&response
2532 	);
2533 }
2534 
2535 static int m560_raw_event(struct hid_device *hdev, u8 *data, int size)
2536 {
2537 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2538 
2539 	/* sanity check */
2540 	if (!hidpp->input) {
2541 		hid_err(hdev, "error in parameter\n");
2542 		return -EINVAL;
2543 	}
2544 
2545 	if (size < 7) {
2546 		hid_err(hdev, "error in report\n");
2547 		return 0;
2548 	}
2549 
2550 	if (data[0] == REPORT_ID_HIDPP_LONG &&
2551 	    data[2] == M560_SUB_ID && data[6] == 0x00) {
2552 		/*
2553 		 * m560 mouse report for middle, forward and backward button
2554 		 *
2555 		 * data[0] = 0x11
2556 		 * data[1] = device-id
2557 		 * data[2] = 0x0a
2558 		 * data[5] = 0xaf -> middle
2559 		 *	     0xb0 -> forward
2560 		 *	     0xae -> backward
2561 		 *	     0x00 -> release all
2562 		 * data[6] = 0x00
2563 		 */
2564 
2565 		switch (data[5]) {
2566 		case 0xaf:
2567 			input_report_key(hidpp->input, BTN_MIDDLE, 1);
2568 			break;
2569 		case 0xb0:
2570 			input_report_key(hidpp->input, BTN_FORWARD, 1);
2571 			break;
2572 		case 0xae:
2573 			input_report_key(hidpp->input, BTN_BACK, 1);
2574 			break;
2575 		case 0x00:
2576 			input_report_key(hidpp->input, BTN_BACK, 0);
2577 			input_report_key(hidpp->input, BTN_FORWARD, 0);
2578 			input_report_key(hidpp->input, BTN_MIDDLE, 0);
2579 			break;
2580 		default:
2581 			hid_err(hdev, "error in report\n");
2582 			return 0;
2583 		}
2584 		input_sync(hidpp->input);
2585 
2586 	} else if (data[0] == 0x02) {
2587 		/*
2588 		 * Logitech M560 mouse report
2589 		 *
2590 		 * data[0] = type (0x02)
2591 		 * data[1..2] = buttons
2592 		 * data[3..5] = xy
2593 		 * data[6] = wheel
2594 		 */
2595 
2596 		int v;
2597 
2598 		input_report_key(hidpp->input, BTN_LEFT,
2599 			!!(data[1] & M560_MOUSE_BTN_LEFT));
2600 		input_report_key(hidpp->input, BTN_RIGHT,
2601 			!!(data[1] & M560_MOUSE_BTN_RIGHT));
2602 
2603 		if (data[1] & M560_MOUSE_BTN_WHEEL_LEFT) {
2604 			input_report_rel(hidpp->input, REL_HWHEEL, -1);
2605 			input_report_rel(hidpp->input, REL_HWHEEL_HI_RES,
2606 					 -120);
2607 		} else if (data[1] & M560_MOUSE_BTN_WHEEL_RIGHT) {
2608 			input_report_rel(hidpp->input, REL_HWHEEL, 1);
2609 			input_report_rel(hidpp->input, REL_HWHEEL_HI_RES,
2610 					 120);
2611 		}
2612 
2613 		v = hid_snto32(hid_field_extract(hdev, data+3, 0, 12), 12);
2614 		input_report_rel(hidpp->input, REL_X, v);
2615 
2616 		v = hid_snto32(hid_field_extract(hdev, data+3, 12, 12), 12);
2617 		input_report_rel(hidpp->input, REL_Y, v);
2618 
2619 		v = hid_snto32(data[6], 8);
2620 		if (v != 0)
2621 			hidpp_scroll_counter_handle_scroll(hidpp->input,
2622 					&hidpp->vertical_wheel_counter, v);
2623 
2624 		input_sync(hidpp->input);
2625 	}
2626 
2627 	return 1;
2628 }
2629 
2630 static void m560_populate_input(struct hidpp_device *hidpp,
2631 				struct input_dev *input_dev)
2632 {
2633 	__set_bit(EV_KEY, input_dev->evbit);
2634 	__set_bit(BTN_MIDDLE, input_dev->keybit);
2635 	__set_bit(BTN_RIGHT, input_dev->keybit);
2636 	__set_bit(BTN_LEFT, input_dev->keybit);
2637 	__set_bit(BTN_BACK, input_dev->keybit);
2638 	__set_bit(BTN_FORWARD, input_dev->keybit);
2639 
2640 	__set_bit(EV_REL, input_dev->evbit);
2641 	__set_bit(REL_X, input_dev->relbit);
2642 	__set_bit(REL_Y, input_dev->relbit);
2643 	__set_bit(REL_WHEEL, input_dev->relbit);
2644 	__set_bit(REL_HWHEEL, input_dev->relbit);
2645 	__set_bit(REL_WHEEL_HI_RES, input_dev->relbit);
2646 	__set_bit(REL_HWHEEL_HI_RES, input_dev->relbit);
2647 }
2648 
2649 static int m560_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2650 		struct hid_field *field, struct hid_usage *usage,
2651 		unsigned long **bit, int *max)
2652 {
2653 	return -1;
2654 }
2655 
2656 /* ------------------------------------------------------------------------- */
2657 /* Logitech K400 devices                                                     */
2658 /* ------------------------------------------------------------------------- */
2659 
2660 /*
2661  * The Logitech K400 keyboard has an embedded touchpad which is seen
2662  * as a mouse from the OS point of view. There is a hardware shortcut to disable
2663  * tap-to-click but the setting is not remembered accross reset, annoying some
2664  * users.
2665  *
2666  * We can toggle this feature from the host by using the feature 0x6010:
2667  * Touchpad FW items
2668  */
2669 
2670 struct k400_private_data {
2671 	u8 feature_index;
2672 };
2673 
2674 static int k400_disable_tap_to_click(struct hidpp_device *hidpp)
2675 {
2676 	struct k400_private_data *k400 = hidpp->private_data;
2677 	struct hidpp_touchpad_fw_items items = {};
2678 	int ret;
2679 	u8 feature_type;
2680 
2681 	if (!k400->feature_index) {
2682 		ret = hidpp_root_get_feature(hidpp,
2683 			HIDPP_PAGE_TOUCHPAD_FW_ITEMS,
2684 			&k400->feature_index, &feature_type);
2685 		if (ret)
2686 			/* means that the device is not powered up */
2687 			return ret;
2688 	}
2689 
2690 	ret = hidpp_touchpad_fw_items_set(hidpp, k400->feature_index, &items);
2691 	if (ret)
2692 		return ret;
2693 
2694 	return 0;
2695 }
2696 
2697 static int k400_allocate(struct hid_device *hdev)
2698 {
2699 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2700 	struct k400_private_data *k400;
2701 
2702 	k400 = devm_kzalloc(&hdev->dev, sizeof(struct k400_private_data),
2703 			    GFP_KERNEL);
2704 	if (!k400)
2705 		return -ENOMEM;
2706 
2707 	hidpp->private_data = k400;
2708 
2709 	return 0;
2710 };
2711 
2712 static int k400_connect(struct hid_device *hdev, bool connected)
2713 {
2714 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2715 
2716 	if (!disable_tap_to_click)
2717 		return 0;
2718 
2719 	return k400_disable_tap_to_click(hidpp);
2720 }
2721 
2722 /* ------------------------------------------------------------------------- */
2723 /* Logitech G920 Driving Force Racing Wheel for Xbox One                     */
2724 /* ------------------------------------------------------------------------- */
2725 
2726 #define HIDPP_PAGE_G920_FORCE_FEEDBACK			0x8123
2727 
2728 static int g920_get_config(struct hidpp_device *hidpp)
2729 {
2730 	u8 feature_type;
2731 	u8 feature_index;
2732 	int ret;
2733 
2734 	/* Find feature and store for later use */
2735 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_G920_FORCE_FEEDBACK,
2736 		&feature_index, &feature_type);
2737 	if (ret)
2738 		return ret;
2739 
2740 	ret = hidpp_ff_init(hidpp, feature_index);
2741 	if (ret)
2742 		hid_warn(hidpp->hid_dev, "Unable to initialize force feedback support, errno %d\n",
2743 				ret);
2744 
2745 	return 0;
2746 }
2747 
2748 /* -------------------------------------------------------------------------- */
2749 /* HID++1.0 devices which use HID++ reports for their wheels                  */
2750 /* -------------------------------------------------------------------------- */
2751 static int hidpp10_wheel_connect(struct hidpp_device *hidpp)
2752 {
2753 	return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
2754 			HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT,
2755 			HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT);
2756 }
2757 
2758 static int hidpp10_wheel_raw_event(struct hidpp_device *hidpp,
2759 				   u8 *data, int size)
2760 {
2761 	s8 value, hvalue;
2762 
2763 	if (!hidpp->input)
2764 		return -EINVAL;
2765 
2766 	if (size < 7)
2767 		return 0;
2768 
2769 	if (data[0] != REPORT_ID_HIDPP_SHORT || data[2] != HIDPP_SUB_ID_ROLLER)
2770 		return 0;
2771 
2772 	value = data[3];
2773 	hvalue = data[4];
2774 
2775 	input_report_rel(hidpp->input, REL_WHEEL, value);
2776 	input_report_rel(hidpp->input, REL_WHEEL_HI_RES, value * 120);
2777 	input_report_rel(hidpp->input, REL_HWHEEL, hvalue);
2778 	input_report_rel(hidpp->input, REL_HWHEEL_HI_RES, hvalue * 120);
2779 	input_sync(hidpp->input);
2780 
2781 	return 1;
2782 }
2783 
2784 static void hidpp10_wheel_populate_input(struct hidpp_device *hidpp,
2785 					 struct input_dev *input_dev)
2786 {
2787 	__set_bit(EV_REL, input_dev->evbit);
2788 	__set_bit(REL_WHEEL, input_dev->relbit);
2789 	__set_bit(REL_WHEEL_HI_RES, input_dev->relbit);
2790 	__set_bit(REL_HWHEEL, input_dev->relbit);
2791 	__set_bit(REL_HWHEEL_HI_RES, input_dev->relbit);
2792 }
2793 
2794 /* -------------------------------------------------------------------------- */
2795 /* HID++1.0 mice which use HID++ reports for extra mouse buttons              */
2796 /* -------------------------------------------------------------------------- */
2797 static int hidpp10_extra_mouse_buttons_connect(struct hidpp_device *hidpp)
2798 {
2799 	return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
2800 				    HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT,
2801 				    HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT);
2802 }
2803 
2804 static int hidpp10_extra_mouse_buttons_raw_event(struct hidpp_device *hidpp,
2805 				    u8 *data, int size)
2806 {
2807 	int i;
2808 
2809 	if (!hidpp->input)
2810 		return -EINVAL;
2811 
2812 	if (size < 7)
2813 		return 0;
2814 
2815 	if (data[0] != REPORT_ID_HIDPP_SHORT ||
2816 	    data[2] != HIDPP_SUB_ID_MOUSE_EXTRA_BTNS)
2817 		return 0;
2818 
2819 	/*
2820 	 * Buttons are either delivered through the regular mouse report *or*
2821 	 * through the extra buttons report. At least for button 6 how it is
2822 	 * delivered differs per receiver firmware version. Even receivers with
2823 	 * the same usb-id show different behavior, so we handle both cases.
2824 	 */
2825 	for (i = 0; i < 8; i++)
2826 		input_report_key(hidpp->input, BTN_MOUSE + i,
2827 				 (data[3] & (1 << i)));
2828 
2829 	/* Some mice report events on button 9+, use BTN_MISC */
2830 	for (i = 0; i < 8; i++)
2831 		input_report_key(hidpp->input, BTN_MISC + i,
2832 				 (data[4] & (1 << i)));
2833 
2834 	input_sync(hidpp->input);
2835 	return 1;
2836 }
2837 
2838 static void hidpp10_extra_mouse_buttons_populate_input(
2839 			struct hidpp_device *hidpp, struct input_dev *input_dev)
2840 {
2841 	/* BTN_MOUSE - BTN_MOUSE+7 are set already by the descriptor */
2842 	__set_bit(BTN_0, input_dev->keybit);
2843 	__set_bit(BTN_1, input_dev->keybit);
2844 	__set_bit(BTN_2, input_dev->keybit);
2845 	__set_bit(BTN_3, input_dev->keybit);
2846 	__set_bit(BTN_4, input_dev->keybit);
2847 	__set_bit(BTN_5, input_dev->keybit);
2848 	__set_bit(BTN_6, input_dev->keybit);
2849 	__set_bit(BTN_7, input_dev->keybit);
2850 }
2851 
2852 /* -------------------------------------------------------------------------- */
2853 /* HID++1.0 kbds which only report 0x10xx consumer usages through sub-id 0x03 */
2854 /* -------------------------------------------------------------------------- */
2855 
2856 /* Find the consumer-page input report desc and change Maximums to 0x107f */
2857 static u8 *hidpp10_consumer_keys_report_fixup(struct hidpp_device *hidpp,
2858 					      u8 *_rdesc, unsigned int *rsize)
2859 {
2860 	/* Note 0 terminated so we can use strnstr to search for this. */
2861 	const char consumer_rdesc_start[] = {
2862 		0x05, 0x0C,	/* USAGE_PAGE (Consumer Devices)       */
2863 		0x09, 0x01,	/* USAGE (Consumer Control)            */
2864 		0xA1, 0x01,	/* COLLECTION (Application)            */
2865 		0x85, 0x03,	/* REPORT_ID = 3                       */
2866 		0x75, 0x10,	/* REPORT_SIZE (16)                    */
2867 		0x95, 0x02,	/* REPORT_COUNT (2)                    */
2868 		0x15, 0x01,	/* LOGICAL_MIN (1)                     */
2869 		0x26, 0x00	/* LOGICAL_MAX (...                    */
2870 	};
2871 	char *consumer_rdesc, *rdesc = (char *)_rdesc;
2872 	unsigned int size;
2873 
2874 	consumer_rdesc = strnstr(rdesc, consumer_rdesc_start, *rsize);
2875 	size = *rsize - (consumer_rdesc - rdesc);
2876 	if (consumer_rdesc && size >= 25) {
2877 		consumer_rdesc[15] = 0x7f;
2878 		consumer_rdesc[16] = 0x10;
2879 		consumer_rdesc[20] = 0x7f;
2880 		consumer_rdesc[21] = 0x10;
2881 	}
2882 	return _rdesc;
2883 }
2884 
2885 static int hidpp10_consumer_keys_connect(struct hidpp_device *hidpp)
2886 {
2887 	return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
2888 				    HIDPP_ENABLE_CONSUMER_REPORT,
2889 				    HIDPP_ENABLE_CONSUMER_REPORT);
2890 }
2891 
2892 static int hidpp10_consumer_keys_raw_event(struct hidpp_device *hidpp,
2893 					   u8 *data, int size)
2894 {
2895 	u8 consumer_report[5];
2896 
2897 	if (size < 7)
2898 		return 0;
2899 
2900 	if (data[0] != REPORT_ID_HIDPP_SHORT ||
2901 	    data[2] != HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS)
2902 		return 0;
2903 
2904 	/*
2905 	 * Build a normal consumer report (3) out of the data, this detour
2906 	 * is necessary to get some keyboards to report their 0x10xx usages.
2907 	 */
2908 	consumer_report[0] = 0x03;
2909 	memcpy(&consumer_report[1], &data[3], 4);
2910 	/* We are called from atomic context */
2911 	hid_report_raw_event(hidpp->hid_dev, HID_INPUT_REPORT,
2912 			     consumer_report, 5, 1);
2913 
2914 	return 1;
2915 }
2916 
2917 /* -------------------------------------------------------------------------- */
2918 /* High-resolution scroll wheels                                              */
2919 /* -------------------------------------------------------------------------- */
2920 
2921 static int hi_res_scroll_enable(struct hidpp_device *hidpp)
2922 {
2923 	int ret;
2924 	u8 multiplier = 1;
2925 
2926 	if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2121) {
2927 		ret = hidpp_hrw_set_wheel_mode(hidpp, false, true, false);
2928 		if (ret == 0)
2929 			ret = hidpp_hrw_get_wheel_capability(hidpp, &multiplier);
2930 	} else if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2120) {
2931 		ret = hidpp_hrs_set_highres_scrolling_mode(hidpp, true,
2932 							   &multiplier);
2933 	} else /* if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_1P0) */ {
2934 		ret = hidpp10_enable_scrolling_acceleration(hidpp);
2935 		multiplier = 8;
2936 	}
2937 	if (ret)
2938 		return ret;
2939 
2940 	if (multiplier == 0)
2941 		multiplier = 1;
2942 
2943 	hidpp->vertical_wheel_counter.wheel_multiplier = multiplier;
2944 	hid_info(hidpp->hid_dev, "multiplier = %d\n", multiplier);
2945 	return 0;
2946 }
2947 
2948 /* -------------------------------------------------------------------------- */
2949 /* Generic HID++ devices                                                      */
2950 /* -------------------------------------------------------------------------- */
2951 
2952 static u8 *hidpp_report_fixup(struct hid_device *hdev, u8 *rdesc,
2953 			      unsigned int *rsize)
2954 {
2955 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2956 
2957 	if (!hidpp)
2958 		return rdesc;
2959 
2960 	/* For 27 MHz keyboards the quirk gets set after hid_parse. */
2961 	if (hdev->group == HID_GROUP_LOGITECH_27MHZ_DEVICE ||
2962 	    (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS))
2963 		rdesc = hidpp10_consumer_keys_report_fixup(hidpp, rdesc, rsize);
2964 
2965 	return rdesc;
2966 }
2967 
2968 static int hidpp_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2969 		struct hid_field *field, struct hid_usage *usage,
2970 		unsigned long **bit, int *max)
2971 {
2972 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2973 
2974 	if (!hidpp)
2975 		return 0;
2976 
2977 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
2978 		return wtp_input_mapping(hdev, hi, field, usage, bit, max);
2979 	else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560 &&
2980 			field->application != HID_GD_MOUSE)
2981 		return m560_input_mapping(hdev, hi, field, usage, bit, max);
2982 
2983 	return 0;
2984 }
2985 
2986 static int hidpp_input_mapped(struct hid_device *hdev, struct hid_input *hi,
2987 		struct hid_field *field, struct hid_usage *usage,
2988 		unsigned long **bit, int *max)
2989 {
2990 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2991 
2992 	if (!hidpp)
2993 		return 0;
2994 
2995 	/* Ensure that Logitech G920 is not given a default fuzz/flat value */
2996 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
2997 		if (usage->type == EV_ABS && (usage->code == ABS_X ||
2998 				usage->code == ABS_Y || usage->code == ABS_Z ||
2999 				usage->code == ABS_RZ)) {
3000 			field->application = HID_GD_MULTIAXIS;
3001 		}
3002 	}
3003 
3004 	return 0;
3005 }
3006 
3007 
3008 static void hidpp_populate_input(struct hidpp_device *hidpp,
3009 				 struct input_dev *input)
3010 {
3011 	hidpp->input = input;
3012 
3013 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
3014 		wtp_populate_input(hidpp, input);
3015 	else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560)
3016 		m560_populate_input(hidpp, input);
3017 
3018 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS)
3019 		hidpp10_wheel_populate_input(hidpp, input);
3020 
3021 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS)
3022 		hidpp10_extra_mouse_buttons_populate_input(hidpp, input);
3023 }
3024 
3025 static int hidpp_input_configured(struct hid_device *hdev,
3026 				struct hid_input *hidinput)
3027 {
3028 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3029 	struct input_dev *input = hidinput->input;
3030 
3031 	if (!hidpp)
3032 		return 0;
3033 
3034 	hidpp_populate_input(hidpp, input);
3035 
3036 	return 0;
3037 }
3038 
3039 static int hidpp_raw_hidpp_event(struct hidpp_device *hidpp, u8 *data,
3040 		int size)
3041 {
3042 	struct hidpp_report *question = hidpp->send_receive_buf;
3043 	struct hidpp_report *answer = hidpp->send_receive_buf;
3044 	struct hidpp_report *report = (struct hidpp_report *)data;
3045 	int ret;
3046 
3047 	/*
3048 	 * If the mutex is locked then we have a pending answer from a
3049 	 * previously sent command.
3050 	 */
3051 	if (unlikely(mutex_is_locked(&hidpp->send_mutex))) {
3052 		/*
3053 		 * Check for a correct hidpp20 answer or the corresponding
3054 		 * error
3055 		 */
3056 		if (hidpp_match_answer(question, report) ||
3057 				hidpp_match_error(question, report)) {
3058 			*answer = *report;
3059 			hidpp->answer_available = true;
3060 			wake_up(&hidpp->wait);
3061 			/*
3062 			 * This was an answer to a command that this driver sent
3063 			 * We return 1 to hid-core to avoid forwarding the
3064 			 * command upstream as it has been treated by the driver
3065 			 */
3066 
3067 			return 1;
3068 		}
3069 	}
3070 
3071 	if (unlikely(hidpp_report_is_connect_event(report))) {
3072 		atomic_set(&hidpp->connected,
3073 				!(report->rap.params[0] & (1 << 6)));
3074 		if (schedule_work(&hidpp->work) == 0)
3075 			dbg_hid("%s: connect event already queued\n", __func__);
3076 		return 1;
3077 	}
3078 
3079 	if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) {
3080 		ret = hidpp20_battery_event(hidpp, data, size);
3081 		if (ret != 0)
3082 			return ret;
3083 		ret = hidpp_solar_battery_event(hidpp, data, size);
3084 		if (ret != 0)
3085 			return ret;
3086 	}
3087 
3088 	if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) {
3089 		ret = hidpp10_battery_event(hidpp, data, size);
3090 		if (ret != 0)
3091 			return ret;
3092 	}
3093 
3094 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) {
3095 		ret = hidpp10_wheel_raw_event(hidpp, data, size);
3096 		if (ret != 0)
3097 			return ret;
3098 	}
3099 
3100 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) {
3101 		ret = hidpp10_extra_mouse_buttons_raw_event(hidpp, data, size);
3102 		if (ret != 0)
3103 			return ret;
3104 	}
3105 
3106 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) {
3107 		ret = hidpp10_consumer_keys_raw_event(hidpp, data, size);
3108 		if (ret != 0)
3109 			return ret;
3110 	}
3111 
3112 	return 0;
3113 }
3114 
3115 static int hidpp_raw_event(struct hid_device *hdev, struct hid_report *report,
3116 		u8 *data, int size)
3117 {
3118 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3119 	int ret = 0;
3120 
3121 	if (!hidpp)
3122 		return 0;
3123 
3124 	/* Generic HID++ processing. */
3125 	switch (data[0]) {
3126 	case REPORT_ID_HIDPP_VERY_LONG:
3127 		if (size != hidpp->very_long_report_length) {
3128 			hid_err(hdev, "received hid++ report of bad size (%d)",
3129 				size);
3130 			return 1;
3131 		}
3132 		ret = hidpp_raw_hidpp_event(hidpp, data, size);
3133 		break;
3134 	case REPORT_ID_HIDPP_LONG:
3135 		if (size != HIDPP_REPORT_LONG_LENGTH) {
3136 			hid_err(hdev, "received hid++ report of bad size (%d)",
3137 				size);
3138 			return 1;
3139 		}
3140 		ret = hidpp_raw_hidpp_event(hidpp, data, size);
3141 		break;
3142 	case REPORT_ID_HIDPP_SHORT:
3143 		if (size != HIDPP_REPORT_SHORT_LENGTH) {
3144 			hid_err(hdev, "received hid++ report of bad size (%d)",
3145 				size);
3146 			return 1;
3147 		}
3148 		ret = hidpp_raw_hidpp_event(hidpp, data, size);
3149 		break;
3150 	}
3151 
3152 	/* If no report is available for further processing, skip calling
3153 	 * raw_event of subclasses. */
3154 	if (ret != 0)
3155 		return ret;
3156 
3157 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
3158 		return wtp_raw_event(hdev, data, size);
3159 	else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560)
3160 		return m560_raw_event(hdev, data, size);
3161 
3162 	return 0;
3163 }
3164 
3165 static int hidpp_event(struct hid_device *hdev, struct hid_field *field,
3166 	struct hid_usage *usage, __s32 value)
3167 {
3168 	/* This function will only be called for scroll events, due to the
3169 	 * restriction imposed in hidpp_usages.
3170 	 */
3171 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3172 	struct hidpp_scroll_counter *counter;
3173 
3174 	if (!hidpp)
3175 		return 0;
3176 
3177 	counter = &hidpp->vertical_wheel_counter;
3178 	/* A scroll event may occur before the multiplier has been retrieved or
3179 	 * the input device set, or high-res scroll enabling may fail. In such
3180 	 * cases we must return early (falling back to default behaviour) to
3181 	 * avoid a crash in hidpp_scroll_counter_handle_scroll.
3182 	 */
3183 	if (!(hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) || value == 0
3184 	    || hidpp->input == NULL || counter->wheel_multiplier == 0)
3185 		return 0;
3186 
3187 	hidpp_scroll_counter_handle_scroll(hidpp->input, counter, value);
3188 	return 1;
3189 }
3190 
3191 static int hidpp_initialize_battery(struct hidpp_device *hidpp)
3192 {
3193 	static atomic_t battery_no = ATOMIC_INIT(0);
3194 	struct power_supply_config cfg = { .drv_data = hidpp };
3195 	struct power_supply_desc *desc = &hidpp->battery.desc;
3196 	enum power_supply_property *battery_props;
3197 	struct hidpp_battery *battery;
3198 	unsigned int num_battery_props;
3199 	unsigned long n;
3200 	int ret;
3201 
3202 	if (hidpp->battery.ps)
3203 		return 0;
3204 
3205 	hidpp->battery.feature_index = 0xff;
3206 	hidpp->battery.solar_feature_index = 0xff;
3207 
3208 	if (hidpp->protocol_major >= 2) {
3209 		if (hidpp->quirks & HIDPP_QUIRK_CLASS_K750)
3210 			ret = hidpp_solar_request_battery_event(hidpp);
3211 		else
3212 			ret = hidpp20_query_battery_info(hidpp);
3213 
3214 		if (ret)
3215 			return ret;
3216 		hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP20_BATTERY;
3217 	} else {
3218 		ret = hidpp10_query_battery_status(hidpp);
3219 		if (ret) {
3220 			ret = hidpp10_query_battery_mileage(hidpp);
3221 			if (ret)
3222 				return -ENOENT;
3223 			hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
3224 		} else {
3225 			hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
3226 		}
3227 		hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP10_BATTERY;
3228 	}
3229 
3230 	battery_props = devm_kmemdup(&hidpp->hid_dev->dev,
3231 				     hidpp_battery_props,
3232 				     sizeof(hidpp_battery_props),
3233 				     GFP_KERNEL);
3234 	if (!battery_props)
3235 		return -ENOMEM;
3236 
3237 	num_battery_props = ARRAY_SIZE(hidpp_battery_props) - 2;
3238 
3239 	if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE)
3240 		battery_props[num_battery_props++] =
3241 				POWER_SUPPLY_PROP_CAPACITY;
3242 
3243 	if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS)
3244 		battery_props[num_battery_props++] =
3245 				POWER_SUPPLY_PROP_CAPACITY_LEVEL;
3246 
3247 	battery = &hidpp->battery;
3248 
3249 	n = atomic_inc_return(&battery_no) - 1;
3250 	desc->properties = battery_props;
3251 	desc->num_properties = num_battery_props;
3252 	desc->get_property = hidpp_battery_get_property;
3253 	sprintf(battery->name, "hidpp_battery_%ld", n);
3254 	desc->name = battery->name;
3255 	desc->type = POWER_SUPPLY_TYPE_BATTERY;
3256 	desc->use_for_apm = 0;
3257 
3258 	battery->ps = devm_power_supply_register(&hidpp->hid_dev->dev,
3259 						 &battery->desc,
3260 						 &cfg);
3261 	if (IS_ERR(battery->ps))
3262 		return PTR_ERR(battery->ps);
3263 
3264 	power_supply_powers(battery->ps, &hidpp->hid_dev->dev);
3265 
3266 	return ret;
3267 }
3268 
3269 static void hidpp_overwrite_name(struct hid_device *hdev)
3270 {
3271 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3272 	char *name;
3273 
3274 	if (hidpp->protocol_major < 2)
3275 		return;
3276 
3277 	name = hidpp_get_device_name(hidpp);
3278 
3279 	if (!name) {
3280 		hid_err(hdev, "unable to retrieve the name of the device");
3281 	} else {
3282 		dbg_hid("HID++: Got name: %s\n", name);
3283 		snprintf(hdev->name, sizeof(hdev->name), "%s", name);
3284 	}
3285 
3286 	kfree(name);
3287 }
3288 
3289 static int hidpp_input_open(struct input_dev *dev)
3290 {
3291 	struct hid_device *hid = input_get_drvdata(dev);
3292 
3293 	return hid_hw_open(hid);
3294 }
3295 
3296 static void hidpp_input_close(struct input_dev *dev)
3297 {
3298 	struct hid_device *hid = input_get_drvdata(dev);
3299 
3300 	hid_hw_close(hid);
3301 }
3302 
3303 static struct input_dev *hidpp_allocate_input(struct hid_device *hdev)
3304 {
3305 	struct input_dev *input_dev = devm_input_allocate_device(&hdev->dev);
3306 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3307 
3308 	if (!input_dev)
3309 		return NULL;
3310 
3311 	input_set_drvdata(input_dev, hdev);
3312 	input_dev->open = hidpp_input_open;
3313 	input_dev->close = hidpp_input_close;
3314 
3315 	input_dev->name = hidpp->name;
3316 	input_dev->phys = hdev->phys;
3317 	input_dev->uniq = hdev->uniq;
3318 	input_dev->id.bustype = hdev->bus;
3319 	input_dev->id.vendor  = hdev->vendor;
3320 	input_dev->id.product = hdev->product;
3321 	input_dev->id.version = hdev->version;
3322 	input_dev->dev.parent = &hdev->dev;
3323 
3324 	return input_dev;
3325 }
3326 
3327 static void hidpp_connect_event(struct hidpp_device *hidpp)
3328 {
3329 	struct hid_device *hdev = hidpp->hid_dev;
3330 	int ret = 0;
3331 	bool connected = atomic_read(&hidpp->connected);
3332 	struct input_dev *input;
3333 	char *name, *devm_name;
3334 
3335 	if (!connected) {
3336 		if (hidpp->battery.ps) {
3337 			hidpp->battery.online = false;
3338 			hidpp->battery.status = POWER_SUPPLY_STATUS_UNKNOWN;
3339 			hidpp->battery.level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
3340 			power_supply_changed(hidpp->battery.ps);
3341 		}
3342 		return;
3343 	}
3344 
3345 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) {
3346 		ret = wtp_connect(hdev, connected);
3347 		if (ret)
3348 			return;
3349 	} else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) {
3350 		ret = m560_send_config_command(hdev, connected);
3351 		if (ret)
3352 			return;
3353 	} else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) {
3354 		ret = k400_connect(hdev, connected);
3355 		if (ret)
3356 			return;
3357 	}
3358 
3359 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) {
3360 		ret = hidpp10_wheel_connect(hidpp);
3361 		if (ret)
3362 			return;
3363 	}
3364 
3365 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) {
3366 		ret = hidpp10_extra_mouse_buttons_connect(hidpp);
3367 		if (ret)
3368 			return;
3369 	}
3370 
3371 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) {
3372 		ret = hidpp10_consumer_keys_connect(hidpp);
3373 		if (ret)
3374 			return;
3375 	}
3376 
3377 	/* the device is already connected, we can ask for its name and
3378 	 * protocol */
3379 	if (!hidpp->protocol_major) {
3380 		ret = hidpp_root_get_protocol_version(hidpp);
3381 		if (ret) {
3382 			hid_err(hdev, "Can not get the protocol version.\n");
3383 			return;
3384 		}
3385 	}
3386 
3387 	if (hidpp->name == hdev->name && hidpp->protocol_major >= 2) {
3388 		name = hidpp_get_device_name(hidpp);
3389 		if (name) {
3390 			devm_name = devm_kasprintf(&hdev->dev, GFP_KERNEL,
3391 						   "%s", name);
3392 			kfree(name);
3393 			if (!devm_name)
3394 				return;
3395 
3396 			hidpp->name = devm_name;
3397 		}
3398 	}
3399 
3400 	hidpp_initialize_battery(hidpp);
3401 
3402 	/* forward current battery state */
3403 	if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) {
3404 		hidpp10_enable_battery_reporting(hidpp);
3405 		if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE)
3406 			hidpp10_query_battery_mileage(hidpp);
3407 		else
3408 			hidpp10_query_battery_status(hidpp);
3409 	} else if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) {
3410 		hidpp20_query_battery_info(hidpp);
3411 	}
3412 	if (hidpp->battery.ps)
3413 		power_supply_changed(hidpp->battery.ps);
3414 
3415 	if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL)
3416 		hi_res_scroll_enable(hidpp);
3417 
3418 	if (!(hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) || hidpp->delayed_input)
3419 		/* if the input nodes are already created, we can stop now */
3420 		return;
3421 
3422 	input = hidpp_allocate_input(hdev);
3423 	if (!input) {
3424 		hid_err(hdev, "cannot allocate new input device: %d\n", ret);
3425 		return;
3426 	}
3427 
3428 	hidpp_populate_input(hidpp, input);
3429 
3430 	ret = input_register_device(input);
3431 	if (ret)
3432 		input_free_device(input);
3433 
3434 	hidpp->delayed_input = input;
3435 }
3436 
3437 static DEVICE_ATTR(builtin_power_supply, 0000, NULL, NULL);
3438 
3439 static struct attribute *sysfs_attrs[] = {
3440 	&dev_attr_builtin_power_supply.attr,
3441 	NULL
3442 };
3443 
3444 static const struct attribute_group ps_attribute_group = {
3445 	.attrs = sysfs_attrs
3446 };
3447 
3448 static int hidpp_get_report_length(struct hid_device *hdev, int id)
3449 {
3450 	struct hid_report_enum *re;
3451 	struct hid_report *report;
3452 
3453 	re = &(hdev->report_enum[HID_OUTPUT_REPORT]);
3454 	report = re->report_id_hash[id];
3455 	if (!report)
3456 		return 0;
3457 
3458 	return report->field[0]->report_count + 1;
3459 }
3460 
3461 static bool hidpp_validate_report(struct hid_device *hdev, int id,
3462 				  int expected_length, bool optional)
3463 {
3464 	int report_length;
3465 
3466 	if (id >= HID_MAX_IDS || id < 0) {
3467 		hid_err(hdev, "invalid HID report id %u\n", id);
3468 		return false;
3469 	}
3470 
3471 	report_length = hidpp_get_report_length(hdev, id);
3472 	if (!report_length)
3473 		return optional;
3474 
3475 	if (report_length < expected_length) {
3476 		hid_warn(hdev, "not enough values in hidpp report %d\n", id);
3477 		return false;
3478 	}
3479 
3480 	return true;
3481 }
3482 
3483 static bool hidpp_validate_device(struct hid_device *hdev)
3484 {
3485 	return hidpp_validate_report(hdev, REPORT_ID_HIDPP_SHORT,
3486 				     HIDPP_REPORT_SHORT_LENGTH, false) &&
3487 	       hidpp_validate_report(hdev, REPORT_ID_HIDPP_LONG,
3488 				     HIDPP_REPORT_LONG_LENGTH, true);
3489 }
3490 
3491 static bool hidpp_application_equals(struct hid_device *hdev,
3492 				     unsigned int application)
3493 {
3494 	struct list_head *report_list;
3495 	struct hid_report *report;
3496 
3497 	report_list = &hdev->report_enum[HID_INPUT_REPORT].report_list;
3498 	report = list_first_entry_or_null(report_list, struct hid_report, list);
3499 	return report && report->application == application;
3500 }
3501 
3502 static int hidpp_probe(struct hid_device *hdev, const struct hid_device_id *id)
3503 {
3504 	struct hidpp_device *hidpp;
3505 	int ret;
3506 	bool connected;
3507 	unsigned int connect_mask = HID_CONNECT_DEFAULT;
3508 
3509 	/* report_fixup needs drvdata to be set before we call hid_parse */
3510 	hidpp = devm_kzalloc(&hdev->dev, sizeof(*hidpp), GFP_KERNEL);
3511 	if (!hidpp)
3512 		return -ENOMEM;
3513 
3514 	hidpp->hid_dev = hdev;
3515 	hidpp->name = hdev->name;
3516 	hidpp->quirks = id->driver_data;
3517 	hid_set_drvdata(hdev, hidpp);
3518 
3519 	ret = hid_parse(hdev);
3520 	if (ret) {
3521 		hid_err(hdev, "%s:parse failed\n", __func__);
3522 		return ret;
3523 	}
3524 
3525 	/*
3526 	 * Make sure the device is HID++ capable, otherwise treat as generic HID
3527 	 */
3528 	if (!hidpp_validate_device(hdev)) {
3529 		hid_set_drvdata(hdev, NULL);
3530 		devm_kfree(&hdev->dev, hidpp);
3531 		return hid_hw_start(hdev, HID_CONNECT_DEFAULT);
3532 	}
3533 
3534 	hidpp->very_long_report_length =
3535 		hidpp_get_report_length(hdev, REPORT_ID_HIDPP_VERY_LONG);
3536 	if (hidpp->very_long_report_length > HIDPP_REPORT_VERY_LONG_MAX_LENGTH)
3537 		hidpp->very_long_report_length = HIDPP_REPORT_VERY_LONG_MAX_LENGTH;
3538 
3539 	if (id->group == HID_GROUP_LOGITECH_DJ_DEVICE)
3540 		hidpp->quirks |= HIDPP_QUIRK_UNIFYING;
3541 
3542 	if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE &&
3543 	    hidpp_application_equals(hdev, HID_GD_MOUSE))
3544 		hidpp->quirks |= HIDPP_QUIRK_HIDPP_WHEELS |
3545 				 HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS;
3546 
3547 	if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE &&
3548 	    hidpp_application_equals(hdev, HID_GD_KEYBOARD))
3549 		hidpp->quirks |= HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS;
3550 
3551 	if (disable_raw_mode) {
3552 		hidpp->quirks &= ~HIDPP_QUIRK_CLASS_WTP;
3553 		hidpp->quirks &= ~HIDPP_QUIRK_NO_HIDINPUT;
3554 	}
3555 
3556 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) {
3557 		ret = wtp_allocate(hdev, id);
3558 		if (ret)
3559 			return ret;
3560 	} else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) {
3561 		ret = k400_allocate(hdev);
3562 		if (ret)
3563 			return ret;
3564 	}
3565 
3566 	INIT_WORK(&hidpp->work, delayed_work_cb);
3567 	mutex_init(&hidpp->send_mutex);
3568 	init_waitqueue_head(&hidpp->wait);
3569 
3570 	/* indicates we are handling the battery properties in the kernel */
3571 	ret = sysfs_create_group(&hdev->dev.kobj, &ps_attribute_group);
3572 	if (ret)
3573 		hid_warn(hdev, "Cannot allocate sysfs group for %s\n",
3574 			 hdev->name);
3575 
3576 	/*
3577 	 * Plain USB connections need to actually call start and open
3578 	 * on the transport driver to allow incoming data.
3579 	 */
3580 	ret = hid_hw_start(hdev, 0);
3581 	if (ret) {
3582 		hid_err(hdev, "hw start failed\n");
3583 		goto hid_hw_start_fail;
3584 	}
3585 
3586 	ret = hid_hw_open(hdev);
3587 	if (ret < 0) {
3588 		dev_err(&hdev->dev, "%s:hid_hw_open returned error:%d\n",
3589 			__func__, ret);
3590 		hid_hw_stop(hdev);
3591 		goto hid_hw_open_fail;
3592 	}
3593 
3594 	/* Allow incoming packets */
3595 	hid_device_io_start(hdev);
3596 
3597 	if (hidpp->quirks & HIDPP_QUIRK_UNIFYING)
3598 		hidpp_unifying_init(hidpp);
3599 
3600 	connected = hidpp_root_get_protocol_version(hidpp) == 0;
3601 	atomic_set(&hidpp->connected, connected);
3602 	if (!(hidpp->quirks & HIDPP_QUIRK_UNIFYING)) {
3603 		if (!connected) {
3604 			ret = -ENODEV;
3605 			hid_err(hdev, "Device not connected");
3606 			goto hid_hw_init_fail;
3607 		}
3608 
3609 		hidpp_overwrite_name(hdev);
3610 	}
3611 
3612 	if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)) {
3613 		ret = wtp_get_config(hidpp);
3614 		if (ret)
3615 			goto hid_hw_init_fail;
3616 	} else if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_G920)) {
3617 		ret = g920_get_config(hidpp);
3618 		if (ret)
3619 			goto hid_hw_init_fail;
3620 	}
3621 
3622 	hidpp_connect_event(hidpp);
3623 
3624 	/* Reset the HID node state */
3625 	hid_device_io_stop(hdev);
3626 	hid_hw_close(hdev);
3627 	hid_hw_stop(hdev);
3628 
3629 	if (hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT)
3630 		connect_mask &= ~HID_CONNECT_HIDINPUT;
3631 
3632 	/* Now export the actual inputs and hidraw nodes to the world */
3633 	ret = hid_hw_start(hdev, connect_mask);
3634 	if (ret) {
3635 		hid_err(hdev, "%s:hid_hw_start returned error\n", __func__);
3636 		goto hid_hw_start_fail;
3637 	}
3638 
3639 	return ret;
3640 
3641 hid_hw_init_fail:
3642 	hid_hw_close(hdev);
3643 hid_hw_open_fail:
3644 	hid_hw_stop(hdev);
3645 hid_hw_start_fail:
3646 	sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group);
3647 	cancel_work_sync(&hidpp->work);
3648 	mutex_destroy(&hidpp->send_mutex);
3649 	return ret;
3650 }
3651 
3652 static void hidpp_remove(struct hid_device *hdev)
3653 {
3654 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3655 
3656 	if (!hidpp)
3657 		return hid_hw_stop(hdev);
3658 
3659 	sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group);
3660 
3661 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920)
3662 		hidpp_ff_deinit(hdev);
3663 
3664 	hid_hw_stop(hdev);
3665 	cancel_work_sync(&hidpp->work);
3666 	mutex_destroy(&hidpp->send_mutex);
3667 }
3668 
3669 #define LDJ_DEVICE(product) \
3670 	HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE, \
3671 		   USB_VENDOR_ID_LOGITECH, (product))
3672 
3673 #define L27MHZ_DEVICE(product) \
3674 	HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_27MHZ_DEVICE, \
3675 		   USB_VENDOR_ID_LOGITECH, (product))
3676 
3677 static const struct hid_device_id hidpp_devices[] = {
3678 	{ /* wireless touchpad */
3679 	  LDJ_DEVICE(0x4011),
3680 	  .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT |
3681 			 HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS },
3682 	{ /* wireless touchpad T650 */
3683 	  LDJ_DEVICE(0x4101),
3684 	  .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT },
3685 	{ /* wireless touchpad T651 */
3686 	  HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH,
3687 		USB_DEVICE_ID_LOGITECH_T651),
3688 	  .driver_data = HIDPP_QUIRK_CLASS_WTP },
3689 	{ /* Mouse Logitech Anywhere MX */
3690 	  LDJ_DEVICE(0x1017), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
3691 	{ /* Mouse Logitech Cube */
3692 	  LDJ_DEVICE(0x4010), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
3693 	{ /* Mouse Logitech M335 */
3694 	  LDJ_DEVICE(0x4050), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3695 	{ /* Mouse Logitech M515 */
3696 	  LDJ_DEVICE(0x4007), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
3697 	{ /* Mouse logitech M560 */
3698 	  LDJ_DEVICE(0x402d),
3699 	  .driver_data = HIDPP_QUIRK_DELAYED_INIT | HIDPP_QUIRK_CLASS_M560
3700 		| HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
3701 	{ /* Mouse Logitech M705 (firmware RQM17) */
3702 	  LDJ_DEVICE(0x101b), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
3703 	{ /* Mouse Logitech M705 (firmware RQM67) */
3704 	  LDJ_DEVICE(0x406d), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3705 	{ /* Mouse Logitech M720 */
3706 	  LDJ_DEVICE(0x405e), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3707 	{ /* Mouse Logitech MX Anywhere 2 */
3708 	  LDJ_DEVICE(0x404a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3709 	{ LDJ_DEVICE(0xb013), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3710 	{ LDJ_DEVICE(0xb018), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3711 	{ LDJ_DEVICE(0xb01f), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3712 	{ /* Mouse Logitech MX Anywhere 2S */
3713 	  LDJ_DEVICE(0x406a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3714 	{ /* Mouse Logitech MX Master */
3715 	  LDJ_DEVICE(0x4041), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3716 	{ LDJ_DEVICE(0x4060), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3717 	{ LDJ_DEVICE(0x4071), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3718 	{ /* Mouse Logitech MX Master 2S */
3719 	  LDJ_DEVICE(0x4069), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3720 	{ /* Mouse Logitech Performance MX */
3721 	  LDJ_DEVICE(0x101a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
3722 	{ /* Keyboard logitech K400 */
3723 	  LDJ_DEVICE(0x4024),
3724 	  .driver_data = HIDPP_QUIRK_CLASS_K400 },
3725 	{ /* Solar Keyboard Logitech K750 */
3726 	  LDJ_DEVICE(0x4002),
3727 	  .driver_data = HIDPP_QUIRK_CLASS_K750 },
3728 	{ /* Keyboard MX5000 (Bluetooth-receiver in HID proxy mode) */
3729 	  LDJ_DEVICE(0xb305),
3730 	  .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
3731 	{ /* Keyboard MX5500 (Bluetooth-receiver in HID proxy mode) */
3732 	  LDJ_DEVICE(0xb30b),
3733 	  .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
3734 
3735 	{ LDJ_DEVICE(HID_ANY_ID) },
3736 
3737 	{ /* Keyboard LX501 (Y-RR53) */
3738 	  L27MHZ_DEVICE(0x0049),
3739 	  .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL },
3740 	{ /* Keyboard MX3000 (Y-RAM74) */
3741 	  L27MHZ_DEVICE(0x0057),
3742 	  .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL },
3743 	{ /* Keyboard MX3200 (Y-RAV80) */
3744 	  L27MHZ_DEVICE(0x005c),
3745 	  .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL },
3746 	{ /* S510 Media Remote */
3747 	  L27MHZ_DEVICE(0x00fe),
3748 	  .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL },
3749 
3750 	{ L27MHZ_DEVICE(HID_ANY_ID) },
3751 
3752 	{ /* Logitech G403 Gaming Mouse over USB */
3753 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC082) },
3754 	{ /* Logitech G700 Gaming Mouse over USB */
3755 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC06B) },
3756 	{ /* Logitech G900 Gaming Mouse over USB */
3757 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC081) },
3758 	{ /* Logitech G920 Wheel over USB */
3759 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G920_WHEEL),
3760 		.driver_data = HIDPP_QUIRK_CLASS_G920 | HIDPP_QUIRK_FORCE_OUTPUT_REPORTS},
3761 
3762 	{ /* MX5000 keyboard over Bluetooth */
3763 	  HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb305),
3764 	  .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
3765 	{ /* MX5500 keyboard over Bluetooth */
3766 	  HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb30b),
3767 	  .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
3768 	{}
3769 };
3770 
3771 MODULE_DEVICE_TABLE(hid, hidpp_devices);
3772 
3773 static const struct hid_usage_id hidpp_usages[] = {
3774 	{ HID_GD_WHEEL, EV_REL, REL_WHEEL_HI_RES },
3775 	{ HID_ANY_ID - 1, HID_ANY_ID - 1, HID_ANY_ID - 1}
3776 };
3777 
3778 static struct hid_driver hidpp_driver = {
3779 	.name = "logitech-hidpp-device",
3780 	.id_table = hidpp_devices,
3781 	.report_fixup = hidpp_report_fixup,
3782 	.probe = hidpp_probe,
3783 	.remove = hidpp_remove,
3784 	.raw_event = hidpp_raw_event,
3785 	.usage_table = hidpp_usages,
3786 	.event = hidpp_event,
3787 	.input_configured = hidpp_input_configured,
3788 	.input_mapping = hidpp_input_mapping,
3789 	.input_mapped = hidpp_input_mapped,
3790 };
3791 
3792 module_hid_driver(hidpp_driver);
3793