1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * HIDPP protocol for Logitech receivers 4 * 5 * Copyright (c) 2011 Logitech (c) 6 * Copyright (c) 2012-2013 Google (c) 7 * Copyright (c) 2013-2014 Red Hat Inc. 8 */ 9 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/device.h> 14 #include <linux/input.h> 15 #include <linux/usb.h> 16 #include <linux/hid.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/sched.h> 20 #include <linux/sched/clock.h> 21 #include <linux/kfifo.h> 22 #include <linux/input/mt.h> 23 #include <linux/workqueue.h> 24 #include <linux/atomic.h> 25 #include <linux/fixp-arith.h> 26 #include <asm/unaligned.h> 27 #include "usbhid/usbhid.h" 28 #include "hid-ids.h" 29 30 MODULE_LICENSE("GPL"); 31 MODULE_AUTHOR("Benjamin Tissoires <benjamin.tissoires@gmail.com>"); 32 MODULE_AUTHOR("Nestor Lopez Casado <nlopezcasad@logitech.com>"); 33 34 static bool disable_raw_mode; 35 module_param(disable_raw_mode, bool, 0644); 36 MODULE_PARM_DESC(disable_raw_mode, 37 "Disable Raw mode reporting for touchpads and keep firmware gestures."); 38 39 static bool disable_tap_to_click; 40 module_param(disable_tap_to_click, bool, 0644); 41 MODULE_PARM_DESC(disable_tap_to_click, 42 "Disable Tap-To-Click mode reporting for touchpads (only on the K400 currently)."); 43 44 #define REPORT_ID_HIDPP_SHORT 0x10 45 #define REPORT_ID_HIDPP_LONG 0x11 46 #define REPORT_ID_HIDPP_VERY_LONG 0x12 47 48 #define HIDPP_REPORT_SHORT_LENGTH 7 49 #define HIDPP_REPORT_LONG_LENGTH 20 50 #define HIDPP_REPORT_VERY_LONG_MAX_LENGTH 64 51 52 #define HIDPP_REPORT_SHORT_SUPPORTED BIT(0) 53 #define HIDPP_REPORT_LONG_SUPPORTED BIT(1) 54 #define HIDPP_REPORT_VERY_LONG_SUPPORTED BIT(2) 55 56 #define HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS 0x03 57 #define HIDPP_SUB_ID_ROLLER 0x05 58 #define HIDPP_SUB_ID_MOUSE_EXTRA_BTNS 0x06 59 #define HIDPP_SUB_ID_USER_IFACE_EVENT 0x08 60 #define HIDPP_USER_IFACE_EVENT_ENCRYPTION_KEY_LOST BIT(5) 61 62 #define HIDPP_QUIRK_CLASS_WTP BIT(0) 63 #define HIDPP_QUIRK_CLASS_M560 BIT(1) 64 #define HIDPP_QUIRK_CLASS_K400 BIT(2) 65 #define HIDPP_QUIRK_CLASS_G920 BIT(3) 66 #define HIDPP_QUIRK_CLASS_K750 BIT(4) 67 68 /* bits 2..20 are reserved for classes */ 69 /* #define HIDPP_QUIRK_CONNECT_EVENTS BIT(21) disabled */ 70 #define HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS BIT(22) 71 #define HIDPP_QUIRK_NO_HIDINPUT BIT(23) 72 #define HIDPP_QUIRK_FORCE_OUTPUT_REPORTS BIT(24) 73 #define HIDPP_QUIRK_UNIFYING BIT(25) 74 #define HIDPP_QUIRK_HI_RES_SCROLL_1P0 BIT(26) 75 #define HIDPP_QUIRK_HI_RES_SCROLL_X2120 BIT(27) 76 #define HIDPP_QUIRK_HI_RES_SCROLL_X2121 BIT(28) 77 #define HIDPP_QUIRK_HIDPP_WHEELS BIT(29) 78 #define HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS BIT(30) 79 #define HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS BIT(31) 80 81 /* These are just aliases for now */ 82 #define HIDPP_QUIRK_KBD_SCROLL_WHEEL HIDPP_QUIRK_HIDPP_WHEELS 83 #define HIDPP_QUIRK_KBD_ZOOM_WHEEL HIDPP_QUIRK_HIDPP_WHEELS 84 85 /* Convenience constant to check for any high-res support. */ 86 #define HIDPP_QUIRK_HI_RES_SCROLL (HIDPP_QUIRK_HI_RES_SCROLL_1P0 | \ 87 HIDPP_QUIRK_HI_RES_SCROLL_X2120 | \ 88 HIDPP_QUIRK_HI_RES_SCROLL_X2121) 89 90 #define HIDPP_QUIRK_DELAYED_INIT HIDPP_QUIRK_NO_HIDINPUT 91 92 #define HIDPP_CAPABILITY_HIDPP10_BATTERY BIT(0) 93 #define HIDPP_CAPABILITY_HIDPP20_BATTERY BIT(1) 94 #define HIDPP_CAPABILITY_BATTERY_MILEAGE BIT(2) 95 #define HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS BIT(3) 96 #define HIDPP_CAPABILITY_BATTERY_VOLTAGE BIT(4) 97 #define HIDPP_CAPABILITY_BATTERY_PERCENTAGE BIT(5) 98 #define HIDPP_CAPABILITY_UNIFIED_BATTERY BIT(6) 99 100 #define lg_map_key_clear(c) hid_map_usage_clear(hi, usage, bit, max, EV_KEY, (c)) 101 102 /* 103 * There are two hidpp protocols in use, the first version hidpp10 is known 104 * as register access protocol or RAP, the second version hidpp20 is known as 105 * feature access protocol or FAP 106 * 107 * Most older devices (including the Unifying usb receiver) use the RAP protocol 108 * where as most newer devices use the FAP protocol. Both protocols are 109 * compatible with the underlying transport, which could be usb, Unifiying, or 110 * bluetooth. The message lengths are defined by the hid vendor specific report 111 * descriptor for the HIDPP_SHORT report type (total message lenth 7 bytes) and 112 * the HIDPP_LONG report type (total message length 20 bytes) 113 * 114 * The RAP protocol uses both report types, whereas the FAP only uses HIDPP_LONG 115 * messages. The Unifying receiver itself responds to RAP messages (device index 116 * is 0xFF for the receiver), and all messages (short or long) with a device 117 * index between 1 and 6 are passed untouched to the corresponding paired 118 * Unifying device. 119 * 120 * The paired device can be RAP or FAP, it will receive the message untouched 121 * from the Unifiying receiver. 122 */ 123 124 struct fap { 125 u8 feature_index; 126 u8 funcindex_clientid; 127 u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U]; 128 }; 129 130 struct rap { 131 u8 sub_id; 132 u8 reg_address; 133 u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U]; 134 }; 135 136 struct hidpp_report { 137 u8 report_id; 138 u8 device_index; 139 union { 140 struct fap fap; 141 struct rap rap; 142 u8 rawbytes[sizeof(struct fap)]; 143 }; 144 } __packed; 145 146 struct hidpp_battery { 147 u8 feature_index; 148 u8 solar_feature_index; 149 u8 voltage_feature_index; 150 struct power_supply_desc desc; 151 struct power_supply *ps; 152 char name[64]; 153 int status; 154 int capacity; 155 int level; 156 int voltage; 157 int charge_type; 158 bool online; 159 u8 supported_levels_1004; 160 }; 161 162 /** 163 * struct hidpp_scroll_counter - Utility class for processing high-resolution 164 * scroll events. 165 * @dev: the input device for which events should be reported. 166 * @wheel_multiplier: the scalar multiplier to be applied to each wheel event 167 * @remainder: counts the number of high-resolution units moved since the last 168 * low-resolution event (REL_WHEEL or REL_HWHEEL) was sent. Should 169 * only be used by class methods. 170 * @direction: direction of last movement (1 or -1) 171 * @last_time: last event time, used to reset remainder after inactivity 172 */ 173 struct hidpp_scroll_counter { 174 int wheel_multiplier; 175 int remainder; 176 int direction; 177 unsigned long long last_time; 178 }; 179 180 struct hidpp_device { 181 struct hid_device *hid_dev; 182 struct input_dev *input; 183 struct mutex send_mutex; 184 void *send_receive_buf; 185 char *name; /* will never be NULL and should not be freed */ 186 wait_queue_head_t wait; 187 int very_long_report_length; 188 bool answer_available; 189 u8 protocol_major; 190 u8 protocol_minor; 191 192 void *private_data; 193 194 struct work_struct work; 195 struct kfifo delayed_work_fifo; 196 atomic_t connected; 197 struct input_dev *delayed_input; 198 199 unsigned long quirks; 200 unsigned long capabilities; 201 u8 supported_reports; 202 203 struct hidpp_battery battery; 204 struct hidpp_scroll_counter vertical_wheel_counter; 205 206 u8 wireless_feature_index; 207 }; 208 209 /* HID++ 1.0 error codes */ 210 #define HIDPP_ERROR 0x8f 211 #define HIDPP_ERROR_SUCCESS 0x00 212 #define HIDPP_ERROR_INVALID_SUBID 0x01 213 #define HIDPP_ERROR_INVALID_ADRESS 0x02 214 #define HIDPP_ERROR_INVALID_VALUE 0x03 215 #define HIDPP_ERROR_CONNECT_FAIL 0x04 216 #define HIDPP_ERROR_TOO_MANY_DEVICES 0x05 217 #define HIDPP_ERROR_ALREADY_EXISTS 0x06 218 #define HIDPP_ERROR_BUSY 0x07 219 #define HIDPP_ERROR_UNKNOWN_DEVICE 0x08 220 #define HIDPP_ERROR_RESOURCE_ERROR 0x09 221 #define HIDPP_ERROR_REQUEST_UNAVAILABLE 0x0a 222 #define HIDPP_ERROR_INVALID_PARAM_VALUE 0x0b 223 #define HIDPP_ERROR_WRONG_PIN_CODE 0x0c 224 /* HID++ 2.0 error codes */ 225 #define HIDPP20_ERROR 0xff 226 227 static void hidpp_connect_event(struct hidpp_device *hidpp_dev); 228 229 static int __hidpp_send_report(struct hid_device *hdev, 230 struct hidpp_report *hidpp_report) 231 { 232 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 233 int fields_count, ret; 234 235 switch (hidpp_report->report_id) { 236 case REPORT_ID_HIDPP_SHORT: 237 fields_count = HIDPP_REPORT_SHORT_LENGTH; 238 break; 239 case REPORT_ID_HIDPP_LONG: 240 fields_count = HIDPP_REPORT_LONG_LENGTH; 241 break; 242 case REPORT_ID_HIDPP_VERY_LONG: 243 fields_count = hidpp->very_long_report_length; 244 break; 245 default: 246 return -ENODEV; 247 } 248 249 /* 250 * set the device_index as the receiver, it will be overwritten by 251 * hid_hw_request if needed 252 */ 253 hidpp_report->device_index = 0xff; 254 255 if (hidpp->quirks & HIDPP_QUIRK_FORCE_OUTPUT_REPORTS) { 256 ret = hid_hw_output_report(hdev, (u8 *)hidpp_report, fields_count); 257 } else { 258 ret = hid_hw_raw_request(hdev, hidpp_report->report_id, 259 (u8 *)hidpp_report, fields_count, HID_OUTPUT_REPORT, 260 HID_REQ_SET_REPORT); 261 } 262 263 return ret == fields_count ? 0 : -1; 264 } 265 266 /* 267 * hidpp_send_message_sync() returns 0 in case of success, and something else 268 * in case of a failure. 269 * - If ' something else' is positive, that means that an error has been raised 270 * by the protocol itself. 271 * - If ' something else' is negative, that means that we had a classic error 272 * (-ENOMEM, -EPIPE, etc...) 273 */ 274 static int hidpp_send_message_sync(struct hidpp_device *hidpp, 275 struct hidpp_report *message, 276 struct hidpp_report *response) 277 { 278 int ret; 279 280 mutex_lock(&hidpp->send_mutex); 281 282 hidpp->send_receive_buf = response; 283 hidpp->answer_available = false; 284 285 /* 286 * So that we can later validate the answer when it arrives 287 * in hidpp_raw_event 288 */ 289 *response = *message; 290 291 ret = __hidpp_send_report(hidpp->hid_dev, message); 292 293 if (ret) { 294 dbg_hid("__hidpp_send_report returned err: %d\n", ret); 295 memset(response, 0, sizeof(struct hidpp_report)); 296 goto exit; 297 } 298 299 if (!wait_event_timeout(hidpp->wait, hidpp->answer_available, 300 5*HZ)) { 301 dbg_hid("%s:timeout waiting for response\n", __func__); 302 memset(response, 0, sizeof(struct hidpp_report)); 303 ret = -ETIMEDOUT; 304 } 305 306 if (response->report_id == REPORT_ID_HIDPP_SHORT && 307 response->rap.sub_id == HIDPP_ERROR) { 308 ret = response->rap.params[1]; 309 dbg_hid("%s:got hidpp error %02X\n", __func__, ret); 310 goto exit; 311 } 312 313 if ((response->report_id == REPORT_ID_HIDPP_LONG || 314 response->report_id == REPORT_ID_HIDPP_VERY_LONG) && 315 response->fap.feature_index == HIDPP20_ERROR) { 316 ret = response->fap.params[1]; 317 dbg_hid("%s:got hidpp 2.0 error %02X\n", __func__, ret); 318 goto exit; 319 } 320 321 exit: 322 mutex_unlock(&hidpp->send_mutex); 323 return ret; 324 325 } 326 327 static int hidpp_send_fap_command_sync(struct hidpp_device *hidpp, 328 u8 feat_index, u8 funcindex_clientid, u8 *params, int param_count, 329 struct hidpp_report *response) 330 { 331 struct hidpp_report *message; 332 int ret; 333 334 if (param_count > sizeof(message->fap.params)) 335 return -EINVAL; 336 337 message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL); 338 if (!message) 339 return -ENOMEM; 340 341 if (param_count > (HIDPP_REPORT_LONG_LENGTH - 4)) 342 message->report_id = REPORT_ID_HIDPP_VERY_LONG; 343 else 344 message->report_id = REPORT_ID_HIDPP_LONG; 345 message->fap.feature_index = feat_index; 346 message->fap.funcindex_clientid = funcindex_clientid; 347 memcpy(&message->fap.params, params, param_count); 348 349 ret = hidpp_send_message_sync(hidpp, message, response); 350 kfree(message); 351 return ret; 352 } 353 354 static int hidpp_send_rap_command_sync(struct hidpp_device *hidpp_dev, 355 u8 report_id, u8 sub_id, u8 reg_address, u8 *params, int param_count, 356 struct hidpp_report *response) 357 { 358 struct hidpp_report *message; 359 int ret, max_count; 360 361 /* Send as long report if short reports are not supported. */ 362 if (report_id == REPORT_ID_HIDPP_SHORT && 363 !(hidpp_dev->supported_reports & HIDPP_REPORT_SHORT_SUPPORTED)) 364 report_id = REPORT_ID_HIDPP_LONG; 365 366 switch (report_id) { 367 case REPORT_ID_HIDPP_SHORT: 368 max_count = HIDPP_REPORT_SHORT_LENGTH - 4; 369 break; 370 case REPORT_ID_HIDPP_LONG: 371 max_count = HIDPP_REPORT_LONG_LENGTH - 4; 372 break; 373 case REPORT_ID_HIDPP_VERY_LONG: 374 max_count = hidpp_dev->very_long_report_length - 4; 375 break; 376 default: 377 return -EINVAL; 378 } 379 380 if (param_count > max_count) 381 return -EINVAL; 382 383 message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL); 384 if (!message) 385 return -ENOMEM; 386 message->report_id = report_id; 387 message->rap.sub_id = sub_id; 388 message->rap.reg_address = reg_address; 389 memcpy(&message->rap.params, params, param_count); 390 391 ret = hidpp_send_message_sync(hidpp_dev, message, response); 392 kfree(message); 393 return ret; 394 } 395 396 static void delayed_work_cb(struct work_struct *work) 397 { 398 struct hidpp_device *hidpp = container_of(work, struct hidpp_device, 399 work); 400 hidpp_connect_event(hidpp); 401 } 402 403 static inline bool hidpp_match_answer(struct hidpp_report *question, 404 struct hidpp_report *answer) 405 { 406 return (answer->fap.feature_index == question->fap.feature_index) && 407 (answer->fap.funcindex_clientid == question->fap.funcindex_clientid); 408 } 409 410 static inline bool hidpp_match_error(struct hidpp_report *question, 411 struct hidpp_report *answer) 412 { 413 return ((answer->rap.sub_id == HIDPP_ERROR) || 414 (answer->fap.feature_index == HIDPP20_ERROR)) && 415 (answer->fap.funcindex_clientid == question->fap.feature_index) && 416 (answer->fap.params[0] == question->fap.funcindex_clientid); 417 } 418 419 static inline bool hidpp_report_is_connect_event(struct hidpp_device *hidpp, 420 struct hidpp_report *report) 421 { 422 return (hidpp->wireless_feature_index && 423 (report->fap.feature_index == hidpp->wireless_feature_index)) || 424 ((report->report_id == REPORT_ID_HIDPP_SHORT) && 425 (report->rap.sub_id == 0x41)); 426 } 427 428 /* 429 * hidpp_prefix_name() prefixes the current given name with "Logitech ". 430 */ 431 static void hidpp_prefix_name(char **name, int name_length) 432 { 433 #define PREFIX_LENGTH 9 /* "Logitech " */ 434 435 int new_length; 436 char *new_name; 437 438 if (name_length > PREFIX_LENGTH && 439 strncmp(*name, "Logitech ", PREFIX_LENGTH) == 0) 440 /* The prefix has is already in the name */ 441 return; 442 443 new_length = PREFIX_LENGTH + name_length; 444 new_name = kzalloc(new_length, GFP_KERNEL); 445 if (!new_name) 446 return; 447 448 snprintf(new_name, new_length, "Logitech %s", *name); 449 450 kfree(*name); 451 452 *name = new_name; 453 } 454 455 /** 456 * hidpp_scroll_counter_handle_scroll() - Send high- and low-resolution scroll 457 * events given a high-resolution wheel 458 * movement. 459 * @input_dev: Pointer to the input device 460 * @counter: a hid_scroll_counter struct describing the wheel. 461 * @hi_res_value: the movement of the wheel, in the mouse's high-resolution 462 * units. 463 * 464 * Given a high-resolution movement, this function converts the movement into 465 * fractions of 120 and emits high-resolution scroll events for the input 466 * device. It also uses the multiplier from &struct hid_scroll_counter to 467 * emit low-resolution scroll events when appropriate for 468 * backwards-compatibility with userspace input libraries. 469 */ 470 static void hidpp_scroll_counter_handle_scroll(struct input_dev *input_dev, 471 struct hidpp_scroll_counter *counter, 472 int hi_res_value) 473 { 474 int low_res_value, remainder, direction; 475 unsigned long long now, previous; 476 477 hi_res_value = hi_res_value * 120/counter->wheel_multiplier; 478 input_report_rel(input_dev, REL_WHEEL_HI_RES, hi_res_value); 479 480 remainder = counter->remainder; 481 direction = hi_res_value > 0 ? 1 : -1; 482 483 now = sched_clock(); 484 previous = counter->last_time; 485 counter->last_time = now; 486 /* 487 * Reset the remainder after a period of inactivity or when the 488 * direction changes. This prevents the REL_WHEEL emulation point 489 * from sliding for devices that don't always provide the same 490 * number of movements per detent. 491 */ 492 if (now - previous > 1000000000 || direction != counter->direction) 493 remainder = 0; 494 495 counter->direction = direction; 496 remainder += hi_res_value; 497 498 /* Some wheels will rest 7/8ths of a detent from the previous detent 499 * after slow movement, so we want the threshold for low-res events to 500 * be in the middle between two detents (e.g. after 4/8ths) as 501 * opposed to on the detents themselves (8/8ths). 502 */ 503 if (abs(remainder) >= 60) { 504 /* Add (or subtract) 1 because we want to trigger when the wheel 505 * is half-way to the next detent (i.e. scroll 1 detent after a 506 * 1/2 detent movement, 2 detents after a 1 1/2 detent movement, 507 * etc.). 508 */ 509 low_res_value = remainder / 120; 510 if (low_res_value == 0) 511 low_res_value = (hi_res_value > 0 ? 1 : -1); 512 input_report_rel(input_dev, REL_WHEEL, low_res_value); 513 remainder -= low_res_value * 120; 514 } 515 counter->remainder = remainder; 516 } 517 518 /* -------------------------------------------------------------------------- */ 519 /* HIDP++ 1.0 commands */ 520 /* -------------------------------------------------------------------------- */ 521 522 #define HIDPP_SET_REGISTER 0x80 523 #define HIDPP_GET_REGISTER 0x81 524 #define HIDPP_SET_LONG_REGISTER 0x82 525 #define HIDPP_GET_LONG_REGISTER 0x83 526 527 /** 528 * hidpp10_set_register - Modify a HID++ 1.0 register. 529 * @hidpp_dev: the device to set the register on. 530 * @register_address: the address of the register to modify. 531 * @byte: the byte of the register to modify. Should be less than 3. 532 * @mask: mask of the bits to modify 533 * @value: new values for the bits in mask 534 * Return: 0 if successful, otherwise a negative error code. 535 */ 536 static int hidpp10_set_register(struct hidpp_device *hidpp_dev, 537 u8 register_address, u8 byte, u8 mask, u8 value) 538 { 539 struct hidpp_report response; 540 int ret; 541 u8 params[3] = { 0 }; 542 543 ret = hidpp_send_rap_command_sync(hidpp_dev, 544 REPORT_ID_HIDPP_SHORT, 545 HIDPP_GET_REGISTER, 546 register_address, 547 NULL, 0, &response); 548 if (ret) 549 return ret; 550 551 memcpy(params, response.rap.params, 3); 552 553 params[byte] &= ~mask; 554 params[byte] |= value & mask; 555 556 return hidpp_send_rap_command_sync(hidpp_dev, 557 REPORT_ID_HIDPP_SHORT, 558 HIDPP_SET_REGISTER, 559 register_address, 560 params, 3, &response); 561 } 562 563 #define HIDPP_REG_ENABLE_REPORTS 0x00 564 #define HIDPP_ENABLE_CONSUMER_REPORT BIT(0) 565 #define HIDPP_ENABLE_WHEEL_REPORT BIT(2) 566 #define HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT BIT(3) 567 #define HIDPP_ENABLE_BAT_REPORT BIT(4) 568 #define HIDPP_ENABLE_HWHEEL_REPORT BIT(5) 569 570 static int hidpp10_enable_battery_reporting(struct hidpp_device *hidpp_dev) 571 { 572 return hidpp10_set_register(hidpp_dev, HIDPP_REG_ENABLE_REPORTS, 0, 573 HIDPP_ENABLE_BAT_REPORT, HIDPP_ENABLE_BAT_REPORT); 574 } 575 576 #define HIDPP_REG_FEATURES 0x01 577 #define HIDPP_ENABLE_SPECIAL_BUTTON_FUNC BIT(1) 578 #define HIDPP_ENABLE_FAST_SCROLL BIT(6) 579 580 /* On HID++ 1.0 devices, high-res scroll was called "scrolling acceleration". */ 581 static int hidpp10_enable_scrolling_acceleration(struct hidpp_device *hidpp_dev) 582 { 583 return hidpp10_set_register(hidpp_dev, HIDPP_REG_FEATURES, 0, 584 HIDPP_ENABLE_FAST_SCROLL, HIDPP_ENABLE_FAST_SCROLL); 585 } 586 587 #define HIDPP_REG_BATTERY_STATUS 0x07 588 589 static int hidpp10_battery_status_map_level(u8 param) 590 { 591 int level; 592 593 switch (param) { 594 case 1 ... 2: 595 level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; 596 break; 597 case 3 ... 4: 598 level = POWER_SUPPLY_CAPACITY_LEVEL_LOW; 599 break; 600 case 5 ... 6: 601 level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; 602 break; 603 case 7: 604 level = POWER_SUPPLY_CAPACITY_LEVEL_HIGH; 605 break; 606 default: 607 level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 608 } 609 610 return level; 611 } 612 613 static int hidpp10_battery_status_map_status(u8 param) 614 { 615 int status; 616 617 switch (param) { 618 case 0x00: 619 /* discharging (in use) */ 620 status = POWER_SUPPLY_STATUS_DISCHARGING; 621 break; 622 case 0x21: /* (standard) charging */ 623 case 0x24: /* fast charging */ 624 case 0x25: /* slow charging */ 625 status = POWER_SUPPLY_STATUS_CHARGING; 626 break; 627 case 0x26: /* topping charge */ 628 case 0x22: /* charge complete */ 629 status = POWER_SUPPLY_STATUS_FULL; 630 break; 631 case 0x20: /* unknown */ 632 status = POWER_SUPPLY_STATUS_UNKNOWN; 633 break; 634 /* 635 * 0x01...0x1F = reserved (not charging) 636 * 0x23 = charging error 637 * 0x27..0xff = reserved 638 */ 639 default: 640 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 641 break; 642 } 643 644 return status; 645 } 646 647 static int hidpp10_query_battery_status(struct hidpp_device *hidpp) 648 { 649 struct hidpp_report response; 650 int ret, status; 651 652 ret = hidpp_send_rap_command_sync(hidpp, 653 REPORT_ID_HIDPP_SHORT, 654 HIDPP_GET_REGISTER, 655 HIDPP_REG_BATTERY_STATUS, 656 NULL, 0, &response); 657 if (ret) 658 return ret; 659 660 hidpp->battery.level = 661 hidpp10_battery_status_map_level(response.rap.params[0]); 662 status = hidpp10_battery_status_map_status(response.rap.params[1]); 663 hidpp->battery.status = status; 664 /* the capacity is only available when discharging or full */ 665 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 666 status == POWER_SUPPLY_STATUS_FULL; 667 668 return 0; 669 } 670 671 #define HIDPP_REG_BATTERY_MILEAGE 0x0D 672 673 static int hidpp10_battery_mileage_map_status(u8 param) 674 { 675 int status; 676 677 switch (param >> 6) { 678 case 0x00: 679 /* discharging (in use) */ 680 status = POWER_SUPPLY_STATUS_DISCHARGING; 681 break; 682 case 0x01: /* charging */ 683 status = POWER_SUPPLY_STATUS_CHARGING; 684 break; 685 case 0x02: /* charge complete */ 686 status = POWER_SUPPLY_STATUS_FULL; 687 break; 688 /* 689 * 0x03 = charging error 690 */ 691 default: 692 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 693 break; 694 } 695 696 return status; 697 } 698 699 static int hidpp10_query_battery_mileage(struct hidpp_device *hidpp) 700 { 701 struct hidpp_report response; 702 int ret, status; 703 704 ret = hidpp_send_rap_command_sync(hidpp, 705 REPORT_ID_HIDPP_SHORT, 706 HIDPP_GET_REGISTER, 707 HIDPP_REG_BATTERY_MILEAGE, 708 NULL, 0, &response); 709 if (ret) 710 return ret; 711 712 hidpp->battery.capacity = response.rap.params[0]; 713 status = hidpp10_battery_mileage_map_status(response.rap.params[2]); 714 hidpp->battery.status = status; 715 /* the capacity is only available when discharging or full */ 716 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 717 status == POWER_SUPPLY_STATUS_FULL; 718 719 return 0; 720 } 721 722 static int hidpp10_battery_event(struct hidpp_device *hidpp, u8 *data, int size) 723 { 724 struct hidpp_report *report = (struct hidpp_report *)data; 725 int status, capacity, level; 726 bool changed; 727 728 if (report->report_id != REPORT_ID_HIDPP_SHORT) 729 return 0; 730 731 switch (report->rap.sub_id) { 732 case HIDPP_REG_BATTERY_STATUS: 733 capacity = hidpp->battery.capacity; 734 level = hidpp10_battery_status_map_level(report->rawbytes[1]); 735 status = hidpp10_battery_status_map_status(report->rawbytes[2]); 736 break; 737 case HIDPP_REG_BATTERY_MILEAGE: 738 capacity = report->rap.params[0]; 739 level = hidpp->battery.level; 740 status = hidpp10_battery_mileage_map_status(report->rawbytes[3]); 741 break; 742 default: 743 return 0; 744 } 745 746 changed = capacity != hidpp->battery.capacity || 747 level != hidpp->battery.level || 748 status != hidpp->battery.status; 749 750 /* the capacity is only available when discharging or full */ 751 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 752 status == POWER_SUPPLY_STATUS_FULL; 753 754 if (changed) { 755 hidpp->battery.level = level; 756 hidpp->battery.status = status; 757 if (hidpp->battery.ps) 758 power_supply_changed(hidpp->battery.ps); 759 } 760 761 return 0; 762 } 763 764 #define HIDPP_REG_PAIRING_INFORMATION 0xB5 765 #define HIDPP_EXTENDED_PAIRING 0x30 766 #define HIDPP_DEVICE_NAME 0x40 767 768 static char *hidpp_unifying_get_name(struct hidpp_device *hidpp_dev) 769 { 770 struct hidpp_report response; 771 int ret; 772 u8 params[1] = { HIDPP_DEVICE_NAME }; 773 char *name; 774 int len; 775 776 ret = hidpp_send_rap_command_sync(hidpp_dev, 777 REPORT_ID_HIDPP_SHORT, 778 HIDPP_GET_LONG_REGISTER, 779 HIDPP_REG_PAIRING_INFORMATION, 780 params, 1, &response); 781 if (ret) 782 return NULL; 783 784 len = response.rap.params[1]; 785 786 if (2 + len > sizeof(response.rap.params)) 787 return NULL; 788 789 if (len < 4) /* logitech devices are usually at least Xddd */ 790 return NULL; 791 792 name = kzalloc(len + 1, GFP_KERNEL); 793 if (!name) 794 return NULL; 795 796 memcpy(name, &response.rap.params[2], len); 797 798 /* include the terminating '\0' */ 799 hidpp_prefix_name(&name, len + 1); 800 801 return name; 802 } 803 804 static int hidpp_unifying_get_serial(struct hidpp_device *hidpp, u32 *serial) 805 { 806 struct hidpp_report response; 807 int ret; 808 u8 params[1] = { HIDPP_EXTENDED_PAIRING }; 809 810 ret = hidpp_send_rap_command_sync(hidpp, 811 REPORT_ID_HIDPP_SHORT, 812 HIDPP_GET_LONG_REGISTER, 813 HIDPP_REG_PAIRING_INFORMATION, 814 params, 1, &response); 815 if (ret) 816 return ret; 817 818 /* 819 * We don't care about LE or BE, we will output it as a string 820 * with %4phD, so we need to keep the order. 821 */ 822 *serial = *((u32 *)&response.rap.params[1]); 823 return 0; 824 } 825 826 static int hidpp_unifying_init(struct hidpp_device *hidpp) 827 { 828 struct hid_device *hdev = hidpp->hid_dev; 829 const char *name; 830 u32 serial; 831 int ret; 832 833 ret = hidpp_unifying_get_serial(hidpp, &serial); 834 if (ret) 835 return ret; 836 837 snprintf(hdev->uniq, sizeof(hdev->uniq), "%04x-%4phD", 838 hdev->product, &serial); 839 dbg_hid("HID++ Unifying: Got serial: %s\n", hdev->uniq); 840 841 name = hidpp_unifying_get_name(hidpp); 842 if (!name) 843 return -EIO; 844 845 snprintf(hdev->name, sizeof(hdev->name), "%s", name); 846 dbg_hid("HID++ Unifying: Got name: %s\n", name); 847 848 kfree(name); 849 return 0; 850 } 851 852 /* -------------------------------------------------------------------------- */ 853 /* 0x0000: Root */ 854 /* -------------------------------------------------------------------------- */ 855 856 #define HIDPP_PAGE_ROOT 0x0000 857 #define HIDPP_PAGE_ROOT_IDX 0x00 858 859 #define CMD_ROOT_GET_FEATURE 0x01 860 #define CMD_ROOT_GET_PROTOCOL_VERSION 0x11 861 862 static int hidpp_root_get_feature(struct hidpp_device *hidpp, u16 feature, 863 u8 *feature_index, u8 *feature_type) 864 { 865 struct hidpp_report response; 866 int ret; 867 u8 params[2] = { feature >> 8, feature & 0x00FF }; 868 869 ret = hidpp_send_fap_command_sync(hidpp, 870 HIDPP_PAGE_ROOT_IDX, 871 CMD_ROOT_GET_FEATURE, 872 params, 2, &response); 873 if (ret) 874 return ret; 875 876 if (response.fap.params[0] == 0) 877 return -ENOENT; 878 879 *feature_index = response.fap.params[0]; 880 *feature_type = response.fap.params[1]; 881 882 return ret; 883 } 884 885 static int hidpp_root_get_protocol_version(struct hidpp_device *hidpp) 886 { 887 const u8 ping_byte = 0x5a; 888 u8 ping_data[3] = { 0, 0, ping_byte }; 889 struct hidpp_report response; 890 int ret; 891 892 ret = hidpp_send_rap_command_sync(hidpp, 893 REPORT_ID_HIDPP_SHORT, 894 HIDPP_PAGE_ROOT_IDX, 895 CMD_ROOT_GET_PROTOCOL_VERSION, 896 ping_data, sizeof(ping_data), &response); 897 898 if (ret == HIDPP_ERROR_INVALID_SUBID) { 899 hidpp->protocol_major = 1; 900 hidpp->protocol_minor = 0; 901 goto print_version; 902 } 903 904 /* the device might not be connected */ 905 if (ret == HIDPP_ERROR_RESOURCE_ERROR) 906 return -EIO; 907 908 if (ret > 0) { 909 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 910 __func__, ret); 911 return -EPROTO; 912 } 913 if (ret) 914 return ret; 915 916 if (response.rap.params[2] != ping_byte) { 917 hid_err(hidpp->hid_dev, "%s: ping mismatch 0x%02x != 0x%02x\n", 918 __func__, response.rap.params[2], ping_byte); 919 return -EPROTO; 920 } 921 922 hidpp->protocol_major = response.rap.params[0]; 923 hidpp->protocol_minor = response.rap.params[1]; 924 925 print_version: 926 hid_info(hidpp->hid_dev, "HID++ %u.%u device connected.\n", 927 hidpp->protocol_major, hidpp->protocol_minor); 928 return 0; 929 } 930 931 /* -------------------------------------------------------------------------- */ 932 /* 0x0005: GetDeviceNameType */ 933 /* -------------------------------------------------------------------------- */ 934 935 #define HIDPP_PAGE_GET_DEVICE_NAME_TYPE 0x0005 936 937 #define CMD_GET_DEVICE_NAME_TYPE_GET_COUNT 0x01 938 #define CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME 0x11 939 #define CMD_GET_DEVICE_NAME_TYPE_GET_TYPE 0x21 940 941 static int hidpp_devicenametype_get_count(struct hidpp_device *hidpp, 942 u8 feature_index, u8 *nameLength) 943 { 944 struct hidpp_report response; 945 int ret; 946 947 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 948 CMD_GET_DEVICE_NAME_TYPE_GET_COUNT, NULL, 0, &response); 949 950 if (ret > 0) { 951 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 952 __func__, ret); 953 return -EPROTO; 954 } 955 if (ret) 956 return ret; 957 958 *nameLength = response.fap.params[0]; 959 960 return ret; 961 } 962 963 static int hidpp_devicenametype_get_device_name(struct hidpp_device *hidpp, 964 u8 feature_index, u8 char_index, char *device_name, int len_buf) 965 { 966 struct hidpp_report response; 967 int ret, i; 968 int count; 969 970 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 971 CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME, &char_index, 1, 972 &response); 973 974 if (ret > 0) { 975 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 976 __func__, ret); 977 return -EPROTO; 978 } 979 if (ret) 980 return ret; 981 982 switch (response.report_id) { 983 case REPORT_ID_HIDPP_VERY_LONG: 984 count = hidpp->very_long_report_length - 4; 985 break; 986 case REPORT_ID_HIDPP_LONG: 987 count = HIDPP_REPORT_LONG_LENGTH - 4; 988 break; 989 case REPORT_ID_HIDPP_SHORT: 990 count = HIDPP_REPORT_SHORT_LENGTH - 4; 991 break; 992 default: 993 return -EPROTO; 994 } 995 996 if (len_buf < count) 997 count = len_buf; 998 999 for (i = 0; i < count; i++) 1000 device_name[i] = response.fap.params[i]; 1001 1002 return count; 1003 } 1004 1005 static char *hidpp_get_device_name(struct hidpp_device *hidpp) 1006 { 1007 u8 feature_type; 1008 u8 feature_index; 1009 u8 __name_length; 1010 char *name; 1011 unsigned index = 0; 1012 int ret; 1013 1014 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_GET_DEVICE_NAME_TYPE, 1015 &feature_index, &feature_type); 1016 if (ret) 1017 return NULL; 1018 1019 ret = hidpp_devicenametype_get_count(hidpp, feature_index, 1020 &__name_length); 1021 if (ret) 1022 return NULL; 1023 1024 name = kzalloc(__name_length + 1, GFP_KERNEL); 1025 if (!name) 1026 return NULL; 1027 1028 while (index < __name_length) { 1029 ret = hidpp_devicenametype_get_device_name(hidpp, 1030 feature_index, index, name + index, 1031 __name_length - index); 1032 if (ret <= 0) { 1033 kfree(name); 1034 return NULL; 1035 } 1036 index += ret; 1037 } 1038 1039 /* include the terminating '\0' */ 1040 hidpp_prefix_name(&name, __name_length + 1); 1041 1042 return name; 1043 } 1044 1045 /* -------------------------------------------------------------------------- */ 1046 /* 0x1000: Battery level status */ 1047 /* -------------------------------------------------------------------------- */ 1048 1049 #define HIDPP_PAGE_BATTERY_LEVEL_STATUS 0x1000 1050 1051 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS 0x00 1052 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY 0x10 1053 1054 #define EVENT_BATTERY_LEVEL_STATUS_BROADCAST 0x00 1055 1056 #define FLAG_BATTERY_LEVEL_DISABLE_OSD BIT(0) 1057 #define FLAG_BATTERY_LEVEL_MILEAGE BIT(1) 1058 #define FLAG_BATTERY_LEVEL_RECHARGEABLE BIT(2) 1059 1060 static int hidpp_map_battery_level(int capacity) 1061 { 1062 if (capacity < 11) 1063 return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; 1064 /* 1065 * The spec says this should be < 31 but some devices report 30 1066 * with brand new batteries and Windows reports 30 as "Good". 1067 */ 1068 else if (capacity < 30) 1069 return POWER_SUPPLY_CAPACITY_LEVEL_LOW; 1070 else if (capacity < 81) 1071 return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; 1072 return POWER_SUPPLY_CAPACITY_LEVEL_FULL; 1073 } 1074 1075 static int hidpp20_batterylevel_map_status_capacity(u8 data[3], int *capacity, 1076 int *next_capacity, 1077 int *level) 1078 { 1079 int status; 1080 1081 *capacity = data[0]; 1082 *next_capacity = data[1]; 1083 *level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 1084 1085 /* When discharging, we can rely on the device reported capacity. 1086 * For all other states the device reports 0 (unknown). 1087 */ 1088 switch (data[2]) { 1089 case 0: /* discharging (in use) */ 1090 status = POWER_SUPPLY_STATUS_DISCHARGING; 1091 *level = hidpp_map_battery_level(*capacity); 1092 break; 1093 case 1: /* recharging */ 1094 status = POWER_SUPPLY_STATUS_CHARGING; 1095 break; 1096 case 2: /* charge in final stage */ 1097 status = POWER_SUPPLY_STATUS_CHARGING; 1098 break; 1099 case 3: /* charge complete */ 1100 status = POWER_SUPPLY_STATUS_FULL; 1101 *level = POWER_SUPPLY_CAPACITY_LEVEL_FULL; 1102 *capacity = 100; 1103 break; 1104 case 4: /* recharging below optimal speed */ 1105 status = POWER_SUPPLY_STATUS_CHARGING; 1106 break; 1107 /* 5 = invalid battery type 1108 6 = thermal error 1109 7 = other charging error */ 1110 default: 1111 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 1112 break; 1113 } 1114 1115 return status; 1116 } 1117 1118 static int hidpp20_batterylevel_get_battery_capacity(struct hidpp_device *hidpp, 1119 u8 feature_index, 1120 int *status, 1121 int *capacity, 1122 int *next_capacity, 1123 int *level) 1124 { 1125 struct hidpp_report response; 1126 int ret; 1127 u8 *params = (u8 *)response.fap.params; 1128 1129 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1130 CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS, 1131 NULL, 0, &response); 1132 /* Ignore these intermittent errors */ 1133 if (ret == HIDPP_ERROR_RESOURCE_ERROR) 1134 return -EIO; 1135 if (ret > 0) { 1136 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1137 __func__, ret); 1138 return -EPROTO; 1139 } 1140 if (ret) 1141 return ret; 1142 1143 *status = hidpp20_batterylevel_map_status_capacity(params, capacity, 1144 next_capacity, 1145 level); 1146 1147 return 0; 1148 } 1149 1150 static int hidpp20_batterylevel_get_battery_info(struct hidpp_device *hidpp, 1151 u8 feature_index) 1152 { 1153 struct hidpp_report response; 1154 int ret; 1155 u8 *params = (u8 *)response.fap.params; 1156 unsigned int level_count, flags; 1157 1158 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1159 CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY, 1160 NULL, 0, &response); 1161 if (ret > 0) { 1162 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1163 __func__, ret); 1164 return -EPROTO; 1165 } 1166 if (ret) 1167 return ret; 1168 1169 level_count = params[0]; 1170 flags = params[1]; 1171 1172 if (level_count < 10 || !(flags & FLAG_BATTERY_LEVEL_MILEAGE)) 1173 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS; 1174 else 1175 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE; 1176 1177 return 0; 1178 } 1179 1180 static int hidpp20_query_battery_info_1000(struct hidpp_device *hidpp) 1181 { 1182 u8 feature_type; 1183 int ret; 1184 int status, capacity, next_capacity, level; 1185 1186 if (hidpp->battery.feature_index == 0xff) { 1187 ret = hidpp_root_get_feature(hidpp, 1188 HIDPP_PAGE_BATTERY_LEVEL_STATUS, 1189 &hidpp->battery.feature_index, 1190 &feature_type); 1191 if (ret) 1192 return ret; 1193 } 1194 1195 ret = hidpp20_batterylevel_get_battery_capacity(hidpp, 1196 hidpp->battery.feature_index, 1197 &status, &capacity, 1198 &next_capacity, &level); 1199 if (ret) 1200 return ret; 1201 1202 ret = hidpp20_batterylevel_get_battery_info(hidpp, 1203 hidpp->battery.feature_index); 1204 if (ret) 1205 return ret; 1206 1207 hidpp->battery.status = status; 1208 hidpp->battery.capacity = capacity; 1209 hidpp->battery.level = level; 1210 /* the capacity is only available when discharging or full */ 1211 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 1212 status == POWER_SUPPLY_STATUS_FULL; 1213 1214 return 0; 1215 } 1216 1217 static int hidpp20_battery_event_1000(struct hidpp_device *hidpp, 1218 u8 *data, int size) 1219 { 1220 struct hidpp_report *report = (struct hidpp_report *)data; 1221 int status, capacity, next_capacity, level; 1222 bool changed; 1223 1224 if (report->fap.feature_index != hidpp->battery.feature_index || 1225 report->fap.funcindex_clientid != EVENT_BATTERY_LEVEL_STATUS_BROADCAST) 1226 return 0; 1227 1228 status = hidpp20_batterylevel_map_status_capacity(report->fap.params, 1229 &capacity, 1230 &next_capacity, 1231 &level); 1232 1233 /* the capacity is only available when discharging or full */ 1234 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 1235 status == POWER_SUPPLY_STATUS_FULL; 1236 1237 changed = capacity != hidpp->battery.capacity || 1238 level != hidpp->battery.level || 1239 status != hidpp->battery.status; 1240 1241 if (changed) { 1242 hidpp->battery.level = level; 1243 hidpp->battery.capacity = capacity; 1244 hidpp->battery.status = status; 1245 if (hidpp->battery.ps) 1246 power_supply_changed(hidpp->battery.ps); 1247 } 1248 1249 return 0; 1250 } 1251 1252 /* -------------------------------------------------------------------------- */ 1253 /* 0x1001: Battery voltage */ 1254 /* -------------------------------------------------------------------------- */ 1255 1256 #define HIDPP_PAGE_BATTERY_VOLTAGE 0x1001 1257 1258 #define CMD_BATTERY_VOLTAGE_GET_BATTERY_VOLTAGE 0x00 1259 1260 #define EVENT_BATTERY_VOLTAGE_STATUS_BROADCAST 0x00 1261 1262 static int hidpp20_battery_map_status_voltage(u8 data[3], int *voltage, 1263 int *level, int *charge_type) 1264 { 1265 int status; 1266 1267 long flags = (long) data[2]; 1268 *level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 1269 1270 if (flags & 0x80) 1271 switch (flags & 0x07) { 1272 case 0: 1273 status = POWER_SUPPLY_STATUS_CHARGING; 1274 break; 1275 case 1: 1276 status = POWER_SUPPLY_STATUS_FULL; 1277 *level = POWER_SUPPLY_CAPACITY_LEVEL_FULL; 1278 break; 1279 case 2: 1280 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 1281 break; 1282 default: 1283 status = POWER_SUPPLY_STATUS_UNKNOWN; 1284 break; 1285 } 1286 else 1287 status = POWER_SUPPLY_STATUS_DISCHARGING; 1288 1289 *charge_type = POWER_SUPPLY_CHARGE_TYPE_STANDARD; 1290 if (test_bit(3, &flags)) { 1291 *charge_type = POWER_SUPPLY_CHARGE_TYPE_FAST; 1292 } 1293 if (test_bit(4, &flags)) { 1294 *charge_type = POWER_SUPPLY_CHARGE_TYPE_TRICKLE; 1295 } 1296 if (test_bit(5, &flags)) { 1297 *level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; 1298 } 1299 1300 *voltage = get_unaligned_be16(data); 1301 1302 return status; 1303 } 1304 1305 static int hidpp20_battery_get_battery_voltage(struct hidpp_device *hidpp, 1306 u8 feature_index, 1307 int *status, int *voltage, 1308 int *level, int *charge_type) 1309 { 1310 struct hidpp_report response; 1311 int ret; 1312 u8 *params = (u8 *)response.fap.params; 1313 1314 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1315 CMD_BATTERY_VOLTAGE_GET_BATTERY_VOLTAGE, 1316 NULL, 0, &response); 1317 1318 if (ret > 0) { 1319 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1320 __func__, ret); 1321 return -EPROTO; 1322 } 1323 if (ret) 1324 return ret; 1325 1326 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_VOLTAGE; 1327 1328 *status = hidpp20_battery_map_status_voltage(params, voltage, 1329 level, charge_type); 1330 1331 return 0; 1332 } 1333 1334 static int hidpp20_query_battery_voltage_info(struct hidpp_device *hidpp) 1335 { 1336 u8 feature_type; 1337 int ret; 1338 int status, voltage, level, charge_type; 1339 1340 if (hidpp->battery.voltage_feature_index == 0xff) { 1341 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_BATTERY_VOLTAGE, 1342 &hidpp->battery.voltage_feature_index, 1343 &feature_type); 1344 if (ret) 1345 return ret; 1346 } 1347 1348 ret = hidpp20_battery_get_battery_voltage(hidpp, 1349 hidpp->battery.voltage_feature_index, 1350 &status, &voltage, &level, &charge_type); 1351 1352 if (ret) 1353 return ret; 1354 1355 hidpp->battery.status = status; 1356 hidpp->battery.voltage = voltage; 1357 hidpp->battery.level = level; 1358 hidpp->battery.charge_type = charge_type; 1359 hidpp->battery.online = status != POWER_SUPPLY_STATUS_NOT_CHARGING; 1360 1361 return 0; 1362 } 1363 1364 static int hidpp20_battery_voltage_event(struct hidpp_device *hidpp, 1365 u8 *data, int size) 1366 { 1367 struct hidpp_report *report = (struct hidpp_report *)data; 1368 int status, voltage, level, charge_type; 1369 1370 if (report->fap.feature_index != hidpp->battery.voltage_feature_index || 1371 report->fap.funcindex_clientid != EVENT_BATTERY_VOLTAGE_STATUS_BROADCAST) 1372 return 0; 1373 1374 status = hidpp20_battery_map_status_voltage(report->fap.params, &voltage, 1375 &level, &charge_type); 1376 1377 hidpp->battery.online = status != POWER_SUPPLY_STATUS_NOT_CHARGING; 1378 1379 if (voltage != hidpp->battery.voltage || status != hidpp->battery.status) { 1380 hidpp->battery.voltage = voltage; 1381 hidpp->battery.status = status; 1382 hidpp->battery.level = level; 1383 hidpp->battery.charge_type = charge_type; 1384 if (hidpp->battery.ps) 1385 power_supply_changed(hidpp->battery.ps); 1386 } 1387 return 0; 1388 } 1389 1390 /* -------------------------------------------------------------------------- */ 1391 /* 0x1004: Unified battery */ 1392 /* -------------------------------------------------------------------------- */ 1393 1394 #define HIDPP_PAGE_UNIFIED_BATTERY 0x1004 1395 1396 #define CMD_UNIFIED_BATTERY_GET_CAPABILITIES 0x00 1397 #define CMD_UNIFIED_BATTERY_GET_STATUS 0x10 1398 1399 #define EVENT_UNIFIED_BATTERY_STATUS_EVENT 0x00 1400 1401 #define FLAG_UNIFIED_BATTERY_LEVEL_CRITICAL BIT(0) 1402 #define FLAG_UNIFIED_BATTERY_LEVEL_LOW BIT(1) 1403 #define FLAG_UNIFIED_BATTERY_LEVEL_GOOD BIT(2) 1404 #define FLAG_UNIFIED_BATTERY_LEVEL_FULL BIT(3) 1405 1406 #define FLAG_UNIFIED_BATTERY_FLAGS_RECHARGEABLE BIT(0) 1407 #define FLAG_UNIFIED_BATTERY_FLAGS_STATE_OF_CHARGE BIT(1) 1408 1409 static int hidpp20_unifiedbattery_get_capabilities(struct hidpp_device *hidpp, 1410 u8 feature_index) 1411 { 1412 struct hidpp_report response; 1413 int ret; 1414 u8 *params = (u8 *)response.fap.params; 1415 1416 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS || 1417 hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_PERCENTAGE) { 1418 /* we have already set the device capabilities, so let's skip */ 1419 return 0; 1420 } 1421 1422 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1423 CMD_UNIFIED_BATTERY_GET_CAPABILITIES, 1424 NULL, 0, &response); 1425 /* Ignore these intermittent errors */ 1426 if (ret == HIDPP_ERROR_RESOURCE_ERROR) 1427 return -EIO; 1428 if (ret > 0) { 1429 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1430 __func__, ret); 1431 return -EPROTO; 1432 } 1433 if (ret) 1434 return ret; 1435 1436 /* 1437 * If the device supports state of charge (battery percentage) we won't 1438 * export the battery level information. there are 4 possible battery 1439 * levels and they all are optional, this means that the device might 1440 * not support any of them, we are just better off with the battery 1441 * percentage. 1442 */ 1443 if (params[1] & FLAG_UNIFIED_BATTERY_FLAGS_STATE_OF_CHARGE) { 1444 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_PERCENTAGE; 1445 hidpp->battery.supported_levels_1004 = 0; 1446 } else { 1447 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS; 1448 hidpp->battery.supported_levels_1004 = params[0]; 1449 } 1450 1451 return 0; 1452 } 1453 1454 static int hidpp20_unifiedbattery_map_status(struct hidpp_device *hidpp, 1455 u8 charging_status, 1456 u8 external_power_status) 1457 { 1458 int status; 1459 1460 switch (charging_status) { 1461 case 0: /* discharging */ 1462 status = POWER_SUPPLY_STATUS_DISCHARGING; 1463 break; 1464 case 1: /* charging */ 1465 case 2: /* charging slow */ 1466 status = POWER_SUPPLY_STATUS_CHARGING; 1467 break; 1468 case 3: /* complete */ 1469 status = POWER_SUPPLY_STATUS_FULL; 1470 break; 1471 case 4: /* error */ 1472 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 1473 hid_info(hidpp->hid_dev, "%s: charging error", 1474 hidpp->name); 1475 break; 1476 default: 1477 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 1478 break; 1479 } 1480 1481 return status; 1482 } 1483 1484 static int hidpp20_unifiedbattery_map_level(struct hidpp_device *hidpp, 1485 u8 battery_level) 1486 { 1487 /* cler unsupported level bits */ 1488 battery_level &= hidpp->battery.supported_levels_1004; 1489 1490 if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_FULL) 1491 return POWER_SUPPLY_CAPACITY_LEVEL_FULL; 1492 else if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_GOOD) 1493 return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; 1494 else if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_LOW) 1495 return POWER_SUPPLY_CAPACITY_LEVEL_LOW; 1496 else if (battery_level & FLAG_UNIFIED_BATTERY_LEVEL_CRITICAL) 1497 return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; 1498 1499 return POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 1500 } 1501 1502 static int hidpp20_unifiedbattery_get_status(struct hidpp_device *hidpp, 1503 u8 feature_index, 1504 u8 *state_of_charge, 1505 int *status, 1506 int *level) 1507 { 1508 struct hidpp_report response; 1509 int ret; 1510 u8 *params = (u8 *)response.fap.params; 1511 1512 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1513 CMD_UNIFIED_BATTERY_GET_STATUS, 1514 NULL, 0, &response); 1515 /* Ignore these intermittent errors */ 1516 if (ret == HIDPP_ERROR_RESOURCE_ERROR) 1517 return -EIO; 1518 if (ret > 0) { 1519 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1520 __func__, ret); 1521 return -EPROTO; 1522 } 1523 if (ret) 1524 return ret; 1525 1526 *state_of_charge = params[0]; 1527 *status = hidpp20_unifiedbattery_map_status(hidpp, params[2], params[3]); 1528 *level = hidpp20_unifiedbattery_map_level(hidpp, params[1]); 1529 1530 return 0; 1531 } 1532 1533 static int hidpp20_query_battery_info_1004(struct hidpp_device *hidpp) 1534 { 1535 u8 feature_type; 1536 int ret; 1537 u8 state_of_charge; 1538 int status, level; 1539 1540 if (hidpp->battery.feature_index == 0xff) { 1541 ret = hidpp_root_get_feature(hidpp, 1542 HIDPP_PAGE_UNIFIED_BATTERY, 1543 &hidpp->battery.feature_index, 1544 &feature_type); 1545 if (ret) 1546 return ret; 1547 } 1548 1549 ret = hidpp20_unifiedbattery_get_capabilities(hidpp, 1550 hidpp->battery.feature_index); 1551 if (ret) 1552 return ret; 1553 1554 ret = hidpp20_unifiedbattery_get_status(hidpp, 1555 hidpp->battery.feature_index, 1556 &state_of_charge, 1557 &status, 1558 &level); 1559 if (ret) 1560 return ret; 1561 1562 hidpp->capabilities |= HIDPP_CAPABILITY_UNIFIED_BATTERY; 1563 hidpp->battery.capacity = state_of_charge; 1564 hidpp->battery.status = status; 1565 hidpp->battery.level = level; 1566 hidpp->battery.online = true; 1567 1568 return 0; 1569 } 1570 1571 static int hidpp20_battery_event_1004(struct hidpp_device *hidpp, 1572 u8 *data, int size) 1573 { 1574 struct hidpp_report *report = (struct hidpp_report *)data; 1575 u8 *params = (u8 *)report->fap.params; 1576 int state_of_charge, status, level; 1577 bool changed; 1578 1579 if (report->fap.feature_index != hidpp->battery.feature_index || 1580 report->fap.funcindex_clientid != EVENT_UNIFIED_BATTERY_STATUS_EVENT) 1581 return 0; 1582 1583 state_of_charge = params[0]; 1584 status = hidpp20_unifiedbattery_map_status(hidpp, params[2], params[3]); 1585 level = hidpp20_unifiedbattery_map_level(hidpp, params[1]); 1586 1587 changed = status != hidpp->battery.status || 1588 (state_of_charge != hidpp->battery.capacity && 1589 hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_PERCENTAGE) || 1590 (level != hidpp->battery.level && 1591 hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS); 1592 1593 if (changed) { 1594 hidpp->battery.capacity = state_of_charge; 1595 hidpp->battery.status = status; 1596 hidpp->battery.level = level; 1597 if (hidpp->battery.ps) 1598 power_supply_changed(hidpp->battery.ps); 1599 } 1600 1601 return 0; 1602 } 1603 1604 /* -------------------------------------------------------------------------- */ 1605 /* Battery feature helpers */ 1606 /* -------------------------------------------------------------------------- */ 1607 1608 static enum power_supply_property hidpp_battery_props[] = { 1609 POWER_SUPPLY_PROP_ONLINE, 1610 POWER_SUPPLY_PROP_STATUS, 1611 POWER_SUPPLY_PROP_SCOPE, 1612 POWER_SUPPLY_PROP_MODEL_NAME, 1613 POWER_SUPPLY_PROP_MANUFACTURER, 1614 POWER_SUPPLY_PROP_SERIAL_NUMBER, 1615 0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY, */ 1616 0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY_LEVEL, */ 1617 0, /* placeholder for POWER_SUPPLY_PROP_VOLTAGE_NOW, */ 1618 }; 1619 1620 static int hidpp_battery_get_property(struct power_supply *psy, 1621 enum power_supply_property psp, 1622 union power_supply_propval *val) 1623 { 1624 struct hidpp_device *hidpp = power_supply_get_drvdata(psy); 1625 int ret = 0; 1626 1627 switch(psp) { 1628 case POWER_SUPPLY_PROP_STATUS: 1629 val->intval = hidpp->battery.status; 1630 break; 1631 case POWER_SUPPLY_PROP_CAPACITY: 1632 val->intval = hidpp->battery.capacity; 1633 break; 1634 case POWER_SUPPLY_PROP_CAPACITY_LEVEL: 1635 val->intval = hidpp->battery.level; 1636 break; 1637 case POWER_SUPPLY_PROP_SCOPE: 1638 val->intval = POWER_SUPPLY_SCOPE_DEVICE; 1639 break; 1640 case POWER_SUPPLY_PROP_ONLINE: 1641 val->intval = hidpp->battery.online; 1642 break; 1643 case POWER_SUPPLY_PROP_MODEL_NAME: 1644 if (!strncmp(hidpp->name, "Logitech ", 9)) 1645 val->strval = hidpp->name + 9; 1646 else 1647 val->strval = hidpp->name; 1648 break; 1649 case POWER_SUPPLY_PROP_MANUFACTURER: 1650 val->strval = "Logitech"; 1651 break; 1652 case POWER_SUPPLY_PROP_SERIAL_NUMBER: 1653 val->strval = hidpp->hid_dev->uniq; 1654 break; 1655 case POWER_SUPPLY_PROP_VOLTAGE_NOW: 1656 /* hardware reports voltage in in mV. sysfs expects uV */ 1657 val->intval = hidpp->battery.voltage * 1000; 1658 break; 1659 case POWER_SUPPLY_PROP_CHARGE_TYPE: 1660 val->intval = hidpp->battery.charge_type; 1661 break; 1662 default: 1663 ret = -EINVAL; 1664 break; 1665 } 1666 1667 return ret; 1668 } 1669 1670 /* -------------------------------------------------------------------------- */ 1671 /* 0x1d4b: Wireless device status */ 1672 /* -------------------------------------------------------------------------- */ 1673 #define HIDPP_PAGE_WIRELESS_DEVICE_STATUS 0x1d4b 1674 1675 static int hidpp_set_wireless_feature_index(struct hidpp_device *hidpp) 1676 { 1677 u8 feature_type; 1678 int ret; 1679 1680 ret = hidpp_root_get_feature(hidpp, 1681 HIDPP_PAGE_WIRELESS_DEVICE_STATUS, 1682 &hidpp->wireless_feature_index, 1683 &feature_type); 1684 1685 return ret; 1686 } 1687 1688 /* -------------------------------------------------------------------------- */ 1689 /* 0x2120: Hi-resolution scrolling */ 1690 /* -------------------------------------------------------------------------- */ 1691 1692 #define HIDPP_PAGE_HI_RESOLUTION_SCROLLING 0x2120 1693 1694 #define CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE 0x10 1695 1696 static int hidpp_hrs_set_highres_scrolling_mode(struct hidpp_device *hidpp, 1697 bool enabled, u8 *multiplier) 1698 { 1699 u8 feature_index; 1700 u8 feature_type; 1701 int ret; 1702 u8 params[1]; 1703 struct hidpp_report response; 1704 1705 ret = hidpp_root_get_feature(hidpp, 1706 HIDPP_PAGE_HI_RESOLUTION_SCROLLING, 1707 &feature_index, 1708 &feature_type); 1709 if (ret) 1710 return ret; 1711 1712 params[0] = enabled ? BIT(0) : 0; 1713 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1714 CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE, 1715 params, sizeof(params), &response); 1716 if (ret) 1717 return ret; 1718 *multiplier = response.fap.params[1]; 1719 return 0; 1720 } 1721 1722 /* -------------------------------------------------------------------------- */ 1723 /* 0x2121: HiRes Wheel */ 1724 /* -------------------------------------------------------------------------- */ 1725 1726 #define HIDPP_PAGE_HIRES_WHEEL 0x2121 1727 1728 #define CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY 0x00 1729 #define CMD_HIRES_WHEEL_SET_WHEEL_MODE 0x20 1730 1731 static int hidpp_hrw_get_wheel_capability(struct hidpp_device *hidpp, 1732 u8 *multiplier) 1733 { 1734 u8 feature_index; 1735 u8 feature_type; 1736 int ret; 1737 struct hidpp_report response; 1738 1739 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL, 1740 &feature_index, &feature_type); 1741 if (ret) 1742 goto return_default; 1743 1744 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1745 CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY, 1746 NULL, 0, &response); 1747 if (ret) 1748 goto return_default; 1749 1750 *multiplier = response.fap.params[0]; 1751 return 0; 1752 return_default: 1753 hid_warn(hidpp->hid_dev, 1754 "Couldn't get wheel multiplier (error %d)\n", ret); 1755 return ret; 1756 } 1757 1758 static int hidpp_hrw_set_wheel_mode(struct hidpp_device *hidpp, bool invert, 1759 bool high_resolution, bool use_hidpp) 1760 { 1761 u8 feature_index; 1762 u8 feature_type; 1763 int ret; 1764 u8 params[1]; 1765 struct hidpp_report response; 1766 1767 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL, 1768 &feature_index, &feature_type); 1769 if (ret) 1770 return ret; 1771 1772 params[0] = (invert ? BIT(2) : 0) | 1773 (high_resolution ? BIT(1) : 0) | 1774 (use_hidpp ? BIT(0) : 0); 1775 1776 return hidpp_send_fap_command_sync(hidpp, feature_index, 1777 CMD_HIRES_WHEEL_SET_WHEEL_MODE, 1778 params, sizeof(params), &response); 1779 } 1780 1781 /* -------------------------------------------------------------------------- */ 1782 /* 0x4301: Solar Keyboard */ 1783 /* -------------------------------------------------------------------------- */ 1784 1785 #define HIDPP_PAGE_SOLAR_KEYBOARD 0x4301 1786 1787 #define CMD_SOLAR_SET_LIGHT_MEASURE 0x00 1788 1789 #define EVENT_SOLAR_BATTERY_BROADCAST 0x00 1790 #define EVENT_SOLAR_BATTERY_LIGHT_MEASURE 0x10 1791 #define EVENT_SOLAR_CHECK_LIGHT_BUTTON 0x20 1792 1793 static int hidpp_solar_request_battery_event(struct hidpp_device *hidpp) 1794 { 1795 struct hidpp_report response; 1796 u8 params[2] = { 1, 1 }; 1797 u8 feature_type; 1798 int ret; 1799 1800 if (hidpp->battery.feature_index == 0xff) { 1801 ret = hidpp_root_get_feature(hidpp, 1802 HIDPP_PAGE_SOLAR_KEYBOARD, 1803 &hidpp->battery.solar_feature_index, 1804 &feature_type); 1805 if (ret) 1806 return ret; 1807 } 1808 1809 ret = hidpp_send_fap_command_sync(hidpp, 1810 hidpp->battery.solar_feature_index, 1811 CMD_SOLAR_SET_LIGHT_MEASURE, 1812 params, 2, &response); 1813 if (ret > 0) { 1814 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1815 __func__, ret); 1816 return -EPROTO; 1817 } 1818 if (ret) 1819 return ret; 1820 1821 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE; 1822 1823 return 0; 1824 } 1825 1826 static int hidpp_solar_battery_event(struct hidpp_device *hidpp, 1827 u8 *data, int size) 1828 { 1829 struct hidpp_report *report = (struct hidpp_report *)data; 1830 int capacity, lux, status; 1831 u8 function; 1832 1833 function = report->fap.funcindex_clientid; 1834 1835 1836 if (report->fap.feature_index != hidpp->battery.solar_feature_index || 1837 !(function == EVENT_SOLAR_BATTERY_BROADCAST || 1838 function == EVENT_SOLAR_BATTERY_LIGHT_MEASURE || 1839 function == EVENT_SOLAR_CHECK_LIGHT_BUTTON)) 1840 return 0; 1841 1842 capacity = report->fap.params[0]; 1843 1844 switch (function) { 1845 case EVENT_SOLAR_BATTERY_LIGHT_MEASURE: 1846 lux = (report->fap.params[1] << 8) | report->fap.params[2]; 1847 if (lux > 200) 1848 status = POWER_SUPPLY_STATUS_CHARGING; 1849 else 1850 status = POWER_SUPPLY_STATUS_DISCHARGING; 1851 break; 1852 case EVENT_SOLAR_CHECK_LIGHT_BUTTON: 1853 default: 1854 if (capacity < hidpp->battery.capacity) 1855 status = POWER_SUPPLY_STATUS_DISCHARGING; 1856 else 1857 status = POWER_SUPPLY_STATUS_CHARGING; 1858 1859 } 1860 1861 if (capacity == 100) 1862 status = POWER_SUPPLY_STATUS_FULL; 1863 1864 hidpp->battery.online = true; 1865 if (capacity != hidpp->battery.capacity || 1866 status != hidpp->battery.status) { 1867 hidpp->battery.capacity = capacity; 1868 hidpp->battery.status = status; 1869 if (hidpp->battery.ps) 1870 power_supply_changed(hidpp->battery.ps); 1871 } 1872 1873 return 0; 1874 } 1875 1876 /* -------------------------------------------------------------------------- */ 1877 /* 0x6010: Touchpad FW items */ 1878 /* -------------------------------------------------------------------------- */ 1879 1880 #define HIDPP_PAGE_TOUCHPAD_FW_ITEMS 0x6010 1881 1882 #define CMD_TOUCHPAD_FW_ITEMS_SET 0x10 1883 1884 struct hidpp_touchpad_fw_items { 1885 uint8_t presence; 1886 uint8_t desired_state; 1887 uint8_t state; 1888 uint8_t persistent; 1889 }; 1890 1891 /* 1892 * send a set state command to the device by reading the current items->state 1893 * field. items is then filled with the current state. 1894 */ 1895 static int hidpp_touchpad_fw_items_set(struct hidpp_device *hidpp, 1896 u8 feature_index, 1897 struct hidpp_touchpad_fw_items *items) 1898 { 1899 struct hidpp_report response; 1900 int ret; 1901 u8 *params = (u8 *)response.fap.params; 1902 1903 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1904 CMD_TOUCHPAD_FW_ITEMS_SET, &items->state, 1, &response); 1905 1906 if (ret > 0) { 1907 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1908 __func__, ret); 1909 return -EPROTO; 1910 } 1911 if (ret) 1912 return ret; 1913 1914 items->presence = params[0]; 1915 items->desired_state = params[1]; 1916 items->state = params[2]; 1917 items->persistent = params[3]; 1918 1919 return 0; 1920 } 1921 1922 /* -------------------------------------------------------------------------- */ 1923 /* 0x6100: TouchPadRawXY */ 1924 /* -------------------------------------------------------------------------- */ 1925 1926 #define HIDPP_PAGE_TOUCHPAD_RAW_XY 0x6100 1927 1928 #define CMD_TOUCHPAD_GET_RAW_INFO 0x01 1929 #define CMD_TOUCHPAD_SET_RAW_REPORT_STATE 0x21 1930 1931 #define EVENT_TOUCHPAD_RAW_XY 0x00 1932 1933 #define TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT 0x01 1934 #define TOUCHPAD_RAW_XY_ORIGIN_UPPER_LEFT 0x03 1935 1936 struct hidpp_touchpad_raw_info { 1937 u16 x_size; 1938 u16 y_size; 1939 u8 z_range; 1940 u8 area_range; 1941 u8 timestamp_unit; 1942 u8 maxcontacts; 1943 u8 origin; 1944 u16 res; 1945 }; 1946 1947 struct hidpp_touchpad_raw_xy_finger { 1948 u8 contact_type; 1949 u8 contact_status; 1950 u16 x; 1951 u16 y; 1952 u8 z; 1953 u8 area; 1954 u8 finger_id; 1955 }; 1956 1957 struct hidpp_touchpad_raw_xy { 1958 u16 timestamp; 1959 struct hidpp_touchpad_raw_xy_finger fingers[2]; 1960 u8 spurious_flag; 1961 u8 end_of_frame; 1962 u8 finger_count; 1963 u8 button; 1964 }; 1965 1966 static int hidpp_touchpad_get_raw_info(struct hidpp_device *hidpp, 1967 u8 feature_index, struct hidpp_touchpad_raw_info *raw_info) 1968 { 1969 struct hidpp_report response; 1970 int ret; 1971 u8 *params = (u8 *)response.fap.params; 1972 1973 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1974 CMD_TOUCHPAD_GET_RAW_INFO, NULL, 0, &response); 1975 1976 if (ret > 0) { 1977 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1978 __func__, ret); 1979 return -EPROTO; 1980 } 1981 if (ret) 1982 return ret; 1983 1984 raw_info->x_size = get_unaligned_be16(¶ms[0]); 1985 raw_info->y_size = get_unaligned_be16(¶ms[2]); 1986 raw_info->z_range = params[4]; 1987 raw_info->area_range = params[5]; 1988 raw_info->maxcontacts = params[7]; 1989 raw_info->origin = params[8]; 1990 /* res is given in unit per inch */ 1991 raw_info->res = get_unaligned_be16(¶ms[13]) * 2 / 51; 1992 1993 return ret; 1994 } 1995 1996 static int hidpp_touchpad_set_raw_report_state(struct hidpp_device *hidpp_dev, 1997 u8 feature_index, bool send_raw_reports, 1998 bool sensor_enhanced_settings) 1999 { 2000 struct hidpp_report response; 2001 2002 /* 2003 * Params: 2004 * bit 0 - enable raw 2005 * bit 1 - 16bit Z, no area 2006 * bit 2 - enhanced sensitivity 2007 * bit 3 - width, height (4 bits each) instead of area 2008 * bit 4 - send raw + gestures (degrades smoothness) 2009 * remaining bits - reserved 2010 */ 2011 u8 params = send_raw_reports | (sensor_enhanced_settings << 2); 2012 2013 return hidpp_send_fap_command_sync(hidpp_dev, feature_index, 2014 CMD_TOUCHPAD_SET_RAW_REPORT_STATE, ¶ms, 1, &response); 2015 } 2016 2017 static void hidpp_touchpad_touch_event(u8 *data, 2018 struct hidpp_touchpad_raw_xy_finger *finger) 2019 { 2020 u8 x_m = data[0] << 2; 2021 u8 y_m = data[2] << 2; 2022 2023 finger->x = x_m << 6 | data[1]; 2024 finger->y = y_m << 6 | data[3]; 2025 2026 finger->contact_type = data[0] >> 6; 2027 finger->contact_status = data[2] >> 6; 2028 2029 finger->z = data[4]; 2030 finger->area = data[5]; 2031 finger->finger_id = data[6] >> 4; 2032 } 2033 2034 static void hidpp_touchpad_raw_xy_event(struct hidpp_device *hidpp_dev, 2035 u8 *data, struct hidpp_touchpad_raw_xy *raw_xy) 2036 { 2037 memset(raw_xy, 0, sizeof(struct hidpp_touchpad_raw_xy)); 2038 raw_xy->end_of_frame = data[8] & 0x01; 2039 raw_xy->spurious_flag = (data[8] >> 1) & 0x01; 2040 raw_xy->finger_count = data[15] & 0x0f; 2041 raw_xy->button = (data[8] >> 2) & 0x01; 2042 2043 if (raw_xy->finger_count) { 2044 hidpp_touchpad_touch_event(&data[2], &raw_xy->fingers[0]); 2045 hidpp_touchpad_touch_event(&data[9], &raw_xy->fingers[1]); 2046 } 2047 } 2048 2049 /* -------------------------------------------------------------------------- */ 2050 /* 0x8123: Force feedback support */ 2051 /* -------------------------------------------------------------------------- */ 2052 2053 #define HIDPP_FF_GET_INFO 0x01 2054 #define HIDPP_FF_RESET_ALL 0x11 2055 #define HIDPP_FF_DOWNLOAD_EFFECT 0x21 2056 #define HIDPP_FF_SET_EFFECT_STATE 0x31 2057 #define HIDPP_FF_DESTROY_EFFECT 0x41 2058 #define HIDPP_FF_GET_APERTURE 0x51 2059 #define HIDPP_FF_SET_APERTURE 0x61 2060 #define HIDPP_FF_GET_GLOBAL_GAINS 0x71 2061 #define HIDPP_FF_SET_GLOBAL_GAINS 0x81 2062 2063 #define HIDPP_FF_EFFECT_STATE_GET 0x00 2064 #define HIDPP_FF_EFFECT_STATE_STOP 0x01 2065 #define HIDPP_FF_EFFECT_STATE_PLAY 0x02 2066 #define HIDPP_FF_EFFECT_STATE_PAUSE 0x03 2067 2068 #define HIDPP_FF_EFFECT_CONSTANT 0x00 2069 #define HIDPP_FF_EFFECT_PERIODIC_SINE 0x01 2070 #define HIDPP_FF_EFFECT_PERIODIC_SQUARE 0x02 2071 #define HIDPP_FF_EFFECT_PERIODIC_TRIANGLE 0x03 2072 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP 0x04 2073 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN 0x05 2074 #define HIDPP_FF_EFFECT_SPRING 0x06 2075 #define HIDPP_FF_EFFECT_DAMPER 0x07 2076 #define HIDPP_FF_EFFECT_FRICTION 0x08 2077 #define HIDPP_FF_EFFECT_INERTIA 0x09 2078 #define HIDPP_FF_EFFECT_RAMP 0x0A 2079 2080 #define HIDPP_FF_EFFECT_AUTOSTART 0x80 2081 2082 #define HIDPP_FF_EFFECTID_NONE -1 2083 #define HIDPP_FF_EFFECTID_AUTOCENTER -2 2084 #define HIDPP_AUTOCENTER_PARAMS_LENGTH 18 2085 2086 #define HIDPP_FF_MAX_PARAMS 20 2087 #define HIDPP_FF_RESERVED_SLOTS 1 2088 2089 struct hidpp_ff_private_data { 2090 struct hidpp_device *hidpp; 2091 u8 feature_index; 2092 u8 version; 2093 u16 gain; 2094 s16 range; 2095 u8 slot_autocenter; 2096 u8 num_effects; 2097 int *effect_ids; 2098 struct workqueue_struct *wq; 2099 atomic_t workqueue_size; 2100 }; 2101 2102 struct hidpp_ff_work_data { 2103 struct work_struct work; 2104 struct hidpp_ff_private_data *data; 2105 int effect_id; 2106 u8 command; 2107 u8 params[HIDPP_FF_MAX_PARAMS]; 2108 u8 size; 2109 }; 2110 2111 static const signed short hidpp_ff_effects[] = { 2112 FF_CONSTANT, 2113 FF_PERIODIC, 2114 FF_SINE, 2115 FF_SQUARE, 2116 FF_SAW_UP, 2117 FF_SAW_DOWN, 2118 FF_TRIANGLE, 2119 FF_SPRING, 2120 FF_DAMPER, 2121 FF_AUTOCENTER, 2122 FF_GAIN, 2123 -1 2124 }; 2125 2126 static const signed short hidpp_ff_effects_v2[] = { 2127 FF_RAMP, 2128 FF_FRICTION, 2129 FF_INERTIA, 2130 -1 2131 }; 2132 2133 static const u8 HIDPP_FF_CONDITION_CMDS[] = { 2134 HIDPP_FF_EFFECT_SPRING, 2135 HIDPP_FF_EFFECT_FRICTION, 2136 HIDPP_FF_EFFECT_DAMPER, 2137 HIDPP_FF_EFFECT_INERTIA 2138 }; 2139 2140 static const char *HIDPP_FF_CONDITION_NAMES[] = { 2141 "spring", 2142 "friction", 2143 "damper", 2144 "inertia" 2145 }; 2146 2147 2148 static u8 hidpp_ff_find_effect(struct hidpp_ff_private_data *data, int effect_id) 2149 { 2150 int i; 2151 2152 for (i = 0; i < data->num_effects; i++) 2153 if (data->effect_ids[i] == effect_id) 2154 return i+1; 2155 2156 return 0; 2157 } 2158 2159 static void hidpp_ff_work_handler(struct work_struct *w) 2160 { 2161 struct hidpp_ff_work_data *wd = container_of(w, struct hidpp_ff_work_data, work); 2162 struct hidpp_ff_private_data *data = wd->data; 2163 struct hidpp_report response; 2164 u8 slot; 2165 int ret; 2166 2167 /* add slot number if needed */ 2168 switch (wd->effect_id) { 2169 case HIDPP_FF_EFFECTID_AUTOCENTER: 2170 wd->params[0] = data->slot_autocenter; 2171 break; 2172 case HIDPP_FF_EFFECTID_NONE: 2173 /* leave slot as zero */ 2174 break; 2175 default: 2176 /* find current slot for effect */ 2177 wd->params[0] = hidpp_ff_find_effect(data, wd->effect_id); 2178 break; 2179 } 2180 2181 /* send command and wait for reply */ 2182 ret = hidpp_send_fap_command_sync(data->hidpp, data->feature_index, 2183 wd->command, wd->params, wd->size, &response); 2184 2185 if (ret) { 2186 hid_err(data->hidpp->hid_dev, "Failed to send command to device!\n"); 2187 goto out; 2188 } 2189 2190 /* parse return data */ 2191 switch (wd->command) { 2192 case HIDPP_FF_DOWNLOAD_EFFECT: 2193 slot = response.fap.params[0]; 2194 if (slot > 0 && slot <= data->num_effects) { 2195 if (wd->effect_id >= 0) 2196 /* regular effect uploaded */ 2197 data->effect_ids[slot-1] = wd->effect_id; 2198 else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER) 2199 /* autocenter spring uploaded */ 2200 data->slot_autocenter = slot; 2201 } 2202 break; 2203 case HIDPP_FF_DESTROY_EFFECT: 2204 if (wd->effect_id >= 0) 2205 /* regular effect destroyed */ 2206 data->effect_ids[wd->params[0]-1] = -1; 2207 else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER) 2208 /* autocenter spring destoyed */ 2209 data->slot_autocenter = 0; 2210 break; 2211 case HIDPP_FF_SET_GLOBAL_GAINS: 2212 data->gain = (wd->params[0] << 8) + wd->params[1]; 2213 break; 2214 case HIDPP_FF_SET_APERTURE: 2215 data->range = (wd->params[0] << 8) + wd->params[1]; 2216 break; 2217 default: 2218 /* no action needed */ 2219 break; 2220 } 2221 2222 out: 2223 atomic_dec(&data->workqueue_size); 2224 kfree(wd); 2225 } 2226 2227 static int hidpp_ff_queue_work(struct hidpp_ff_private_data *data, int effect_id, u8 command, u8 *params, u8 size) 2228 { 2229 struct hidpp_ff_work_data *wd = kzalloc(sizeof(*wd), GFP_KERNEL); 2230 int s; 2231 2232 if (!wd) 2233 return -ENOMEM; 2234 2235 INIT_WORK(&wd->work, hidpp_ff_work_handler); 2236 2237 wd->data = data; 2238 wd->effect_id = effect_id; 2239 wd->command = command; 2240 wd->size = size; 2241 memcpy(wd->params, params, size); 2242 2243 atomic_inc(&data->workqueue_size); 2244 queue_work(data->wq, &wd->work); 2245 2246 /* warn about excessive queue size */ 2247 s = atomic_read(&data->workqueue_size); 2248 if (s >= 20 && s % 20 == 0) 2249 hid_warn(data->hidpp->hid_dev, "Force feedback command queue contains %d commands, causing substantial delays!", s); 2250 2251 return 0; 2252 } 2253 2254 static int hidpp_ff_upload_effect(struct input_dev *dev, struct ff_effect *effect, struct ff_effect *old) 2255 { 2256 struct hidpp_ff_private_data *data = dev->ff->private; 2257 u8 params[20]; 2258 u8 size; 2259 int force; 2260 2261 /* set common parameters */ 2262 params[2] = effect->replay.length >> 8; 2263 params[3] = effect->replay.length & 255; 2264 params[4] = effect->replay.delay >> 8; 2265 params[5] = effect->replay.delay & 255; 2266 2267 switch (effect->type) { 2268 case FF_CONSTANT: 2269 force = (effect->u.constant.level * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 2270 params[1] = HIDPP_FF_EFFECT_CONSTANT; 2271 params[6] = force >> 8; 2272 params[7] = force & 255; 2273 params[8] = effect->u.constant.envelope.attack_level >> 7; 2274 params[9] = effect->u.constant.envelope.attack_length >> 8; 2275 params[10] = effect->u.constant.envelope.attack_length & 255; 2276 params[11] = effect->u.constant.envelope.fade_level >> 7; 2277 params[12] = effect->u.constant.envelope.fade_length >> 8; 2278 params[13] = effect->u.constant.envelope.fade_length & 255; 2279 size = 14; 2280 dbg_hid("Uploading constant force level=%d in dir %d = %d\n", 2281 effect->u.constant.level, 2282 effect->direction, force); 2283 dbg_hid(" envelope attack=(%d, %d ms) fade=(%d, %d ms)\n", 2284 effect->u.constant.envelope.attack_level, 2285 effect->u.constant.envelope.attack_length, 2286 effect->u.constant.envelope.fade_level, 2287 effect->u.constant.envelope.fade_length); 2288 break; 2289 case FF_PERIODIC: 2290 { 2291 switch (effect->u.periodic.waveform) { 2292 case FF_SINE: 2293 params[1] = HIDPP_FF_EFFECT_PERIODIC_SINE; 2294 break; 2295 case FF_SQUARE: 2296 params[1] = HIDPP_FF_EFFECT_PERIODIC_SQUARE; 2297 break; 2298 case FF_SAW_UP: 2299 params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP; 2300 break; 2301 case FF_SAW_DOWN: 2302 params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN; 2303 break; 2304 case FF_TRIANGLE: 2305 params[1] = HIDPP_FF_EFFECT_PERIODIC_TRIANGLE; 2306 break; 2307 default: 2308 hid_err(data->hidpp->hid_dev, "Unexpected periodic waveform type %i!\n", effect->u.periodic.waveform); 2309 return -EINVAL; 2310 } 2311 force = (effect->u.periodic.magnitude * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 2312 params[6] = effect->u.periodic.magnitude >> 8; 2313 params[7] = effect->u.periodic.magnitude & 255; 2314 params[8] = effect->u.periodic.offset >> 8; 2315 params[9] = effect->u.periodic.offset & 255; 2316 params[10] = effect->u.periodic.period >> 8; 2317 params[11] = effect->u.periodic.period & 255; 2318 params[12] = effect->u.periodic.phase >> 8; 2319 params[13] = effect->u.periodic.phase & 255; 2320 params[14] = effect->u.periodic.envelope.attack_level >> 7; 2321 params[15] = effect->u.periodic.envelope.attack_length >> 8; 2322 params[16] = effect->u.periodic.envelope.attack_length & 255; 2323 params[17] = effect->u.periodic.envelope.fade_level >> 7; 2324 params[18] = effect->u.periodic.envelope.fade_length >> 8; 2325 params[19] = effect->u.periodic.envelope.fade_length & 255; 2326 size = 20; 2327 dbg_hid("Uploading periodic force mag=%d/dir=%d, offset=%d, period=%d ms, phase=%d\n", 2328 effect->u.periodic.magnitude, effect->direction, 2329 effect->u.periodic.offset, 2330 effect->u.periodic.period, 2331 effect->u.periodic.phase); 2332 dbg_hid(" envelope attack=(%d, %d ms) fade=(%d, %d ms)\n", 2333 effect->u.periodic.envelope.attack_level, 2334 effect->u.periodic.envelope.attack_length, 2335 effect->u.periodic.envelope.fade_level, 2336 effect->u.periodic.envelope.fade_length); 2337 break; 2338 } 2339 case FF_RAMP: 2340 params[1] = HIDPP_FF_EFFECT_RAMP; 2341 force = (effect->u.ramp.start_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 2342 params[6] = force >> 8; 2343 params[7] = force & 255; 2344 force = (effect->u.ramp.end_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 2345 params[8] = force >> 8; 2346 params[9] = force & 255; 2347 params[10] = effect->u.ramp.envelope.attack_level >> 7; 2348 params[11] = effect->u.ramp.envelope.attack_length >> 8; 2349 params[12] = effect->u.ramp.envelope.attack_length & 255; 2350 params[13] = effect->u.ramp.envelope.fade_level >> 7; 2351 params[14] = effect->u.ramp.envelope.fade_length >> 8; 2352 params[15] = effect->u.ramp.envelope.fade_length & 255; 2353 size = 16; 2354 dbg_hid("Uploading ramp force level=%d -> %d in dir %d = %d\n", 2355 effect->u.ramp.start_level, 2356 effect->u.ramp.end_level, 2357 effect->direction, force); 2358 dbg_hid(" envelope attack=(%d, %d ms) fade=(%d, %d ms)\n", 2359 effect->u.ramp.envelope.attack_level, 2360 effect->u.ramp.envelope.attack_length, 2361 effect->u.ramp.envelope.fade_level, 2362 effect->u.ramp.envelope.fade_length); 2363 break; 2364 case FF_FRICTION: 2365 case FF_INERTIA: 2366 case FF_SPRING: 2367 case FF_DAMPER: 2368 params[1] = HIDPP_FF_CONDITION_CMDS[effect->type - FF_SPRING]; 2369 params[6] = effect->u.condition[0].left_saturation >> 9; 2370 params[7] = (effect->u.condition[0].left_saturation >> 1) & 255; 2371 params[8] = effect->u.condition[0].left_coeff >> 8; 2372 params[9] = effect->u.condition[0].left_coeff & 255; 2373 params[10] = effect->u.condition[0].deadband >> 9; 2374 params[11] = (effect->u.condition[0].deadband >> 1) & 255; 2375 params[12] = effect->u.condition[0].center >> 8; 2376 params[13] = effect->u.condition[0].center & 255; 2377 params[14] = effect->u.condition[0].right_coeff >> 8; 2378 params[15] = effect->u.condition[0].right_coeff & 255; 2379 params[16] = effect->u.condition[0].right_saturation >> 9; 2380 params[17] = (effect->u.condition[0].right_saturation >> 1) & 255; 2381 size = 18; 2382 dbg_hid("Uploading %s force left coeff=%d, left sat=%d, right coeff=%d, right sat=%d\n", 2383 HIDPP_FF_CONDITION_NAMES[effect->type - FF_SPRING], 2384 effect->u.condition[0].left_coeff, 2385 effect->u.condition[0].left_saturation, 2386 effect->u.condition[0].right_coeff, 2387 effect->u.condition[0].right_saturation); 2388 dbg_hid(" deadband=%d, center=%d\n", 2389 effect->u.condition[0].deadband, 2390 effect->u.condition[0].center); 2391 break; 2392 default: 2393 hid_err(data->hidpp->hid_dev, "Unexpected force type %i!\n", effect->type); 2394 return -EINVAL; 2395 } 2396 2397 return hidpp_ff_queue_work(data, effect->id, HIDPP_FF_DOWNLOAD_EFFECT, params, size); 2398 } 2399 2400 static int hidpp_ff_playback(struct input_dev *dev, int effect_id, int value) 2401 { 2402 struct hidpp_ff_private_data *data = dev->ff->private; 2403 u8 params[2]; 2404 2405 params[1] = value ? HIDPP_FF_EFFECT_STATE_PLAY : HIDPP_FF_EFFECT_STATE_STOP; 2406 2407 dbg_hid("St%sing playback of effect %d.\n", value?"art":"opp", effect_id); 2408 2409 return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_SET_EFFECT_STATE, params, ARRAY_SIZE(params)); 2410 } 2411 2412 static int hidpp_ff_erase_effect(struct input_dev *dev, int effect_id) 2413 { 2414 struct hidpp_ff_private_data *data = dev->ff->private; 2415 u8 slot = 0; 2416 2417 dbg_hid("Erasing effect %d.\n", effect_id); 2418 2419 return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_DESTROY_EFFECT, &slot, 1); 2420 } 2421 2422 static void hidpp_ff_set_autocenter(struct input_dev *dev, u16 magnitude) 2423 { 2424 struct hidpp_ff_private_data *data = dev->ff->private; 2425 u8 params[HIDPP_AUTOCENTER_PARAMS_LENGTH]; 2426 2427 dbg_hid("Setting autocenter to %d.\n", magnitude); 2428 2429 /* start a standard spring effect */ 2430 params[1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART; 2431 /* zero delay and duration */ 2432 params[2] = params[3] = params[4] = params[5] = 0; 2433 /* set coeff to 25% of saturation */ 2434 params[8] = params[14] = magnitude >> 11; 2435 params[9] = params[15] = (magnitude >> 3) & 255; 2436 params[6] = params[16] = magnitude >> 9; 2437 params[7] = params[17] = (magnitude >> 1) & 255; 2438 /* zero deadband and center */ 2439 params[10] = params[11] = params[12] = params[13] = 0; 2440 2441 hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_AUTOCENTER, HIDPP_FF_DOWNLOAD_EFFECT, params, ARRAY_SIZE(params)); 2442 } 2443 2444 static void hidpp_ff_set_gain(struct input_dev *dev, u16 gain) 2445 { 2446 struct hidpp_ff_private_data *data = dev->ff->private; 2447 u8 params[4]; 2448 2449 dbg_hid("Setting gain to %d.\n", gain); 2450 2451 params[0] = gain >> 8; 2452 params[1] = gain & 255; 2453 params[2] = 0; /* no boost */ 2454 params[3] = 0; 2455 2456 hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_NONE, HIDPP_FF_SET_GLOBAL_GAINS, params, ARRAY_SIZE(params)); 2457 } 2458 2459 static ssize_t hidpp_ff_range_show(struct device *dev, struct device_attribute *attr, char *buf) 2460 { 2461 struct hid_device *hid = to_hid_device(dev); 2462 struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list); 2463 struct input_dev *idev = hidinput->input; 2464 struct hidpp_ff_private_data *data = idev->ff->private; 2465 2466 return scnprintf(buf, PAGE_SIZE, "%u\n", data->range); 2467 } 2468 2469 static ssize_t hidpp_ff_range_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) 2470 { 2471 struct hid_device *hid = to_hid_device(dev); 2472 struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list); 2473 struct input_dev *idev = hidinput->input; 2474 struct hidpp_ff_private_data *data = idev->ff->private; 2475 u8 params[2]; 2476 int range = simple_strtoul(buf, NULL, 10); 2477 2478 range = clamp(range, 180, 900); 2479 2480 params[0] = range >> 8; 2481 params[1] = range & 0x00FF; 2482 2483 hidpp_ff_queue_work(data, -1, HIDPP_FF_SET_APERTURE, params, ARRAY_SIZE(params)); 2484 2485 return count; 2486 } 2487 2488 static DEVICE_ATTR(range, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH, hidpp_ff_range_show, hidpp_ff_range_store); 2489 2490 static void hidpp_ff_destroy(struct ff_device *ff) 2491 { 2492 struct hidpp_ff_private_data *data = ff->private; 2493 struct hid_device *hid = data->hidpp->hid_dev; 2494 2495 hid_info(hid, "Unloading HID++ force feedback.\n"); 2496 2497 device_remove_file(&hid->dev, &dev_attr_range); 2498 destroy_workqueue(data->wq); 2499 kfree(data->effect_ids); 2500 } 2501 2502 static int hidpp_ff_init(struct hidpp_device *hidpp, 2503 struct hidpp_ff_private_data *data) 2504 { 2505 struct hid_device *hid = hidpp->hid_dev; 2506 struct hid_input *hidinput; 2507 struct input_dev *dev; 2508 const struct usb_device_descriptor *udesc = &(hid_to_usb_dev(hid)->descriptor); 2509 const u16 bcdDevice = le16_to_cpu(udesc->bcdDevice); 2510 struct ff_device *ff; 2511 int error, j, num_slots = data->num_effects; 2512 u8 version; 2513 2514 if (list_empty(&hid->inputs)) { 2515 hid_err(hid, "no inputs found\n"); 2516 return -ENODEV; 2517 } 2518 hidinput = list_entry(hid->inputs.next, struct hid_input, list); 2519 dev = hidinput->input; 2520 2521 if (!dev) { 2522 hid_err(hid, "Struct input_dev not set!\n"); 2523 return -EINVAL; 2524 } 2525 2526 /* Get firmware release */ 2527 version = bcdDevice & 255; 2528 2529 /* Set supported force feedback capabilities */ 2530 for (j = 0; hidpp_ff_effects[j] >= 0; j++) 2531 set_bit(hidpp_ff_effects[j], dev->ffbit); 2532 if (version > 1) 2533 for (j = 0; hidpp_ff_effects_v2[j] >= 0; j++) 2534 set_bit(hidpp_ff_effects_v2[j], dev->ffbit); 2535 2536 error = input_ff_create(dev, num_slots); 2537 2538 if (error) { 2539 hid_err(dev, "Failed to create FF device!\n"); 2540 return error; 2541 } 2542 /* 2543 * Create a copy of passed data, so we can transfer memory 2544 * ownership to FF core 2545 */ 2546 data = kmemdup(data, sizeof(*data), GFP_KERNEL); 2547 if (!data) 2548 return -ENOMEM; 2549 data->effect_ids = kcalloc(num_slots, sizeof(int), GFP_KERNEL); 2550 if (!data->effect_ids) { 2551 kfree(data); 2552 return -ENOMEM; 2553 } 2554 data->wq = create_singlethread_workqueue("hidpp-ff-sendqueue"); 2555 if (!data->wq) { 2556 kfree(data->effect_ids); 2557 kfree(data); 2558 return -ENOMEM; 2559 } 2560 2561 data->hidpp = hidpp; 2562 data->version = version; 2563 for (j = 0; j < num_slots; j++) 2564 data->effect_ids[j] = -1; 2565 2566 ff = dev->ff; 2567 ff->private = data; 2568 2569 ff->upload = hidpp_ff_upload_effect; 2570 ff->erase = hidpp_ff_erase_effect; 2571 ff->playback = hidpp_ff_playback; 2572 ff->set_gain = hidpp_ff_set_gain; 2573 ff->set_autocenter = hidpp_ff_set_autocenter; 2574 ff->destroy = hidpp_ff_destroy; 2575 2576 /* Create sysfs interface */ 2577 error = device_create_file(&(hidpp->hid_dev->dev), &dev_attr_range); 2578 if (error) 2579 hid_warn(hidpp->hid_dev, "Unable to create sysfs interface for \"range\", errno %d!\n", error); 2580 2581 /* init the hardware command queue */ 2582 atomic_set(&data->workqueue_size, 0); 2583 2584 hid_info(hid, "Force feedback support loaded (firmware release %d).\n", 2585 version); 2586 2587 return 0; 2588 } 2589 2590 /* ************************************************************************** */ 2591 /* */ 2592 /* Device Support */ 2593 /* */ 2594 /* ************************************************************************** */ 2595 2596 /* -------------------------------------------------------------------------- */ 2597 /* Touchpad HID++ devices */ 2598 /* -------------------------------------------------------------------------- */ 2599 2600 #define WTP_MANUAL_RESOLUTION 39 2601 2602 struct wtp_data { 2603 u16 x_size, y_size; 2604 u8 finger_count; 2605 u8 mt_feature_index; 2606 u8 button_feature_index; 2607 u8 maxcontacts; 2608 bool flip_y; 2609 unsigned int resolution; 2610 }; 2611 2612 static int wtp_input_mapping(struct hid_device *hdev, struct hid_input *hi, 2613 struct hid_field *field, struct hid_usage *usage, 2614 unsigned long **bit, int *max) 2615 { 2616 return -1; 2617 } 2618 2619 static void wtp_populate_input(struct hidpp_device *hidpp, 2620 struct input_dev *input_dev) 2621 { 2622 struct wtp_data *wd = hidpp->private_data; 2623 2624 __set_bit(EV_ABS, input_dev->evbit); 2625 __set_bit(EV_KEY, input_dev->evbit); 2626 __clear_bit(EV_REL, input_dev->evbit); 2627 __clear_bit(EV_LED, input_dev->evbit); 2628 2629 input_set_abs_params(input_dev, ABS_MT_POSITION_X, 0, wd->x_size, 0, 0); 2630 input_abs_set_res(input_dev, ABS_MT_POSITION_X, wd->resolution); 2631 input_set_abs_params(input_dev, ABS_MT_POSITION_Y, 0, wd->y_size, 0, 0); 2632 input_abs_set_res(input_dev, ABS_MT_POSITION_Y, wd->resolution); 2633 2634 /* Max pressure is not given by the devices, pick one */ 2635 input_set_abs_params(input_dev, ABS_MT_PRESSURE, 0, 50, 0, 0); 2636 2637 input_set_capability(input_dev, EV_KEY, BTN_LEFT); 2638 2639 if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) 2640 input_set_capability(input_dev, EV_KEY, BTN_RIGHT); 2641 else 2642 __set_bit(INPUT_PROP_BUTTONPAD, input_dev->propbit); 2643 2644 input_mt_init_slots(input_dev, wd->maxcontacts, INPUT_MT_POINTER | 2645 INPUT_MT_DROP_UNUSED); 2646 } 2647 2648 static void wtp_touch_event(struct hidpp_device *hidpp, 2649 struct hidpp_touchpad_raw_xy_finger *touch_report) 2650 { 2651 struct wtp_data *wd = hidpp->private_data; 2652 int slot; 2653 2654 if (!touch_report->finger_id || touch_report->contact_type) 2655 /* no actual data */ 2656 return; 2657 2658 slot = input_mt_get_slot_by_key(hidpp->input, touch_report->finger_id); 2659 2660 input_mt_slot(hidpp->input, slot); 2661 input_mt_report_slot_state(hidpp->input, MT_TOOL_FINGER, 2662 touch_report->contact_status); 2663 if (touch_report->contact_status) { 2664 input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_X, 2665 touch_report->x); 2666 input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_Y, 2667 wd->flip_y ? wd->y_size - touch_report->y : 2668 touch_report->y); 2669 input_event(hidpp->input, EV_ABS, ABS_MT_PRESSURE, 2670 touch_report->area); 2671 } 2672 } 2673 2674 static void wtp_send_raw_xy_event(struct hidpp_device *hidpp, 2675 struct hidpp_touchpad_raw_xy *raw) 2676 { 2677 int i; 2678 2679 for (i = 0; i < 2; i++) 2680 wtp_touch_event(hidpp, &(raw->fingers[i])); 2681 2682 if (raw->end_of_frame && 2683 !(hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS)) 2684 input_event(hidpp->input, EV_KEY, BTN_LEFT, raw->button); 2685 2686 if (raw->end_of_frame || raw->finger_count <= 2) { 2687 input_mt_sync_frame(hidpp->input); 2688 input_sync(hidpp->input); 2689 } 2690 } 2691 2692 static int wtp_mouse_raw_xy_event(struct hidpp_device *hidpp, u8 *data) 2693 { 2694 struct wtp_data *wd = hidpp->private_data; 2695 u8 c1_area = ((data[7] & 0xf) * (data[7] & 0xf) + 2696 (data[7] >> 4) * (data[7] >> 4)) / 2; 2697 u8 c2_area = ((data[13] & 0xf) * (data[13] & 0xf) + 2698 (data[13] >> 4) * (data[13] >> 4)) / 2; 2699 struct hidpp_touchpad_raw_xy raw = { 2700 .timestamp = data[1], 2701 .fingers = { 2702 { 2703 .contact_type = 0, 2704 .contact_status = !!data[7], 2705 .x = get_unaligned_le16(&data[3]), 2706 .y = get_unaligned_le16(&data[5]), 2707 .z = c1_area, 2708 .area = c1_area, 2709 .finger_id = data[2], 2710 }, { 2711 .contact_type = 0, 2712 .contact_status = !!data[13], 2713 .x = get_unaligned_le16(&data[9]), 2714 .y = get_unaligned_le16(&data[11]), 2715 .z = c2_area, 2716 .area = c2_area, 2717 .finger_id = data[8], 2718 } 2719 }, 2720 .finger_count = wd->maxcontacts, 2721 .spurious_flag = 0, 2722 .end_of_frame = (data[0] >> 7) == 0, 2723 .button = data[0] & 0x01, 2724 }; 2725 2726 wtp_send_raw_xy_event(hidpp, &raw); 2727 2728 return 1; 2729 } 2730 2731 static int wtp_raw_event(struct hid_device *hdev, u8 *data, int size) 2732 { 2733 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2734 struct wtp_data *wd = hidpp->private_data; 2735 struct hidpp_report *report = (struct hidpp_report *)data; 2736 struct hidpp_touchpad_raw_xy raw; 2737 2738 if (!wd || !hidpp->input) 2739 return 1; 2740 2741 switch (data[0]) { 2742 case 0x02: 2743 if (size < 2) { 2744 hid_err(hdev, "Received HID report of bad size (%d)", 2745 size); 2746 return 1; 2747 } 2748 if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) { 2749 input_event(hidpp->input, EV_KEY, BTN_LEFT, 2750 !!(data[1] & 0x01)); 2751 input_event(hidpp->input, EV_KEY, BTN_RIGHT, 2752 !!(data[1] & 0x02)); 2753 input_sync(hidpp->input); 2754 return 0; 2755 } else { 2756 if (size < 21) 2757 return 1; 2758 return wtp_mouse_raw_xy_event(hidpp, &data[7]); 2759 } 2760 case REPORT_ID_HIDPP_LONG: 2761 /* size is already checked in hidpp_raw_event. */ 2762 if ((report->fap.feature_index != wd->mt_feature_index) || 2763 (report->fap.funcindex_clientid != EVENT_TOUCHPAD_RAW_XY)) 2764 return 1; 2765 hidpp_touchpad_raw_xy_event(hidpp, data + 4, &raw); 2766 2767 wtp_send_raw_xy_event(hidpp, &raw); 2768 return 0; 2769 } 2770 2771 return 0; 2772 } 2773 2774 static int wtp_get_config(struct hidpp_device *hidpp) 2775 { 2776 struct wtp_data *wd = hidpp->private_data; 2777 struct hidpp_touchpad_raw_info raw_info = {0}; 2778 u8 feature_type; 2779 int ret; 2780 2781 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_TOUCHPAD_RAW_XY, 2782 &wd->mt_feature_index, &feature_type); 2783 if (ret) 2784 /* means that the device is not powered up */ 2785 return ret; 2786 2787 ret = hidpp_touchpad_get_raw_info(hidpp, wd->mt_feature_index, 2788 &raw_info); 2789 if (ret) 2790 return ret; 2791 2792 wd->x_size = raw_info.x_size; 2793 wd->y_size = raw_info.y_size; 2794 wd->maxcontacts = raw_info.maxcontacts; 2795 wd->flip_y = raw_info.origin == TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT; 2796 wd->resolution = raw_info.res; 2797 if (!wd->resolution) 2798 wd->resolution = WTP_MANUAL_RESOLUTION; 2799 2800 return 0; 2801 } 2802 2803 static int wtp_allocate(struct hid_device *hdev, const struct hid_device_id *id) 2804 { 2805 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2806 struct wtp_data *wd; 2807 2808 wd = devm_kzalloc(&hdev->dev, sizeof(struct wtp_data), 2809 GFP_KERNEL); 2810 if (!wd) 2811 return -ENOMEM; 2812 2813 hidpp->private_data = wd; 2814 2815 return 0; 2816 }; 2817 2818 static int wtp_connect(struct hid_device *hdev, bool connected) 2819 { 2820 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2821 struct wtp_data *wd = hidpp->private_data; 2822 int ret; 2823 2824 if (!wd->x_size) { 2825 ret = wtp_get_config(hidpp); 2826 if (ret) { 2827 hid_err(hdev, "Can not get wtp config: %d\n", ret); 2828 return ret; 2829 } 2830 } 2831 2832 return hidpp_touchpad_set_raw_report_state(hidpp, wd->mt_feature_index, 2833 true, true); 2834 } 2835 2836 /* ------------------------------------------------------------------------- */ 2837 /* Logitech M560 devices */ 2838 /* ------------------------------------------------------------------------- */ 2839 2840 /* 2841 * Logitech M560 protocol overview 2842 * 2843 * The Logitech M560 mouse, is designed for windows 8. When the middle and/or 2844 * the sides buttons are pressed, it sends some keyboard keys events 2845 * instead of buttons ones. 2846 * To complicate things further, the middle button keys sequence 2847 * is different from the odd press and the even press. 2848 * 2849 * forward button -> Super_R 2850 * backward button -> Super_L+'d' (press only) 2851 * middle button -> 1st time: Alt_L+SuperL+XF86TouchpadOff (press only) 2852 * 2nd time: left-click (press only) 2853 * NB: press-only means that when the button is pressed, the 2854 * KeyPress/ButtonPress and KeyRelease/ButtonRelease events are generated 2855 * together sequentially; instead when the button is released, no event is 2856 * generated ! 2857 * 2858 * With the command 2859 * 10<xx>0a 3500af03 (where <xx> is the mouse id), 2860 * the mouse reacts differently: 2861 * - it never sends a keyboard key event 2862 * - for the three mouse button it sends: 2863 * middle button press 11<xx>0a 3500af00... 2864 * side 1 button (forward) press 11<xx>0a 3500b000... 2865 * side 2 button (backward) press 11<xx>0a 3500ae00... 2866 * middle/side1/side2 button release 11<xx>0a 35000000... 2867 */ 2868 2869 static const u8 m560_config_parameter[] = {0x00, 0xaf, 0x03}; 2870 2871 /* how buttons are mapped in the report */ 2872 #define M560_MOUSE_BTN_LEFT 0x01 2873 #define M560_MOUSE_BTN_RIGHT 0x02 2874 #define M560_MOUSE_BTN_WHEEL_LEFT 0x08 2875 #define M560_MOUSE_BTN_WHEEL_RIGHT 0x10 2876 2877 #define M560_SUB_ID 0x0a 2878 #define M560_BUTTON_MODE_REGISTER 0x35 2879 2880 static int m560_send_config_command(struct hid_device *hdev, bool connected) 2881 { 2882 struct hidpp_report response; 2883 struct hidpp_device *hidpp_dev; 2884 2885 hidpp_dev = hid_get_drvdata(hdev); 2886 2887 return hidpp_send_rap_command_sync( 2888 hidpp_dev, 2889 REPORT_ID_HIDPP_SHORT, 2890 M560_SUB_ID, 2891 M560_BUTTON_MODE_REGISTER, 2892 (u8 *)m560_config_parameter, 2893 sizeof(m560_config_parameter), 2894 &response 2895 ); 2896 } 2897 2898 static int m560_raw_event(struct hid_device *hdev, u8 *data, int size) 2899 { 2900 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2901 2902 /* sanity check */ 2903 if (!hidpp->input) { 2904 hid_err(hdev, "error in parameter\n"); 2905 return -EINVAL; 2906 } 2907 2908 if (size < 7) { 2909 hid_err(hdev, "error in report\n"); 2910 return 0; 2911 } 2912 2913 if (data[0] == REPORT_ID_HIDPP_LONG && 2914 data[2] == M560_SUB_ID && data[6] == 0x00) { 2915 /* 2916 * m560 mouse report for middle, forward and backward button 2917 * 2918 * data[0] = 0x11 2919 * data[1] = device-id 2920 * data[2] = 0x0a 2921 * data[5] = 0xaf -> middle 2922 * 0xb0 -> forward 2923 * 0xae -> backward 2924 * 0x00 -> release all 2925 * data[6] = 0x00 2926 */ 2927 2928 switch (data[5]) { 2929 case 0xaf: 2930 input_report_key(hidpp->input, BTN_MIDDLE, 1); 2931 break; 2932 case 0xb0: 2933 input_report_key(hidpp->input, BTN_FORWARD, 1); 2934 break; 2935 case 0xae: 2936 input_report_key(hidpp->input, BTN_BACK, 1); 2937 break; 2938 case 0x00: 2939 input_report_key(hidpp->input, BTN_BACK, 0); 2940 input_report_key(hidpp->input, BTN_FORWARD, 0); 2941 input_report_key(hidpp->input, BTN_MIDDLE, 0); 2942 break; 2943 default: 2944 hid_err(hdev, "error in report\n"); 2945 return 0; 2946 } 2947 input_sync(hidpp->input); 2948 2949 } else if (data[0] == 0x02) { 2950 /* 2951 * Logitech M560 mouse report 2952 * 2953 * data[0] = type (0x02) 2954 * data[1..2] = buttons 2955 * data[3..5] = xy 2956 * data[6] = wheel 2957 */ 2958 2959 int v; 2960 2961 input_report_key(hidpp->input, BTN_LEFT, 2962 !!(data[1] & M560_MOUSE_BTN_LEFT)); 2963 input_report_key(hidpp->input, BTN_RIGHT, 2964 !!(data[1] & M560_MOUSE_BTN_RIGHT)); 2965 2966 if (data[1] & M560_MOUSE_BTN_WHEEL_LEFT) { 2967 input_report_rel(hidpp->input, REL_HWHEEL, -1); 2968 input_report_rel(hidpp->input, REL_HWHEEL_HI_RES, 2969 -120); 2970 } else if (data[1] & M560_MOUSE_BTN_WHEEL_RIGHT) { 2971 input_report_rel(hidpp->input, REL_HWHEEL, 1); 2972 input_report_rel(hidpp->input, REL_HWHEEL_HI_RES, 2973 120); 2974 } 2975 2976 v = hid_snto32(hid_field_extract(hdev, data+3, 0, 12), 12); 2977 input_report_rel(hidpp->input, REL_X, v); 2978 2979 v = hid_snto32(hid_field_extract(hdev, data+3, 12, 12), 12); 2980 input_report_rel(hidpp->input, REL_Y, v); 2981 2982 v = hid_snto32(data[6], 8); 2983 if (v != 0) 2984 hidpp_scroll_counter_handle_scroll(hidpp->input, 2985 &hidpp->vertical_wheel_counter, v); 2986 2987 input_sync(hidpp->input); 2988 } 2989 2990 return 1; 2991 } 2992 2993 static void m560_populate_input(struct hidpp_device *hidpp, 2994 struct input_dev *input_dev) 2995 { 2996 __set_bit(EV_KEY, input_dev->evbit); 2997 __set_bit(BTN_MIDDLE, input_dev->keybit); 2998 __set_bit(BTN_RIGHT, input_dev->keybit); 2999 __set_bit(BTN_LEFT, input_dev->keybit); 3000 __set_bit(BTN_BACK, input_dev->keybit); 3001 __set_bit(BTN_FORWARD, input_dev->keybit); 3002 3003 __set_bit(EV_REL, input_dev->evbit); 3004 __set_bit(REL_X, input_dev->relbit); 3005 __set_bit(REL_Y, input_dev->relbit); 3006 __set_bit(REL_WHEEL, input_dev->relbit); 3007 __set_bit(REL_HWHEEL, input_dev->relbit); 3008 __set_bit(REL_WHEEL_HI_RES, input_dev->relbit); 3009 __set_bit(REL_HWHEEL_HI_RES, input_dev->relbit); 3010 } 3011 3012 static int m560_input_mapping(struct hid_device *hdev, struct hid_input *hi, 3013 struct hid_field *field, struct hid_usage *usage, 3014 unsigned long **bit, int *max) 3015 { 3016 return -1; 3017 } 3018 3019 /* ------------------------------------------------------------------------- */ 3020 /* Logitech K400 devices */ 3021 /* ------------------------------------------------------------------------- */ 3022 3023 /* 3024 * The Logitech K400 keyboard has an embedded touchpad which is seen 3025 * as a mouse from the OS point of view. There is a hardware shortcut to disable 3026 * tap-to-click but the setting is not remembered accross reset, annoying some 3027 * users. 3028 * 3029 * We can toggle this feature from the host by using the feature 0x6010: 3030 * Touchpad FW items 3031 */ 3032 3033 struct k400_private_data { 3034 u8 feature_index; 3035 }; 3036 3037 static int k400_disable_tap_to_click(struct hidpp_device *hidpp) 3038 { 3039 struct k400_private_data *k400 = hidpp->private_data; 3040 struct hidpp_touchpad_fw_items items = {}; 3041 int ret; 3042 u8 feature_type; 3043 3044 if (!k400->feature_index) { 3045 ret = hidpp_root_get_feature(hidpp, 3046 HIDPP_PAGE_TOUCHPAD_FW_ITEMS, 3047 &k400->feature_index, &feature_type); 3048 if (ret) 3049 /* means that the device is not powered up */ 3050 return ret; 3051 } 3052 3053 ret = hidpp_touchpad_fw_items_set(hidpp, k400->feature_index, &items); 3054 if (ret) 3055 return ret; 3056 3057 return 0; 3058 } 3059 3060 static int k400_allocate(struct hid_device *hdev) 3061 { 3062 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3063 struct k400_private_data *k400; 3064 3065 k400 = devm_kzalloc(&hdev->dev, sizeof(struct k400_private_data), 3066 GFP_KERNEL); 3067 if (!k400) 3068 return -ENOMEM; 3069 3070 hidpp->private_data = k400; 3071 3072 return 0; 3073 }; 3074 3075 static int k400_connect(struct hid_device *hdev, bool connected) 3076 { 3077 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3078 3079 if (!disable_tap_to_click) 3080 return 0; 3081 3082 return k400_disable_tap_to_click(hidpp); 3083 } 3084 3085 /* ------------------------------------------------------------------------- */ 3086 /* Logitech G920 Driving Force Racing Wheel for Xbox One */ 3087 /* ------------------------------------------------------------------------- */ 3088 3089 #define HIDPP_PAGE_G920_FORCE_FEEDBACK 0x8123 3090 3091 static int g920_ff_set_autocenter(struct hidpp_device *hidpp, 3092 struct hidpp_ff_private_data *data) 3093 { 3094 struct hidpp_report response; 3095 u8 params[HIDPP_AUTOCENTER_PARAMS_LENGTH] = { 3096 [1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART, 3097 }; 3098 int ret; 3099 3100 /* initialize with zero autocenter to get wheel in usable state */ 3101 3102 dbg_hid("Setting autocenter to 0.\n"); 3103 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 3104 HIDPP_FF_DOWNLOAD_EFFECT, 3105 params, ARRAY_SIZE(params), 3106 &response); 3107 if (ret) 3108 hid_warn(hidpp->hid_dev, "Failed to autocenter device!\n"); 3109 else 3110 data->slot_autocenter = response.fap.params[0]; 3111 3112 return ret; 3113 } 3114 3115 static int g920_get_config(struct hidpp_device *hidpp, 3116 struct hidpp_ff_private_data *data) 3117 { 3118 struct hidpp_report response; 3119 u8 feature_type; 3120 int ret; 3121 3122 memset(data, 0, sizeof(*data)); 3123 3124 /* Find feature and store for later use */ 3125 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_G920_FORCE_FEEDBACK, 3126 &data->feature_index, &feature_type); 3127 if (ret) 3128 return ret; 3129 3130 /* Read number of slots available in device */ 3131 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 3132 HIDPP_FF_GET_INFO, 3133 NULL, 0, 3134 &response); 3135 if (ret) { 3136 if (ret < 0) 3137 return ret; 3138 hid_err(hidpp->hid_dev, 3139 "%s: received protocol error 0x%02x\n", __func__, ret); 3140 return -EPROTO; 3141 } 3142 3143 data->num_effects = response.fap.params[0] - HIDPP_FF_RESERVED_SLOTS; 3144 3145 /* reset all forces */ 3146 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 3147 HIDPP_FF_RESET_ALL, 3148 NULL, 0, 3149 &response); 3150 if (ret) 3151 hid_warn(hidpp->hid_dev, "Failed to reset all forces!\n"); 3152 3153 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 3154 HIDPP_FF_GET_APERTURE, 3155 NULL, 0, 3156 &response); 3157 if (ret) { 3158 hid_warn(hidpp->hid_dev, 3159 "Failed to read range from device!\n"); 3160 } 3161 data->range = ret ? 3162 900 : get_unaligned_be16(&response.fap.params[0]); 3163 3164 /* Read the current gain values */ 3165 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 3166 HIDPP_FF_GET_GLOBAL_GAINS, 3167 NULL, 0, 3168 &response); 3169 if (ret) 3170 hid_warn(hidpp->hid_dev, 3171 "Failed to read gain values from device!\n"); 3172 data->gain = ret ? 3173 0xffff : get_unaligned_be16(&response.fap.params[0]); 3174 3175 /* ignore boost value at response.fap.params[2] */ 3176 3177 return g920_ff_set_autocenter(hidpp, data); 3178 } 3179 3180 /* -------------------------------------------------------------------------- */ 3181 /* Logitech Dinovo Mini keyboard with builtin touchpad */ 3182 /* -------------------------------------------------------------------------- */ 3183 #define DINOVO_MINI_PRODUCT_ID 0xb30c 3184 3185 static int lg_dinovo_input_mapping(struct hid_device *hdev, struct hid_input *hi, 3186 struct hid_field *field, struct hid_usage *usage, 3187 unsigned long **bit, int *max) 3188 { 3189 if ((usage->hid & HID_USAGE_PAGE) != HID_UP_LOGIVENDOR) 3190 return 0; 3191 3192 switch (usage->hid & HID_USAGE) { 3193 case 0x00d: lg_map_key_clear(KEY_MEDIA); break; 3194 default: 3195 return 0; 3196 } 3197 return 1; 3198 } 3199 3200 /* -------------------------------------------------------------------------- */ 3201 /* HID++1.0 devices which use HID++ reports for their wheels */ 3202 /* -------------------------------------------------------------------------- */ 3203 static int hidpp10_wheel_connect(struct hidpp_device *hidpp) 3204 { 3205 return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0, 3206 HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT, 3207 HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT); 3208 } 3209 3210 static int hidpp10_wheel_raw_event(struct hidpp_device *hidpp, 3211 u8 *data, int size) 3212 { 3213 s8 value, hvalue; 3214 3215 if (!hidpp->input) 3216 return -EINVAL; 3217 3218 if (size < 7) 3219 return 0; 3220 3221 if (data[0] != REPORT_ID_HIDPP_SHORT || data[2] != HIDPP_SUB_ID_ROLLER) 3222 return 0; 3223 3224 value = data[3]; 3225 hvalue = data[4]; 3226 3227 input_report_rel(hidpp->input, REL_WHEEL, value); 3228 input_report_rel(hidpp->input, REL_WHEEL_HI_RES, value * 120); 3229 input_report_rel(hidpp->input, REL_HWHEEL, hvalue); 3230 input_report_rel(hidpp->input, REL_HWHEEL_HI_RES, hvalue * 120); 3231 input_sync(hidpp->input); 3232 3233 return 1; 3234 } 3235 3236 static void hidpp10_wheel_populate_input(struct hidpp_device *hidpp, 3237 struct input_dev *input_dev) 3238 { 3239 __set_bit(EV_REL, input_dev->evbit); 3240 __set_bit(REL_WHEEL, input_dev->relbit); 3241 __set_bit(REL_WHEEL_HI_RES, input_dev->relbit); 3242 __set_bit(REL_HWHEEL, input_dev->relbit); 3243 __set_bit(REL_HWHEEL_HI_RES, input_dev->relbit); 3244 } 3245 3246 /* -------------------------------------------------------------------------- */ 3247 /* HID++1.0 mice which use HID++ reports for extra mouse buttons */ 3248 /* -------------------------------------------------------------------------- */ 3249 static int hidpp10_extra_mouse_buttons_connect(struct hidpp_device *hidpp) 3250 { 3251 return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0, 3252 HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT, 3253 HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT); 3254 } 3255 3256 static int hidpp10_extra_mouse_buttons_raw_event(struct hidpp_device *hidpp, 3257 u8 *data, int size) 3258 { 3259 int i; 3260 3261 if (!hidpp->input) 3262 return -EINVAL; 3263 3264 if (size < 7) 3265 return 0; 3266 3267 if (data[0] != REPORT_ID_HIDPP_SHORT || 3268 data[2] != HIDPP_SUB_ID_MOUSE_EXTRA_BTNS) 3269 return 0; 3270 3271 /* 3272 * Buttons are either delivered through the regular mouse report *or* 3273 * through the extra buttons report. At least for button 6 how it is 3274 * delivered differs per receiver firmware version. Even receivers with 3275 * the same usb-id show different behavior, so we handle both cases. 3276 */ 3277 for (i = 0; i < 8; i++) 3278 input_report_key(hidpp->input, BTN_MOUSE + i, 3279 (data[3] & (1 << i))); 3280 3281 /* Some mice report events on button 9+, use BTN_MISC */ 3282 for (i = 0; i < 8; i++) 3283 input_report_key(hidpp->input, BTN_MISC + i, 3284 (data[4] & (1 << i))); 3285 3286 input_sync(hidpp->input); 3287 return 1; 3288 } 3289 3290 static void hidpp10_extra_mouse_buttons_populate_input( 3291 struct hidpp_device *hidpp, struct input_dev *input_dev) 3292 { 3293 /* BTN_MOUSE - BTN_MOUSE+7 are set already by the descriptor */ 3294 __set_bit(BTN_0, input_dev->keybit); 3295 __set_bit(BTN_1, input_dev->keybit); 3296 __set_bit(BTN_2, input_dev->keybit); 3297 __set_bit(BTN_3, input_dev->keybit); 3298 __set_bit(BTN_4, input_dev->keybit); 3299 __set_bit(BTN_5, input_dev->keybit); 3300 __set_bit(BTN_6, input_dev->keybit); 3301 __set_bit(BTN_7, input_dev->keybit); 3302 } 3303 3304 /* -------------------------------------------------------------------------- */ 3305 /* HID++1.0 kbds which only report 0x10xx consumer usages through sub-id 0x03 */ 3306 /* -------------------------------------------------------------------------- */ 3307 3308 /* Find the consumer-page input report desc and change Maximums to 0x107f */ 3309 static u8 *hidpp10_consumer_keys_report_fixup(struct hidpp_device *hidpp, 3310 u8 *_rdesc, unsigned int *rsize) 3311 { 3312 /* Note 0 terminated so we can use strnstr to search for this. */ 3313 static const char consumer_rdesc_start[] = { 3314 0x05, 0x0C, /* USAGE_PAGE (Consumer Devices) */ 3315 0x09, 0x01, /* USAGE (Consumer Control) */ 3316 0xA1, 0x01, /* COLLECTION (Application) */ 3317 0x85, 0x03, /* REPORT_ID = 3 */ 3318 0x75, 0x10, /* REPORT_SIZE (16) */ 3319 0x95, 0x02, /* REPORT_COUNT (2) */ 3320 0x15, 0x01, /* LOGICAL_MIN (1) */ 3321 0x26, 0x00 /* LOGICAL_MAX (... */ 3322 }; 3323 char *consumer_rdesc, *rdesc = (char *)_rdesc; 3324 unsigned int size; 3325 3326 consumer_rdesc = strnstr(rdesc, consumer_rdesc_start, *rsize); 3327 size = *rsize - (consumer_rdesc - rdesc); 3328 if (consumer_rdesc && size >= 25) { 3329 consumer_rdesc[15] = 0x7f; 3330 consumer_rdesc[16] = 0x10; 3331 consumer_rdesc[20] = 0x7f; 3332 consumer_rdesc[21] = 0x10; 3333 } 3334 return _rdesc; 3335 } 3336 3337 static int hidpp10_consumer_keys_connect(struct hidpp_device *hidpp) 3338 { 3339 return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0, 3340 HIDPP_ENABLE_CONSUMER_REPORT, 3341 HIDPP_ENABLE_CONSUMER_REPORT); 3342 } 3343 3344 static int hidpp10_consumer_keys_raw_event(struct hidpp_device *hidpp, 3345 u8 *data, int size) 3346 { 3347 u8 consumer_report[5]; 3348 3349 if (size < 7) 3350 return 0; 3351 3352 if (data[0] != REPORT_ID_HIDPP_SHORT || 3353 data[2] != HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS) 3354 return 0; 3355 3356 /* 3357 * Build a normal consumer report (3) out of the data, this detour 3358 * is necessary to get some keyboards to report their 0x10xx usages. 3359 */ 3360 consumer_report[0] = 0x03; 3361 memcpy(&consumer_report[1], &data[3], 4); 3362 /* We are called from atomic context */ 3363 hid_report_raw_event(hidpp->hid_dev, HID_INPUT_REPORT, 3364 consumer_report, 5, 1); 3365 3366 return 1; 3367 } 3368 3369 /* -------------------------------------------------------------------------- */ 3370 /* High-resolution scroll wheels */ 3371 /* -------------------------------------------------------------------------- */ 3372 3373 static int hi_res_scroll_enable(struct hidpp_device *hidpp) 3374 { 3375 int ret; 3376 u8 multiplier = 1; 3377 3378 if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2121) { 3379 ret = hidpp_hrw_set_wheel_mode(hidpp, false, true, false); 3380 if (ret == 0) 3381 ret = hidpp_hrw_get_wheel_capability(hidpp, &multiplier); 3382 } else if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2120) { 3383 ret = hidpp_hrs_set_highres_scrolling_mode(hidpp, true, 3384 &multiplier); 3385 } else /* if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_1P0) */ { 3386 ret = hidpp10_enable_scrolling_acceleration(hidpp); 3387 multiplier = 8; 3388 } 3389 if (ret) 3390 return ret; 3391 3392 if (multiplier == 0) 3393 multiplier = 1; 3394 3395 hidpp->vertical_wheel_counter.wheel_multiplier = multiplier; 3396 hid_dbg(hidpp->hid_dev, "wheel multiplier = %d\n", multiplier); 3397 return 0; 3398 } 3399 3400 /* -------------------------------------------------------------------------- */ 3401 /* Generic HID++ devices */ 3402 /* -------------------------------------------------------------------------- */ 3403 3404 static u8 *hidpp_report_fixup(struct hid_device *hdev, u8 *rdesc, 3405 unsigned int *rsize) 3406 { 3407 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3408 3409 if (!hidpp) 3410 return rdesc; 3411 3412 /* For 27 MHz keyboards the quirk gets set after hid_parse. */ 3413 if (hdev->group == HID_GROUP_LOGITECH_27MHZ_DEVICE || 3414 (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS)) 3415 rdesc = hidpp10_consumer_keys_report_fixup(hidpp, rdesc, rsize); 3416 3417 return rdesc; 3418 } 3419 3420 static int hidpp_input_mapping(struct hid_device *hdev, struct hid_input *hi, 3421 struct hid_field *field, struct hid_usage *usage, 3422 unsigned long **bit, int *max) 3423 { 3424 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3425 3426 if (!hidpp) 3427 return 0; 3428 3429 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) 3430 return wtp_input_mapping(hdev, hi, field, usage, bit, max); 3431 else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560 && 3432 field->application != HID_GD_MOUSE) 3433 return m560_input_mapping(hdev, hi, field, usage, bit, max); 3434 3435 if (hdev->product == DINOVO_MINI_PRODUCT_ID) 3436 return lg_dinovo_input_mapping(hdev, hi, field, usage, bit, max); 3437 3438 return 0; 3439 } 3440 3441 static int hidpp_input_mapped(struct hid_device *hdev, struct hid_input *hi, 3442 struct hid_field *field, struct hid_usage *usage, 3443 unsigned long **bit, int *max) 3444 { 3445 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3446 3447 if (!hidpp) 3448 return 0; 3449 3450 /* Ensure that Logitech G920 is not given a default fuzz/flat value */ 3451 if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) { 3452 if (usage->type == EV_ABS && (usage->code == ABS_X || 3453 usage->code == ABS_Y || usage->code == ABS_Z || 3454 usage->code == ABS_RZ)) { 3455 field->application = HID_GD_MULTIAXIS; 3456 } 3457 } 3458 3459 return 0; 3460 } 3461 3462 3463 static void hidpp_populate_input(struct hidpp_device *hidpp, 3464 struct input_dev *input) 3465 { 3466 hidpp->input = input; 3467 3468 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) 3469 wtp_populate_input(hidpp, input); 3470 else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) 3471 m560_populate_input(hidpp, input); 3472 3473 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) 3474 hidpp10_wheel_populate_input(hidpp, input); 3475 3476 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) 3477 hidpp10_extra_mouse_buttons_populate_input(hidpp, input); 3478 } 3479 3480 static int hidpp_input_configured(struct hid_device *hdev, 3481 struct hid_input *hidinput) 3482 { 3483 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3484 struct input_dev *input = hidinput->input; 3485 3486 if (!hidpp) 3487 return 0; 3488 3489 hidpp_populate_input(hidpp, input); 3490 3491 return 0; 3492 } 3493 3494 static int hidpp_raw_hidpp_event(struct hidpp_device *hidpp, u8 *data, 3495 int size) 3496 { 3497 struct hidpp_report *question = hidpp->send_receive_buf; 3498 struct hidpp_report *answer = hidpp->send_receive_buf; 3499 struct hidpp_report *report = (struct hidpp_report *)data; 3500 int ret; 3501 3502 /* 3503 * If the mutex is locked then we have a pending answer from a 3504 * previously sent command. 3505 */ 3506 if (unlikely(mutex_is_locked(&hidpp->send_mutex))) { 3507 /* 3508 * Check for a correct hidpp20 answer or the corresponding 3509 * error 3510 */ 3511 if (hidpp_match_answer(question, report) || 3512 hidpp_match_error(question, report)) { 3513 *answer = *report; 3514 hidpp->answer_available = true; 3515 wake_up(&hidpp->wait); 3516 /* 3517 * This was an answer to a command that this driver sent 3518 * We return 1 to hid-core to avoid forwarding the 3519 * command upstream as it has been treated by the driver 3520 */ 3521 3522 return 1; 3523 } 3524 } 3525 3526 if (unlikely(hidpp_report_is_connect_event(hidpp, report))) { 3527 atomic_set(&hidpp->connected, 3528 !(report->rap.params[0] & (1 << 6))); 3529 if (schedule_work(&hidpp->work) == 0) 3530 dbg_hid("%s: connect event already queued\n", __func__); 3531 return 1; 3532 } 3533 3534 if (hidpp->hid_dev->group == HID_GROUP_LOGITECH_27MHZ_DEVICE && 3535 data[0] == REPORT_ID_HIDPP_SHORT && 3536 data[2] == HIDPP_SUB_ID_USER_IFACE_EVENT && 3537 (data[3] & HIDPP_USER_IFACE_EVENT_ENCRYPTION_KEY_LOST)) { 3538 dev_err_ratelimited(&hidpp->hid_dev->dev, 3539 "Error the keyboard's wireless encryption key has been lost, your keyboard will not work unless you re-configure encryption.\n"); 3540 dev_err_ratelimited(&hidpp->hid_dev->dev, 3541 "See: https://gitlab.freedesktop.org/jwrdegoede/logitech-27mhz-keyboard-encryption-setup/\n"); 3542 } 3543 3544 if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) { 3545 ret = hidpp20_battery_event_1000(hidpp, data, size); 3546 if (ret != 0) 3547 return ret; 3548 ret = hidpp20_battery_event_1004(hidpp, data, size); 3549 if (ret != 0) 3550 return ret; 3551 ret = hidpp_solar_battery_event(hidpp, data, size); 3552 if (ret != 0) 3553 return ret; 3554 ret = hidpp20_battery_voltage_event(hidpp, data, size); 3555 if (ret != 0) 3556 return ret; 3557 } 3558 3559 if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) { 3560 ret = hidpp10_battery_event(hidpp, data, size); 3561 if (ret != 0) 3562 return ret; 3563 } 3564 3565 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) { 3566 ret = hidpp10_wheel_raw_event(hidpp, data, size); 3567 if (ret != 0) 3568 return ret; 3569 } 3570 3571 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) { 3572 ret = hidpp10_extra_mouse_buttons_raw_event(hidpp, data, size); 3573 if (ret != 0) 3574 return ret; 3575 } 3576 3577 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) { 3578 ret = hidpp10_consumer_keys_raw_event(hidpp, data, size); 3579 if (ret != 0) 3580 return ret; 3581 } 3582 3583 return 0; 3584 } 3585 3586 static int hidpp_raw_event(struct hid_device *hdev, struct hid_report *report, 3587 u8 *data, int size) 3588 { 3589 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3590 int ret = 0; 3591 3592 if (!hidpp) 3593 return 0; 3594 3595 /* Generic HID++ processing. */ 3596 switch (data[0]) { 3597 case REPORT_ID_HIDPP_VERY_LONG: 3598 if (size != hidpp->very_long_report_length) { 3599 hid_err(hdev, "received hid++ report of bad size (%d)", 3600 size); 3601 return 1; 3602 } 3603 ret = hidpp_raw_hidpp_event(hidpp, data, size); 3604 break; 3605 case REPORT_ID_HIDPP_LONG: 3606 if (size != HIDPP_REPORT_LONG_LENGTH) { 3607 hid_err(hdev, "received hid++ report of bad size (%d)", 3608 size); 3609 return 1; 3610 } 3611 ret = hidpp_raw_hidpp_event(hidpp, data, size); 3612 break; 3613 case REPORT_ID_HIDPP_SHORT: 3614 if (size != HIDPP_REPORT_SHORT_LENGTH) { 3615 hid_err(hdev, "received hid++ report of bad size (%d)", 3616 size); 3617 return 1; 3618 } 3619 ret = hidpp_raw_hidpp_event(hidpp, data, size); 3620 break; 3621 } 3622 3623 /* If no report is available for further processing, skip calling 3624 * raw_event of subclasses. */ 3625 if (ret != 0) 3626 return ret; 3627 3628 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) 3629 return wtp_raw_event(hdev, data, size); 3630 else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) 3631 return m560_raw_event(hdev, data, size); 3632 3633 return 0; 3634 } 3635 3636 static int hidpp_event(struct hid_device *hdev, struct hid_field *field, 3637 struct hid_usage *usage, __s32 value) 3638 { 3639 /* This function will only be called for scroll events, due to the 3640 * restriction imposed in hidpp_usages. 3641 */ 3642 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3643 struct hidpp_scroll_counter *counter; 3644 3645 if (!hidpp) 3646 return 0; 3647 3648 counter = &hidpp->vertical_wheel_counter; 3649 /* A scroll event may occur before the multiplier has been retrieved or 3650 * the input device set, or high-res scroll enabling may fail. In such 3651 * cases we must return early (falling back to default behaviour) to 3652 * avoid a crash in hidpp_scroll_counter_handle_scroll. 3653 */ 3654 if (!(hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) || value == 0 3655 || hidpp->input == NULL || counter->wheel_multiplier == 0) 3656 return 0; 3657 3658 hidpp_scroll_counter_handle_scroll(hidpp->input, counter, value); 3659 return 1; 3660 } 3661 3662 static int hidpp_initialize_battery(struct hidpp_device *hidpp) 3663 { 3664 static atomic_t battery_no = ATOMIC_INIT(0); 3665 struct power_supply_config cfg = { .drv_data = hidpp }; 3666 struct power_supply_desc *desc = &hidpp->battery.desc; 3667 enum power_supply_property *battery_props; 3668 struct hidpp_battery *battery; 3669 unsigned int num_battery_props; 3670 unsigned long n; 3671 int ret; 3672 3673 if (hidpp->battery.ps) 3674 return 0; 3675 3676 hidpp->battery.feature_index = 0xff; 3677 hidpp->battery.solar_feature_index = 0xff; 3678 hidpp->battery.voltage_feature_index = 0xff; 3679 3680 if (hidpp->protocol_major >= 2) { 3681 if (hidpp->quirks & HIDPP_QUIRK_CLASS_K750) 3682 ret = hidpp_solar_request_battery_event(hidpp); 3683 else { 3684 /* we only support one battery feature right now, so let's 3685 first check the ones that support battery level first 3686 and leave voltage for last */ 3687 ret = hidpp20_query_battery_info_1000(hidpp); 3688 if (ret) 3689 ret = hidpp20_query_battery_info_1004(hidpp); 3690 if (ret) 3691 ret = hidpp20_query_battery_voltage_info(hidpp); 3692 } 3693 3694 if (ret) 3695 return ret; 3696 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP20_BATTERY; 3697 } else { 3698 ret = hidpp10_query_battery_status(hidpp); 3699 if (ret) { 3700 ret = hidpp10_query_battery_mileage(hidpp); 3701 if (ret) 3702 return -ENOENT; 3703 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE; 3704 } else { 3705 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS; 3706 } 3707 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP10_BATTERY; 3708 } 3709 3710 battery_props = devm_kmemdup(&hidpp->hid_dev->dev, 3711 hidpp_battery_props, 3712 sizeof(hidpp_battery_props), 3713 GFP_KERNEL); 3714 if (!battery_props) 3715 return -ENOMEM; 3716 3717 num_battery_props = ARRAY_SIZE(hidpp_battery_props) - 3; 3718 3719 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE || 3720 hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_PERCENTAGE) 3721 battery_props[num_battery_props++] = 3722 POWER_SUPPLY_PROP_CAPACITY; 3723 3724 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS) 3725 battery_props[num_battery_props++] = 3726 POWER_SUPPLY_PROP_CAPACITY_LEVEL; 3727 3728 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_VOLTAGE) 3729 battery_props[num_battery_props++] = 3730 POWER_SUPPLY_PROP_VOLTAGE_NOW; 3731 3732 battery = &hidpp->battery; 3733 3734 n = atomic_inc_return(&battery_no) - 1; 3735 desc->properties = battery_props; 3736 desc->num_properties = num_battery_props; 3737 desc->get_property = hidpp_battery_get_property; 3738 sprintf(battery->name, "hidpp_battery_%ld", n); 3739 desc->name = battery->name; 3740 desc->type = POWER_SUPPLY_TYPE_BATTERY; 3741 desc->use_for_apm = 0; 3742 3743 battery->ps = devm_power_supply_register(&hidpp->hid_dev->dev, 3744 &battery->desc, 3745 &cfg); 3746 if (IS_ERR(battery->ps)) 3747 return PTR_ERR(battery->ps); 3748 3749 power_supply_powers(battery->ps, &hidpp->hid_dev->dev); 3750 3751 return ret; 3752 } 3753 3754 static void hidpp_overwrite_name(struct hid_device *hdev) 3755 { 3756 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3757 char *name; 3758 3759 if (hidpp->protocol_major < 2) 3760 return; 3761 3762 name = hidpp_get_device_name(hidpp); 3763 3764 if (!name) { 3765 hid_err(hdev, "unable to retrieve the name of the device"); 3766 } else { 3767 dbg_hid("HID++: Got name: %s\n", name); 3768 snprintf(hdev->name, sizeof(hdev->name), "%s", name); 3769 } 3770 3771 kfree(name); 3772 } 3773 3774 static int hidpp_input_open(struct input_dev *dev) 3775 { 3776 struct hid_device *hid = input_get_drvdata(dev); 3777 3778 return hid_hw_open(hid); 3779 } 3780 3781 static void hidpp_input_close(struct input_dev *dev) 3782 { 3783 struct hid_device *hid = input_get_drvdata(dev); 3784 3785 hid_hw_close(hid); 3786 } 3787 3788 static struct input_dev *hidpp_allocate_input(struct hid_device *hdev) 3789 { 3790 struct input_dev *input_dev = devm_input_allocate_device(&hdev->dev); 3791 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3792 3793 if (!input_dev) 3794 return NULL; 3795 3796 input_set_drvdata(input_dev, hdev); 3797 input_dev->open = hidpp_input_open; 3798 input_dev->close = hidpp_input_close; 3799 3800 input_dev->name = hidpp->name; 3801 input_dev->phys = hdev->phys; 3802 input_dev->uniq = hdev->uniq; 3803 input_dev->id.bustype = hdev->bus; 3804 input_dev->id.vendor = hdev->vendor; 3805 input_dev->id.product = hdev->product; 3806 input_dev->id.version = hdev->version; 3807 input_dev->dev.parent = &hdev->dev; 3808 3809 return input_dev; 3810 } 3811 3812 static void hidpp_connect_event(struct hidpp_device *hidpp) 3813 { 3814 struct hid_device *hdev = hidpp->hid_dev; 3815 int ret = 0; 3816 bool connected = atomic_read(&hidpp->connected); 3817 struct input_dev *input; 3818 char *name, *devm_name; 3819 3820 if (!connected) { 3821 if (hidpp->battery.ps) { 3822 hidpp->battery.online = false; 3823 hidpp->battery.status = POWER_SUPPLY_STATUS_UNKNOWN; 3824 hidpp->battery.level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 3825 power_supply_changed(hidpp->battery.ps); 3826 } 3827 return; 3828 } 3829 3830 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) { 3831 ret = wtp_connect(hdev, connected); 3832 if (ret) 3833 return; 3834 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) { 3835 ret = m560_send_config_command(hdev, connected); 3836 if (ret) 3837 return; 3838 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) { 3839 ret = k400_connect(hdev, connected); 3840 if (ret) 3841 return; 3842 } 3843 3844 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) { 3845 ret = hidpp10_wheel_connect(hidpp); 3846 if (ret) 3847 return; 3848 } 3849 3850 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) { 3851 ret = hidpp10_extra_mouse_buttons_connect(hidpp); 3852 if (ret) 3853 return; 3854 } 3855 3856 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) { 3857 ret = hidpp10_consumer_keys_connect(hidpp); 3858 if (ret) 3859 return; 3860 } 3861 3862 /* the device is already connected, we can ask for its name and 3863 * protocol */ 3864 if (!hidpp->protocol_major) { 3865 ret = hidpp_root_get_protocol_version(hidpp); 3866 if (ret) { 3867 hid_err(hdev, "Can not get the protocol version.\n"); 3868 return; 3869 } 3870 } 3871 3872 if (hidpp->name == hdev->name && hidpp->protocol_major >= 2) { 3873 name = hidpp_get_device_name(hidpp); 3874 if (name) { 3875 devm_name = devm_kasprintf(&hdev->dev, GFP_KERNEL, 3876 "%s", name); 3877 kfree(name); 3878 if (!devm_name) 3879 return; 3880 3881 hidpp->name = devm_name; 3882 } 3883 } 3884 3885 hidpp_initialize_battery(hidpp); 3886 3887 /* forward current battery state */ 3888 if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) { 3889 hidpp10_enable_battery_reporting(hidpp); 3890 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE) 3891 hidpp10_query_battery_mileage(hidpp); 3892 else 3893 hidpp10_query_battery_status(hidpp); 3894 } else if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) { 3895 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_VOLTAGE) 3896 hidpp20_query_battery_voltage_info(hidpp); 3897 else if (hidpp->capabilities & HIDPP_CAPABILITY_UNIFIED_BATTERY) 3898 hidpp20_query_battery_info_1004(hidpp); 3899 else 3900 hidpp20_query_battery_info_1000(hidpp); 3901 } 3902 if (hidpp->battery.ps) 3903 power_supply_changed(hidpp->battery.ps); 3904 3905 if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) 3906 hi_res_scroll_enable(hidpp); 3907 3908 if (!(hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) || hidpp->delayed_input) 3909 /* if the input nodes are already created, we can stop now */ 3910 return; 3911 3912 input = hidpp_allocate_input(hdev); 3913 if (!input) { 3914 hid_err(hdev, "cannot allocate new input device: %d\n", ret); 3915 return; 3916 } 3917 3918 hidpp_populate_input(hidpp, input); 3919 3920 ret = input_register_device(input); 3921 if (ret) 3922 input_free_device(input); 3923 3924 hidpp->delayed_input = input; 3925 } 3926 3927 static DEVICE_ATTR(builtin_power_supply, 0000, NULL, NULL); 3928 3929 static struct attribute *sysfs_attrs[] = { 3930 &dev_attr_builtin_power_supply.attr, 3931 NULL 3932 }; 3933 3934 static const struct attribute_group ps_attribute_group = { 3935 .attrs = sysfs_attrs 3936 }; 3937 3938 static int hidpp_get_report_length(struct hid_device *hdev, int id) 3939 { 3940 struct hid_report_enum *re; 3941 struct hid_report *report; 3942 3943 re = &(hdev->report_enum[HID_OUTPUT_REPORT]); 3944 report = re->report_id_hash[id]; 3945 if (!report) 3946 return 0; 3947 3948 return report->field[0]->report_count + 1; 3949 } 3950 3951 static u8 hidpp_validate_device(struct hid_device *hdev) 3952 { 3953 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3954 int id, report_length; 3955 u8 supported_reports = 0; 3956 3957 id = REPORT_ID_HIDPP_SHORT; 3958 report_length = hidpp_get_report_length(hdev, id); 3959 if (report_length) { 3960 if (report_length < HIDPP_REPORT_SHORT_LENGTH) 3961 goto bad_device; 3962 3963 supported_reports |= HIDPP_REPORT_SHORT_SUPPORTED; 3964 } 3965 3966 id = REPORT_ID_HIDPP_LONG; 3967 report_length = hidpp_get_report_length(hdev, id); 3968 if (report_length) { 3969 if (report_length < HIDPP_REPORT_LONG_LENGTH) 3970 goto bad_device; 3971 3972 supported_reports |= HIDPP_REPORT_LONG_SUPPORTED; 3973 } 3974 3975 id = REPORT_ID_HIDPP_VERY_LONG; 3976 report_length = hidpp_get_report_length(hdev, id); 3977 if (report_length) { 3978 if (report_length < HIDPP_REPORT_LONG_LENGTH || 3979 report_length > HIDPP_REPORT_VERY_LONG_MAX_LENGTH) 3980 goto bad_device; 3981 3982 supported_reports |= HIDPP_REPORT_VERY_LONG_SUPPORTED; 3983 hidpp->very_long_report_length = report_length; 3984 } 3985 3986 return supported_reports; 3987 3988 bad_device: 3989 hid_warn(hdev, "not enough values in hidpp report %d\n", id); 3990 return false; 3991 } 3992 3993 static bool hidpp_application_equals(struct hid_device *hdev, 3994 unsigned int application) 3995 { 3996 struct list_head *report_list; 3997 struct hid_report *report; 3998 3999 report_list = &hdev->report_enum[HID_INPUT_REPORT].report_list; 4000 report = list_first_entry_or_null(report_list, struct hid_report, list); 4001 return report && report->application == application; 4002 } 4003 4004 static int hidpp_probe(struct hid_device *hdev, const struct hid_device_id *id) 4005 { 4006 struct hidpp_device *hidpp; 4007 int ret; 4008 bool connected; 4009 unsigned int connect_mask = HID_CONNECT_DEFAULT; 4010 struct hidpp_ff_private_data data; 4011 4012 /* report_fixup needs drvdata to be set before we call hid_parse */ 4013 hidpp = devm_kzalloc(&hdev->dev, sizeof(*hidpp), GFP_KERNEL); 4014 if (!hidpp) 4015 return -ENOMEM; 4016 4017 hidpp->hid_dev = hdev; 4018 hidpp->name = hdev->name; 4019 hidpp->quirks = id->driver_data; 4020 hid_set_drvdata(hdev, hidpp); 4021 4022 ret = hid_parse(hdev); 4023 if (ret) { 4024 hid_err(hdev, "%s:parse failed\n", __func__); 4025 return ret; 4026 } 4027 4028 /* 4029 * Make sure the device is HID++ capable, otherwise treat as generic HID 4030 */ 4031 hidpp->supported_reports = hidpp_validate_device(hdev); 4032 4033 if (!hidpp->supported_reports) { 4034 hid_set_drvdata(hdev, NULL); 4035 devm_kfree(&hdev->dev, hidpp); 4036 return hid_hw_start(hdev, HID_CONNECT_DEFAULT); 4037 } 4038 4039 if (id->group == HID_GROUP_LOGITECH_DJ_DEVICE) 4040 hidpp->quirks |= HIDPP_QUIRK_UNIFYING; 4041 4042 if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE && 4043 hidpp_application_equals(hdev, HID_GD_MOUSE)) 4044 hidpp->quirks |= HIDPP_QUIRK_HIDPP_WHEELS | 4045 HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS; 4046 4047 if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE && 4048 hidpp_application_equals(hdev, HID_GD_KEYBOARD)) 4049 hidpp->quirks |= HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS; 4050 4051 if (disable_raw_mode) { 4052 hidpp->quirks &= ~HIDPP_QUIRK_CLASS_WTP; 4053 hidpp->quirks &= ~HIDPP_QUIRK_NO_HIDINPUT; 4054 } 4055 4056 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) { 4057 ret = wtp_allocate(hdev, id); 4058 if (ret) 4059 return ret; 4060 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) { 4061 ret = k400_allocate(hdev); 4062 if (ret) 4063 return ret; 4064 } 4065 4066 INIT_WORK(&hidpp->work, delayed_work_cb); 4067 mutex_init(&hidpp->send_mutex); 4068 init_waitqueue_head(&hidpp->wait); 4069 4070 /* indicates we are handling the battery properties in the kernel */ 4071 ret = sysfs_create_group(&hdev->dev.kobj, &ps_attribute_group); 4072 if (ret) 4073 hid_warn(hdev, "Cannot allocate sysfs group for %s\n", 4074 hdev->name); 4075 4076 /* 4077 * Plain USB connections need to actually call start and open 4078 * on the transport driver to allow incoming data. 4079 */ 4080 ret = hid_hw_start(hdev, 0); 4081 if (ret) { 4082 hid_err(hdev, "hw start failed\n"); 4083 goto hid_hw_start_fail; 4084 } 4085 4086 ret = hid_hw_open(hdev); 4087 if (ret < 0) { 4088 dev_err(&hdev->dev, "%s:hid_hw_open returned error:%d\n", 4089 __func__, ret); 4090 goto hid_hw_open_fail; 4091 } 4092 4093 /* Allow incoming packets */ 4094 hid_device_io_start(hdev); 4095 4096 if (hidpp->quirks & HIDPP_QUIRK_UNIFYING) 4097 hidpp_unifying_init(hidpp); 4098 4099 connected = hidpp_root_get_protocol_version(hidpp) == 0; 4100 atomic_set(&hidpp->connected, connected); 4101 if (!(hidpp->quirks & HIDPP_QUIRK_UNIFYING)) { 4102 if (!connected) { 4103 ret = -ENODEV; 4104 hid_err(hdev, "Device not connected"); 4105 goto hid_hw_init_fail; 4106 } 4107 4108 hidpp_overwrite_name(hdev); 4109 } 4110 4111 if (connected && hidpp->protocol_major >= 2) { 4112 ret = hidpp_set_wireless_feature_index(hidpp); 4113 if (ret == -ENOENT) 4114 hidpp->wireless_feature_index = 0; 4115 else if (ret) 4116 goto hid_hw_init_fail; 4117 } 4118 4119 if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)) { 4120 ret = wtp_get_config(hidpp); 4121 if (ret) 4122 goto hid_hw_init_fail; 4123 } else if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_G920)) { 4124 ret = g920_get_config(hidpp, &data); 4125 if (ret) 4126 goto hid_hw_init_fail; 4127 } 4128 4129 hidpp_connect_event(hidpp); 4130 4131 /* Reset the HID node state */ 4132 hid_device_io_stop(hdev); 4133 hid_hw_close(hdev); 4134 hid_hw_stop(hdev); 4135 4136 if (hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) 4137 connect_mask &= ~HID_CONNECT_HIDINPUT; 4138 4139 /* Now export the actual inputs and hidraw nodes to the world */ 4140 ret = hid_hw_start(hdev, connect_mask); 4141 if (ret) { 4142 hid_err(hdev, "%s:hid_hw_start returned error\n", __func__); 4143 goto hid_hw_start_fail; 4144 } 4145 4146 if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) { 4147 ret = hidpp_ff_init(hidpp, &data); 4148 if (ret) 4149 hid_warn(hidpp->hid_dev, 4150 "Unable to initialize force feedback support, errno %d\n", 4151 ret); 4152 } 4153 4154 return ret; 4155 4156 hid_hw_init_fail: 4157 hid_hw_close(hdev); 4158 hid_hw_open_fail: 4159 hid_hw_stop(hdev); 4160 hid_hw_start_fail: 4161 sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group); 4162 cancel_work_sync(&hidpp->work); 4163 mutex_destroy(&hidpp->send_mutex); 4164 return ret; 4165 } 4166 4167 static void hidpp_remove(struct hid_device *hdev) 4168 { 4169 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 4170 4171 if (!hidpp) 4172 return hid_hw_stop(hdev); 4173 4174 sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group); 4175 4176 hid_hw_stop(hdev); 4177 cancel_work_sync(&hidpp->work); 4178 mutex_destroy(&hidpp->send_mutex); 4179 } 4180 4181 #define LDJ_DEVICE(product) \ 4182 HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE, \ 4183 USB_VENDOR_ID_LOGITECH, (product)) 4184 4185 #define L27MHZ_DEVICE(product) \ 4186 HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_27MHZ_DEVICE, \ 4187 USB_VENDOR_ID_LOGITECH, (product)) 4188 4189 static const struct hid_device_id hidpp_devices[] = { 4190 { /* wireless touchpad */ 4191 LDJ_DEVICE(0x4011), 4192 .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT | 4193 HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS }, 4194 { /* wireless touchpad T650 */ 4195 LDJ_DEVICE(0x4101), 4196 .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT }, 4197 { /* wireless touchpad T651 */ 4198 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 4199 USB_DEVICE_ID_LOGITECH_T651), 4200 .driver_data = HIDPP_QUIRK_CLASS_WTP }, 4201 { /* Mouse Logitech Anywhere MX */ 4202 LDJ_DEVICE(0x1017), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 }, 4203 { /* Mouse Logitech Cube */ 4204 LDJ_DEVICE(0x4010), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 }, 4205 { /* Mouse Logitech M335 */ 4206 LDJ_DEVICE(0x4050), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4207 { /* Mouse Logitech M515 */ 4208 LDJ_DEVICE(0x4007), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 }, 4209 { /* Mouse logitech M560 */ 4210 LDJ_DEVICE(0x402d), 4211 .driver_data = HIDPP_QUIRK_DELAYED_INIT | HIDPP_QUIRK_CLASS_M560 4212 | HIDPP_QUIRK_HI_RES_SCROLL_X2120 }, 4213 { /* Mouse Logitech M705 (firmware RQM17) */ 4214 LDJ_DEVICE(0x101b), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 }, 4215 { /* Mouse Logitech M705 (firmware RQM67) */ 4216 LDJ_DEVICE(0x406d), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4217 { /* Mouse Logitech M720 */ 4218 LDJ_DEVICE(0x405e), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4219 { /* Mouse Logitech MX Anywhere 2 */ 4220 LDJ_DEVICE(0x404a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4221 { LDJ_DEVICE(0x4072), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4222 { LDJ_DEVICE(0xb013), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4223 { LDJ_DEVICE(0xb018), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4224 { LDJ_DEVICE(0xb01f), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4225 { /* Mouse Logitech MX Anywhere 2S */ 4226 LDJ_DEVICE(0x406a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4227 { /* Mouse Logitech MX Master */ 4228 LDJ_DEVICE(0x4041), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4229 { LDJ_DEVICE(0x4060), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4230 { LDJ_DEVICE(0x4071), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4231 { /* Mouse Logitech MX Master 2S */ 4232 LDJ_DEVICE(0x4069), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4233 { /* Mouse Logitech MX Master 3 */ 4234 LDJ_DEVICE(0x4082), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4235 { /* Mouse Logitech Performance MX */ 4236 LDJ_DEVICE(0x101a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 }, 4237 { /* Keyboard logitech K400 */ 4238 LDJ_DEVICE(0x4024), 4239 .driver_data = HIDPP_QUIRK_CLASS_K400 }, 4240 { /* Solar Keyboard Logitech K750 */ 4241 LDJ_DEVICE(0x4002), 4242 .driver_data = HIDPP_QUIRK_CLASS_K750 }, 4243 { /* Keyboard MX5000 (Bluetooth-receiver in HID proxy mode) */ 4244 LDJ_DEVICE(0xb305), 4245 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 4246 { /* Dinovo Edge (Bluetooth-receiver in HID proxy mode) */ 4247 LDJ_DEVICE(0xb309), 4248 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 4249 { /* Keyboard MX5500 (Bluetooth-receiver in HID proxy mode) */ 4250 LDJ_DEVICE(0xb30b), 4251 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 4252 4253 { LDJ_DEVICE(HID_ANY_ID) }, 4254 4255 { /* Keyboard LX501 (Y-RR53) */ 4256 L27MHZ_DEVICE(0x0049), 4257 .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL }, 4258 { /* Keyboard MX3000 (Y-RAM74) */ 4259 L27MHZ_DEVICE(0x0057), 4260 .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL }, 4261 { /* Keyboard MX3200 (Y-RAV80) */ 4262 L27MHZ_DEVICE(0x005c), 4263 .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL }, 4264 { /* S510 Media Remote */ 4265 L27MHZ_DEVICE(0x00fe), 4266 .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL }, 4267 4268 { L27MHZ_DEVICE(HID_ANY_ID) }, 4269 4270 { /* Logitech G403 Wireless Gaming Mouse over USB */ 4271 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC082) }, 4272 { /* Logitech G703 Gaming Mouse over USB */ 4273 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC087) }, 4274 { /* Logitech G703 Hero Gaming Mouse over USB */ 4275 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC090) }, 4276 { /* Logitech G900 Gaming Mouse over USB */ 4277 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC081) }, 4278 { /* Logitech G903 Gaming Mouse over USB */ 4279 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC086) }, 4280 { /* Logitech G903 Hero Gaming Mouse over USB */ 4281 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC091) }, 4282 { /* Logitech G920 Wheel over USB */ 4283 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G920_WHEEL), 4284 .driver_data = HIDPP_QUIRK_CLASS_G920 | HIDPP_QUIRK_FORCE_OUTPUT_REPORTS}, 4285 { /* Logitech G Pro Gaming Mouse over USB */ 4286 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC088) }, 4287 4288 { /* MX5000 keyboard over Bluetooth */ 4289 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb305), 4290 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 4291 { /* Dinovo Edge keyboard over Bluetooth */ 4292 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb309), 4293 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 4294 { /* MX5500 keyboard over Bluetooth */ 4295 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb30b), 4296 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 4297 { /* M-RCQ142 V470 Cordless Laser Mouse over Bluetooth */ 4298 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb008) }, 4299 { /* MX Master mouse over Bluetooth */ 4300 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb012), 4301 .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4302 { /* MX Ergo trackball over Bluetooth */ 4303 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb01d) }, 4304 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb01e), 4305 .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4306 { /* MX Master 3 mouse over Bluetooth */ 4307 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb023), 4308 .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4309 {} 4310 }; 4311 4312 MODULE_DEVICE_TABLE(hid, hidpp_devices); 4313 4314 static const struct hid_usage_id hidpp_usages[] = { 4315 { HID_GD_WHEEL, EV_REL, REL_WHEEL_HI_RES }, 4316 { HID_ANY_ID - 1, HID_ANY_ID - 1, HID_ANY_ID - 1} 4317 }; 4318 4319 static struct hid_driver hidpp_driver = { 4320 .name = "logitech-hidpp-device", 4321 .id_table = hidpp_devices, 4322 .report_fixup = hidpp_report_fixup, 4323 .probe = hidpp_probe, 4324 .remove = hidpp_remove, 4325 .raw_event = hidpp_raw_event, 4326 .usage_table = hidpp_usages, 4327 .event = hidpp_event, 4328 .input_configured = hidpp_input_configured, 4329 .input_mapping = hidpp_input_mapping, 4330 .input_mapped = hidpp_input_mapped, 4331 }; 4332 4333 module_hid_driver(hidpp_driver); 4334