1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * HIDPP protocol for Logitech Unifying receivers 4 * 5 * Copyright (c) 2011 Logitech (c) 6 * Copyright (c) 2012-2013 Google (c) 7 * Copyright (c) 2013-2014 Red Hat Inc. 8 */ 9 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/device.h> 14 #include <linux/input.h> 15 #include <linux/usb.h> 16 #include <linux/hid.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/sched.h> 20 #include <linux/sched/clock.h> 21 #include <linux/kfifo.h> 22 #include <linux/input/mt.h> 23 #include <linux/workqueue.h> 24 #include <linux/atomic.h> 25 #include <linux/fixp-arith.h> 26 #include <asm/unaligned.h> 27 #include "usbhid/usbhid.h" 28 #include "hid-ids.h" 29 30 MODULE_LICENSE("GPL"); 31 MODULE_AUTHOR("Benjamin Tissoires <benjamin.tissoires@gmail.com>"); 32 MODULE_AUTHOR("Nestor Lopez Casado <nlopezcasad@logitech.com>"); 33 34 static bool disable_raw_mode; 35 module_param(disable_raw_mode, bool, 0644); 36 MODULE_PARM_DESC(disable_raw_mode, 37 "Disable Raw mode reporting for touchpads and keep firmware gestures."); 38 39 static bool disable_tap_to_click; 40 module_param(disable_tap_to_click, bool, 0644); 41 MODULE_PARM_DESC(disable_tap_to_click, 42 "Disable Tap-To-Click mode reporting for touchpads (only on the K400 currently)."); 43 44 #define REPORT_ID_HIDPP_SHORT 0x10 45 #define REPORT_ID_HIDPP_LONG 0x11 46 #define REPORT_ID_HIDPP_VERY_LONG 0x12 47 48 #define HIDPP_REPORT_SHORT_LENGTH 7 49 #define HIDPP_REPORT_LONG_LENGTH 20 50 #define HIDPP_REPORT_VERY_LONG_MAX_LENGTH 64 51 52 #define HIDPP_REPORT_SHORT_SUPPORTED BIT(0) 53 #define HIDPP_REPORT_LONG_SUPPORTED BIT(1) 54 #define HIDPP_REPORT_VERY_LONG_SUPPORTED BIT(2) 55 56 #define HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS 0x03 57 #define HIDPP_SUB_ID_ROLLER 0x05 58 #define HIDPP_SUB_ID_MOUSE_EXTRA_BTNS 0x06 59 60 #define HIDPP_QUIRK_CLASS_WTP BIT(0) 61 #define HIDPP_QUIRK_CLASS_M560 BIT(1) 62 #define HIDPP_QUIRK_CLASS_K400 BIT(2) 63 #define HIDPP_QUIRK_CLASS_G920 BIT(3) 64 #define HIDPP_QUIRK_CLASS_K750 BIT(4) 65 66 /* bits 2..20 are reserved for classes */ 67 /* #define HIDPP_QUIRK_CONNECT_EVENTS BIT(21) disabled */ 68 #define HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS BIT(22) 69 #define HIDPP_QUIRK_NO_HIDINPUT BIT(23) 70 #define HIDPP_QUIRK_FORCE_OUTPUT_REPORTS BIT(24) 71 #define HIDPP_QUIRK_UNIFYING BIT(25) 72 #define HIDPP_QUIRK_HI_RES_SCROLL_1P0 BIT(26) 73 #define HIDPP_QUIRK_HI_RES_SCROLL_X2120 BIT(27) 74 #define HIDPP_QUIRK_HI_RES_SCROLL_X2121 BIT(28) 75 #define HIDPP_QUIRK_HIDPP_WHEELS BIT(29) 76 #define HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS BIT(30) 77 #define HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS BIT(31) 78 79 /* These are just aliases for now */ 80 #define HIDPP_QUIRK_KBD_SCROLL_WHEEL HIDPP_QUIRK_HIDPP_WHEELS 81 #define HIDPP_QUIRK_KBD_ZOOM_WHEEL HIDPP_QUIRK_HIDPP_WHEELS 82 83 /* Convenience constant to check for any high-res support. */ 84 #define HIDPP_QUIRK_HI_RES_SCROLL (HIDPP_QUIRK_HI_RES_SCROLL_1P0 | \ 85 HIDPP_QUIRK_HI_RES_SCROLL_X2120 | \ 86 HIDPP_QUIRK_HI_RES_SCROLL_X2121) 87 88 #define HIDPP_QUIRK_DELAYED_INIT HIDPP_QUIRK_NO_HIDINPUT 89 90 #define HIDPP_CAPABILITY_HIDPP10_BATTERY BIT(0) 91 #define HIDPP_CAPABILITY_HIDPP20_BATTERY BIT(1) 92 #define HIDPP_CAPABILITY_BATTERY_MILEAGE BIT(2) 93 #define HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS BIT(3) 94 #define HIDPP_CAPABILITY_BATTERY_VOLTAGE BIT(4) 95 96 /* 97 * There are two hidpp protocols in use, the first version hidpp10 is known 98 * as register access protocol or RAP, the second version hidpp20 is known as 99 * feature access protocol or FAP 100 * 101 * Most older devices (including the Unifying usb receiver) use the RAP protocol 102 * where as most newer devices use the FAP protocol. Both protocols are 103 * compatible with the underlying transport, which could be usb, Unifiying, or 104 * bluetooth. The message lengths are defined by the hid vendor specific report 105 * descriptor for the HIDPP_SHORT report type (total message lenth 7 bytes) and 106 * the HIDPP_LONG report type (total message length 20 bytes) 107 * 108 * The RAP protocol uses both report types, whereas the FAP only uses HIDPP_LONG 109 * messages. The Unifying receiver itself responds to RAP messages (device index 110 * is 0xFF for the receiver), and all messages (short or long) with a device 111 * index between 1 and 6 are passed untouched to the corresponding paired 112 * Unifying device. 113 * 114 * The paired device can be RAP or FAP, it will receive the message untouched 115 * from the Unifiying receiver. 116 */ 117 118 struct fap { 119 u8 feature_index; 120 u8 funcindex_clientid; 121 u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U]; 122 }; 123 124 struct rap { 125 u8 sub_id; 126 u8 reg_address; 127 u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U]; 128 }; 129 130 struct hidpp_report { 131 u8 report_id; 132 u8 device_index; 133 union { 134 struct fap fap; 135 struct rap rap; 136 u8 rawbytes[sizeof(struct fap)]; 137 }; 138 } __packed; 139 140 struct hidpp_battery { 141 u8 feature_index; 142 u8 solar_feature_index; 143 u8 voltage_feature_index; 144 struct power_supply_desc desc; 145 struct power_supply *ps; 146 char name[64]; 147 int status; 148 int capacity; 149 int level; 150 int voltage; 151 int charge_type; 152 bool online; 153 }; 154 155 /** 156 * struct hidpp_scroll_counter - Utility class for processing high-resolution 157 * scroll events. 158 * @dev: the input device for which events should be reported. 159 * @wheel_multiplier: the scalar multiplier to be applied to each wheel event 160 * @remainder: counts the number of high-resolution units moved since the last 161 * low-resolution event (REL_WHEEL or REL_HWHEEL) was sent. Should 162 * only be used by class methods. 163 * @direction: direction of last movement (1 or -1) 164 * @last_time: last event time, used to reset remainder after inactivity 165 */ 166 struct hidpp_scroll_counter { 167 int wheel_multiplier; 168 int remainder; 169 int direction; 170 unsigned long long last_time; 171 }; 172 173 struct hidpp_device { 174 struct hid_device *hid_dev; 175 struct input_dev *input; 176 struct mutex send_mutex; 177 void *send_receive_buf; 178 char *name; /* will never be NULL and should not be freed */ 179 wait_queue_head_t wait; 180 int very_long_report_length; 181 bool answer_available; 182 u8 protocol_major; 183 u8 protocol_minor; 184 185 void *private_data; 186 187 struct work_struct work; 188 struct kfifo delayed_work_fifo; 189 atomic_t connected; 190 struct input_dev *delayed_input; 191 192 unsigned long quirks; 193 unsigned long capabilities; 194 u8 supported_reports; 195 196 struct hidpp_battery battery; 197 struct hidpp_scroll_counter vertical_wheel_counter; 198 199 u8 wireless_feature_index; 200 }; 201 202 /* HID++ 1.0 error codes */ 203 #define HIDPP_ERROR 0x8f 204 #define HIDPP_ERROR_SUCCESS 0x00 205 #define HIDPP_ERROR_INVALID_SUBID 0x01 206 #define HIDPP_ERROR_INVALID_ADRESS 0x02 207 #define HIDPP_ERROR_INVALID_VALUE 0x03 208 #define HIDPP_ERROR_CONNECT_FAIL 0x04 209 #define HIDPP_ERROR_TOO_MANY_DEVICES 0x05 210 #define HIDPP_ERROR_ALREADY_EXISTS 0x06 211 #define HIDPP_ERROR_BUSY 0x07 212 #define HIDPP_ERROR_UNKNOWN_DEVICE 0x08 213 #define HIDPP_ERROR_RESOURCE_ERROR 0x09 214 #define HIDPP_ERROR_REQUEST_UNAVAILABLE 0x0a 215 #define HIDPP_ERROR_INVALID_PARAM_VALUE 0x0b 216 #define HIDPP_ERROR_WRONG_PIN_CODE 0x0c 217 /* HID++ 2.0 error codes */ 218 #define HIDPP20_ERROR 0xff 219 220 static void hidpp_connect_event(struct hidpp_device *hidpp_dev); 221 222 static int __hidpp_send_report(struct hid_device *hdev, 223 struct hidpp_report *hidpp_report) 224 { 225 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 226 int fields_count, ret; 227 228 switch (hidpp_report->report_id) { 229 case REPORT_ID_HIDPP_SHORT: 230 fields_count = HIDPP_REPORT_SHORT_LENGTH; 231 break; 232 case REPORT_ID_HIDPP_LONG: 233 fields_count = HIDPP_REPORT_LONG_LENGTH; 234 break; 235 case REPORT_ID_HIDPP_VERY_LONG: 236 fields_count = hidpp->very_long_report_length; 237 break; 238 default: 239 return -ENODEV; 240 } 241 242 /* 243 * set the device_index as the receiver, it will be overwritten by 244 * hid_hw_request if needed 245 */ 246 hidpp_report->device_index = 0xff; 247 248 if (hidpp->quirks & HIDPP_QUIRK_FORCE_OUTPUT_REPORTS) { 249 ret = hid_hw_output_report(hdev, (u8 *)hidpp_report, fields_count); 250 } else { 251 ret = hid_hw_raw_request(hdev, hidpp_report->report_id, 252 (u8 *)hidpp_report, fields_count, HID_OUTPUT_REPORT, 253 HID_REQ_SET_REPORT); 254 } 255 256 return ret == fields_count ? 0 : -1; 257 } 258 259 /** 260 * hidpp_send_message_sync() returns 0 in case of success, and something else 261 * in case of a failure. 262 * - If ' something else' is positive, that means that an error has been raised 263 * by the protocol itself. 264 * - If ' something else' is negative, that means that we had a classic error 265 * (-ENOMEM, -EPIPE, etc...) 266 */ 267 static int hidpp_send_message_sync(struct hidpp_device *hidpp, 268 struct hidpp_report *message, 269 struct hidpp_report *response) 270 { 271 int ret; 272 273 mutex_lock(&hidpp->send_mutex); 274 275 hidpp->send_receive_buf = response; 276 hidpp->answer_available = false; 277 278 /* 279 * So that we can later validate the answer when it arrives 280 * in hidpp_raw_event 281 */ 282 *response = *message; 283 284 ret = __hidpp_send_report(hidpp->hid_dev, message); 285 286 if (ret) { 287 dbg_hid("__hidpp_send_report returned err: %d\n", ret); 288 memset(response, 0, sizeof(struct hidpp_report)); 289 goto exit; 290 } 291 292 if (!wait_event_timeout(hidpp->wait, hidpp->answer_available, 293 5*HZ)) { 294 dbg_hid("%s:timeout waiting for response\n", __func__); 295 memset(response, 0, sizeof(struct hidpp_report)); 296 ret = -ETIMEDOUT; 297 } 298 299 if (response->report_id == REPORT_ID_HIDPP_SHORT && 300 response->rap.sub_id == HIDPP_ERROR) { 301 ret = response->rap.params[1]; 302 dbg_hid("%s:got hidpp error %02X\n", __func__, ret); 303 goto exit; 304 } 305 306 if ((response->report_id == REPORT_ID_HIDPP_LONG || 307 response->report_id == REPORT_ID_HIDPP_VERY_LONG) && 308 response->fap.feature_index == HIDPP20_ERROR) { 309 ret = response->fap.params[1]; 310 dbg_hid("%s:got hidpp 2.0 error %02X\n", __func__, ret); 311 goto exit; 312 } 313 314 exit: 315 mutex_unlock(&hidpp->send_mutex); 316 return ret; 317 318 } 319 320 static int hidpp_send_fap_command_sync(struct hidpp_device *hidpp, 321 u8 feat_index, u8 funcindex_clientid, u8 *params, int param_count, 322 struct hidpp_report *response) 323 { 324 struct hidpp_report *message; 325 int ret; 326 327 if (param_count > sizeof(message->fap.params)) 328 return -EINVAL; 329 330 message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL); 331 if (!message) 332 return -ENOMEM; 333 334 if (param_count > (HIDPP_REPORT_LONG_LENGTH - 4)) 335 message->report_id = REPORT_ID_HIDPP_VERY_LONG; 336 else 337 message->report_id = REPORT_ID_HIDPP_LONG; 338 message->fap.feature_index = feat_index; 339 message->fap.funcindex_clientid = funcindex_clientid; 340 memcpy(&message->fap.params, params, param_count); 341 342 ret = hidpp_send_message_sync(hidpp, message, response); 343 kfree(message); 344 return ret; 345 } 346 347 static int hidpp_send_rap_command_sync(struct hidpp_device *hidpp_dev, 348 u8 report_id, u8 sub_id, u8 reg_address, u8 *params, int param_count, 349 struct hidpp_report *response) 350 { 351 struct hidpp_report *message; 352 int ret, max_count; 353 354 /* Send as long report if short reports are not supported. */ 355 if (report_id == REPORT_ID_HIDPP_SHORT && 356 !(hidpp_dev->supported_reports & HIDPP_REPORT_SHORT_SUPPORTED)) 357 report_id = REPORT_ID_HIDPP_LONG; 358 359 switch (report_id) { 360 case REPORT_ID_HIDPP_SHORT: 361 max_count = HIDPP_REPORT_SHORT_LENGTH - 4; 362 break; 363 case REPORT_ID_HIDPP_LONG: 364 max_count = HIDPP_REPORT_LONG_LENGTH - 4; 365 break; 366 case REPORT_ID_HIDPP_VERY_LONG: 367 max_count = hidpp_dev->very_long_report_length - 4; 368 break; 369 default: 370 return -EINVAL; 371 } 372 373 if (param_count > max_count) 374 return -EINVAL; 375 376 message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL); 377 if (!message) 378 return -ENOMEM; 379 message->report_id = report_id; 380 message->rap.sub_id = sub_id; 381 message->rap.reg_address = reg_address; 382 memcpy(&message->rap.params, params, param_count); 383 384 ret = hidpp_send_message_sync(hidpp_dev, message, response); 385 kfree(message); 386 return ret; 387 } 388 389 static void delayed_work_cb(struct work_struct *work) 390 { 391 struct hidpp_device *hidpp = container_of(work, struct hidpp_device, 392 work); 393 hidpp_connect_event(hidpp); 394 } 395 396 static inline bool hidpp_match_answer(struct hidpp_report *question, 397 struct hidpp_report *answer) 398 { 399 return (answer->fap.feature_index == question->fap.feature_index) && 400 (answer->fap.funcindex_clientid == question->fap.funcindex_clientid); 401 } 402 403 static inline bool hidpp_match_error(struct hidpp_report *question, 404 struct hidpp_report *answer) 405 { 406 return ((answer->rap.sub_id == HIDPP_ERROR) || 407 (answer->fap.feature_index == HIDPP20_ERROR)) && 408 (answer->fap.funcindex_clientid == question->fap.feature_index) && 409 (answer->fap.params[0] == question->fap.funcindex_clientid); 410 } 411 412 static inline bool hidpp_report_is_connect_event(struct hidpp_device *hidpp, 413 struct hidpp_report *report) 414 { 415 return (hidpp->wireless_feature_index && 416 (report->fap.feature_index == hidpp->wireless_feature_index)) || 417 ((report->report_id == REPORT_ID_HIDPP_SHORT) && 418 (report->rap.sub_id == 0x41)); 419 } 420 421 /** 422 * hidpp_prefix_name() prefixes the current given name with "Logitech ". 423 */ 424 static void hidpp_prefix_name(char **name, int name_length) 425 { 426 #define PREFIX_LENGTH 9 /* "Logitech " */ 427 428 int new_length; 429 char *new_name; 430 431 if (name_length > PREFIX_LENGTH && 432 strncmp(*name, "Logitech ", PREFIX_LENGTH) == 0) 433 /* The prefix has is already in the name */ 434 return; 435 436 new_length = PREFIX_LENGTH + name_length; 437 new_name = kzalloc(new_length, GFP_KERNEL); 438 if (!new_name) 439 return; 440 441 snprintf(new_name, new_length, "Logitech %s", *name); 442 443 kfree(*name); 444 445 *name = new_name; 446 } 447 448 /** 449 * hidpp_scroll_counter_handle_scroll() - Send high- and low-resolution scroll 450 * events given a high-resolution wheel 451 * movement. 452 * @counter: a hid_scroll_counter struct describing the wheel. 453 * @hi_res_value: the movement of the wheel, in the mouse's high-resolution 454 * units. 455 * 456 * Given a high-resolution movement, this function converts the movement into 457 * fractions of 120 and emits high-resolution scroll events for the input 458 * device. It also uses the multiplier from &struct hid_scroll_counter to 459 * emit low-resolution scroll events when appropriate for 460 * backwards-compatibility with userspace input libraries. 461 */ 462 static void hidpp_scroll_counter_handle_scroll(struct input_dev *input_dev, 463 struct hidpp_scroll_counter *counter, 464 int hi_res_value) 465 { 466 int low_res_value, remainder, direction; 467 unsigned long long now, previous; 468 469 hi_res_value = hi_res_value * 120/counter->wheel_multiplier; 470 input_report_rel(input_dev, REL_WHEEL_HI_RES, hi_res_value); 471 472 remainder = counter->remainder; 473 direction = hi_res_value > 0 ? 1 : -1; 474 475 now = sched_clock(); 476 previous = counter->last_time; 477 counter->last_time = now; 478 /* 479 * Reset the remainder after a period of inactivity or when the 480 * direction changes. This prevents the REL_WHEEL emulation point 481 * from sliding for devices that don't always provide the same 482 * number of movements per detent. 483 */ 484 if (now - previous > 1000000000 || direction != counter->direction) 485 remainder = 0; 486 487 counter->direction = direction; 488 remainder += hi_res_value; 489 490 /* Some wheels will rest 7/8ths of a detent from the previous detent 491 * after slow movement, so we want the threshold for low-res events to 492 * be in the middle between two detents (e.g. after 4/8ths) as 493 * opposed to on the detents themselves (8/8ths). 494 */ 495 if (abs(remainder) >= 60) { 496 /* Add (or subtract) 1 because we want to trigger when the wheel 497 * is half-way to the next detent (i.e. scroll 1 detent after a 498 * 1/2 detent movement, 2 detents after a 1 1/2 detent movement, 499 * etc.). 500 */ 501 low_res_value = remainder / 120; 502 if (low_res_value == 0) 503 low_res_value = (hi_res_value > 0 ? 1 : -1); 504 input_report_rel(input_dev, REL_WHEEL, low_res_value); 505 remainder -= low_res_value * 120; 506 } 507 counter->remainder = remainder; 508 } 509 510 /* -------------------------------------------------------------------------- */ 511 /* HIDP++ 1.0 commands */ 512 /* -------------------------------------------------------------------------- */ 513 514 #define HIDPP_SET_REGISTER 0x80 515 #define HIDPP_GET_REGISTER 0x81 516 #define HIDPP_SET_LONG_REGISTER 0x82 517 #define HIDPP_GET_LONG_REGISTER 0x83 518 519 /** 520 * hidpp10_set_register - Modify a HID++ 1.0 register. 521 * @hidpp_dev: the device to set the register on. 522 * @register_address: the address of the register to modify. 523 * @byte: the byte of the register to modify. Should be less than 3. 524 * @mask: mask of the bits to modify 525 * @value: new values for the bits in mask 526 * Return: 0 if successful, otherwise a negative error code. 527 */ 528 static int hidpp10_set_register(struct hidpp_device *hidpp_dev, 529 u8 register_address, u8 byte, u8 mask, u8 value) 530 { 531 struct hidpp_report response; 532 int ret; 533 u8 params[3] = { 0 }; 534 535 ret = hidpp_send_rap_command_sync(hidpp_dev, 536 REPORT_ID_HIDPP_SHORT, 537 HIDPP_GET_REGISTER, 538 register_address, 539 NULL, 0, &response); 540 if (ret) 541 return ret; 542 543 memcpy(params, response.rap.params, 3); 544 545 params[byte] &= ~mask; 546 params[byte] |= value & mask; 547 548 return hidpp_send_rap_command_sync(hidpp_dev, 549 REPORT_ID_HIDPP_SHORT, 550 HIDPP_SET_REGISTER, 551 register_address, 552 params, 3, &response); 553 } 554 555 #define HIDPP_REG_ENABLE_REPORTS 0x00 556 #define HIDPP_ENABLE_CONSUMER_REPORT BIT(0) 557 #define HIDPP_ENABLE_WHEEL_REPORT BIT(2) 558 #define HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT BIT(3) 559 #define HIDPP_ENABLE_BAT_REPORT BIT(4) 560 #define HIDPP_ENABLE_HWHEEL_REPORT BIT(5) 561 562 static int hidpp10_enable_battery_reporting(struct hidpp_device *hidpp_dev) 563 { 564 return hidpp10_set_register(hidpp_dev, HIDPP_REG_ENABLE_REPORTS, 0, 565 HIDPP_ENABLE_BAT_REPORT, HIDPP_ENABLE_BAT_REPORT); 566 } 567 568 #define HIDPP_REG_FEATURES 0x01 569 #define HIDPP_ENABLE_SPECIAL_BUTTON_FUNC BIT(1) 570 #define HIDPP_ENABLE_FAST_SCROLL BIT(6) 571 572 /* On HID++ 1.0 devices, high-res scroll was called "scrolling acceleration". */ 573 static int hidpp10_enable_scrolling_acceleration(struct hidpp_device *hidpp_dev) 574 { 575 return hidpp10_set_register(hidpp_dev, HIDPP_REG_FEATURES, 0, 576 HIDPP_ENABLE_FAST_SCROLL, HIDPP_ENABLE_FAST_SCROLL); 577 } 578 579 #define HIDPP_REG_BATTERY_STATUS 0x07 580 581 static int hidpp10_battery_status_map_level(u8 param) 582 { 583 int level; 584 585 switch (param) { 586 case 1 ... 2: 587 level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; 588 break; 589 case 3 ... 4: 590 level = POWER_SUPPLY_CAPACITY_LEVEL_LOW; 591 break; 592 case 5 ... 6: 593 level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; 594 break; 595 case 7: 596 level = POWER_SUPPLY_CAPACITY_LEVEL_HIGH; 597 break; 598 default: 599 level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 600 } 601 602 return level; 603 } 604 605 static int hidpp10_battery_status_map_status(u8 param) 606 { 607 int status; 608 609 switch (param) { 610 case 0x00: 611 /* discharging (in use) */ 612 status = POWER_SUPPLY_STATUS_DISCHARGING; 613 break; 614 case 0x21: /* (standard) charging */ 615 case 0x24: /* fast charging */ 616 case 0x25: /* slow charging */ 617 status = POWER_SUPPLY_STATUS_CHARGING; 618 break; 619 case 0x26: /* topping charge */ 620 case 0x22: /* charge complete */ 621 status = POWER_SUPPLY_STATUS_FULL; 622 break; 623 case 0x20: /* unknown */ 624 status = POWER_SUPPLY_STATUS_UNKNOWN; 625 break; 626 /* 627 * 0x01...0x1F = reserved (not charging) 628 * 0x23 = charging error 629 * 0x27..0xff = reserved 630 */ 631 default: 632 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 633 break; 634 } 635 636 return status; 637 } 638 639 static int hidpp10_query_battery_status(struct hidpp_device *hidpp) 640 { 641 struct hidpp_report response; 642 int ret, status; 643 644 ret = hidpp_send_rap_command_sync(hidpp, 645 REPORT_ID_HIDPP_SHORT, 646 HIDPP_GET_REGISTER, 647 HIDPP_REG_BATTERY_STATUS, 648 NULL, 0, &response); 649 if (ret) 650 return ret; 651 652 hidpp->battery.level = 653 hidpp10_battery_status_map_level(response.rap.params[0]); 654 status = hidpp10_battery_status_map_status(response.rap.params[1]); 655 hidpp->battery.status = status; 656 /* the capacity is only available when discharging or full */ 657 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 658 status == POWER_SUPPLY_STATUS_FULL; 659 660 return 0; 661 } 662 663 #define HIDPP_REG_BATTERY_MILEAGE 0x0D 664 665 static int hidpp10_battery_mileage_map_status(u8 param) 666 { 667 int status; 668 669 switch (param >> 6) { 670 case 0x00: 671 /* discharging (in use) */ 672 status = POWER_SUPPLY_STATUS_DISCHARGING; 673 break; 674 case 0x01: /* charging */ 675 status = POWER_SUPPLY_STATUS_CHARGING; 676 break; 677 case 0x02: /* charge complete */ 678 status = POWER_SUPPLY_STATUS_FULL; 679 break; 680 /* 681 * 0x03 = charging error 682 */ 683 default: 684 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 685 break; 686 } 687 688 return status; 689 } 690 691 static int hidpp10_query_battery_mileage(struct hidpp_device *hidpp) 692 { 693 struct hidpp_report response; 694 int ret, status; 695 696 ret = hidpp_send_rap_command_sync(hidpp, 697 REPORT_ID_HIDPP_SHORT, 698 HIDPP_GET_REGISTER, 699 HIDPP_REG_BATTERY_MILEAGE, 700 NULL, 0, &response); 701 if (ret) 702 return ret; 703 704 hidpp->battery.capacity = response.rap.params[0]; 705 status = hidpp10_battery_mileage_map_status(response.rap.params[2]); 706 hidpp->battery.status = status; 707 /* the capacity is only available when discharging or full */ 708 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 709 status == POWER_SUPPLY_STATUS_FULL; 710 711 return 0; 712 } 713 714 static int hidpp10_battery_event(struct hidpp_device *hidpp, u8 *data, int size) 715 { 716 struct hidpp_report *report = (struct hidpp_report *)data; 717 int status, capacity, level; 718 bool changed; 719 720 if (report->report_id != REPORT_ID_HIDPP_SHORT) 721 return 0; 722 723 switch (report->rap.sub_id) { 724 case HIDPP_REG_BATTERY_STATUS: 725 capacity = hidpp->battery.capacity; 726 level = hidpp10_battery_status_map_level(report->rawbytes[1]); 727 status = hidpp10_battery_status_map_status(report->rawbytes[2]); 728 break; 729 case HIDPP_REG_BATTERY_MILEAGE: 730 capacity = report->rap.params[0]; 731 level = hidpp->battery.level; 732 status = hidpp10_battery_mileage_map_status(report->rawbytes[3]); 733 break; 734 default: 735 return 0; 736 } 737 738 changed = capacity != hidpp->battery.capacity || 739 level != hidpp->battery.level || 740 status != hidpp->battery.status; 741 742 /* the capacity is only available when discharging or full */ 743 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 744 status == POWER_SUPPLY_STATUS_FULL; 745 746 if (changed) { 747 hidpp->battery.level = level; 748 hidpp->battery.status = status; 749 if (hidpp->battery.ps) 750 power_supply_changed(hidpp->battery.ps); 751 } 752 753 return 0; 754 } 755 756 #define HIDPP_REG_PAIRING_INFORMATION 0xB5 757 #define HIDPP_EXTENDED_PAIRING 0x30 758 #define HIDPP_DEVICE_NAME 0x40 759 760 static char *hidpp_unifying_get_name(struct hidpp_device *hidpp_dev) 761 { 762 struct hidpp_report response; 763 int ret; 764 u8 params[1] = { HIDPP_DEVICE_NAME }; 765 char *name; 766 int len; 767 768 ret = hidpp_send_rap_command_sync(hidpp_dev, 769 REPORT_ID_HIDPP_SHORT, 770 HIDPP_GET_LONG_REGISTER, 771 HIDPP_REG_PAIRING_INFORMATION, 772 params, 1, &response); 773 if (ret) 774 return NULL; 775 776 len = response.rap.params[1]; 777 778 if (2 + len > sizeof(response.rap.params)) 779 return NULL; 780 781 if (len < 4) /* logitech devices are usually at least Xddd */ 782 return NULL; 783 784 name = kzalloc(len + 1, GFP_KERNEL); 785 if (!name) 786 return NULL; 787 788 memcpy(name, &response.rap.params[2], len); 789 790 /* include the terminating '\0' */ 791 hidpp_prefix_name(&name, len + 1); 792 793 return name; 794 } 795 796 static int hidpp_unifying_get_serial(struct hidpp_device *hidpp, u32 *serial) 797 { 798 struct hidpp_report response; 799 int ret; 800 u8 params[1] = { HIDPP_EXTENDED_PAIRING }; 801 802 ret = hidpp_send_rap_command_sync(hidpp, 803 REPORT_ID_HIDPP_SHORT, 804 HIDPP_GET_LONG_REGISTER, 805 HIDPP_REG_PAIRING_INFORMATION, 806 params, 1, &response); 807 if (ret) 808 return ret; 809 810 /* 811 * We don't care about LE or BE, we will output it as a string 812 * with %4phD, so we need to keep the order. 813 */ 814 *serial = *((u32 *)&response.rap.params[1]); 815 return 0; 816 } 817 818 static int hidpp_unifying_init(struct hidpp_device *hidpp) 819 { 820 struct hid_device *hdev = hidpp->hid_dev; 821 const char *name; 822 u32 serial; 823 int ret; 824 825 ret = hidpp_unifying_get_serial(hidpp, &serial); 826 if (ret) 827 return ret; 828 829 snprintf(hdev->uniq, sizeof(hdev->uniq), "%04x-%4phD", 830 hdev->product, &serial); 831 dbg_hid("HID++ Unifying: Got serial: %s\n", hdev->uniq); 832 833 name = hidpp_unifying_get_name(hidpp); 834 if (!name) 835 return -EIO; 836 837 snprintf(hdev->name, sizeof(hdev->name), "%s", name); 838 dbg_hid("HID++ Unifying: Got name: %s\n", name); 839 840 kfree(name); 841 return 0; 842 } 843 844 /* -------------------------------------------------------------------------- */ 845 /* 0x0000: Root */ 846 /* -------------------------------------------------------------------------- */ 847 848 #define HIDPP_PAGE_ROOT 0x0000 849 #define HIDPP_PAGE_ROOT_IDX 0x00 850 851 #define CMD_ROOT_GET_FEATURE 0x01 852 #define CMD_ROOT_GET_PROTOCOL_VERSION 0x11 853 854 static int hidpp_root_get_feature(struct hidpp_device *hidpp, u16 feature, 855 u8 *feature_index, u8 *feature_type) 856 { 857 struct hidpp_report response; 858 int ret; 859 u8 params[2] = { feature >> 8, feature & 0x00FF }; 860 861 ret = hidpp_send_fap_command_sync(hidpp, 862 HIDPP_PAGE_ROOT_IDX, 863 CMD_ROOT_GET_FEATURE, 864 params, 2, &response); 865 if (ret) 866 return ret; 867 868 if (response.fap.params[0] == 0) 869 return -ENOENT; 870 871 *feature_index = response.fap.params[0]; 872 *feature_type = response.fap.params[1]; 873 874 return ret; 875 } 876 877 static int hidpp_root_get_protocol_version(struct hidpp_device *hidpp) 878 { 879 const u8 ping_byte = 0x5a; 880 u8 ping_data[3] = { 0, 0, ping_byte }; 881 struct hidpp_report response; 882 int ret; 883 884 ret = hidpp_send_rap_command_sync(hidpp, 885 REPORT_ID_HIDPP_SHORT, 886 HIDPP_PAGE_ROOT_IDX, 887 CMD_ROOT_GET_PROTOCOL_VERSION, 888 ping_data, sizeof(ping_data), &response); 889 890 if (ret == HIDPP_ERROR_INVALID_SUBID) { 891 hidpp->protocol_major = 1; 892 hidpp->protocol_minor = 0; 893 goto print_version; 894 } 895 896 /* the device might not be connected */ 897 if (ret == HIDPP_ERROR_RESOURCE_ERROR) 898 return -EIO; 899 900 if (ret > 0) { 901 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 902 __func__, ret); 903 return -EPROTO; 904 } 905 if (ret) 906 return ret; 907 908 if (response.rap.params[2] != ping_byte) { 909 hid_err(hidpp->hid_dev, "%s: ping mismatch 0x%02x != 0x%02x\n", 910 __func__, response.rap.params[2], ping_byte); 911 return -EPROTO; 912 } 913 914 hidpp->protocol_major = response.rap.params[0]; 915 hidpp->protocol_minor = response.rap.params[1]; 916 917 print_version: 918 hid_info(hidpp->hid_dev, "HID++ %u.%u device connected.\n", 919 hidpp->protocol_major, hidpp->protocol_minor); 920 return 0; 921 } 922 923 /* -------------------------------------------------------------------------- */ 924 /* 0x0005: GetDeviceNameType */ 925 /* -------------------------------------------------------------------------- */ 926 927 #define HIDPP_PAGE_GET_DEVICE_NAME_TYPE 0x0005 928 929 #define CMD_GET_DEVICE_NAME_TYPE_GET_COUNT 0x01 930 #define CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME 0x11 931 #define CMD_GET_DEVICE_NAME_TYPE_GET_TYPE 0x21 932 933 static int hidpp_devicenametype_get_count(struct hidpp_device *hidpp, 934 u8 feature_index, u8 *nameLength) 935 { 936 struct hidpp_report response; 937 int ret; 938 939 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 940 CMD_GET_DEVICE_NAME_TYPE_GET_COUNT, NULL, 0, &response); 941 942 if (ret > 0) { 943 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 944 __func__, ret); 945 return -EPROTO; 946 } 947 if (ret) 948 return ret; 949 950 *nameLength = response.fap.params[0]; 951 952 return ret; 953 } 954 955 static int hidpp_devicenametype_get_device_name(struct hidpp_device *hidpp, 956 u8 feature_index, u8 char_index, char *device_name, int len_buf) 957 { 958 struct hidpp_report response; 959 int ret, i; 960 int count; 961 962 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 963 CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME, &char_index, 1, 964 &response); 965 966 if (ret > 0) { 967 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 968 __func__, ret); 969 return -EPROTO; 970 } 971 if (ret) 972 return ret; 973 974 switch (response.report_id) { 975 case REPORT_ID_HIDPP_VERY_LONG: 976 count = hidpp->very_long_report_length - 4; 977 break; 978 case REPORT_ID_HIDPP_LONG: 979 count = HIDPP_REPORT_LONG_LENGTH - 4; 980 break; 981 case REPORT_ID_HIDPP_SHORT: 982 count = HIDPP_REPORT_SHORT_LENGTH - 4; 983 break; 984 default: 985 return -EPROTO; 986 } 987 988 if (len_buf < count) 989 count = len_buf; 990 991 for (i = 0; i < count; i++) 992 device_name[i] = response.fap.params[i]; 993 994 return count; 995 } 996 997 static char *hidpp_get_device_name(struct hidpp_device *hidpp) 998 { 999 u8 feature_type; 1000 u8 feature_index; 1001 u8 __name_length; 1002 char *name; 1003 unsigned index = 0; 1004 int ret; 1005 1006 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_GET_DEVICE_NAME_TYPE, 1007 &feature_index, &feature_type); 1008 if (ret) 1009 return NULL; 1010 1011 ret = hidpp_devicenametype_get_count(hidpp, feature_index, 1012 &__name_length); 1013 if (ret) 1014 return NULL; 1015 1016 name = kzalloc(__name_length + 1, GFP_KERNEL); 1017 if (!name) 1018 return NULL; 1019 1020 while (index < __name_length) { 1021 ret = hidpp_devicenametype_get_device_name(hidpp, 1022 feature_index, index, name + index, 1023 __name_length - index); 1024 if (ret <= 0) { 1025 kfree(name); 1026 return NULL; 1027 } 1028 index += ret; 1029 } 1030 1031 /* include the terminating '\0' */ 1032 hidpp_prefix_name(&name, __name_length + 1); 1033 1034 return name; 1035 } 1036 1037 /* -------------------------------------------------------------------------- */ 1038 /* 0x1000: Battery level status */ 1039 /* -------------------------------------------------------------------------- */ 1040 1041 #define HIDPP_PAGE_BATTERY_LEVEL_STATUS 0x1000 1042 1043 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS 0x00 1044 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY 0x10 1045 1046 #define EVENT_BATTERY_LEVEL_STATUS_BROADCAST 0x00 1047 1048 #define FLAG_BATTERY_LEVEL_DISABLE_OSD BIT(0) 1049 #define FLAG_BATTERY_LEVEL_MILEAGE BIT(1) 1050 #define FLAG_BATTERY_LEVEL_RECHARGEABLE BIT(2) 1051 1052 static int hidpp_map_battery_level(int capacity) 1053 { 1054 if (capacity < 11) 1055 return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; 1056 /* 1057 * The spec says this should be < 31 but some devices report 30 1058 * with brand new batteries and Windows reports 30 as "Good". 1059 */ 1060 else if (capacity < 30) 1061 return POWER_SUPPLY_CAPACITY_LEVEL_LOW; 1062 else if (capacity < 81) 1063 return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; 1064 return POWER_SUPPLY_CAPACITY_LEVEL_FULL; 1065 } 1066 1067 static int hidpp20_batterylevel_map_status_capacity(u8 data[3], int *capacity, 1068 int *next_capacity, 1069 int *level) 1070 { 1071 int status; 1072 1073 *capacity = data[0]; 1074 *next_capacity = data[1]; 1075 *level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 1076 1077 /* When discharging, we can rely on the device reported capacity. 1078 * For all other states the device reports 0 (unknown). 1079 */ 1080 switch (data[2]) { 1081 case 0: /* discharging (in use) */ 1082 status = POWER_SUPPLY_STATUS_DISCHARGING; 1083 *level = hidpp_map_battery_level(*capacity); 1084 break; 1085 case 1: /* recharging */ 1086 status = POWER_SUPPLY_STATUS_CHARGING; 1087 break; 1088 case 2: /* charge in final stage */ 1089 status = POWER_SUPPLY_STATUS_CHARGING; 1090 break; 1091 case 3: /* charge complete */ 1092 status = POWER_SUPPLY_STATUS_FULL; 1093 *level = POWER_SUPPLY_CAPACITY_LEVEL_FULL; 1094 *capacity = 100; 1095 break; 1096 case 4: /* recharging below optimal speed */ 1097 status = POWER_SUPPLY_STATUS_CHARGING; 1098 break; 1099 /* 5 = invalid battery type 1100 6 = thermal error 1101 7 = other charging error */ 1102 default: 1103 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 1104 break; 1105 } 1106 1107 return status; 1108 } 1109 1110 static int hidpp20_batterylevel_get_battery_capacity(struct hidpp_device *hidpp, 1111 u8 feature_index, 1112 int *status, 1113 int *capacity, 1114 int *next_capacity, 1115 int *level) 1116 { 1117 struct hidpp_report response; 1118 int ret; 1119 u8 *params = (u8 *)response.fap.params; 1120 1121 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1122 CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS, 1123 NULL, 0, &response); 1124 /* Ignore these intermittent errors */ 1125 if (ret == HIDPP_ERROR_RESOURCE_ERROR) 1126 return -EIO; 1127 if (ret > 0) { 1128 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1129 __func__, ret); 1130 return -EPROTO; 1131 } 1132 if (ret) 1133 return ret; 1134 1135 *status = hidpp20_batterylevel_map_status_capacity(params, capacity, 1136 next_capacity, 1137 level); 1138 1139 return 0; 1140 } 1141 1142 static int hidpp20_batterylevel_get_battery_info(struct hidpp_device *hidpp, 1143 u8 feature_index) 1144 { 1145 struct hidpp_report response; 1146 int ret; 1147 u8 *params = (u8 *)response.fap.params; 1148 unsigned int level_count, flags; 1149 1150 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1151 CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY, 1152 NULL, 0, &response); 1153 if (ret > 0) { 1154 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1155 __func__, ret); 1156 return -EPROTO; 1157 } 1158 if (ret) 1159 return ret; 1160 1161 level_count = params[0]; 1162 flags = params[1]; 1163 1164 if (level_count < 10 || !(flags & FLAG_BATTERY_LEVEL_MILEAGE)) 1165 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS; 1166 else 1167 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE; 1168 1169 return 0; 1170 } 1171 1172 static int hidpp20_query_battery_info(struct hidpp_device *hidpp) 1173 { 1174 u8 feature_type; 1175 int ret; 1176 int status, capacity, next_capacity, level; 1177 1178 if (hidpp->battery.feature_index == 0xff) { 1179 ret = hidpp_root_get_feature(hidpp, 1180 HIDPP_PAGE_BATTERY_LEVEL_STATUS, 1181 &hidpp->battery.feature_index, 1182 &feature_type); 1183 if (ret) 1184 return ret; 1185 } 1186 1187 ret = hidpp20_batterylevel_get_battery_capacity(hidpp, 1188 hidpp->battery.feature_index, 1189 &status, &capacity, 1190 &next_capacity, &level); 1191 if (ret) 1192 return ret; 1193 1194 ret = hidpp20_batterylevel_get_battery_info(hidpp, 1195 hidpp->battery.feature_index); 1196 if (ret) 1197 return ret; 1198 1199 hidpp->battery.status = status; 1200 hidpp->battery.capacity = capacity; 1201 hidpp->battery.level = level; 1202 /* the capacity is only available when discharging or full */ 1203 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 1204 status == POWER_SUPPLY_STATUS_FULL; 1205 1206 return 0; 1207 } 1208 1209 static int hidpp20_battery_event(struct hidpp_device *hidpp, 1210 u8 *data, int size) 1211 { 1212 struct hidpp_report *report = (struct hidpp_report *)data; 1213 int status, capacity, next_capacity, level; 1214 bool changed; 1215 1216 if (report->fap.feature_index != hidpp->battery.feature_index || 1217 report->fap.funcindex_clientid != EVENT_BATTERY_LEVEL_STATUS_BROADCAST) 1218 return 0; 1219 1220 status = hidpp20_batterylevel_map_status_capacity(report->fap.params, 1221 &capacity, 1222 &next_capacity, 1223 &level); 1224 1225 /* the capacity is only available when discharging or full */ 1226 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 1227 status == POWER_SUPPLY_STATUS_FULL; 1228 1229 changed = capacity != hidpp->battery.capacity || 1230 level != hidpp->battery.level || 1231 status != hidpp->battery.status; 1232 1233 if (changed) { 1234 hidpp->battery.level = level; 1235 hidpp->battery.capacity = capacity; 1236 hidpp->battery.status = status; 1237 if (hidpp->battery.ps) 1238 power_supply_changed(hidpp->battery.ps); 1239 } 1240 1241 return 0; 1242 } 1243 1244 /* -------------------------------------------------------------------------- */ 1245 /* 0x1001: Battery voltage */ 1246 /* -------------------------------------------------------------------------- */ 1247 1248 #define HIDPP_PAGE_BATTERY_VOLTAGE 0x1001 1249 1250 #define CMD_BATTERY_VOLTAGE_GET_BATTERY_VOLTAGE 0x00 1251 1252 #define EVENT_BATTERY_VOLTAGE_STATUS_BROADCAST 0x00 1253 1254 static int hidpp20_battery_map_status_voltage(u8 data[3], int *voltage, 1255 int *level, int *charge_type) 1256 { 1257 int status; 1258 1259 long flags = (long) data[2]; 1260 1261 if (flags & 0x80) 1262 switch (flags & 0x07) { 1263 case 0: 1264 status = POWER_SUPPLY_STATUS_CHARGING; 1265 break; 1266 case 1: 1267 status = POWER_SUPPLY_STATUS_FULL; 1268 *level = POWER_SUPPLY_CAPACITY_LEVEL_FULL; 1269 break; 1270 case 2: 1271 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 1272 break; 1273 default: 1274 status = POWER_SUPPLY_STATUS_UNKNOWN; 1275 break; 1276 } 1277 else 1278 status = POWER_SUPPLY_STATUS_DISCHARGING; 1279 1280 *charge_type = POWER_SUPPLY_CHARGE_TYPE_STANDARD; 1281 if (test_bit(3, &flags)) { 1282 *charge_type = POWER_SUPPLY_CHARGE_TYPE_FAST; 1283 } 1284 if (test_bit(4, &flags)) { 1285 *charge_type = POWER_SUPPLY_CHARGE_TYPE_TRICKLE; 1286 } 1287 if (test_bit(5, &flags)) { 1288 *level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; 1289 } 1290 1291 *voltage = get_unaligned_be16(data); 1292 1293 return status; 1294 } 1295 1296 static int hidpp20_battery_get_battery_voltage(struct hidpp_device *hidpp, 1297 u8 feature_index, 1298 int *status, int *voltage, 1299 int *level, int *charge_type) 1300 { 1301 struct hidpp_report response; 1302 int ret; 1303 u8 *params = (u8 *)response.fap.params; 1304 1305 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1306 CMD_BATTERY_VOLTAGE_GET_BATTERY_VOLTAGE, 1307 NULL, 0, &response); 1308 1309 if (ret > 0) { 1310 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1311 __func__, ret); 1312 return -EPROTO; 1313 } 1314 if (ret) 1315 return ret; 1316 1317 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_VOLTAGE; 1318 1319 *status = hidpp20_battery_map_status_voltage(params, voltage, 1320 level, charge_type); 1321 1322 return 0; 1323 } 1324 1325 static int hidpp20_query_battery_voltage_info(struct hidpp_device *hidpp) 1326 { 1327 u8 feature_type; 1328 int ret; 1329 int status, voltage, level, charge_type; 1330 1331 if (hidpp->battery.voltage_feature_index == 0xff) { 1332 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_BATTERY_VOLTAGE, 1333 &hidpp->battery.voltage_feature_index, 1334 &feature_type); 1335 if (ret) 1336 return ret; 1337 } 1338 1339 ret = hidpp20_battery_get_battery_voltage(hidpp, 1340 hidpp->battery.voltage_feature_index, 1341 &status, &voltage, &level, &charge_type); 1342 1343 if (ret) 1344 return ret; 1345 1346 hidpp->battery.status = status; 1347 hidpp->battery.voltage = voltage; 1348 hidpp->battery.level = level; 1349 hidpp->battery.charge_type = charge_type; 1350 hidpp->battery.online = status != POWER_SUPPLY_STATUS_NOT_CHARGING; 1351 1352 return 0; 1353 } 1354 1355 static int hidpp20_battery_voltage_event(struct hidpp_device *hidpp, 1356 u8 *data, int size) 1357 { 1358 struct hidpp_report *report = (struct hidpp_report *)data; 1359 int status, voltage, level, charge_type; 1360 1361 if (report->fap.feature_index != hidpp->battery.voltage_feature_index || 1362 report->fap.funcindex_clientid != EVENT_BATTERY_VOLTAGE_STATUS_BROADCAST) 1363 return 0; 1364 1365 status = hidpp20_battery_map_status_voltage(report->fap.params, &voltage, 1366 &level, &charge_type); 1367 1368 hidpp->battery.online = status != POWER_SUPPLY_STATUS_NOT_CHARGING; 1369 1370 if (voltage != hidpp->battery.voltage || status != hidpp->battery.status) { 1371 hidpp->battery.voltage = voltage; 1372 hidpp->battery.status = status; 1373 hidpp->battery.level = level; 1374 hidpp->battery.charge_type = charge_type; 1375 if (hidpp->battery.ps) 1376 power_supply_changed(hidpp->battery.ps); 1377 } 1378 return 0; 1379 } 1380 1381 static enum power_supply_property hidpp_battery_props[] = { 1382 POWER_SUPPLY_PROP_ONLINE, 1383 POWER_SUPPLY_PROP_STATUS, 1384 POWER_SUPPLY_PROP_SCOPE, 1385 POWER_SUPPLY_PROP_MODEL_NAME, 1386 POWER_SUPPLY_PROP_MANUFACTURER, 1387 POWER_SUPPLY_PROP_SERIAL_NUMBER, 1388 0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY, */ 1389 0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY_LEVEL, */ 1390 0, /* placeholder for POWER_SUPPLY_PROP_VOLTAGE_NOW, */ 1391 }; 1392 1393 static int hidpp_battery_get_property(struct power_supply *psy, 1394 enum power_supply_property psp, 1395 union power_supply_propval *val) 1396 { 1397 struct hidpp_device *hidpp = power_supply_get_drvdata(psy); 1398 int ret = 0; 1399 1400 switch(psp) { 1401 case POWER_SUPPLY_PROP_STATUS: 1402 val->intval = hidpp->battery.status; 1403 break; 1404 case POWER_SUPPLY_PROP_CAPACITY: 1405 val->intval = hidpp->battery.capacity; 1406 break; 1407 case POWER_SUPPLY_PROP_CAPACITY_LEVEL: 1408 val->intval = hidpp->battery.level; 1409 break; 1410 case POWER_SUPPLY_PROP_SCOPE: 1411 val->intval = POWER_SUPPLY_SCOPE_DEVICE; 1412 break; 1413 case POWER_SUPPLY_PROP_ONLINE: 1414 val->intval = hidpp->battery.online; 1415 break; 1416 case POWER_SUPPLY_PROP_MODEL_NAME: 1417 if (!strncmp(hidpp->name, "Logitech ", 9)) 1418 val->strval = hidpp->name + 9; 1419 else 1420 val->strval = hidpp->name; 1421 break; 1422 case POWER_SUPPLY_PROP_MANUFACTURER: 1423 val->strval = "Logitech"; 1424 break; 1425 case POWER_SUPPLY_PROP_SERIAL_NUMBER: 1426 val->strval = hidpp->hid_dev->uniq; 1427 break; 1428 case POWER_SUPPLY_PROP_VOLTAGE_NOW: 1429 /* hardware reports voltage in in mV. sysfs expects uV */ 1430 val->intval = hidpp->battery.voltage * 1000; 1431 break; 1432 case POWER_SUPPLY_PROP_CHARGE_TYPE: 1433 val->intval = hidpp->battery.charge_type; 1434 break; 1435 default: 1436 ret = -EINVAL; 1437 break; 1438 } 1439 1440 return ret; 1441 } 1442 1443 /* -------------------------------------------------------------------------- */ 1444 /* 0x1d4b: Wireless device status */ 1445 /* -------------------------------------------------------------------------- */ 1446 #define HIDPP_PAGE_WIRELESS_DEVICE_STATUS 0x1d4b 1447 1448 static int hidpp_set_wireless_feature_index(struct hidpp_device *hidpp) 1449 { 1450 u8 feature_type; 1451 int ret; 1452 1453 ret = hidpp_root_get_feature(hidpp, 1454 HIDPP_PAGE_WIRELESS_DEVICE_STATUS, 1455 &hidpp->wireless_feature_index, 1456 &feature_type); 1457 1458 return ret; 1459 } 1460 1461 /* -------------------------------------------------------------------------- */ 1462 /* 0x2120: Hi-resolution scrolling */ 1463 /* -------------------------------------------------------------------------- */ 1464 1465 #define HIDPP_PAGE_HI_RESOLUTION_SCROLLING 0x2120 1466 1467 #define CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE 0x10 1468 1469 static int hidpp_hrs_set_highres_scrolling_mode(struct hidpp_device *hidpp, 1470 bool enabled, u8 *multiplier) 1471 { 1472 u8 feature_index; 1473 u8 feature_type; 1474 int ret; 1475 u8 params[1]; 1476 struct hidpp_report response; 1477 1478 ret = hidpp_root_get_feature(hidpp, 1479 HIDPP_PAGE_HI_RESOLUTION_SCROLLING, 1480 &feature_index, 1481 &feature_type); 1482 if (ret) 1483 return ret; 1484 1485 params[0] = enabled ? BIT(0) : 0; 1486 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1487 CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE, 1488 params, sizeof(params), &response); 1489 if (ret) 1490 return ret; 1491 *multiplier = response.fap.params[1]; 1492 return 0; 1493 } 1494 1495 /* -------------------------------------------------------------------------- */ 1496 /* 0x2121: HiRes Wheel */ 1497 /* -------------------------------------------------------------------------- */ 1498 1499 #define HIDPP_PAGE_HIRES_WHEEL 0x2121 1500 1501 #define CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY 0x00 1502 #define CMD_HIRES_WHEEL_SET_WHEEL_MODE 0x20 1503 1504 static int hidpp_hrw_get_wheel_capability(struct hidpp_device *hidpp, 1505 u8 *multiplier) 1506 { 1507 u8 feature_index; 1508 u8 feature_type; 1509 int ret; 1510 struct hidpp_report response; 1511 1512 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL, 1513 &feature_index, &feature_type); 1514 if (ret) 1515 goto return_default; 1516 1517 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1518 CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY, 1519 NULL, 0, &response); 1520 if (ret) 1521 goto return_default; 1522 1523 *multiplier = response.fap.params[0]; 1524 return 0; 1525 return_default: 1526 hid_warn(hidpp->hid_dev, 1527 "Couldn't get wheel multiplier (error %d)\n", ret); 1528 return ret; 1529 } 1530 1531 static int hidpp_hrw_set_wheel_mode(struct hidpp_device *hidpp, bool invert, 1532 bool high_resolution, bool use_hidpp) 1533 { 1534 u8 feature_index; 1535 u8 feature_type; 1536 int ret; 1537 u8 params[1]; 1538 struct hidpp_report response; 1539 1540 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL, 1541 &feature_index, &feature_type); 1542 if (ret) 1543 return ret; 1544 1545 params[0] = (invert ? BIT(2) : 0) | 1546 (high_resolution ? BIT(1) : 0) | 1547 (use_hidpp ? BIT(0) : 0); 1548 1549 return hidpp_send_fap_command_sync(hidpp, feature_index, 1550 CMD_HIRES_WHEEL_SET_WHEEL_MODE, 1551 params, sizeof(params), &response); 1552 } 1553 1554 /* -------------------------------------------------------------------------- */ 1555 /* 0x4301: Solar Keyboard */ 1556 /* -------------------------------------------------------------------------- */ 1557 1558 #define HIDPP_PAGE_SOLAR_KEYBOARD 0x4301 1559 1560 #define CMD_SOLAR_SET_LIGHT_MEASURE 0x00 1561 1562 #define EVENT_SOLAR_BATTERY_BROADCAST 0x00 1563 #define EVENT_SOLAR_BATTERY_LIGHT_MEASURE 0x10 1564 #define EVENT_SOLAR_CHECK_LIGHT_BUTTON 0x20 1565 1566 static int hidpp_solar_request_battery_event(struct hidpp_device *hidpp) 1567 { 1568 struct hidpp_report response; 1569 u8 params[2] = { 1, 1 }; 1570 u8 feature_type; 1571 int ret; 1572 1573 if (hidpp->battery.feature_index == 0xff) { 1574 ret = hidpp_root_get_feature(hidpp, 1575 HIDPP_PAGE_SOLAR_KEYBOARD, 1576 &hidpp->battery.solar_feature_index, 1577 &feature_type); 1578 if (ret) 1579 return ret; 1580 } 1581 1582 ret = hidpp_send_fap_command_sync(hidpp, 1583 hidpp->battery.solar_feature_index, 1584 CMD_SOLAR_SET_LIGHT_MEASURE, 1585 params, 2, &response); 1586 if (ret > 0) { 1587 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1588 __func__, ret); 1589 return -EPROTO; 1590 } 1591 if (ret) 1592 return ret; 1593 1594 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE; 1595 1596 return 0; 1597 } 1598 1599 static int hidpp_solar_battery_event(struct hidpp_device *hidpp, 1600 u8 *data, int size) 1601 { 1602 struct hidpp_report *report = (struct hidpp_report *)data; 1603 int capacity, lux, status; 1604 u8 function; 1605 1606 function = report->fap.funcindex_clientid; 1607 1608 1609 if (report->fap.feature_index != hidpp->battery.solar_feature_index || 1610 !(function == EVENT_SOLAR_BATTERY_BROADCAST || 1611 function == EVENT_SOLAR_BATTERY_LIGHT_MEASURE || 1612 function == EVENT_SOLAR_CHECK_LIGHT_BUTTON)) 1613 return 0; 1614 1615 capacity = report->fap.params[0]; 1616 1617 switch (function) { 1618 case EVENT_SOLAR_BATTERY_LIGHT_MEASURE: 1619 lux = (report->fap.params[1] << 8) | report->fap.params[2]; 1620 if (lux > 200) 1621 status = POWER_SUPPLY_STATUS_CHARGING; 1622 else 1623 status = POWER_SUPPLY_STATUS_DISCHARGING; 1624 break; 1625 case EVENT_SOLAR_CHECK_LIGHT_BUTTON: 1626 default: 1627 if (capacity < hidpp->battery.capacity) 1628 status = POWER_SUPPLY_STATUS_DISCHARGING; 1629 else 1630 status = POWER_SUPPLY_STATUS_CHARGING; 1631 1632 } 1633 1634 if (capacity == 100) 1635 status = POWER_SUPPLY_STATUS_FULL; 1636 1637 hidpp->battery.online = true; 1638 if (capacity != hidpp->battery.capacity || 1639 status != hidpp->battery.status) { 1640 hidpp->battery.capacity = capacity; 1641 hidpp->battery.status = status; 1642 if (hidpp->battery.ps) 1643 power_supply_changed(hidpp->battery.ps); 1644 } 1645 1646 return 0; 1647 } 1648 1649 /* -------------------------------------------------------------------------- */ 1650 /* 0x6010: Touchpad FW items */ 1651 /* -------------------------------------------------------------------------- */ 1652 1653 #define HIDPP_PAGE_TOUCHPAD_FW_ITEMS 0x6010 1654 1655 #define CMD_TOUCHPAD_FW_ITEMS_SET 0x10 1656 1657 struct hidpp_touchpad_fw_items { 1658 uint8_t presence; 1659 uint8_t desired_state; 1660 uint8_t state; 1661 uint8_t persistent; 1662 }; 1663 1664 /** 1665 * send a set state command to the device by reading the current items->state 1666 * field. items is then filled with the current state. 1667 */ 1668 static int hidpp_touchpad_fw_items_set(struct hidpp_device *hidpp, 1669 u8 feature_index, 1670 struct hidpp_touchpad_fw_items *items) 1671 { 1672 struct hidpp_report response; 1673 int ret; 1674 u8 *params = (u8 *)response.fap.params; 1675 1676 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1677 CMD_TOUCHPAD_FW_ITEMS_SET, &items->state, 1, &response); 1678 1679 if (ret > 0) { 1680 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1681 __func__, ret); 1682 return -EPROTO; 1683 } 1684 if (ret) 1685 return ret; 1686 1687 items->presence = params[0]; 1688 items->desired_state = params[1]; 1689 items->state = params[2]; 1690 items->persistent = params[3]; 1691 1692 return 0; 1693 } 1694 1695 /* -------------------------------------------------------------------------- */ 1696 /* 0x6100: TouchPadRawXY */ 1697 /* -------------------------------------------------------------------------- */ 1698 1699 #define HIDPP_PAGE_TOUCHPAD_RAW_XY 0x6100 1700 1701 #define CMD_TOUCHPAD_GET_RAW_INFO 0x01 1702 #define CMD_TOUCHPAD_SET_RAW_REPORT_STATE 0x21 1703 1704 #define EVENT_TOUCHPAD_RAW_XY 0x00 1705 1706 #define TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT 0x01 1707 #define TOUCHPAD_RAW_XY_ORIGIN_UPPER_LEFT 0x03 1708 1709 struct hidpp_touchpad_raw_info { 1710 u16 x_size; 1711 u16 y_size; 1712 u8 z_range; 1713 u8 area_range; 1714 u8 timestamp_unit; 1715 u8 maxcontacts; 1716 u8 origin; 1717 u16 res; 1718 }; 1719 1720 struct hidpp_touchpad_raw_xy_finger { 1721 u8 contact_type; 1722 u8 contact_status; 1723 u16 x; 1724 u16 y; 1725 u8 z; 1726 u8 area; 1727 u8 finger_id; 1728 }; 1729 1730 struct hidpp_touchpad_raw_xy { 1731 u16 timestamp; 1732 struct hidpp_touchpad_raw_xy_finger fingers[2]; 1733 u8 spurious_flag; 1734 u8 end_of_frame; 1735 u8 finger_count; 1736 u8 button; 1737 }; 1738 1739 static int hidpp_touchpad_get_raw_info(struct hidpp_device *hidpp, 1740 u8 feature_index, struct hidpp_touchpad_raw_info *raw_info) 1741 { 1742 struct hidpp_report response; 1743 int ret; 1744 u8 *params = (u8 *)response.fap.params; 1745 1746 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1747 CMD_TOUCHPAD_GET_RAW_INFO, NULL, 0, &response); 1748 1749 if (ret > 0) { 1750 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1751 __func__, ret); 1752 return -EPROTO; 1753 } 1754 if (ret) 1755 return ret; 1756 1757 raw_info->x_size = get_unaligned_be16(¶ms[0]); 1758 raw_info->y_size = get_unaligned_be16(¶ms[2]); 1759 raw_info->z_range = params[4]; 1760 raw_info->area_range = params[5]; 1761 raw_info->maxcontacts = params[7]; 1762 raw_info->origin = params[8]; 1763 /* res is given in unit per inch */ 1764 raw_info->res = get_unaligned_be16(¶ms[13]) * 2 / 51; 1765 1766 return ret; 1767 } 1768 1769 static int hidpp_touchpad_set_raw_report_state(struct hidpp_device *hidpp_dev, 1770 u8 feature_index, bool send_raw_reports, 1771 bool sensor_enhanced_settings) 1772 { 1773 struct hidpp_report response; 1774 1775 /* 1776 * Params: 1777 * bit 0 - enable raw 1778 * bit 1 - 16bit Z, no area 1779 * bit 2 - enhanced sensitivity 1780 * bit 3 - width, height (4 bits each) instead of area 1781 * bit 4 - send raw + gestures (degrades smoothness) 1782 * remaining bits - reserved 1783 */ 1784 u8 params = send_raw_reports | (sensor_enhanced_settings << 2); 1785 1786 return hidpp_send_fap_command_sync(hidpp_dev, feature_index, 1787 CMD_TOUCHPAD_SET_RAW_REPORT_STATE, ¶ms, 1, &response); 1788 } 1789 1790 static void hidpp_touchpad_touch_event(u8 *data, 1791 struct hidpp_touchpad_raw_xy_finger *finger) 1792 { 1793 u8 x_m = data[0] << 2; 1794 u8 y_m = data[2] << 2; 1795 1796 finger->x = x_m << 6 | data[1]; 1797 finger->y = y_m << 6 | data[3]; 1798 1799 finger->contact_type = data[0] >> 6; 1800 finger->contact_status = data[2] >> 6; 1801 1802 finger->z = data[4]; 1803 finger->area = data[5]; 1804 finger->finger_id = data[6] >> 4; 1805 } 1806 1807 static void hidpp_touchpad_raw_xy_event(struct hidpp_device *hidpp_dev, 1808 u8 *data, struct hidpp_touchpad_raw_xy *raw_xy) 1809 { 1810 memset(raw_xy, 0, sizeof(struct hidpp_touchpad_raw_xy)); 1811 raw_xy->end_of_frame = data[8] & 0x01; 1812 raw_xy->spurious_flag = (data[8] >> 1) & 0x01; 1813 raw_xy->finger_count = data[15] & 0x0f; 1814 raw_xy->button = (data[8] >> 2) & 0x01; 1815 1816 if (raw_xy->finger_count) { 1817 hidpp_touchpad_touch_event(&data[2], &raw_xy->fingers[0]); 1818 hidpp_touchpad_touch_event(&data[9], &raw_xy->fingers[1]); 1819 } 1820 } 1821 1822 /* -------------------------------------------------------------------------- */ 1823 /* 0x8123: Force feedback support */ 1824 /* -------------------------------------------------------------------------- */ 1825 1826 #define HIDPP_FF_GET_INFO 0x01 1827 #define HIDPP_FF_RESET_ALL 0x11 1828 #define HIDPP_FF_DOWNLOAD_EFFECT 0x21 1829 #define HIDPP_FF_SET_EFFECT_STATE 0x31 1830 #define HIDPP_FF_DESTROY_EFFECT 0x41 1831 #define HIDPP_FF_GET_APERTURE 0x51 1832 #define HIDPP_FF_SET_APERTURE 0x61 1833 #define HIDPP_FF_GET_GLOBAL_GAINS 0x71 1834 #define HIDPP_FF_SET_GLOBAL_GAINS 0x81 1835 1836 #define HIDPP_FF_EFFECT_STATE_GET 0x00 1837 #define HIDPP_FF_EFFECT_STATE_STOP 0x01 1838 #define HIDPP_FF_EFFECT_STATE_PLAY 0x02 1839 #define HIDPP_FF_EFFECT_STATE_PAUSE 0x03 1840 1841 #define HIDPP_FF_EFFECT_CONSTANT 0x00 1842 #define HIDPP_FF_EFFECT_PERIODIC_SINE 0x01 1843 #define HIDPP_FF_EFFECT_PERIODIC_SQUARE 0x02 1844 #define HIDPP_FF_EFFECT_PERIODIC_TRIANGLE 0x03 1845 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP 0x04 1846 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN 0x05 1847 #define HIDPP_FF_EFFECT_SPRING 0x06 1848 #define HIDPP_FF_EFFECT_DAMPER 0x07 1849 #define HIDPP_FF_EFFECT_FRICTION 0x08 1850 #define HIDPP_FF_EFFECT_INERTIA 0x09 1851 #define HIDPP_FF_EFFECT_RAMP 0x0A 1852 1853 #define HIDPP_FF_EFFECT_AUTOSTART 0x80 1854 1855 #define HIDPP_FF_EFFECTID_NONE -1 1856 #define HIDPP_FF_EFFECTID_AUTOCENTER -2 1857 #define HIDPP_AUTOCENTER_PARAMS_LENGTH 18 1858 1859 #define HIDPP_FF_MAX_PARAMS 20 1860 #define HIDPP_FF_RESERVED_SLOTS 1 1861 1862 struct hidpp_ff_private_data { 1863 struct hidpp_device *hidpp; 1864 u8 feature_index; 1865 u8 version; 1866 u16 gain; 1867 s16 range; 1868 u8 slot_autocenter; 1869 u8 num_effects; 1870 int *effect_ids; 1871 struct workqueue_struct *wq; 1872 atomic_t workqueue_size; 1873 }; 1874 1875 struct hidpp_ff_work_data { 1876 struct work_struct work; 1877 struct hidpp_ff_private_data *data; 1878 int effect_id; 1879 u8 command; 1880 u8 params[HIDPP_FF_MAX_PARAMS]; 1881 u8 size; 1882 }; 1883 1884 static const signed short hidpp_ff_effects[] = { 1885 FF_CONSTANT, 1886 FF_PERIODIC, 1887 FF_SINE, 1888 FF_SQUARE, 1889 FF_SAW_UP, 1890 FF_SAW_DOWN, 1891 FF_TRIANGLE, 1892 FF_SPRING, 1893 FF_DAMPER, 1894 FF_AUTOCENTER, 1895 FF_GAIN, 1896 -1 1897 }; 1898 1899 static const signed short hidpp_ff_effects_v2[] = { 1900 FF_RAMP, 1901 FF_FRICTION, 1902 FF_INERTIA, 1903 -1 1904 }; 1905 1906 static const u8 HIDPP_FF_CONDITION_CMDS[] = { 1907 HIDPP_FF_EFFECT_SPRING, 1908 HIDPP_FF_EFFECT_FRICTION, 1909 HIDPP_FF_EFFECT_DAMPER, 1910 HIDPP_FF_EFFECT_INERTIA 1911 }; 1912 1913 static const char *HIDPP_FF_CONDITION_NAMES[] = { 1914 "spring", 1915 "friction", 1916 "damper", 1917 "inertia" 1918 }; 1919 1920 1921 static u8 hidpp_ff_find_effect(struct hidpp_ff_private_data *data, int effect_id) 1922 { 1923 int i; 1924 1925 for (i = 0; i < data->num_effects; i++) 1926 if (data->effect_ids[i] == effect_id) 1927 return i+1; 1928 1929 return 0; 1930 } 1931 1932 static void hidpp_ff_work_handler(struct work_struct *w) 1933 { 1934 struct hidpp_ff_work_data *wd = container_of(w, struct hidpp_ff_work_data, work); 1935 struct hidpp_ff_private_data *data = wd->data; 1936 struct hidpp_report response; 1937 u8 slot; 1938 int ret; 1939 1940 /* add slot number if needed */ 1941 switch (wd->effect_id) { 1942 case HIDPP_FF_EFFECTID_AUTOCENTER: 1943 wd->params[0] = data->slot_autocenter; 1944 break; 1945 case HIDPP_FF_EFFECTID_NONE: 1946 /* leave slot as zero */ 1947 break; 1948 default: 1949 /* find current slot for effect */ 1950 wd->params[0] = hidpp_ff_find_effect(data, wd->effect_id); 1951 break; 1952 } 1953 1954 /* send command and wait for reply */ 1955 ret = hidpp_send_fap_command_sync(data->hidpp, data->feature_index, 1956 wd->command, wd->params, wd->size, &response); 1957 1958 if (ret) { 1959 hid_err(data->hidpp->hid_dev, "Failed to send command to device!\n"); 1960 goto out; 1961 } 1962 1963 /* parse return data */ 1964 switch (wd->command) { 1965 case HIDPP_FF_DOWNLOAD_EFFECT: 1966 slot = response.fap.params[0]; 1967 if (slot > 0 && slot <= data->num_effects) { 1968 if (wd->effect_id >= 0) 1969 /* regular effect uploaded */ 1970 data->effect_ids[slot-1] = wd->effect_id; 1971 else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER) 1972 /* autocenter spring uploaded */ 1973 data->slot_autocenter = slot; 1974 } 1975 break; 1976 case HIDPP_FF_DESTROY_EFFECT: 1977 if (wd->effect_id >= 0) 1978 /* regular effect destroyed */ 1979 data->effect_ids[wd->params[0]-1] = -1; 1980 else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER) 1981 /* autocenter spring destoyed */ 1982 data->slot_autocenter = 0; 1983 break; 1984 case HIDPP_FF_SET_GLOBAL_GAINS: 1985 data->gain = (wd->params[0] << 8) + wd->params[1]; 1986 break; 1987 case HIDPP_FF_SET_APERTURE: 1988 data->range = (wd->params[0] << 8) + wd->params[1]; 1989 break; 1990 default: 1991 /* no action needed */ 1992 break; 1993 } 1994 1995 out: 1996 atomic_dec(&data->workqueue_size); 1997 kfree(wd); 1998 } 1999 2000 static int hidpp_ff_queue_work(struct hidpp_ff_private_data *data, int effect_id, u8 command, u8 *params, u8 size) 2001 { 2002 struct hidpp_ff_work_data *wd = kzalloc(sizeof(*wd), GFP_KERNEL); 2003 int s; 2004 2005 if (!wd) 2006 return -ENOMEM; 2007 2008 INIT_WORK(&wd->work, hidpp_ff_work_handler); 2009 2010 wd->data = data; 2011 wd->effect_id = effect_id; 2012 wd->command = command; 2013 wd->size = size; 2014 memcpy(wd->params, params, size); 2015 2016 atomic_inc(&data->workqueue_size); 2017 queue_work(data->wq, &wd->work); 2018 2019 /* warn about excessive queue size */ 2020 s = atomic_read(&data->workqueue_size); 2021 if (s >= 20 && s % 20 == 0) 2022 hid_warn(data->hidpp->hid_dev, "Force feedback command queue contains %d commands, causing substantial delays!", s); 2023 2024 return 0; 2025 } 2026 2027 static int hidpp_ff_upload_effect(struct input_dev *dev, struct ff_effect *effect, struct ff_effect *old) 2028 { 2029 struct hidpp_ff_private_data *data = dev->ff->private; 2030 u8 params[20]; 2031 u8 size; 2032 int force; 2033 2034 /* set common parameters */ 2035 params[2] = effect->replay.length >> 8; 2036 params[3] = effect->replay.length & 255; 2037 params[4] = effect->replay.delay >> 8; 2038 params[5] = effect->replay.delay & 255; 2039 2040 switch (effect->type) { 2041 case FF_CONSTANT: 2042 force = (effect->u.constant.level * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 2043 params[1] = HIDPP_FF_EFFECT_CONSTANT; 2044 params[6] = force >> 8; 2045 params[7] = force & 255; 2046 params[8] = effect->u.constant.envelope.attack_level >> 7; 2047 params[9] = effect->u.constant.envelope.attack_length >> 8; 2048 params[10] = effect->u.constant.envelope.attack_length & 255; 2049 params[11] = effect->u.constant.envelope.fade_level >> 7; 2050 params[12] = effect->u.constant.envelope.fade_length >> 8; 2051 params[13] = effect->u.constant.envelope.fade_length & 255; 2052 size = 14; 2053 dbg_hid("Uploading constant force level=%d in dir %d = %d\n", 2054 effect->u.constant.level, 2055 effect->direction, force); 2056 dbg_hid(" envelope attack=(%d, %d ms) fade=(%d, %d ms)\n", 2057 effect->u.constant.envelope.attack_level, 2058 effect->u.constant.envelope.attack_length, 2059 effect->u.constant.envelope.fade_level, 2060 effect->u.constant.envelope.fade_length); 2061 break; 2062 case FF_PERIODIC: 2063 { 2064 switch (effect->u.periodic.waveform) { 2065 case FF_SINE: 2066 params[1] = HIDPP_FF_EFFECT_PERIODIC_SINE; 2067 break; 2068 case FF_SQUARE: 2069 params[1] = HIDPP_FF_EFFECT_PERIODIC_SQUARE; 2070 break; 2071 case FF_SAW_UP: 2072 params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP; 2073 break; 2074 case FF_SAW_DOWN: 2075 params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN; 2076 break; 2077 case FF_TRIANGLE: 2078 params[1] = HIDPP_FF_EFFECT_PERIODIC_TRIANGLE; 2079 break; 2080 default: 2081 hid_err(data->hidpp->hid_dev, "Unexpected periodic waveform type %i!\n", effect->u.periodic.waveform); 2082 return -EINVAL; 2083 } 2084 force = (effect->u.periodic.magnitude * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 2085 params[6] = effect->u.periodic.magnitude >> 8; 2086 params[7] = effect->u.periodic.magnitude & 255; 2087 params[8] = effect->u.periodic.offset >> 8; 2088 params[9] = effect->u.periodic.offset & 255; 2089 params[10] = effect->u.periodic.period >> 8; 2090 params[11] = effect->u.periodic.period & 255; 2091 params[12] = effect->u.periodic.phase >> 8; 2092 params[13] = effect->u.periodic.phase & 255; 2093 params[14] = effect->u.periodic.envelope.attack_level >> 7; 2094 params[15] = effect->u.periodic.envelope.attack_length >> 8; 2095 params[16] = effect->u.periodic.envelope.attack_length & 255; 2096 params[17] = effect->u.periodic.envelope.fade_level >> 7; 2097 params[18] = effect->u.periodic.envelope.fade_length >> 8; 2098 params[19] = effect->u.periodic.envelope.fade_length & 255; 2099 size = 20; 2100 dbg_hid("Uploading periodic force mag=%d/dir=%d, offset=%d, period=%d ms, phase=%d\n", 2101 effect->u.periodic.magnitude, effect->direction, 2102 effect->u.periodic.offset, 2103 effect->u.periodic.period, 2104 effect->u.periodic.phase); 2105 dbg_hid(" envelope attack=(%d, %d ms) fade=(%d, %d ms)\n", 2106 effect->u.periodic.envelope.attack_level, 2107 effect->u.periodic.envelope.attack_length, 2108 effect->u.periodic.envelope.fade_level, 2109 effect->u.periodic.envelope.fade_length); 2110 break; 2111 } 2112 case FF_RAMP: 2113 params[1] = HIDPP_FF_EFFECT_RAMP; 2114 force = (effect->u.ramp.start_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 2115 params[6] = force >> 8; 2116 params[7] = force & 255; 2117 force = (effect->u.ramp.end_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 2118 params[8] = force >> 8; 2119 params[9] = force & 255; 2120 params[10] = effect->u.ramp.envelope.attack_level >> 7; 2121 params[11] = effect->u.ramp.envelope.attack_length >> 8; 2122 params[12] = effect->u.ramp.envelope.attack_length & 255; 2123 params[13] = effect->u.ramp.envelope.fade_level >> 7; 2124 params[14] = effect->u.ramp.envelope.fade_length >> 8; 2125 params[15] = effect->u.ramp.envelope.fade_length & 255; 2126 size = 16; 2127 dbg_hid("Uploading ramp force level=%d -> %d in dir %d = %d\n", 2128 effect->u.ramp.start_level, 2129 effect->u.ramp.end_level, 2130 effect->direction, force); 2131 dbg_hid(" envelope attack=(%d, %d ms) fade=(%d, %d ms)\n", 2132 effect->u.ramp.envelope.attack_level, 2133 effect->u.ramp.envelope.attack_length, 2134 effect->u.ramp.envelope.fade_level, 2135 effect->u.ramp.envelope.fade_length); 2136 break; 2137 case FF_FRICTION: 2138 case FF_INERTIA: 2139 case FF_SPRING: 2140 case FF_DAMPER: 2141 params[1] = HIDPP_FF_CONDITION_CMDS[effect->type - FF_SPRING]; 2142 params[6] = effect->u.condition[0].left_saturation >> 9; 2143 params[7] = (effect->u.condition[0].left_saturation >> 1) & 255; 2144 params[8] = effect->u.condition[0].left_coeff >> 8; 2145 params[9] = effect->u.condition[0].left_coeff & 255; 2146 params[10] = effect->u.condition[0].deadband >> 9; 2147 params[11] = (effect->u.condition[0].deadband >> 1) & 255; 2148 params[12] = effect->u.condition[0].center >> 8; 2149 params[13] = effect->u.condition[0].center & 255; 2150 params[14] = effect->u.condition[0].right_coeff >> 8; 2151 params[15] = effect->u.condition[0].right_coeff & 255; 2152 params[16] = effect->u.condition[0].right_saturation >> 9; 2153 params[17] = (effect->u.condition[0].right_saturation >> 1) & 255; 2154 size = 18; 2155 dbg_hid("Uploading %s force left coeff=%d, left sat=%d, right coeff=%d, right sat=%d\n", 2156 HIDPP_FF_CONDITION_NAMES[effect->type - FF_SPRING], 2157 effect->u.condition[0].left_coeff, 2158 effect->u.condition[0].left_saturation, 2159 effect->u.condition[0].right_coeff, 2160 effect->u.condition[0].right_saturation); 2161 dbg_hid(" deadband=%d, center=%d\n", 2162 effect->u.condition[0].deadband, 2163 effect->u.condition[0].center); 2164 break; 2165 default: 2166 hid_err(data->hidpp->hid_dev, "Unexpected force type %i!\n", effect->type); 2167 return -EINVAL; 2168 } 2169 2170 return hidpp_ff_queue_work(data, effect->id, HIDPP_FF_DOWNLOAD_EFFECT, params, size); 2171 } 2172 2173 static int hidpp_ff_playback(struct input_dev *dev, int effect_id, int value) 2174 { 2175 struct hidpp_ff_private_data *data = dev->ff->private; 2176 u8 params[2]; 2177 2178 params[1] = value ? HIDPP_FF_EFFECT_STATE_PLAY : HIDPP_FF_EFFECT_STATE_STOP; 2179 2180 dbg_hid("St%sing playback of effect %d.\n", value?"art":"opp", effect_id); 2181 2182 return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_SET_EFFECT_STATE, params, ARRAY_SIZE(params)); 2183 } 2184 2185 static int hidpp_ff_erase_effect(struct input_dev *dev, int effect_id) 2186 { 2187 struct hidpp_ff_private_data *data = dev->ff->private; 2188 u8 slot = 0; 2189 2190 dbg_hid("Erasing effect %d.\n", effect_id); 2191 2192 return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_DESTROY_EFFECT, &slot, 1); 2193 } 2194 2195 static void hidpp_ff_set_autocenter(struct input_dev *dev, u16 magnitude) 2196 { 2197 struct hidpp_ff_private_data *data = dev->ff->private; 2198 u8 params[HIDPP_AUTOCENTER_PARAMS_LENGTH]; 2199 2200 dbg_hid("Setting autocenter to %d.\n", magnitude); 2201 2202 /* start a standard spring effect */ 2203 params[1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART; 2204 /* zero delay and duration */ 2205 params[2] = params[3] = params[4] = params[5] = 0; 2206 /* set coeff to 25% of saturation */ 2207 params[8] = params[14] = magnitude >> 11; 2208 params[9] = params[15] = (magnitude >> 3) & 255; 2209 params[6] = params[16] = magnitude >> 9; 2210 params[7] = params[17] = (magnitude >> 1) & 255; 2211 /* zero deadband and center */ 2212 params[10] = params[11] = params[12] = params[13] = 0; 2213 2214 hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_AUTOCENTER, HIDPP_FF_DOWNLOAD_EFFECT, params, ARRAY_SIZE(params)); 2215 } 2216 2217 static void hidpp_ff_set_gain(struct input_dev *dev, u16 gain) 2218 { 2219 struct hidpp_ff_private_data *data = dev->ff->private; 2220 u8 params[4]; 2221 2222 dbg_hid("Setting gain to %d.\n", gain); 2223 2224 params[0] = gain >> 8; 2225 params[1] = gain & 255; 2226 params[2] = 0; /* no boost */ 2227 params[3] = 0; 2228 2229 hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_NONE, HIDPP_FF_SET_GLOBAL_GAINS, params, ARRAY_SIZE(params)); 2230 } 2231 2232 static ssize_t hidpp_ff_range_show(struct device *dev, struct device_attribute *attr, char *buf) 2233 { 2234 struct hid_device *hid = to_hid_device(dev); 2235 struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list); 2236 struct input_dev *idev = hidinput->input; 2237 struct hidpp_ff_private_data *data = idev->ff->private; 2238 2239 return scnprintf(buf, PAGE_SIZE, "%u\n", data->range); 2240 } 2241 2242 static ssize_t hidpp_ff_range_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) 2243 { 2244 struct hid_device *hid = to_hid_device(dev); 2245 struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list); 2246 struct input_dev *idev = hidinput->input; 2247 struct hidpp_ff_private_data *data = idev->ff->private; 2248 u8 params[2]; 2249 int range = simple_strtoul(buf, NULL, 10); 2250 2251 range = clamp(range, 180, 900); 2252 2253 params[0] = range >> 8; 2254 params[1] = range & 0x00FF; 2255 2256 hidpp_ff_queue_work(data, -1, HIDPP_FF_SET_APERTURE, params, ARRAY_SIZE(params)); 2257 2258 return count; 2259 } 2260 2261 static DEVICE_ATTR(range, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH, hidpp_ff_range_show, hidpp_ff_range_store); 2262 2263 static void hidpp_ff_destroy(struct ff_device *ff) 2264 { 2265 struct hidpp_ff_private_data *data = ff->private; 2266 struct hid_device *hid = data->hidpp->hid_dev; 2267 2268 hid_info(hid, "Unloading HID++ force feedback.\n"); 2269 2270 device_remove_file(&hid->dev, &dev_attr_range); 2271 destroy_workqueue(data->wq); 2272 kfree(data->effect_ids); 2273 } 2274 2275 static int hidpp_ff_init(struct hidpp_device *hidpp, 2276 struct hidpp_ff_private_data *data) 2277 { 2278 struct hid_device *hid = hidpp->hid_dev; 2279 struct hid_input *hidinput; 2280 struct input_dev *dev; 2281 const struct usb_device_descriptor *udesc = &(hid_to_usb_dev(hid)->descriptor); 2282 const u16 bcdDevice = le16_to_cpu(udesc->bcdDevice); 2283 struct ff_device *ff; 2284 int error, j, num_slots = data->num_effects; 2285 u8 version; 2286 2287 if (list_empty(&hid->inputs)) { 2288 hid_err(hid, "no inputs found\n"); 2289 return -ENODEV; 2290 } 2291 hidinput = list_entry(hid->inputs.next, struct hid_input, list); 2292 dev = hidinput->input; 2293 2294 if (!dev) { 2295 hid_err(hid, "Struct input_dev not set!\n"); 2296 return -EINVAL; 2297 } 2298 2299 /* Get firmware release */ 2300 version = bcdDevice & 255; 2301 2302 /* Set supported force feedback capabilities */ 2303 for (j = 0; hidpp_ff_effects[j] >= 0; j++) 2304 set_bit(hidpp_ff_effects[j], dev->ffbit); 2305 if (version > 1) 2306 for (j = 0; hidpp_ff_effects_v2[j] >= 0; j++) 2307 set_bit(hidpp_ff_effects_v2[j], dev->ffbit); 2308 2309 error = input_ff_create(dev, num_slots); 2310 2311 if (error) { 2312 hid_err(dev, "Failed to create FF device!\n"); 2313 return error; 2314 } 2315 /* 2316 * Create a copy of passed data, so we can transfer memory 2317 * ownership to FF core 2318 */ 2319 data = kmemdup(data, sizeof(*data), GFP_KERNEL); 2320 if (!data) 2321 return -ENOMEM; 2322 data->effect_ids = kcalloc(num_slots, sizeof(int), GFP_KERNEL); 2323 if (!data->effect_ids) { 2324 kfree(data); 2325 return -ENOMEM; 2326 } 2327 data->wq = create_singlethread_workqueue("hidpp-ff-sendqueue"); 2328 if (!data->wq) { 2329 kfree(data->effect_ids); 2330 kfree(data); 2331 return -ENOMEM; 2332 } 2333 2334 data->hidpp = hidpp; 2335 data->version = version; 2336 for (j = 0; j < num_slots; j++) 2337 data->effect_ids[j] = -1; 2338 2339 ff = dev->ff; 2340 ff->private = data; 2341 2342 ff->upload = hidpp_ff_upload_effect; 2343 ff->erase = hidpp_ff_erase_effect; 2344 ff->playback = hidpp_ff_playback; 2345 ff->set_gain = hidpp_ff_set_gain; 2346 ff->set_autocenter = hidpp_ff_set_autocenter; 2347 ff->destroy = hidpp_ff_destroy; 2348 2349 /* Create sysfs interface */ 2350 error = device_create_file(&(hidpp->hid_dev->dev), &dev_attr_range); 2351 if (error) 2352 hid_warn(hidpp->hid_dev, "Unable to create sysfs interface for \"range\", errno %d!\n", error); 2353 2354 /* init the hardware command queue */ 2355 atomic_set(&data->workqueue_size, 0); 2356 2357 hid_info(hid, "Force feedback support loaded (firmware release %d).\n", 2358 version); 2359 2360 return 0; 2361 } 2362 2363 /* ************************************************************************** */ 2364 /* */ 2365 /* Device Support */ 2366 /* */ 2367 /* ************************************************************************** */ 2368 2369 /* -------------------------------------------------------------------------- */ 2370 /* Touchpad HID++ devices */ 2371 /* -------------------------------------------------------------------------- */ 2372 2373 #define WTP_MANUAL_RESOLUTION 39 2374 2375 struct wtp_data { 2376 u16 x_size, y_size; 2377 u8 finger_count; 2378 u8 mt_feature_index; 2379 u8 button_feature_index; 2380 u8 maxcontacts; 2381 bool flip_y; 2382 unsigned int resolution; 2383 }; 2384 2385 static int wtp_input_mapping(struct hid_device *hdev, struct hid_input *hi, 2386 struct hid_field *field, struct hid_usage *usage, 2387 unsigned long **bit, int *max) 2388 { 2389 return -1; 2390 } 2391 2392 static void wtp_populate_input(struct hidpp_device *hidpp, 2393 struct input_dev *input_dev) 2394 { 2395 struct wtp_data *wd = hidpp->private_data; 2396 2397 __set_bit(EV_ABS, input_dev->evbit); 2398 __set_bit(EV_KEY, input_dev->evbit); 2399 __clear_bit(EV_REL, input_dev->evbit); 2400 __clear_bit(EV_LED, input_dev->evbit); 2401 2402 input_set_abs_params(input_dev, ABS_MT_POSITION_X, 0, wd->x_size, 0, 0); 2403 input_abs_set_res(input_dev, ABS_MT_POSITION_X, wd->resolution); 2404 input_set_abs_params(input_dev, ABS_MT_POSITION_Y, 0, wd->y_size, 0, 0); 2405 input_abs_set_res(input_dev, ABS_MT_POSITION_Y, wd->resolution); 2406 2407 /* Max pressure is not given by the devices, pick one */ 2408 input_set_abs_params(input_dev, ABS_MT_PRESSURE, 0, 50, 0, 0); 2409 2410 input_set_capability(input_dev, EV_KEY, BTN_LEFT); 2411 2412 if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) 2413 input_set_capability(input_dev, EV_KEY, BTN_RIGHT); 2414 else 2415 __set_bit(INPUT_PROP_BUTTONPAD, input_dev->propbit); 2416 2417 input_mt_init_slots(input_dev, wd->maxcontacts, INPUT_MT_POINTER | 2418 INPUT_MT_DROP_UNUSED); 2419 } 2420 2421 static void wtp_touch_event(struct hidpp_device *hidpp, 2422 struct hidpp_touchpad_raw_xy_finger *touch_report) 2423 { 2424 struct wtp_data *wd = hidpp->private_data; 2425 int slot; 2426 2427 if (!touch_report->finger_id || touch_report->contact_type) 2428 /* no actual data */ 2429 return; 2430 2431 slot = input_mt_get_slot_by_key(hidpp->input, touch_report->finger_id); 2432 2433 input_mt_slot(hidpp->input, slot); 2434 input_mt_report_slot_state(hidpp->input, MT_TOOL_FINGER, 2435 touch_report->contact_status); 2436 if (touch_report->contact_status) { 2437 input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_X, 2438 touch_report->x); 2439 input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_Y, 2440 wd->flip_y ? wd->y_size - touch_report->y : 2441 touch_report->y); 2442 input_event(hidpp->input, EV_ABS, ABS_MT_PRESSURE, 2443 touch_report->area); 2444 } 2445 } 2446 2447 static void wtp_send_raw_xy_event(struct hidpp_device *hidpp, 2448 struct hidpp_touchpad_raw_xy *raw) 2449 { 2450 int i; 2451 2452 for (i = 0; i < 2; i++) 2453 wtp_touch_event(hidpp, &(raw->fingers[i])); 2454 2455 if (raw->end_of_frame && 2456 !(hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS)) 2457 input_event(hidpp->input, EV_KEY, BTN_LEFT, raw->button); 2458 2459 if (raw->end_of_frame || raw->finger_count <= 2) { 2460 input_mt_sync_frame(hidpp->input); 2461 input_sync(hidpp->input); 2462 } 2463 } 2464 2465 static int wtp_mouse_raw_xy_event(struct hidpp_device *hidpp, u8 *data) 2466 { 2467 struct wtp_data *wd = hidpp->private_data; 2468 u8 c1_area = ((data[7] & 0xf) * (data[7] & 0xf) + 2469 (data[7] >> 4) * (data[7] >> 4)) / 2; 2470 u8 c2_area = ((data[13] & 0xf) * (data[13] & 0xf) + 2471 (data[13] >> 4) * (data[13] >> 4)) / 2; 2472 struct hidpp_touchpad_raw_xy raw = { 2473 .timestamp = data[1], 2474 .fingers = { 2475 { 2476 .contact_type = 0, 2477 .contact_status = !!data[7], 2478 .x = get_unaligned_le16(&data[3]), 2479 .y = get_unaligned_le16(&data[5]), 2480 .z = c1_area, 2481 .area = c1_area, 2482 .finger_id = data[2], 2483 }, { 2484 .contact_type = 0, 2485 .contact_status = !!data[13], 2486 .x = get_unaligned_le16(&data[9]), 2487 .y = get_unaligned_le16(&data[11]), 2488 .z = c2_area, 2489 .area = c2_area, 2490 .finger_id = data[8], 2491 } 2492 }, 2493 .finger_count = wd->maxcontacts, 2494 .spurious_flag = 0, 2495 .end_of_frame = (data[0] >> 7) == 0, 2496 .button = data[0] & 0x01, 2497 }; 2498 2499 wtp_send_raw_xy_event(hidpp, &raw); 2500 2501 return 1; 2502 } 2503 2504 static int wtp_raw_event(struct hid_device *hdev, u8 *data, int size) 2505 { 2506 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2507 struct wtp_data *wd = hidpp->private_data; 2508 struct hidpp_report *report = (struct hidpp_report *)data; 2509 struct hidpp_touchpad_raw_xy raw; 2510 2511 if (!wd || !hidpp->input) 2512 return 1; 2513 2514 switch (data[0]) { 2515 case 0x02: 2516 if (size < 2) { 2517 hid_err(hdev, "Received HID report of bad size (%d)", 2518 size); 2519 return 1; 2520 } 2521 if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) { 2522 input_event(hidpp->input, EV_KEY, BTN_LEFT, 2523 !!(data[1] & 0x01)); 2524 input_event(hidpp->input, EV_KEY, BTN_RIGHT, 2525 !!(data[1] & 0x02)); 2526 input_sync(hidpp->input); 2527 return 0; 2528 } else { 2529 if (size < 21) 2530 return 1; 2531 return wtp_mouse_raw_xy_event(hidpp, &data[7]); 2532 } 2533 case REPORT_ID_HIDPP_LONG: 2534 /* size is already checked in hidpp_raw_event. */ 2535 if ((report->fap.feature_index != wd->mt_feature_index) || 2536 (report->fap.funcindex_clientid != EVENT_TOUCHPAD_RAW_XY)) 2537 return 1; 2538 hidpp_touchpad_raw_xy_event(hidpp, data + 4, &raw); 2539 2540 wtp_send_raw_xy_event(hidpp, &raw); 2541 return 0; 2542 } 2543 2544 return 0; 2545 } 2546 2547 static int wtp_get_config(struct hidpp_device *hidpp) 2548 { 2549 struct wtp_data *wd = hidpp->private_data; 2550 struct hidpp_touchpad_raw_info raw_info = {0}; 2551 u8 feature_type; 2552 int ret; 2553 2554 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_TOUCHPAD_RAW_XY, 2555 &wd->mt_feature_index, &feature_type); 2556 if (ret) 2557 /* means that the device is not powered up */ 2558 return ret; 2559 2560 ret = hidpp_touchpad_get_raw_info(hidpp, wd->mt_feature_index, 2561 &raw_info); 2562 if (ret) 2563 return ret; 2564 2565 wd->x_size = raw_info.x_size; 2566 wd->y_size = raw_info.y_size; 2567 wd->maxcontacts = raw_info.maxcontacts; 2568 wd->flip_y = raw_info.origin == TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT; 2569 wd->resolution = raw_info.res; 2570 if (!wd->resolution) 2571 wd->resolution = WTP_MANUAL_RESOLUTION; 2572 2573 return 0; 2574 } 2575 2576 static int wtp_allocate(struct hid_device *hdev, const struct hid_device_id *id) 2577 { 2578 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2579 struct wtp_data *wd; 2580 2581 wd = devm_kzalloc(&hdev->dev, sizeof(struct wtp_data), 2582 GFP_KERNEL); 2583 if (!wd) 2584 return -ENOMEM; 2585 2586 hidpp->private_data = wd; 2587 2588 return 0; 2589 }; 2590 2591 static int wtp_connect(struct hid_device *hdev, bool connected) 2592 { 2593 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2594 struct wtp_data *wd = hidpp->private_data; 2595 int ret; 2596 2597 if (!wd->x_size) { 2598 ret = wtp_get_config(hidpp); 2599 if (ret) { 2600 hid_err(hdev, "Can not get wtp config: %d\n", ret); 2601 return ret; 2602 } 2603 } 2604 2605 return hidpp_touchpad_set_raw_report_state(hidpp, wd->mt_feature_index, 2606 true, true); 2607 } 2608 2609 /* ------------------------------------------------------------------------- */ 2610 /* Logitech M560 devices */ 2611 /* ------------------------------------------------------------------------- */ 2612 2613 /* 2614 * Logitech M560 protocol overview 2615 * 2616 * The Logitech M560 mouse, is designed for windows 8. When the middle and/or 2617 * the sides buttons are pressed, it sends some keyboard keys events 2618 * instead of buttons ones. 2619 * To complicate things further, the middle button keys sequence 2620 * is different from the odd press and the even press. 2621 * 2622 * forward button -> Super_R 2623 * backward button -> Super_L+'d' (press only) 2624 * middle button -> 1st time: Alt_L+SuperL+XF86TouchpadOff (press only) 2625 * 2nd time: left-click (press only) 2626 * NB: press-only means that when the button is pressed, the 2627 * KeyPress/ButtonPress and KeyRelease/ButtonRelease events are generated 2628 * together sequentially; instead when the button is released, no event is 2629 * generated ! 2630 * 2631 * With the command 2632 * 10<xx>0a 3500af03 (where <xx> is the mouse id), 2633 * the mouse reacts differently: 2634 * - it never sends a keyboard key event 2635 * - for the three mouse button it sends: 2636 * middle button press 11<xx>0a 3500af00... 2637 * side 1 button (forward) press 11<xx>0a 3500b000... 2638 * side 2 button (backward) press 11<xx>0a 3500ae00... 2639 * middle/side1/side2 button release 11<xx>0a 35000000... 2640 */ 2641 2642 static const u8 m560_config_parameter[] = {0x00, 0xaf, 0x03}; 2643 2644 /* how buttons are mapped in the report */ 2645 #define M560_MOUSE_BTN_LEFT 0x01 2646 #define M560_MOUSE_BTN_RIGHT 0x02 2647 #define M560_MOUSE_BTN_WHEEL_LEFT 0x08 2648 #define M560_MOUSE_BTN_WHEEL_RIGHT 0x10 2649 2650 #define M560_SUB_ID 0x0a 2651 #define M560_BUTTON_MODE_REGISTER 0x35 2652 2653 static int m560_send_config_command(struct hid_device *hdev, bool connected) 2654 { 2655 struct hidpp_report response; 2656 struct hidpp_device *hidpp_dev; 2657 2658 hidpp_dev = hid_get_drvdata(hdev); 2659 2660 return hidpp_send_rap_command_sync( 2661 hidpp_dev, 2662 REPORT_ID_HIDPP_SHORT, 2663 M560_SUB_ID, 2664 M560_BUTTON_MODE_REGISTER, 2665 (u8 *)m560_config_parameter, 2666 sizeof(m560_config_parameter), 2667 &response 2668 ); 2669 } 2670 2671 static int m560_raw_event(struct hid_device *hdev, u8 *data, int size) 2672 { 2673 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2674 2675 /* sanity check */ 2676 if (!hidpp->input) { 2677 hid_err(hdev, "error in parameter\n"); 2678 return -EINVAL; 2679 } 2680 2681 if (size < 7) { 2682 hid_err(hdev, "error in report\n"); 2683 return 0; 2684 } 2685 2686 if (data[0] == REPORT_ID_HIDPP_LONG && 2687 data[2] == M560_SUB_ID && data[6] == 0x00) { 2688 /* 2689 * m560 mouse report for middle, forward and backward button 2690 * 2691 * data[0] = 0x11 2692 * data[1] = device-id 2693 * data[2] = 0x0a 2694 * data[5] = 0xaf -> middle 2695 * 0xb0 -> forward 2696 * 0xae -> backward 2697 * 0x00 -> release all 2698 * data[6] = 0x00 2699 */ 2700 2701 switch (data[5]) { 2702 case 0xaf: 2703 input_report_key(hidpp->input, BTN_MIDDLE, 1); 2704 break; 2705 case 0xb0: 2706 input_report_key(hidpp->input, BTN_FORWARD, 1); 2707 break; 2708 case 0xae: 2709 input_report_key(hidpp->input, BTN_BACK, 1); 2710 break; 2711 case 0x00: 2712 input_report_key(hidpp->input, BTN_BACK, 0); 2713 input_report_key(hidpp->input, BTN_FORWARD, 0); 2714 input_report_key(hidpp->input, BTN_MIDDLE, 0); 2715 break; 2716 default: 2717 hid_err(hdev, "error in report\n"); 2718 return 0; 2719 } 2720 input_sync(hidpp->input); 2721 2722 } else if (data[0] == 0x02) { 2723 /* 2724 * Logitech M560 mouse report 2725 * 2726 * data[0] = type (0x02) 2727 * data[1..2] = buttons 2728 * data[3..5] = xy 2729 * data[6] = wheel 2730 */ 2731 2732 int v; 2733 2734 input_report_key(hidpp->input, BTN_LEFT, 2735 !!(data[1] & M560_MOUSE_BTN_LEFT)); 2736 input_report_key(hidpp->input, BTN_RIGHT, 2737 !!(data[1] & M560_MOUSE_BTN_RIGHT)); 2738 2739 if (data[1] & M560_MOUSE_BTN_WHEEL_LEFT) { 2740 input_report_rel(hidpp->input, REL_HWHEEL, -1); 2741 input_report_rel(hidpp->input, REL_HWHEEL_HI_RES, 2742 -120); 2743 } else if (data[1] & M560_MOUSE_BTN_WHEEL_RIGHT) { 2744 input_report_rel(hidpp->input, REL_HWHEEL, 1); 2745 input_report_rel(hidpp->input, REL_HWHEEL_HI_RES, 2746 120); 2747 } 2748 2749 v = hid_snto32(hid_field_extract(hdev, data+3, 0, 12), 12); 2750 input_report_rel(hidpp->input, REL_X, v); 2751 2752 v = hid_snto32(hid_field_extract(hdev, data+3, 12, 12), 12); 2753 input_report_rel(hidpp->input, REL_Y, v); 2754 2755 v = hid_snto32(data[6], 8); 2756 if (v != 0) 2757 hidpp_scroll_counter_handle_scroll(hidpp->input, 2758 &hidpp->vertical_wheel_counter, v); 2759 2760 input_sync(hidpp->input); 2761 } 2762 2763 return 1; 2764 } 2765 2766 static void m560_populate_input(struct hidpp_device *hidpp, 2767 struct input_dev *input_dev) 2768 { 2769 __set_bit(EV_KEY, input_dev->evbit); 2770 __set_bit(BTN_MIDDLE, input_dev->keybit); 2771 __set_bit(BTN_RIGHT, input_dev->keybit); 2772 __set_bit(BTN_LEFT, input_dev->keybit); 2773 __set_bit(BTN_BACK, input_dev->keybit); 2774 __set_bit(BTN_FORWARD, input_dev->keybit); 2775 2776 __set_bit(EV_REL, input_dev->evbit); 2777 __set_bit(REL_X, input_dev->relbit); 2778 __set_bit(REL_Y, input_dev->relbit); 2779 __set_bit(REL_WHEEL, input_dev->relbit); 2780 __set_bit(REL_HWHEEL, input_dev->relbit); 2781 __set_bit(REL_WHEEL_HI_RES, input_dev->relbit); 2782 __set_bit(REL_HWHEEL_HI_RES, input_dev->relbit); 2783 } 2784 2785 static int m560_input_mapping(struct hid_device *hdev, struct hid_input *hi, 2786 struct hid_field *field, struct hid_usage *usage, 2787 unsigned long **bit, int *max) 2788 { 2789 return -1; 2790 } 2791 2792 /* ------------------------------------------------------------------------- */ 2793 /* Logitech K400 devices */ 2794 /* ------------------------------------------------------------------------- */ 2795 2796 /* 2797 * The Logitech K400 keyboard has an embedded touchpad which is seen 2798 * as a mouse from the OS point of view. There is a hardware shortcut to disable 2799 * tap-to-click but the setting is not remembered accross reset, annoying some 2800 * users. 2801 * 2802 * We can toggle this feature from the host by using the feature 0x6010: 2803 * Touchpad FW items 2804 */ 2805 2806 struct k400_private_data { 2807 u8 feature_index; 2808 }; 2809 2810 static int k400_disable_tap_to_click(struct hidpp_device *hidpp) 2811 { 2812 struct k400_private_data *k400 = hidpp->private_data; 2813 struct hidpp_touchpad_fw_items items = {}; 2814 int ret; 2815 u8 feature_type; 2816 2817 if (!k400->feature_index) { 2818 ret = hidpp_root_get_feature(hidpp, 2819 HIDPP_PAGE_TOUCHPAD_FW_ITEMS, 2820 &k400->feature_index, &feature_type); 2821 if (ret) 2822 /* means that the device is not powered up */ 2823 return ret; 2824 } 2825 2826 ret = hidpp_touchpad_fw_items_set(hidpp, k400->feature_index, &items); 2827 if (ret) 2828 return ret; 2829 2830 return 0; 2831 } 2832 2833 static int k400_allocate(struct hid_device *hdev) 2834 { 2835 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2836 struct k400_private_data *k400; 2837 2838 k400 = devm_kzalloc(&hdev->dev, sizeof(struct k400_private_data), 2839 GFP_KERNEL); 2840 if (!k400) 2841 return -ENOMEM; 2842 2843 hidpp->private_data = k400; 2844 2845 return 0; 2846 }; 2847 2848 static int k400_connect(struct hid_device *hdev, bool connected) 2849 { 2850 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2851 2852 if (!disable_tap_to_click) 2853 return 0; 2854 2855 return k400_disable_tap_to_click(hidpp); 2856 } 2857 2858 /* ------------------------------------------------------------------------- */ 2859 /* Logitech G920 Driving Force Racing Wheel for Xbox One */ 2860 /* ------------------------------------------------------------------------- */ 2861 2862 #define HIDPP_PAGE_G920_FORCE_FEEDBACK 0x8123 2863 2864 static int g920_ff_set_autocenter(struct hidpp_device *hidpp, 2865 struct hidpp_ff_private_data *data) 2866 { 2867 struct hidpp_report response; 2868 u8 params[HIDPP_AUTOCENTER_PARAMS_LENGTH] = { 2869 [1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART, 2870 }; 2871 int ret; 2872 2873 /* initialize with zero autocenter to get wheel in usable state */ 2874 2875 dbg_hid("Setting autocenter to 0.\n"); 2876 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 2877 HIDPP_FF_DOWNLOAD_EFFECT, 2878 params, ARRAY_SIZE(params), 2879 &response); 2880 if (ret) 2881 hid_warn(hidpp->hid_dev, "Failed to autocenter device!\n"); 2882 else 2883 data->slot_autocenter = response.fap.params[0]; 2884 2885 return ret; 2886 } 2887 2888 static int g920_get_config(struct hidpp_device *hidpp, 2889 struct hidpp_ff_private_data *data) 2890 { 2891 struct hidpp_report response; 2892 u8 feature_type; 2893 int ret; 2894 2895 memset(data, 0, sizeof(*data)); 2896 2897 /* Find feature and store for later use */ 2898 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_G920_FORCE_FEEDBACK, 2899 &data->feature_index, &feature_type); 2900 if (ret) 2901 return ret; 2902 2903 /* Read number of slots available in device */ 2904 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 2905 HIDPP_FF_GET_INFO, 2906 NULL, 0, 2907 &response); 2908 if (ret) { 2909 if (ret < 0) 2910 return ret; 2911 hid_err(hidpp->hid_dev, 2912 "%s: received protocol error 0x%02x\n", __func__, ret); 2913 return -EPROTO; 2914 } 2915 2916 data->num_effects = response.fap.params[0] - HIDPP_FF_RESERVED_SLOTS; 2917 2918 /* reset all forces */ 2919 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 2920 HIDPP_FF_RESET_ALL, 2921 NULL, 0, 2922 &response); 2923 if (ret) 2924 hid_warn(hidpp->hid_dev, "Failed to reset all forces!\n"); 2925 2926 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 2927 HIDPP_FF_GET_APERTURE, 2928 NULL, 0, 2929 &response); 2930 if (ret) { 2931 hid_warn(hidpp->hid_dev, 2932 "Failed to read range from device!\n"); 2933 } 2934 data->range = ret ? 2935 900 : get_unaligned_be16(&response.fap.params[0]); 2936 2937 /* Read the current gain values */ 2938 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 2939 HIDPP_FF_GET_GLOBAL_GAINS, 2940 NULL, 0, 2941 &response); 2942 if (ret) 2943 hid_warn(hidpp->hid_dev, 2944 "Failed to read gain values from device!\n"); 2945 data->gain = ret ? 2946 0xffff : get_unaligned_be16(&response.fap.params[0]); 2947 2948 /* ignore boost value at response.fap.params[2] */ 2949 2950 return g920_ff_set_autocenter(hidpp, data); 2951 } 2952 2953 /* -------------------------------------------------------------------------- */ 2954 /* HID++1.0 devices which use HID++ reports for their wheels */ 2955 /* -------------------------------------------------------------------------- */ 2956 static int hidpp10_wheel_connect(struct hidpp_device *hidpp) 2957 { 2958 return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0, 2959 HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT, 2960 HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT); 2961 } 2962 2963 static int hidpp10_wheel_raw_event(struct hidpp_device *hidpp, 2964 u8 *data, int size) 2965 { 2966 s8 value, hvalue; 2967 2968 if (!hidpp->input) 2969 return -EINVAL; 2970 2971 if (size < 7) 2972 return 0; 2973 2974 if (data[0] != REPORT_ID_HIDPP_SHORT || data[2] != HIDPP_SUB_ID_ROLLER) 2975 return 0; 2976 2977 value = data[3]; 2978 hvalue = data[4]; 2979 2980 input_report_rel(hidpp->input, REL_WHEEL, value); 2981 input_report_rel(hidpp->input, REL_WHEEL_HI_RES, value * 120); 2982 input_report_rel(hidpp->input, REL_HWHEEL, hvalue); 2983 input_report_rel(hidpp->input, REL_HWHEEL_HI_RES, hvalue * 120); 2984 input_sync(hidpp->input); 2985 2986 return 1; 2987 } 2988 2989 static void hidpp10_wheel_populate_input(struct hidpp_device *hidpp, 2990 struct input_dev *input_dev) 2991 { 2992 __set_bit(EV_REL, input_dev->evbit); 2993 __set_bit(REL_WHEEL, input_dev->relbit); 2994 __set_bit(REL_WHEEL_HI_RES, input_dev->relbit); 2995 __set_bit(REL_HWHEEL, input_dev->relbit); 2996 __set_bit(REL_HWHEEL_HI_RES, input_dev->relbit); 2997 } 2998 2999 /* -------------------------------------------------------------------------- */ 3000 /* HID++1.0 mice which use HID++ reports for extra mouse buttons */ 3001 /* -------------------------------------------------------------------------- */ 3002 static int hidpp10_extra_mouse_buttons_connect(struct hidpp_device *hidpp) 3003 { 3004 return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0, 3005 HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT, 3006 HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT); 3007 } 3008 3009 static int hidpp10_extra_mouse_buttons_raw_event(struct hidpp_device *hidpp, 3010 u8 *data, int size) 3011 { 3012 int i; 3013 3014 if (!hidpp->input) 3015 return -EINVAL; 3016 3017 if (size < 7) 3018 return 0; 3019 3020 if (data[0] != REPORT_ID_HIDPP_SHORT || 3021 data[2] != HIDPP_SUB_ID_MOUSE_EXTRA_BTNS) 3022 return 0; 3023 3024 /* 3025 * Buttons are either delivered through the regular mouse report *or* 3026 * through the extra buttons report. At least for button 6 how it is 3027 * delivered differs per receiver firmware version. Even receivers with 3028 * the same usb-id show different behavior, so we handle both cases. 3029 */ 3030 for (i = 0; i < 8; i++) 3031 input_report_key(hidpp->input, BTN_MOUSE + i, 3032 (data[3] & (1 << i))); 3033 3034 /* Some mice report events on button 9+, use BTN_MISC */ 3035 for (i = 0; i < 8; i++) 3036 input_report_key(hidpp->input, BTN_MISC + i, 3037 (data[4] & (1 << i))); 3038 3039 input_sync(hidpp->input); 3040 return 1; 3041 } 3042 3043 static void hidpp10_extra_mouse_buttons_populate_input( 3044 struct hidpp_device *hidpp, struct input_dev *input_dev) 3045 { 3046 /* BTN_MOUSE - BTN_MOUSE+7 are set already by the descriptor */ 3047 __set_bit(BTN_0, input_dev->keybit); 3048 __set_bit(BTN_1, input_dev->keybit); 3049 __set_bit(BTN_2, input_dev->keybit); 3050 __set_bit(BTN_3, input_dev->keybit); 3051 __set_bit(BTN_4, input_dev->keybit); 3052 __set_bit(BTN_5, input_dev->keybit); 3053 __set_bit(BTN_6, input_dev->keybit); 3054 __set_bit(BTN_7, input_dev->keybit); 3055 } 3056 3057 /* -------------------------------------------------------------------------- */ 3058 /* HID++1.0 kbds which only report 0x10xx consumer usages through sub-id 0x03 */ 3059 /* -------------------------------------------------------------------------- */ 3060 3061 /* Find the consumer-page input report desc and change Maximums to 0x107f */ 3062 static u8 *hidpp10_consumer_keys_report_fixup(struct hidpp_device *hidpp, 3063 u8 *_rdesc, unsigned int *rsize) 3064 { 3065 /* Note 0 terminated so we can use strnstr to search for this. */ 3066 static const char consumer_rdesc_start[] = { 3067 0x05, 0x0C, /* USAGE_PAGE (Consumer Devices) */ 3068 0x09, 0x01, /* USAGE (Consumer Control) */ 3069 0xA1, 0x01, /* COLLECTION (Application) */ 3070 0x85, 0x03, /* REPORT_ID = 3 */ 3071 0x75, 0x10, /* REPORT_SIZE (16) */ 3072 0x95, 0x02, /* REPORT_COUNT (2) */ 3073 0x15, 0x01, /* LOGICAL_MIN (1) */ 3074 0x26, 0x00 /* LOGICAL_MAX (... */ 3075 }; 3076 char *consumer_rdesc, *rdesc = (char *)_rdesc; 3077 unsigned int size; 3078 3079 consumer_rdesc = strnstr(rdesc, consumer_rdesc_start, *rsize); 3080 size = *rsize - (consumer_rdesc - rdesc); 3081 if (consumer_rdesc && size >= 25) { 3082 consumer_rdesc[15] = 0x7f; 3083 consumer_rdesc[16] = 0x10; 3084 consumer_rdesc[20] = 0x7f; 3085 consumer_rdesc[21] = 0x10; 3086 } 3087 return _rdesc; 3088 } 3089 3090 static int hidpp10_consumer_keys_connect(struct hidpp_device *hidpp) 3091 { 3092 return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0, 3093 HIDPP_ENABLE_CONSUMER_REPORT, 3094 HIDPP_ENABLE_CONSUMER_REPORT); 3095 } 3096 3097 static int hidpp10_consumer_keys_raw_event(struct hidpp_device *hidpp, 3098 u8 *data, int size) 3099 { 3100 u8 consumer_report[5]; 3101 3102 if (size < 7) 3103 return 0; 3104 3105 if (data[0] != REPORT_ID_HIDPP_SHORT || 3106 data[2] != HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS) 3107 return 0; 3108 3109 /* 3110 * Build a normal consumer report (3) out of the data, this detour 3111 * is necessary to get some keyboards to report their 0x10xx usages. 3112 */ 3113 consumer_report[0] = 0x03; 3114 memcpy(&consumer_report[1], &data[3], 4); 3115 /* We are called from atomic context */ 3116 hid_report_raw_event(hidpp->hid_dev, HID_INPUT_REPORT, 3117 consumer_report, 5, 1); 3118 3119 return 1; 3120 } 3121 3122 /* -------------------------------------------------------------------------- */ 3123 /* High-resolution scroll wheels */ 3124 /* -------------------------------------------------------------------------- */ 3125 3126 static int hi_res_scroll_enable(struct hidpp_device *hidpp) 3127 { 3128 int ret; 3129 u8 multiplier = 1; 3130 3131 if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2121) { 3132 ret = hidpp_hrw_set_wheel_mode(hidpp, false, true, false); 3133 if (ret == 0) 3134 ret = hidpp_hrw_get_wheel_capability(hidpp, &multiplier); 3135 } else if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2120) { 3136 ret = hidpp_hrs_set_highres_scrolling_mode(hidpp, true, 3137 &multiplier); 3138 } else /* if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_1P0) */ { 3139 ret = hidpp10_enable_scrolling_acceleration(hidpp); 3140 multiplier = 8; 3141 } 3142 if (ret) 3143 return ret; 3144 3145 if (multiplier == 0) 3146 multiplier = 1; 3147 3148 hidpp->vertical_wheel_counter.wheel_multiplier = multiplier; 3149 hid_info(hidpp->hid_dev, "multiplier = %d\n", multiplier); 3150 return 0; 3151 } 3152 3153 /* -------------------------------------------------------------------------- */ 3154 /* Generic HID++ devices */ 3155 /* -------------------------------------------------------------------------- */ 3156 3157 static u8 *hidpp_report_fixup(struct hid_device *hdev, u8 *rdesc, 3158 unsigned int *rsize) 3159 { 3160 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3161 3162 if (!hidpp) 3163 return rdesc; 3164 3165 /* For 27 MHz keyboards the quirk gets set after hid_parse. */ 3166 if (hdev->group == HID_GROUP_LOGITECH_27MHZ_DEVICE || 3167 (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS)) 3168 rdesc = hidpp10_consumer_keys_report_fixup(hidpp, rdesc, rsize); 3169 3170 return rdesc; 3171 } 3172 3173 static int hidpp_input_mapping(struct hid_device *hdev, struct hid_input *hi, 3174 struct hid_field *field, struct hid_usage *usage, 3175 unsigned long **bit, int *max) 3176 { 3177 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3178 3179 if (!hidpp) 3180 return 0; 3181 3182 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) 3183 return wtp_input_mapping(hdev, hi, field, usage, bit, max); 3184 else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560 && 3185 field->application != HID_GD_MOUSE) 3186 return m560_input_mapping(hdev, hi, field, usage, bit, max); 3187 3188 return 0; 3189 } 3190 3191 static int hidpp_input_mapped(struct hid_device *hdev, struct hid_input *hi, 3192 struct hid_field *field, struct hid_usage *usage, 3193 unsigned long **bit, int *max) 3194 { 3195 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3196 3197 if (!hidpp) 3198 return 0; 3199 3200 /* Ensure that Logitech G920 is not given a default fuzz/flat value */ 3201 if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) { 3202 if (usage->type == EV_ABS && (usage->code == ABS_X || 3203 usage->code == ABS_Y || usage->code == ABS_Z || 3204 usage->code == ABS_RZ)) { 3205 field->application = HID_GD_MULTIAXIS; 3206 } 3207 } 3208 3209 return 0; 3210 } 3211 3212 3213 static void hidpp_populate_input(struct hidpp_device *hidpp, 3214 struct input_dev *input) 3215 { 3216 hidpp->input = input; 3217 3218 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) 3219 wtp_populate_input(hidpp, input); 3220 else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) 3221 m560_populate_input(hidpp, input); 3222 3223 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) 3224 hidpp10_wheel_populate_input(hidpp, input); 3225 3226 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) 3227 hidpp10_extra_mouse_buttons_populate_input(hidpp, input); 3228 } 3229 3230 static int hidpp_input_configured(struct hid_device *hdev, 3231 struct hid_input *hidinput) 3232 { 3233 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3234 struct input_dev *input = hidinput->input; 3235 3236 if (!hidpp) 3237 return 0; 3238 3239 hidpp_populate_input(hidpp, input); 3240 3241 return 0; 3242 } 3243 3244 static int hidpp_raw_hidpp_event(struct hidpp_device *hidpp, u8 *data, 3245 int size) 3246 { 3247 struct hidpp_report *question = hidpp->send_receive_buf; 3248 struct hidpp_report *answer = hidpp->send_receive_buf; 3249 struct hidpp_report *report = (struct hidpp_report *)data; 3250 int ret; 3251 3252 /* 3253 * If the mutex is locked then we have a pending answer from a 3254 * previously sent command. 3255 */ 3256 if (unlikely(mutex_is_locked(&hidpp->send_mutex))) { 3257 /* 3258 * Check for a correct hidpp20 answer or the corresponding 3259 * error 3260 */ 3261 if (hidpp_match_answer(question, report) || 3262 hidpp_match_error(question, report)) { 3263 *answer = *report; 3264 hidpp->answer_available = true; 3265 wake_up(&hidpp->wait); 3266 /* 3267 * This was an answer to a command that this driver sent 3268 * We return 1 to hid-core to avoid forwarding the 3269 * command upstream as it has been treated by the driver 3270 */ 3271 3272 return 1; 3273 } 3274 } 3275 3276 if (unlikely(hidpp_report_is_connect_event(hidpp, report))) { 3277 atomic_set(&hidpp->connected, 3278 !(report->rap.params[0] & (1 << 6))); 3279 if (schedule_work(&hidpp->work) == 0) 3280 dbg_hid("%s: connect event already queued\n", __func__); 3281 return 1; 3282 } 3283 3284 if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) { 3285 ret = hidpp20_battery_event(hidpp, data, size); 3286 if (ret != 0) 3287 return ret; 3288 ret = hidpp_solar_battery_event(hidpp, data, size); 3289 if (ret != 0) 3290 return ret; 3291 ret = hidpp20_battery_voltage_event(hidpp, data, size); 3292 if (ret != 0) 3293 return ret; 3294 } 3295 3296 if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) { 3297 ret = hidpp10_battery_event(hidpp, data, size); 3298 if (ret != 0) 3299 return ret; 3300 } 3301 3302 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) { 3303 ret = hidpp10_wheel_raw_event(hidpp, data, size); 3304 if (ret != 0) 3305 return ret; 3306 } 3307 3308 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) { 3309 ret = hidpp10_extra_mouse_buttons_raw_event(hidpp, data, size); 3310 if (ret != 0) 3311 return ret; 3312 } 3313 3314 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) { 3315 ret = hidpp10_consumer_keys_raw_event(hidpp, data, size); 3316 if (ret != 0) 3317 return ret; 3318 } 3319 3320 return 0; 3321 } 3322 3323 static int hidpp_raw_event(struct hid_device *hdev, struct hid_report *report, 3324 u8 *data, int size) 3325 { 3326 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3327 int ret = 0; 3328 3329 if (!hidpp) 3330 return 0; 3331 3332 /* Generic HID++ processing. */ 3333 switch (data[0]) { 3334 case REPORT_ID_HIDPP_VERY_LONG: 3335 if (size != hidpp->very_long_report_length) { 3336 hid_err(hdev, "received hid++ report of bad size (%d)", 3337 size); 3338 return 1; 3339 } 3340 ret = hidpp_raw_hidpp_event(hidpp, data, size); 3341 break; 3342 case REPORT_ID_HIDPP_LONG: 3343 if (size != HIDPP_REPORT_LONG_LENGTH) { 3344 hid_err(hdev, "received hid++ report of bad size (%d)", 3345 size); 3346 return 1; 3347 } 3348 ret = hidpp_raw_hidpp_event(hidpp, data, size); 3349 break; 3350 case REPORT_ID_HIDPP_SHORT: 3351 if (size != HIDPP_REPORT_SHORT_LENGTH) { 3352 hid_err(hdev, "received hid++ report of bad size (%d)", 3353 size); 3354 return 1; 3355 } 3356 ret = hidpp_raw_hidpp_event(hidpp, data, size); 3357 break; 3358 } 3359 3360 /* If no report is available for further processing, skip calling 3361 * raw_event of subclasses. */ 3362 if (ret != 0) 3363 return ret; 3364 3365 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) 3366 return wtp_raw_event(hdev, data, size); 3367 else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) 3368 return m560_raw_event(hdev, data, size); 3369 3370 return 0; 3371 } 3372 3373 static int hidpp_event(struct hid_device *hdev, struct hid_field *field, 3374 struct hid_usage *usage, __s32 value) 3375 { 3376 /* This function will only be called for scroll events, due to the 3377 * restriction imposed in hidpp_usages. 3378 */ 3379 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3380 struct hidpp_scroll_counter *counter; 3381 3382 if (!hidpp) 3383 return 0; 3384 3385 counter = &hidpp->vertical_wheel_counter; 3386 /* A scroll event may occur before the multiplier has been retrieved or 3387 * the input device set, or high-res scroll enabling may fail. In such 3388 * cases we must return early (falling back to default behaviour) to 3389 * avoid a crash in hidpp_scroll_counter_handle_scroll. 3390 */ 3391 if (!(hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) || value == 0 3392 || hidpp->input == NULL || counter->wheel_multiplier == 0) 3393 return 0; 3394 3395 hidpp_scroll_counter_handle_scroll(hidpp->input, counter, value); 3396 return 1; 3397 } 3398 3399 static int hidpp_initialize_battery(struct hidpp_device *hidpp) 3400 { 3401 static atomic_t battery_no = ATOMIC_INIT(0); 3402 struct power_supply_config cfg = { .drv_data = hidpp }; 3403 struct power_supply_desc *desc = &hidpp->battery.desc; 3404 enum power_supply_property *battery_props; 3405 struct hidpp_battery *battery; 3406 unsigned int num_battery_props; 3407 unsigned long n; 3408 int ret; 3409 3410 if (hidpp->battery.ps) 3411 return 0; 3412 3413 hidpp->battery.feature_index = 0xff; 3414 hidpp->battery.solar_feature_index = 0xff; 3415 hidpp->battery.voltage_feature_index = 0xff; 3416 3417 if (hidpp->protocol_major >= 2) { 3418 if (hidpp->quirks & HIDPP_QUIRK_CLASS_K750) 3419 ret = hidpp_solar_request_battery_event(hidpp); 3420 else { 3421 ret = hidpp20_query_battery_voltage_info(hidpp); 3422 if (ret) 3423 ret = hidpp20_query_battery_info(hidpp); 3424 } 3425 3426 if (ret) 3427 return ret; 3428 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP20_BATTERY; 3429 } else { 3430 ret = hidpp10_query_battery_status(hidpp); 3431 if (ret) { 3432 ret = hidpp10_query_battery_mileage(hidpp); 3433 if (ret) 3434 return -ENOENT; 3435 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE; 3436 } else { 3437 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS; 3438 } 3439 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP10_BATTERY; 3440 } 3441 3442 battery_props = devm_kmemdup(&hidpp->hid_dev->dev, 3443 hidpp_battery_props, 3444 sizeof(hidpp_battery_props), 3445 GFP_KERNEL); 3446 if (!battery_props) 3447 return -ENOMEM; 3448 3449 num_battery_props = ARRAY_SIZE(hidpp_battery_props) - 3; 3450 3451 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE) 3452 battery_props[num_battery_props++] = 3453 POWER_SUPPLY_PROP_CAPACITY; 3454 3455 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS) 3456 battery_props[num_battery_props++] = 3457 POWER_SUPPLY_PROP_CAPACITY_LEVEL; 3458 3459 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_VOLTAGE) 3460 battery_props[num_battery_props++] = 3461 POWER_SUPPLY_PROP_VOLTAGE_NOW; 3462 3463 battery = &hidpp->battery; 3464 3465 n = atomic_inc_return(&battery_no) - 1; 3466 desc->properties = battery_props; 3467 desc->num_properties = num_battery_props; 3468 desc->get_property = hidpp_battery_get_property; 3469 sprintf(battery->name, "hidpp_battery_%ld", n); 3470 desc->name = battery->name; 3471 desc->type = POWER_SUPPLY_TYPE_BATTERY; 3472 desc->use_for_apm = 0; 3473 3474 battery->ps = devm_power_supply_register(&hidpp->hid_dev->dev, 3475 &battery->desc, 3476 &cfg); 3477 if (IS_ERR(battery->ps)) 3478 return PTR_ERR(battery->ps); 3479 3480 power_supply_powers(battery->ps, &hidpp->hid_dev->dev); 3481 3482 return ret; 3483 } 3484 3485 static void hidpp_overwrite_name(struct hid_device *hdev) 3486 { 3487 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3488 char *name; 3489 3490 if (hidpp->protocol_major < 2) 3491 return; 3492 3493 name = hidpp_get_device_name(hidpp); 3494 3495 if (!name) { 3496 hid_err(hdev, "unable to retrieve the name of the device"); 3497 } else { 3498 dbg_hid("HID++: Got name: %s\n", name); 3499 snprintf(hdev->name, sizeof(hdev->name), "%s", name); 3500 } 3501 3502 kfree(name); 3503 } 3504 3505 static int hidpp_input_open(struct input_dev *dev) 3506 { 3507 struct hid_device *hid = input_get_drvdata(dev); 3508 3509 return hid_hw_open(hid); 3510 } 3511 3512 static void hidpp_input_close(struct input_dev *dev) 3513 { 3514 struct hid_device *hid = input_get_drvdata(dev); 3515 3516 hid_hw_close(hid); 3517 } 3518 3519 static struct input_dev *hidpp_allocate_input(struct hid_device *hdev) 3520 { 3521 struct input_dev *input_dev = devm_input_allocate_device(&hdev->dev); 3522 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3523 3524 if (!input_dev) 3525 return NULL; 3526 3527 input_set_drvdata(input_dev, hdev); 3528 input_dev->open = hidpp_input_open; 3529 input_dev->close = hidpp_input_close; 3530 3531 input_dev->name = hidpp->name; 3532 input_dev->phys = hdev->phys; 3533 input_dev->uniq = hdev->uniq; 3534 input_dev->id.bustype = hdev->bus; 3535 input_dev->id.vendor = hdev->vendor; 3536 input_dev->id.product = hdev->product; 3537 input_dev->id.version = hdev->version; 3538 input_dev->dev.parent = &hdev->dev; 3539 3540 return input_dev; 3541 } 3542 3543 static void hidpp_connect_event(struct hidpp_device *hidpp) 3544 { 3545 struct hid_device *hdev = hidpp->hid_dev; 3546 int ret = 0; 3547 bool connected = atomic_read(&hidpp->connected); 3548 struct input_dev *input; 3549 char *name, *devm_name; 3550 3551 if (!connected) { 3552 if (hidpp->battery.ps) { 3553 hidpp->battery.online = false; 3554 hidpp->battery.status = POWER_SUPPLY_STATUS_UNKNOWN; 3555 hidpp->battery.level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 3556 power_supply_changed(hidpp->battery.ps); 3557 } 3558 return; 3559 } 3560 3561 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) { 3562 ret = wtp_connect(hdev, connected); 3563 if (ret) 3564 return; 3565 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) { 3566 ret = m560_send_config_command(hdev, connected); 3567 if (ret) 3568 return; 3569 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) { 3570 ret = k400_connect(hdev, connected); 3571 if (ret) 3572 return; 3573 } 3574 3575 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) { 3576 ret = hidpp10_wheel_connect(hidpp); 3577 if (ret) 3578 return; 3579 } 3580 3581 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) { 3582 ret = hidpp10_extra_mouse_buttons_connect(hidpp); 3583 if (ret) 3584 return; 3585 } 3586 3587 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) { 3588 ret = hidpp10_consumer_keys_connect(hidpp); 3589 if (ret) 3590 return; 3591 } 3592 3593 /* the device is already connected, we can ask for its name and 3594 * protocol */ 3595 if (!hidpp->protocol_major) { 3596 ret = hidpp_root_get_protocol_version(hidpp); 3597 if (ret) { 3598 hid_err(hdev, "Can not get the protocol version.\n"); 3599 return; 3600 } 3601 } 3602 3603 if (hidpp->name == hdev->name && hidpp->protocol_major >= 2) { 3604 name = hidpp_get_device_name(hidpp); 3605 if (name) { 3606 devm_name = devm_kasprintf(&hdev->dev, GFP_KERNEL, 3607 "%s", name); 3608 kfree(name); 3609 if (!devm_name) 3610 return; 3611 3612 hidpp->name = devm_name; 3613 } 3614 } 3615 3616 hidpp_initialize_battery(hidpp); 3617 3618 /* forward current battery state */ 3619 if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) { 3620 hidpp10_enable_battery_reporting(hidpp); 3621 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE) 3622 hidpp10_query_battery_mileage(hidpp); 3623 else 3624 hidpp10_query_battery_status(hidpp); 3625 } else if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) { 3626 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_VOLTAGE) 3627 hidpp20_query_battery_voltage_info(hidpp); 3628 else 3629 hidpp20_query_battery_info(hidpp); 3630 } 3631 if (hidpp->battery.ps) 3632 power_supply_changed(hidpp->battery.ps); 3633 3634 if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) 3635 hi_res_scroll_enable(hidpp); 3636 3637 if (!(hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) || hidpp->delayed_input) 3638 /* if the input nodes are already created, we can stop now */ 3639 return; 3640 3641 input = hidpp_allocate_input(hdev); 3642 if (!input) { 3643 hid_err(hdev, "cannot allocate new input device: %d\n", ret); 3644 return; 3645 } 3646 3647 hidpp_populate_input(hidpp, input); 3648 3649 ret = input_register_device(input); 3650 if (ret) 3651 input_free_device(input); 3652 3653 hidpp->delayed_input = input; 3654 } 3655 3656 static DEVICE_ATTR(builtin_power_supply, 0000, NULL, NULL); 3657 3658 static struct attribute *sysfs_attrs[] = { 3659 &dev_attr_builtin_power_supply.attr, 3660 NULL 3661 }; 3662 3663 static const struct attribute_group ps_attribute_group = { 3664 .attrs = sysfs_attrs 3665 }; 3666 3667 static int hidpp_get_report_length(struct hid_device *hdev, int id) 3668 { 3669 struct hid_report_enum *re; 3670 struct hid_report *report; 3671 3672 re = &(hdev->report_enum[HID_OUTPUT_REPORT]); 3673 report = re->report_id_hash[id]; 3674 if (!report) 3675 return 0; 3676 3677 return report->field[0]->report_count + 1; 3678 } 3679 3680 static u8 hidpp_validate_device(struct hid_device *hdev) 3681 { 3682 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3683 int id, report_length; 3684 u8 supported_reports = 0; 3685 3686 id = REPORT_ID_HIDPP_SHORT; 3687 report_length = hidpp_get_report_length(hdev, id); 3688 if (report_length) { 3689 if (report_length < HIDPP_REPORT_SHORT_LENGTH) 3690 goto bad_device; 3691 3692 supported_reports |= HIDPP_REPORT_SHORT_SUPPORTED; 3693 } 3694 3695 id = REPORT_ID_HIDPP_LONG; 3696 report_length = hidpp_get_report_length(hdev, id); 3697 if (report_length) { 3698 if (report_length < HIDPP_REPORT_LONG_LENGTH) 3699 goto bad_device; 3700 3701 supported_reports |= HIDPP_REPORT_LONG_SUPPORTED; 3702 } 3703 3704 id = REPORT_ID_HIDPP_VERY_LONG; 3705 report_length = hidpp_get_report_length(hdev, id); 3706 if (report_length) { 3707 if (report_length < HIDPP_REPORT_LONG_LENGTH || 3708 report_length > HIDPP_REPORT_VERY_LONG_MAX_LENGTH) 3709 goto bad_device; 3710 3711 supported_reports |= HIDPP_REPORT_VERY_LONG_SUPPORTED; 3712 hidpp->very_long_report_length = report_length; 3713 } 3714 3715 return supported_reports; 3716 3717 bad_device: 3718 hid_warn(hdev, "not enough values in hidpp report %d\n", id); 3719 return false; 3720 } 3721 3722 static bool hidpp_application_equals(struct hid_device *hdev, 3723 unsigned int application) 3724 { 3725 struct list_head *report_list; 3726 struct hid_report *report; 3727 3728 report_list = &hdev->report_enum[HID_INPUT_REPORT].report_list; 3729 report = list_first_entry_or_null(report_list, struct hid_report, list); 3730 return report && report->application == application; 3731 } 3732 3733 static int hidpp_probe(struct hid_device *hdev, const struct hid_device_id *id) 3734 { 3735 struct hidpp_device *hidpp; 3736 int ret; 3737 bool connected; 3738 unsigned int connect_mask = HID_CONNECT_DEFAULT; 3739 struct hidpp_ff_private_data data; 3740 3741 /* report_fixup needs drvdata to be set before we call hid_parse */ 3742 hidpp = devm_kzalloc(&hdev->dev, sizeof(*hidpp), GFP_KERNEL); 3743 if (!hidpp) 3744 return -ENOMEM; 3745 3746 hidpp->hid_dev = hdev; 3747 hidpp->name = hdev->name; 3748 hidpp->quirks = id->driver_data; 3749 hid_set_drvdata(hdev, hidpp); 3750 3751 ret = hid_parse(hdev); 3752 if (ret) { 3753 hid_err(hdev, "%s:parse failed\n", __func__); 3754 return ret; 3755 } 3756 3757 /* 3758 * Make sure the device is HID++ capable, otherwise treat as generic HID 3759 */ 3760 hidpp->supported_reports = hidpp_validate_device(hdev); 3761 3762 if (!hidpp->supported_reports) { 3763 hid_set_drvdata(hdev, NULL); 3764 devm_kfree(&hdev->dev, hidpp); 3765 return hid_hw_start(hdev, HID_CONNECT_DEFAULT); 3766 } 3767 3768 if (id->group == HID_GROUP_LOGITECH_DJ_DEVICE) 3769 hidpp->quirks |= HIDPP_QUIRK_UNIFYING; 3770 3771 if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE && 3772 hidpp_application_equals(hdev, HID_GD_MOUSE)) 3773 hidpp->quirks |= HIDPP_QUIRK_HIDPP_WHEELS | 3774 HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS; 3775 3776 if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE && 3777 hidpp_application_equals(hdev, HID_GD_KEYBOARD)) 3778 hidpp->quirks |= HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS; 3779 3780 if (disable_raw_mode) { 3781 hidpp->quirks &= ~HIDPP_QUIRK_CLASS_WTP; 3782 hidpp->quirks &= ~HIDPP_QUIRK_NO_HIDINPUT; 3783 } 3784 3785 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) { 3786 ret = wtp_allocate(hdev, id); 3787 if (ret) 3788 return ret; 3789 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) { 3790 ret = k400_allocate(hdev); 3791 if (ret) 3792 return ret; 3793 } 3794 3795 INIT_WORK(&hidpp->work, delayed_work_cb); 3796 mutex_init(&hidpp->send_mutex); 3797 init_waitqueue_head(&hidpp->wait); 3798 3799 /* indicates we are handling the battery properties in the kernel */ 3800 ret = sysfs_create_group(&hdev->dev.kobj, &ps_attribute_group); 3801 if (ret) 3802 hid_warn(hdev, "Cannot allocate sysfs group for %s\n", 3803 hdev->name); 3804 3805 /* 3806 * Plain USB connections need to actually call start and open 3807 * on the transport driver to allow incoming data. 3808 */ 3809 ret = hid_hw_start(hdev, 0); 3810 if (ret) { 3811 hid_err(hdev, "hw start failed\n"); 3812 goto hid_hw_start_fail; 3813 } 3814 3815 ret = hid_hw_open(hdev); 3816 if (ret < 0) { 3817 dev_err(&hdev->dev, "%s:hid_hw_open returned error:%d\n", 3818 __func__, ret); 3819 goto hid_hw_open_fail; 3820 } 3821 3822 /* Allow incoming packets */ 3823 hid_device_io_start(hdev); 3824 3825 if (hidpp->quirks & HIDPP_QUIRK_UNIFYING) 3826 hidpp_unifying_init(hidpp); 3827 3828 connected = hidpp_root_get_protocol_version(hidpp) == 0; 3829 atomic_set(&hidpp->connected, connected); 3830 if (!(hidpp->quirks & HIDPP_QUIRK_UNIFYING)) { 3831 if (!connected) { 3832 ret = -ENODEV; 3833 hid_err(hdev, "Device not connected"); 3834 goto hid_hw_init_fail; 3835 } 3836 3837 hidpp_overwrite_name(hdev); 3838 } 3839 3840 if (connected && hidpp->protocol_major >= 2) { 3841 ret = hidpp_set_wireless_feature_index(hidpp); 3842 if (ret == -ENOENT) 3843 hidpp->wireless_feature_index = 0; 3844 else if (ret) 3845 goto hid_hw_init_fail; 3846 } 3847 3848 if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)) { 3849 ret = wtp_get_config(hidpp); 3850 if (ret) 3851 goto hid_hw_init_fail; 3852 } else if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_G920)) { 3853 ret = g920_get_config(hidpp, &data); 3854 if (ret) 3855 goto hid_hw_init_fail; 3856 } 3857 3858 hidpp_connect_event(hidpp); 3859 3860 /* Reset the HID node state */ 3861 hid_device_io_stop(hdev); 3862 hid_hw_close(hdev); 3863 hid_hw_stop(hdev); 3864 3865 if (hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) 3866 connect_mask &= ~HID_CONNECT_HIDINPUT; 3867 3868 /* Now export the actual inputs and hidraw nodes to the world */ 3869 ret = hid_hw_start(hdev, connect_mask); 3870 if (ret) { 3871 hid_err(hdev, "%s:hid_hw_start returned error\n", __func__); 3872 goto hid_hw_start_fail; 3873 } 3874 3875 if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) { 3876 ret = hidpp_ff_init(hidpp, &data); 3877 if (ret) 3878 hid_warn(hidpp->hid_dev, 3879 "Unable to initialize force feedback support, errno %d\n", 3880 ret); 3881 } 3882 3883 return ret; 3884 3885 hid_hw_init_fail: 3886 hid_hw_close(hdev); 3887 hid_hw_open_fail: 3888 hid_hw_stop(hdev); 3889 hid_hw_start_fail: 3890 sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group); 3891 cancel_work_sync(&hidpp->work); 3892 mutex_destroy(&hidpp->send_mutex); 3893 return ret; 3894 } 3895 3896 static void hidpp_remove(struct hid_device *hdev) 3897 { 3898 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3899 3900 if (!hidpp) 3901 return hid_hw_stop(hdev); 3902 3903 sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group); 3904 3905 hid_hw_stop(hdev); 3906 cancel_work_sync(&hidpp->work); 3907 mutex_destroy(&hidpp->send_mutex); 3908 } 3909 3910 #define LDJ_DEVICE(product) \ 3911 HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE, \ 3912 USB_VENDOR_ID_LOGITECH, (product)) 3913 3914 #define L27MHZ_DEVICE(product) \ 3915 HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_27MHZ_DEVICE, \ 3916 USB_VENDOR_ID_LOGITECH, (product)) 3917 3918 static const struct hid_device_id hidpp_devices[] = { 3919 { /* wireless touchpad */ 3920 LDJ_DEVICE(0x4011), 3921 .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT | 3922 HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS }, 3923 { /* wireless touchpad T650 */ 3924 LDJ_DEVICE(0x4101), 3925 .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT }, 3926 { /* wireless touchpad T651 */ 3927 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 3928 USB_DEVICE_ID_LOGITECH_T651), 3929 .driver_data = HIDPP_QUIRK_CLASS_WTP }, 3930 { /* Mouse Logitech Anywhere MX */ 3931 LDJ_DEVICE(0x1017), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 }, 3932 { /* Mouse Logitech Cube */ 3933 LDJ_DEVICE(0x4010), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 }, 3934 { /* Mouse Logitech M335 */ 3935 LDJ_DEVICE(0x4050), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3936 { /* Mouse Logitech M515 */ 3937 LDJ_DEVICE(0x4007), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 }, 3938 { /* Mouse logitech M560 */ 3939 LDJ_DEVICE(0x402d), 3940 .driver_data = HIDPP_QUIRK_DELAYED_INIT | HIDPP_QUIRK_CLASS_M560 3941 | HIDPP_QUIRK_HI_RES_SCROLL_X2120 }, 3942 { /* Mouse Logitech M705 (firmware RQM17) */ 3943 LDJ_DEVICE(0x101b), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 }, 3944 { /* Mouse Logitech M705 (firmware RQM67) */ 3945 LDJ_DEVICE(0x406d), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3946 { /* Mouse Logitech M720 */ 3947 LDJ_DEVICE(0x405e), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3948 { /* Mouse Logitech MX Anywhere 2 */ 3949 LDJ_DEVICE(0x404a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3950 { LDJ_DEVICE(0xb013), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3951 { LDJ_DEVICE(0xb018), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3952 { LDJ_DEVICE(0xb01f), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3953 { /* Mouse Logitech MX Anywhere 2S */ 3954 LDJ_DEVICE(0x406a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3955 { /* Mouse Logitech MX Master */ 3956 LDJ_DEVICE(0x4041), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3957 { LDJ_DEVICE(0x4060), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3958 { LDJ_DEVICE(0x4071), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3959 { /* Mouse Logitech MX Master 2S */ 3960 LDJ_DEVICE(0x4069), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3961 { /* Mouse Logitech MX Master 3 */ 3962 LDJ_DEVICE(0x4082), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3963 { /* Mouse Logitech Performance MX */ 3964 LDJ_DEVICE(0x101a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 }, 3965 { /* Keyboard logitech K400 */ 3966 LDJ_DEVICE(0x4024), 3967 .driver_data = HIDPP_QUIRK_CLASS_K400 }, 3968 { /* Solar Keyboard Logitech K750 */ 3969 LDJ_DEVICE(0x4002), 3970 .driver_data = HIDPP_QUIRK_CLASS_K750 }, 3971 { /* Keyboard MX5000 (Bluetooth-receiver in HID proxy mode) */ 3972 LDJ_DEVICE(0xb305), 3973 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 3974 { /* Keyboard MX5500 (Bluetooth-receiver in HID proxy mode) */ 3975 LDJ_DEVICE(0xb30b), 3976 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 3977 3978 { LDJ_DEVICE(HID_ANY_ID) }, 3979 3980 { /* Keyboard LX501 (Y-RR53) */ 3981 L27MHZ_DEVICE(0x0049), 3982 .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL }, 3983 { /* Keyboard MX3000 (Y-RAM74) */ 3984 L27MHZ_DEVICE(0x0057), 3985 .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL }, 3986 { /* Keyboard MX3200 (Y-RAV80) */ 3987 L27MHZ_DEVICE(0x005c), 3988 .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL }, 3989 { /* S510 Media Remote */ 3990 L27MHZ_DEVICE(0x00fe), 3991 .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL }, 3992 3993 { L27MHZ_DEVICE(HID_ANY_ID) }, 3994 3995 { /* Logitech G403 Wireless Gaming Mouse over USB */ 3996 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC082) }, 3997 { /* Logitech G703 Gaming Mouse over USB */ 3998 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC087) }, 3999 { /* Logitech G703 Hero Gaming Mouse over USB */ 4000 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC090) }, 4001 { /* Logitech G900 Gaming Mouse over USB */ 4002 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC081) }, 4003 { /* Logitech G903 Gaming Mouse over USB */ 4004 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC086) }, 4005 { /* Logitech G903 Hero Gaming Mouse over USB */ 4006 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC091) }, 4007 { /* Logitech G920 Wheel over USB */ 4008 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G920_WHEEL), 4009 .driver_data = HIDPP_QUIRK_CLASS_G920 | HIDPP_QUIRK_FORCE_OUTPUT_REPORTS}, 4010 { /* Logitech G Pro Gaming Mouse over USB */ 4011 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC088) }, 4012 4013 { /* MX5000 keyboard over Bluetooth */ 4014 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb305), 4015 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 4016 { /* MX5500 keyboard over Bluetooth */ 4017 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb30b), 4018 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 4019 { /* MX Master mouse over Bluetooth */ 4020 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb012), 4021 .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4022 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb01e), 4023 .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4024 { /* MX Master 3 mouse over Bluetooth */ 4025 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb023), 4026 .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4027 {} 4028 }; 4029 4030 MODULE_DEVICE_TABLE(hid, hidpp_devices); 4031 4032 static const struct hid_usage_id hidpp_usages[] = { 4033 { HID_GD_WHEEL, EV_REL, REL_WHEEL_HI_RES }, 4034 { HID_ANY_ID - 1, HID_ANY_ID - 1, HID_ANY_ID - 1} 4035 }; 4036 4037 static struct hid_driver hidpp_driver = { 4038 .name = "logitech-hidpp-device", 4039 .id_table = hidpp_devices, 4040 .report_fixup = hidpp_report_fixup, 4041 .probe = hidpp_probe, 4042 .remove = hidpp_remove, 4043 .raw_event = hidpp_raw_event, 4044 .usage_table = hidpp_usages, 4045 .event = hidpp_event, 4046 .input_configured = hidpp_input_configured, 4047 .input_mapping = hidpp_input_mapping, 4048 .input_mapped = hidpp_input_mapped, 4049 }; 4050 4051 module_hid_driver(hidpp_driver); 4052