1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  HIDPP protocol for Logitech receivers
4  *
5  *  Copyright (c) 2011 Logitech (c)
6  *  Copyright (c) 2012-2013 Google (c)
7  *  Copyright (c) 2013-2014 Red Hat Inc.
8  */
9 
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/device.h>
14 #include <linux/input.h>
15 #include <linux/usb.h>
16 #include <linux/hid.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/sched/clock.h>
21 #include <linux/kfifo.h>
22 #include <linux/input/mt.h>
23 #include <linux/workqueue.h>
24 #include <linux/atomic.h>
25 #include <linux/fixp-arith.h>
26 #include <asm/unaligned.h>
27 #include "usbhid/usbhid.h"
28 #include "hid-ids.h"
29 
30 MODULE_LICENSE("GPL");
31 MODULE_AUTHOR("Benjamin Tissoires <benjamin.tissoires@gmail.com>");
32 MODULE_AUTHOR("Nestor Lopez Casado <nlopezcasad@logitech.com>");
33 
34 static bool disable_raw_mode;
35 module_param(disable_raw_mode, bool, 0644);
36 MODULE_PARM_DESC(disable_raw_mode,
37 	"Disable Raw mode reporting for touchpads and keep firmware gestures.");
38 
39 static bool disable_tap_to_click;
40 module_param(disable_tap_to_click, bool, 0644);
41 MODULE_PARM_DESC(disable_tap_to_click,
42 	"Disable Tap-To-Click mode reporting for touchpads (only on the K400 currently).");
43 
44 #define REPORT_ID_HIDPP_SHORT			0x10
45 #define REPORT_ID_HIDPP_LONG			0x11
46 #define REPORT_ID_HIDPP_VERY_LONG		0x12
47 
48 #define HIDPP_REPORT_SHORT_LENGTH		7
49 #define HIDPP_REPORT_LONG_LENGTH		20
50 #define HIDPP_REPORT_VERY_LONG_MAX_LENGTH	64
51 
52 #define HIDPP_REPORT_SHORT_SUPPORTED		BIT(0)
53 #define HIDPP_REPORT_LONG_SUPPORTED		BIT(1)
54 #define HIDPP_REPORT_VERY_LONG_SUPPORTED	BIT(2)
55 
56 #define HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS	0x03
57 #define HIDPP_SUB_ID_ROLLER			0x05
58 #define HIDPP_SUB_ID_MOUSE_EXTRA_BTNS		0x06
59 
60 #define HIDPP_QUIRK_CLASS_WTP			BIT(0)
61 #define HIDPP_QUIRK_CLASS_M560			BIT(1)
62 #define HIDPP_QUIRK_CLASS_K400			BIT(2)
63 #define HIDPP_QUIRK_CLASS_G920			BIT(3)
64 #define HIDPP_QUIRK_CLASS_K750			BIT(4)
65 
66 /* bits 2..20 are reserved for classes */
67 /* #define HIDPP_QUIRK_CONNECT_EVENTS		BIT(21) disabled */
68 #define HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS	BIT(22)
69 #define HIDPP_QUIRK_NO_HIDINPUT			BIT(23)
70 #define HIDPP_QUIRK_FORCE_OUTPUT_REPORTS	BIT(24)
71 #define HIDPP_QUIRK_UNIFYING			BIT(25)
72 #define HIDPP_QUIRK_HI_RES_SCROLL_1P0		BIT(26)
73 #define HIDPP_QUIRK_HI_RES_SCROLL_X2120		BIT(27)
74 #define HIDPP_QUIRK_HI_RES_SCROLL_X2121		BIT(28)
75 #define HIDPP_QUIRK_HIDPP_WHEELS		BIT(29)
76 #define HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS	BIT(30)
77 #define HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS	BIT(31)
78 
79 /* These are just aliases for now */
80 #define HIDPP_QUIRK_KBD_SCROLL_WHEEL HIDPP_QUIRK_HIDPP_WHEELS
81 #define HIDPP_QUIRK_KBD_ZOOM_WHEEL   HIDPP_QUIRK_HIDPP_WHEELS
82 
83 /* Convenience constant to check for any high-res support. */
84 #define HIDPP_QUIRK_HI_RES_SCROLL	(HIDPP_QUIRK_HI_RES_SCROLL_1P0 | \
85 					 HIDPP_QUIRK_HI_RES_SCROLL_X2120 | \
86 					 HIDPP_QUIRK_HI_RES_SCROLL_X2121)
87 
88 #define HIDPP_QUIRK_DELAYED_INIT		HIDPP_QUIRK_NO_HIDINPUT
89 
90 #define HIDPP_CAPABILITY_HIDPP10_BATTERY	BIT(0)
91 #define HIDPP_CAPABILITY_HIDPP20_BATTERY	BIT(1)
92 #define HIDPP_CAPABILITY_BATTERY_MILEAGE	BIT(2)
93 #define HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS	BIT(3)
94 #define HIDPP_CAPABILITY_BATTERY_VOLTAGE	BIT(4)
95 
96 /*
97  * There are two hidpp protocols in use, the first version hidpp10 is known
98  * as register access protocol or RAP, the second version hidpp20 is known as
99  * feature access protocol or FAP
100  *
101  * Most older devices (including the Unifying usb receiver) use the RAP protocol
102  * where as most newer devices use the FAP protocol. Both protocols are
103  * compatible with the underlying transport, which could be usb, Unifiying, or
104  * bluetooth. The message lengths are defined by the hid vendor specific report
105  * descriptor for the HIDPP_SHORT report type (total message lenth 7 bytes) and
106  * the HIDPP_LONG report type (total message length 20 bytes)
107  *
108  * The RAP protocol uses both report types, whereas the FAP only uses HIDPP_LONG
109  * messages. The Unifying receiver itself responds to RAP messages (device index
110  * is 0xFF for the receiver), and all messages (short or long) with a device
111  * index between 1 and 6 are passed untouched to the corresponding paired
112  * Unifying device.
113  *
114  * The paired device can be RAP or FAP, it will receive the message untouched
115  * from the Unifiying receiver.
116  */
117 
118 struct fap {
119 	u8 feature_index;
120 	u8 funcindex_clientid;
121 	u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U];
122 };
123 
124 struct rap {
125 	u8 sub_id;
126 	u8 reg_address;
127 	u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U];
128 };
129 
130 struct hidpp_report {
131 	u8 report_id;
132 	u8 device_index;
133 	union {
134 		struct fap fap;
135 		struct rap rap;
136 		u8 rawbytes[sizeof(struct fap)];
137 	};
138 } __packed;
139 
140 struct hidpp_battery {
141 	u8 feature_index;
142 	u8 solar_feature_index;
143 	u8 voltage_feature_index;
144 	struct power_supply_desc desc;
145 	struct power_supply *ps;
146 	char name[64];
147 	int status;
148 	int capacity;
149 	int level;
150 	int voltage;
151 	int charge_type;
152 	bool online;
153 };
154 
155 /**
156  * struct hidpp_scroll_counter - Utility class for processing high-resolution
157  *                             scroll events.
158  * @dev: the input device for which events should be reported.
159  * @wheel_multiplier: the scalar multiplier to be applied to each wheel event
160  * @remainder: counts the number of high-resolution units moved since the last
161  *             low-resolution event (REL_WHEEL or REL_HWHEEL) was sent. Should
162  *             only be used by class methods.
163  * @direction: direction of last movement (1 or -1)
164  * @last_time: last event time, used to reset remainder after inactivity
165  */
166 struct hidpp_scroll_counter {
167 	int wheel_multiplier;
168 	int remainder;
169 	int direction;
170 	unsigned long long last_time;
171 };
172 
173 struct hidpp_device {
174 	struct hid_device *hid_dev;
175 	struct input_dev *input;
176 	struct mutex send_mutex;
177 	void *send_receive_buf;
178 	char *name;		/* will never be NULL and should not be freed */
179 	wait_queue_head_t wait;
180 	int very_long_report_length;
181 	bool answer_available;
182 	u8 protocol_major;
183 	u8 protocol_minor;
184 
185 	void *private_data;
186 
187 	struct work_struct work;
188 	struct kfifo delayed_work_fifo;
189 	atomic_t connected;
190 	struct input_dev *delayed_input;
191 
192 	unsigned long quirks;
193 	unsigned long capabilities;
194 	u8 supported_reports;
195 
196 	struct hidpp_battery battery;
197 	struct hidpp_scroll_counter vertical_wheel_counter;
198 
199 	u8 wireless_feature_index;
200 };
201 
202 /* HID++ 1.0 error codes */
203 #define HIDPP_ERROR				0x8f
204 #define HIDPP_ERROR_SUCCESS			0x00
205 #define HIDPP_ERROR_INVALID_SUBID		0x01
206 #define HIDPP_ERROR_INVALID_ADRESS		0x02
207 #define HIDPP_ERROR_INVALID_VALUE		0x03
208 #define HIDPP_ERROR_CONNECT_FAIL		0x04
209 #define HIDPP_ERROR_TOO_MANY_DEVICES		0x05
210 #define HIDPP_ERROR_ALREADY_EXISTS		0x06
211 #define HIDPP_ERROR_BUSY			0x07
212 #define HIDPP_ERROR_UNKNOWN_DEVICE		0x08
213 #define HIDPP_ERROR_RESOURCE_ERROR		0x09
214 #define HIDPP_ERROR_REQUEST_UNAVAILABLE		0x0a
215 #define HIDPP_ERROR_INVALID_PARAM_VALUE		0x0b
216 #define HIDPP_ERROR_WRONG_PIN_CODE		0x0c
217 /* HID++ 2.0 error codes */
218 #define HIDPP20_ERROR				0xff
219 
220 static void hidpp_connect_event(struct hidpp_device *hidpp_dev);
221 
222 static int __hidpp_send_report(struct hid_device *hdev,
223 				struct hidpp_report *hidpp_report)
224 {
225 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
226 	int fields_count, ret;
227 
228 	switch (hidpp_report->report_id) {
229 	case REPORT_ID_HIDPP_SHORT:
230 		fields_count = HIDPP_REPORT_SHORT_LENGTH;
231 		break;
232 	case REPORT_ID_HIDPP_LONG:
233 		fields_count = HIDPP_REPORT_LONG_LENGTH;
234 		break;
235 	case REPORT_ID_HIDPP_VERY_LONG:
236 		fields_count = hidpp->very_long_report_length;
237 		break;
238 	default:
239 		return -ENODEV;
240 	}
241 
242 	/*
243 	 * set the device_index as the receiver, it will be overwritten by
244 	 * hid_hw_request if needed
245 	 */
246 	hidpp_report->device_index = 0xff;
247 
248 	if (hidpp->quirks & HIDPP_QUIRK_FORCE_OUTPUT_REPORTS) {
249 		ret = hid_hw_output_report(hdev, (u8 *)hidpp_report, fields_count);
250 	} else {
251 		ret = hid_hw_raw_request(hdev, hidpp_report->report_id,
252 			(u8 *)hidpp_report, fields_count, HID_OUTPUT_REPORT,
253 			HID_REQ_SET_REPORT);
254 	}
255 
256 	return ret == fields_count ? 0 : -1;
257 }
258 
259 /**
260  * hidpp_send_message_sync() returns 0 in case of success, and something else
261  * in case of a failure.
262  * - If ' something else' is positive, that means that an error has been raised
263  *   by the protocol itself.
264  * - If ' something else' is negative, that means that we had a classic error
265  *   (-ENOMEM, -EPIPE, etc...)
266  */
267 static int hidpp_send_message_sync(struct hidpp_device *hidpp,
268 	struct hidpp_report *message,
269 	struct hidpp_report *response)
270 {
271 	int ret;
272 
273 	mutex_lock(&hidpp->send_mutex);
274 
275 	hidpp->send_receive_buf = response;
276 	hidpp->answer_available = false;
277 
278 	/*
279 	 * So that we can later validate the answer when it arrives
280 	 * in hidpp_raw_event
281 	 */
282 	*response = *message;
283 
284 	ret = __hidpp_send_report(hidpp->hid_dev, message);
285 
286 	if (ret) {
287 		dbg_hid("__hidpp_send_report returned err: %d\n", ret);
288 		memset(response, 0, sizeof(struct hidpp_report));
289 		goto exit;
290 	}
291 
292 	if (!wait_event_timeout(hidpp->wait, hidpp->answer_available,
293 				5*HZ)) {
294 		dbg_hid("%s:timeout waiting for response\n", __func__);
295 		memset(response, 0, sizeof(struct hidpp_report));
296 		ret = -ETIMEDOUT;
297 	}
298 
299 	if (response->report_id == REPORT_ID_HIDPP_SHORT &&
300 	    response->rap.sub_id == HIDPP_ERROR) {
301 		ret = response->rap.params[1];
302 		dbg_hid("%s:got hidpp error %02X\n", __func__, ret);
303 		goto exit;
304 	}
305 
306 	if ((response->report_id == REPORT_ID_HIDPP_LONG ||
307 			response->report_id == REPORT_ID_HIDPP_VERY_LONG) &&
308 			response->fap.feature_index == HIDPP20_ERROR) {
309 		ret = response->fap.params[1];
310 		dbg_hid("%s:got hidpp 2.0 error %02X\n", __func__, ret);
311 		goto exit;
312 	}
313 
314 exit:
315 	mutex_unlock(&hidpp->send_mutex);
316 	return ret;
317 
318 }
319 
320 static int hidpp_send_fap_command_sync(struct hidpp_device *hidpp,
321 	u8 feat_index, u8 funcindex_clientid, u8 *params, int param_count,
322 	struct hidpp_report *response)
323 {
324 	struct hidpp_report *message;
325 	int ret;
326 
327 	if (param_count > sizeof(message->fap.params))
328 		return -EINVAL;
329 
330 	message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL);
331 	if (!message)
332 		return -ENOMEM;
333 
334 	if (param_count > (HIDPP_REPORT_LONG_LENGTH - 4))
335 		message->report_id = REPORT_ID_HIDPP_VERY_LONG;
336 	else
337 		message->report_id = REPORT_ID_HIDPP_LONG;
338 	message->fap.feature_index = feat_index;
339 	message->fap.funcindex_clientid = funcindex_clientid;
340 	memcpy(&message->fap.params, params, param_count);
341 
342 	ret = hidpp_send_message_sync(hidpp, message, response);
343 	kfree(message);
344 	return ret;
345 }
346 
347 static int hidpp_send_rap_command_sync(struct hidpp_device *hidpp_dev,
348 	u8 report_id, u8 sub_id, u8 reg_address, u8 *params, int param_count,
349 	struct hidpp_report *response)
350 {
351 	struct hidpp_report *message;
352 	int ret, max_count;
353 
354 	/* Send as long report if short reports are not supported. */
355 	if (report_id == REPORT_ID_HIDPP_SHORT &&
356 	    !(hidpp_dev->supported_reports & HIDPP_REPORT_SHORT_SUPPORTED))
357 		report_id = REPORT_ID_HIDPP_LONG;
358 
359 	switch (report_id) {
360 	case REPORT_ID_HIDPP_SHORT:
361 		max_count = HIDPP_REPORT_SHORT_LENGTH - 4;
362 		break;
363 	case REPORT_ID_HIDPP_LONG:
364 		max_count = HIDPP_REPORT_LONG_LENGTH - 4;
365 		break;
366 	case REPORT_ID_HIDPP_VERY_LONG:
367 		max_count = hidpp_dev->very_long_report_length - 4;
368 		break;
369 	default:
370 		return -EINVAL;
371 	}
372 
373 	if (param_count > max_count)
374 		return -EINVAL;
375 
376 	message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL);
377 	if (!message)
378 		return -ENOMEM;
379 	message->report_id = report_id;
380 	message->rap.sub_id = sub_id;
381 	message->rap.reg_address = reg_address;
382 	memcpy(&message->rap.params, params, param_count);
383 
384 	ret = hidpp_send_message_sync(hidpp_dev, message, response);
385 	kfree(message);
386 	return ret;
387 }
388 
389 static void delayed_work_cb(struct work_struct *work)
390 {
391 	struct hidpp_device *hidpp = container_of(work, struct hidpp_device,
392 							work);
393 	hidpp_connect_event(hidpp);
394 }
395 
396 static inline bool hidpp_match_answer(struct hidpp_report *question,
397 		struct hidpp_report *answer)
398 {
399 	return (answer->fap.feature_index == question->fap.feature_index) &&
400 	   (answer->fap.funcindex_clientid == question->fap.funcindex_clientid);
401 }
402 
403 static inline bool hidpp_match_error(struct hidpp_report *question,
404 		struct hidpp_report *answer)
405 {
406 	return ((answer->rap.sub_id == HIDPP_ERROR) ||
407 	    (answer->fap.feature_index == HIDPP20_ERROR)) &&
408 	    (answer->fap.funcindex_clientid == question->fap.feature_index) &&
409 	    (answer->fap.params[0] == question->fap.funcindex_clientid);
410 }
411 
412 static inline bool hidpp_report_is_connect_event(struct hidpp_device *hidpp,
413 		struct hidpp_report *report)
414 {
415 	return (hidpp->wireless_feature_index &&
416 		(report->fap.feature_index == hidpp->wireless_feature_index)) ||
417 		((report->report_id == REPORT_ID_HIDPP_SHORT) &&
418 		(report->rap.sub_id == 0x41));
419 }
420 
421 /**
422  * hidpp_prefix_name() prefixes the current given name with "Logitech ".
423  */
424 static void hidpp_prefix_name(char **name, int name_length)
425 {
426 #define PREFIX_LENGTH 9 /* "Logitech " */
427 
428 	int new_length;
429 	char *new_name;
430 
431 	if (name_length > PREFIX_LENGTH &&
432 	    strncmp(*name, "Logitech ", PREFIX_LENGTH) == 0)
433 		/* The prefix has is already in the name */
434 		return;
435 
436 	new_length = PREFIX_LENGTH + name_length;
437 	new_name = kzalloc(new_length, GFP_KERNEL);
438 	if (!new_name)
439 		return;
440 
441 	snprintf(new_name, new_length, "Logitech %s", *name);
442 
443 	kfree(*name);
444 
445 	*name = new_name;
446 }
447 
448 /**
449  * hidpp_scroll_counter_handle_scroll() - Send high- and low-resolution scroll
450  *                                        events given a high-resolution wheel
451  *                                        movement.
452  * @counter: a hid_scroll_counter struct describing the wheel.
453  * @hi_res_value: the movement of the wheel, in the mouse's high-resolution
454  *                units.
455  *
456  * Given a high-resolution movement, this function converts the movement into
457  * fractions of 120 and emits high-resolution scroll events for the input
458  * device. It also uses the multiplier from &struct hid_scroll_counter to
459  * emit low-resolution scroll events when appropriate for
460  * backwards-compatibility with userspace input libraries.
461  */
462 static void hidpp_scroll_counter_handle_scroll(struct input_dev *input_dev,
463 					       struct hidpp_scroll_counter *counter,
464 					       int hi_res_value)
465 {
466 	int low_res_value, remainder, direction;
467 	unsigned long long now, previous;
468 
469 	hi_res_value = hi_res_value * 120/counter->wheel_multiplier;
470 	input_report_rel(input_dev, REL_WHEEL_HI_RES, hi_res_value);
471 
472 	remainder = counter->remainder;
473 	direction = hi_res_value > 0 ? 1 : -1;
474 
475 	now = sched_clock();
476 	previous = counter->last_time;
477 	counter->last_time = now;
478 	/*
479 	 * Reset the remainder after a period of inactivity or when the
480 	 * direction changes. This prevents the REL_WHEEL emulation point
481 	 * from sliding for devices that don't always provide the same
482 	 * number of movements per detent.
483 	 */
484 	if (now - previous > 1000000000 || direction != counter->direction)
485 		remainder = 0;
486 
487 	counter->direction = direction;
488 	remainder += hi_res_value;
489 
490 	/* Some wheels will rest 7/8ths of a detent from the previous detent
491 	 * after slow movement, so we want the threshold for low-res events to
492 	 * be in the middle between two detents (e.g. after 4/8ths) as
493 	 * opposed to on the detents themselves (8/8ths).
494 	 */
495 	if (abs(remainder) >= 60) {
496 		/* Add (or subtract) 1 because we want to trigger when the wheel
497 		 * is half-way to the next detent (i.e. scroll 1 detent after a
498 		 * 1/2 detent movement, 2 detents after a 1 1/2 detent movement,
499 		 * etc.).
500 		 */
501 		low_res_value = remainder / 120;
502 		if (low_res_value == 0)
503 			low_res_value = (hi_res_value > 0 ? 1 : -1);
504 		input_report_rel(input_dev, REL_WHEEL, low_res_value);
505 		remainder -= low_res_value * 120;
506 	}
507 	counter->remainder = remainder;
508 }
509 
510 /* -------------------------------------------------------------------------- */
511 /* HIDP++ 1.0 commands                                                        */
512 /* -------------------------------------------------------------------------- */
513 
514 #define HIDPP_SET_REGISTER				0x80
515 #define HIDPP_GET_REGISTER				0x81
516 #define HIDPP_SET_LONG_REGISTER				0x82
517 #define HIDPP_GET_LONG_REGISTER				0x83
518 
519 /**
520  * hidpp10_set_register - Modify a HID++ 1.0 register.
521  * @hidpp_dev: the device to set the register on.
522  * @register_address: the address of the register to modify.
523  * @byte: the byte of the register to modify. Should be less than 3.
524  * @mask: mask of the bits to modify
525  * @value: new values for the bits in mask
526  * Return: 0 if successful, otherwise a negative error code.
527  */
528 static int hidpp10_set_register(struct hidpp_device *hidpp_dev,
529 	u8 register_address, u8 byte, u8 mask, u8 value)
530 {
531 	struct hidpp_report response;
532 	int ret;
533 	u8 params[3] = { 0 };
534 
535 	ret = hidpp_send_rap_command_sync(hidpp_dev,
536 					  REPORT_ID_HIDPP_SHORT,
537 					  HIDPP_GET_REGISTER,
538 					  register_address,
539 					  NULL, 0, &response);
540 	if (ret)
541 		return ret;
542 
543 	memcpy(params, response.rap.params, 3);
544 
545 	params[byte] &= ~mask;
546 	params[byte] |= value & mask;
547 
548 	return hidpp_send_rap_command_sync(hidpp_dev,
549 					   REPORT_ID_HIDPP_SHORT,
550 					   HIDPP_SET_REGISTER,
551 					   register_address,
552 					   params, 3, &response);
553 }
554 
555 #define HIDPP_REG_ENABLE_REPORTS			0x00
556 #define HIDPP_ENABLE_CONSUMER_REPORT			BIT(0)
557 #define HIDPP_ENABLE_WHEEL_REPORT			BIT(2)
558 #define HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT		BIT(3)
559 #define HIDPP_ENABLE_BAT_REPORT				BIT(4)
560 #define HIDPP_ENABLE_HWHEEL_REPORT			BIT(5)
561 
562 static int hidpp10_enable_battery_reporting(struct hidpp_device *hidpp_dev)
563 {
564 	return hidpp10_set_register(hidpp_dev, HIDPP_REG_ENABLE_REPORTS, 0,
565 			  HIDPP_ENABLE_BAT_REPORT, HIDPP_ENABLE_BAT_REPORT);
566 }
567 
568 #define HIDPP_REG_FEATURES				0x01
569 #define HIDPP_ENABLE_SPECIAL_BUTTON_FUNC		BIT(1)
570 #define HIDPP_ENABLE_FAST_SCROLL			BIT(6)
571 
572 /* On HID++ 1.0 devices, high-res scroll was called "scrolling acceleration". */
573 static int hidpp10_enable_scrolling_acceleration(struct hidpp_device *hidpp_dev)
574 {
575 	return hidpp10_set_register(hidpp_dev, HIDPP_REG_FEATURES, 0,
576 			  HIDPP_ENABLE_FAST_SCROLL, HIDPP_ENABLE_FAST_SCROLL);
577 }
578 
579 #define HIDPP_REG_BATTERY_STATUS			0x07
580 
581 static int hidpp10_battery_status_map_level(u8 param)
582 {
583 	int level;
584 
585 	switch (param) {
586 	case 1 ... 2:
587 		level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
588 		break;
589 	case 3 ... 4:
590 		level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
591 		break;
592 	case 5 ... 6:
593 		level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
594 		break;
595 	case 7:
596 		level = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
597 		break;
598 	default:
599 		level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
600 	}
601 
602 	return level;
603 }
604 
605 static int hidpp10_battery_status_map_status(u8 param)
606 {
607 	int status;
608 
609 	switch (param) {
610 	case 0x00:
611 		/* discharging (in use) */
612 		status = POWER_SUPPLY_STATUS_DISCHARGING;
613 		break;
614 	case 0x21: /* (standard) charging */
615 	case 0x24: /* fast charging */
616 	case 0x25: /* slow charging */
617 		status = POWER_SUPPLY_STATUS_CHARGING;
618 		break;
619 	case 0x26: /* topping charge */
620 	case 0x22: /* charge complete */
621 		status = POWER_SUPPLY_STATUS_FULL;
622 		break;
623 	case 0x20: /* unknown */
624 		status = POWER_SUPPLY_STATUS_UNKNOWN;
625 		break;
626 	/*
627 	 * 0x01...0x1F = reserved (not charging)
628 	 * 0x23 = charging error
629 	 * 0x27..0xff = reserved
630 	 */
631 	default:
632 		status = POWER_SUPPLY_STATUS_NOT_CHARGING;
633 		break;
634 	}
635 
636 	return status;
637 }
638 
639 static int hidpp10_query_battery_status(struct hidpp_device *hidpp)
640 {
641 	struct hidpp_report response;
642 	int ret, status;
643 
644 	ret = hidpp_send_rap_command_sync(hidpp,
645 					REPORT_ID_HIDPP_SHORT,
646 					HIDPP_GET_REGISTER,
647 					HIDPP_REG_BATTERY_STATUS,
648 					NULL, 0, &response);
649 	if (ret)
650 		return ret;
651 
652 	hidpp->battery.level =
653 		hidpp10_battery_status_map_level(response.rap.params[0]);
654 	status = hidpp10_battery_status_map_status(response.rap.params[1]);
655 	hidpp->battery.status = status;
656 	/* the capacity is only available when discharging or full */
657 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
658 				status == POWER_SUPPLY_STATUS_FULL;
659 
660 	return 0;
661 }
662 
663 #define HIDPP_REG_BATTERY_MILEAGE			0x0D
664 
665 static int hidpp10_battery_mileage_map_status(u8 param)
666 {
667 	int status;
668 
669 	switch (param >> 6) {
670 	case 0x00:
671 		/* discharging (in use) */
672 		status = POWER_SUPPLY_STATUS_DISCHARGING;
673 		break;
674 	case 0x01: /* charging */
675 		status = POWER_SUPPLY_STATUS_CHARGING;
676 		break;
677 	case 0x02: /* charge complete */
678 		status = POWER_SUPPLY_STATUS_FULL;
679 		break;
680 	/*
681 	 * 0x03 = charging error
682 	 */
683 	default:
684 		status = POWER_SUPPLY_STATUS_NOT_CHARGING;
685 		break;
686 	}
687 
688 	return status;
689 }
690 
691 static int hidpp10_query_battery_mileage(struct hidpp_device *hidpp)
692 {
693 	struct hidpp_report response;
694 	int ret, status;
695 
696 	ret = hidpp_send_rap_command_sync(hidpp,
697 					REPORT_ID_HIDPP_SHORT,
698 					HIDPP_GET_REGISTER,
699 					HIDPP_REG_BATTERY_MILEAGE,
700 					NULL, 0, &response);
701 	if (ret)
702 		return ret;
703 
704 	hidpp->battery.capacity = response.rap.params[0];
705 	status = hidpp10_battery_mileage_map_status(response.rap.params[2]);
706 	hidpp->battery.status = status;
707 	/* the capacity is only available when discharging or full */
708 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
709 				status == POWER_SUPPLY_STATUS_FULL;
710 
711 	return 0;
712 }
713 
714 static int hidpp10_battery_event(struct hidpp_device *hidpp, u8 *data, int size)
715 {
716 	struct hidpp_report *report = (struct hidpp_report *)data;
717 	int status, capacity, level;
718 	bool changed;
719 
720 	if (report->report_id != REPORT_ID_HIDPP_SHORT)
721 		return 0;
722 
723 	switch (report->rap.sub_id) {
724 	case HIDPP_REG_BATTERY_STATUS:
725 		capacity = hidpp->battery.capacity;
726 		level = hidpp10_battery_status_map_level(report->rawbytes[1]);
727 		status = hidpp10_battery_status_map_status(report->rawbytes[2]);
728 		break;
729 	case HIDPP_REG_BATTERY_MILEAGE:
730 		capacity = report->rap.params[0];
731 		level = hidpp->battery.level;
732 		status = hidpp10_battery_mileage_map_status(report->rawbytes[3]);
733 		break;
734 	default:
735 		return 0;
736 	}
737 
738 	changed = capacity != hidpp->battery.capacity ||
739 		  level != hidpp->battery.level ||
740 		  status != hidpp->battery.status;
741 
742 	/* the capacity is only available when discharging or full */
743 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
744 				status == POWER_SUPPLY_STATUS_FULL;
745 
746 	if (changed) {
747 		hidpp->battery.level = level;
748 		hidpp->battery.status = status;
749 		if (hidpp->battery.ps)
750 			power_supply_changed(hidpp->battery.ps);
751 	}
752 
753 	return 0;
754 }
755 
756 #define HIDPP_REG_PAIRING_INFORMATION			0xB5
757 #define HIDPP_EXTENDED_PAIRING				0x30
758 #define HIDPP_DEVICE_NAME				0x40
759 
760 static char *hidpp_unifying_get_name(struct hidpp_device *hidpp_dev)
761 {
762 	struct hidpp_report response;
763 	int ret;
764 	u8 params[1] = { HIDPP_DEVICE_NAME };
765 	char *name;
766 	int len;
767 
768 	ret = hidpp_send_rap_command_sync(hidpp_dev,
769 					REPORT_ID_HIDPP_SHORT,
770 					HIDPP_GET_LONG_REGISTER,
771 					HIDPP_REG_PAIRING_INFORMATION,
772 					params, 1, &response);
773 	if (ret)
774 		return NULL;
775 
776 	len = response.rap.params[1];
777 
778 	if (2 + len > sizeof(response.rap.params))
779 		return NULL;
780 
781 	if (len < 4) /* logitech devices are usually at least Xddd */
782 		return NULL;
783 
784 	name = kzalloc(len + 1, GFP_KERNEL);
785 	if (!name)
786 		return NULL;
787 
788 	memcpy(name, &response.rap.params[2], len);
789 
790 	/* include the terminating '\0' */
791 	hidpp_prefix_name(&name, len + 1);
792 
793 	return name;
794 }
795 
796 static int hidpp_unifying_get_serial(struct hidpp_device *hidpp, u32 *serial)
797 {
798 	struct hidpp_report response;
799 	int ret;
800 	u8 params[1] = { HIDPP_EXTENDED_PAIRING };
801 
802 	ret = hidpp_send_rap_command_sync(hidpp,
803 					REPORT_ID_HIDPP_SHORT,
804 					HIDPP_GET_LONG_REGISTER,
805 					HIDPP_REG_PAIRING_INFORMATION,
806 					params, 1, &response);
807 	if (ret)
808 		return ret;
809 
810 	/*
811 	 * We don't care about LE or BE, we will output it as a string
812 	 * with %4phD, so we need to keep the order.
813 	 */
814 	*serial = *((u32 *)&response.rap.params[1]);
815 	return 0;
816 }
817 
818 static int hidpp_unifying_init(struct hidpp_device *hidpp)
819 {
820 	struct hid_device *hdev = hidpp->hid_dev;
821 	const char *name;
822 	u32 serial;
823 	int ret;
824 
825 	ret = hidpp_unifying_get_serial(hidpp, &serial);
826 	if (ret)
827 		return ret;
828 
829 	snprintf(hdev->uniq, sizeof(hdev->uniq), "%04x-%4phD",
830 		 hdev->product, &serial);
831 	dbg_hid("HID++ Unifying: Got serial: %s\n", hdev->uniq);
832 
833 	name = hidpp_unifying_get_name(hidpp);
834 	if (!name)
835 		return -EIO;
836 
837 	snprintf(hdev->name, sizeof(hdev->name), "%s", name);
838 	dbg_hid("HID++ Unifying: Got name: %s\n", name);
839 
840 	kfree(name);
841 	return 0;
842 }
843 
844 /* -------------------------------------------------------------------------- */
845 /* 0x0000: Root                                                               */
846 /* -------------------------------------------------------------------------- */
847 
848 #define HIDPP_PAGE_ROOT					0x0000
849 #define HIDPP_PAGE_ROOT_IDX				0x00
850 
851 #define CMD_ROOT_GET_FEATURE				0x01
852 #define CMD_ROOT_GET_PROTOCOL_VERSION			0x11
853 
854 static int hidpp_root_get_feature(struct hidpp_device *hidpp, u16 feature,
855 	u8 *feature_index, u8 *feature_type)
856 {
857 	struct hidpp_report response;
858 	int ret;
859 	u8 params[2] = { feature >> 8, feature & 0x00FF };
860 
861 	ret = hidpp_send_fap_command_sync(hidpp,
862 			HIDPP_PAGE_ROOT_IDX,
863 			CMD_ROOT_GET_FEATURE,
864 			params, 2, &response);
865 	if (ret)
866 		return ret;
867 
868 	if (response.fap.params[0] == 0)
869 		return -ENOENT;
870 
871 	*feature_index = response.fap.params[0];
872 	*feature_type = response.fap.params[1];
873 
874 	return ret;
875 }
876 
877 static int hidpp_root_get_protocol_version(struct hidpp_device *hidpp)
878 {
879 	const u8 ping_byte = 0x5a;
880 	u8 ping_data[3] = { 0, 0, ping_byte };
881 	struct hidpp_report response;
882 	int ret;
883 
884 	ret = hidpp_send_rap_command_sync(hidpp,
885 			REPORT_ID_HIDPP_SHORT,
886 			HIDPP_PAGE_ROOT_IDX,
887 			CMD_ROOT_GET_PROTOCOL_VERSION,
888 			ping_data, sizeof(ping_data), &response);
889 
890 	if (ret == HIDPP_ERROR_INVALID_SUBID) {
891 		hidpp->protocol_major = 1;
892 		hidpp->protocol_minor = 0;
893 		goto print_version;
894 	}
895 
896 	/* the device might not be connected */
897 	if (ret == HIDPP_ERROR_RESOURCE_ERROR)
898 		return -EIO;
899 
900 	if (ret > 0) {
901 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
902 			__func__, ret);
903 		return -EPROTO;
904 	}
905 	if (ret)
906 		return ret;
907 
908 	if (response.rap.params[2] != ping_byte) {
909 		hid_err(hidpp->hid_dev, "%s: ping mismatch 0x%02x != 0x%02x\n",
910 			__func__, response.rap.params[2], ping_byte);
911 		return -EPROTO;
912 	}
913 
914 	hidpp->protocol_major = response.rap.params[0];
915 	hidpp->protocol_minor = response.rap.params[1];
916 
917 print_version:
918 	hid_info(hidpp->hid_dev, "HID++ %u.%u device connected.\n",
919 		 hidpp->protocol_major, hidpp->protocol_minor);
920 	return 0;
921 }
922 
923 /* -------------------------------------------------------------------------- */
924 /* 0x0005: GetDeviceNameType                                                  */
925 /* -------------------------------------------------------------------------- */
926 
927 #define HIDPP_PAGE_GET_DEVICE_NAME_TYPE			0x0005
928 
929 #define CMD_GET_DEVICE_NAME_TYPE_GET_COUNT		0x01
930 #define CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME	0x11
931 #define CMD_GET_DEVICE_NAME_TYPE_GET_TYPE		0x21
932 
933 static int hidpp_devicenametype_get_count(struct hidpp_device *hidpp,
934 	u8 feature_index, u8 *nameLength)
935 {
936 	struct hidpp_report response;
937 	int ret;
938 
939 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
940 		CMD_GET_DEVICE_NAME_TYPE_GET_COUNT, NULL, 0, &response);
941 
942 	if (ret > 0) {
943 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
944 			__func__, ret);
945 		return -EPROTO;
946 	}
947 	if (ret)
948 		return ret;
949 
950 	*nameLength = response.fap.params[0];
951 
952 	return ret;
953 }
954 
955 static int hidpp_devicenametype_get_device_name(struct hidpp_device *hidpp,
956 	u8 feature_index, u8 char_index, char *device_name, int len_buf)
957 {
958 	struct hidpp_report response;
959 	int ret, i;
960 	int count;
961 
962 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
963 		CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME, &char_index, 1,
964 		&response);
965 
966 	if (ret > 0) {
967 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
968 			__func__, ret);
969 		return -EPROTO;
970 	}
971 	if (ret)
972 		return ret;
973 
974 	switch (response.report_id) {
975 	case REPORT_ID_HIDPP_VERY_LONG:
976 		count = hidpp->very_long_report_length - 4;
977 		break;
978 	case REPORT_ID_HIDPP_LONG:
979 		count = HIDPP_REPORT_LONG_LENGTH - 4;
980 		break;
981 	case REPORT_ID_HIDPP_SHORT:
982 		count = HIDPP_REPORT_SHORT_LENGTH - 4;
983 		break;
984 	default:
985 		return -EPROTO;
986 	}
987 
988 	if (len_buf < count)
989 		count = len_buf;
990 
991 	for (i = 0; i < count; i++)
992 		device_name[i] = response.fap.params[i];
993 
994 	return count;
995 }
996 
997 static char *hidpp_get_device_name(struct hidpp_device *hidpp)
998 {
999 	u8 feature_type;
1000 	u8 feature_index;
1001 	u8 __name_length;
1002 	char *name;
1003 	unsigned index = 0;
1004 	int ret;
1005 
1006 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_GET_DEVICE_NAME_TYPE,
1007 		&feature_index, &feature_type);
1008 	if (ret)
1009 		return NULL;
1010 
1011 	ret = hidpp_devicenametype_get_count(hidpp, feature_index,
1012 		&__name_length);
1013 	if (ret)
1014 		return NULL;
1015 
1016 	name = kzalloc(__name_length + 1, GFP_KERNEL);
1017 	if (!name)
1018 		return NULL;
1019 
1020 	while (index < __name_length) {
1021 		ret = hidpp_devicenametype_get_device_name(hidpp,
1022 			feature_index, index, name + index,
1023 			__name_length - index);
1024 		if (ret <= 0) {
1025 			kfree(name);
1026 			return NULL;
1027 		}
1028 		index += ret;
1029 	}
1030 
1031 	/* include the terminating '\0' */
1032 	hidpp_prefix_name(&name, __name_length + 1);
1033 
1034 	return name;
1035 }
1036 
1037 /* -------------------------------------------------------------------------- */
1038 /* 0x1000: Battery level status                                               */
1039 /* -------------------------------------------------------------------------- */
1040 
1041 #define HIDPP_PAGE_BATTERY_LEVEL_STATUS				0x1000
1042 
1043 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS	0x00
1044 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY		0x10
1045 
1046 #define EVENT_BATTERY_LEVEL_STATUS_BROADCAST			0x00
1047 
1048 #define FLAG_BATTERY_LEVEL_DISABLE_OSD				BIT(0)
1049 #define FLAG_BATTERY_LEVEL_MILEAGE				BIT(1)
1050 #define FLAG_BATTERY_LEVEL_RECHARGEABLE				BIT(2)
1051 
1052 static int hidpp_map_battery_level(int capacity)
1053 {
1054 	if (capacity < 11)
1055 		return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1056 	/*
1057 	 * The spec says this should be < 31 but some devices report 30
1058 	 * with brand new batteries and Windows reports 30 as "Good".
1059 	 */
1060 	else if (capacity < 30)
1061 		return POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1062 	else if (capacity < 81)
1063 		return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1064 	return POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1065 }
1066 
1067 static int hidpp20_batterylevel_map_status_capacity(u8 data[3], int *capacity,
1068 						    int *next_capacity,
1069 						    int *level)
1070 {
1071 	int status;
1072 
1073 	*capacity = data[0];
1074 	*next_capacity = data[1];
1075 	*level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
1076 
1077 	/* When discharging, we can rely on the device reported capacity.
1078 	 * For all other states the device reports 0 (unknown).
1079 	 */
1080 	switch (data[2]) {
1081 		case 0: /* discharging (in use) */
1082 			status = POWER_SUPPLY_STATUS_DISCHARGING;
1083 			*level = hidpp_map_battery_level(*capacity);
1084 			break;
1085 		case 1: /* recharging */
1086 			status = POWER_SUPPLY_STATUS_CHARGING;
1087 			break;
1088 		case 2: /* charge in final stage */
1089 			status = POWER_SUPPLY_STATUS_CHARGING;
1090 			break;
1091 		case 3: /* charge complete */
1092 			status = POWER_SUPPLY_STATUS_FULL;
1093 			*level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1094 			*capacity = 100;
1095 			break;
1096 		case 4: /* recharging below optimal speed */
1097 			status = POWER_SUPPLY_STATUS_CHARGING;
1098 			break;
1099 		/* 5 = invalid battery type
1100 		   6 = thermal error
1101 		   7 = other charging error */
1102 		default:
1103 			status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1104 			break;
1105 	}
1106 
1107 	return status;
1108 }
1109 
1110 static int hidpp20_batterylevel_get_battery_capacity(struct hidpp_device *hidpp,
1111 						     u8 feature_index,
1112 						     int *status,
1113 						     int *capacity,
1114 						     int *next_capacity,
1115 						     int *level)
1116 {
1117 	struct hidpp_report response;
1118 	int ret;
1119 	u8 *params = (u8 *)response.fap.params;
1120 
1121 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1122 					  CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS,
1123 					  NULL, 0, &response);
1124 	/* Ignore these intermittent errors */
1125 	if (ret == HIDPP_ERROR_RESOURCE_ERROR)
1126 		return -EIO;
1127 	if (ret > 0) {
1128 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1129 			__func__, ret);
1130 		return -EPROTO;
1131 	}
1132 	if (ret)
1133 		return ret;
1134 
1135 	*status = hidpp20_batterylevel_map_status_capacity(params, capacity,
1136 							   next_capacity,
1137 							   level);
1138 
1139 	return 0;
1140 }
1141 
1142 static int hidpp20_batterylevel_get_battery_info(struct hidpp_device *hidpp,
1143 						  u8 feature_index)
1144 {
1145 	struct hidpp_report response;
1146 	int ret;
1147 	u8 *params = (u8 *)response.fap.params;
1148 	unsigned int level_count, flags;
1149 
1150 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1151 					  CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY,
1152 					  NULL, 0, &response);
1153 	if (ret > 0) {
1154 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1155 			__func__, ret);
1156 		return -EPROTO;
1157 	}
1158 	if (ret)
1159 		return ret;
1160 
1161 	level_count = params[0];
1162 	flags = params[1];
1163 
1164 	if (level_count < 10 || !(flags & FLAG_BATTERY_LEVEL_MILEAGE))
1165 		hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
1166 	else
1167 		hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
1168 
1169 	return 0;
1170 }
1171 
1172 static int hidpp20_query_battery_info(struct hidpp_device *hidpp)
1173 {
1174 	u8 feature_type;
1175 	int ret;
1176 	int status, capacity, next_capacity, level;
1177 
1178 	if (hidpp->battery.feature_index == 0xff) {
1179 		ret = hidpp_root_get_feature(hidpp,
1180 					     HIDPP_PAGE_BATTERY_LEVEL_STATUS,
1181 					     &hidpp->battery.feature_index,
1182 					     &feature_type);
1183 		if (ret)
1184 			return ret;
1185 	}
1186 
1187 	ret = hidpp20_batterylevel_get_battery_capacity(hidpp,
1188 						hidpp->battery.feature_index,
1189 						&status, &capacity,
1190 						&next_capacity, &level);
1191 	if (ret)
1192 		return ret;
1193 
1194 	ret = hidpp20_batterylevel_get_battery_info(hidpp,
1195 						hidpp->battery.feature_index);
1196 	if (ret)
1197 		return ret;
1198 
1199 	hidpp->battery.status = status;
1200 	hidpp->battery.capacity = capacity;
1201 	hidpp->battery.level = level;
1202 	/* the capacity is only available when discharging or full */
1203 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
1204 				status == POWER_SUPPLY_STATUS_FULL;
1205 
1206 	return 0;
1207 }
1208 
1209 static int hidpp20_battery_event(struct hidpp_device *hidpp,
1210 				 u8 *data, int size)
1211 {
1212 	struct hidpp_report *report = (struct hidpp_report *)data;
1213 	int status, capacity, next_capacity, level;
1214 	bool changed;
1215 
1216 	if (report->fap.feature_index != hidpp->battery.feature_index ||
1217 	    report->fap.funcindex_clientid != EVENT_BATTERY_LEVEL_STATUS_BROADCAST)
1218 		return 0;
1219 
1220 	status = hidpp20_batterylevel_map_status_capacity(report->fap.params,
1221 							  &capacity,
1222 							  &next_capacity,
1223 							  &level);
1224 
1225 	/* the capacity is only available when discharging or full */
1226 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
1227 				status == POWER_SUPPLY_STATUS_FULL;
1228 
1229 	changed = capacity != hidpp->battery.capacity ||
1230 		  level != hidpp->battery.level ||
1231 		  status != hidpp->battery.status;
1232 
1233 	if (changed) {
1234 		hidpp->battery.level = level;
1235 		hidpp->battery.capacity = capacity;
1236 		hidpp->battery.status = status;
1237 		if (hidpp->battery.ps)
1238 			power_supply_changed(hidpp->battery.ps);
1239 	}
1240 
1241 	return 0;
1242 }
1243 
1244 /* -------------------------------------------------------------------------- */
1245 /* 0x1001: Battery voltage                                                    */
1246 /* -------------------------------------------------------------------------- */
1247 
1248 #define HIDPP_PAGE_BATTERY_VOLTAGE 0x1001
1249 
1250 #define CMD_BATTERY_VOLTAGE_GET_BATTERY_VOLTAGE 0x00
1251 
1252 #define EVENT_BATTERY_VOLTAGE_STATUS_BROADCAST 0x00
1253 
1254 static int hidpp20_battery_map_status_voltage(u8 data[3], int *voltage,
1255 						int *level, int *charge_type)
1256 {
1257 	int status;
1258 
1259 	long flags = (long) data[2];
1260 
1261 	if (flags & 0x80)
1262 		switch (flags & 0x07) {
1263 		case 0:
1264 			status = POWER_SUPPLY_STATUS_CHARGING;
1265 			break;
1266 		case 1:
1267 			status = POWER_SUPPLY_STATUS_FULL;
1268 			*level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1269 			break;
1270 		case 2:
1271 			status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1272 			break;
1273 		default:
1274 			status = POWER_SUPPLY_STATUS_UNKNOWN;
1275 			break;
1276 		}
1277 	else
1278 		status = POWER_SUPPLY_STATUS_DISCHARGING;
1279 
1280 	*charge_type = POWER_SUPPLY_CHARGE_TYPE_STANDARD;
1281 	if (test_bit(3, &flags)) {
1282 		*charge_type = POWER_SUPPLY_CHARGE_TYPE_FAST;
1283 	}
1284 	if (test_bit(4, &flags)) {
1285 		*charge_type = POWER_SUPPLY_CHARGE_TYPE_TRICKLE;
1286 	}
1287 	if (test_bit(5, &flags)) {
1288 		*level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1289 	}
1290 
1291 	*voltage = get_unaligned_be16(data);
1292 
1293 	return status;
1294 }
1295 
1296 static int hidpp20_battery_get_battery_voltage(struct hidpp_device *hidpp,
1297 						 u8 feature_index,
1298 						 int *status, int *voltage,
1299 						 int *level, int *charge_type)
1300 {
1301 	struct hidpp_report response;
1302 	int ret;
1303 	u8 *params = (u8 *)response.fap.params;
1304 
1305 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1306 					  CMD_BATTERY_VOLTAGE_GET_BATTERY_VOLTAGE,
1307 					  NULL, 0, &response);
1308 
1309 	if (ret > 0) {
1310 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1311 			__func__, ret);
1312 		return -EPROTO;
1313 	}
1314 	if (ret)
1315 		return ret;
1316 
1317 	hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_VOLTAGE;
1318 
1319 	*status = hidpp20_battery_map_status_voltage(params, voltage,
1320 						     level, charge_type);
1321 
1322 	return 0;
1323 }
1324 
1325 static int hidpp20_query_battery_voltage_info(struct hidpp_device *hidpp)
1326 {
1327 	u8 feature_type;
1328 	int ret;
1329 	int status, voltage, level, charge_type;
1330 
1331 	if (hidpp->battery.voltage_feature_index == 0xff) {
1332 		ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_BATTERY_VOLTAGE,
1333 					     &hidpp->battery.voltage_feature_index,
1334 					     &feature_type);
1335 		if (ret)
1336 			return ret;
1337 	}
1338 
1339 	ret = hidpp20_battery_get_battery_voltage(hidpp,
1340 						  hidpp->battery.voltage_feature_index,
1341 						  &status, &voltage, &level, &charge_type);
1342 
1343 	if (ret)
1344 		return ret;
1345 
1346 	hidpp->battery.status = status;
1347 	hidpp->battery.voltage = voltage;
1348 	hidpp->battery.level = level;
1349 	hidpp->battery.charge_type = charge_type;
1350 	hidpp->battery.online = status != POWER_SUPPLY_STATUS_NOT_CHARGING;
1351 
1352 	return 0;
1353 }
1354 
1355 static int hidpp20_battery_voltage_event(struct hidpp_device *hidpp,
1356 					    u8 *data, int size)
1357 {
1358 	struct hidpp_report *report = (struct hidpp_report *)data;
1359 	int status, voltage, level, charge_type;
1360 
1361 	if (report->fap.feature_index != hidpp->battery.voltage_feature_index ||
1362 		report->fap.funcindex_clientid != EVENT_BATTERY_VOLTAGE_STATUS_BROADCAST)
1363 		return 0;
1364 
1365 	status = hidpp20_battery_map_status_voltage(report->fap.params, &voltage,
1366 						    &level, &charge_type);
1367 
1368 	hidpp->battery.online = status != POWER_SUPPLY_STATUS_NOT_CHARGING;
1369 
1370 	if (voltage != hidpp->battery.voltage || status != hidpp->battery.status) {
1371 		hidpp->battery.voltage = voltage;
1372 		hidpp->battery.status = status;
1373 		hidpp->battery.level = level;
1374 		hidpp->battery.charge_type = charge_type;
1375 		if (hidpp->battery.ps)
1376 			power_supply_changed(hidpp->battery.ps);
1377 	}
1378 	return 0;
1379 }
1380 
1381 static enum power_supply_property hidpp_battery_props[] = {
1382 	POWER_SUPPLY_PROP_ONLINE,
1383 	POWER_SUPPLY_PROP_STATUS,
1384 	POWER_SUPPLY_PROP_SCOPE,
1385 	POWER_SUPPLY_PROP_MODEL_NAME,
1386 	POWER_SUPPLY_PROP_MANUFACTURER,
1387 	POWER_SUPPLY_PROP_SERIAL_NUMBER,
1388 	0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY, */
1389 	0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY_LEVEL, */
1390 	0, /* placeholder for POWER_SUPPLY_PROP_VOLTAGE_NOW, */
1391 };
1392 
1393 static int hidpp_battery_get_property(struct power_supply *psy,
1394 				      enum power_supply_property psp,
1395 				      union power_supply_propval *val)
1396 {
1397 	struct hidpp_device *hidpp = power_supply_get_drvdata(psy);
1398 	int ret = 0;
1399 
1400 	switch(psp) {
1401 		case POWER_SUPPLY_PROP_STATUS:
1402 			val->intval = hidpp->battery.status;
1403 			break;
1404 		case POWER_SUPPLY_PROP_CAPACITY:
1405 			val->intval = hidpp->battery.capacity;
1406 			break;
1407 		case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
1408 			val->intval = hidpp->battery.level;
1409 			break;
1410 		case POWER_SUPPLY_PROP_SCOPE:
1411 			val->intval = POWER_SUPPLY_SCOPE_DEVICE;
1412 			break;
1413 		case POWER_SUPPLY_PROP_ONLINE:
1414 			val->intval = hidpp->battery.online;
1415 			break;
1416 		case POWER_SUPPLY_PROP_MODEL_NAME:
1417 			if (!strncmp(hidpp->name, "Logitech ", 9))
1418 				val->strval = hidpp->name + 9;
1419 			else
1420 				val->strval = hidpp->name;
1421 			break;
1422 		case POWER_SUPPLY_PROP_MANUFACTURER:
1423 			val->strval = "Logitech";
1424 			break;
1425 		case POWER_SUPPLY_PROP_SERIAL_NUMBER:
1426 			val->strval = hidpp->hid_dev->uniq;
1427 			break;
1428 		case POWER_SUPPLY_PROP_VOLTAGE_NOW:
1429 			/* hardware reports voltage in in mV. sysfs expects uV */
1430 			val->intval = hidpp->battery.voltage * 1000;
1431 			break;
1432 		case POWER_SUPPLY_PROP_CHARGE_TYPE:
1433 			val->intval = hidpp->battery.charge_type;
1434 			break;
1435 		default:
1436 			ret = -EINVAL;
1437 			break;
1438 	}
1439 
1440 	return ret;
1441 }
1442 
1443 /* -------------------------------------------------------------------------- */
1444 /* 0x1d4b: Wireless device status                                             */
1445 /* -------------------------------------------------------------------------- */
1446 #define HIDPP_PAGE_WIRELESS_DEVICE_STATUS			0x1d4b
1447 
1448 static int hidpp_set_wireless_feature_index(struct hidpp_device *hidpp)
1449 {
1450 	u8 feature_type;
1451 	int ret;
1452 
1453 	ret = hidpp_root_get_feature(hidpp,
1454 				     HIDPP_PAGE_WIRELESS_DEVICE_STATUS,
1455 				     &hidpp->wireless_feature_index,
1456 				     &feature_type);
1457 
1458 	return ret;
1459 }
1460 
1461 /* -------------------------------------------------------------------------- */
1462 /* 0x2120: Hi-resolution scrolling                                            */
1463 /* -------------------------------------------------------------------------- */
1464 
1465 #define HIDPP_PAGE_HI_RESOLUTION_SCROLLING			0x2120
1466 
1467 #define CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE	0x10
1468 
1469 static int hidpp_hrs_set_highres_scrolling_mode(struct hidpp_device *hidpp,
1470 	bool enabled, u8 *multiplier)
1471 {
1472 	u8 feature_index;
1473 	u8 feature_type;
1474 	int ret;
1475 	u8 params[1];
1476 	struct hidpp_report response;
1477 
1478 	ret = hidpp_root_get_feature(hidpp,
1479 				     HIDPP_PAGE_HI_RESOLUTION_SCROLLING,
1480 				     &feature_index,
1481 				     &feature_type);
1482 	if (ret)
1483 		return ret;
1484 
1485 	params[0] = enabled ? BIT(0) : 0;
1486 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1487 					  CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE,
1488 					  params, sizeof(params), &response);
1489 	if (ret)
1490 		return ret;
1491 	*multiplier = response.fap.params[1];
1492 	return 0;
1493 }
1494 
1495 /* -------------------------------------------------------------------------- */
1496 /* 0x2121: HiRes Wheel                                                        */
1497 /* -------------------------------------------------------------------------- */
1498 
1499 #define HIDPP_PAGE_HIRES_WHEEL		0x2121
1500 
1501 #define CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY	0x00
1502 #define CMD_HIRES_WHEEL_SET_WHEEL_MODE		0x20
1503 
1504 static int hidpp_hrw_get_wheel_capability(struct hidpp_device *hidpp,
1505 	u8 *multiplier)
1506 {
1507 	u8 feature_index;
1508 	u8 feature_type;
1509 	int ret;
1510 	struct hidpp_report response;
1511 
1512 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL,
1513 				     &feature_index, &feature_type);
1514 	if (ret)
1515 		goto return_default;
1516 
1517 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1518 					  CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY,
1519 					  NULL, 0, &response);
1520 	if (ret)
1521 		goto return_default;
1522 
1523 	*multiplier = response.fap.params[0];
1524 	return 0;
1525 return_default:
1526 	hid_warn(hidpp->hid_dev,
1527 		 "Couldn't get wheel multiplier (error %d)\n", ret);
1528 	return ret;
1529 }
1530 
1531 static int hidpp_hrw_set_wheel_mode(struct hidpp_device *hidpp, bool invert,
1532 	bool high_resolution, bool use_hidpp)
1533 {
1534 	u8 feature_index;
1535 	u8 feature_type;
1536 	int ret;
1537 	u8 params[1];
1538 	struct hidpp_report response;
1539 
1540 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL,
1541 				     &feature_index, &feature_type);
1542 	if (ret)
1543 		return ret;
1544 
1545 	params[0] = (invert          ? BIT(2) : 0) |
1546 		    (high_resolution ? BIT(1) : 0) |
1547 		    (use_hidpp       ? BIT(0) : 0);
1548 
1549 	return hidpp_send_fap_command_sync(hidpp, feature_index,
1550 					   CMD_HIRES_WHEEL_SET_WHEEL_MODE,
1551 					   params, sizeof(params), &response);
1552 }
1553 
1554 /* -------------------------------------------------------------------------- */
1555 /* 0x4301: Solar Keyboard                                                     */
1556 /* -------------------------------------------------------------------------- */
1557 
1558 #define HIDPP_PAGE_SOLAR_KEYBOARD			0x4301
1559 
1560 #define CMD_SOLAR_SET_LIGHT_MEASURE			0x00
1561 
1562 #define EVENT_SOLAR_BATTERY_BROADCAST			0x00
1563 #define EVENT_SOLAR_BATTERY_LIGHT_MEASURE		0x10
1564 #define EVENT_SOLAR_CHECK_LIGHT_BUTTON			0x20
1565 
1566 static int hidpp_solar_request_battery_event(struct hidpp_device *hidpp)
1567 {
1568 	struct hidpp_report response;
1569 	u8 params[2] = { 1, 1 };
1570 	u8 feature_type;
1571 	int ret;
1572 
1573 	if (hidpp->battery.feature_index == 0xff) {
1574 		ret = hidpp_root_get_feature(hidpp,
1575 					     HIDPP_PAGE_SOLAR_KEYBOARD,
1576 					     &hidpp->battery.solar_feature_index,
1577 					     &feature_type);
1578 		if (ret)
1579 			return ret;
1580 	}
1581 
1582 	ret = hidpp_send_fap_command_sync(hidpp,
1583 					  hidpp->battery.solar_feature_index,
1584 					  CMD_SOLAR_SET_LIGHT_MEASURE,
1585 					  params, 2, &response);
1586 	if (ret > 0) {
1587 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1588 			__func__, ret);
1589 		return -EPROTO;
1590 	}
1591 	if (ret)
1592 		return ret;
1593 
1594 	hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
1595 
1596 	return 0;
1597 }
1598 
1599 static int hidpp_solar_battery_event(struct hidpp_device *hidpp,
1600 				     u8 *data, int size)
1601 {
1602 	struct hidpp_report *report = (struct hidpp_report *)data;
1603 	int capacity, lux, status;
1604 	u8 function;
1605 
1606 	function = report->fap.funcindex_clientid;
1607 
1608 
1609 	if (report->fap.feature_index != hidpp->battery.solar_feature_index ||
1610 	    !(function == EVENT_SOLAR_BATTERY_BROADCAST ||
1611 	      function == EVENT_SOLAR_BATTERY_LIGHT_MEASURE ||
1612 	      function == EVENT_SOLAR_CHECK_LIGHT_BUTTON))
1613 		return 0;
1614 
1615 	capacity = report->fap.params[0];
1616 
1617 	switch (function) {
1618 	case EVENT_SOLAR_BATTERY_LIGHT_MEASURE:
1619 		lux = (report->fap.params[1] << 8) | report->fap.params[2];
1620 		if (lux > 200)
1621 			status = POWER_SUPPLY_STATUS_CHARGING;
1622 		else
1623 			status = POWER_SUPPLY_STATUS_DISCHARGING;
1624 		break;
1625 	case EVENT_SOLAR_CHECK_LIGHT_BUTTON:
1626 	default:
1627 		if (capacity < hidpp->battery.capacity)
1628 			status = POWER_SUPPLY_STATUS_DISCHARGING;
1629 		else
1630 			status = POWER_SUPPLY_STATUS_CHARGING;
1631 
1632 	}
1633 
1634 	if (capacity == 100)
1635 		status = POWER_SUPPLY_STATUS_FULL;
1636 
1637 	hidpp->battery.online = true;
1638 	if (capacity != hidpp->battery.capacity ||
1639 	    status != hidpp->battery.status) {
1640 		hidpp->battery.capacity = capacity;
1641 		hidpp->battery.status = status;
1642 		if (hidpp->battery.ps)
1643 			power_supply_changed(hidpp->battery.ps);
1644 	}
1645 
1646 	return 0;
1647 }
1648 
1649 /* -------------------------------------------------------------------------- */
1650 /* 0x6010: Touchpad FW items                                                  */
1651 /* -------------------------------------------------------------------------- */
1652 
1653 #define HIDPP_PAGE_TOUCHPAD_FW_ITEMS			0x6010
1654 
1655 #define CMD_TOUCHPAD_FW_ITEMS_SET			0x10
1656 
1657 struct hidpp_touchpad_fw_items {
1658 	uint8_t presence;
1659 	uint8_t desired_state;
1660 	uint8_t state;
1661 	uint8_t persistent;
1662 };
1663 
1664 /**
1665  * send a set state command to the device by reading the current items->state
1666  * field. items is then filled with the current state.
1667  */
1668 static int hidpp_touchpad_fw_items_set(struct hidpp_device *hidpp,
1669 				       u8 feature_index,
1670 				       struct hidpp_touchpad_fw_items *items)
1671 {
1672 	struct hidpp_report response;
1673 	int ret;
1674 	u8 *params = (u8 *)response.fap.params;
1675 
1676 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1677 		CMD_TOUCHPAD_FW_ITEMS_SET, &items->state, 1, &response);
1678 
1679 	if (ret > 0) {
1680 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1681 			__func__, ret);
1682 		return -EPROTO;
1683 	}
1684 	if (ret)
1685 		return ret;
1686 
1687 	items->presence = params[0];
1688 	items->desired_state = params[1];
1689 	items->state = params[2];
1690 	items->persistent = params[3];
1691 
1692 	return 0;
1693 }
1694 
1695 /* -------------------------------------------------------------------------- */
1696 /* 0x6100: TouchPadRawXY                                                      */
1697 /* -------------------------------------------------------------------------- */
1698 
1699 #define HIDPP_PAGE_TOUCHPAD_RAW_XY			0x6100
1700 
1701 #define CMD_TOUCHPAD_GET_RAW_INFO			0x01
1702 #define CMD_TOUCHPAD_SET_RAW_REPORT_STATE		0x21
1703 
1704 #define EVENT_TOUCHPAD_RAW_XY				0x00
1705 
1706 #define TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT		0x01
1707 #define TOUCHPAD_RAW_XY_ORIGIN_UPPER_LEFT		0x03
1708 
1709 struct hidpp_touchpad_raw_info {
1710 	u16 x_size;
1711 	u16 y_size;
1712 	u8 z_range;
1713 	u8 area_range;
1714 	u8 timestamp_unit;
1715 	u8 maxcontacts;
1716 	u8 origin;
1717 	u16 res;
1718 };
1719 
1720 struct hidpp_touchpad_raw_xy_finger {
1721 	u8 contact_type;
1722 	u8 contact_status;
1723 	u16 x;
1724 	u16 y;
1725 	u8 z;
1726 	u8 area;
1727 	u8 finger_id;
1728 };
1729 
1730 struct hidpp_touchpad_raw_xy {
1731 	u16 timestamp;
1732 	struct hidpp_touchpad_raw_xy_finger fingers[2];
1733 	u8 spurious_flag;
1734 	u8 end_of_frame;
1735 	u8 finger_count;
1736 	u8 button;
1737 };
1738 
1739 static int hidpp_touchpad_get_raw_info(struct hidpp_device *hidpp,
1740 	u8 feature_index, struct hidpp_touchpad_raw_info *raw_info)
1741 {
1742 	struct hidpp_report response;
1743 	int ret;
1744 	u8 *params = (u8 *)response.fap.params;
1745 
1746 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1747 		CMD_TOUCHPAD_GET_RAW_INFO, NULL, 0, &response);
1748 
1749 	if (ret > 0) {
1750 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1751 			__func__, ret);
1752 		return -EPROTO;
1753 	}
1754 	if (ret)
1755 		return ret;
1756 
1757 	raw_info->x_size = get_unaligned_be16(&params[0]);
1758 	raw_info->y_size = get_unaligned_be16(&params[2]);
1759 	raw_info->z_range = params[4];
1760 	raw_info->area_range = params[5];
1761 	raw_info->maxcontacts = params[7];
1762 	raw_info->origin = params[8];
1763 	/* res is given in unit per inch */
1764 	raw_info->res = get_unaligned_be16(&params[13]) * 2 / 51;
1765 
1766 	return ret;
1767 }
1768 
1769 static int hidpp_touchpad_set_raw_report_state(struct hidpp_device *hidpp_dev,
1770 		u8 feature_index, bool send_raw_reports,
1771 		bool sensor_enhanced_settings)
1772 {
1773 	struct hidpp_report response;
1774 
1775 	/*
1776 	 * Params:
1777 	 *   bit 0 - enable raw
1778 	 *   bit 1 - 16bit Z, no area
1779 	 *   bit 2 - enhanced sensitivity
1780 	 *   bit 3 - width, height (4 bits each) instead of area
1781 	 *   bit 4 - send raw + gestures (degrades smoothness)
1782 	 *   remaining bits - reserved
1783 	 */
1784 	u8 params = send_raw_reports | (sensor_enhanced_settings << 2);
1785 
1786 	return hidpp_send_fap_command_sync(hidpp_dev, feature_index,
1787 		CMD_TOUCHPAD_SET_RAW_REPORT_STATE, &params, 1, &response);
1788 }
1789 
1790 static void hidpp_touchpad_touch_event(u8 *data,
1791 	struct hidpp_touchpad_raw_xy_finger *finger)
1792 {
1793 	u8 x_m = data[0] << 2;
1794 	u8 y_m = data[2] << 2;
1795 
1796 	finger->x = x_m << 6 | data[1];
1797 	finger->y = y_m << 6 | data[3];
1798 
1799 	finger->contact_type = data[0] >> 6;
1800 	finger->contact_status = data[2] >> 6;
1801 
1802 	finger->z = data[4];
1803 	finger->area = data[5];
1804 	finger->finger_id = data[6] >> 4;
1805 }
1806 
1807 static void hidpp_touchpad_raw_xy_event(struct hidpp_device *hidpp_dev,
1808 		u8 *data, struct hidpp_touchpad_raw_xy *raw_xy)
1809 {
1810 	memset(raw_xy, 0, sizeof(struct hidpp_touchpad_raw_xy));
1811 	raw_xy->end_of_frame = data[8] & 0x01;
1812 	raw_xy->spurious_flag = (data[8] >> 1) & 0x01;
1813 	raw_xy->finger_count = data[15] & 0x0f;
1814 	raw_xy->button = (data[8] >> 2) & 0x01;
1815 
1816 	if (raw_xy->finger_count) {
1817 		hidpp_touchpad_touch_event(&data[2], &raw_xy->fingers[0]);
1818 		hidpp_touchpad_touch_event(&data[9], &raw_xy->fingers[1]);
1819 	}
1820 }
1821 
1822 /* -------------------------------------------------------------------------- */
1823 /* 0x8123: Force feedback support                                             */
1824 /* -------------------------------------------------------------------------- */
1825 
1826 #define HIDPP_FF_GET_INFO		0x01
1827 #define HIDPP_FF_RESET_ALL		0x11
1828 #define HIDPP_FF_DOWNLOAD_EFFECT	0x21
1829 #define HIDPP_FF_SET_EFFECT_STATE	0x31
1830 #define HIDPP_FF_DESTROY_EFFECT		0x41
1831 #define HIDPP_FF_GET_APERTURE		0x51
1832 #define HIDPP_FF_SET_APERTURE		0x61
1833 #define HIDPP_FF_GET_GLOBAL_GAINS	0x71
1834 #define HIDPP_FF_SET_GLOBAL_GAINS	0x81
1835 
1836 #define HIDPP_FF_EFFECT_STATE_GET	0x00
1837 #define HIDPP_FF_EFFECT_STATE_STOP	0x01
1838 #define HIDPP_FF_EFFECT_STATE_PLAY	0x02
1839 #define HIDPP_FF_EFFECT_STATE_PAUSE	0x03
1840 
1841 #define HIDPP_FF_EFFECT_CONSTANT	0x00
1842 #define HIDPP_FF_EFFECT_PERIODIC_SINE		0x01
1843 #define HIDPP_FF_EFFECT_PERIODIC_SQUARE		0x02
1844 #define HIDPP_FF_EFFECT_PERIODIC_TRIANGLE	0x03
1845 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP	0x04
1846 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN	0x05
1847 #define HIDPP_FF_EFFECT_SPRING		0x06
1848 #define HIDPP_FF_EFFECT_DAMPER		0x07
1849 #define HIDPP_FF_EFFECT_FRICTION	0x08
1850 #define HIDPP_FF_EFFECT_INERTIA		0x09
1851 #define HIDPP_FF_EFFECT_RAMP		0x0A
1852 
1853 #define HIDPP_FF_EFFECT_AUTOSTART	0x80
1854 
1855 #define HIDPP_FF_EFFECTID_NONE		-1
1856 #define HIDPP_FF_EFFECTID_AUTOCENTER	-2
1857 #define HIDPP_AUTOCENTER_PARAMS_LENGTH	18
1858 
1859 #define HIDPP_FF_MAX_PARAMS	20
1860 #define HIDPP_FF_RESERVED_SLOTS	1
1861 
1862 struct hidpp_ff_private_data {
1863 	struct hidpp_device *hidpp;
1864 	u8 feature_index;
1865 	u8 version;
1866 	u16 gain;
1867 	s16 range;
1868 	u8 slot_autocenter;
1869 	u8 num_effects;
1870 	int *effect_ids;
1871 	struct workqueue_struct *wq;
1872 	atomic_t workqueue_size;
1873 };
1874 
1875 struct hidpp_ff_work_data {
1876 	struct work_struct work;
1877 	struct hidpp_ff_private_data *data;
1878 	int effect_id;
1879 	u8 command;
1880 	u8 params[HIDPP_FF_MAX_PARAMS];
1881 	u8 size;
1882 };
1883 
1884 static const signed short hidpp_ff_effects[] = {
1885 	FF_CONSTANT,
1886 	FF_PERIODIC,
1887 	FF_SINE,
1888 	FF_SQUARE,
1889 	FF_SAW_UP,
1890 	FF_SAW_DOWN,
1891 	FF_TRIANGLE,
1892 	FF_SPRING,
1893 	FF_DAMPER,
1894 	FF_AUTOCENTER,
1895 	FF_GAIN,
1896 	-1
1897 };
1898 
1899 static const signed short hidpp_ff_effects_v2[] = {
1900 	FF_RAMP,
1901 	FF_FRICTION,
1902 	FF_INERTIA,
1903 	-1
1904 };
1905 
1906 static const u8 HIDPP_FF_CONDITION_CMDS[] = {
1907 	HIDPP_FF_EFFECT_SPRING,
1908 	HIDPP_FF_EFFECT_FRICTION,
1909 	HIDPP_FF_EFFECT_DAMPER,
1910 	HIDPP_FF_EFFECT_INERTIA
1911 };
1912 
1913 static const char *HIDPP_FF_CONDITION_NAMES[] = {
1914 	"spring",
1915 	"friction",
1916 	"damper",
1917 	"inertia"
1918 };
1919 
1920 
1921 static u8 hidpp_ff_find_effect(struct hidpp_ff_private_data *data, int effect_id)
1922 {
1923 	int i;
1924 
1925 	for (i = 0; i < data->num_effects; i++)
1926 		if (data->effect_ids[i] == effect_id)
1927 			return i+1;
1928 
1929 	return 0;
1930 }
1931 
1932 static void hidpp_ff_work_handler(struct work_struct *w)
1933 {
1934 	struct hidpp_ff_work_data *wd = container_of(w, struct hidpp_ff_work_data, work);
1935 	struct hidpp_ff_private_data *data = wd->data;
1936 	struct hidpp_report response;
1937 	u8 slot;
1938 	int ret;
1939 
1940 	/* add slot number if needed */
1941 	switch (wd->effect_id) {
1942 	case HIDPP_FF_EFFECTID_AUTOCENTER:
1943 		wd->params[0] = data->slot_autocenter;
1944 		break;
1945 	case HIDPP_FF_EFFECTID_NONE:
1946 		/* leave slot as zero */
1947 		break;
1948 	default:
1949 		/* find current slot for effect */
1950 		wd->params[0] = hidpp_ff_find_effect(data, wd->effect_id);
1951 		break;
1952 	}
1953 
1954 	/* send command and wait for reply */
1955 	ret = hidpp_send_fap_command_sync(data->hidpp, data->feature_index,
1956 		wd->command, wd->params, wd->size, &response);
1957 
1958 	if (ret) {
1959 		hid_err(data->hidpp->hid_dev, "Failed to send command to device!\n");
1960 		goto out;
1961 	}
1962 
1963 	/* parse return data */
1964 	switch (wd->command) {
1965 	case HIDPP_FF_DOWNLOAD_EFFECT:
1966 		slot = response.fap.params[0];
1967 		if (slot > 0 && slot <= data->num_effects) {
1968 			if (wd->effect_id >= 0)
1969 				/* regular effect uploaded */
1970 				data->effect_ids[slot-1] = wd->effect_id;
1971 			else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER)
1972 				/* autocenter spring uploaded */
1973 				data->slot_autocenter = slot;
1974 		}
1975 		break;
1976 	case HIDPP_FF_DESTROY_EFFECT:
1977 		if (wd->effect_id >= 0)
1978 			/* regular effect destroyed */
1979 			data->effect_ids[wd->params[0]-1] = -1;
1980 		else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER)
1981 			/* autocenter spring destoyed */
1982 			data->slot_autocenter = 0;
1983 		break;
1984 	case HIDPP_FF_SET_GLOBAL_GAINS:
1985 		data->gain = (wd->params[0] << 8) + wd->params[1];
1986 		break;
1987 	case HIDPP_FF_SET_APERTURE:
1988 		data->range = (wd->params[0] << 8) + wd->params[1];
1989 		break;
1990 	default:
1991 		/* no action needed */
1992 		break;
1993 	}
1994 
1995 out:
1996 	atomic_dec(&data->workqueue_size);
1997 	kfree(wd);
1998 }
1999 
2000 static int hidpp_ff_queue_work(struct hidpp_ff_private_data *data, int effect_id, u8 command, u8 *params, u8 size)
2001 {
2002 	struct hidpp_ff_work_data *wd = kzalloc(sizeof(*wd), GFP_KERNEL);
2003 	int s;
2004 
2005 	if (!wd)
2006 		return -ENOMEM;
2007 
2008 	INIT_WORK(&wd->work, hidpp_ff_work_handler);
2009 
2010 	wd->data = data;
2011 	wd->effect_id = effect_id;
2012 	wd->command = command;
2013 	wd->size = size;
2014 	memcpy(wd->params, params, size);
2015 
2016 	atomic_inc(&data->workqueue_size);
2017 	queue_work(data->wq, &wd->work);
2018 
2019 	/* warn about excessive queue size */
2020 	s = atomic_read(&data->workqueue_size);
2021 	if (s >= 20 && s % 20 == 0)
2022 		hid_warn(data->hidpp->hid_dev, "Force feedback command queue contains %d commands, causing substantial delays!", s);
2023 
2024 	return 0;
2025 }
2026 
2027 static int hidpp_ff_upload_effect(struct input_dev *dev, struct ff_effect *effect, struct ff_effect *old)
2028 {
2029 	struct hidpp_ff_private_data *data = dev->ff->private;
2030 	u8 params[20];
2031 	u8 size;
2032 	int force;
2033 
2034 	/* set common parameters */
2035 	params[2] = effect->replay.length >> 8;
2036 	params[3] = effect->replay.length & 255;
2037 	params[4] = effect->replay.delay >> 8;
2038 	params[5] = effect->replay.delay & 255;
2039 
2040 	switch (effect->type) {
2041 	case FF_CONSTANT:
2042 		force = (effect->u.constant.level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2043 		params[1] = HIDPP_FF_EFFECT_CONSTANT;
2044 		params[6] = force >> 8;
2045 		params[7] = force & 255;
2046 		params[8] = effect->u.constant.envelope.attack_level >> 7;
2047 		params[9] = effect->u.constant.envelope.attack_length >> 8;
2048 		params[10] = effect->u.constant.envelope.attack_length & 255;
2049 		params[11] = effect->u.constant.envelope.fade_level >> 7;
2050 		params[12] = effect->u.constant.envelope.fade_length >> 8;
2051 		params[13] = effect->u.constant.envelope.fade_length & 255;
2052 		size = 14;
2053 		dbg_hid("Uploading constant force level=%d in dir %d = %d\n",
2054 				effect->u.constant.level,
2055 				effect->direction, force);
2056 		dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
2057 				effect->u.constant.envelope.attack_level,
2058 				effect->u.constant.envelope.attack_length,
2059 				effect->u.constant.envelope.fade_level,
2060 				effect->u.constant.envelope.fade_length);
2061 		break;
2062 	case FF_PERIODIC:
2063 	{
2064 		switch (effect->u.periodic.waveform) {
2065 		case FF_SINE:
2066 			params[1] = HIDPP_FF_EFFECT_PERIODIC_SINE;
2067 			break;
2068 		case FF_SQUARE:
2069 			params[1] = HIDPP_FF_EFFECT_PERIODIC_SQUARE;
2070 			break;
2071 		case FF_SAW_UP:
2072 			params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP;
2073 			break;
2074 		case FF_SAW_DOWN:
2075 			params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN;
2076 			break;
2077 		case FF_TRIANGLE:
2078 			params[1] = HIDPP_FF_EFFECT_PERIODIC_TRIANGLE;
2079 			break;
2080 		default:
2081 			hid_err(data->hidpp->hid_dev, "Unexpected periodic waveform type %i!\n", effect->u.periodic.waveform);
2082 			return -EINVAL;
2083 		}
2084 		force = (effect->u.periodic.magnitude * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2085 		params[6] = effect->u.periodic.magnitude >> 8;
2086 		params[7] = effect->u.periodic.magnitude & 255;
2087 		params[8] = effect->u.periodic.offset >> 8;
2088 		params[9] = effect->u.periodic.offset & 255;
2089 		params[10] = effect->u.periodic.period >> 8;
2090 		params[11] = effect->u.periodic.period & 255;
2091 		params[12] = effect->u.periodic.phase >> 8;
2092 		params[13] = effect->u.periodic.phase & 255;
2093 		params[14] = effect->u.periodic.envelope.attack_level >> 7;
2094 		params[15] = effect->u.periodic.envelope.attack_length >> 8;
2095 		params[16] = effect->u.periodic.envelope.attack_length & 255;
2096 		params[17] = effect->u.periodic.envelope.fade_level >> 7;
2097 		params[18] = effect->u.periodic.envelope.fade_length >> 8;
2098 		params[19] = effect->u.periodic.envelope.fade_length & 255;
2099 		size = 20;
2100 		dbg_hid("Uploading periodic force mag=%d/dir=%d, offset=%d, period=%d ms, phase=%d\n",
2101 				effect->u.periodic.magnitude, effect->direction,
2102 				effect->u.periodic.offset,
2103 				effect->u.periodic.period,
2104 				effect->u.periodic.phase);
2105 		dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
2106 				effect->u.periodic.envelope.attack_level,
2107 				effect->u.periodic.envelope.attack_length,
2108 				effect->u.periodic.envelope.fade_level,
2109 				effect->u.periodic.envelope.fade_length);
2110 		break;
2111 	}
2112 	case FF_RAMP:
2113 		params[1] = HIDPP_FF_EFFECT_RAMP;
2114 		force = (effect->u.ramp.start_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2115 		params[6] = force >> 8;
2116 		params[7] = force & 255;
2117 		force = (effect->u.ramp.end_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2118 		params[8] = force >> 8;
2119 		params[9] = force & 255;
2120 		params[10] = effect->u.ramp.envelope.attack_level >> 7;
2121 		params[11] = effect->u.ramp.envelope.attack_length >> 8;
2122 		params[12] = effect->u.ramp.envelope.attack_length & 255;
2123 		params[13] = effect->u.ramp.envelope.fade_level >> 7;
2124 		params[14] = effect->u.ramp.envelope.fade_length >> 8;
2125 		params[15] = effect->u.ramp.envelope.fade_length & 255;
2126 		size = 16;
2127 		dbg_hid("Uploading ramp force level=%d -> %d in dir %d = %d\n",
2128 				effect->u.ramp.start_level,
2129 				effect->u.ramp.end_level,
2130 				effect->direction, force);
2131 		dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
2132 				effect->u.ramp.envelope.attack_level,
2133 				effect->u.ramp.envelope.attack_length,
2134 				effect->u.ramp.envelope.fade_level,
2135 				effect->u.ramp.envelope.fade_length);
2136 		break;
2137 	case FF_FRICTION:
2138 	case FF_INERTIA:
2139 	case FF_SPRING:
2140 	case FF_DAMPER:
2141 		params[1] = HIDPP_FF_CONDITION_CMDS[effect->type - FF_SPRING];
2142 		params[6] = effect->u.condition[0].left_saturation >> 9;
2143 		params[7] = (effect->u.condition[0].left_saturation >> 1) & 255;
2144 		params[8] = effect->u.condition[0].left_coeff >> 8;
2145 		params[9] = effect->u.condition[0].left_coeff & 255;
2146 		params[10] = effect->u.condition[0].deadband >> 9;
2147 		params[11] = (effect->u.condition[0].deadband >> 1) & 255;
2148 		params[12] = effect->u.condition[0].center >> 8;
2149 		params[13] = effect->u.condition[0].center & 255;
2150 		params[14] = effect->u.condition[0].right_coeff >> 8;
2151 		params[15] = effect->u.condition[0].right_coeff & 255;
2152 		params[16] = effect->u.condition[0].right_saturation >> 9;
2153 		params[17] = (effect->u.condition[0].right_saturation >> 1) & 255;
2154 		size = 18;
2155 		dbg_hid("Uploading %s force left coeff=%d, left sat=%d, right coeff=%d, right sat=%d\n",
2156 				HIDPP_FF_CONDITION_NAMES[effect->type - FF_SPRING],
2157 				effect->u.condition[0].left_coeff,
2158 				effect->u.condition[0].left_saturation,
2159 				effect->u.condition[0].right_coeff,
2160 				effect->u.condition[0].right_saturation);
2161 		dbg_hid("          deadband=%d, center=%d\n",
2162 				effect->u.condition[0].deadband,
2163 				effect->u.condition[0].center);
2164 		break;
2165 	default:
2166 		hid_err(data->hidpp->hid_dev, "Unexpected force type %i!\n", effect->type);
2167 		return -EINVAL;
2168 	}
2169 
2170 	return hidpp_ff_queue_work(data, effect->id, HIDPP_FF_DOWNLOAD_EFFECT, params, size);
2171 }
2172 
2173 static int hidpp_ff_playback(struct input_dev *dev, int effect_id, int value)
2174 {
2175 	struct hidpp_ff_private_data *data = dev->ff->private;
2176 	u8 params[2];
2177 
2178 	params[1] = value ? HIDPP_FF_EFFECT_STATE_PLAY : HIDPP_FF_EFFECT_STATE_STOP;
2179 
2180 	dbg_hid("St%sing playback of effect %d.\n", value?"art":"opp", effect_id);
2181 
2182 	return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_SET_EFFECT_STATE, params, ARRAY_SIZE(params));
2183 }
2184 
2185 static int hidpp_ff_erase_effect(struct input_dev *dev, int effect_id)
2186 {
2187 	struct hidpp_ff_private_data *data = dev->ff->private;
2188 	u8 slot = 0;
2189 
2190 	dbg_hid("Erasing effect %d.\n", effect_id);
2191 
2192 	return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_DESTROY_EFFECT, &slot, 1);
2193 }
2194 
2195 static void hidpp_ff_set_autocenter(struct input_dev *dev, u16 magnitude)
2196 {
2197 	struct hidpp_ff_private_data *data = dev->ff->private;
2198 	u8 params[HIDPP_AUTOCENTER_PARAMS_LENGTH];
2199 
2200 	dbg_hid("Setting autocenter to %d.\n", magnitude);
2201 
2202 	/* start a standard spring effect */
2203 	params[1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART;
2204 	/* zero delay and duration */
2205 	params[2] = params[3] = params[4] = params[5] = 0;
2206 	/* set coeff to 25% of saturation */
2207 	params[8] = params[14] = magnitude >> 11;
2208 	params[9] = params[15] = (magnitude >> 3) & 255;
2209 	params[6] = params[16] = magnitude >> 9;
2210 	params[7] = params[17] = (magnitude >> 1) & 255;
2211 	/* zero deadband and center */
2212 	params[10] = params[11] = params[12] = params[13] = 0;
2213 
2214 	hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_AUTOCENTER, HIDPP_FF_DOWNLOAD_EFFECT, params, ARRAY_SIZE(params));
2215 }
2216 
2217 static void hidpp_ff_set_gain(struct input_dev *dev, u16 gain)
2218 {
2219 	struct hidpp_ff_private_data *data = dev->ff->private;
2220 	u8 params[4];
2221 
2222 	dbg_hid("Setting gain to %d.\n", gain);
2223 
2224 	params[0] = gain >> 8;
2225 	params[1] = gain & 255;
2226 	params[2] = 0; /* no boost */
2227 	params[3] = 0;
2228 
2229 	hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_NONE, HIDPP_FF_SET_GLOBAL_GAINS, params, ARRAY_SIZE(params));
2230 }
2231 
2232 static ssize_t hidpp_ff_range_show(struct device *dev, struct device_attribute *attr, char *buf)
2233 {
2234 	struct hid_device *hid = to_hid_device(dev);
2235 	struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2236 	struct input_dev *idev = hidinput->input;
2237 	struct hidpp_ff_private_data *data = idev->ff->private;
2238 
2239 	return scnprintf(buf, PAGE_SIZE, "%u\n", data->range);
2240 }
2241 
2242 static ssize_t hidpp_ff_range_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
2243 {
2244 	struct hid_device *hid = to_hid_device(dev);
2245 	struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2246 	struct input_dev *idev = hidinput->input;
2247 	struct hidpp_ff_private_data *data = idev->ff->private;
2248 	u8 params[2];
2249 	int range = simple_strtoul(buf, NULL, 10);
2250 
2251 	range = clamp(range, 180, 900);
2252 
2253 	params[0] = range >> 8;
2254 	params[1] = range & 0x00FF;
2255 
2256 	hidpp_ff_queue_work(data, -1, HIDPP_FF_SET_APERTURE, params, ARRAY_SIZE(params));
2257 
2258 	return count;
2259 }
2260 
2261 static DEVICE_ATTR(range, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH, hidpp_ff_range_show, hidpp_ff_range_store);
2262 
2263 static void hidpp_ff_destroy(struct ff_device *ff)
2264 {
2265 	struct hidpp_ff_private_data *data = ff->private;
2266 	struct hid_device *hid = data->hidpp->hid_dev;
2267 
2268 	hid_info(hid, "Unloading HID++ force feedback.\n");
2269 
2270 	device_remove_file(&hid->dev, &dev_attr_range);
2271 	destroy_workqueue(data->wq);
2272 	kfree(data->effect_ids);
2273 }
2274 
2275 static int hidpp_ff_init(struct hidpp_device *hidpp,
2276 			 struct hidpp_ff_private_data *data)
2277 {
2278 	struct hid_device *hid = hidpp->hid_dev;
2279 	struct hid_input *hidinput;
2280 	struct input_dev *dev;
2281 	const struct usb_device_descriptor *udesc = &(hid_to_usb_dev(hid)->descriptor);
2282 	const u16 bcdDevice = le16_to_cpu(udesc->bcdDevice);
2283 	struct ff_device *ff;
2284 	int error, j, num_slots = data->num_effects;
2285 	u8 version;
2286 
2287 	if (list_empty(&hid->inputs)) {
2288 		hid_err(hid, "no inputs found\n");
2289 		return -ENODEV;
2290 	}
2291 	hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2292 	dev = hidinput->input;
2293 
2294 	if (!dev) {
2295 		hid_err(hid, "Struct input_dev not set!\n");
2296 		return -EINVAL;
2297 	}
2298 
2299 	/* Get firmware release */
2300 	version = bcdDevice & 255;
2301 
2302 	/* Set supported force feedback capabilities */
2303 	for (j = 0; hidpp_ff_effects[j] >= 0; j++)
2304 		set_bit(hidpp_ff_effects[j], dev->ffbit);
2305 	if (version > 1)
2306 		for (j = 0; hidpp_ff_effects_v2[j] >= 0; j++)
2307 			set_bit(hidpp_ff_effects_v2[j], dev->ffbit);
2308 
2309 	error = input_ff_create(dev, num_slots);
2310 
2311 	if (error) {
2312 		hid_err(dev, "Failed to create FF device!\n");
2313 		return error;
2314 	}
2315 	/*
2316 	 * Create a copy of passed data, so we can transfer memory
2317 	 * ownership to FF core
2318 	 */
2319 	data = kmemdup(data, sizeof(*data), GFP_KERNEL);
2320 	if (!data)
2321 		return -ENOMEM;
2322 	data->effect_ids = kcalloc(num_slots, sizeof(int), GFP_KERNEL);
2323 	if (!data->effect_ids) {
2324 		kfree(data);
2325 		return -ENOMEM;
2326 	}
2327 	data->wq = create_singlethread_workqueue("hidpp-ff-sendqueue");
2328 	if (!data->wq) {
2329 		kfree(data->effect_ids);
2330 		kfree(data);
2331 		return -ENOMEM;
2332 	}
2333 
2334 	data->hidpp = hidpp;
2335 	data->version = version;
2336 	for (j = 0; j < num_slots; j++)
2337 		data->effect_ids[j] = -1;
2338 
2339 	ff = dev->ff;
2340 	ff->private = data;
2341 
2342 	ff->upload = hidpp_ff_upload_effect;
2343 	ff->erase = hidpp_ff_erase_effect;
2344 	ff->playback = hidpp_ff_playback;
2345 	ff->set_gain = hidpp_ff_set_gain;
2346 	ff->set_autocenter = hidpp_ff_set_autocenter;
2347 	ff->destroy = hidpp_ff_destroy;
2348 
2349 	/* Create sysfs interface */
2350 	error = device_create_file(&(hidpp->hid_dev->dev), &dev_attr_range);
2351 	if (error)
2352 		hid_warn(hidpp->hid_dev, "Unable to create sysfs interface for \"range\", errno %d!\n", error);
2353 
2354 	/* init the hardware command queue */
2355 	atomic_set(&data->workqueue_size, 0);
2356 
2357 	hid_info(hid, "Force feedback support loaded (firmware release %d).\n",
2358 		 version);
2359 
2360 	return 0;
2361 }
2362 
2363 /* ************************************************************************** */
2364 /*                                                                            */
2365 /* Device Support                                                             */
2366 /*                                                                            */
2367 /* ************************************************************************** */
2368 
2369 /* -------------------------------------------------------------------------- */
2370 /* Touchpad HID++ devices                                                     */
2371 /* -------------------------------------------------------------------------- */
2372 
2373 #define WTP_MANUAL_RESOLUTION				39
2374 
2375 struct wtp_data {
2376 	u16 x_size, y_size;
2377 	u8 finger_count;
2378 	u8 mt_feature_index;
2379 	u8 button_feature_index;
2380 	u8 maxcontacts;
2381 	bool flip_y;
2382 	unsigned int resolution;
2383 };
2384 
2385 static int wtp_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2386 		struct hid_field *field, struct hid_usage *usage,
2387 		unsigned long **bit, int *max)
2388 {
2389 	return -1;
2390 }
2391 
2392 static void wtp_populate_input(struct hidpp_device *hidpp,
2393 			       struct input_dev *input_dev)
2394 {
2395 	struct wtp_data *wd = hidpp->private_data;
2396 
2397 	__set_bit(EV_ABS, input_dev->evbit);
2398 	__set_bit(EV_KEY, input_dev->evbit);
2399 	__clear_bit(EV_REL, input_dev->evbit);
2400 	__clear_bit(EV_LED, input_dev->evbit);
2401 
2402 	input_set_abs_params(input_dev, ABS_MT_POSITION_X, 0, wd->x_size, 0, 0);
2403 	input_abs_set_res(input_dev, ABS_MT_POSITION_X, wd->resolution);
2404 	input_set_abs_params(input_dev, ABS_MT_POSITION_Y, 0, wd->y_size, 0, 0);
2405 	input_abs_set_res(input_dev, ABS_MT_POSITION_Y, wd->resolution);
2406 
2407 	/* Max pressure is not given by the devices, pick one */
2408 	input_set_abs_params(input_dev, ABS_MT_PRESSURE, 0, 50, 0, 0);
2409 
2410 	input_set_capability(input_dev, EV_KEY, BTN_LEFT);
2411 
2412 	if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS)
2413 		input_set_capability(input_dev, EV_KEY, BTN_RIGHT);
2414 	else
2415 		__set_bit(INPUT_PROP_BUTTONPAD, input_dev->propbit);
2416 
2417 	input_mt_init_slots(input_dev, wd->maxcontacts, INPUT_MT_POINTER |
2418 		INPUT_MT_DROP_UNUSED);
2419 }
2420 
2421 static void wtp_touch_event(struct hidpp_device *hidpp,
2422 	struct hidpp_touchpad_raw_xy_finger *touch_report)
2423 {
2424 	struct wtp_data *wd = hidpp->private_data;
2425 	int slot;
2426 
2427 	if (!touch_report->finger_id || touch_report->contact_type)
2428 		/* no actual data */
2429 		return;
2430 
2431 	slot = input_mt_get_slot_by_key(hidpp->input, touch_report->finger_id);
2432 
2433 	input_mt_slot(hidpp->input, slot);
2434 	input_mt_report_slot_state(hidpp->input, MT_TOOL_FINGER,
2435 					touch_report->contact_status);
2436 	if (touch_report->contact_status) {
2437 		input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_X,
2438 				touch_report->x);
2439 		input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_Y,
2440 				wd->flip_y ? wd->y_size - touch_report->y :
2441 					     touch_report->y);
2442 		input_event(hidpp->input, EV_ABS, ABS_MT_PRESSURE,
2443 				touch_report->area);
2444 	}
2445 }
2446 
2447 static void wtp_send_raw_xy_event(struct hidpp_device *hidpp,
2448 		struct hidpp_touchpad_raw_xy *raw)
2449 {
2450 	int i;
2451 
2452 	for (i = 0; i < 2; i++)
2453 		wtp_touch_event(hidpp, &(raw->fingers[i]));
2454 
2455 	if (raw->end_of_frame &&
2456 	    !(hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS))
2457 		input_event(hidpp->input, EV_KEY, BTN_LEFT, raw->button);
2458 
2459 	if (raw->end_of_frame || raw->finger_count <= 2) {
2460 		input_mt_sync_frame(hidpp->input);
2461 		input_sync(hidpp->input);
2462 	}
2463 }
2464 
2465 static int wtp_mouse_raw_xy_event(struct hidpp_device *hidpp, u8 *data)
2466 {
2467 	struct wtp_data *wd = hidpp->private_data;
2468 	u8 c1_area = ((data[7] & 0xf) * (data[7] & 0xf) +
2469 		      (data[7] >> 4) * (data[7] >> 4)) / 2;
2470 	u8 c2_area = ((data[13] & 0xf) * (data[13] & 0xf) +
2471 		      (data[13] >> 4) * (data[13] >> 4)) / 2;
2472 	struct hidpp_touchpad_raw_xy raw = {
2473 		.timestamp = data[1],
2474 		.fingers = {
2475 			{
2476 				.contact_type = 0,
2477 				.contact_status = !!data[7],
2478 				.x = get_unaligned_le16(&data[3]),
2479 				.y = get_unaligned_le16(&data[5]),
2480 				.z = c1_area,
2481 				.area = c1_area,
2482 				.finger_id = data[2],
2483 			}, {
2484 				.contact_type = 0,
2485 				.contact_status = !!data[13],
2486 				.x = get_unaligned_le16(&data[9]),
2487 				.y = get_unaligned_le16(&data[11]),
2488 				.z = c2_area,
2489 				.area = c2_area,
2490 				.finger_id = data[8],
2491 			}
2492 		},
2493 		.finger_count = wd->maxcontacts,
2494 		.spurious_flag = 0,
2495 		.end_of_frame = (data[0] >> 7) == 0,
2496 		.button = data[0] & 0x01,
2497 	};
2498 
2499 	wtp_send_raw_xy_event(hidpp, &raw);
2500 
2501 	return 1;
2502 }
2503 
2504 static int wtp_raw_event(struct hid_device *hdev, u8 *data, int size)
2505 {
2506 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2507 	struct wtp_data *wd = hidpp->private_data;
2508 	struct hidpp_report *report = (struct hidpp_report *)data;
2509 	struct hidpp_touchpad_raw_xy raw;
2510 
2511 	if (!wd || !hidpp->input)
2512 		return 1;
2513 
2514 	switch (data[0]) {
2515 	case 0x02:
2516 		if (size < 2) {
2517 			hid_err(hdev, "Received HID report of bad size (%d)",
2518 				size);
2519 			return 1;
2520 		}
2521 		if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) {
2522 			input_event(hidpp->input, EV_KEY, BTN_LEFT,
2523 					!!(data[1] & 0x01));
2524 			input_event(hidpp->input, EV_KEY, BTN_RIGHT,
2525 					!!(data[1] & 0x02));
2526 			input_sync(hidpp->input);
2527 			return 0;
2528 		} else {
2529 			if (size < 21)
2530 				return 1;
2531 			return wtp_mouse_raw_xy_event(hidpp, &data[7]);
2532 		}
2533 	case REPORT_ID_HIDPP_LONG:
2534 		/* size is already checked in hidpp_raw_event. */
2535 		if ((report->fap.feature_index != wd->mt_feature_index) ||
2536 		    (report->fap.funcindex_clientid != EVENT_TOUCHPAD_RAW_XY))
2537 			return 1;
2538 		hidpp_touchpad_raw_xy_event(hidpp, data + 4, &raw);
2539 
2540 		wtp_send_raw_xy_event(hidpp, &raw);
2541 		return 0;
2542 	}
2543 
2544 	return 0;
2545 }
2546 
2547 static int wtp_get_config(struct hidpp_device *hidpp)
2548 {
2549 	struct wtp_data *wd = hidpp->private_data;
2550 	struct hidpp_touchpad_raw_info raw_info = {0};
2551 	u8 feature_type;
2552 	int ret;
2553 
2554 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_TOUCHPAD_RAW_XY,
2555 		&wd->mt_feature_index, &feature_type);
2556 	if (ret)
2557 		/* means that the device is not powered up */
2558 		return ret;
2559 
2560 	ret = hidpp_touchpad_get_raw_info(hidpp, wd->mt_feature_index,
2561 		&raw_info);
2562 	if (ret)
2563 		return ret;
2564 
2565 	wd->x_size = raw_info.x_size;
2566 	wd->y_size = raw_info.y_size;
2567 	wd->maxcontacts = raw_info.maxcontacts;
2568 	wd->flip_y = raw_info.origin == TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT;
2569 	wd->resolution = raw_info.res;
2570 	if (!wd->resolution)
2571 		wd->resolution = WTP_MANUAL_RESOLUTION;
2572 
2573 	return 0;
2574 }
2575 
2576 static int wtp_allocate(struct hid_device *hdev, const struct hid_device_id *id)
2577 {
2578 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2579 	struct wtp_data *wd;
2580 
2581 	wd = devm_kzalloc(&hdev->dev, sizeof(struct wtp_data),
2582 			GFP_KERNEL);
2583 	if (!wd)
2584 		return -ENOMEM;
2585 
2586 	hidpp->private_data = wd;
2587 
2588 	return 0;
2589 };
2590 
2591 static int wtp_connect(struct hid_device *hdev, bool connected)
2592 {
2593 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2594 	struct wtp_data *wd = hidpp->private_data;
2595 	int ret;
2596 
2597 	if (!wd->x_size) {
2598 		ret = wtp_get_config(hidpp);
2599 		if (ret) {
2600 			hid_err(hdev, "Can not get wtp config: %d\n", ret);
2601 			return ret;
2602 		}
2603 	}
2604 
2605 	return hidpp_touchpad_set_raw_report_state(hidpp, wd->mt_feature_index,
2606 			true, true);
2607 }
2608 
2609 /* ------------------------------------------------------------------------- */
2610 /* Logitech M560 devices                                                     */
2611 /* ------------------------------------------------------------------------- */
2612 
2613 /*
2614  * Logitech M560 protocol overview
2615  *
2616  * The Logitech M560 mouse, is designed for windows 8. When the middle and/or
2617  * the sides buttons are pressed, it sends some keyboard keys events
2618  * instead of buttons ones.
2619  * To complicate things further, the middle button keys sequence
2620  * is different from the odd press and the even press.
2621  *
2622  * forward button -> Super_R
2623  * backward button -> Super_L+'d' (press only)
2624  * middle button -> 1st time: Alt_L+SuperL+XF86TouchpadOff (press only)
2625  *                  2nd time: left-click (press only)
2626  * NB: press-only means that when the button is pressed, the
2627  * KeyPress/ButtonPress and KeyRelease/ButtonRelease events are generated
2628  * together sequentially; instead when the button is released, no event is
2629  * generated !
2630  *
2631  * With the command
2632  *	10<xx>0a 3500af03 (where <xx> is the mouse id),
2633  * the mouse reacts differently:
2634  * - it never sends a keyboard key event
2635  * - for the three mouse button it sends:
2636  *	middle button               press   11<xx>0a 3500af00...
2637  *	side 1 button (forward)     press   11<xx>0a 3500b000...
2638  *	side 2 button (backward)    press   11<xx>0a 3500ae00...
2639  *	middle/side1/side2 button   release 11<xx>0a 35000000...
2640  */
2641 
2642 static const u8 m560_config_parameter[] = {0x00, 0xaf, 0x03};
2643 
2644 /* how buttons are mapped in the report */
2645 #define M560_MOUSE_BTN_LEFT		0x01
2646 #define M560_MOUSE_BTN_RIGHT		0x02
2647 #define M560_MOUSE_BTN_WHEEL_LEFT	0x08
2648 #define M560_MOUSE_BTN_WHEEL_RIGHT	0x10
2649 
2650 #define M560_SUB_ID			0x0a
2651 #define M560_BUTTON_MODE_REGISTER	0x35
2652 
2653 static int m560_send_config_command(struct hid_device *hdev, bool connected)
2654 {
2655 	struct hidpp_report response;
2656 	struct hidpp_device *hidpp_dev;
2657 
2658 	hidpp_dev = hid_get_drvdata(hdev);
2659 
2660 	return hidpp_send_rap_command_sync(
2661 		hidpp_dev,
2662 		REPORT_ID_HIDPP_SHORT,
2663 		M560_SUB_ID,
2664 		M560_BUTTON_MODE_REGISTER,
2665 		(u8 *)m560_config_parameter,
2666 		sizeof(m560_config_parameter),
2667 		&response
2668 	);
2669 }
2670 
2671 static int m560_raw_event(struct hid_device *hdev, u8 *data, int size)
2672 {
2673 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2674 
2675 	/* sanity check */
2676 	if (!hidpp->input) {
2677 		hid_err(hdev, "error in parameter\n");
2678 		return -EINVAL;
2679 	}
2680 
2681 	if (size < 7) {
2682 		hid_err(hdev, "error in report\n");
2683 		return 0;
2684 	}
2685 
2686 	if (data[0] == REPORT_ID_HIDPP_LONG &&
2687 	    data[2] == M560_SUB_ID && data[6] == 0x00) {
2688 		/*
2689 		 * m560 mouse report for middle, forward and backward button
2690 		 *
2691 		 * data[0] = 0x11
2692 		 * data[1] = device-id
2693 		 * data[2] = 0x0a
2694 		 * data[5] = 0xaf -> middle
2695 		 *	     0xb0 -> forward
2696 		 *	     0xae -> backward
2697 		 *	     0x00 -> release all
2698 		 * data[6] = 0x00
2699 		 */
2700 
2701 		switch (data[5]) {
2702 		case 0xaf:
2703 			input_report_key(hidpp->input, BTN_MIDDLE, 1);
2704 			break;
2705 		case 0xb0:
2706 			input_report_key(hidpp->input, BTN_FORWARD, 1);
2707 			break;
2708 		case 0xae:
2709 			input_report_key(hidpp->input, BTN_BACK, 1);
2710 			break;
2711 		case 0x00:
2712 			input_report_key(hidpp->input, BTN_BACK, 0);
2713 			input_report_key(hidpp->input, BTN_FORWARD, 0);
2714 			input_report_key(hidpp->input, BTN_MIDDLE, 0);
2715 			break;
2716 		default:
2717 			hid_err(hdev, "error in report\n");
2718 			return 0;
2719 		}
2720 		input_sync(hidpp->input);
2721 
2722 	} else if (data[0] == 0x02) {
2723 		/*
2724 		 * Logitech M560 mouse report
2725 		 *
2726 		 * data[0] = type (0x02)
2727 		 * data[1..2] = buttons
2728 		 * data[3..5] = xy
2729 		 * data[6] = wheel
2730 		 */
2731 
2732 		int v;
2733 
2734 		input_report_key(hidpp->input, BTN_LEFT,
2735 			!!(data[1] & M560_MOUSE_BTN_LEFT));
2736 		input_report_key(hidpp->input, BTN_RIGHT,
2737 			!!(data[1] & M560_MOUSE_BTN_RIGHT));
2738 
2739 		if (data[1] & M560_MOUSE_BTN_WHEEL_LEFT) {
2740 			input_report_rel(hidpp->input, REL_HWHEEL, -1);
2741 			input_report_rel(hidpp->input, REL_HWHEEL_HI_RES,
2742 					 -120);
2743 		} else if (data[1] & M560_MOUSE_BTN_WHEEL_RIGHT) {
2744 			input_report_rel(hidpp->input, REL_HWHEEL, 1);
2745 			input_report_rel(hidpp->input, REL_HWHEEL_HI_RES,
2746 					 120);
2747 		}
2748 
2749 		v = hid_snto32(hid_field_extract(hdev, data+3, 0, 12), 12);
2750 		input_report_rel(hidpp->input, REL_X, v);
2751 
2752 		v = hid_snto32(hid_field_extract(hdev, data+3, 12, 12), 12);
2753 		input_report_rel(hidpp->input, REL_Y, v);
2754 
2755 		v = hid_snto32(data[6], 8);
2756 		if (v != 0)
2757 			hidpp_scroll_counter_handle_scroll(hidpp->input,
2758 					&hidpp->vertical_wheel_counter, v);
2759 
2760 		input_sync(hidpp->input);
2761 	}
2762 
2763 	return 1;
2764 }
2765 
2766 static void m560_populate_input(struct hidpp_device *hidpp,
2767 				struct input_dev *input_dev)
2768 {
2769 	__set_bit(EV_KEY, input_dev->evbit);
2770 	__set_bit(BTN_MIDDLE, input_dev->keybit);
2771 	__set_bit(BTN_RIGHT, input_dev->keybit);
2772 	__set_bit(BTN_LEFT, input_dev->keybit);
2773 	__set_bit(BTN_BACK, input_dev->keybit);
2774 	__set_bit(BTN_FORWARD, input_dev->keybit);
2775 
2776 	__set_bit(EV_REL, input_dev->evbit);
2777 	__set_bit(REL_X, input_dev->relbit);
2778 	__set_bit(REL_Y, input_dev->relbit);
2779 	__set_bit(REL_WHEEL, input_dev->relbit);
2780 	__set_bit(REL_HWHEEL, input_dev->relbit);
2781 	__set_bit(REL_WHEEL_HI_RES, input_dev->relbit);
2782 	__set_bit(REL_HWHEEL_HI_RES, input_dev->relbit);
2783 }
2784 
2785 static int m560_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2786 		struct hid_field *field, struct hid_usage *usage,
2787 		unsigned long **bit, int *max)
2788 {
2789 	return -1;
2790 }
2791 
2792 /* ------------------------------------------------------------------------- */
2793 /* Logitech K400 devices                                                     */
2794 /* ------------------------------------------------------------------------- */
2795 
2796 /*
2797  * The Logitech K400 keyboard has an embedded touchpad which is seen
2798  * as a mouse from the OS point of view. There is a hardware shortcut to disable
2799  * tap-to-click but the setting is not remembered accross reset, annoying some
2800  * users.
2801  *
2802  * We can toggle this feature from the host by using the feature 0x6010:
2803  * Touchpad FW items
2804  */
2805 
2806 struct k400_private_data {
2807 	u8 feature_index;
2808 };
2809 
2810 static int k400_disable_tap_to_click(struct hidpp_device *hidpp)
2811 {
2812 	struct k400_private_data *k400 = hidpp->private_data;
2813 	struct hidpp_touchpad_fw_items items = {};
2814 	int ret;
2815 	u8 feature_type;
2816 
2817 	if (!k400->feature_index) {
2818 		ret = hidpp_root_get_feature(hidpp,
2819 			HIDPP_PAGE_TOUCHPAD_FW_ITEMS,
2820 			&k400->feature_index, &feature_type);
2821 		if (ret)
2822 			/* means that the device is not powered up */
2823 			return ret;
2824 	}
2825 
2826 	ret = hidpp_touchpad_fw_items_set(hidpp, k400->feature_index, &items);
2827 	if (ret)
2828 		return ret;
2829 
2830 	return 0;
2831 }
2832 
2833 static int k400_allocate(struct hid_device *hdev)
2834 {
2835 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2836 	struct k400_private_data *k400;
2837 
2838 	k400 = devm_kzalloc(&hdev->dev, sizeof(struct k400_private_data),
2839 			    GFP_KERNEL);
2840 	if (!k400)
2841 		return -ENOMEM;
2842 
2843 	hidpp->private_data = k400;
2844 
2845 	return 0;
2846 };
2847 
2848 static int k400_connect(struct hid_device *hdev, bool connected)
2849 {
2850 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2851 
2852 	if (!disable_tap_to_click)
2853 		return 0;
2854 
2855 	return k400_disable_tap_to_click(hidpp);
2856 }
2857 
2858 /* ------------------------------------------------------------------------- */
2859 /* Logitech G920 Driving Force Racing Wheel for Xbox One                     */
2860 /* ------------------------------------------------------------------------- */
2861 
2862 #define HIDPP_PAGE_G920_FORCE_FEEDBACK			0x8123
2863 
2864 static int g920_ff_set_autocenter(struct hidpp_device *hidpp,
2865 				  struct hidpp_ff_private_data *data)
2866 {
2867 	struct hidpp_report response;
2868 	u8 params[HIDPP_AUTOCENTER_PARAMS_LENGTH] = {
2869 		[1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART,
2870 	};
2871 	int ret;
2872 
2873 	/* initialize with zero autocenter to get wheel in usable state */
2874 
2875 	dbg_hid("Setting autocenter to 0.\n");
2876 	ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
2877 					  HIDPP_FF_DOWNLOAD_EFFECT,
2878 					  params, ARRAY_SIZE(params),
2879 					  &response);
2880 	if (ret)
2881 		hid_warn(hidpp->hid_dev, "Failed to autocenter device!\n");
2882 	else
2883 		data->slot_autocenter = response.fap.params[0];
2884 
2885 	return ret;
2886 }
2887 
2888 static int g920_get_config(struct hidpp_device *hidpp,
2889 			   struct hidpp_ff_private_data *data)
2890 {
2891 	struct hidpp_report response;
2892 	u8 feature_type;
2893 	int ret;
2894 
2895 	memset(data, 0, sizeof(*data));
2896 
2897 	/* Find feature and store for later use */
2898 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_G920_FORCE_FEEDBACK,
2899 				     &data->feature_index, &feature_type);
2900 	if (ret)
2901 		return ret;
2902 
2903 	/* Read number of slots available in device */
2904 	ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
2905 					  HIDPP_FF_GET_INFO,
2906 					  NULL, 0,
2907 					  &response);
2908 	if (ret) {
2909 		if (ret < 0)
2910 			return ret;
2911 		hid_err(hidpp->hid_dev,
2912 			"%s: received protocol error 0x%02x\n", __func__, ret);
2913 		return -EPROTO;
2914 	}
2915 
2916 	data->num_effects = response.fap.params[0] - HIDPP_FF_RESERVED_SLOTS;
2917 
2918 	/* reset all forces */
2919 	ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
2920 					  HIDPP_FF_RESET_ALL,
2921 					  NULL, 0,
2922 					  &response);
2923 	if (ret)
2924 		hid_warn(hidpp->hid_dev, "Failed to reset all forces!\n");
2925 
2926 	ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
2927 					  HIDPP_FF_GET_APERTURE,
2928 					  NULL, 0,
2929 					  &response);
2930 	if (ret) {
2931 		hid_warn(hidpp->hid_dev,
2932 			 "Failed to read range from device!\n");
2933 	}
2934 	data->range = ret ?
2935 		900 : get_unaligned_be16(&response.fap.params[0]);
2936 
2937 	/* Read the current gain values */
2938 	ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
2939 					  HIDPP_FF_GET_GLOBAL_GAINS,
2940 					  NULL, 0,
2941 					  &response);
2942 	if (ret)
2943 		hid_warn(hidpp->hid_dev,
2944 			 "Failed to read gain values from device!\n");
2945 	data->gain = ret ?
2946 		0xffff : get_unaligned_be16(&response.fap.params[0]);
2947 
2948 	/* ignore boost value at response.fap.params[2] */
2949 
2950 	return g920_ff_set_autocenter(hidpp, data);
2951 }
2952 
2953 /* -------------------------------------------------------------------------- */
2954 /* HID++1.0 devices which use HID++ reports for their wheels                  */
2955 /* -------------------------------------------------------------------------- */
2956 static int hidpp10_wheel_connect(struct hidpp_device *hidpp)
2957 {
2958 	return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
2959 			HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT,
2960 			HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT);
2961 }
2962 
2963 static int hidpp10_wheel_raw_event(struct hidpp_device *hidpp,
2964 				   u8 *data, int size)
2965 {
2966 	s8 value, hvalue;
2967 
2968 	if (!hidpp->input)
2969 		return -EINVAL;
2970 
2971 	if (size < 7)
2972 		return 0;
2973 
2974 	if (data[0] != REPORT_ID_HIDPP_SHORT || data[2] != HIDPP_SUB_ID_ROLLER)
2975 		return 0;
2976 
2977 	value = data[3];
2978 	hvalue = data[4];
2979 
2980 	input_report_rel(hidpp->input, REL_WHEEL, value);
2981 	input_report_rel(hidpp->input, REL_WHEEL_HI_RES, value * 120);
2982 	input_report_rel(hidpp->input, REL_HWHEEL, hvalue);
2983 	input_report_rel(hidpp->input, REL_HWHEEL_HI_RES, hvalue * 120);
2984 	input_sync(hidpp->input);
2985 
2986 	return 1;
2987 }
2988 
2989 static void hidpp10_wheel_populate_input(struct hidpp_device *hidpp,
2990 					 struct input_dev *input_dev)
2991 {
2992 	__set_bit(EV_REL, input_dev->evbit);
2993 	__set_bit(REL_WHEEL, input_dev->relbit);
2994 	__set_bit(REL_WHEEL_HI_RES, input_dev->relbit);
2995 	__set_bit(REL_HWHEEL, input_dev->relbit);
2996 	__set_bit(REL_HWHEEL_HI_RES, input_dev->relbit);
2997 }
2998 
2999 /* -------------------------------------------------------------------------- */
3000 /* HID++1.0 mice which use HID++ reports for extra mouse buttons              */
3001 /* -------------------------------------------------------------------------- */
3002 static int hidpp10_extra_mouse_buttons_connect(struct hidpp_device *hidpp)
3003 {
3004 	return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
3005 				    HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT,
3006 				    HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT);
3007 }
3008 
3009 static int hidpp10_extra_mouse_buttons_raw_event(struct hidpp_device *hidpp,
3010 				    u8 *data, int size)
3011 {
3012 	int i;
3013 
3014 	if (!hidpp->input)
3015 		return -EINVAL;
3016 
3017 	if (size < 7)
3018 		return 0;
3019 
3020 	if (data[0] != REPORT_ID_HIDPP_SHORT ||
3021 	    data[2] != HIDPP_SUB_ID_MOUSE_EXTRA_BTNS)
3022 		return 0;
3023 
3024 	/*
3025 	 * Buttons are either delivered through the regular mouse report *or*
3026 	 * through the extra buttons report. At least for button 6 how it is
3027 	 * delivered differs per receiver firmware version. Even receivers with
3028 	 * the same usb-id show different behavior, so we handle both cases.
3029 	 */
3030 	for (i = 0; i < 8; i++)
3031 		input_report_key(hidpp->input, BTN_MOUSE + i,
3032 				 (data[3] & (1 << i)));
3033 
3034 	/* Some mice report events on button 9+, use BTN_MISC */
3035 	for (i = 0; i < 8; i++)
3036 		input_report_key(hidpp->input, BTN_MISC + i,
3037 				 (data[4] & (1 << i)));
3038 
3039 	input_sync(hidpp->input);
3040 	return 1;
3041 }
3042 
3043 static void hidpp10_extra_mouse_buttons_populate_input(
3044 			struct hidpp_device *hidpp, struct input_dev *input_dev)
3045 {
3046 	/* BTN_MOUSE - BTN_MOUSE+7 are set already by the descriptor */
3047 	__set_bit(BTN_0, input_dev->keybit);
3048 	__set_bit(BTN_1, input_dev->keybit);
3049 	__set_bit(BTN_2, input_dev->keybit);
3050 	__set_bit(BTN_3, input_dev->keybit);
3051 	__set_bit(BTN_4, input_dev->keybit);
3052 	__set_bit(BTN_5, input_dev->keybit);
3053 	__set_bit(BTN_6, input_dev->keybit);
3054 	__set_bit(BTN_7, input_dev->keybit);
3055 }
3056 
3057 /* -------------------------------------------------------------------------- */
3058 /* HID++1.0 kbds which only report 0x10xx consumer usages through sub-id 0x03 */
3059 /* -------------------------------------------------------------------------- */
3060 
3061 /* Find the consumer-page input report desc and change Maximums to 0x107f */
3062 static u8 *hidpp10_consumer_keys_report_fixup(struct hidpp_device *hidpp,
3063 					      u8 *_rdesc, unsigned int *rsize)
3064 {
3065 	/* Note 0 terminated so we can use strnstr to search for this. */
3066 	static const char consumer_rdesc_start[] = {
3067 		0x05, 0x0C,	/* USAGE_PAGE (Consumer Devices)       */
3068 		0x09, 0x01,	/* USAGE (Consumer Control)            */
3069 		0xA1, 0x01,	/* COLLECTION (Application)            */
3070 		0x85, 0x03,	/* REPORT_ID = 3                       */
3071 		0x75, 0x10,	/* REPORT_SIZE (16)                    */
3072 		0x95, 0x02,	/* REPORT_COUNT (2)                    */
3073 		0x15, 0x01,	/* LOGICAL_MIN (1)                     */
3074 		0x26, 0x00	/* LOGICAL_MAX (...                    */
3075 	};
3076 	char *consumer_rdesc, *rdesc = (char *)_rdesc;
3077 	unsigned int size;
3078 
3079 	consumer_rdesc = strnstr(rdesc, consumer_rdesc_start, *rsize);
3080 	size = *rsize - (consumer_rdesc - rdesc);
3081 	if (consumer_rdesc && size >= 25) {
3082 		consumer_rdesc[15] = 0x7f;
3083 		consumer_rdesc[16] = 0x10;
3084 		consumer_rdesc[20] = 0x7f;
3085 		consumer_rdesc[21] = 0x10;
3086 	}
3087 	return _rdesc;
3088 }
3089 
3090 static int hidpp10_consumer_keys_connect(struct hidpp_device *hidpp)
3091 {
3092 	return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
3093 				    HIDPP_ENABLE_CONSUMER_REPORT,
3094 				    HIDPP_ENABLE_CONSUMER_REPORT);
3095 }
3096 
3097 static int hidpp10_consumer_keys_raw_event(struct hidpp_device *hidpp,
3098 					   u8 *data, int size)
3099 {
3100 	u8 consumer_report[5];
3101 
3102 	if (size < 7)
3103 		return 0;
3104 
3105 	if (data[0] != REPORT_ID_HIDPP_SHORT ||
3106 	    data[2] != HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS)
3107 		return 0;
3108 
3109 	/*
3110 	 * Build a normal consumer report (3) out of the data, this detour
3111 	 * is necessary to get some keyboards to report their 0x10xx usages.
3112 	 */
3113 	consumer_report[0] = 0x03;
3114 	memcpy(&consumer_report[1], &data[3], 4);
3115 	/* We are called from atomic context */
3116 	hid_report_raw_event(hidpp->hid_dev, HID_INPUT_REPORT,
3117 			     consumer_report, 5, 1);
3118 
3119 	return 1;
3120 }
3121 
3122 /* -------------------------------------------------------------------------- */
3123 /* High-resolution scroll wheels                                              */
3124 /* -------------------------------------------------------------------------- */
3125 
3126 static int hi_res_scroll_enable(struct hidpp_device *hidpp)
3127 {
3128 	int ret;
3129 	u8 multiplier = 1;
3130 
3131 	if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2121) {
3132 		ret = hidpp_hrw_set_wheel_mode(hidpp, false, true, false);
3133 		if (ret == 0)
3134 			ret = hidpp_hrw_get_wheel_capability(hidpp, &multiplier);
3135 	} else if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2120) {
3136 		ret = hidpp_hrs_set_highres_scrolling_mode(hidpp, true,
3137 							   &multiplier);
3138 	} else /* if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_1P0) */ {
3139 		ret = hidpp10_enable_scrolling_acceleration(hidpp);
3140 		multiplier = 8;
3141 	}
3142 	if (ret)
3143 		return ret;
3144 
3145 	if (multiplier == 0)
3146 		multiplier = 1;
3147 
3148 	hidpp->vertical_wheel_counter.wheel_multiplier = multiplier;
3149 	hid_info(hidpp->hid_dev, "multiplier = %d\n", multiplier);
3150 	return 0;
3151 }
3152 
3153 /* -------------------------------------------------------------------------- */
3154 /* Generic HID++ devices                                                      */
3155 /* -------------------------------------------------------------------------- */
3156 
3157 static u8 *hidpp_report_fixup(struct hid_device *hdev, u8 *rdesc,
3158 			      unsigned int *rsize)
3159 {
3160 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3161 
3162 	if (!hidpp)
3163 		return rdesc;
3164 
3165 	/* For 27 MHz keyboards the quirk gets set after hid_parse. */
3166 	if (hdev->group == HID_GROUP_LOGITECH_27MHZ_DEVICE ||
3167 	    (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS))
3168 		rdesc = hidpp10_consumer_keys_report_fixup(hidpp, rdesc, rsize);
3169 
3170 	return rdesc;
3171 }
3172 
3173 static int hidpp_input_mapping(struct hid_device *hdev, struct hid_input *hi,
3174 		struct hid_field *field, struct hid_usage *usage,
3175 		unsigned long **bit, int *max)
3176 {
3177 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3178 
3179 	if (!hidpp)
3180 		return 0;
3181 
3182 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
3183 		return wtp_input_mapping(hdev, hi, field, usage, bit, max);
3184 	else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560 &&
3185 			field->application != HID_GD_MOUSE)
3186 		return m560_input_mapping(hdev, hi, field, usage, bit, max);
3187 
3188 	return 0;
3189 }
3190 
3191 static int hidpp_input_mapped(struct hid_device *hdev, struct hid_input *hi,
3192 		struct hid_field *field, struct hid_usage *usage,
3193 		unsigned long **bit, int *max)
3194 {
3195 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3196 
3197 	if (!hidpp)
3198 		return 0;
3199 
3200 	/* Ensure that Logitech G920 is not given a default fuzz/flat value */
3201 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
3202 		if (usage->type == EV_ABS && (usage->code == ABS_X ||
3203 				usage->code == ABS_Y || usage->code == ABS_Z ||
3204 				usage->code == ABS_RZ)) {
3205 			field->application = HID_GD_MULTIAXIS;
3206 		}
3207 	}
3208 
3209 	return 0;
3210 }
3211 
3212 
3213 static void hidpp_populate_input(struct hidpp_device *hidpp,
3214 				 struct input_dev *input)
3215 {
3216 	hidpp->input = input;
3217 
3218 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
3219 		wtp_populate_input(hidpp, input);
3220 	else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560)
3221 		m560_populate_input(hidpp, input);
3222 
3223 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS)
3224 		hidpp10_wheel_populate_input(hidpp, input);
3225 
3226 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS)
3227 		hidpp10_extra_mouse_buttons_populate_input(hidpp, input);
3228 }
3229 
3230 static int hidpp_input_configured(struct hid_device *hdev,
3231 				struct hid_input *hidinput)
3232 {
3233 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3234 	struct input_dev *input = hidinput->input;
3235 
3236 	if (!hidpp)
3237 		return 0;
3238 
3239 	hidpp_populate_input(hidpp, input);
3240 
3241 	return 0;
3242 }
3243 
3244 static int hidpp_raw_hidpp_event(struct hidpp_device *hidpp, u8 *data,
3245 		int size)
3246 {
3247 	struct hidpp_report *question = hidpp->send_receive_buf;
3248 	struct hidpp_report *answer = hidpp->send_receive_buf;
3249 	struct hidpp_report *report = (struct hidpp_report *)data;
3250 	int ret;
3251 
3252 	/*
3253 	 * If the mutex is locked then we have a pending answer from a
3254 	 * previously sent command.
3255 	 */
3256 	if (unlikely(mutex_is_locked(&hidpp->send_mutex))) {
3257 		/*
3258 		 * Check for a correct hidpp20 answer or the corresponding
3259 		 * error
3260 		 */
3261 		if (hidpp_match_answer(question, report) ||
3262 				hidpp_match_error(question, report)) {
3263 			*answer = *report;
3264 			hidpp->answer_available = true;
3265 			wake_up(&hidpp->wait);
3266 			/*
3267 			 * This was an answer to a command that this driver sent
3268 			 * We return 1 to hid-core to avoid forwarding the
3269 			 * command upstream as it has been treated by the driver
3270 			 */
3271 
3272 			return 1;
3273 		}
3274 	}
3275 
3276 	if (unlikely(hidpp_report_is_connect_event(hidpp, report))) {
3277 		atomic_set(&hidpp->connected,
3278 				!(report->rap.params[0] & (1 << 6)));
3279 		if (schedule_work(&hidpp->work) == 0)
3280 			dbg_hid("%s: connect event already queued\n", __func__);
3281 		return 1;
3282 	}
3283 
3284 	if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) {
3285 		ret = hidpp20_battery_event(hidpp, data, size);
3286 		if (ret != 0)
3287 			return ret;
3288 		ret = hidpp_solar_battery_event(hidpp, data, size);
3289 		if (ret != 0)
3290 			return ret;
3291 		ret = hidpp20_battery_voltage_event(hidpp, data, size);
3292 		if (ret != 0)
3293 			return ret;
3294 	}
3295 
3296 	if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) {
3297 		ret = hidpp10_battery_event(hidpp, data, size);
3298 		if (ret != 0)
3299 			return ret;
3300 	}
3301 
3302 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) {
3303 		ret = hidpp10_wheel_raw_event(hidpp, data, size);
3304 		if (ret != 0)
3305 			return ret;
3306 	}
3307 
3308 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) {
3309 		ret = hidpp10_extra_mouse_buttons_raw_event(hidpp, data, size);
3310 		if (ret != 0)
3311 			return ret;
3312 	}
3313 
3314 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) {
3315 		ret = hidpp10_consumer_keys_raw_event(hidpp, data, size);
3316 		if (ret != 0)
3317 			return ret;
3318 	}
3319 
3320 	return 0;
3321 }
3322 
3323 static int hidpp_raw_event(struct hid_device *hdev, struct hid_report *report,
3324 		u8 *data, int size)
3325 {
3326 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3327 	int ret = 0;
3328 
3329 	if (!hidpp)
3330 		return 0;
3331 
3332 	/* Generic HID++ processing. */
3333 	switch (data[0]) {
3334 	case REPORT_ID_HIDPP_VERY_LONG:
3335 		if (size != hidpp->very_long_report_length) {
3336 			hid_err(hdev, "received hid++ report of bad size (%d)",
3337 				size);
3338 			return 1;
3339 		}
3340 		ret = hidpp_raw_hidpp_event(hidpp, data, size);
3341 		break;
3342 	case REPORT_ID_HIDPP_LONG:
3343 		if (size != HIDPP_REPORT_LONG_LENGTH) {
3344 			hid_err(hdev, "received hid++ report of bad size (%d)",
3345 				size);
3346 			return 1;
3347 		}
3348 		ret = hidpp_raw_hidpp_event(hidpp, data, size);
3349 		break;
3350 	case REPORT_ID_HIDPP_SHORT:
3351 		if (size != HIDPP_REPORT_SHORT_LENGTH) {
3352 			hid_err(hdev, "received hid++ report of bad size (%d)",
3353 				size);
3354 			return 1;
3355 		}
3356 		ret = hidpp_raw_hidpp_event(hidpp, data, size);
3357 		break;
3358 	}
3359 
3360 	/* If no report is available for further processing, skip calling
3361 	 * raw_event of subclasses. */
3362 	if (ret != 0)
3363 		return ret;
3364 
3365 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
3366 		return wtp_raw_event(hdev, data, size);
3367 	else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560)
3368 		return m560_raw_event(hdev, data, size);
3369 
3370 	return 0;
3371 }
3372 
3373 static int hidpp_event(struct hid_device *hdev, struct hid_field *field,
3374 	struct hid_usage *usage, __s32 value)
3375 {
3376 	/* This function will only be called for scroll events, due to the
3377 	 * restriction imposed in hidpp_usages.
3378 	 */
3379 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3380 	struct hidpp_scroll_counter *counter;
3381 
3382 	if (!hidpp)
3383 		return 0;
3384 
3385 	counter = &hidpp->vertical_wheel_counter;
3386 	/* A scroll event may occur before the multiplier has been retrieved or
3387 	 * the input device set, or high-res scroll enabling may fail. In such
3388 	 * cases we must return early (falling back to default behaviour) to
3389 	 * avoid a crash in hidpp_scroll_counter_handle_scroll.
3390 	 */
3391 	if (!(hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) || value == 0
3392 	    || hidpp->input == NULL || counter->wheel_multiplier == 0)
3393 		return 0;
3394 
3395 	hidpp_scroll_counter_handle_scroll(hidpp->input, counter, value);
3396 	return 1;
3397 }
3398 
3399 static int hidpp_initialize_battery(struct hidpp_device *hidpp)
3400 {
3401 	static atomic_t battery_no = ATOMIC_INIT(0);
3402 	struct power_supply_config cfg = { .drv_data = hidpp };
3403 	struct power_supply_desc *desc = &hidpp->battery.desc;
3404 	enum power_supply_property *battery_props;
3405 	struct hidpp_battery *battery;
3406 	unsigned int num_battery_props;
3407 	unsigned long n;
3408 	int ret;
3409 
3410 	if (hidpp->battery.ps)
3411 		return 0;
3412 
3413 	hidpp->battery.feature_index = 0xff;
3414 	hidpp->battery.solar_feature_index = 0xff;
3415 	hidpp->battery.voltage_feature_index = 0xff;
3416 
3417 	if (hidpp->protocol_major >= 2) {
3418 		if (hidpp->quirks & HIDPP_QUIRK_CLASS_K750)
3419 			ret = hidpp_solar_request_battery_event(hidpp);
3420 		else {
3421 			ret = hidpp20_query_battery_voltage_info(hidpp);
3422 			if (ret)
3423 				ret = hidpp20_query_battery_info(hidpp);
3424 		}
3425 
3426 		if (ret)
3427 			return ret;
3428 		hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP20_BATTERY;
3429 	} else {
3430 		ret = hidpp10_query_battery_status(hidpp);
3431 		if (ret) {
3432 			ret = hidpp10_query_battery_mileage(hidpp);
3433 			if (ret)
3434 				return -ENOENT;
3435 			hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
3436 		} else {
3437 			hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
3438 		}
3439 		hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP10_BATTERY;
3440 	}
3441 
3442 	battery_props = devm_kmemdup(&hidpp->hid_dev->dev,
3443 				     hidpp_battery_props,
3444 				     sizeof(hidpp_battery_props),
3445 				     GFP_KERNEL);
3446 	if (!battery_props)
3447 		return -ENOMEM;
3448 
3449 	num_battery_props = ARRAY_SIZE(hidpp_battery_props) - 3;
3450 
3451 	if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE)
3452 		battery_props[num_battery_props++] =
3453 				POWER_SUPPLY_PROP_CAPACITY;
3454 
3455 	if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS)
3456 		battery_props[num_battery_props++] =
3457 				POWER_SUPPLY_PROP_CAPACITY_LEVEL;
3458 
3459 	if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_VOLTAGE)
3460 		battery_props[num_battery_props++] =
3461 			POWER_SUPPLY_PROP_VOLTAGE_NOW;
3462 
3463 	battery = &hidpp->battery;
3464 
3465 	n = atomic_inc_return(&battery_no) - 1;
3466 	desc->properties = battery_props;
3467 	desc->num_properties = num_battery_props;
3468 	desc->get_property = hidpp_battery_get_property;
3469 	sprintf(battery->name, "hidpp_battery_%ld", n);
3470 	desc->name = battery->name;
3471 	desc->type = POWER_SUPPLY_TYPE_BATTERY;
3472 	desc->use_for_apm = 0;
3473 
3474 	battery->ps = devm_power_supply_register(&hidpp->hid_dev->dev,
3475 						 &battery->desc,
3476 						 &cfg);
3477 	if (IS_ERR(battery->ps))
3478 		return PTR_ERR(battery->ps);
3479 
3480 	power_supply_powers(battery->ps, &hidpp->hid_dev->dev);
3481 
3482 	return ret;
3483 }
3484 
3485 static void hidpp_overwrite_name(struct hid_device *hdev)
3486 {
3487 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3488 	char *name;
3489 
3490 	if (hidpp->protocol_major < 2)
3491 		return;
3492 
3493 	name = hidpp_get_device_name(hidpp);
3494 
3495 	if (!name) {
3496 		hid_err(hdev, "unable to retrieve the name of the device");
3497 	} else {
3498 		dbg_hid("HID++: Got name: %s\n", name);
3499 		snprintf(hdev->name, sizeof(hdev->name), "%s", name);
3500 	}
3501 
3502 	kfree(name);
3503 }
3504 
3505 static int hidpp_input_open(struct input_dev *dev)
3506 {
3507 	struct hid_device *hid = input_get_drvdata(dev);
3508 
3509 	return hid_hw_open(hid);
3510 }
3511 
3512 static void hidpp_input_close(struct input_dev *dev)
3513 {
3514 	struct hid_device *hid = input_get_drvdata(dev);
3515 
3516 	hid_hw_close(hid);
3517 }
3518 
3519 static struct input_dev *hidpp_allocate_input(struct hid_device *hdev)
3520 {
3521 	struct input_dev *input_dev = devm_input_allocate_device(&hdev->dev);
3522 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3523 
3524 	if (!input_dev)
3525 		return NULL;
3526 
3527 	input_set_drvdata(input_dev, hdev);
3528 	input_dev->open = hidpp_input_open;
3529 	input_dev->close = hidpp_input_close;
3530 
3531 	input_dev->name = hidpp->name;
3532 	input_dev->phys = hdev->phys;
3533 	input_dev->uniq = hdev->uniq;
3534 	input_dev->id.bustype = hdev->bus;
3535 	input_dev->id.vendor  = hdev->vendor;
3536 	input_dev->id.product = hdev->product;
3537 	input_dev->id.version = hdev->version;
3538 	input_dev->dev.parent = &hdev->dev;
3539 
3540 	return input_dev;
3541 }
3542 
3543 static void hidpp_connect_event(struct hidpp_device *hidpp)
3544 {
3545 	struct hid_device *hdev = hidpp->hid_dev;
3546 	int ret = 0;
3547 	bool connected = atomic_read(&hidpp->connected);
3548 	struct input_dev *input;
3549 	char *name, *devm_name;
3550 
3551 	if (!connected) {
3552 		if (hidpp->battery.ps) {
3553 			hidpp->battery.online = false;
3554 			hidpp->battery.status = POWER_SUPPLY_STATUS_UNKNOWN;
3555 			hidpp->battery.level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
3556 			power_supply_changed(hidpp->battery.ps);
3557 		}
3558 		return;
3559 	}
3560 
3561 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) {
3562 		ret = wtp_connect(hdev, connected);
3563 		if (ret)
3564 			return;
3565 	} else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) {
3566 		ret = m560_send_config_command(hdev, connected);
3567 		if (ret)
3568 			return;
3569 	} else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) {
3570 		ret = k400_connect(hdev, connected);
3571 		if (ret)
3572 			return;
3573 	}
3574 
3575 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) {
3576 		ret = hidpp10_wheel_connect(hidpp);
3577 		if (ret)
3578 			return;
3579 	}
3580 
3581 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) {
3582 		ret = hidpp10_extra_mouse_buttons_connect(hidpp);
3583 		if (ret)
3584 			return;
3585 	}
3586 
3587 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) {
3588 		ret = hidpp10_consumer_keys_connect(hidpp);
3589 		if (ret)
3590 			return;
3591 	}
3592 
3593 	/* the device is already connected, we can ask for its name and
3594 	 * protocol */
3595 	if (!hidpp->protocol_major) {
3596 		ret = hidpp_root_get_protocol_version(hidpp);
3597 		if (ret) {
3598 			hid_err(hdev, "Can not get the protocol version.\n");
3599 			return;
3600 		}
3601 	}
3602 
3603 	if (hidpp->name == hdev->name && hidpp->protocol_major >= 2) {
3604 		name = hidpp_get_device_name(hidpp);
3605 		if (name) {
3606 			devm_name = devm_kasprintf(&hdev->dev, GFP_KERNEL,
3607 						   "%s", name);
3608 			kfree(name);
3609 			if (!devm_name)
3610 				return;
3611 
3612 			hidpp->name = devm_name;
3613 		}
3614 	}
3615 
3616 	hidpp_initialize_battery(hidpp);
3617 
3618 	/* forward current battery state */
3619 	if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) {
3620 		hidpp10_enable_battery_reporting(hidpp);
3621 		if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE)
3622 			hidpp10_query_battery_mileage(hidpp);
3623 		else
3624 			hidpp10_query_battery_status(hidpp);
3625 	} else if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) {
3626 		if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_VOLTAGE)
3627 			hidpp20_query_battery_voltage_info(hidpp);
3628 		else
3629 			hidpp20_query_battery_info(hidpp);
3630 	}
3631 	if (hidpp->battery.ps)
3632 		power_supply_changed(hidpp->battery.ps);
3633 
3634 	if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL)
3635 		hi_res_scroll_enable(hidpp);
3636 
3637 	if (!(hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) || hidpp->delayed_input)
3638 		/* if the input nodes are already created, we can stop now */
3639 		return;
3640 
3641 	input = hidpp_allocate_input(hdev);
3642 	if (!input) {
3643 		hid_err(hdev, "cannot allocate new input device: %d\n", ret);
3644 		return;
3645 	}
3646 
3647 	hidpp_populate_input(hidpp, input);
3648 
3649 	ret = input_register_device(input);
3650 	if (ret)
3651 		input_free_device(input);
3652 
3653 	hidpp->delayed_input = input;
3654 }
3655 
3656 static DEVICE_ATTR(builtin_power_supply, 0000, NULL, NULL);
3657 
3658 static struct attribute *sysfs_attrs[] = {
3659 	&dev_attr_builtin_power_supply.attr,
3660 	NULL
3661 };
3662 
3663 static const struct attribute_group ps_attribute_group = {
3664 	.attrs = sysfs_attrs
3665 };
3666 
3667 static int hidpp_get_report_length(struct hid_device *hdev, int id)
3668 {
3669 	struct hid_report_enum *re;
3670 	struct hid_report *report;
3671 
3672 	re = &(hdev->report_enum[HID_OUTPUT_REPORT]);
3673 	report = re->report_id_hash[id];
3674 	if (!report)
3675 		return 0;
3676 
3677 	return report->field[0]->report_count + 1;
3678 }
3679 
3680 static u8 hidpp_validate_device(struct hid_device *hdev)
3681 {
3682 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3683 	int id, report_length;
3684 	u8 supported_reports = 0;
3685 
3686 	id = REPORT_ID_HIDPP_SHORT;
3687 	report_length = hidpp_get_report_length(hdev, id);
3688 	if (report_length) {
3689 		if (report_length < HIDPP_REPORT_SHORT_LENGTH)
3690 			goto bad_device;
3691 
3692 		supported_reports |= HIDPP_REPORT_SHORT_SUPPORTED;
3693 	}
3694 
3695 	id = REPORT_ID_HIDPP_LONG;
3696 	report_length = hidpp_get_report_length(hdev, id);
3697 	if (report_length) {
3698 		if (report_length < HIDPP_REPORT_LONG_LENGTH)
3699 			goto bad_device;
3700 
3701 		supported_reports |= HIDPP_REPORT_LONG_SUPPORTED;
3702 	}
3703 
3704 	id = REPORT_ID_HIDPP_VERY_LONG;
3705 	report_length = hidpp_get_report_length(hdev, id);
3706 	if (report_length) {
3707 		if (report_length < HIDPP_REPORT_LONG_LENGTH ||
3708 		    report_length > HIDPP_REPORT_VERY_LONG_MAX_LENGTH)
3709 			goto bad_device;
3710 
3711 		supported_reports |= HIDPP_REPORT_VERY_LONG_SUPPORTED;
3712 		hidpp->very_long_report_length = report_length;
3713 	}
3714 
3715 	return supported_reports;
3716 
3717 bad_device:
3718 	hid_warn(hdev, "not enough values in hidpp report %d\n", id);
3719 	return false;
3720 }
3721 
3722 static bool hidpp_application_equals(struct hid_device *hdev,
3723 				     unsigned int application)
3724 {
3725 	struct list_head *report_list;
3726 	struct hid_report *report;
3727 
3728 	report_list = &hdev->report_enum[HID_INPUT_REPORT].report_list;
3729 	report = list_first_entry_or_null(report_list, struct hid_report, list);
3730 	return report && report->application == application;
3731 }
3732 
3733 static int hidpp_probe(struct hid_device *hdev, const struct hid_device_id *id)
3734 {
3735 	struct hidpp_device *hidpp;
3736 	int ret;
3737 	bool connected;
3738 	unsigned int connect_mask = HID_CONNECT_DEFAULT;
3739 	struct hidpp_ff_private_data data;
3740 
3741 	/* report_fixup needs drvdata to be set before we call hid_parse */
3742 	hidpp = devm_kzalloc(&hdev->dev, sizeof(*hidpp), GFP_KERNEL);
3743 	if (!hidpp)
3744 		return -ENOMEM;
3745 
3746 	hidpp->hid_dev = hdev;
3747 	hidpp->name = hdev->name;
3748 	hidpp->quirks = id->driver_data;
3749 	hid_set_drvdata(hdev, hidpp);
3750 
3751 	ret = hid_parse(hdev);
3752 	if (ret) {
3753 		hid_err(hdev, "%s:parse failed\n", __func__);
3754 		return ret;
3755 	}
3756 
3757 	/*
3758 	 * Make sure the device is HID++ capable, otherwise treat as generic HID
3759 	 */
3760 	hidpp->supported_reports = hidpp_validate_device(hdev);
3761 
3762 	if (!hidpp->supported_reports) {
3763 		hid_set_drvdata(hdev, NULL);
3764 		devm_kfree(&hdev->dev, hidpp);
3765 		return hid_hw_start(hdev, HID_CONNECT_DEFAULT);
3766 	}
3767 
3768 	if (id->group == HID_GROUP_LOGITECH_DJ_DEVICE)
3769 		hidpp->quirks |= HIDPP_QUIRK_UNIFYING;
3770 
3771 	if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE &&
3772 	    hidpp_application_equals(hdev, HID_GD_MOUSE))
3773 		hidpp->quirks |= HIDPP_QUIRK_HIDPP_WHEELS |
3774 				 HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS;
3775 
3776 	if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE &&
3777 	    hidpp_application_equals(hdev, HID_GD_KEYBOARD))
3778 		hidpp->quirks |= HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS;
3779 
3780 	if (disable_raw_mode) {
3781 		hidpp->quirks &= ~HIDPP_QUIRK_CLASS_WTP;
3782 		hidpp->quirks &= ~HIDPP_QUIRK_NO_HIDINPUT;
3783 	}
3784 
3785 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) {
3786 		ret = wtp_allocate(hdev, id);
3787 		if (ret)
3788 			return ret;
3789 	} else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) {
3790 		ret = k400_allocate(hdev);
3791 		if (ret)
3792 			return ret;
3793 	}
3794 
3795 	INIT_WORK(&hidpp->work, delayed_work_cb);
3796 	mutex_init(&hidpp->send_mutex);
3797 	init_waitqueue_head(&hidpp->wait);
3798 
3799 	/* indicates we are handling the battery properties in the kernel */
3800 	ret = sysfs_create_group(&hdev->dev.kobj, &ps_attribute_group);
3801 	if (ret)
3802 		hid_warn(hdev, "Cannot allocate sysfs group for %s\n",
3803 			 hdev->name);
3804 
3805 	/*
3806 	 * Plain USB connections need to actually call start and open
3807 	 * on the transport driver to allow incoming data.
3808 	 */
3809 	ret = hid_hw_start(hdev, 0);
3810 	if (ret) {
3811 		hid_err(hdev, "hw start failed\n");
3812 		goto hid_hw_start_fail;
3813 	}
3814 
3815 	ret = hid_hw_open(hdev);
3816 	if (ret < 0) {
3817 		dev_err(&hdev->dev, "%s:hid_hw_open returned error:%d\n",
3818 			__func__, ret);
3819 		goto hid_hw_open_fail;
3820 	}
3821 
3822 	/* Allow incoming packets */
3823 	hid_device_io_start(hdev);
3824 
3825 	if (hidpp->quirks & HIDPP_QUIRK_UNIFYING)
3826 		hidpp_unifying_init(hidpp);
3827 
3828 	connected = hidpp_root_get_protocol_version(hidpp) == 0;
3829 	atomic_set(&hidpp->connected, connected);
3830 	if (!(hidpp->quirks & HIDPP_QUIRK_UNIFYING)) {
3831 		if (!connected) {
3832 			ret = -ENODEV;
3833 			hid_err(hdev, "Device not connected");
3834 			goto hid_hw_init_fail;
3835 		}
3836 
3837 		hidpp_overwrite_name(hdev);
3838 	}
3839 
3840 	if (connected && hidpp->protocol_major >= 2) {
3841 		ret = hidpp_set_wireless_feature_index(hidpp);
3842 		if (ret == -ENOENT)
3843 			hidpp->wireless_feature_index = 0;
3844 		else if (ret)
3845 			goto hid_hw_init_fail;
3846 	}
3847 
3848 	if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)) {
3849 		ret = wtp_get_config(hidpp);
3850 		if (ret)
3851 			goto hid_hw_init_fail;
3852 	} else if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_G920)) {
3853 		ret = g920_get_config(hidpp, &data);
3854 		if (ret)
3855 			goto hid_hw_init_fail;
3856 	}
3857 
3858 	hidpp_connect_event(hidpp);
3859 
3860 	/* Reset the HID node state */
3861 	hid_device_io_stop(hdev);
3862 	hid_hw_close(hdev);
3863 	hid_hw_stop(hdev);
3864 
3865 	if (hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT)
3866 		connect_mask &= ~HID_CONNECT_HIDINPUT;
3867 
3868 	/* Now export the actual inputs and hidraw nodes to the world */
3869 	ret = hid_hw_start(hdev, connect_mask);
3870 	if (ret) {
3871 		hid_err(hdev, "%s:hid_hw_start returned error\n", __func__);
3872 		goto hid_hw_start_fail;
3873 	}
3874 
3875 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
3876 		ret = hidpp_ff_init(hidpp, &data);
3877 		if (ret)
3878 			hid_warn(hidpp->hid_dev,
3879 		     "Unable to initialize force feedback support, errno %d\n",
3880 				 ret);
3881 	}
3882 
3883 	return ret;
3884 
3885 hid_hw_init_fail:
3886 	hid_hw_close(hdev);
3887 hid_hw_open_fail:
3888 	hid_hw_stop(hdev);
3889 hid_hw_start_fail:
3890 	sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group);
3891 	cancel_work_sync(&hidpp->work);
3892 	mutex_destroy(&hidpp->send_mutex);
3893 	return ret;
3894 }
3895 
3896 static void hidpp_remove(struct hid_device *hdev)
3897 {
3898 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3899 
3900 	if (!hidpp)
3901 		return hid_hw_stop(hdev);
3902 
3903 	sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group);
3904 
3905 	hid_hw_stop(hdev);
3906 	cancel_work_sync(&hidpp->work);
3907 	mutex_destroy(&hidpp->send_mutex);
3908 }
3909 
3910 #define LDJ_DEVICE(product) \
3911 	HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE, \
3912 		   USB_VENDOR_ID_LOGITECH, (product))
3913 
3914 #define L27MHZ_DEVICE(product) \
3915 	HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_27MHZ_DEVICE, \
3916 		   USB_VENDOR_ID_LOGITECH, (product))
3917 
3918 static const struct hid_device_id hidpp_devices[] = {
3919 	{ /* wireless touchpad */
3920 	  LDJ_DEVICE(0x4011),
3921 	  .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT |
3922 			 HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS },
3923 	{ /* wireless touchpad T650 */
3924 	  LDJ_DEVICE(0x4101),
3925 	  .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT },
3926 	{ /* wireless touchpad T651 */
3927 	  HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH,
3928 		USB_DEVICE_ID_LOGITECH_T651),
3929 	  .driver_data = HIDPP_QUIRK_CLASS_WTP },
3930 	{ /* Mouse Logitech Anywhere MX */
3931 	  LDJ_DEVICE(0x1017), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
3932 	{ /* Mouse Logitech Cube */
3933 	  LDJ_DEVICE(0x4010), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
3934 	{ /* Mouse Logitech M335 */
3935 	  LDJ_DEVICE(0x4050), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3936 	{ /* Mouse Logitech M515 */
3937 	  LDJ_DEVICE(0x4007), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
3938 	{ /* Mouse logitech M560 */
3939 	  LDJ_DEVICE(0x402d),
3940 	  .driver_data = HIDPP_QUIRK_DELAYED_INIT | HIDPP_QUIRK_CLASS_M560
3941 		| HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
3942 	{ /* Mouse Logitech M705 (firmware RQM17) */
3943 	  LDJ_DEVICE(0x101b), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
3944 	{ /* Mouse Logitech M705 (firmware RQM67) */
3945 	  LDJ_DEVICE(0x406d), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3946 	{ /* Mouse Logitech M720 */
3947 	  LDJ_DEVICE(0x405e), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3948 	{ /* Mouse Logitech MX Anywhere 2 */
3949 	  LDJ_DEVICE(0x404a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3950 	{ LDJ_DEVICE(0xb013), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3951 	{ LDJ_DEVICE(0xb018), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3952 	{ LDJ_DEVICE(0xb01f), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3953 	{ /* Mouse Logitech MX Anywhere 2S */
3954 	  LDJ_DEVICE(0x406a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3955 	{ /* Mouse Logitech MX Master */
3956 	  LDJ_DEVICE(0x4041), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3957 	{ LDJ_DEVICE(0x4060), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3958 	{ LDJ_DEVICE(0x4071), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3959 	{ /* Mouse Logitech MX Master 2S */
3960 	  LDJ_DEVICE(0x4069), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3961 	{ /* Mouse Logitech MX Master 3 */
3962 	  LDJ_DEVICE(0x4082), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3963 	{ /* Mouse Logitech Performance MX */
3964 	  LDJ_DEVICE(0x101a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
3965 	{ /* Keyboard logitech K400 */
3966 	  LDJ_DEVICE(0x4024),
3967 	  .driver_data = HIDPP_QUIRK_CLASS_K400 },
3968 	{ /* Solar Keyboard Logitech K750 */
3969 	  LDJ_DEVICE(0x4002),
3970 	  .driver_data = HIDPP_QUIRK_CLASS_K750 },
3971 	{ /* Keyboard MX5000 (Bluetooth-receiver in HID proxy mode) */
3972 	  LDJ_DEVICE(0xb305),
3973 	  .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
3974 	{ /* Keyboard MX5500 (Bluetooth-receiver in HID proxy mode) */
3975 	  LDJ_DEVICE(0xb30b),
3976 	  .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
3977 
3978 	{ LDJ_DEVICE(HID_ANY_ID) },
3979 
3980 	{ /* Keyboard LX501 (Y-RR53) */
3981 	  L27MHZ_DEVICE(0x0049),
3982 	  .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL },
3983 	{ /* Keyboard MX3000 (Y-RAM74) */
3984 	  L27MHZ_DEVICE(0x0057),
3985 	  .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL },
3986 	{ /* Keyboard MX3200 (Y-RAV80) */
3987 	  L27MHZ_DEVICE(0x005c),
3988 	  .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL },
3989 	{ /* S510 Media Remote */
3990 	  L27MHZ_DEVICE(0x00fe),
3991 	  .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL },
3992 
3993 	{ L27MHZ_DEVICE(HID_ANY_ID) },
3994 
3995 	{ /* Logitech G403 Wireless Gaming Mouse over USB */
3996 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC082) },
3997 	{ /* Logitech G703 Gaming Mouse over USB */
3998 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC087) },
3999 	{ /* Logitech G703 Hero Gaming Mouse over USB */
4000 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC090) },
4001 	{ /* Logitech G900 Gaming Mouse over USB */
4002 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC081) },
4003 	{ /* Logitech G903 Gaming Mouse over USB */
4004 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC086) },
4005 	{ /* Logitech G903 Hero Gaming Mouse over USB */
4006 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC091) },
4007 	{ /* Logitech G920 Wheel over USB */
4008 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G920_WHEEL),
4009 		.driver_data = HIDPP_QUIRK_CLASS_G920 | HIDPP_QUIRK_FORCE_OUTPUT_REPORTS},
4010 	{ /* Logitech G Pro Gaming Mouse over USB */
4011 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC088) },
4012 
4013 	{ /* MX5000 keyboard over Bluetooth */
4014 	  HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb305),
4015 	  .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4016 	{ /* MX5500 keyboard over Bluetooth */
4017 	  HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb30b),
4018 	  .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4019 	{ /* MX Master mouse over Bluetooth */
4020 	  HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb012),
4021 	  .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4022 	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb01e),
4023 	  .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4024 	{ /* MX Master 3 mouse over Bluetooth */
4025 	  HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb023),
4026 	  .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4027 	{}
4028 };
4029 
4030 MODULE_DEVICE_TABLE(hid, hidpp_devices);
4031 
4032 static const struct hid_usage_id hidpp_usages[] = {
4033 	{ HID_GD_WHEEL, EV_REL, REL_WHEEL_HI_RES },
4034 	{ HID_ANY_ID - 1, HID_ANY_ID - 1, HID_ANY_ID - 1}
4035 };
4036 
4037 static struct hid_driver hidpp_driver = {
4038 	.name = "logitech-hidpp-device",
4039 	.id_table = hidpp_devices,
4040 	.report_fixup = hidpp_report_fixup,
4041 	.probe = hidpp_probe,
4042 	.remove = hidpp_remove,
4043 	.raw_event = hidpp_raw_event,
4044 	.usage_table = hidpp_usages,
4045 	.event = hidpp_event,
4046 	.input_configured = hidpp_input_configured,
4047 	.input_mapping = hidpp_input_mapping,
4048 	.input_mapped = hidpp_input_mapped,
4049 };
4050 
4051 module_hid_driver(hidpp_driver);
4052