xref: /openbmc/linux/drivers/hid/hid-input.c (revision c4a7b9b5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Copyright (c) 2000-2001 Vojtech Pavlik
4  *  Copyright (c) 2006-2010 Jiri Kosina
5  *
6  *  HID to Linux Input mapping
7  */
8 
9 /*
10  *
11  * Should you need to contact me, the author, you can do so either by
12  * e-mail - mail your message to <vojtech@ucw.cz>, or by paper mail:
13  * Vojtech Pavlik, Simunkova 1594, Prague 8, 182 00 Czech Republic
14  */
15 
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/kernel.h>
19 
20 #include <linux/hid.h>
21 #include <linux/hid-debug.h>
22 
23 #include "hid-ids.h"
24 
25 #define unk	KEY_UNKNOWN
26 
27 static const unsigned char hid_keyboard[256] = {
28 	  0,  0,  0,  0, 30, 48, 46, 32, 18, 33, 34, 35, 23, 36, 37, 38,
29 	 50, 49, 24, 25, 16, 19, 31, 20, 22, 47, 17, 45, 21, 44,  2,  3,
30 	  4,  5,  6,  7,  8,  9, 10, 11, 28,  1, 14, 15, 57, 12, 13, 26,
31 	 27, 43, 43, 39, 40, 41, 51, 52, 53, 58, 59, 60, 61, 62, 63, 64,
32 	 65, 66, 67, 68, 87, 88, 99, 70,119,110,102,104,111,107,109,106,
33 	105,108,103, 69, 98, 55, 74, 78, 96, 79, 80, 81, 75, 76, 77, 71,
34 	 72, 73, 82, 83, 86,127,116,117,183,184,185,186,187,188,189,190,
35 	191,192,193,194,134,138,130,132,128,129,131,137,133,135,136,113,
36 	115,114,unk,unk,unk,121,unk, 89, 93,124, 92, 94, 95,unk,unk,unk,
37 	122,123, 90, 91, 85,unk,unk,unk,unk,unk,unk,unk,111,unk,unk,unk,
38 	unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,
39 	unk,unk,unk,unk,unk,unk,179,180,unk,unk,unk,unk,unk,unk,unk,unk,
40 	unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,
41 	unk,unk,unk,unk,unk,unk,unk,unk,111,unk,unk,unk,unk,unk,unk,unk,
42 	 29, 42, 56,125, 97, 54,100,126,164,166,165,163,161,115,114,113,
43 	150,158,159,128,136,177,178,176,142,152,173,140,unk,unk,unk,unk
44 };
45 
46 static const struct {
47 	__s32 x;
48 	__s32 y;
49 }  hid_hat_to_axis[] = {{ 0, 0}, { 0,-1}, { 1,-1}, { 1, 0}, { 1, 1}, { 0, 1}, {-1, 1}, {-1, 0}, {-1,-1}};
50 
51 struct usage_priority {
52 	__u32 usage;			/* the HID usage associated */
53 	bool global;			/* we assume all usages to be slotted,
54 					 * unless global
55 					 */
56 	unsigned int slot_overwrite;	/* for globals: allows to set the usage
57 					 * before or after the slots
58 					 */
59 };
60 
61 /*
62  * hid-input will convert this list into priorities:
63  * the first element will have the highest priority
64  * (the length of the following array) and the last
65  * element the lowest (1).
66  *
67  * hid-input will then shift the priority by 8 bits to leave some space
68  * in case drivers want to interleave other fields.
69  *
70  * To accommodate slotted devices, the slot priority is
71  * defined in the next 8 bits (defined by 0xff - slot).
72  *
73  * If drivers want to add fields before those, hid-input will
74  * leave out the first 8 bits of the priority value.
75  *
76  * This still leaves us 65535 individual priority values.
77  */
78 static const struct usage_priority hidinput_usages_priorities[] = {
79 	{ /* Eraser (eraser touching) must always come before tipswitch */
80 	  .usage = HID_DG_ERASER,
81 	},
82 	{ /* Invert must always come before In Range */
83 	  .usage = HID_DG_INVERT,
84 	},
85 	{ /* Is the tip of the tool touching? */
86 	  .usage = HID_DG_TIPSWITCH,
87 	},
88 	{ /* Tip Pressure might emulate tip switch */
89 	  .usage = HID_DG_TIPPRESSURE,
90 	},
91 	{ /* In Range needs to come after the other tool states */
92 	  .usage = HID_DG_INRANGE,
93 	},
94 };
95 
96 #define map_abs(c)	hid_map_usage(hidinput, usage, &bit, &max, EV_ABS, (c))
97 #define map_rel(c)	hid_map_usage(hidinput, usage, &bit, &max, EV_REL, (c))
98 #define map_key(c)	hid_map_usage(hidinput, usage, &bit, &max, EV_KEY, (c))
99 #define map_led(c)	hid_map_usage(hidinput, usage, &bit, &max, EV_LED, (c))
100 #define map_msc(c)	hid_map_usage(hidinput, usage, &bit, &max, EV_MSC, (c))
101 
102 #define map_abs_clear(c)	hid_map_usage_clear(hidinput, usage, &bit, \
103 		&max, EV_ABS, (c))
104 #define map_key_clear(c)	hid_map_usage_clear(hidinput, usage, &bit, \
105 		&max, EV_KEY, (c))
106 
107 static bool match_scancode(struct hid_usage *usage,
108 			   unsigned int cur_idx, unsigned int scancode)
109 {
110 	return (usage->hid & (HID_USAGE_PAGE | HID_USAGE)) == scancode;
111 }
112 
113 static bool match_keycode(struct hid_usage *usage,
114 			  unsigned int cur_idx, unsigned int keycode)
115 {
116 	/*
117 	 * We should exclude unmapped usages when doing lookup by keycode.
118 	 */
119 	return (usage->type == EV_KEY && usage->code == keycode);
120 }
121 
122 static bool match_index(struct hid_usage *usage,
123 			unsigned int cur_idx, unsigned int idx)
124 {
125 	return cur_idx == idx;
126 }
127 
128 typedef bool (*hid_usage_cmp_t)(struct hid_usage *usage,
129 				unsigned int cur_idx, unsigned int val);
130 
131 static struct hid_usage *hidinput_find_key(struct hid_device *hid,
132 					   hid_usage_cmp_t match,
133 					   unsigned int value,
134 					   unsigned int *usage_idx)
135 {
136 	unsigned int i, j, k, cur_idx = 0;
137 	struct hid_report *report;
138 	struct hid_usage *usage;
139 
140 	for (k = HID_INPUT_REPORT; k <= HID_OUTPUT_REPORT; k++) {
141 		list_for_each_entry(report, &hid->report_enum[k].report_list, list) {
142 			for (i = 0; i < report->maxfield; i++) {
143 				for (j = 0; j < report->field[i]->maxusage; j++) {
144 					usage = report->field[i]->usage + j;
145 					if (usage->type == EV_KEY || usage->type == 0) {
146 						if (match(usage, cur_idx, value)) {
147 							if (usage_idx)
148 								*usage_idx = cur_idx;
149 							return usage;
150 						}
151 						cur_idx++;
152 					}
153 				}
154 			}
155 		}
156 	}
157 	return NULL;
158 }
159 
160 static struct hid_usage *hidinput_locate_usage(struct hid_device *hid,
161 					const struct input_keymap_entry *ke,
162 					unsigned int *index)
163 {
164 	struct hid_usage *usage;
165 	unsigned int scancode;
166 
167 	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
168 		usage = hidinput_find_key(hid, match_index, ke->index, index);
169 	else if (input_scancode_to_scalar(ke, &scancode) == 0)
170 		usage = hidinput_find_key(hid, match_scancode, scancode, index);
171 	else
172 		usage = NULL;
173 
174 	return usage;
175 }
176 
177 static int hidinput_getkeycode(struct input_dev *dev,
178 			       struct input_keymap_entry *ke)
179 {
180 	struct hid_device *hid = input_get_drvdata(dev);
181 	struct hid_usage *usage;
182 	unsigned int scancode, index;
183 
184 	usage = hidinput_locate_usage(hid, ke, &index);
185 	if (usage) {
186 		ke->keycode = usage->type == EV_KEY ?
187 				usage->code : KEY_RESERVED;
188 		ke->index = index;
189 		scancode = usage->hid & (HID_USAGE_PAGE | HID_USAGE);
190 		ke->len = sizeof(scancode);
191 		memcpy(ke->scancode, &scancode, sizeof(scancode));
192 		return 0;
193 	}
194 
195 	return -EINVAL;
196 }
197 
198 static int hidinput_setkeycode(struct input_dev *dev,
199 			       const struct input_keymap_entry *ke,
200 			       unsigned int *old_keycode)
201 {
202 	struct hid_device *hid = input_get_drvdata(dev);
203 	struct hid_usage *usage;
204 
205 	usage = hidinput_locate_usage(hid, ke, NULL);
206 	if (usage) {
207 		*old_keycode = usage->type == EV_KEY ?
208 				usage->code : KEY_RESERVED;
209 		usage->type = EV_KEY;
210 		usage->code = ke->keycode;
211 
212 		clear_bit(*old_keycode, dev->keybit);
213 		set_bit(usage->code, dev->keybit);
214 		dbg_hid("Assigned keycode %d to HID usage code %x\n",
215 			usage->code, usage->hid);
216 
217 		/*
218 		 * Set the keybit for the old keycode if the old keycode is used
219 		 * by another key
220 		 */
221 		if (hidinput_find_key(hid, match_keycode, *old_keycode, NULL))
222 			set_bit(*old_keycode, dev->keybit);
223 
224 		return 0;
225 	}
226 
227 	return -EINVAL;
228 }
229 
230 
231 /**
232  * hidinput_calc_abs_res - calculate an absolute axis resolution
233  * @field: the HID report field to calculate resolution for
234  * @code: axis code
235  *
236  * The formula is:
237  *                         (logical_maximum - logical_minimum)
238  * resolution = ----------------------------------------------------------
239  *              (physical_maximum - physical_minimum) * 10 ^ unit_exponent
240  *
241  * as seen in the HID specification v1.11 6.2.2.7 Global Items.
242  *
243  * Only exponent 1 length units are processed. Centimeters and inches are
244  * converted to millimeters. Degrees are converted to radians.
245  */
246 __s32 hidinput_calc_abs_res(const struct hid_field *field, __u16 code)
247 {
248 	__s32 unit_exponent = field->unit_exponent;
249 	__s32 logical_extents = field->logical_maximum -
250 					field->logical_minimum;
251 	__s32 physical_extents = field->physical_maximum -
252 					field->physical_minimum;
253 	__s32 prev;
254 
255 	/* Check if the extents are sane */
256 	if (logical_extents <= 0 || physical_extents <= 0)
257 		return 0;
258 
259 	/*
260 	 * Verify and convert units.
261 	 * See HID specification v1.11 6.2.2.7 Global Items for unit decoding
262 	 */
263 	switch (code) {
264 	case ABS_X:
265 	case ABS_Y:
266 	case ABS_Z:
267 	case ABS_MT_POSITION_X:
268 	case ABS_MT_POSITION_Y:
269 	case ABS_MT_TOOL_X:
270 	case ABS_MT_TOOL_Y:
271 	case ABS_MT_TOUCH_MAJOR:
272 	case ABS_MT_TOUCH_MINOR:
273 		if (field->unit == 0x11) {		/* If centimeters */
274 			/* Convert to millimeters */
275 			unit_exponent += 1;
276 		} else if (field->unit == 0x13) {	/* If inches */
277 			/* Convert to millimeters */
278 			prev = physical_extents;
279 			physical_extents *= 254;
280 			if (physical_extents < prev)
281 				return 0;
282 			unit_exponent -= 1;
283 		} else {
284 			return 0;
285 		}
286 		break;
287 
288 	case ABS_RX:
289 	case ABS_RY:
290 	case ABS_RZ:
291 	case ABS_WHEEL:
292 	case ABS_TILT_X:
293 	case ABS_TILT_Y:
294 		if (field->unit == 0x14) {		/* If degrees */
295 			/* Convert to radians */
296 			prev = logical_extents;
297 			logical_extents *= 573;
298 			if (logical_extents < prev)
299 				return 0;
300 			unit_exponent += 1;
301 		} else if (field->unit != 0x12) {	/* If not radians */
302 			return 0;
303 		}
304 		break;
305 
306 	default:
307 		return 0;
308 	}
309 
310 	/* Apply negative unit exponent */
311 	for (; unit_exponent < 0; unit_exponent++) {
312 		prev = logical_extents;
313 		logical_extents *= 10;
314 		if (logical_extents < prev)
315 			return 0;
316 	}
317 	/* Apply positive unit exponent */
318 	for (; unit_exponent > 0; unit_exponent--) {
319 		prev = physical_extents;
320 		physical_extents *= 10;
321 		if (physical_extents < prev)
322 			return 0;
323 	}
324 
325 	/* Calculate resolution */
326 	return DIV_ROUND_CLOSEST(logical_extents, physical_extents);
327 }
328 EXPORT_SYMBOL_GPL(hidinput_calc_abs_res);
329 
330 #ifdef CONFIG_HID_BATTERY_STRENGTH
331 static enum power_supply_property hidinput_battery_props[] = {
332 	POWER_SUPPLY_PROP_PRESENT,
333 	POWER_SUPPLY_PROP_ONLINE,
334 	POWER_SUPPLY_PROP_CAPACITY,
335 	POWER_SUPPLY_PROP_MODEL_NAME,
336 	POWER_SUPPLY_PROP_STATUS,
337 	POWER_SUPPLY_PROP_SCOPE,
338 };
339 
340 #define HID_BATTERY_QUIRK_PERCENT	(1 << 0) /* always reports percent */
341 #define HID_BATTERY_QUIRK_FEATURE	(1 << 1) /* ask for feature report */
342 #define HID_BATTERY_QUIRK_IGNORE	(1 << 2) /* completely ignore the battery */
343 
344 static const struct hid_device_id hid_battery_quirks[] = {
345 	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE,
346 		USB_DEVICE_ID_APPLE_ALU_WIRELESS_2009_ISO),
347 	  HID_BATTERY_QUIRK_PERCENT | HID_BATTERY_QUIRK_FEATURE },
348 	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE,
349 		USB_DEVICE_ID_APPLE_ALU_WIRELESS_2009_ANSI),
350 	  HID_BATTERY_QUIRK_PERCENT | HID_BATTERY_QUIRK_FEATURE },
351 	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE,
352 		USB_DEVICE_ID_APPLE_ALU_WIRELESS_2011_ANSI),
353 	  HID_BATTERY_QUIRK_PERCENT | HID_BATTERY_QUIRK_FEATURE },
354 	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE,
355 			       USB_DEVICE_ID_APPLE_ALU_WIRELESS_2011_ISO),
356 	  HID_BATTERY_QUIRK_PERCENT | HID_BATTERY_QUIRK_FEATURE },
357 	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE,
358 		USB_DEVICE_ID_APPLE_ALU_WIRELESS_ANSI),
359 	  HID_BATTERY_QUIRK_PERCENT | HID_BATTERY_QUIRK_FEATURE },
360 	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_ELECOM,
361 		USB_DEVICE_ID_ELECOM_BM084),
362 	  HID_BATTERY_QUIRK_IGNORE },
363 	{ HID_USB_DEVICE(USB_VENDOR_ID_SYMBOL,
364 		USB_DEVICE_ID_SYMBOL_SCANNER_3),
365 	  HID_BATTERY_QUIRK_IGNORE },
366 	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_ASUSTEK,
367 		USB_DEVICE_ID_ASUSTEK_T100CHI_KEYBOARD),
368 	  HID_BATTERY_QUIRK_IGNORE },
369 	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH,
370 		USB_DEVICE_ID_LOGITECH_DINOVO_EDGE_KBD),
371 	  HID_BATTERY_QUIRK_IGNORE },
372 	{ HID_USB_DEVICE(USB_VENDOR_ID_ELAN, USB_DEVICE_ID_ASUS_UX550_TOUCHSCREEN),
373 	  HID_BATTERY_QUIRK_IGNORE },
374 	{ HID_USB_DEVICE(USB_VENDOR_ID_ELAN, USB_DEVICE_ID_ASUS_UX550VE_TOUCHSCREEN),
375 	  HID_BATTERY_QUIRK_IGNORE },
376 	{ HID_I2C_DEVICE(USB_VENDOR_ID_ELAN, I2C_DEVICE_ID_HP_ENVY_X360_15),
377 	  HID_BATTERY_QUIRK_IGNORE },
378 	{ HID_I2C_DEVICE(USB_VENDOR_ID_ELAN, I2C_DEVICE_ID_HP_ENVY_X360_15T_DR100),
379 	  HID_BATTERY_QUIRK_IGNORE },
380 	{ HID_I2C_DEVICE(USB_VENDOR_ID_ELAN, I2C_DEVICE_ID_HP_SPECTRE_X360_15),
381 	  HID_BATTERY_QUIRK_IGNORE },
382 	{ HID_I2C_DEVICE(USB_VENDOR_ID_ELAN, I2C_DEVICE_ID_SURFACE_GO_TOUCHSCREEN),
383 	  HID_BATTERY_QUIRK_IGNORE },
384 	{ HID_I2C_DEVICE(USB_VENDOR_ID_ELAN, I2C_DEVICE_ID_SURFACE_GO2_TOUCHSCREEN),
385 	  HID_BATTERY_QUIRK_IGNORE },
386 	{ HID_I2C_DEVICE(USB_VENDOR_ID_ELAN, I2C_DEVICE_ID_LENOVO_YOGA_C630_TOUCHSCREEN),
387 	  HID_BATTERY_QUIRK_IGNORE },
388 	{}
389 };
390 
391 static unsigned find_battery_quirk(struct hid_device *hdev)
392 {
393 	unsigned quirks = 0;
394 	const struct hid_device_id *match;
395 
396 	match = hid_match_id(hdev, hid_battery_quirks);
397 	if (match != NULL)
398 		quirks = match->driver_data;
399 
400 	return quirks;
401 }
402 
403 static int hidinput_scale_battery_capacity(struct hid_device *dev,
404 					   int value)
405 {
406 	if (dev->battery_min < dev->battery_max &&
407 	    value >= dev->battery_min && value <= dev->battery_max)
408 		value = ((value - dev->battery_min) * 100) /
409 			(dev->battery_max - dev->battery_min);
410 
411 	return value;
412 }
413 
414 static int hidinput_query_battery_capacity(struct hid_device *dev)
415 {
416 	u8 *buf;
417 	int ret;
418 
419 	buf = kmalloc(4, GFP_KERNEL);
420 	if (!buf)
421 		return -ENOMEM;
422 
423 	ret = hid_hw_raw_request(dev, dev->battery_report_id, buf, 4,
424 				 dev->battery_report_type, HID_REQ_GET_REPORT);
425 	if (ret < 2) {
426 		kfree(buf);
427 		return -ENODATA;
428 	}
429 
430 	ret = hidinput_scale_battery_capacity(dev, buf[1]);
431 	kfree(buf);
432 	return ret;
433 }
434 
435 static int hidinput_get_battery_property(struct power_supply *psy,
436 					 enum power_supply_property prop,
437 					 union power_supply_propval *val)
438 {
439 	struct hid_device *dev = power_supply_get_drvdata(psy);
440 	int value;
441 	int ret = 0;
442 
443 	switch (prop) {
444 	case POWER_SUPPLY_PROP_PRESENT:
445 	case POWER_SUPPLY_PROP_ONLINE:
446 		val->intval = 1;
447 		break;
448 
449 	case POWER_SUPPLY_PROP_CAPACITY:
450 		if (dev->battery_status != HID_BATTERY_REPORTED &&
451 		    !dev->battery_avoid_query) {
452 			value = hidinput_query_battery_capacity(dev);
453 			if (value < 0)
454 				return value;
455 		} else  {
456 			value = dev->battery_capacity;
457 		}
458 
459 		val->intval = value;
460 		break;
461 
462 	case POWER_SUPPLY_PROP_MODEL_NAME:
463 		val->strval = dev->name;
464 		break;
465 
466 	case POWER_SUPPLY_PROP_STATUS:
467 		if (dev->battery_status != HID_BATTERY_REPORTED &&
468 		    !dev->battery_avoid_query) {
469 			value = hidinput_query_battery_capacity(dev);
470 			if (value < 0)
471 				return value;
472 
473 			dev->battery_capacity = value;
474 			dev->battery_status = HID_BATTERY_QUERIED;
475 		}
476 
477 		if (dev->battery_status == HID_BATTERY_UNKNOWN)
478 			val->intval = POWER_SUPPLY_STATUS_UNKNOWN;
479 		else
480 			val->intval = POWER_SUPPLY_STATUS_DISCHARGING;
481 		break;
482 
483 	case POWER_SUPPLY_PROP_SCOPE:
484 		val->intval = POWER_SUPPLY_SCOPE_DEVICE;
485 		break;
486 
487 	default:
488 		ret = -EINVAL;
489 		break;
490 	}
491 
492 	return ret;
493 }
494 
495 static int hidinput_setup_battery(struct hid_device *dev, unsigned report_type,
496 				  struct hid_field *field, bool is_percentage)
497 {
498 	struct power_supply_desc *psy_desc;
499 	struct power_supply_config psy_cfg = { .drv_data = dev, };
500 	unsigned quirks;
501 	s32 min, max;
502 	int error;
503 
504 	if (dev->battery)
505 		return 0;	/* already initialized? */
506 
507 	quirks = find_battery_quirk(dev);
508 
509 	hid_dbg(dev, "device %x:%x:%x %d quirks %d\n",
510 		dev->bus, dev->vendor, dev->product, dev->version, quirks);
511 
512 	if (quirks & HID_BATTERY_QUIRK_IGNORE)
513 		return 0;
514 
515 	psy_desc = kzalloc(sizeof(*psy_desc), GFP_KERNEL);
516 	if (!psy_desc)
517 		return -ENOMEM;
518 
519 	psy_desc->name = kasprintf(GFP_KERNEL, "hid-%s-battery",
520 				   strlen(dev->uniq) ?
521 					dev->uniq : dev_name(&dev->dev));
522 	if (!psy_desc->name) {
523 		error = -ENOMEM;
524 		goto err_free_mem;
525 	}
526 
527 	psy_desc->type = POWER_SUPPLY_TYPE_BATTERY;
528 	psy_desc->properties = hidinput_battery_props;
529 	psy_desc->num_properties = ARRAY_SIZE(hidinput_battery_props);
530 	psy_desc->use_for_apm = 0;
531 	psy_desc->get_property = hidinput_get_battery_property;
532 
533 	min = field->logical_minimum;
534 	max = field->logical_maximum;
535 
536 	if (is_percentage || (quirks & HID_BATTERY_QUIRK_PERCENT)) {
537 		min = 0;
538 		max = 100;
539 	}
540 
541 	if (quirks & HID_BATTERY_QUIRK_FEATURE)
542 		report_type = HID_FEATURE_REPORT;
543 
544 	dev->battery_min = min;
545 	dev->battery_max = max;
546 	dev->battery_report_type = report_type;
547 	dev->battery_report_id = field->report->id;
548 
549 	/*
550 	 * Stylus is normally not connected to the device and thus we
551 	 * can't query the device and get meaningful battery strength.
552 	 * We have to wait for the device to report it on its own.
553 	 */
554 	dev->battery_avoid_query = report_type == HID_INPUT_REPORT &&
555 				   field->physical == HID_DG_STYLUS;
556 
557 	dev->battery = power_supply_register(&dev->dev, psy_desc, &psy_cfg);
558 	if (IS_ERR(dev->battery)) {
559 		error = PTR_ERR(dev->battery);
560 		hid_warn(dev, "can't register power supply: %d\n", error);
561 		goto err_free_name;
562 	}
563 
564 	power_supply_powers(dev->battery, &dev->dev);
565 	return 0;
566 
567 err_free_name:
568 	kfree(psy_desc->name);
569 err_free_mem:
570 	kfree(psy_desc);
571 	dev->battery = NULL;
572 	return error;
573 }
574 
575 static void hidinput_cleanup_battery(struct hid_device *dev)
576 {
577 	const struct power_supply_desc *psy_desc;
578 
579 	if (!dev->battery)
580 		return;
581 
582 	psy_desc = dev->battery->desc;
583 	power_supply_unregister(dev->battery);
584 	kfree(psy_desc->name);
585 	kfree(psy_desc);
586 	dev->battery = NULL;
587 }
588 
589 static void hidinput_update_battery(struct hid_device *dev, int value)
590 {
591 	int capacity;
592 
593 	if (!dev->battery)
594 		return;
595 
596 	if (value == 0 || value < dev->battery_min || value > dev->battery_max)
597 		return;
598 
599 	capacity = hidinput_scale_battery_capacity(dev, value);
600 
601 	if (dev->battery_status != HID_BATTERY_REPORTED ||
602 	    capacity != dev->battery_capacity ||
603 	    ktime_after(ktime_get_coarse(), dev->battery_ratelimit_time)) {
604 		dev->battery_capacity = capacity;
605 		dev->battery_status = HID_BATTERY_REPORTED;
606 		dev->battery_ratelimit_time =
607 			ktime_add_ms(ktime_get_coarse(), 30 * 1000);
608 		power_supply_changed(dev->battery);
609 	}
610 }
611 #else  /* !CONFIG_HID_BATTERY_STRENGTH */
612 static int hidinput_setup_battery(struct hid_device *dev, unsigned report_type,
613 				  struct hid_field *field, bool is_percentage)
614 {
615 	return 0;
616 }
617 
618 static void hidinput_cleanup_battery(struct hid_device *dev)
619 {
620 }
621 
622 static void hidinput_update_battery(struct hid_device *dev, int value)
623 {
624 }
625 #endif	/* CONFIG_HID_BATTERY_STRENGTH */
626 
627 static bool hidinput_field_in_collection(struct hid_device *device, struct hid_field *field,
628 					 unsigned int type, unsigned int usage)
629 {
630 	struct hid_collection *collection;
631 
632 	collection = &device->collection[field->usage->collection_index];
633 
634 	return collection->type == type && collection->usage == usage;
635 }
636 
637 static void hidinput_configure_usage(struct hid_input *hidinput, struct hid_field *field,
638 				     struct hid_usage *usage, unsigned int usage_index)
639 {
640 	struct input_dev *input = hidinput->input;
641 	struct hid_device *device = input_get_drvdata(input);
642 	const struct usage_priority *usage_priority = NULL;
643 	int max = 0, code;
644 	unsigned int i = 0;
645 	unsigned long *bit = NULL;
646 
647 	field->hidinput = hidinput;
648 
649 	if (field->flags & HID_MAIN_ITEM_CONSTANT)
650 		goto ignore;
651 
652 	/* Ignore if report count is out of bounds. */
653 	if (field->report_count < 1)
654 		goto ignore;
655 
656 	/* only LED usages are supported in output fields */
657 	if (field->report_type == HID_OUTPUT_REPORT &&
658 			(usage->hid & HID_USAGE_PAGE) != HID_UP_LED) {
659 		goto ignore;
660 	}
661 
662 	/* assign a priority based on the static list declared here */
663 	for (i = 0; i < ARRAY_SIZE(hidinput_usages_priorities); i++) {
664 		if (usage->hid == hidinput_usages_priorities[i].usage) {
665 			usage_priority = &hidinput_usages_priorities[i];
666 
667 			field->usages_priorities[usage_index] =
668 				(ARRAY_SIZE(hidinput_usages_priorities) - i) << 8;
669 			break;
670 		}
671 	}
672 
673 	/*
674 	 * For slotted devices, we need to also add the slot index
675 	 * in the priority.
676 	 */
677 	if (usage_priority && usage_priority->global)
678 		field->usages_priorities[usage_index] |=
679 			usage_priority->slot_overwrite;
680 	else
681 		field->usages_priorities[usage_index] |=
682 			(0xff - field->slot_idx) << 16;
683 
684 	if (device->driver->input_mapping) {
685 		int ret = device->driver->input_mapping(device, hidinput, field,
686 				usage, &bit, &max);
687 		if (ret > 0)
688 			goto mapped;
689 		if (ret < 0)
690 			goto ignore;
691 	}
692 
693 	switch (usage->hid & HID_USAGE_PAGE) {
694 	case HID_UP_UNDEFINED:
695 		goto ignore;
696 
697 	case HID_UP_KEYBOARD:
698 		set_bit(EV_REP, input->evbit);
699 
700 		if ((usage->hid & HID_USAGE) < 256) {
701 			if (!hid_keyboard[usage->hid & HID_USAGE]) goto ignore;
702 			map_key_clear(hid_keyboard[usage->hid & HID_USAGE]);
703 		} else
704 			map_key(KEY_UNKNOWN);
705 
706 		break;
707 
708 	case HID_UP_BUTTON:
709 		code = ((usage->hid - 1) & HID_USAGE);
710 
711 		switch (field->application) {
712 		case HID_GD_MOUSE:
713 		case HID_GD_POINTER:  code += BTN_MOUSE; break;
714 		case HID_GD_JOYSTICK:
715 				if (code <= 0xf)
716 					code += BTN_JOYSTICK;
717 				else
718 					code += BTN_TRIGGER_HAPPY - 0x10;
719 				break;
720 		case HID_GD_GAMEPAD:
721 				if (code <= 0xf)
722 					code += BTN_GAMEPAD;
723 				else
724 					code += BTN_TRIGGER_HAPPY - 0x10;
725 				break;
726 		case HID_CP_CONSUMER_CONTROL:
727 				if (hidinput_field_in_collection(device, field,
728 								 HID_COLLECTION_NAMED_ARRAY,
729 								 HID_CP_PROGRAMMABLEBUTTONS)) {
730 					if (code <= 0x1d)
731 						code += KEY_MACRO1;
732 					else
733 						code += BTN_TRIGGER_HAPPY - 0x1e;
734 					break;
735 				}
736 				fallthrough;
737 		default:
738 			switch (field->physical) {
739 			case HID_GD_MOUSE:
740 			case HID_GD_POINTER:  code += BTN_MOUSE; break;
741 			case HID_GD_JOYSTICK: code += BTN_JOYSTICK; break;
742 			case HID_GD_GAMEPAD:  code += BTN_GAMEPAD; break;
743 			default:              code += BTN_MISC;
744 			}
745 		}
746 
747 		map_key(code);
748 		break;
749 
750 	case HID_UP_SIMULATION:
751 		switch (usage->hid & 0xffff) {
752 		case 0xba: map_abs(ABS_RUDDER);   break;
753 		case 0xbb: map_abs(ABS_THROTTLE); break;
754 		case 0xc4: map_abs(ABS_GAS);      break;
755 		case 0xc5: map_abs(ABS_BRAKE);    break;
756 		case 0xc8: map_abs(ABS_WHEEL);    break;
757 		default:   goto ignore;
758 		}
759 		break;
760 
761 	case HID_UP_GENDESK:
762 		if ((usage->hid & 0xf0) == 0x80) {	/* SystemControl */
763 			switch (usage->hid & 0xf) {
764 			case 0x1: map_key_clear(KEY_POWER);  break;
765 			case 0x2: map_key_clear(KEY_SLEEP);  break;
766 			case 0x3: map_key_clear(KEY_WAKEUP); break;
767 			case 0x4: map_key_clear(KEY_CONTEXT_MENU); break;
768 			case 0x5: map_key_clear(KEY_MENU); break;
769 			case 0x6: map_key_clear(KEY_PROG1); break;
770 			case 0x7: map_key_clear(KEY_HELP); break;
771 			case 0x8: map_key_clear(KEY_EXIT); break;
772 			case 0x9: map_key_clear(KEY_SELECT); break;
773 			case 0xa: map_key_clear(KEY_RIGHT); break;
774 			case 0xb: map_key_clear(KEY_LEFT); break;
775 			case 0xc: map_key_clear(KEY_UP); break;
776 			case 0xd: map_key_clear(KEY_DOWN); break;
777 			case 0xe: map_key_clear(KEY_POWER2); break;
778 			case 0xf: map_key_clear(KEY_RESTART); break;
779 			default: goto unknown;
780 			}
781 			break;
782 		}
783 
784 		if ((usage->hid & 0xf0) == 0xb0) {	/* SC - Display */
785 			switch (usage->hid & 0xf) {
786 			case 0x05: map_key_clear(KEY_SWITCHVIDEOMODE); break;
787 			default: goto ignore;
788 			}
789 			break;
790 		}
791 
792 		/*
793 		 * Some lazy vendors declare 255 usages for System Control,
794 		 * leading to the creation of ABS_X|Y axis and too many others.
795 		 * It wouldn't be a problem if joydev doesn't consider the
796 		 * device as a joystick then.
797 		 */
798 		if (field->application == HID_GD_SYSTEM_CONTROL)
799 			goto ignore;
800 
801 		if ((usage->hid & 0xf0) == 0x90) {	/* D-pad */
802 			switch (usage->hid) {
803 			case HID_GD_UP:	   usage->hat_dir = 1; break;
804 			case HID_GD_DOWN:  usage->hat_dir = 5; break;
805 			case HID_GD_RIGHT: usage->hat_dir = 3; break;
806 			case HID_GD_LEFT:  usage->hat_dir = 7; break;
807 			default: goto unknown;
808 			}
809 			if (field->dpad) {
810 				map_abs(field->dpad);
811 				goto ignore;
812 			}
813 			map_abs(ABS_HAT0X);
814 			break;
815 		}
816 
817 		switch (usage->hid) {
818 		/* These usage IDs map directly to the usage codes. */
819 		case HID_GD_X: case HID_GD_Y: case HID_GD_Z:
820 		case HID_GD_RX: case HID_GD_RY: case HID_GD_RZ:
821 			if (field->flags & HID_MAIN_ITEM_RELATIVE)
822 				map_rel(usage->hid & 0xf);
823 			else
824 				map_abs_clear(usage->hid & 0xf);
825 			break;
826 
827 		case HID_GD_WHEEL:
828 			if (field->flags & HID_MAIN_ITEM_RELATIVE) {
829 				set_bit(REL_WHEEL, input->relbit);
830 				map_rel(REL_WHEEL_HI_RES);
831 			} else {
832 				map_abs(usage->hid & 0xf);
833 			}
834 			break;
835 		case HID_GD_SLIDER: case HID_GD_DIAL:
836 			if (field->flags & HID_MAIN_ITEM_RELATIVE)
837 				map_rel(usage->hid & 0xf);
838 			else
839 				map_abs(usage->hid & 0xf);
840 			break;
841 
842 		case HID_GD_HATSWITCH:
843 			usage->hat_min = field->logical_minimum;
844 			usage->hat_max = field->logical_maximum;
845 			map_abs(ABS_HAT0X);
846 			break;
847 
848 		case HID_GD_START:	map_key_clear(BTN_START);	break;
849 		case HID_GD_SELECT:	map_key_clear(BTN_SELECT);	break;
850 
851 		case HID_GD_RFKILL_BTN:
852 			/* MS wireless radio ctl extension, also check CA */
853 			if (field->application == HID_GD_WIRELESS_RADIO_CTLS) {
854 				map_key_clear(KEY_RFKILL);
855 				/* We need to simulate the btn release */
856 				field->flags |= HID_MAIN_ITEM_RELATIVE;
857 				break;
858 			}
859 			goto unknown;
860 
861 		default: goto unknown;
862 		}
863 
864 		break;
865 
866 	case HID_UP_LED:
867 		switch (usage->hid & 0xffff) {		      /* HID-Value:                   */
868 		case 0x01:  map_led (LED_NUML);     break;    /*   "Num Lock"                 */
869 		case 0x02:  map_led (LED_CAPSL);    break;    /*   "Caps Lock"                */
870 		case 0x03:  map_led (LED_SCROLLL);  break;    /*   "Scroll Lock"              */
871 		case 0x04:  map_led (LED_COMPOSE);  break;    /*   "Compose"                  */
872 		case 0x05:  map_led (LED_KANA);     break;    /*   "Kana"                     */
873 		case 0x27:  map_led (LED_SLEEP);    break;    /*   "Stand-By"                 */
874 		case 0x4c:  map_led (LED_SUSPEND);  break;    /*   "System Suspend"           */
875 		case 0x09:  map_led (LED_MUTE);     break;    /*   "Mute"                     */
876 		case 0x4b:  map_led (LED_MISC);     break;    /*   "Generic Indicator"        */
877 		case 0x19:  map_led (LED_MAIL);     break;    /*   "Message Waiting"          */
878 		case 0x4d:  map_led (LED_CHARGING); break;    /*   "External Power Connected" */
879 
880 		default: goto ignore;
881 		}
882 		break;
883 
884 	case HID_UP_DIGITIZER:
885 		if ((field->application & 0xff) == 0x01) /* Digitizer */
886 			__set_bit(INPUT_PROP_POINTER, input->propbit);
887 		else if ((field->application & 0xff) == 0x02) /* Pen */
888 			__set_bit(INPUT_PROP_DIRECT, input->propbit);
889 
890 		switch (usage->hid & 0xff) {
891 		case 0x00: /* Undefined */
892 			goto ignore;
893 
894 		case 0x30: /* TipPressure */
895 			if (!test_bit(BTN_TOUCH, input->keybit)) {
896 				device->quirks |= HID_QUIRK_NOTOUCH;
897 				set_bit(EV_KEY, input->evbit);
898 				set_bit(BTN_TOUCH, input->keybit);
899 			}
900 			map_abs_clear(ABS_PRESSURE);
901 			break;
902 
903 		case 0x32: /* InRange */
904 			switch (field->physical) {
905 			case HID_DG_PUCK:
906 				map_key(BTN_TOOL_MOUSE);
907 				break;
908 			case HID_DG_FINGER:
909 				map_key(BTN_TOOL_FINGER);
910 				break;
911 			default:
912 				/*
913 				 * If the physical is not given,
914 				 * rely on the application.
915 				 */
916 				if (!field->physical) {
917 					switch (field->application) {
918 					case HID_DG_TOUCHSCREEN:
919 					case HID_DG_TOUCHPAD:
920 						map_key_clear(BTN_TOOL_FINGER);
921 						break;
922 					default:
923 						map_key_clear(BTN_TOOL_PEN);
924 					}
925 				} else {
926 					map_key(BTN_TOOL_PEN);
927 				}
928 				break;
929 			}
930 			break;
931 
932 		case 0x3b: /* Battery Strength */
933 			hidinput_setup_battery(device, HID_INPUT_REPORT, field, false);
934 			usage->type = EV_PWR;
935 			return;
936 
937 		case 0x3c: /* Invert */
938 			map_key_clear(BTN_TOOL_RUBBER);
939 			break;
940 
941 		case 0x3d: /* X Tilt */
942 			map_abs_clear(ABS_TILT_X);
943 			break;
944 
945 		case 0x3e: /* Y Tilt */
946 			map_abs_clear(ABS_TILT_Y);
947 			break;
948 
949 		case 0x33: /* Touch */
950 		case 0x42: /* TipSwitch */
951 		case 0x43: /* TipSwitch2 */
952 			device->quirks &= ~HID_QUIRK_NOTOUCH;
953 			map_key_clear(BTN_TOUCH);
954 			break;
955 
956 		case 0x44: /* BarrelSwitch */
957 			map_key_clear(BTN_STYLUS);
958 			break;
959 
960 		case 0x45: /* ERASER */
961 			/*
962 			 * This event is reported when eraser tip touches the surface.
963 			 * Actual eraser (BTN_TOOL_RUBBER) is set by Invert usage when
964 			 * tool gets in proximity.
965 			 */
966 			map_key_clear(BTN_TOUCH);
967 			break;
968 
969 		case 0x46: /* TabletPick */
970 		case 0x5a: /* SecondaryBarrelSwitch */
971 			map_key_clear(BTN_STYLUS2);
972 			break;
973 
974 		case 0x5b: /* TransducerSerialNumber */
975 		case 0x6e: /* TransducerSerialNumber2 */
976 			map_msc(MSC_SERIAL);
977 			break;
978 
979 		default:  goto unknown;
980 		}
981 		break;
982 
983 	case HID_UP_TELEPHONY:
984 		switch (usage->hid & HID_USAGE) {
985 		case 0x2f: map_key_clear(KEY_MICMUTE);		break;
986 		case 0xb0: map_key_clear(KEY_NUMERIC_0);	break;
987 		case 0xb1: map_key_clear(KEY_NUMERIC_1);	break;
988 		case 0xb2: map_key_clear(KEY_NUMERIC_2);	break;
989 		case 0xb3: map_key_clear(KEY_NUMERIC_3);	break;
990 		case 0xb4: map_key_clear(KEY_NUMERIC_4);	break;
991 		case 0xb5: map_key_clear(KEY_NUMERIC_5);	break;
992 		case 0xb6: map_key_clear(KEY_NUMERIC_6);	break;
993 		case 0xb7: map_key_clear(KEY_NUMERIC_7);	break;
994 		case 0xb8: map_key_clear(KEY_NUMERIC_8);	break;
995 		case 0xb9: map_key_clear(KEY_NUMERIC_9);	break;
996 		case 0xba: map_key_clear(KEY_NUMERIC_STAR);	break;
997 		case 0xbb: map_key_clear(KEY_NUMERIC_POUND);	break;
998 		case 0xbc: map_key_clear(KEY_NUMERIC_A);	break;
999 		case 0xbd: map_key_clear(KEY_NUMERIC_B);	break;
1000 		case 0xbe: map_key_clear(KEY_NUMERIC_C);	break;
1001 		case 0xbf: map_key_clear(KEY_NUMERIC_D);	break;
1002 		default: goto ignore;
1003 		}
1004 		break;
1005 
1006 	case HID_UP_CONSUMER:	/* USB HUT v1.12, pages 75-84 */
1007 		switch (usage->hid & HID_USAGE) {
1008 		case 0x000: goto ignore;
1009 		case 0x030: map_key_clear(KEY_POWER);		break;
1010 		case 0x031: map_key_clear(KEY_RESTART);		break;
1011 		case 0x032: map_key_clear(KEY_SLEEP);		break;
1012 		case 0x034: map_key_clear(KEY_SLEEP);		break;
1013 		case 0x035: map_key_clear(KEY_KBDILLUMTOGGLE);	break;
1014 		case 0x036: map_key_clear(BTN_MISC);		break;
1015 
1016 		case 0x040: map_key_clear(KEY_MENU);		break; /* Menu */
1017 		case 0x041: map_key_clear(KEY_SELECT);		break; /* Menu Pick */
1018 		case 0x042: map_key_clear(KEY_UP);		break; /* Menu Up */
1019 		case 0x043: map_key_clear(KEY_DOWN);		break; /* Menu Down */
1020 		case 0x044: map_key_clear(KEY_LEFT);		break; /* Menu Left */
1021 		case 0x045: map_key_clear(KEY_RIGHT);		break; /* Menu Right */
1022 		case 0x046: map_key_clear(KEY_ESC);		break; /* Menu Escape */
1023 		case 0x047: map_key_clear(KEY_KPPLUS);		break; /* Menu Value Increase */
1024 		case 0x048: map_key_clear(KEY_KPMINUS);		break; /* Menu Value Decrease */
1025 
1026 		case 0x060: map_key_clear(KEY_INFO);		break; /* Data On Screen */
1027 		case 0x061: map_key_clear(KEY_SUBTITLE);	break; /* Closed Caption */
1028 		case 0x063: map_key_clear(KEY_VCR);		break; /* VCR/TV */
1029 		case 0x065: map_key_clear(KEY_CAMERA);		break; /* Snapshot */
1030 		case 0x069: map_key_clear(KEY_RED);		break;
1031 		case 0x06a: map_key_clear(KEY_GREEN);		break;
1032 		case 0x06b: map_key_clear(KEY_BLUE);		break;
1033 		case 0x06c: map_key_clear(KEY_YELLOW);		break;
1034 		case 0x06d: map_key_clear(KEY_ASPECT_RATIO);	break;
1035 
1036 		case 0x06f: map_key_clear(KEY_BRIGHTNESSUP);		break;
1037 		case 0x070: map_key_clear(KEY_BRIGHTNESSDOWN);		break;
1038 		case 0x072: map_key_clear(KEY_BRIGHTNESS_TOGGLE);	break;
1039 		case 0x073: map_key_clear(KEY_BRIGHTNESS_MIN);		break;
1040 		case 0x074: map_key_clear(KEY_BRIGHTNESS_MAX);		break;
1041 		case 0x075: map_key_clear(KEY_BRIGHTNESS_AUTO);		break;
1042 
1043 		case 0x079: map_key_clear(KEY_KBDILLUMUP);	break;
1044 		case 0x07a: map_key_clear(KEY_KBDILLUMDOWN);	break;
1045 		case 0x07c: map_key_clear(KEY_KBDILLUMTOGGLE);	break;
1046 
1047 		case 0x082: map_key_clear(KEY_VIDEO_NEXT);	break;
1048 		case 0x083: map_key_clear(KEY_LAST);		break;
1049 		case 0x084: map_key_clear(KEY_ENTER);		break;
1050 		case 0x088: map_key_clear(KEY_PC);		break;
1051 		case 0x089: map_key_clear(KEY_TV);		break;
1052 		case 0x08a: map_key_clear(KEY_WWW);		break;
1053 		case 0x08b: map_key_clear(KEY_DVD);		break;
1054 		case 0x08c: map_key_clear(KEY_PHONE);		break;
1055 		case 0x08d: map_key_clear(KEY_PROGRAM);		break;
1056 		case 0x08e: map_key_clear(KEY_VIDEOPHONE);	break;
1057 		case 0x08f: map_key_clear(KEY_GAMES);		break;
1058 		case 0x090: map_key_clear(KEY_MEMO);		break;
1059 		case 0x091: map_key_clear(KEY_CD);		break;
1060 		case 0x092: map_key_clear(KEY_VCR);		break;
1061 		case 0x093: map_key_clear(KEY_TUNER);		break;
1062 		case 0x094: map_key_clear(KEY_EXIT);		break;
1063 		case 0x095: map_key_clear(KEY_HELP);		break;
1064 		case 0x096: map_key_clear(KEY_TAPE);		break;
1065 		case 0x097: map_key_clear(KEY_TV2);		break;
1066 		case 0x098: map_key_clear(KEY_SAT);		break;
1067 		case 0x09a: map_key_clear(KEY_PVR);		break;
1068 
1069 		case 0x09c: map_key_clear(KEY_CHANNELUP);	break;
1070 		case 0x09d: map_key_clear(KEY_CHANNELDOWN);	break;
1071 		case 0x0a0: map_key_clear(KEY_VCR2);		break;
1072 
1073 		case 0x0b0: map_key_clear(KEY_PLAY);		break;
1074 		case 0x0b1: map_key_clear(KEY_PAUSE);		break;
1075 		case 0x0b2: map_key_clear(KEY_RECORD);		break;
1076 		case 0x0b3: map_key_clear(KEY_FASTFORWARD);	break;
1077 		case 0x0b4: map_key_clear(KEY_REWIND);		break;
1078 		case 0x0b5: map_key_clear(KEY_NEXTSONG);	break;
1079 		case 0x0b6: map_key_clear(KEY_PREVIOUSSONG);	break;
1080 		case 0x0b7: map_key_clear(KEY_STOPCD);		break;
1081 		case 0x0b8: map_key_clear(KEY_EJECTCD);		break;
1082 		case 0x0bc: map_key_clear(KEY_MEDIA_REPEAT);	break;
1083 		case 0x0b9: map_key_clear(KEY_SHUFFLE);		break;
1084 		case 0x0bf: map_key_clear(KEY_SLOW);		break;
1085 
1086 		case 0x0cd: map_key_clear(KEY_PLAYPAUSE);	break;
1087 		case 0x0cf: map_key_clear(KEY_VOICECOMMAND);	break;
1088 
1089 		case 0x0d8: map_key_clear(KEY_DICTATE);		break;
1090 		case 0x0d9: map_key_clear(KEY_EMOJI_PICKER);	break;
1091 
1092 		case 0x0e0: map_abs_clear(ABS_VOLUME);		break;
1093 		case 0x0e2: map_key_clear(KEY_MUTE);		break;
1094 		case 0x0e5: map_key_clear(KEY_BASSBOOST);	break;
1095 		case 0x0e9: map_key_clear(KEY_VOLUMEUP);	break;
1096 		case 0x0ea: map_key_clear(KEY_VOLUMEDOWN);	break;
1097 		case 0x0f5: map_key_clear(KEY_SLOW);		break;
1098 
1099 		case 0x181: map_key_clear(KEY_BUTTONCONFIG);	break;
1100 		case 0x182: map_key_clear(KEY_BOOKMARKS);	break;
1101 		case 0x183: map_key_clear(KEY_CONFIG);		break;
1102 		case 0x184: map_key_clear(KEY_WORDPROCESSOR);	break;
1103 		case 0x185: map_key_clear(KEY_EDITOR);		break;
1104 		case 0x186: map_key_clear(KEY_SPREADSHEET);	break;
1105 		case 0x187: map_key_clear(KEY_GRAPHICSEDITOR);	break;
1106 		case 0x188: map_key_clear(KEY_PRESENTATION);	break;
1107 		case 0x189: map_key_clear(KEY_DATABASE);	break;
1108 		case 0x18a: map_key_clear(KEY_MAIL);		break;
1109 		case 0x18b: map_key_clear(KEY_NEWS);		break;
1110 		case 0x18c: map_key_clear(KEY_VOICEMAIL);	break;
1111 		case 0x18d: map_key_clear(KEY_ADDRESSBOOK);	break;
1112 		case 0x18e: map_key_clear(KEY_CALENDAR);	break;
1113 		case 0x18f: map_key_clear(KEY_TASKMANAGER);	break;
1114 		case 0x190: map_key_clear(KEY_JOURNAL);		break;
1115 		case 0x191: map_key_clear(KEY_FINANCE);		break;
1116 		case 0x192: map_key_clear(KEY_CALC);		break;
1117 		case 0x193: map_key_clear(KEY_PLAYER);		break;
1118 		case 0x194: map_key_clear(KEY_FILE);		break;
1119 		case 0x196: map_key_clear(KEY_WWW);		break;
1120 		case 0x199: map_key_clear(KEY_CHAT);		break;
1121 		case 0x19c: map_key_clear(KEY_LOGOFF);		break;
1122 		case 0x19e: map_key_clear(KEY_COFFEE);		break;
1123 		case 0x19f: map_key_clear(KEY_CONTROLPANEL);		break;
1124 		case 0x1a2: map_key_clear(KEY_APPSELECT);		break;
1125 		case 0x1a3: map_key_clear(KEY_NEXT);		break;
1126 		case 0x1a4: map_key_clear(KEY_PREVIOUS);	break;
1127 		case 0x1a6: map_key_clear(KEY_HELP);		break;
1128 		case 0x1a7: map_key_clear(KEY_DOCUMENTS);	break;
1129 		case 0x1ab: map_key_clear(KEY_SPELLCHECK);	break;
1130 		case 0x1ae: map_key_clear(KEY_KEYBOARD);	break;
1131 		case 0x1b1: map_key_clear(KEY_SCREENSAVER);		break;
1132 		case 0x1b4: map_key_clear(KEY_FILE);		break;
1133 		case 0x1b6: map_key_clear(KEY_IMAGES);		break;
1134 		case 0x1b7: map_key_clear(KEY_AUDIO);		break;
1135 		case 0x1b8: map_key_clear(KEY_VIDEO);		break;
1136 		case 0x1bc: map_key_clear(KEY_MESSENGER);	break;
1137 		case 0x1bd: map_key_clear(KEY_INFO);		break;
1138 		case 0x1cb: map_key_clear(KEY_ASSISTANT);	break;
1139 		case 0x201: map_key_clear(KEY_NEW);		break;
1140 		case 0x202: map_key_clear(KEY_OPEN);		break;
1141 		case 0x203: map_key_clear(KEY_CLOSE);		break;
1142 		case 0x204: map_key_clear(KEY_EXIT);		break;
1143 		case 0x207: map_key_clear(KEY_SAVE);		break;
1144 		case 0x208: map_key_clear(KEY_PRINT);		break;
1145 		case 0x209: map_key_clear(KEY_PROPS);		break;
1146 		case 0x21a: map_key_clear(KEY_UNDO);		break;
1147 		case 0x21b: map_key_clear(KEY_COPY);		break;
1148 		case 0x21c: map_key_clear(KEY_CUT);		break;
1149 		case 0x21d: map_key_clear(KEY_PASTE);		break;
1150 		case 0x21f: map_key_clear(KEY_FIND);		break;
1151 		case 0x221: map_key_clear(KEY_SEARCH);		break;
1152 		case 0x222: map_key_clear(KEY_GOTO);		break;
1153 		case 0x223: map_key_clear(KEY_HOMEPAGE);	break;
1154 		case 0x224: map_key_clear(KEY_BACK);		break;
1155 		case 0x225: map_key_clear(KEY_FORWARD);		break;
1156 		case 0x226: map_key_clear(KEY_STOP);		break;
1157 		case 0x227: map_key_clear(KEY_REFRESH);		break;
1158 		case 0x22a: map_key_clear(KEY_BOOKMARKS);	break;
1159 		case 0x22d: map_key_clear(KEY_ZOOMIN);		break;
1160 		case 0x22e: map_key_clear(KEY_ZOOMOUT);		break;
1161 		case 0x22f: map_key_clear(KEY_ZOOMRESET);	break;
1162 		case 0x232: map_key_clear(KEY_FULL_SCREEN);	break;
1163 		case 0x233: map_key_clear(KEY_SCROLLUP);	break;
1164 		case 0x234: map_key_clear(KEY_SCROLLDOWN);	break;
1165 		case 0x238: /* AC Pan */
1166 			set_bit(REL_HWHEEL, input->relbit);
1167 			map_rel(REL_HWHEEL_HI_RES);
1168 			break;
1169 		case 0x23d: map_key_clear(KEY_EDIT);		break;
1170 		case 0x25f: map_key_clear(KEY_CANCEL);		break;
1171 		case 0x269: map_key_clear(KEY_INSERT);		break;
1172 		case 0x26a: map_key_clear(KEY_DELETE);		break;
1173 		case 0x279: map_key_clear(KEY_REDO);		break;
1174 
1175 		case 0x289: map_key_clear(KEY_REPLY);		break;
1176 		case 0x28b: map_key_clear(KEY_FORWARDMAIL);	break;
1177 		case 0x28c: map_key_clear(KEY_SEND);		break;
1178 
1179 		case 0x29d: map_key_clear(KEY_KBD_LAYOUT_NEXT);	break;
1180 
1181 		case 0x2a2: map_key_clear(KEY_ALL_APPLICATIONS);	break;
1182 
1183 		case 0x2c7: map_key_clear(KEY_KBDINPUTASSIST_PREV);		break;
1184 		case 0x2c8: map_key_clear(KEY_KBDINPUTASSIST_NEXT);		break;
1185 		case 0x2c9: map_key_clear(KEY_KBDINPUTASSIST_PREVGROUP);		break;
1186 		case 0x2ca: map_key_clear(KEY_KBDINPUTASSIST_NEXTGROUP);		break;
1187 		case 0x2cb: map_key_clear(KEY_KBDINPUTASSIST_ACCEPT);	break;
1188 		case 0x2cc: map_key_clear(KEY_KBDINPUTASSIST_CANCEL);	break;
1189 
1190 		case 0x29f: map_key_clear(KEY_SCALE);		break;
1191 
1192 		default: map_key_clear(KEY_UNKNOWN);
1193 		}
1194 		break;
1195 
1196 	case HID_UP_GENDEVCTRLS:
1197 		switch (usage->hid) {
1198 		case HID_DC_BATTERYSTRENGTH:
1199 			hidinput_setup_battery(device, HID_INPUT_REPORT, field, false);
1200 			usage->type = EV_PWR;
1201 			return;
1202 		}
1203 		goto unknown;
1204 
1205 	case HID_UP_BATTERY:
1206 		switch (usage->hid) {
1207 		case HID_BAT_ABSOLUTESTATEOFCHARGE:
1208 			hidinput_setup_battery(device, HID_INPUT_REPORT, field, true);
1209 			usage->type = EV_PWR;
1210 			return;
1211 		}
1212 		goto unknown;
1213 
1214 	case HID_UP_HPVENDOR:	/* Reported on a Dutch layout HP5308 */
1215 		set_bit(EV_REP, input->evbit);
1216 		switch (usage->hid & HID_USAGE) {
1217 		case 0x021: map_key_clear(KEY_PRINT);           break;
1218 		case 0x070: map_key_clear(KEY_HP);		break;
1219 		case 0x071: map_key_clear(KEY_CAMERA);		break;
1220 		case 0x072: map_key_clear(KEY_SOUND);		break;
1221 		case 0x073: map_key_clear(KEY_QUESTION);	break;
1222 		case 0x080: map_key_clear(KEY_EMAIL);		break;
1223 		case 0x081: map_key_clear(KEY_CHAT);		break;
1224 		case 0x082: map_key_clear(KEY_SEARCH);		break;
1225 		case 0x083: map_key_clear(KEY_CONNECT);	        break;
1226 		case 0x084: map_key_clear(KEY_FINANCE);		break;
1227 		case 0x085: map_key_clear(KEY_SPORT);		break;
1228 		case 0x086: map_key_clear(KEY_SHOP);	        break;
1229 		default:    goto ignore;
1230 		}
1231 		break;
1232 
1233 	case HID_UP_HPVENDOR2:
1234 		set_bit(EV_REP, input->evbit);
1235 		switch (usage->hid & HID_USAGE) {
1236 		case 0x001: map_key_clear(KEY_MICMUTE);		break;
1237 		case 0x003: map_key_clear(KEY_BRIGHTNESSDOWN);	break;
1238 		case 0x004: map_key_clear(KEY_BRIGHTNESSUP);	break;
1239 		default:    goto ignore;
1240 		}
1241 		break;
1242 
1243 	case HID_UP_MSVENDOR:
1244 		goto ignore;
1245 
1246 	case HID_UP_CUSTOM: /* Reported on Logitech and Apple USB keyboards */
1247 		set_bit(EV_REP, input->evbit);
1248 		goto ignore;
1249 
1250 	case HID_UP_LOGIVENDOR:
1251 		/* intentional fallback */
1252 	case HID_UP_LOGIVENDOR2:
1253 		/* intentional fallback */
1254 	case HID_UP_LOGIVENDOR3:
1255 		goto ignore;
1256 
1257 	case HID_UP_PID:
1258 		switch (usage->hid & HID_USAGE) {
1259 		case 0xa4: map_key_clear(BTN_DEAD);	break;
1260 		default: goto ignore;
1261 		}
1262 		break;
1263 
1264 	default:
1265 	unknown:
1266 		if (field->report_size == 1) {
1267 			if (field->report->type == HID_OUTPUT_REPORT) {
1268 				map_led(LED_MISC);
1269 				break;
1270 			}
1271 			map_key(BTN_MISC);
1272 			break;
1273 		}
1274 		if (field->flags & HID_MAIN_ITEM_RELATIVE) {
1275 			map_rel(REL_MISC);
1276 			break;
1277 		}
1278 		map_abs(ABS_MISC);
1279 		break;
1280 	}
1281 
1282 mapped:
1283 	/* Mapping failed, bail out */
1284 	if (!bit)
1285 		return;
1286 
1287 	if (device->driver->input_mapped &&
1288 	    device->driver->input_mapped(device, hidinput, field, usage,
1289 					 &bit, &max) < 0) {
1290 		/*
1291 		 * The driver indicated that no further generic handling
1292 		 * of the usage is desired.
1293 		 */
1294 		return;
1295 	}
1296 
1297 	set_bit(usage->type, input->evbit);
1298 
1299 	/*
1300 	 * This part is *really* controversial:
1301 	 * - HID aims at being generic so we should do our best to export
1302 	 *   all incoming events
1303 	 * - HID describes what events are, so there is no reason for ABS_X
1304 	 *   to be mapped to ABS_Y
1305 	 * - HID is using *_MISC+N as a default value, but nothing prevents
1306 	 *   *_MISC+N to overwrite a legitimate even, which confuses userspace
1307 	 *   (for instance ABS_MISC + 7 is ABS_MT_SLOT, which has a different
1308 	 *   processing)
1309 	 *
1310 	 * If devices still want to use this (at their own risk), they will
1311 	 * have to use the quirk HID_QUIRK_INCREMENT_USAGE_ON_DUPLICATE, but
1312 	 * the default should be a reliable mapping.
1313 	 */
1314 	while (usage->code <= max && test_and_set_bit(usage->code, bit)) {
1315 		if (device->quirks & HID_QUIRK_INCREMENT_USAGE_ON_DUPLICATE) {
1316 			usage->code = find_next_zero_bit(bit,
1317 							 max + 1,
1318 							 usage->code);
1319 		} else {
1320 			device->status |= HID_STAT_DUP_DETECTED;
1321 			goto ignore;
1322 		}
1323 	}
1324 
1325 	if (usage->code > max)
1326 		goto ignore;
1327 
1328 	if (usage->type == EV_ABS) {
1329 
1330 		int a = field->logical_minimum;
1331 		int b = field->logical_maximum;
1332 
1333 		if ((device->quirks & HID_QUIRK_BADPAD) && (usage->code == ABS_X || usage->code == ABS_Y)) {
1334 			a = field->logical_minimum = 0;
1335 			b = field->logical_maximum = 255;
1336 		}
1337 
1338 		if (field->application == HID_GD_GAMEPAD || field->application == HID_GD_JOYSTICK)
1339 			input_set_abs_params(input, usage->code, a, b, (b - a) >> 8, (b - a) >> 4);
1340 		else	input_set_abs_params(input, usage->code, a, b, 0, 0);
1341 
1342 		input_abs_set_res(input, usage->code,
1343 				  hidinput_calc_abs_res(field, usage->code));
1344 
1345 		/* use a larger default input buffer for MT devices */
1346 		if (usage->code == ABS_MT_POSITION_X && input->hint_events_per_packet == 0)
1347 			input_set_events_per_packet(input, 60);
1348 	}
1349 
1350 	if (usage->type == EV_ABS &&
1351 	    (usage->hat_min < usage->hat_max || usage->hat_dir)) {
1352 		int i;
1353 		for (i = usage->code; i < usage->code + 2 && i <= max; i++) {
1354 			input_set_abs_params(input, i, -1, 1, 0, 0);
1355 			set_bit(i, input->absbit);
1356 		}
1357 		if (usage->hat_dir && !field->dpad)
1358 			field->dpad = usage->code;
1359 	}
1360 
1361 	/* for those devices which produce Consumer volume usage as relative,
1362 	 * we emulate pressing volumeup/volumedown appropriate number of times
1363 	 * in hidinput_hid_event()
1364 	 */
1365 	if ((usage->type == EV_ABS) && (field->flags & HID_MAIN_ITEM_RELATIVE) &&
1366 			(usage->code == ABS_VOLUME)) {
1367 		set_bit(KEY_VOLUMEUP, input->keybit);
1368 		set_bit(KEY_VOLUMEDOWN, input->keybit);
1369 	}
1370 
1371 	if (usage->type == EV_KEY) {
1372 		set_bit(EV_MSC, input->evbit);
1373 		set_bit(MSC_SCAN, input->mscbit);
1374 	}
1375 
1376 	return;
1377 
1378 ignore:
1379 	usage->type = 0;
1380 	usage->code = 0;
1381 }
1382 
1383 static void hidinput_handle_scroll(struct hid_usage *usage,
1384 				   struct input_dev *input,
1385 				   __s32 value)
1386 {
1387 	int code;
1388 	int hi_res, lo_res;
1389 
1390 	if (value == 0)
1391 		return;
1392 
1393 	if (usage->code == REL_WHEEL_HI_RES)
1394 		code = REL_WHEEL;
1395 	else
1396 		code = REL_HWHEEL;
1397 
1398 	/*
1399 	 * Windows reports one wheel click as value 120. Where a high-res
1400 	 * scroll wheel is present, a fraction of 120 is reported instead.
1401 	 * Our REL_WHEEL_HI_RES axis does the same because all HW must
1402 	 * adhere to the 120 expectation.
1403 	 */
1404 	hi_res = value * 120/usage->resolution_multiplier;
1405 
1406 	usage->wheel_accumulated += hi_res;
1407 	lo_res = usage->wheel_accumulated/120;
1408 	if (lo_res)
1409 		usage->wheel_accumulated -= lo_res * 120;
1410 
1411 	input_event(input, EV_REL, code, lo_res);
1412 	input_event(input, EV_REL, usage->code, hi_res);
1413 }
1414 
1415 static void hid_report_release_tool(struct hid_report *report, struct input_dev *input,
1416 				    unsigned int tool)
1417 {
1418 	/* if the given tool is not currently reported, ignore */
1419 	if (!test_bit(tool, input->key))
1420 		return;
1421 
1422 	/*
1423 	 * if the given tool was previously set, release it,
1424 	 * release any TOUCH and send an EV_SYN
1425 	 */
1426 	input_event(input, EV_KEY, BTN_TOUCH, 0);
1427 	input_event(input, EV_KEY, tool, 0);
1428 	input_event(input, EV_SYN, SYN_REPORT, 0);
1429 
1430 	report->tool = 0;
1431 }
1432 
1433 static void hid_report_set_tool(struct hid_report *report, struct input_dev *input,
1434 				unsigned int new_tool)
1435 {
1436 	if (report->tool != new_tool)
1437 		hid_report_release_tool(report, input, report->tool);
1438 
1439 	input_event(input, EV_KEY, new_tool, 1);
1440 	report->tool = new_tool;
1441 }
1442 
1443 void hidinput_hid_event(struct hid_device *hid, struct hid_field *field, struct hid_usage *usage, __s32 value)
1444 {
1445 	struct input_dev *input;
1446 	struct hid_report *report = field->report;
1447 	unsigned *quirks = &hid->quirks;
1448 
1449 	if (!usage->type)
1450 		return;
1451 
1452 	if (usage->type == EV_PWR) {
1453 		hidinput_update_battery(hid, value);
1454 		return;
1455 	}
1456 
1457 	if (!field->hidinput)
1458 		return;
1459 
1460 	input = field->hidinput->input;
1461 
1462 	if (usage->hat_min < usage->hat_max || usage->hat_dir) {
1463 		int hat_dir = usage->hat_dir;
1464 		if (!hat_dir)
1465 			hat_dir = (value - usage->hat_min) * 8 / (usage->hat_max - usage->hat_min + 1) + 1;
1466 		if (hat_dir < 0 || hat_dir > 8) hat_dir = 0;
1467 		input_event(input, usage->type, usage->code    , hid_hat_to_axis[hat_dir].x);
1468 		input_event(input, usage->type, usage->code + 1, hid_hat_to_axis[hat_dir].y);
1469 		return;
1470 	}
1471 
1472 	/*
1473 	 * Ignore out-of-range values as per HID specification,
1474 	 * section 5.10 and 6.2.25, when NULL state bit is present.
1475 	 * When it's not, clamp the value to match Microsoft's input
1476 	 * driver as mentioned in "Required HID usages for digitizers":
1477 	 * https://msdn.microsoft.com/en-us/library/windows/hardware/dn672278(v=vs.85).asp
1478 	 *
1479 	 * The logical_minimum < logical_maximum check is done so that we
1480 	 * don't unintentionally discard values sent by devices which
1481 	 * don't specify logical min and max.
1482 	 */
1483 	if ((field->flags & HID_MAIN_ITEM_VARIABLE) &&
1484 	    field->logical_minimum < field->logical_maximum) {
1485 		if (field->flags & HID_MAIN_ITEM_NULL_STATE &&
1486 		    (value < field->logical_minimum ||
1487 		     value > field->logical_maximum)) {
1488 			dbg_hid("Ignoring out-of-range value %x\n", value);
1489 			return;
1490 		}
1491 		value = clamp(value,
1492 			      field->logical_minimum,
1493 			      field->logical_maximum);
1494 	}
1495 
1496 	switch (usage->hid) {
1497 	case HID_DG_ERASER:
1498 		report->tool_active |= !!value;
1499 
1500 		/*
1501 		 * if eraser is set, we must enforce BTN_TOOL_RUBBER
1502 		 * to accommodate for devices not following the spec.
1503 		 */
1504 		if (value)
1505 			hid_report_set_tool(report, input, BTN_TOOL_RUBBER);
1506 		else if (report->tool != BTN_TOOL_RUBBER)
1507 			/* value is off, tool is not rubber, ignore */
1508 			return;
1509 
1510 		/* let hid-input set BTN_TOUCH */
1511 		break;
1512 
1513 	case HID_DG_INVERT:
1514 		report->tool_active |= !!value;
1515 
1516 		/*
1517 		 * If invert is set, we store BTN_TOOL_RUBBER.
1518 		 */
1519 		if (value)
1520 			hid_report_set_tool(report, input, BTN_TOOL_RUBBER);
1521 		else if (!report->tool_active)
1522 			/* tool_active not set means Invert and Eraser are not set */
1523 			hid_report_release_tool(report, input, BTN_TOOL_RUBBER);
1524 
1525 		/* no further processing */
1526 		return;
1527 
1528 	case HID_DG_INRANGE:
1529 		report->tool_active |= !!value;
1530 
1531 		if (report->tool_active) {
1532 			/*
1533 			 * if tool is not set but is marked as active,
1534 			 * assume ours
1535 			 */
1536 			if (!report->tool)
1537 				report->tool = usage->code;
1538 
1539 			/* drivers may have changed the value behind our back, resend it */
1540 			hid_report_set_tool(report, input, report->tool);
1541 		} else {
1542 			hid_report_release_tool(report, input, usage->code);
1543 		}
1544 
1545 		/* reset tool_active for the next event */
1546 		report->tool_active = false;
1547 
1548 		/* no further processing */
1549 		return;
1550 
1551 	case HID_DG_TIPSWITCH:
1552 		report->tool_active |= !!value;
1553 
1554 		/* if tool is set to RUBBER we should ignore the current value */
1555 		if (report->tool == BTN_TOOL_RUBBER)
1556 			return;
1557 
1558 		break;
1559 
1560 	case HID_DG_TIPPRESSURE:
1561 		if (*quirks & HID_QUIRK_NOTOUCH) {
1562 			int a = field->logical_minimum;
1563 			int b = field->logical_maximum;
1564 
1565 			if (value > a + ((b - a) >> 3)) {
1566 				input_event(input, EV_KEY, BTN_TOUCH, 1);
1567 				report->tool_active = true;
1568 			}
1569 		}
1570 		break;
1571 
1572 	case HID_UP_PID | 0x83UL: /* Simultaneous Effects Max */
1573 		dbg_hid("Maximum Effects - %d\n",value);
1574 		return;
1575 
1576 	case HID_UP_PID | 0x7fUL:
1577 		dbg_hid("PID Pool Report\n");
1578 		return;
1579 	}
1580 
1581 	switch (usage->type) {
1582 	case EV_KEY:
1583 		if (usage->code == 0) /* Key 0 is "unassigned", not KEY_UNKNOWN */
1584 			return;
1585 		break;
1586 
1587 	case EV_REL:
1588 		if (usage->code == REL_WHEEL_HI_RES ||
1589 		    usage->code == REL_HWHEEL_HI_RES) {
1590 			hidinput_handle_scroll(usage, input, value);
1591 			return;
1592 		}
1593 		break;
1594 
1595 	case EV_ABS:
1596 		if ((field->flags & HID_MAIN_ITEM_RELATIVE) &&
1597 		    usage->code == ABS_VOLUME) {
1598 			int count = abs(value);
1599 			int direction = value > 0 ? KEY_VOLUMEUP : KEY_VOLUMEDOWN;
1600 			int i;
1601 
1602 			for (i = 0; i < count; i++) {
1603 				input_event(input, EV_KEY, direction, 1);
1604 				input_sync(input);
1605 				input_event(input, EV_KEY, direction, 0);
1606 				input_sync(input);
1607 			}
1608 			return;
1609 
1610 		} else if (((*quirks & HID_QUIRK_X_INVERT) && usage->code == ABS_X) ||
1611 			   ((*quirks & HID_QUIRK_Y_INVERT) && usage->code == ABS_Y))
1612 			value = field->logical_maximum - value;
1613 		break;
1614 	}
1615 
1616 	/*
1617 	 * Ignore reports for absolute data if the data didn't change. This is
1618 	 * not only an optimization but also fixes 'dead' key reports. Some
1619 	 * RollOver implementations for localized keys (like BACKSLASH/PIPE; HID
1620 	 * 0x31 and 0x32) report multiple keys, even though a localized keyboard
1621 	 * can only have one of them physically available. The 'dead' keys
1622 	 * report constant 0. As all map to the same keycode, they'd confuse
1623 	 * the input layer. If we filter the 'dead' keys on the HID level, we
1624 	 * skip the keycode translation and only forward real events.
1625 	 */
1626 	if (!(field->flags & (HID_MAIN_ITEM_RELATIVE |
1627 	                      HID_MAIN_ITEM_BUFFERED_BYTE)) &&
1628 			      (field->flags & HID_MAIN_ITEM_VARIABLE) &&
1629 	    usage->usage_index < field->maxusage &&
1630 	    value == field->value[usage->usage_index])
1631 		return;
1632 
1633 	/* report the usage code as scancode if the key status has changed */
1634 	if (usage->type == EV_KEY &&
1635 	    (!test_bit(usage->code, input->key)) == value)
1636 		input_event(input, EV_MSC, MSC_SCAN, usage->hid);
1637 
1638 	input_event(input, usage->type, usage->code, value);
1639 
1640 	if ((field->flags & HID_MAIN_ITEM_RELATIVE) &&
1641 	    usage->type == EV_KEY && value) {
1642 		input_sync(input);
1643 		input_event(input, usage->type, usage->code, 0);
1644 	}
1645 }
1646 
1647 void hidinput_report_event(struct hid_device *hid, struct hid_report *report)
1648 {
1649 	struct hid_input *hidinput;
1650 
1651 	if (hid->quirks & HID_QUIRK_NO_INPUT_SYNC)
1652 		return;
1653 
1654 	list_for_each_entry(hidinput, &hid->inputs, list)
1655 		input_sync(hidinput->input);
1656 }
1657 EXPORT_SYMBOL_GPL(hidinput_report_event);
1658 
1659 static int hidinput_find_field(struct hid_device *hid, unsigned int type,
1660 			       unsigned int code, struct hid_field **field)
1661 {
1662 	struct hid_report *report;
1663 	int i, j;
1664 
1665 	list_for_each_entry(report, &hid->report_enum[HID_OUTPUT_REPORT].report_list, list) {
1666 		for (i = 0; i < report->maxfield; i++) {
1667 			*field = report->field[i];
1668 			for (j = 0; j < (*field)->maxusage; j++)
1669 				if ((*field)->usage[j].type == type && (*field)->usage[j].code == code)
1670 					return j;
1671 		}
1672 	}
1673 	return -1;
1674 }
1675 
1676 struct hid_field *hidinput_get_led_field(struct hid_device *hid)
1677 {
1678 	struct hid_report *report;
1679 	struct hid_field *field;
1680 	int i, j;
1681 
1682 	list_for_each_entry(report,
1683 			    &hid->report_enum[HID_OUTPUT_REPORT].report_list,
1684 			    list) {
1685 		for (i = 0; i < report->maxfield; i++) {
1686 			field = report->field[i];
1687 			for (j = 0; j < field->maxusage; j++)
1688 				if (field->usage[j].type == EV_LED)
1689 					return field;
1690 		}
1691 	}
1692 	return NULL;
1693 }
1694 EXPORT_SYMBOL_GPL(hidinput_get_led_field);
1695 
1696 unsigned int hidinput_count_leds(struct hid_device *hid)
1697 {
1698 	struct hid_report *report;
1699 	struct hid_field *field;
1700 	int i, j;
1701 	unsigned int count = 0;
1702 
1703 	list_for_each_entry(report,
1704 			    &hid->report_enum[HID_OUTPUT_REPORT].report_list,
1705 			    list) {
1706 		for (i = 0; i < report->maxfield; i++) {
1707 			field = report->field[i];
1708 			for (j = 0; j < field->maxusage; j++)
1709 				if (field->usage[j].type == EV_LED &&
1710 				    field->value[j])
1711 					count += 1;
1712 		}
1713 	}
1714 	return count;
1715 }
1716 EXPORT_SYMBOL_GPL(hidinput_count_leds);
1717 
1718 static void hidinput_led_worker(struct work_struct *work)
1719 {
1720 	struct hid_device *hid = container_of(work, struct hid_device,
1721 					      led_work);
1722 	struct hid_field *field;
1723 	struct hid_report *report;
1724 	int ret;
1725 	u32 len;
1726 	__u8 *buf;
1727 
1728 	field = hidinput_get_led_field(hid);
1729 	if (!field)
1730 		return;
1731 
1732 	/*
1733 	 * field->report is accessed unlocked regarding HID core. So there might
1734 	 * be another incoming SET-LED request from user-space, which changes
1735 	 * the LED state while we assemble our outgoing buffer. However, this
1736 	 * doesn't matter as hid_output_report() correctly converts it into a
1737 	 * boolean value no matter what information is currently set on the LED
1738 	 * field (even garbage). So the remote device will always get a valid
1739 	 * request.
1740 	 * And in case we send a wrong value, a next led worker is spawned
1741 	 * for every SET-LED request so the following worker will send the
1742 	 * correct value, guaranteed!
1743 	 */
1744 
1745 	report = field->report;
1746 
1747 	/* use custom SET_REPORT request if possible (asynchronous) */
1748 	if (hid->ll_driver->request)
1749 		return hid->ll_driver->request(hid, report, HID_REQ_SET_REPORT);
1750 
1751 	/* fall back to generic raw-output-report */
1752 	len = hid_report_len(report);
1753 	buf = hid_alloc_report_buf(report, GFP_KERNEL);
1754 	if (!buf)
1755 		return;
1756 
1757 	hid_output_report(report, buf);
1758 	/* synchronous output report */
1759 	ret = hid_hw_output_report(hid, buf, len);
1760 	if (ret == -ENOSYS)
1761 		hid_hw_raw_request(hid, report->id, buf, len, HID_OUTPUT_REPORT,
1762 				HID_REQ_SET_REPORT);
1763 	kfree(buf);
1764 }
1765 
1766 static int hidinput_input_event(struct input_dev *dev, unsigned int type,
1767 				unsigned int code, int value)
1768 {
1769 	struct hid_device *hid = input_get_drvdata(dev);
1770 	struct hid_field *field;
1771 	int offset;
1772 
1773 	if (type == EV_FF)
1774 		return input_ff_event(dev, type, code, value);
1775 
1776 	if (type != EV_LED)
1777 		return -1;
1778 
1779 	if ((offset = hidinput_find_field(hid, type, code, &field)) == -1) {
1780 		hid_warn(dev, "event field not found\n");
1781 		return -1;
1782 	}
1783 
1784 	hid_set_field(field, offset, value);
1785 
1786 	schedule_work(&hid->led_work);
1787 	return 0;
1788 }
1789 
1790 static int hidinput_open(struct input_dev *dev)
1791 {
1792 	struct hid_device *hid = input_get_drvdata(dev);
1793 
1794 	return hid_hw_open(hid);
1795 }
1796 
1797 static void hidinput_close(struct input_dev *dev)
1798 {
1799 	struct hid_device *hid = input_get_drvdata(dev);
1800 
1801 	hid_hw_close(hid);
1802 }
1803 
1804 static bool __hidinput_change_resolution_multipliers(struct hid_device *hid,
1805 		struct hid_report *report, bool use_logical_max)
1806 {
1807 	struct hid_usage *usage;
1808 	bool update_needed = false;
1809 	bool get_report_completed = false;
1810 	int i, j;
1811 
1812 	if (report->maxfield == 0)
1813 		return false;
1814 
1815 	for (i = 0; i < report->maxfield; i++) {
1816 		__s32 value = use_logical_max ?
1817 			      report->field[i]->logical_maximum :
1818 			      report->field[i]->logical_minimum;
1819 
1820 		/* There is no good reason for a Resolution
1821 		 * Multiplier to have a count other than 1.
1822 		 * Ignore that case.
1823 		 */
1824 		if (report->field[i]->report_count != 1)
1825 			continue;
1826 
1827 		for (j = 0; j < report->field[i]->maxusage; j++) {
1828 			usage = &report->field[i]->usage[j];
1829 
1830 			if (usage->hid != HID_GD_RESOLUTION_MULTIPLIER)
1831 				continue;
1832 
1833 			/*
1834 			 * If we have more than one feature within this
1835 			 * report we need to fill in the bits from the
1836 			 * others before we can overwrite the ones for the
1837 			 * Resolution Multiplier.
1838 			 *
1839 			 * But if we're not allowed to read from the device,
1840 			 * we just bail. Such a device should not exist
1841 			 * anyway.
1842 			 */
1843 			if (!get_report_completed && report->maxfield > 1) {
1844 				if (hid->quirks & HID_QUIRK_NO_INIT_REPORTS)
1845 					return update_needed;
1846 
1847 				hid_hw_request(hid, report, HID_REQ_GET_REPORT);
1848 				hid_hw_wait(hid);
1849 				get_report_completed = true;
1850 			}
1851 
1852 			report->field[i]->value[j] = value;
1853 			update_needed = true;
1854 		}
1855 	}
1856 
1857 	return update_needed;
1858 }
1859 
1860 static void hidinput_change_resolution_multipliers(struct hid_device *hid)
1861 {
1862 	struct hid_report_enum *rep_enum;
1863 	struct hid_report *rep;
1864 	int ret;
1865 
1866 	rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1867 	list_for_each_entry(rep, &rep_enum->report_list, list) {
1868 		bool update_needed = __hidinput_change_resolution_multipliers(hid,
1869 								     rep, true);
1870 
1871 		if (update_needed) {
1872 			ret = __hid_request(hid, rep, HID_REQ_SET_REPORT);
1873 			if (ret) {
1874 				__hidinput_change_resolution_multipliers(hid,
1875 								    rep, false);
1876 				return;
1877 			}
1878 		}
1879 	}
1880 
1881 	/* refresh our structs */
1882 	hid_setup_resolution_multiplier(hid);
1883 }
1884 
1885 static void report_features(struct hid_device *hid)
1886 {
1887 	struct hid_driver *drv = hid->driver;
1888 	struct hid_report_enum *rep_enum;
1889 	struct hid_report *rep;
1890 	struct hid_usage *usage;
1891 	int i, j;
1892 
1893 	rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1894 	list_for_each_entry(rep, &rep_enum->report_list, list)
1895 		for (i = 0; i < rep->maxfield; i++) {
1896 			/* Ignore if report count is out of bounds. */
1897 			if (rep->field[i]->report_count < 1)
1898 				continue;
1899 
1900 			for (j = 0; j < rep->field[i]->maxusage; j++) {
1901 				usage = &rep->field[i]->usage[j];
1902 
1903 				/* Verify if Battery Strength feature is available */
1904 				if (usage->hid == HID_DC_BATTERYSTRENGTH)
1905 					hidinput_setup_battery(hid, HID_FEATURE_REPORT,
1906 							       rep->field[i], false);
1907 
1908 				if (drv->feature_mapping)
1909 					drv->feature_mapping(hid, rep->field[i], usage);
1910 			}
1911 		}
1912 }
1913 
1914 static struct hid_input *hidinput_allocate(struct hid_device *hid,
1915 					   unsigned int application)
1916 {
1917 	struct hid_input *hidinput = kzalloc(sizeof(*hidinput), GFP_KERNEL);
1918 	struct input_dev *input_dev = input_allocate_device();
1919 	const char *suffix = NULL;
1920 	size_t suffix_len, name_len;
1921 
1922 	if (!hidinput || !input_dev)
1923 		goto fail;
1924 
1925 	if ((hid->quirks & HID_QUIRK_INPUT_PER_APP) &&
1926 	    hid->maxapplication > 1) {
1927 		switch (application) {
1928 		case HID_GD_KEYBOARD:
1929 			suffix = "Keyboard";
1930 			break;
1931 		case HID_GD_KEYPAD:
1932 			suffix = "Keypad";
1933 			break;
1934 		case HID_GD_MOUSE:
1935 			suffix = "Mouse";
1936 			break;
1937 		case HID_DG_PEN:
1938 			/*
1939 			 * yes, there is an issue here:
1940 			 *  DG_PEN -> "Stylus"
1941 			 *  DG_STYLUS -> "Pen"
1942 			 * But changing this now means users with config snippets
1943 			 * will have to change it and the test suite will not be happy.
1944 			 */
1945 			suffix = "Stylus";
1946 			break;
1947 		case HID_DG_STYLUS:
1948 			suffix = "Pen";
1949 			break;
1950 		case HID_DG_TOUCHSCREEN:
1951 			suffix = "Touchscreen";
1952 			break;
1953 		case HID_DG_TOUCHPAD:
1954 			suffix = "Touchpad";
1955 			break;
1956 		case HID_GD_SYSTEM_CONTROL:
1957 			suffix = "System Control";
1958 			break;
1959 		case HID_CP_CONSUMER_CONTROL:
1960 			suffix = "Consumer Control";
1961 			break;
1962 		case HID_GD_WIRELESS_RADIO_CTLS:
1963 			suffix = "Wireless Radio Control";
1964 			break;
1965 		case HID_GD_SYSTEM_MULTIAXIS:
1966 			suffix = "System Multi Axis";
1967 			break;
1968 		default:
1969 			break;
1970 		}
1971 	}
1972 
1973 	if (suffix) {
1974 		name_len = strlen(hid->name);
1975 		suffix_len = strlen(suffix);
1976 		if ((name_len < suffix_len) ||
1977 		    strcmp(hid->name + name_len - suffix_len, suffix)) {
1978 			hidinput->name = kasprintf(GFP_KERNEL, "%s %s",
1979 						   hid->name, suffix);
1980 			if (!hidinput->name)
1981 				goto fail;
1982 		}
1983 	}
1984 
1985 	input_set_drvdata(input_dev, hid);
1986 	input_dev->event = hidinput_input_event;
1987 	input_dev->open = hidinput_open;
1988 	input_dev->close = hidinput_close;
1989 	input_dev->setkeycode = hidinput_setkeycode;
1990 	input_dev->getkeycode = hidinput_getkeycode;
1991 
1992 	input_dev->name = hidinput->name ? hidinput->name : hid->name;
1993 	input_dev->phys = hid->phys;
1994 	input_dev->uniq = hid->uniq;
1995 	input_dev->id.bustype = hid->bus;
1996 	input_dev->id.vendor  = hid->vendor;
1997 	input_dev->id.product = hid->product;
1998 	input_dev->id.version = hid->version;
1999 	input_dev->dev.parent = &hid->dev;
2000 
2001 	hidinput->input = input_dev;
2002 	hidinput->application = application;
2003 	list_add_tail(&hidinput->list, &hid->inputs);
2004 
2005 	INIT_LIST_HEAD(&hidinput->reports);
2006 
2007 	return hidinput;
2008 
2009 fail:
2010 	kfree(hidinput);
2011 	input_free_device(input_dev);
2012 	hid_err(hid, "Out of memory during hid input probe\n");
2013 	return NULL;
2014 }
2015 
2016 static bool hidinput_has_been_populated(struct hid_input *hidinput)
2017 {
2018 	int i;
2019 	unsigned long r = 0;
2020 
2021 	for (i = 0; i < BITS_TO_LONGS(EV_CNT); i++)
2022 		r |= hidinput->input->evbit[i];
2023 
2024 	for (i = 0; i < BITS_TO_LONGS(KEY_CNT); i++)
2025 		r |= hidinput->input->keybit[i];
2026 
2027 	for (i = 0; i < BITS_TO_LONGS(REL_CNT); i++)
2028 		r |= hidinput->input->relbit[i];
2029 
2030 	for (i = 0; i < BITS_TO_LONGS(ABS_CNT); i++)
2031 		r |= hidinput->input->absbit[i];
2032 
2033 	for (i = 0; i < BITS_TO_LONGS(MSC_CNT); i++)
2034 		r |= hidinput->input->mscbit[i];
2035 
2036 	for (i = 0; i < BITS_TO_LONGS(LED_CNT); i++)
2037 		r |= hidinput->input->ledbit[i];
2038 
2039 	for (i = 0; i < BITS_TO_LONGS(SND_CNT); i++)
2040 		r |= hidinput->input->sndbit[i];
2041 
2042 	for (i = 0; i < BITS_TO_LONGS(FF_CNT); i++)
2043 		r |= hidinput->input->ffbit[i];
2044 
2045 	for (i = 0; i < BITS_TO_LONGS(SW_CNT); i++)
2046 		r |= hidinput->input->swbit[i];
2047 
2048 	return !!r;
2049 }
2050 
2051 static void hidinput_cleanup_hidinput(struct hid_device *hid,
2052 		struct hid_input *hidinput)
2053 {
2054 	struct hid_report *report;
2055 	int i, k;
2056 
2057 	list_del(&hidinput->list);
2058 	input_free_device(hidinput->input);
2059 	kfree(hidinput->name);
2060 
2061 	for (k = HID_INPUT_REPORT; k <= HID_OUTPUT_REPORT; k++) {
2062 		if (k == HID_OUTPUT_REPORT &&
2063 			hid->quirks & HID_QUIRK_SKIP_OUTPUT_REPORTS)
2064 			continue;
2065 
2066 		list_for_each_entry(report, &hid->report_enum[k].report_list,
2067 				    list) {
2068 
2069 			for (i = 0; i < report->maxfield; i++)
2070 				if (report->field[i]->hidinput == hidinput)
2071 					report->field[i]->hidinput = NULL;
2072 		}
2073 	}
2074 
2075 	kfree(hidinput);
2076 }
2077 
2078 static struct hid_input *hidinput_match(struct hid_report *report)
2079 {
2080 	struct hid_device *hid = report->device;
2081 	struct hid_input *hidinput;
2082 
2083 	list_for_each_entry(hidinput, &hid->inputs, list) {
2084 		if (hidinput->report &&
2085 		    hidinput->report->id == report->id)
2086 			return hidinput;
2087 	}
2088 
2089 	return NULL;
2090 }
2091 
2092 static struct hid_input *hidinput_match_application(struct hid_report *report)
2093 {
2094 	struct hid_device *hid = report->device;
2095 	struct hid_input *hidinput;
2096 
2097 	list_for_each_entry(hidinput, &hid->inputs, list) {
2098 		if (hidinput->application == report->application)
2099 			return hidinput;
2100 
2101 		/*
2102 		 * Keep SystemControl and ConsumerControl applications together
2103 		 * with the main keyboard, if present.
2104 		 */
2105 		if ((report->application == HID_GD_SYSTEM_CONTROL ||
2106 		     report->application == HID_CP_CONSUMER_CONTROL) &&
2107 		    hidinput->application == HID_GD_KEYBOARD) {
2108 			return hidinput;
2109 		}
2110 	}
2111 
2112 	return NULL;
2113 }
2114 
2115 static inline void hidinput_configure_usages(struct hid_input *hidinput,
2116 					     struct hid_report *report)
2117 {
2118 	int i, j, k;
2119 	int first_field_index = 0;
2120 	int slot_collection_index = -1;
2121 	int prev_collection_index = -1;
2122 	unsigned int slot_idx = 0;
2123 	struct hid_field *field;
2124 
2125 	/*
2126 	 * First tag all the fields that are part of a slot,
2127 	 * a slot needs to have one Contact ID in the collection
2128 	 */
2129 	for (i = 0; i < report->maxfield; i++) {
2130 		field = report->field[i];
2131 
2132 		/* ignore fields without usage */
2133 		if (field->maxusage < 1)
2134 			continue;
2135 
2136 		/*
2137 		 * janitoring when collection_index changes
2138 		 */
2139 		if (prev_collection_index != field->usage->collection_index) {
2140 			prev_collection_index = field->usage->collection_index;
2141 			first_field_index = i;
2142 		}
2143 
2144 		/*
2145 		 * if we already found a Contact ID in the collection,
2146 		 * tag and continue to the next.
2147 		 */
2148 		if (slot_collection_index == field->usage->collection_index) {
2149 			field->slot_idx = slot_idx;
2150 			continue;
2151 		}
2152 
2153 		/* check if the current field has Contact ID */
2154 		for (j = 0; j < field->maxusage; j++) {
2155 			if (field->usage[j].hid == HID_DG_CONTACTID) {
2156 				slot_collection_index = field->usage->collection_index;
2157 				slot_idx++;
2158 
2159 				/*
2160 				 * mark all previous fields and this one in the
2161 				 * current collection to be slotted.
2162 				 */
2163 				for (k = first_field_index; k <= i; k++)
2164 					report->field[k]->slot_idx = slot_idx;
2165 				break;
2166 			}
2167 		}
2168 	}
2169 
2170 	for (i = 0; i < report->maxfield; i++)
2171 		for (j = 0; j < report->field[i]->maxusage; j++)
2172 			hidinput_configure_usage(hidinput, report->field[i],
2173 						 report->field[i]->usage + j,
2174 						 j);
2175 }
2176 
2177 /*
2178  * Register the input device; print a message.
2179  * Configure the input layer interface
2180  * Read all reports and initialize the absolute field values.
2181  */
2182 
2183 int hidinput_connect(struct hid_device *hid, unsigned int force)
2184 {
2185 	struct hid_driver *drv = hid->driver;
2186 	struct hid_report *report;
2187 	struct hid_input *next, *hidinput = NULL;
2188 	unsigned int application;
2189 	int i, k;
2190 
2191 	INIT_LIST_HEAD(&hid->inputs);
2192 	INIT_WORK(&hid->led_work, hidinput_led_worker);
2193 
2194 	hid->status &= ~HID_STAT_DUP_DETECTED;
2195 
2196 	if (!force) {
2197 		for (i = 0; i < hid->maxcollection; i++) {
2198 			struct hid_collection *col = &hid->collection[i];
2199 			if (col->type == HID_COLLECTION_APPLICATION ||
2200 					col->type == HID_COLLECTION_PHYSICAL)
2201 				if (IS_INPUT_APPLICATION(col->usage))
2202 					break;
2203 		}
2204 
2205 		if (i == hid->maxcollection)
2206 			return -1;
2207 	}
2208 
2209 	report_features(hid);
2210 
2211 	for (k = HID_INPUT_REPORT; k <= HID_OUTPUT_REPORT; k++) {
2212 		if (k == HID_OUTPUT_REPORT &&
2213 			hid->quirks & HID_QUIRK_SKIP_OUTPUT_REPORTS)
2214 			continue;
2215 
2216 		list_for_each_entry(report, &hid->report_enum[k].report_list, list) {
2217 
2218 			if (!report->maxfield)
2219 				continue;
2220 
2221 			application = report->application;
2222 
2223 			/*
2224 			 * Find the previous hidinput report attached
2225 			 * to this report id.
2226 			 */
2227 			if (hid->quirks & HID_QUIRK_MULTI_INPUT)
2228 				hidinput = hidinput_match(report);
2229 			else if (hid->maxapplication > 1 &&
2230 				 (hid->quirks & HID_QUIRK_INPUT_PER_APP))
2231 				hidinput = hidinput_match_application(report);
2232 
2233 			if (!hidinput) {
2234 				hidinput = hidinput_allocate(hid, application);
2235 				if (!hidinput)
2236 					goto out_unwind;
2237 			}
2238 
2239 			hidinput_configure_usages(hidinput, report);
2240 
2241 			if (hid->quirks & HID_QUIRK_MULTI_INPUT)
2242 				hidinput->report = report;
2243 
2244 			list_add_tail(&report->hidinput_list,
2245 				      &hidinput->reports);
2246 		}
2247 	}
2248 
2249 	hidinput_change_resolution_multipliers(hid);
2250 
2251 	list_for_each_entry_safe(hidinput, next, &hid->inputs, list) {
2252 		if (drv->input_configured &&
2253 		    drv->input_configured(hid, hidinput))
2254 			goto out_unwind;
2255 
2256 		if (!hidinput_has_been_populated(hidinput)) {
2257 			/* no need to register an input device not populated */
2258 			hidinput_cleanup_hidinput(hid, hidinput);
2259 			continue;
2260 		}
2261 
2262 		if (input_register_device(hidinput->input))
2263 			goto out_unwind;
2264 		hidinput->registered = true;
2265 	}
2266 
2267 	if (list_empty(&hid->inputs)) {
2268 		hid_err(hid, "No inputs registered, leaving\n");
2269 		goto out_unwind;
2270 	}
2271 
2272 	if (hid->status & HID_STAT_DUP_DETECTED)
2273 		hid_dbg(hid,
2274 			"Some usages could not be mapped, please use HID_QUIRK_INCREMENT_USAGE_ON_DUPLICATE if this is legitimate.\n");
2275 
2276 	return 0;
2277 
2278 out_unwind:
2279 	/* unwind the ones we already registered */
2280 	hidinput_disconnect(hid);
2281 
2282 	return -1;
2283 }
2284 EXPORT_SYMBOL_GPL(hidinput_connect);
2285 
2286 void hidinput_disconnect(struct hid_device *hid)
2287 {
2288 	struct hid_input *hidinput, *next;
2289 
2290 	hidinput_cleanup_battery(hid);
2291 
2292 	list_for_each_entry_safe(hidinput, next, &hid->inputs, list) {
2293 		list_del(&hidinput->list);
2294 		if (hidinput->registered)
2295 			input_unregister_device(hidinput->input);
2296 		else
2297 			input_free_device(hidinput->input);
2298 		kfree(hidinput->name);
2299 		kfree(hidinput);
2300 	}
2301 
2302 	/* led_work is spawned by input_dev callbacks, but doesn't access the
2303 	 * parent input_dev at all. Once all input devices are removed, we
2304 	 * know that led_work will never get restarted, so we can cancel it
2305 	 * synchronously and are safe. */
2306 	cancel_work_sync(&hid->led_work);
2307 }
2308 EXPORT_SYMBOL_GPL(hidinput_disconnect);
2309