1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) 2000-2001 Vojtech Pavlik 4 * Copyright (c) 2006-2010 Jiri Kosina 5 * 6 * HID to Linux Input mapping 7 */ 8 9 /* 10 * 11 * Should you need to contact me, the author, you can do so either by 12 * e-mail - mail your message to <vojtech@ucw.cz>, or by paper mail: 13 * Vojtech Pavlik, Simunkova 1594, Prague 8, 182 00 Czech Republic 14 */ 15 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 #include <linux/kernel.h> 19 20 #include <linux/hid.h> 21 #include <linux/hid-debug.h> 22 23 #include "hid-ids.h" 24 25 #define unk KEY_UNKNOWN 26 27 static const unsigned char hid_keyboard[256] = { 28 0, 0, 0, 0, 30, 48, 46, 32, 18, 33, 34, 35, 23, 36, 37, 38, 29 50, 49, 24, 25, 16, 19, 31, 20, 22, 47, 17, 45, 21, 44, 2, 3, 30 4, 5, 6, 7, 8, 9, 10, 11, 28, 1, 14, 15, 57, 12, 13, 26, 31 27, 43, 43, 39, 40, 41, 51, 52, 53, 58, 59, 60, 61, 62, 63, 64, 32 65, 66, 67, 68, 87, 88, 99, 70,119,110,102,104,111,107,109,106, 33 105,108,103, 69, 98, 55, 74, 78, 96, 79, 80, 81, 75, 76, 77, 71, 34 72, 73, 82, 83, 86,127,116,117,183,184,185,186,187,188,189,190, 35 191,192,193,194,134,138,130,132,128,129,131,137,133,135,136,113, 36 115,114,unk,unk,unk,121,unk, 89, 93,124, 92, 94, 95,unk,unk,unk, 37 122,123, 90, 91, 85,unk,unk,unk,unk,unk,unk,unk,111,unk,unk,unk, 38 unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk, 39 unk,unk,unk,unk,unk,unk,179,180,unk,unk,unk,unk,unk,unk,unk,unk, 40 unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk,unk, 41 unk,unk,unk,unk,unk,unk,unk,unk,111,unk,unk,unk,unk,unk,unk,unk, 42 29, 42, 56,125, 97, 54,100,126,164,166,165,163,161,115,114,113, 43 150,158,159,128,136,177,178,176,142,152,173,140,unk,unk,unk,unk 44 }; 45 46 static const struct { 47 __s32 x; 48 __s32 y; 49 } hid_hat_to_axis[] = {{ 0, 0}, { 0,-1}, { 1,-1}, { 1, 0}, { 1, 1}, { 0, 1}, {-1, 1}, {-1, 0}, {-1,-1}}; 50 51 #define map_abs(c) hid_map_usage(hidinput, usage, &bit, &max, EV_ABS, (c)) 52 #define map_rel(c) hid_map_usage(hidinput, usage, &bit, &max, EV_REL, (c)) 53 #define map_key(c) hid_map_usage(hidinput, usage, &bit, &max, EV_KEY, (c)) 54 #define map_led(c) hid_map_usage(hidinput, usage, &bit, &max, EV_LED, (c)) 55 56 #define map_abs_clear(c) hid_map_usage_clear(hidinput, usage, &bit, \ 57 &max, EV_ABS, (c)) 58 #define map_key_clear(c) hid_map_usage_clear(hidinput, usage, &bit, \ 59 &max, EV_KEY, (c)) 60 61 static bool match_scancode(struct hid_usage *usage, 62 unsigned int cur_idx, unsigned int scancode) 63 { 64 return (usage->hid & (HID_USAGE_PAGE | HID_USAGE)) == scancode; 65 } 66 67 static bool match_keycode(struct hid_usage *usage, 68 unsigned int cur_idx, unsigned int keycode) 69 { 70 /* 71 * We should exclude unmapped usages when doing lookup by keycode. 72 */ 73 return (usage->type == EV_KEY && usage->code == keycode); 74 } 75 76 static bool match_index(struct hid_usage *usage, 77 unsigned int cur_idx, unsigned int idx) 78 { 79 return cur_idx == idx; 80 } 81 82 typedef bool (*hid_usage_cmp_t)(struct hid_usage *usage, 83 unsigned int cur_idx, unsigned int val); 84 85 static struct hid_usage *hidinput_find_key(struct hid_device *hid, 86 hid_usage_cmp_t match, 87 unsigned int value, 88 unsigned int *usage_idx) 89 { 90 unsigned int i, j, k, cur_idx = 0; 91 struct hid_report *report; 92 struct hid_usage *usage; 93 94 for (k = HID_INPUT_REPORT; k <= HID_OUTPUT_REPORT; k++) { 95 list_for_each_entry(report, &hid->report_enum[k].report_list, list) { 96 for (i = 0; i < report->maxfield; i++) { 97 for (j = 0; j < report->field[i]->maxusage; j++) { 98 usage = report->field[i]->usage + j; 99 if (usage->type == EV_KEY || usage->type == 0) { 100 if (match(usage, cur_idx, value)) { 101 if (usage_idx) 102 *usage_idx = cur_idx; 103 return usage; 104 } 105 cur_idx++; 106 } 107 } 108 } 109 } 110 } 111 return NULL; 112 } 113 114 static struct hid_usage *hidinput_locate_usage(struct hid_device *hid, 115 const struct input_keymap_entry *ke, 116 unsigned int *index) 117 { 118 struct hid_usage *usage; 119 unsigned int scancode; 120 121 if (ke->flags & INPUT_KEYMAP_BY_INDEX) 122 usage = hidinput_find_key(hid, match_index, ke->index, index); 123 else if (input_scancode_to_scalar(ke, &scancode) == 0) 124 usage = hidinput_find_key(hid, match_scancode, scancode, index); 125 else 126 usage = NULL; 127 128 return usage; 129 } 130 131 static int hidinput_getkeycode(struct input_dev *dev, 132 struct input_keymap_entry *ke) 133 { 134 struct hid_device *hid = input_get_drvdata(dev); 135 struct hid_usage *usage; 136 unsigned int scancode, index; 137 138 usage = hidinput_locate_usage(hid, ke, &index); 139 if (usage) { 140 ke->keycode = usage->type == EV_KEY ? 141 usage->code : KEY_RESERVED; 142 ke->index = index; 143 scancode = usage->hid & (HID_USAGE_PAGE | HID_USAGE); 144 ke->len = sizeof(scancode); 145 memcpy(ke->scancode, &scancode, sizeof(scancode)); 146 return 0; 147 } 148 149 return -EINVAL; 150 } 151 152 static int hidinput_setkeycode(struct input_dev *dev, 153 const struct input_keymap_entry *ke, 154 unsigned int *old_keycode) 155 { 156 struct hid_device *hid = input_get_drvdata(dev); 157 struct hid_usage *usage; 158 159 usage = hidinput_locate_usage(hid, ke, NULL); 160 if (usage) { 161 *old_keycode = usage->type == EV_KEY ? 162 usage->code : KEY_RESERVED; 163 usage->code = ke->keycode; 164 165 clear_bit(*old_keycode, dev->keybit); 166 set_bit(usage->code, dev->keybit); 167 dbg_hid("Assigned keycode %d to HID usage code %x\n", 168 usage->code, usage->hid); 169 170 /* 171 * Set the keybit for the old keycode if the old keycode is used 172 * by another key 173 */ 174 if (hidinput_find_key(hid, match_keycode, *old_keycode, NULL)) 175 set_bit(*old_keycode, dev->keybit); 176 177 return 0; 178 } 179 180 return -EINVAL; 181 } 182 183 184 /** 185 * hidinput_calc_abs_res - calculate an absolute axis resolution 186 * @field: the HID report field to calculate resolution for 187 * @code: axis code 188 * 189 * The formula is: 190 * (logical_maximum - logical_minimum) 191 * resolution = ---------------------------------------------------------- 192 * (physical_maximum - physical_minimum) * 10 ^ unit_exponent 193 * 194 * as seen in the HID specification v1.11 6.2.2.7 Global Items. 195 * 196 * Only exponent 1 length units are processed. Centimeters and inches are 197 * converted to millimeters. Degrees are converted to radians. 198 */ 199 __s32 hidinput_calc_abs_res(const struct hid_field *field, __u16 code) 200 { 201 __s32 unit_exponent = field->unit_exponent; 202 __s32 logical_extents = field->logical_maximum - 203 field->logical_minimum; 204 __s32 physical_extents = field->physical_maximum - 205 field->physical_minimum; 206 __s32 prev; 207 208 /* Check if the extents are sane */ 209 if (logical_extents <= 0 || physical_extents <= 0) 210 return 0; 211 212 /* 213 * Verify and convert units. 214 * See HID specification v1.11 6.2.2.7 Global Items for unit decoding 215 */ 216 switch (code) { 217 case ABS_X: 218 case ABS_Y: 219 case ABS_Z: 220 case ABS_MT_POSITION_X: 221 case ABS_MT_POSITION_Y: 222 case ABS_MT_TOOL_X: 223 case ABS_MT_TOOL_Y: 224 case ABS_MT_TOUCH_MAJOR: 225 case ABS_MT_TOUCH_MINOR: 226 if (field->unit == 0x11) { /* If centimeters */ 227 /* Convert to millimeters */ 228 unit_exponent += 1; 229 } else if (field->unit == 0x13) { /* If inches */ 230 /* Convert to millimeters */ 231 prev = physical_extents; 232 physical_extents *= 254; 233 if (physical_extents < prev) 234 return 0; 235 unit_exponent -= 1; 236 } else { 237 return 0; 238 } 239 break; 240 241 case ABS_RX: 242 case ABS_RY: 243 case ABS_RZ: 244 case ABS_WHEEL: 245 case ABS_TILT_X: 246 case ABS_TILT_Y: 247 if (field->unit == 0x14) { /* If degrees */ 248 /* Convert to radians */ 249 prev = logical_extents; 250 logical_extents *= 573; 251 if (logical_extents < prev) 252 return 0; 253 unit_exponent += 1; 254 } else if (field->unit != 0x12) { /* If not radians */ 255 return 0; 256 } 257 break; 258 259 default: 260 return 0; 261 } 262 263 /* Apply negative unit exponent */ 264 for (; unit_exponent < 0; unit_exponent++) { 265 prev = logical_extents; 266 logical_extents *= 10; 267 if (logical_extents < prev) 268 return 0; 269 } 270 /* Apply positive unit exponent */ 271 for (; unit_exponent > 0; unit_exponent--) { 272 prev = physical_extents; 273 physical_extents *= 10; 274 if (physical_extents < prev) 275 return 0; 276 } 277 278 /* Calculate resolution */ 279 return DIV_ROUND_CLOSEST(logical_extents, physical_extents); 280 } 281 EXPORT_SYMBOL_GPL(hidinput_calc_abs_res); 282 283 #ifdef CONFIG_HID_BATTERY_STRENGTH 284 static enum power_supply_property hidinput_battery_props[] = { 285 POWER_SUPPLY_PROP_PRESENT, 286 POWER_SUPPLY_PROP_ONLINE, 287 POWER_SUPPLY_PROP_CAPACITY, 288 POWER_SUPPLY_PROP_MODEL_NAME, 289 POWER_SUPPLY_PROP_STATUS, 290 POWER_SUPPLY_PROP_SCOPE, 291 }; 292 293 #define HID_BATTERY_QUIRK_PERCENT (1 << 0) /* always reports percent */ 294 #define HID_BATTERY_QUIRK_FEATURE (1 << 1) /* ask for feature report */ 295 #define HID_BATTERY_QUIRK_IGNORE (1 << 2) /* completely ignore the battery */ 296 297 static const struct hid_device_id hid_battery_quirks[] = { 298 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, 299 USB_DEVICE_ID_APPLE_ALU_WIRELESS_2009_ISO), 300 HID_BATTERY_QUIRK_PERCENT | HID_BATTERY_QUIRK_FEATURE }, 301 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, 302 USB_DEVICE_ID_APPLE_ALU_WIRELESS_2009_ANSI), 303 HID_BATTERY_QUIRK_PERCENT | HID_BATTERY_QUIRK_FEATURE }, 304 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, 305 USB_DEVICE_ID_APPLE_ALU_WIRELESS_2011_ANSI), 306 HID_BATTERY_QUIRK_PERCENT | HID_BATTERY_QUIRK_FEATURE }, 307 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, 308 USB_DEVICE_ID_APPLE_ALU_WIRELESS_2011_ISO), 309 HID_BATTERY_QUIRK_PERCENT | HID_BATTERY_QUIRK_FEATURE }, 310 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, 311 USB_DEVICE_ID_APPLE_ALU_WIRELESS_ANSI), 312 HID_BATTERY_QUIRK_PERCENT | HID_BATTERY_QUIRK_FEATURE }, 313 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_ELECOM, 314 USB_DEVICE_ID_ELECOM_BM084), 315 HID_BATTERY_QUIRK_IGNORE }, 316 { HID_USB_DEVICE(USB_VENDOR_ID_SYMBOL, 317 USB_DEVICE_ID_SYMBOL_SCANNER_3), 318 HID_BATTERY_QUIRK_IGNORE }, 319 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_ASUSTEK, 320 USB_DEVICE_ID_ASUSTEK_T100CHI_KEYBOARD), 321 HID_BATTERY_QUIRK_IGNORE }, 322 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 323 USB_DEVICE_ID_LOGITECH_DINOVO_EDGE_KBD), 324 HID_BATTERY_QUIRK_IGNORE }, 325 { HID_USB_DEVICE(USB_VENDOR_ID_ELAN, USB_DEVICE_ID_ASUS_UX550_TOUCHSCREEN), 326 HID_BATTERY_QUIRK_IGNORE }, 327 {} 328 }; 329 330 static unsigned find_battery_quirk(struct hid_device *hdev) 331 { 332 unsigned quirks = 0; 333 const struct hid_device_id *match; 334 335 match = hid_match_id(hdev, hid_battery_quirks); 336 if (match != NULL) 337 quirks = match->driver_data; 338 339 return quirks; 340 } 341 342 static int hidinput_scale_battery_capacity(struct hid_device *dev, 343 int value) 344 { 345 if (dev->battery_min < dev->battery_max && 346 value >= dev->battery_min && value <= dev->battery_max) 347 value = ((value - dev->battery_min) * 100) / 348 (dev->battery_max - dev->battery_min); 349 350 return value; 351 } 352 353 static int hidinput_query_battery_capacity(struct hid_device *dev) 354 { 355 u8 *buf; 356 int ret; 357 358 buf = kmalloc(4, GFP_KERNEL); 359 if (!buf) 360 return -ENOMEM; 361 362 ret = hid_hw_raw_request(dev, dev->battery_report_id, buf, 4, 363 dev->battery_report_type, HID_REQ_GET_REPORT); 364 if (ret < 2) { 365 kfree(buf); 366 return -ENODATA; 367 } 368 369 ret = hidinput_scale_battery_capacity(dev, buf[1]); 370 kfree(buf); 371 return ret; 372 } 373 374 static int hidinput_get_battery_property(struct power_supply *psy, 375 enum power_supply_property prop, 376 union power_supply_propval *val) 377 { 378 struct hid_device *dev = power_supply_get_drvdata(psy); 379 int value; 380 int ret = 0; 381 382 switch (prop) { 383 case POWER_SUPPLY_PROP_PRESENT: 384 case POWER_SUPPLY_PROP_ONLINE: 385 val->intval = 1; 386 break; 387 388 case POWER_SUPPLY_PROP_CAPACITY: 389 if (dev->battery_status != HID_BATTERY_REPORTED && 390 !dev->battery_avoid_query) { 391 value = hidinput_query_battery_capacity(dev); 392 if (value < 0) 393 return value; 394 } else { 395 value = dev->battery_capacity; 396 } 397 398 val->intval = value; 399 break; 400 401 case POWER_SUPPLY_PROP_MODEL_NAME: 402 val->strval = dev->name; 403 break; 404 405 case POWER_SUPPLY_PROP_STATUS: 406 if (dev->battery_status != HID_BATTERY_REPORTED && 407 !dev->battery_avoid_query) { 408 value = hidinput_query_battery_capacity(dev); 409 if (value < 0) 410 return value; 411 412 dev->battery_capacity = value; 413 dev->battery_status = HID_BATTERY_QUERIED; 414 } 415 416 if (dev->battery_status == HID_BATTERY_UNKNOWN) 417 val->intval = POWER_SUPPLY_STATUS_UNKNOWN; 418 else if (dev->battery_capacity == 100) 419 val->intval = POWER_SUPPLY_STATUS_FULL; 420 else 421 val->intval = POWER_SUPPLY_STATUS_DISCHARGING; 422 break; 423 424 case POWER_SUPPLY_PROP_SCOPE: 425 val->intval = POWER_SUPPLY_SCOPE_DEVICE; 426 break; 427 428 default: 429 ret = -EINVAL; 430 break; 431 } 432 433 return ret; 434 } 435 436 static int hidinput_setup_battery(struct hid_device *dev, unsigned report_type, struct hid_field *field) 437 { 438 struct power_supply_desc *psy_desc; 439 struct power_supply_config psy_cfg = { .drv_data = dev, }; 440 unsigned quirks; 441 s32 min, max; 442 int error; 443 444 if (dev->battery) 445 return 0; /* already initialized? */ 446 447 quirks = find_battery_quirk(dev); 448 449 hid_dbg(dev, "device %x:%x:%x %d quirks %d\n", 450 dev->bus, dev->vendor, dev->product, dev->version, quirks); 451 452 if (quirks & HID_BATTERY_QUIRK_IGNORE) 453 return 0; 454 455 psy_desc = kzalloc(sizeof(*psy_desc), GFP_KERNEL); 456 if (!psy_desc) 457 return -ENOMEM; 458 459 psy_desc->name = kasprintf(GFP_KERNEL, "hid-%s-battery", 460 strlen(dev->uniq) ? 461 dev->uniq : dev_name(&dev->dev)); 462 if (!psy_desc->name) { 463 error = -ENOMEM; 464 goto err_free_mem; 465 } 466 467 psy_desc->type = POWER_SUPPLY_TYPE_BATTERY; 468 psy_desc->properties = hidinput_battery_props; 469 psy_desc->num_properties = ARRAY_SIZE(hidinput_battery_props); 470 psy_desc->use_for_apm = 0; 471 psy_desc->get_property = hidinput_get_battery_property; 472 473 min = field->logical_minimum; 474 max = field->logical_maximum; 475 476 if (quirks & HID_BATTERY_QUIRK_PERCENT) { 477 min = 0; 478 max = 100; 479 } 480 481 if (quirks & HID_BATTERY_QUIRK_FEATURE) 482 report_type = HID_FEATURE_REPORT; 483 484 dev->battery_min = min; 485 dev->battery_max = max; 486 dev->battery_report_type = report_type; 487 dev->battery_report_id = field->report->id; 488 489 /* 490 * Stylus is normally not connected to the device and thus we 491 * can't query the device and get meaningful battery strength. 492 * We have to wait for the device to report it on its own. 493 */ 494 dev->battery_avoid_query = report_type == HID_INPUT_REPORT && 495 field->physical == HID_DG_STYLUS; 496 497 dev->battery = power_supply_register(&dev->dev, psy_desc, &psy_cfg); 498 if (IS_ERR(dev->battery)) { 499 error = PTR_ERR(dev->battery); 500 hid_warn(dev, "can't register power supply: %d\n", error); 501 goto err_free_name; 502 } 503 504 power_supply_powers(dev->battery, &dev->dev); 505 return 0; 506 507 err_free_name: 508 kfree(psy_desc->name); 509 err_free_mem: 510 kfree(psy_desc); 511 dev->battery = NULL; 512 return error; 513 } 514 515 static void hidinput_cleanup_battery(struct hid_device *dev) 516 { 517 const struct power_supply_desc *psy_desc; 518 519 if (!dev->battery) 520 return; 521 522 psy_desc = dev->battery->desc; 523 power_supply_unregister(dev->battery); 524 kfree(psy_desc->name); 525 kfree(psy_desc); 526 dev->battery = NULL; 527 } 528 529 static void hidinput_update_battery(struct hid_device *dev, int value) 530 { 531 int capacity; 532 533 if (!dev->battery) 534 return; 535 536 if (value == 0 || value < dev->battery_min || value > dev->battery_max) 537 return; 538 539 capacity = hidinput_scale_battery_capacity(dev, value); 540 541 if (dev->battery_status != HID_BATTERY_REPORTED || 542 capacity != dev->battery_capacity || 543 ktime_after(ktime_get_coarse(), dev->battery_ratelimit_time)) { 544 dev->battery_capacity = capacity; 545 dev->battery_status = HID_BATTERY_REPORTED; 546 dev->battery_ratelimit_time = 547 ktime_add_ms(ktime_get_coarse(), 30 * 1000); 548 power_supply_changed(dev->battery); 549 } 550 } 551 #else /* !CONFIG_HID_BATTERY_STRENGTH */ 552 static int hidinput_setup_battery(struct hid_device *dev, unsigned report_type, 553 struct hid_field *field) 554 { 555 return 0; 556 } 557 558 static void hidinput_cleanup_battery(struct hid_device *dev) 559 { 560 } 561 562 static void hidinput_update_battery(struct hid_device *dev, int value) 563 { 564 } 565 #endif /* CONFIG_HID_BATTERY_STRENGTH */ 566 567 static void hidinput_configure_usage(struct hid_input *hidinput, struct hid_field *field, 568 struct hid_usage *usage) 569 { 570 struct input_dev *input = hidinput->input; 571 struct hid_device *device = input_get_drvdata(input); 572 int max = 0, code; 573 unsigned long *bit = NULL; 574 575 field->hidinput = hidinput; 576 577 if (field->flags & HID_MAIN_ITEM_CONSTANT) 578 goto ignore; 579 580 /* Ignore if report count is out of bounds. */ 581 if (field->report_count < 1) 582 goto ignore; 583 584 /* only LED usages are supported in output fields */ 585 if (field->report_type == HID_OUTPUT_REPORT && 586 (usage->hid & HID_USAGE_PAGE) != HID_UP_LED) { 587 goto ignore; 588 } 589 590 if (device->driver->input_mapping) { 591 int ret = device->driver->input_mapping(device, hidinput, field, 592 usage, &bit, &max); 593 if (ret > 0) 594 goto mapped; 595 if (ret < 0) 596 goto ignore; 597 } 598 599 switch (usage->hid & HID_USAGE_PAGE) { 600 case HID_UP_UNDEFINED: 601 goto ignore; 602 603 case HID_UP_KEYBOARD: 604 set_bit(EV_REP, input->evbit); 605 606 if ((usage->hid & HID_USAGE) < 256) { 607 if (!hid_keyboard[usage->hid & HID_USAGE]) goto ignore; 608 map_key_clear(hid_keyboard[usage->hid & HID_USAGE]); 609 } else 610 map_key(KEY_UNKNOWN); 611 612 break; 613 614 case HID_UP_BUTTON: 615 code = ((usage->hid - 1) & HID_USAGE); 616 617 switch (field->application) { 618 case HID_GD_MOUSE: 619 case HID_GD_POINTER: code += BTN_MOUSE; break; 620 case HID_GD_JOYSTICK: 621 if (code <= 0xf) 622 code += BTN_JOYSTICK; 623 else 624 code += BTN_TRIGGER_HAPPY - 0x10; 625 break; 626 case HID_GD_GAMEPAD: 627 if (code <= 0xf) 628 code += BTN_GAMEPAD; 629 else 630 code += BTN_TRIGGER_HAPPY - 0x10; 631 break; 632 default: 633 switch (field->physical) { 634 case HID_GD_MOUSE: 635 case HID_GD_POINTER: code += BTN_MOUSE; break; 636 case HID_GD_JOYSTICK: code += BTN_JOYSTICK; break; 637 case HID_GD_GAMEPAD: code += BTN_GAMEPAD; break; 638 default: code += BTN_MISC; 639 } 640 } 641 642 map_key(code); 643 break; 644 645 case HID_UP_SIMULATION: 646 switch (usage->hid & 0xffff) { 647 case 0xba: map_abs(ABS_RUDDER); break; 648 case 0xbb: map_abs(ABS_THROTTLE); break; 649 case 0xc4: map_abs(ABS_GAS); break; 650 case 0xc5: map_abs(ABS_BRAKE); break; 651 case 0xc8: map_abs(ABS_WHEEL); break; 652 default: goto ignore; 653 } 654 break; 655 656 case HID_UP_GENDESK: 657 if ((usage->hid & 0xf0) == 0x80) { /* SystemControl */ 658 switch (usage->hid & 0xf) { 659 case 0x1: map_key_clear(KEY_POWER); break; 660 case 0x2: map_key_clear(KEY_SLEEP); break; 661 case 0x3: map_key_clear(KEY_WAKEUP); break; 662 case 0x4: map_key_clear(KEY_CONTEXT_MENU); break; 663 case 0x5: map_key_clear(KEY_MENU); break; 664 case 0x6: map_key_clear(KEY_PROG1); break; 665 case 0x7: map_key_clear(KEY_HELP); break; 666 case 0x8: map_key_clear(KEY_EXIT); break; 667 case 0x9: map_key_clear(KEY_SELECT); break; 668 case 0xa: map_key_clear(KEY_RIGHT); break; 669 case 0xb: map_key_clear(KEY_LEFT); break; 670 case 0xc: map_key_clear(KEY_UP); break; 671 case 0xd: map_key_clear(KEY_DOWN); break; 672 case 0xe: map_key_clear(KEY_POWER2); break; 673 case 0xf: map_key_clear(KEY_RESTART); break; 674 default: goto unknown; 675 } 676 break; 677 } 678 679 if ((usage->hid & 0xf0) == 0xb0) { /* SC - Display */ 680 switch (usage->hid & 0xf) { 681 case 0x05: map_key_clear(KEY_SWITCHVIDEOMODE); break; 682 default: goto ignore; 683 } 684 break; 685 } 686 687 /* 688 * Some lazy vendors declare 255 usages for System Control, 689 * leading to the creation of ABS_X|Y axis and too many others. 690 * It wouldn't be a problem if joydev doesn't consider the 691 * device as a joystick then. 692 */ 693 if (field->application == HID_GD_SYSTEM_CONTROL) 694 goto ignore; 695 696 if ((usage->hid & 0xf0) == 0x90) { /* D-pad */ 697 switch (usage->hid) { 698 case HID_GD_UP: usage->hat_dir = 1; break; 699 case HID_GD_DOWN: usage->hat_dir = 5; break; 700 case HID_GD_RIGHT: usage->hat_dir = 3; break; 701 case HID_GD_LEFT: usage->hat_dir = 7; break; 702 default: goto unknown; 703 } 704 if (field->dpad) { 705 map_abs(field->dpad); 706 goto ignore; 707 } 708 map_abs(ABS_HAT0X); 709 break; 710 } 711 712 switch (usage->hid) { 713 /* These usage IDs map directly to the usage codes. */ 714 case HID_GD_X: case HID_GD_Y: case HID_GD_Z: 715 case HID_GD_RX: case HID_GD_RY: case HID_GD_RZ: 716 if (field->flags & HID_MAIN_ITEM_RELATIVE) 717 map_rel(usage->hid & 0xf); 718 else 719 map_abs_clear(usage->hid & 0xf); 720 break; 721 722 case HID_GD_WHEEL: 723 if (field->flags & HID_MAIN_ITEM_RELATIVE) { 724 set_bit(REL_WHEEL, input->relbit); 725 map_rel(REL_WHEEL_HI_RES); 726 } else { 727 map_abs(usage->hid & 0xf); 728 } 729 break; 730 case HID_GD_SLIDER: case HID_GD_DIAL: 731 if (field->flags & HID_MAIN_ITEM_RELATIVE) 732 map_rel(usage->hid & 0xf); 733 else 734 map_abs(usage->hid & 0xf); 735 break; 736 737 case HID_GD_HATSWITCH: 738 usage->hat_min = field->logical_minimum; 739 usage->hat_max = field->logical_maximum; 740 map_abs(ABS_HAT0X); 741 break; 742 743 case HID_GD_START: map_key_clear(BTN_START); break; 744 case HID_GD_SELECT: map_key_clear(BTN_SELECT); break; 745 746 case HID_GD_RFKILL_BTN: 747 /* MS wireless radio ctl extension, also check CA */ 748 if (field->application == HID_GD_WIRELESS_RADIO_CTLS) { 749 map_key_clear(KEY_RFKILL); 750 /* We need to simulate the btn release */ 751 field->flags |= HID_MAIN_ITEM_RELATIVE; 752 break; 753 } 754 goto unknown; 755 756 default: goto unknown; 757 } 758 759 break; 760 761 case HID_UP_LED: 762 switch (usage->hid & 0xffff) { /* HID-Value: */ 763 case 0x01: map_led (LED_NUML); break; /* "Num Lock" */ 764 case 0x02: map_led (LED_CAPSL); break; /* "Caps Lock" */ 765 case 0x03: map_led (LED_SCROLLL); break; /* "Scroll Lock" */ 766 case 0x04: map_led (LED_COMPOSE); break; /* "Compose" */ 767 case 0x05: map_led (LED_KANA); break; /* "Kana" */ 768 case 0x27: map_led (LED_SLEEP); break; /* "Stand-By" */ 769 case 0x4c: map_led (LED_SUSPEND); break; /* "System Suspend" */ 770 case 0x09: map_led (LED_MUTE); break; /* "Mute" */ 771 case 0x4b: map_led (LED_MISC); break; /* "Generic Indicator" */ 772 case 0x19: map_led (LED_MAIL); break; /* "Message Waiting" */ 773 case 0x4d: map_led (LED_CHARGING); break; /* "External Power Connected" */ 774 775 default: goto ignore; 776 } 777 break; 778 779 case HID_UP_DIGITIZER: 780 if ((field->application & 0xff) == 0x01) /* Digitizer */ 781 __set_bit(INPUT_PROP_POINTER, input->propbit); 782 else if ((field->application & 0xff) == 0x02) /* Pen */ 783 __set_bit(INPUT_PROP_DIRECT, input->propbit); 784 785 switch (usage->hid & 0xff) { 786 case 0x00: /* Undefined */ 787 goto ignore; 788 789 case 0x30: /* TipPressure */ 790 if (!test_bit(BTN_TOUCH, input->keybit)) { 791 device->quirks |= HID_QUIRK_NOTOUCH; 792 set_bit(EV_KEY, input->evbit); 793 set_bit(BTN_TOUCH, input->keybit); 794 } 795 map_abs_clear(ABS_PRESSURE); 796 break; 797 798 case 0x32: /* InRange */ 799 switch (field->physical & 0xff) { 800 case 0x21: map_key(BTN_TOOL_MOUSE); break; 801 case 0x22: map_key(BTN_TOOL_FINGER); break; 802 default: map_key(BTN_TOOL_PEN); break; 803 } 804 break; 805 806 case 0x3b: /* Battery Strength */ 807 hidinput_setup_battery(device, HID_INPUT_REPORT, field); 808 usage->type = EV_PWR; 809 return; 810 811 case 0x3c: /* Invert */ 812 map_key_clear(BTN_TOOL_RUBBER); 813 break; 814 815 case 0x3d: /* X Tilt */ 816 map_abs_clear(ABS_TILT_X); 817 break; 818 819 case 0x3e: /* Y Tilt */ 820 map_abs_clear(ABS_TILT_Y); 821 break; 822 823 case 0x33: /* Touch */ 824 case 0x42: /* TipSwitch */ 825 case 0x43: /* TipSwitch2 */ 826 device->quirks &= ~HID_QUIRK_NOTOUCH; 827 map_key_clear(BTN_TOUCH); 828 break; 829 830 case 0x44: /* BarrelSwitch */ 831 map_key_clear(BTN_STYLUS); 832 break; 833 834 case 0x45: /* ERASER */ 835 /* 836 * This event is reported when eraser tip touches the surface. 837 * Actual eraser (BTN_TOOL_RUBBER) is set by Invert usage when 838 * tool gets in proximity. 839 */ 840 map_key_clear(BTN_TOUCH); 841 break; 842 843 case 0x46: /* TabletPick */ 844 case 0x5a: /* SecondaryBarrelSwitch */ 845 map_key_clear(BTN_STYLUS2); 846 break; 847 848 case 0x5b: /* TransducerSerialNumber */ 849 usage->type = EV_MSC; 850 usage->code = MSC_SERIAL; 851 bit = input->mscbit; 852 max = MSC_MAX; 853 break; 854 855 default: goto unknown; 856 } 857 break; 858 859 case HID_UP_TELEPHONY: 860 switch (usage->hid & HID_USAGE) { 861 case 0x2f: map_key_clear(KEY_MICMUTE); break; 862 case 0xb0: map_key_clear(KEY_NUMERIC_0); break; 863 case 0xb1: map_key_clear(KEY_NUMERIC_1); break; 864 case 0xb2: map_key_clear(KEY_NUMERIC_2); break; 865 case 0xb3: map_key_clear(KEY_NUMERIC_3); break; 866 case 0xb4: map_key_clear(KEY_NUMERIC_4); break; 867 case 0xb5: map_key_clear(KEY_NUMERIC_5); break; 868 case 0xb6: map_key_clear(KEY_NUMERIC_6); break; 869 case 0xb7: map_key_clear(KEY_NUMERIC_7); break; 870 case 0xb8: map_key_clear(KEY_NUMERIC_8); break; 871 case 0xb9: map_key_clear(KEY_NUMERIC_9); break; 872 case 0xba: map_key_clear(KEY_NUMERIC_STAR); break; 873 case 0xbb: map_key_clear(KEY_NUMERIC_POUND); break; 874 case 0xbc: map_key_clear(KEY_NUMERIC_A); break; 875 case 0xbd: map_key_clear(KEY_NUMERIC_B); break; 876 case 0xbe: map_key_clear(KEY_NUMERIC_C); break; 877 case 0xbf: map_key_clear(KEY_NUMERIC_D); break; 878 default: goto ignore; 879 } 880 break; 881 882 case HID_UP_CONSUMER: /* USB HUT v1.12, pages 75-84 */ 883 switch (usage->hid & HID_USAGE) { 884 case 0x000: goto ignore; 885 case 0x030: map_key_clear(KEY_POWER); break; 886 case 0x031: map_key_clear(KEY_RESTART); break; 887 case 0x032: map_key_clear(KEY_SLEEP); break; 888 case 0x034: map_key_clear(KEY_SLEEP); break; 889 case 0x035: map_key_clear(KEY_KBDILLUMTOGGLE); break; 890 case 0x036: map_key_clear(BTN_MISC); break; 891 892 case 0x040: map_key_clear(KEY_MENU); break; /* Menu */ 893 case 0x041: map_key_clear(KEY_SELECT); break; /* Menu Pick */ 894 case 0x042: map_key_clear(KEY_UP); break; /* Menu Up */ 895 case 0x043: map_key_clear(KEY_DOWN); break; /* Menu Down */ 896 case 0x044: map_key_clear(KEY_LEFT); break; /* Menu Left */ 897 case 0x045: map_key_clear(KEY_RIGHT); break; /* Menu Right */ 898 case 0x046: map_key_clear(KEY_ESC); break; /* Menu Escape */ 899 case 0x047: map_key_clear(KEY_KPPLUS); break; /* Menu Value Increase */ 900 case 0x048: map_key_clear(KEY_KPMINUS); break; /* Menu Value Decrease */ 901 902 case 0x060: map_key_clear(KEY_INFO); break; /* Data On Screen */ 903 case 0x061: map_key_clear(KEY_SUBTITLE); break; /* Closed Caption */ 904 case 0x063: map_key_clear(KEY_VCR); break; /* VCR/TV */ 905 case 0x065: map_key_clear(KEY_CAMERA); break; /* Snapshot */ 906 case 0x069: map_key_clear(KEY_RED); break; 907 case 0x06a: map_key_clear(KEY_GREEN); break; 908 case 0x06b: map_key_clear(KEY_BLUE); break; 909 case 0x06c: map_key_clear(KEY_YELLOW); break; 910 case 0x06d: map_key_clear(KEY_ASPECT_RATIO); break; 911 912 case 0x06f: map_key_clear(KEY_BRIGHTNESSUP); break; 913 case 0x070: map_key_clear(KEY_BRIGHTNESSDOWN); break; 914 case 0x072: map_key_clear(KEY_BRIGHTNESS_TOGGLE); break; 915 case 0x073: map_key_clear(KEY_BRIGHTNESS_MIN); break; 916 case 0x074: map_key_clear(KEY_BRIGHTNESS_MAX); break; 917 case 0x075: map_key_clear(KEY_BRIGHTNESS_AUTO); break; 918 919 case 0x079: map_key_clear(KEY_KBDILLUMUP); break; 920 case 0x07a: map_key_clear(KEY_KBDILLUMDOWN); break; 921 case 0x07c: map_key_clear(KEY_KBDILLUMTOGGLE); break; 922 923 case 0x082: map_key_clear(KEY_VIDEO_NEXT); break; 924 case 0x083: map_key_clear(KEY_LAST); break; 925 case 0x084: map_key_clear(KEY_ENTER); break; 926 case 0x088: map_key_clear(KEY_PC); break; 927 case 0x089: map_key_clear(KEY_TV); break; 928 case 0x08a: map_key_clear(KEY_WWW); break; 929 case 0x08b: map_key_clear(KEY_DVD); break; 930 case 0x08c: map_key_clear(KEY_PHONE); break; 931 case 0x08d: map_key_clear(KEY_PROGRAM); break; 932 case 0x08e: map_key_clear(KEY_VIDEOPHONE); break; 933 case 0x08f: map_key_clear(KEY_GAMES); break; 934 case 0x090: map_key_clear(KEY_MEMO); break; 935 case 0x091: map_key_clear(KEY_CD); break; 936 case 0x092: map_key_clear(KEY_VCR); break; 937 case 0x093: map_key_clear(KEY_TUNER); break; 938 case 0x094: map_key_clear(KEY_EXIT); break; 939 case 0x095: map_key_clear(KEY_HELP); break; 940 case 0x096: map_key_clear(KEY_TAPE); break; 941 case 0x097: map_key_clear(KEY_TV2); break; 942 case 0x098: map_key_clear(KEY_SAT); break; 943 case 0x09a: map_key_clear(KEY_PVR); break; 944 945 case 0x09c: map_key_clear(KEY_CHANNELUP); break; 946 case 0x09d: map_key_clear(KEY_CHANNELDOWN); break; 947 case 0x0a0: map_key_clear(KEY_VCR2); break; 948 949 case 0x0b0: map_key_clear(KEY_PLAY); break; 950 case 0x0b1: map_key_clear(KEY_PAUSE); break; 951 case 0x0b2: map_key_clear(KEY_RECORD); break; 952 case 0x0b3: map_key_clear(KEY_FASTFORWARD); break; 953 case 0x0b4: map_key_clear(KEY_REWIND); break; 954 case 0x0b5: map_key_clear(KEY_NEXTSONG); break; 955 case 0x0b6: map_key_clear(KEY_PREVIOUSSONG); break; 956 case 0x0b7: map_key_clear(KEY_STOPCD); break; 957 case 0x0b8: map_key_clear(KEY_EJECTCD); break; 958 case 0x0bc: map_key_clear(KEY_MEDIA_REPEAT); break; 959 case 0x0b9: map_key_clear(KEY_SHUFFLE); break; 960 case 0x0bf: map_key_clear(KEY_SLOW); break; 961 962 case 0x0cd: map_key_clear(KEY_PLAYPAUSE); break; 963 case 0x0cf: map_key_clear(KEY_VOICECOMMAND); break; 964 case 0x0e0: map_abs_clear(ABS_VOLUME); break; 965 case 0x0e2: map_key_clear(KEY_MUTE); break; 966 case 0x0e5: map_key_clear(KEY_BASSBOOST); break; 967 case 0x0e9: map_key_clear(KEY_VOLUMEUP); break; 968 case 0x0ea: map_key_clear(KEY_VOLUMEDOWN); break; 969 case 0x0f5: map_key_clear(KEY_SLOW); break; 970 971 case 0x181: map_key_clear(KEY_BUTTONCONFIG); break; 972 case 0x182: map_key_clear(KEY_BOOKMARKS); break; 973 case 0x183: map_key_clear(KEY_CONFIG); break; 974 case 0x184: map_key_clear(KEY_WORDPROCESSOR); break; 975 case 0x185: map_key_clear(KEY_EDITOR); break; 976 case 0x186: map_key_clear(KEY_SPREADSHEET); break; 977 case 0x187: map_key_clear(KEY_GRAPHICSEDITOR); break; 978 case 0x188: map_key_clear(KEY_PRESENTATION); break; 979 case 0x189: map_key_clear(KEY_DATABASE); break; 980 case 0x18a: map_key_clear(KEY_MAIL); break; 981 case 0x18b: map_key_clear(KEY_NEWS); break; 982 case 0x18c: map_key_clear(KEY_VOICEMAIL); break; 983 case 0x18d: map_key_clear(KEY_ADDRESSBOOK); break; 984 case 0x18e: map_key_clear(KEY_CALENDAR); break; 985 case 0x18f: map_key_clear(KEY_TASKMANAGER); break; 986 case 0x190: map_key_clear(KEY_JOURNAL); break; 987 case 0x191: map_key_clear(KEY_FINANCE); break; 988 case 0x192: map_key_clear(KEY_CALC); break; 989 case 0x193: map_key_clear(KEY_PLAYER); break; 990 case 0x194: map_key_clear(KEY_FILE); break; 991 case 0x196: map_key_clear(KEY_WWW); break; 992 case 0x199: map_key_clear(KEY_CHAT); break; 993 case 0x19c: map_key_clear(KEY_LOGOFF); break; 994 case 0x19e: map_key_clear(KEY_COFFEE); break; 995 case 0x19f: map_key_clear(KEY_CONTROLPANEL); break; 996 case 0x1a2: map_key_clear(KEY_APPSELECT); break; 997 case 0x1a3: map_key_clear(KEY_NEXT); break; 998 case 0x1a4: map_key_clear(KEY_PREVIOUS); break; 999 case 0x1a6: map_key_clear(KEY_HELP); break; 1000 case 0x1a7: map_key_clear(KEY_DOCUMENTS); break; 1001 case 0x1ab: map_key_clear(KEY_SPELLCHECK); break; 1002 case 0x1ae: map_key_clear(KEY_KEYBOARD); break; 1003 case 0x1b1: map_key_clear(KEY_SCREENSAVER); break; 1004 case 0x1b4: map_key_clear(KEY_FILE); break; 1005 case 0x1b6: map_key_clear(KEY_IMAGES); break; 1006 case 0x1b7: map_key_clear(KEY_AUDIO); break; 1007 case 0x1b8: map_key_clear(KEY_VIDEO); break; 1008 case 0x1bc: map_key_clear(KEY_MESSENGER); break; 1009 case 0x1bd: map_key_clear(KEY_INFO); break; 1010 case 0x1cb: map_key_clear(KEY_ASSISTANT); break; 1011 case 0x201: map_key_clear(KEY_NEW); break; 1012 case 0x202: map_key_clear(KEY_OPEN); break; 1013 case 0x203: map_key_clear(KEY_CLOSE); break; 1014 case 0x204: map_key_clear(KEY_EXIT); break; 1015 case 0x207: map_key_clear(KEY_SAVE); break; 1016 case 0x208: map_key_clear(KEY_PRINT); break; 1017 case 0x209: map_key_clear(KEY_PROPS); break; 1018 case 0x21a: map_key_clear(KEY_UNDO); break; 1019 case 0x21b: map_key_clear(KEY_COPY); break; 1020 case 0x21c: map_key_clear(KEY_CUT); break; 1021 case 0x21d: map_key_clear(KEY_PASTE); break; 1022 case 0x21f: map_key_clear(KEY_FIND); break; 1023 case 0x221: map_key_clear(KEY_SEARCH); break; 1024 case 0x222: map_key_clear(KEY_GOTO); break; 1025 case 0x223: map_key_clear(KEY_HOMEPAGE); break; 1026 case 0x224: map_key_clear(KEY_BACK); break; 1027 case 0x225: map_key_clear(KEY_FORWARD); break; 1028 case 0x226: map_key_clear(KEY_STOP); break; 1029 case 0x227: map_key_clear(KEY_REFRESH); break; 1030 case 0x22a: map_key_clear(KEY_BOOKMARKS); break; 1031 case 0x22d: map_key_clear(KEY_ZOOMIN); break; 1032 case 0x22e: map_key_clear(KEY_ZOOMOUT); break; 1033 case 0x22f: map_key_clear(KEY_ZOOMRESET); break; 1034 case 0x232: map_key_clear(KEY_FULL_SCREEN); break; 1035 case 0x233: map_key_clear(KEY_SCROLLUP); break; 1036 case 0x234: map_key_clear(KEY_SCROLLDOWN); break; 1037 case 0x238: /* AC Pan */ 1038 set_bit(REL_HWHEEL, input->relbit); 1039 map_rel(REL_HWHEEL_HI_RES); 1040 break; 1041 case 0x23d: map_key_clear(KEY_EDIT); break; 1042 case 0x25f: map_key_clear(KEY_CANCEL); break; 1043 case 0x269: map_key_clear(KEY_INSERT); break; 1044 case 0x26a: map_key_clear(KEY_DELETE); break; 1045 case 0x279: map_key_clear(KEY_REDO); break; 1046 1047 case 0x289: map_key_clear(KEY_REPLY); break; 1048 case 0x28b: map_key_clear(KEY_FORWARDMAIL); break; 1049 case 0x28c: map_key_clear(KEY_SEND); break; 1050 1051 case 0x29d: map_key_clear(KEY_KBD_LAYOUT_NEXT); break; 1052 1053 case 0x2c7: map_key_clear(KEY_KBDINPUTASSIST_PREV); break; 1054 case 0x2c8: map_key_clear(KEY_KBDINPUTASSIST_NEXT); break; 1055 case 0x2c9: map_key_clear(KEY_KBDINPUTASSIST_PREVGROUP); break; 1056 case 0x2ca: map_key_clear(KEY_KBDINPUTASSIST_NEXTGROUP); break; 1057 case 0x2cb: map_key_clear(KEY_KBDINPUTASSIST_ACCEPT); break; 1058 case 0x2cc: map_key_clear(KEY_KBDINPUTASSIST_CANCEL); break; 1059 1060 case 0x29f: map_key_clear(KEY_SCALE); break; 1061 1062 default: map_key_clear(KEY_UNKNOWN); 1063 } 1064 break; 1065 1066 case HID_UP_GENDEVCTRLS: 1067 switch (usage->hid) { 1068 case HID_DC_BATTERYSTRENGTH: 1069 hidinput_setup_battery(device, HID_INPUT_REPORT, field); 1070 usage->type = EV_PWR; 1071 return; 1072 } 1073 goto unknown; 1074 1075 case HID_UP_HPVENDOR: /* Reported on a Dutch layout HP5308 */ 1076 set_bit(EV_REP, input->evbit); 1077 switch (usage->hid & HID_USAGE) { 1078 case 0x021: map_key_clear(KEY_PRINT); break; 1079 case 0x070: map_key_clear(KEY_HP); break; 1080 case 0x071: map_key_clear(KEY_CAMERA); break; 1081 case 0x072: map_key_clear(KEY_SOUND); break; 1082 case 0x073: map_key_clear(KEY_QUESTION); break; 1083 case 0x080: map_key_clear(KEY_EMAIL); break; 1084 case 0x081: map_key_clear(KEY_CHAT); break; 1085 case 0x082: map_key_clear(KEY_SEARCH); break; 1086 case 0x083: map_key_clear(KEY_CONNECT); break; 1087 case 0x084: map_key_clear(KEY_FINANCE); break; 1088 case 0x085: map_key_clear(KEY_SPORT); break; 1089 case 0x086: map_key_clear(KEY_SHOP); break; 1090 default: goto ignore; 1091 } 1092 break; 1093 1094 case HID_UP_HPVENDOR2: 1095 set_bit(EV_REP, input->evbit); 1096 switch (usage->hid & HID_USAGE) { 1097 case 0x001: map_key_clear(KEY_MICMUTE); break; 1098 case 0x003: map_key_clear(KEY_BRIGHTNESSDOWN); break; 1099 case 0x004: map_key_clear(KEY_BRIGHTNESSUP); break; 1100 default: goto ignore; 1101 } 1102 break; 1103 1104 case HID_UP_MSVENDOR: 1105 goto ignore; 1106 1107 case HID_UP_CUSTOM: /* Reported on Logitech and Apple USB keyboards */ 1108 set_bit(EV_REP, input->evbit); 1109 goto ignore; 1110 1111 case HID_UP_LOGIVENDOR: 1112 /* intentional fallback */ 1113 case HID_UP_LOGIVENDOR2: 1114 /* intentional fallback */ 1115 case HID_UP_LOGIVENDOR3: 1116 goto ignore; 1117 1118 case HID_UP_PID: 1119 switch (usage->hid & HID_USAGE) { 1120 case 0xa4: map_key_clear(BTN_DEAD); break; 1121 default: goto ignore; 1122 } 1123 break; 1124 1125 default: 1126 unknown: 1127 if (field->report_size == 1) { 1128 if (field->report->type == HID_OUTPUT_REPORT) { 1129 map_led(LED_MISC); 1130 break; 1131 } 1132 map_key(BTN_MISC); 1133 break; 1134 } 1135 if (field->flags & HID_MAIN_ITEM_RELATIVE) { 1136 map_rel(REL_MISC); 1137 break; 1138 } 1139 map_abs(ABS_MISC); 1140 break; 1141 } 1142 1143 mapped: 1144 /* Mapping failed, bail out */ 1145 if (!bit) 1146 return; 1147 1148 if (device->driver->input_mapped && 1149 device->driver->input_mapped(device, hidinput, field, usage, 1150 &bit, &max) < 0) { 1151 /* 1152 * The driver indicated that no further generic handling 1153 * of the usage is desired. 1154 */ 1155 return; 1156 } 1157 1158 set_bit(usage->type, input->evbit); 1159 1160 /* 1161 * This part is *really* controversial: 1162 * - HID aims at being generic so we should do our best to export 1163 * all incoming events 1164 * - HID describes what events are, so there is no reason for ABS_X 1165 * to be mapped to ABS_Y 1166 * - HID is using *_MISC+N as a default value, but nothing prevents 1167 * *_MISC+N to overwrite a legitimate even, which confuses userspace 1168 * (for instance ABS_MISC + 7 is ABS_MT_SLOT, which has a different 1169 * processing) 1170 * 1171 * If devices still want to use this (at their own risk), they will 1172 * have to use the quirk HID_QUIRK_INCREMENT_USAGE_ON_DUPLICATE, but 1173 * the default should be a reliable mapping. 1174 */ 1175 while (usage->code <= max && test_and_set_bit(usage->code, bit)) { 1176 if (device->quirks & HID_QUIRK_INCREMENT_USAGE_ON_DUPLICATE) { 1177 usage->code = find_next_zero_bit(bit, 1178 max + 1, 1179 usage->code); 1180 } else { 1181 device->status |= HID_STAT_DUP_DETECTED; 1182 goto ignore; 1183 } 1184 } 1185 1186 if (usage->code > max) 1187 goto ignore; 1188 1189 if (usage->type == EV_ABS) { 1190 1191 int a = field->logical_minimum; 1192 int b = field->logical_maximum; 1193 1194 if ((device->quirks & HID_QUIRK_BADPAD) && (usage->code == ABS_X || usage->code == ABS_Y)) { 1195 a = field->logical_minimum = 0; 1196 b = field->logical_maximum = 255; 1197 } 1198 1199 if (field->application == HID_GD_GAMEPAD || field->application == HID_GD_JOYSTICK) 1200 input_set_abs_params(input, usage->code, a, b, (b - a) >> 8, (b - a) >> 4); 1201 else input_set_abs_params(input, usage->code, a, b, 0, 0); 1202 1203 input_abs_set_res(input, usage->code, 1204 hidinput_calc_abs_res(field, usage->code)); 1205 1206 /* use a larger default input buffer for MT devices */ 1207 if (usage->code == ABS_MT_POSITION_X && input->hint_events_per_packet == 0) 1208 input_set_events_per_packet(input, 60); 1209 } 1210 1211 if (usage->type == EV_ABS && 1212 (usage->hat_min < usage->hat_max || usage->hat_dir)) { 1213 int i; 1214 for (i = usage->code; i < usage->code + 2 && i <= max; i++) { 1215 input_set_abs_params(input, i, -1, 1, 0, 0); 1216 set_bit(i, input->absbit); 1217 } 1218 if (usage->hat_dir && !field->dpad) 1219 field->dpad = usage->code; 1220 } 1221 1222 /* for those devices which produce Consumer volume usage as relative, 1223 * we emulate pressing volumeup/volumedown appropriate number of times 1224 * in hidinput_hid_event() 1225 */ 1226 if ((usage->type == EV_ABS) && (field->flags & HID_MAIN_ITEM_RELATIVE) && 1227 (usage->code == ABS_VOLUME)) { 1228 set_bit(KEY_VOLUMEUP, input->keybit); 1229 set_bit(KEY_VOLUMEDOWN, input->keybit); 1230 } 1231 1232 if (usage->type == EV_KEY) { 1233 set_bit(EV_MSC, input->evbit); 1234 set_bit(MSC_SCAN, input->mscbit); 1235 } 1236 1237 return; 1238 1239 ignore: 1240 usage->type = 0; 1241 usage->code = 0; 1242 } 1243 1244 static void hidinput_handle_scroll(struct hid_usage *usage, 1245 struct input_dev *input, 1246 __s32 value) 1247 { 1248 int code; 1249 int hi_res, lo_res; 1250 1251 if (value == 0) 1252 return; 1253 1254 if (usage->code == REL_WHEEL_HI_RES) 1255 code = REL_WHEEL; 1256 else 1257 code = REL_HWHEEL; 1258 1259 /* 1260 * Windows reports one wheel click as value 120. Where a high-res 1261 * scroll wheel is present, a fraction of 120 is reported instead. 1262 * Our REL_WHEEL_HI_RES axis does the same because all HW must 1263 * adhere to the 120 expectation. 1264 */ 1265 hi_res = value * 120/usage->resolution_multiplier; 1266 1267 usage->wheel_accumulated += hi_res; 1268 lo_res = usage->wheel_accumulated/120; 1269 if (lo_res) 1270 usage->wheel_accumulated -= lo_res * 120; 1271 1272 input_event(input, EV_REL, code, lo_res); 1273 input_event(input, EV_REL, usage->code, hi_res); 1274 } 1275 1276 void hidinput_hid_event(struct hid_device *hid, struct hid_field *field, struct hid_usage *usage, __s32 value) 1277 { 1278 struct input_dev *input; 1279 unsigned *quirks = &hid->quirks; 1280 1281 if (!usage->type) 1282 return; 1283 1284 if (usage->type == EV_PWR) { 1285 hidinput_update_battery(hid, value); 1286 return; 1287 } 1288 1289 if (!field->hidinput) 1290 return; 1291 1292 input = field->hidinput->input; 1293 1294 if (usage->hat_min < usage->hat_max || usage->hat_dir) { 1295 int hat_dir = usage->hat_dir; 1296 if (!hat_dir) 1297 hat_dir = (value - usage->hat_min) * 8 / (usage->hat_max - usage->hat_min + 1) + 1; 1298 if (hat_dir < 0 || hat_dir > 8) hat_dir = 0; 1299 input_event(input, usage->type, usage->code , hid_hat_to_axis[hat_dir].x); 1300 input_event(input, usage->type, usage->code + 1, hid_hat_to_axis[hat_dir].y); 1301 return; 1302 } 1303 1304 if (usage->hid == (HID_UP_DIGITIZER | 0x003c)) { /* Invert */ 1305 *quirks = value ? (*quirks | HID_QUIRK_INVERT) : (*quirks & ~HID_QUIRK_INVERT); 1306 return; 1307 } 1308 1309 if (usage->hid == (HID_UP_DIGITIZER | 0x0032)) { /* InRange */ 1310 if (value) { 1311 input_event(input, usage->type, (*quirks & HID_QUIRK_INVERT) ? BTN_TOOL_RUBBER : usage->code, 1); 1312 return; 1313 } 1314 input_event(input, usage->type, usage->code, 0); 1315 input_event(input, usage->type, BTN_TOOL_RUBBER, 0); 1316 return; 1317 } 1318 1319 if (usage->hid == (HID_UP_DIGITIZER | 0x0030) && (*quirks & HID_QUIRK_NOTOUCH)) { /* Pressure */ 1320 int a = field->logical_minimum; 1321 int b = field->logical_maximum; 1322 input_event(input, EV_KEY, BTN_TOUCH, value > a + ((b - a) >> 3)); 1323 } 1324 1325 if (usage->hid == (HID_UP_PID | 0x83UL)) { /* Simultaneous Effects Max */ 1326 dbg_hid("Maximum Effects - %d\n",value); 1327 return; 1328 } 1329 1330 if (usage->hid == (HID_UP_PID | 0x7fUL)) { 1331 dbg_hid("PID Pool Report\n"); 1332 return; 1333 } 1334 1335 if ((usage->type == EV_KEY) && (usage->code == 0)) /* Key 0 is "unassigned", not KEY_UNKNOWN */ 1336 return; 1337 1338 if ((usage->type == EV_REL) && (usage->code == REL_WHEEL_HI_RES || 1339 usage->code == REL_HWHEEL_HI_RES)) { 1340 hidinput_handle_scroll(usage, input, value); 1341 return; 1342 } 1343 1344 if ((usage->type == EV_ABS) && (field->flags & HID_MAIN_ITEM_RELATIVE) && 1345 (usage->code == ABS_VOLUME)) { 1346 int count = abs(value); 1347 int direction = value > 0 ? KEY_VOLUMEUP : KEY_VOLUMEDOWN; 1348 int i; 1349 1350 for (i = 0; i < count; i++) { 1351 input_event(input, EV_KEY, direction, 1); 1352 input_sync(input); 1353 input_event(input, EV_KEY, direction, 0); 1354 input_sync(input); 1355 } 1356 return; 1357 } 1358 1359 /* 1360 * Ignore out-of-range values as per HID specification, 1361 * section 5.10 and 6.2.25, when NULL state bit is present. 1362 * When it's not, clamp the value to match Microsoft's input 1363 * driver as mentioned in "Required HID usages for digitizers": 1364 * https://msdn.microsoft.com/en-us/library/windows/hardware/dn672278(v=vs.85).asp 1365 * 1366 * The logical_minimum < logical_maximum check is done so that we 1367 * don't unintentionally discard values sent by devices which 1368 * don't specify logical min and max. 1369 */ 1370 if ((field->flags & HID_MAIN_ITEM_VARIABLE) && 1371 (field->logical_minimum < field->logical_maximum)) { 1372 if (field->flags & HID_MAIN_ITEM_NULL_STATE && 1373 (value < field->logical_minimum || 1374 value > field->logical_maximum)) { 1375 dbg_hid("Ignoring out-of-range value %x\n", value); 1376 return; 1377 } 1378 value = clamp(value, 1379 field->logical_minimum, 1380 field->logical_maximum); 1381 } 1382 1383 /* 1384 * Ignore reports for absolute data if the data didn't change. This is 1385 * not only an optimization but also fixes 'dead' key reports. Some 1386 * RollOver implementations for localized keys (like BACKSLASH/PIPE; HID 1387 * 0x31 and 0x32) report multiple keys, even though a localized keyboard 1388 * can only have one of them physically available. The 'dead' keys 1389 * report constant 0. As all map to the same keycode, they'd confuse 1390 * the input layer. If we filter the 'dead' keys on the HID level, we 1391 * skip the keycode translation and only forward real events. 1392 */ 1393 if (!(field->flags & (HID_MAIN_ITEM_RELATIVE | 1394 HID_MAIN_ITEM_BUFFERED_BYTE)) && 1395 (field->flags & HID_MAIN_ITEM_VARIABLE) && 1396 usage->usage_index < field->maxusage && 1397 value == field->value[usage->usage_index]) 1398 return; 1399 1400 /* report the usage code as scancode if the key status has changed */ 1401 if (usage->type == EV_KEY && 1402 (!test_bit(usage->code, input->key)) == value) 1403 input_event(input, EV_MSC, MSC_SCAN, usage->hid); 1404 1405 input_event(input, usage->type, usage->code, value); 1406 1407 if ((field->flags & HID_MAIN_ITEM_RELATIVE) && 1408 usage->type == EV_KEY && value) { 1409 input_sync(input); 1410 input_event(input, usage->type, usage->code, 0); 1411 } 1412 } 1413 1414 void hidinput_report_event(struct hid_device *hid, struct hid_report *report) 1415 { 1416 struct hid_input *hidinput; 1417 1418 if (hid->quirks & HID_QUIRK_NO_INPUT_SYNC) 1419 return; 1420 1421 list_for_each_entry(hidinput, &hid->inputs, list) 1422 input_sync(hidinput->input); 1423 } 1424 EXPORT_SYMBOL_GPL(hidinput_report_event); 1425 1426 int hidinput_find_field(struct hid_device *hid, unsigned int type, unsigned int code, struct hid_field **field) 1427 { 1428 struct hid_report *report; 1429 int i, j; 1430 1431 list_for_each_entry(report, &hid->report_enum[HID_OUTPUT_REPORT].report_list, list) { 1432 for (i = 0; i < report->maxfield; i++) { 1433 *field = report->field[i]; 1434 for (j = 0; j < (*field)->maxusage; j++) 1435 if ((*field)->usage[j].type == type && (*field)->usage[j].code == code) 1436 return j; 1437 } 1438 } 1439 return -1; 1440 } 1441 EXPORT_SYMBOL_GPL(hidinput_find_field); 1442 1443 struct hid_field *hidinput_get_led_field(struct hid_device *hid) 1444 { 1445 struct hid_report *report; 1446 struct hid_field *field; 1447 int i, j; 1448 1449 list_for_each_entry(report, 1450 &hid->report_enum[HID_OUTPUT_REPORT].report_list, 1451 list) { 1452 for (i = 0; i < report->maxfield; i++) { 1453 field = report->field[i]; 1454 for (j = 0; j < field->maxusage; j++) 1455 if (field->usage[j].type == EV_LED) 1456 return field; 1457 } 1458 } 1459 return NULL; 1460 } 1461 EXPORT_SYMBOL_GPL(hidinput_get_led_field); 1462 1463 unsigned int hidinput_count_leds(struct hid_device *hid) 1464 { 1465 struct hid_report *report; 1466 struct hid_field *field; 1467 int i, j; 1468 unsigned int count = 0; 1469 1470 list_for_each_entry(report, 1471 &hid->report_enum[HID_OUTPUT_REPORT].report_list, 1472 list) { 1473 for (i = 0; i < report->maxfield; i++) { 1474 field = report->field[i]; 1475 for (j = 0; j < field->maxusage; j++) 1476 if (field->usage[j].type == EV_LED && 1477 field->value[j]) 1478 count += 1; 1479 } 1480 } 1481 return count; 1482 } 1483 EXPORT_SYMBOL_GPL(hidinput_count_leds); 1484 1485 static void hidinput_led_worker(struct work_struct *work) 1486 { 1487 struct hid_device *hid = container_of(work, struct hid_device, 1488 led_work); 1489 struct hid_field *field; 1490 struct hid_report *report; 1491 int ret; 1492 u32 len; 1493 __u8 *buf; 1494 1495 field = hidinput_get_led_field(hid); 1496 if (!field) 1497 return; 1498 1499 /* 1500 * field->report is accessed unlocked regarding HID core. So there might 1501 * be another incoming SET-LED request from user-space, which changes 1502 * the LED state while we assemble our outgoing buffer. However, this 1503 * doesn't matter as hid_output_report() correctly converts it into a 1504 * boolean value no matter what information is currently set on the LED 1505 * field (even garbage). So the remote device will always get a valid 1506 * request. 1507 * And in case we send a wrong value, a next led worker is spawned 1508 * for every SET-LED request so the following worker will send the 1509 * correct value, guaranteed! 1510 */ 1511 1512 report = field->report; 1513 1514 /* use custom SET_REPORT request if possible (asynchronous) */ 1515 if (hid->ll_driver->request) 1516 return hid->ll_driver->request(hid, report, HID_REQ_SET_REPORT); 1517 1518 /* fall back to generic raw-output-report */ 1519 len = hid_report_len(report); 1520 buf = hid_alloc_report_buf(report, GFP_KERNEL); 1521 if (!buf) 1522 return; 1523 1524 hid_output_report(report, buf); 1525 /* synchronous output report */ 1526 ret = hid_hw_output_report(hid, buf, len); 1527 if (ret == -ENOSYS) 1528 hid_hw_raw_request(hid, report->id, buf, len, HID_OUTPUT_REPORT, 1529 HID_REQ_SET_REPORT); 1530 kfree(buf); 1531 } 1532 1533 static int hidinput_input_event(struct input_dev *dev, unsigned int type, 1534 unsigned int code, int value) 1535 { 1536 struct hid_device *hid = input_get_drvdata(dev); 1537 struct hid_field *field; 1538 int offset; 1539 1540 if (type == EV_FF) 1541 return input_ff_event(dev, type, code, value); 1542 1543 if (type != EV_LED) 1544 return -1; 1545 1546 if ((offset = hidinput_find_field(hid, type, code, &field)) == -1) { 1547 hid_warn(dev, "event field not found\n"); 1548 return -1; 1549 } 1550 1551 hid_set_field(field, offset, value); 1552 1553 schedule_work(&hid->led_work); 1554 return 0; 1555 } 1556 1557 static int hidinput_open(struct input_dev *dev) 1558 { 1559 struct hid_device *hid = input_get_drvdata(dev); 1560 1561 return hid_hw_open(hid); 1562 } 1563 1564 static void hidinput_close(struct input_dev *dev) 1565 { 1566 struct hid_device *hid = input_get_drvdata(dev); 1567 1568 hid_hw_close(hid); 1569 } 1570 1571 static bool __hidinput_change_resolution_multipliers(struct hid_device *hid, 1572 struct hid_report *report, bool use_logical_max) 1573 { 1574 struct hid_usage *usage; 1575 bool update_needed = false; 1576 bool get_report_completed = false; 1577 int i, j; 1578 1579 if (report->maxfield == 0) 1580 return false; 1581 1582 for (i = 0; i < report->maxfield; i++) { 1583 __s32 value = use_logical_max ? 1584 report->field[i]->logical_maximum : 1585 report->field[i]->logical_minimum; 1586 1587 /* There is no good reason for a Resolution 1588 * Multiplier to have a count other than 1. 1589 * Ignore that case. 1590 */ 1591 if (report->field[i]->report_count != 1) 1592 continue; 1593 1594 for (j = 0; j < report->field[i]->maxusage; j++) { 1595 usage = &report->field[i]->usage[j]; 1596 1597 if (usage->hid != HID_GD_RESOLUTION_MULTIPLIER) 1598 continue; 1599 1600 /* 1601 * If we have more than one feature within this 1602 * report we need to fill in the bits from the 1603 * others before we can overwrite the ones for the 1604 * Resolution Multiplier. 1605 * 1606 * But if we're not allowed to read from the device, 1607 * we just bail. Such a device should not exist 1608 * anyway. 1609 */ 1610 if (!get_report_completed && report->maxfield > 1) { 1611 if (hid->quirks & HID_QUIRK_NO_INIT_REPORTS) 1612 return update_needed; 1613 1614 hid_hw_request(hid, report, HID_REQ_GET_REPORT); 1615 hid_hw_wait(hid); 1616 get_report_completed = true; 1617 } 1618 1619 report->field[i]->value[j] = value; 1620 update_needed = true; 1621 } 1622 } 1623 1624 return update_needed; 1625 } 1626 1627 static void hidinput_change_resolution_multipliers(struct hid_device *hid) 1628 { 1629 struct hid_report_enum *rep_enum; 1630 struct hid_report *rep; 1631 int ret; 1632 1633 rep_enum = &hid->report_enum[HID_FEATURE_REPORT]; 1634 list_for_each_entry(rep, &rep_enum->report_list, list) { 1635 bool update_needed = __hidinput_change_resolution_multipliers(hid, 1636 rep, true); 1637 1638 if (update_needed) { 1639 ret = __hid_request(hid, rep, HID_REQ_SET_REPORT); 1640 if (ret) { 1641 __hidinput_change_resolution_multipliers(hid, 1642 rep, false); 1643 return; 1644 } 1645 } 1646 } 1647 1648 /* refresh our structs */ 1649 hid_setup_resolution_multiplier(hid); 1650 } 1651 1652 static void report_features(struct hid_device *hid) 1653 { 1654 struct hid_driver *drv = hid->driver; 1655 struct hid_report_enum *rep_enum; 1656 struct hid_report *rep; 1657 struct hid_usage *usage; 1658 int i, j; 1659 1660 rep_enum = &hid->report_enum[HID_FEATURE_REPORT]; 1661 list_for_each_entry(rep, &rep_enum->report_list, list) 1662 for (i = 0; i < rep->maxfield; i++) { 1663 /* Ignore if report count is out of bounds. */ 1664 if (rep->field[i]->report_count < 1) 1665 continue; 1666 1667 for (j = 0; j < rep->field[i]->maxusage; j++) { 1668 usage = &rep->field[i]->usage[j]; 1669 1670 /* Verify if Battery Strength feature is available */ 1671 if (usage->hid == HID_DC_BATTERYSTRENGTH) 1672 hidinput_setup_battery(hid, HID_FEATURE_REPORT, 1673 rep->field[i]); 1674 1675 if (drv->feature_mapping) 1676 drv->feature_mapping(hid, rep->field[i], usage); 1677 } 1678 } 1679 } 1680 1681 static struct hid_input *hidinput_allocate(struct hid_device *hid, 1682 unsigned int application) 1683 { 1684 struct hid_input *hidinput = kzalloc(sizeof(*hidinput), GFP_KERNEL); 1685 struct input_dev *input_dev = input_allocate_device(); 1686 const char *suffix = NULL; 1687 size_t suffix_len, name_len; 1688 1689 if (!hidinput || !input_dev) 1690 goto fail; 1691 1692 if ((hid->quirks & HID_QUIRK_INPUT_PER_APP) && 1693 hid->maxapplication > 1) { 1694 switch (application) { 1695 case HID_GD_KEYBOARD: 1696 suffix = "Keyboard"; 1697 break; 1698 case HID_GD_KEYPAD: 1699 suffix = "Keypad"; 1700 break; 1701 case HID_GD_MOUSE: 1702 suffix = "Mouse"; 1703 break; 1704 case HID_DG_STYLUS: 1705 suffix = "Pen"; 1706 break; 1707 case HID_DG_TOUCHSCREEN: 1708 suffix = "Touchscreen"; 1709 break; 1710 case HID_DG_TOUCHPAD: 1711 suffix = "Touchpad"; 1712 break; 1713 case HID_GD_SYSTEM_CONTROL: 1714 suffix = "System Control"; 1715 break; 1716 case HID_CP_CONSUMER_CONTROL: 1717 suffix = "Consumer Control"; 1718 break; 1719 case HID_GD_WIRELESS_RADIO_CTLS: 1720 suffix = "Wireless Radio Control"; 1721 break; 1722 case HID_GD_SYSTEM_MULTIAXIS: 1723 suffix = "System Multi Axis"; 1724 break; 1725 default: 1726 break; 1727 } 1728 } 1729 1730 if (suffix) { 1731 name_len = strlen(hid->name); 1732 suffix_len = strlen(suffix); 1733 if ((name_len < suffix_len) || 1734 strcmp(hid->name + name_len - suffix_len, suffix)) { 1735 hidinput->name = kasprintf(GFP_KERNEL, "%s %s", 1736 hid->name, suffix); 1737 if (!hidinput->name) 1738 goto fail; 1739 } 1740 } 1741 1742 input_set_drvdata(input_dev, hid); 1743 input_dev->event = hidinput_input_event; 1744 input_dev->open = hidinput_open; 1745 input_dev->close = hidinput_close; 1746 input_dev->setkeycode = hidinput_setkeycode; 1747 input_dev->getkeycode = hidinput_getkeycode; 1748 1749 input_dev->name = hidinput->name ? hidinput->name : hid->name; 1750 input_dev->phys = hid->phys; 1751 input_dev->uniq = hid->uniq; 1752 input_dev->id.bustype = hid->bus; 1753 input_dev->id.vendor = hid->vendor; 1754 input_dev->id.product = hid->product; 1755 input_dev->id.version = hid->version; 1756 input_dev->dev.parent = &hid->dev; 1757 1758 hidinput->input = input_dev; 1759 hidinput->application = application; 1760 list_add_tail(&hidinput->list, &hid->inputs); 1761 1762 INIT_LIST_HEAD(&hidinput->reports); 1763 1764 return hidinput; 1765 1766 fail: 1767 kfree(hidinput); 1768 input_free_device(input_dev); 1769 hid_err(hid, "Out of memory during hid input probe\n"); 1770 return NULL; 1771 } 1772 1773 static bool hidinput_has_been_populated(struct hid_input *hidinput) 1774 { 1775 int i; 1776 unsigned long r = 0; 1777 1778 for (i = 0; i < BITS_TO_LONGS(EV_CNT); i++) 1779 r |= hidinput->input->evbit[i]; 1780 1781 for (i = 0; i < BITS_TO_LONGS(KEY_CNT); i++) 1782 r |= hidinput->input->keybit[i]; 1783 1784 for (i = 0; i < BITS_TO_LONGS(REL_CNT); i++) 1785 r |= hidinput->input->relbit[i]; 1786 1787 for (i = 0; i < BITS_TO_LONGS(ABS_CNT); i++) 1788 r |= hidinput->input->absbit[i]; 1789 1790 for (i = 0; i < BITS_TO_LONGS(MSC_CNT); i++) 1791 r |= hidinput->input->mscbit[i]; 1792 1793 for (i = 0; i < BITS_TO_LONGS(LED_CNT); i++) 1794 r |= hidinput->input->ledbit[i]; 1795 1796 for (i = 0; i < BITS_TO_LONGS(SND_CNT); i++) 1797 r |= hidinput->input->sndbit[i]; 1798 1799 for (i = 0; i < BITS_TO_LONGS(FF_CNT); i++) 1800 r |= hidinput->input->ffbit[i]; 1801 1802 for (i = 0; i < BITS_TO_LONGS(SW_CNT); i++) 1803 r |= hidinput->input->swbit[i]; 1804 1805 return !!r; 1806 } 1807 1808 static void hidinput_cleanup_hidinput(struct hid_device *hid, 1809 struct hid_input *hidinput) 1810 { 1811 struct hid_report *report; 1812 int i, k; 1813 1814 list_del(&hidinput->list); 1815 input_free_device(hidinput->input); 1816 kfree(hidinput->name); 1817 1818 for (k = HID_INPUT_REPORT; k <= HID_OUTPUT_REPORT; k++) { 1819 if (k == HID_OUTPUT_REPORT && 1820 hid->quirks & HID_QUIRK_SKIP_OUTPUT_REPORTS) 1821 continue; 1822 1823 list_for_each_entry(report, &hid->report_enum[k].report_list, 1824 list) { 1825 1826 for (i = 0; i < report->maxfield; i++) 1827 if (report->field[i]->hidinput == hidinput) 1828 report->field[i]->hidinput = NULL; 1829 } 1830 } 1831 1832 kfree(hidinput); 1833 } 1834 1835 static struct hid_input *hidinput_match(struct hid_report *report) 1836 { 1837 struct hid_device *hid = report->device; 1838 struct hid_input *hidinput; 1839 1840 list_for_each_entry(hidinput, &hid->inputs, list) { 1841 if (hidinput->report && 1842 hidinput->report->id == report->id) 1843 return hidinput; 1844 } 1845 1846 return NULL; 1847 } 1848 1849 static struct hid_input *hidinput_match_application(struct hid_report *report) 1850 { 1851 struct hid_device *hid = report->device; 1852 struct hid_input *hidinput; 1853 1854 list_for_each_entry(hidinput, &hid->inputs, list) { 1855 if (hidinput->application == report->application) 1856 return hidinput; 1857 } 1858 1859 return NULL; 1860 } 1861 1862 static inline void hidinput_configure_usages(struct hid_input *hidinput, 1863 struct hid_report *report) 1864 { 1865 int i, j; 1866 1867 for (i = 0; i < report->maxfield; i++) 1868 for (j = 0; j < report->field[i]->maxusage; j++) 1869 hidinput_configure_usage(hidinput, report->field[i], 1870 report->field[i]->usage + j); 1871 } 1872 1873 /* 1874 * Register the input device; print a message. 1875 * Configure the input layer interface 1876 * Read all reports and initialize the absolute field values. 1877 */ 1878 1879 int hidinput_connect(struct hid_device *hid, unsigned int force) 1880 { 1881 struct hid_driver *drv = hid->driver; 1882 struct hid_report *report; 1883 struct hid_input *next, *hidinput = NULL; 1884 unsigned int application; 1885 int i, k; 1886 1887 INIT_LIST_HEAD(&hid->inputs); 1888 INIT_WORK(&hid->led_work, hidinput_led_worker); 1889 1890 hid->status &= ~HID_STAT_DUP_DETECTED; 1891 1892 if (!force) { 1893 for (i = 0; i < hid->maxcollection; i++) { 1894 struct hid_collection *col = &hid->collection[i]; 1895 if (col->type == HID_COLLECTION_APPLICATION || 1896 col->type == HID_COLLECTION_PHYSICAL) 1897 if (IS_INPUT_APPLICATION(col->usage)) 1898 break; 1899 } 1900 1901 if (i == hid->maxcollection) 1902 return -1; 1903 } 1904 1905 report_features(hid); 1906 1907 for (k = HID_INPUT_REPORT; k <= HID_OUTPUT_REPORT; k++) { 1908 if (k == HID_OUTPUT_REPORT && 1909 hid->quirks & HID_QUIRK_SKIP_OUTPUT_REPORTS) 1910 continue; 1911 1912 list_for_each_entry(report, &hid->report_enum[k].report_list, list) { 1913 1914 if (!report->maxfield) 1915 continue; 1916 1917 application = report->application; 1918 1919 /* 1920 * Find the previous hidinput report attached 1921 * to this report id. 1922 */ 1923 if (hid->quirks & HID_QUIRK_MULTI_INPUT) 1924 hidinput = hidinput_match(report); 1925 else if (hid->maxapplication > 1 && 1926 (hid->quirks & HID_QUIRK_INPUT_PER_APP)) 1927 hidinput = hidinput_match_application(report); 1928 1929 if (!hidinput) { 1930 hidinput = hidinput_allocate(hid, application); 1931 if (!hidinput) 1932 goto out_unwind; 1933 } 1934 1935 hidinput_configure_usages(hidinput, report); 1936 1937 if (hid->quirks & HID_QUIRK_MULTI_INPUT) 1938 hidinput->report = report; 1939 1940 list_add_tail(&report->hidinput_list, 1941 &hidinput->reports); 1942 } 1943 } 1944 1945 hidinput_change_resolution_multipliers(hid); 1946 1947 list_for_each_entry_safe(hidinput, next, &hid->inputs, list) { 1948 if (drv->input_configured && 1949 drv->input_configured(hid, hidinput)) 1950 goto out_unwind; 1951 1952 if (!hidinput_has_been_populated(hidinput)) { 1953 /* no need to register an input device not populated */ 1954 hidinput_cleanup_hidinput(hid, hidinput); 1955 continue; 1956 } 1957 1958 if (input_register_device(hidinput->input)) 1959 goto out_unwind; 1960 hidinput->registered = true; 1961 } 1962 1963 if (list_empty(&hid->inputs)) { 1964 hid_err(hid, "No inputs registered, leaving\n"); 1965 goto out_unwind; 1966 } 1967 1968 if (hid->status & HID_STAT_DUP_DETECTED) 1969 hid_dbg(hid, 1970 "Some usages could not be mapped, please use HID_QUIRK_INCREMENT_USAGE_ON_DUPLICATE if this is legitimate.\n"); 1971 1972 return 0; 1973 1974 out_unwind: 1975 /* unwind the ones we already registered */ 1976 hidinput_disconnect(hid); 1977 1978 return -1; 1979 } 1980 EXPORT_SYMBOL_GPL(hidinput_connect); 1981 1982 void hidinput_disconnect(struct hid_device *hid) 1983 { 1984 struct hid_input *hidinput, *next; 1985 1986 hidinput_cleanup_battery(hid); 1987 1988 list_for_each_entry_safe(hidinput, next, &hid->inputs, list) { 1989 list_del(&hidinput->list); 1990 if (hidinput->registered) 1991 input_unregister_device(hidinput->input); 1992 else 1993 input_free_device(hidinput->input); 1994 kfree(hidinput->name); 1995 kfree(hidinput); 1996 } 1997 1998 /* led_work is spawned by input_dev callbacks, but doesn't access the 1999 * parent input_dev at all. Once all input devices are removed, we 2000 * know that led_work will never get restarted, so we can cancel it 2001 * synchronously and are safe. */ 2002 cancel_work_sync(&hid->led_work); 2003 } 2004 EXPORT_SYMBOL_GPL(hidinput_disconnect); 2005