1 /* 2 * HID support for Linux 3 * 4 * Copyright (c) 1999 Andreas Gal 5 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz> 6 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc 7 * Copyright (c) 2006-2012 Jiri Kosina 8 */ 9 10 /* 11 * This program is free software; you can redistribute it and/or modify it 12 * under the terms of the GNU General Public License as published by the Free 13 * Software Foundation; either version 2 of the License, or (at your option) 14 * any later version. 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/module.h> 20 #include <linux/slab.h> 21 #include <linux/init.h> 22 #include <linux/kernel.h> 23 #include <linux/list.h> 24 #include <linux/mm.h> 25 #include <linux/spinlock.h> 26 #include <asm/unaligned.h> 27 #include <asm/byteorder.h> 28 #include <linux/input.h> 29 #include <linux/wait.h> 30 #include <linux/vmalloc.h> 31 #include <linux/sched.h> 32 #include <linux/semaphore.h> 33 34 #include <linux/hid.h> 35 #include <linux/hiddev.h> 36 #include <linux/hid-debug.h> 37 #include <linux/hidraw.h> 38 39 #include "hid-ids.h" 40 41 /* 42 * Version Information 43 */ 44 45 #define DRIVER_DESC "HID core driver" 46 47 int hid_debug = 0; 48 module_param_named(debug, hid_debug, int, 0600); 49 MODULE_PARM_DESC(debug, "toggle HID debugging messages"); 50 EXPORT_SYMBOL_GPL(hid_debug); 51 52 static int hid_ignore_special_drivers = 0; 53 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600); 54 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver"); 55 56 /* 57 * Register a new report for a device. 58 */ 59 60 struct hid_report *hid_register_report(struct hid_device *device, 61 unsigned int type, unsigned int id, 62 unsigned int application) 63 { 64 struct hid_report_enum *report_enum = device->report_enum + type; 65 struct hid_report *report; 66 67 if (id >= HID_MAX_IDS) 68 return NULL; 69 if (report_enum->report_id_hash[id]) 70 return report_enum->report_id_hash[id]; 71 72 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL); 73 if (!report) 74 return NULL; 75 76 if (id != 0) 77 report_enum->numbered = 1; 78 79 report->id = id; 80 report->type = type; 81 report->size = 0; 82 report->device = device; 83 report->application = application; 84 report_enum->report_id_hash[id] = report; 85 86 list_add_tail(&report->list, &report_enum->report_list); 87 88 return report; 89 } 90 EXPORT_SYMBOL_GPL(hid_register_report); 91 92 /* 93 * Register a new field for this report. 94 */ 95 96 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values) 97 { 98 struct hid_field *field; 99 100 if (report->maxfield == HID_MAX_FIELDS) { 101 hid_err(report->device, "too many fields in report\n"); 102 return NULL; 103 } 104 105 field = kzalloc((sizeof(struct hid_field) + 106 usages * sizeof(struct hid_usage) + 107 values * sizeof(unsigned)), GFP_KERNEL); 108 if (!field) 109 return NULL; 110 111 field->index = report->maxfield++; 112 report->field[field->index] = field; 113 field->usage = (struct hid_usage *)(field + 1); 114 field->value = (s32 *)(field->usage + usages); 115 field->report = report; 116 117 return field; 118 } 119 120 /* 121 * Open a collection. The type/usage is pushed on the stack. 122 */ 123 124 static int open_collection(struct hid_parser *parser, unsigned type) 125 { 126 struct hid_collection *collection; 127 unsigned usage; 128 129 usage = parser->local.usage[0]; 130 131 if (parser->collection_stack_ptr == parser->collection_stack_size) { 132 unsigned int *collection_stack; 133 unsigned int new_size = parser->collection_stack_size + 134 HID_COLLECTION_STACK_SIZE; 135 136 collection_stack = krealloc(parser->collection_stack, 137 new_size * sizeof(unsigned int), 138 GFP_KERNEL); 139 if (!collection_stack) 140 return -ENOMEM; 141 142 parser->collection_stack = collection_stack; 143 parser->collection_stack_size = new_size; 144 } 145 146 if (parser->device->maxcollection == parser->device->collection_size) { 147 collection = kmalloc( 148 array3_size(sizeof(struct hid_collection), 149 parser->device->collection_size, 150 2), 151 GFP_KERNEL); 152 if (collection == NULL) { 153 hid_err(parser->device, "failed to reallocate collection array\n"); 154 return -ENOMEM; 155 } 156 memcpy(collection, parser->device->collection, 157 sizeof(struct hid_collection) * 158 parser->device->collection_size); 159 memset(collection + parser->device->collection_size, 0, 160 sizeof(struct hid_collection) * 161 parser->device->collection_size); 162 kfree(parser->device->collection); 163 parser->device->collection = collection; 164 parser->device->collection_size *= 2; 165 } 166 167 parser->collection_stack[parser->collection_stack_ptr++] = 168 parser->device->maxcollection; 169 170 collection = parser->device->collection + 171 parser->device->maxcollection++; 172 collection->type = type; 173 collection->usage = usage; 174 collection->level = parser->collection_stack_ptr - 1; 175 176 if (type == HID_COLLECTION_APPLICATION) 177 parser->device->maxapplication++; 178 179 return 0; 180 } 181 182 /* 183 * Close a collection. 184 */ 185 186 static int close_collection(struct hid_parser *parser) 187 { 188 if (!parser->collection_stack_ptr) { 189 hid_err(parser->device, "collection stack underflow\n"); 190 return -EINVAL; 191 } 192 parser->collection_stack_ptr--; 193 return 0; 194 } 195 196 /* 197 * Climb up the stack, search for the specified collection type 198 * and return the usage. 199 */ 200 201 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type) 202 { 203 struct hid_collection *collection = parser->device->collection; 204 int n; 205 206 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) { 207 unsigned index = parser->collection_stack[n]; 208 if (collection[index].type == type) 209 return collection[index].usage; 210 } 211 return 0; /* we know nothing about this usage type */ 212 } 213 214 /* 215 * Add a usage to the temporary parser table. 216 */ 217 218 static int hid_add_usage(struct hid_parser *parser, unsigned usage) 219 { 220 if (parser->local.usage_index >= HID_MAX_USAGES) { 221 hid_err(parser->device, "usage index exceeded\n"); 222 return -1; 223 } 224 parser->local.usage[parser->local.usage_index] = usage; 225 parser->local.collection_index[parser->local.usage_index] = 226 parser->collection_stack_ptr ? 227 parser->collection_stack[parser->collection_stack_ptr - 1] : 0; 228 parser->local.usage_index++; 229 return 0; 230 } 231 232 /* 233 * Register a new field for this report. 234 */ 235 236 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags) 237 { 238 struct hid_report *report; 239 struct hid_field *field; 240 unsigned int usages; 241 unsigned int offset; 242 unsigned int i; 243 unsigned int application; 244 245 application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION); 246 247 report = hid_register_report(parser->device, report_type, 248 parser->global.report_id, application); 249 if (!report) { 250 hid_err(parser->device, "hid_register_report failed\n"); 251 return -1; 252 } 253 254 /* Handle both signed and unsigned cases properly */ 255 if ((parser->global.logical_minimum < 0 && 256 parser->global.logical_maximum < 257 parser->global.logical_minimum) || 258 (parser->global.logical_minimum >= 0 && 259 (__u32)parser->global.logical_maximum < 260 (__u32)parser->global.logical_minimum)) { 261 dbg_hid("logical range invalid 0x%x 0x%x\n", 262 parser->global.logical_minimum, 263 parser->global.logical_maximum); 264 return -1; 265 } 266 267 offset = report->size; 268 report->size += parser->global.report_size * parser->global.report_count; 269 270 if (!parser->local.usage_index) /* Ignore padding fields */ 271 return 0; 272 273 usages = max_t(unsigned, parser->local.usage_index, 274 parser->global.report_count); 275 276 field = hid_register_field(report, usages, parser->global.report_count); 277 if (!field) 278 return 0; 279 280 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL); 281 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL); 282 field->application = application; 283 284 for (i = 0; i < usages; i++) { 285 unsigned j = i; 286 /* Duplicate the last usage we parsed if we have excess values */ 287 if (i >= parser->local.usage_index) 288 j = parser->local.usage_index - 1; 289 field->usage[i].hid = parser->local.usage[j]; 290 field->usage[i].collection_index = 291 parser->local.collection_index[j]; 292 field->usage[i].usage_index = i; 293 } 294 295 field->maxusage = usages; 296 field->flags = flags; 297 field->report_offset = offset; 298 field->report_type = report_type; 299 field->report_size = parser->global.report_size; 300 field->report_count = parser->global.report_count; 301 field->logical_minimum = parser->global.logical_minimum; 302 field->logical_maximum = parser->global.logical_maximum; 303 field->physical_minimum = parser->global.physical_minimum; 304 field->physical_maximum = parser->global.physical_maximum; 305 field->unit_exponent = parser->global.unit_exponent; 306 field->unit = parser->global.unit; 307 308 return 0; 309 } 310 311 /* 312 * Read data value from item. 313 */ 314 315 static u32 item_udata(struct hid_item *item) 316 { 317 switch (item->size) { 318 case 1: return item->data.u8; 319 case 2: return item->data.u16; 320 case 4: return item->data.u32; 321 } 322 return 0; 323 } 324 325 static s32 item_sdata(struct hid_item *item) 326 { 327 switch (item->size) { 328 case 1: return item->data.s8; 329 case 2: return item->data.s16; 330 case 4: return item->data.s32; 331 } 332 return 0; 333 } 334 335 /* 336 * Process a global item. 337 */ 338 339 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item) 340 { 341 __s32 raw_value; 342 switch (item->tag) { 343 case HID_GLOBAL_ITEM_TAG_PUSH: 344 345 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) { 346 hid_err(parser->device, "global environment stack overflow\n"); 347 return -1; 348 } 349 350 memcpy(parser->global_stack + parser->global_stack_ptr++, 351 &parser->global, sizeof(struct hid_global)); 352 return 0; 353 354 case HID_GLOBAL_ITEM_TAG_POP: 355 356 if (!parser->global_stack_ptr) { 357 hid_err(parser->device, "global environment stack underflow\n"); 358 return -1; 359 } 360 361 memcpy(&parser->global, parser->global_stack + 362 --parser->global_stack_ptr, sizeof(struct hid_global)); 363 return 0; 364 365 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE: 366 parser->global.usage_page = item_udata(item); 367 return 0; 368 369 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM: 370 parser->global.logical_minimum = item_sdata(item); 371 return 0; 372 373 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM: 374 if (parser->global.logical_minimum < 0) 375 parser->global.logical_maximum = item_sdata(item); 376 else 377 parser->global.logical_maximum = item_udata(item); 378 return 0; 379 380 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM: 381 parser->global.physical_minimum = item_sdata(item); 382 return 0; 383 384 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM: 385 if (parser->global.physical_minimum < 0) 386 parser->global.physical_maximum = item_sdata(item); 387 else 388 parser->global.physical_maximum = item_udata(item); 389 return 0; 390 391 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT: 392 /* Many devices provide unit exponent as a two's complement 393 * nibble due to the common misunderstanding of HID 394 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle 395 * both this and the standard encoding. */ 396 raw_value = item_sdata(item); 397 if (!(raw_value & 0xfffffff0)) 398 parser->global.unit_exponent = hid_snto32(raw_value, 4); 399 else 400 parser->global.unit_exponent = raw_value; 401 return 0; 402 403 case HID_GLOBAL_ITEM_TAG_UNIT: 404 parser->global.unit = item_udata(item); 405 return 0; 406 407 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE: 408 parser->global.report_size = item_udata(item); 409 if (parser->global.report_size > 128) { 410 hid_err(parser->device, "invalid report_size %d\n", 411 parser->global.report_size); 412 return -1; 413 } 414 return 0; 415 416 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT: 417 parser->global.report_count = item_udata(item); 418 if (parser->global.report_count > HID_MAX_USAGES) { 419 hid_err(parser->device, "invalid report_count %d\n", 420 parser->global.report_count); 421 return -1; 422 } 423 return 0; 424 425 case HID_GLOBAL_ITEM_TAG_REPORT_ID: 426 parser->global.report_id = item_udata(item); 427 if (parser->global.report_id == 0 || 428 parser->global.report_id >= HID_MAX_IDS) { 429 hid_err(parser->device, "report_id %u is invalid\n", 430 parser->global.report_id); 431 return -1; 432 } 433 return 0; 434 435 default: 436 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag); 437 return -1; 438 } 439 } 440 441 /* 442 * Process a local item. 443 */ 444 445 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item) 446 { 447 __u32 data; 448 unsigned n; 449 __u32 count; 450 451 data = item_udata(item); 452 453 switch (item->tag) { 454 case HID_LOCAL_ITEM_TAG_DELIMITER: 455 456 if (data) { 457 /* 458 * We treat items before the first delimiter 459 * as global to all usage sets (branch 0). 460 * In the moment we process only these global 461 * items and the first delimiter set. 462 */ 463 if (parser->local.delimiter_depth != 0) { 464 hid_err(parser->device, "nested delimiters\n"); 465 return -1; 466 } 467 parser->local.delimiter_depth++; 468 parser->local.delimiter_branch++; 469 } else { 470 if (parser->local.delimiter_depth < 1) { 471 hid_err(parser->device, "bogus close delimiter\n"); 472 return -1; 473 } 474 parser->local.delimiter_depth--; 475 } 476 return 0; 477 478 case HID_LOCAL_ITEM_TAG_USAGE: 479 480 if (parser->local.delimiter_branch > 1) { 481 dbg_hid("alternative usage ignored\n"); 482 return 0; 483 } 484 485 if (item->size <= 2) 486 data = (parser->global.usage_page << 16) + data; 487 488 return hid_add_usage(parser, data); 489 490 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM: 491 492 if (parser->local.delimiter_branch > 1) { 493 dbg_hid("alternative usage ignored\n"); 494 return 0; 495 } 496 497 if (item->size <= 2) 498 data = (parser->global.usage_page << 16) + data; 499 500 parser->local.usage_minimum = data; 501 return 0; 502 503 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM: 504 505 if (parser->local.delimiter_branch > 1) { 506 dbg_hid("alternative usage ignored\n"); 507 return 0; 508 } 509 510 if (item->size <= 2) 511 data = (parser->global.usage_page << 16) + data; 512 513 count = data - parser->local.usage_minimum; 514 if (count + parser->local.usage_index >= HID_MAX_USAGES) { 515 /* 516 * We do not warn if the name is not set, we are 517 * actually pre-scanning the device. 518 */ 519 if (dev_name(&parser->device->dev)) 520 hid_warn(parser->device, 521 "ignoring exceeding usage max\n"); 522 data = HID_MAX_USAGES - parser->local.usage_index + 523 parser->local.usage_minimum - 1; 524 if (data <= 0) { 525 hid_err(parser->device, 526 "no more usage index available\n"); 527 return -1; 528 } 529 } 530 531 for (n = parser->local.usage_minimum; n <= data; n++) 532 if (hid_add_usage(parser, n)) { 533 dbg_hid("hid_add_usage failed\n"); 534 return -1; 535 } 536 return 0; 537 538 default: 539 540 dbg_hid("unknown local item tag 0x%x\n", item->tag); 541 return 0; 542 } 543 return 0; 544 } 545 546 /* 547 * Process a main item. 548 */ 549 550 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item) 551 { 552 __u32 data; 553 int ret; 554 555 data = item_udata(item); 556 557 switch (item->tag) { 558 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION: 559 ret = open_collection(parser, data & 0xff); 560 break; 561 case HID_MAIN_ITEM_TAG_END_COLLECTION: 562 ret = close_collection(parser); 563 break; 564 case HID_MAIN_ITEM_TAG_INPUT: 565 ret = hid_add_field(parser, HID_INPUT_REPORT, data); 566 break; 567 case HID_MAIN_ITEM_TAG_OUTPUT: 568 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data); 569 break; 570 case HID_MAIN_ITEM_TAG_FEATURE: 571 ret = hid_add_field(parser, HID_FEATURE_REPORT, data); 572 break; 573 default: 574 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag); 575 ret = 0; 576 } 577 578 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */ 579 580 return ret; 581 } 582 583 /* 584 * Process a reserved item. 585 */ 586 587 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item) 588 { 589 dbg_hid("reserved item type, tag 0x%x\n", item->tag); 590 return 0; 591 } 592 593 /* 594 * Free a report and all registered fields. The field->usage and 595 * field->value table's are allocated behind the field, so we need 596 * only to free(field) itself. 597 */ 598 599 static void hid_free_report(struct hid_report *report) 600 { 601 unsigned n; 602 603 for (n = 0; n < report->maxfield; n++) 604 kfree(report->field[n]); 605 kfree(report); 606 } 607 608 /* 609 * Close report. This function returns the device 610 * state to the point prior to hid_open_report(). 611 */ 612 static void hid_close_report(struct hid_device *device) 613 { 614 unsigned i, j; 615 616 for (i = 0; i < HID_REPORT_TYPES; i++) { 617 struct hid_report_enum *report_enum = device->report_enum + i; 618 619 for (j = 0; j < HID_MAX_IDS; j++) { 620 struct hid_report *report = report_enum->report_id_hash[j]; 621 if (report) 622 hid_free_report(report); 623 } 624 memset(report_enum, 0, sizeof(*report_enum)); 625 INIT_LIST_HEAD(&report_enum->report_list); 626 } 627 628 kfree(device->rdesc); 629 device->rdesc = NULL; 630 device->rsize = 0; 631 632 kfree(device->collection); 633 device->collection = NULL; 634 device->collection_size = 0; 635 device->maxcollection = 0; 636 device->maxapplication = 0; 637 638 device->status &= ~HID_STAT_PARSED; 639 } 640 641 /* 642 * Free a device structure, all reports, and all fields. 643 */ 644 645 static void hid_device_release(struct device *dev) 646 { 647 struct hid_device *hid = to_hid_device(dev); 648 649 hid_close_report(hid); 650 kfree(hid->dev_rdesc); 651 kfree(hid); 652 } 653 654 /* 655 * Fetch a report description item from the data stream. We support long 656 * items, though they are not used yet. 657 */ 658 659 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item) 660 { 661 u8 b; 662 663 if ((end - start) <= 0) 664 return NULL; 665 666 b = *start++; 667 668 item->type = (b >> 2) & 3; 669 item->tag = (b >> 4) & 15; 670 671 if (item->tag == HID_ITEM_TAG_LONG) { 672 673 item->format = HID_ITEM_FORMAT_LONG; 674 675 if ((end - start) < 2) 676 return NULL; 677 678 item->size = *start++; 679 item->tag = *start++; 680 681 if ((end - start) < item->size) 682 return NULL; 683 684 item->data.longdata = start; 685 start += item->size; 686 return start; 687 } 688 689 item->format = HID_ITEM_FORMAT_SHORT; 690 item->size = b & 3; 691 692 switch (item->size) { 693 case 0: 694 return start; 695 696 case 1: 697 if ((end - start) < 1) 698 return NULL; 699 item->data.u8 = *start++; 700 return start; 701 702 case 2: 703 if ((end - start) < 2) 704 return NULL; 705 item->data.u16 = get_unaligned_le16(start); 706 start = (__u8 *)((__le16 *)start + 1); 707 return start; 708 709 case 3: 710 item->size++; 711 if ((end - start) < 4) 712 return NULL; 713 item->data.u32 = get_unaligned_le32(start); 714 start = (__u8 *)((__le32 *)start + 1); 715 return start; 716 } 717 718 return NULL; 719 } 720 721 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage) 722 { 723 struct hid_device *hid = parser->device; 724 725 if (usage == HID_DG_CONTACTID) 726 hid->group = HID_GROUP_MULTITOUCH; 727 } 728 729 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage) 730 { 731 if (usage == 0xff0000c5 && parser->global.report_count == 256 && 732 parser->global.report_size == 8) 733 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8; 734 } 735 736 static void hid_scan_collection(struct hid_parser *parser, unsigned type) 737 { 738 struct hid_device *hid = parser->device; 739 int i; 740 741 if (((parser->global.usage_page << 16) == HID_UP_SENSOR) && 742 type == HID_COLLECTION_PHYSICAL) 743 hid->group = HID_GROUP_SENSOR_HUB; 744 745 if (hid->vendor == USB_VENDOR_ID_MICROSOFT && 746 hid->product == USB_DEVICE_ID_MS_POWER_COVER && 747 hid->group == HID_GROUP_MULTITOUCH) 748 hid->group = HID_GROUP_GENERIC; 749 750 if ((parser->global.usage_page << 16) == HID_UP_GENDESK) 751 for (i = 0; i < parser->local.usage_index; i++) 752 if (parser->local.usage[i] == HID_GD_POINTER) 753 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER; 754 755 if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR) 756 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC; 757 } 758 759 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item) 760 { 761 __u32 data; 762 int i; 763 764 data = item_udata(item); 765 766 switch (item->tag) { 767 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION: 768 hid_scan_collection(parser, data & 0xff); 769 break; 770 case HID_MAIN_ITEM_TAG_END_COLLECTION: 771 break; 772 case HID_MAIN_ITEM_TAG_INPUT: 773 /* ignore constant inputs, they will be ignored by hid-input */ 774 if (data & HID_MAIN_ITEM_CONSTANT) 775 break; 776 for (i = 0; i < parser->local.usage_index; i++) 777 hid_scan_input_usage(parser, parser->local.usage[i]); 778 break; 779 case HID_MAIN_ITEM_TAG_OUTPUT: 780 break; 781 case HID_MAIN_ITEM_TAG_FEATURE: 782 for (i = 0; i < parser->local.usage_index; i++) 783 hid_scan_feature_usage(parser, parser->local.usage[i]); 784 break; 785 } 786 787 /* Reset the local parser environment */ 788 memset(&parser->local, 0, sizeof(parser->local)); 789 790 return 0; 791 } 792 793 /* 794 * Scan a report descriptor before the device is added to the bus. 795 * Sets device groups and other properties that determine what driver 796 * to load. 797 */ 798 static int hid_scan_report(struct hid_device *hid) 799 { 800 struct hid_parser *parser; 801 struct hid_item item; 802 __u8 *start = hid->dev_rdesc; 803 __u8 *end = start + hid->dev_rsize; 804 static int (*dispatch_type[])(struct hid_parser *parser, 805 struct hid_item *item) = { 806 hid_scan_main, 807 hid_parser_global, 808 hid_parser_local, 809 hid_parser_reserved 810 }; 811 812 parser = vzalloc(sizeof(struct hid_parser)); 813 if (!parser) 814 return -ENOMEM; 815 816 parser->device = hid; 817 hid->group = HID_GROUP_GENERIC; 818 819 /* 820 * The parsing is simpler than the one in hid_open_report() as we should 821 * be robust against hid errors. Those errors will be raised by 822 * hid_open_report() anyway. 823 */ 824 while ((start = fetch_item(start, end, &item)) != NULL) 825 dispatch_type[item.type](parser, &item); 826 827 /* 828 * Handle special flags set during scanning. 829 */ 830 if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) && 831 (hid->group == HID_GROUP_MULTITOUCH)) 832 hid->group = HID_GROUP_MULTITOUCH_WIN_8; 833 834 /* 835 * Vendor specific handlings 836 */ 837 switch (hid->vendor) { 838 case USB_VENDOR_ID_WACOM: 839 hid->group = HID_GROUP_WACOM; 840 break; 841 case USB_VENDOR_ID_SYNAPTICS: 842 if (hid->group == HID_GROUP_GENERIC) 843 if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC) 844 && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER)) 845 /* 846 * hid-rmi should take care of them, 847 * not hid-generic 848 */ 849 hid->group = HID_GROUP_RMI; 850 break; 851 } 852 853 kfree(parser->collection_stack); 854 vfree(parser); 855 return 0; 856 } 857 858 /** 859 * hid_parse_report - parse device report 860 * 861 * @device: hid device 862 * @start: report start 863 * @size: report size 864 * 865 * Allocate the device report as read by the bus driver. This function should 866 * only be called from parse() in ll drivers. 867 */ 868 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size) 869 { 870 hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL); 871 if (!hid->dev_rdesc) 872 return -ENOMEM; 873 hid->dev_rsize = size; 874 return 0; 875 } 876 EXPORT_SYMBOL_GPL(hid_parse_report); 877 878 static const char * const hid_report_names[] = { 879 "HID_INPUT_REPORT", 880 "HID_OUTPUT_REPORT", 881 "HID_FEATURE_REPORT", 882 }; 883 /** 884 * hid_validate_values - validate existing device report's value indexes 885 * 886 * @device: hid device 887 * @type: which report type to examine 888 * @id: which report ID to examine (0 for first) 889 * @field_index: which report field to examine 890 * @report_counts: expected number of values 891 * 892 * Validate the number of values in a given field of a given report, after 893 * parsing. 894 */ 895 struct hid_report *hid_validate_values(struct hid_device *hid, 896 unsigned int type, unsigned int id, 897 unsigned int field_index, 898 unsigned int report_counts) 899 { 900 struct hid_report *report; 901 902 if (type > HID_FEATURE_REPORT) { 903 hid_err(hid, "invalid HID report type %u\n", type); 904 return NULL; 905 } 906 907 if (id >= HID_MAX_IDS) { 908 hid_err(hid, "invalid HID report id %u\n", id); 909 return NULL; 910 } 911 912 /* 913 * Explicitly not using hid_get_report() here since it depends on 914 * ->numbered being checked, which may not always be the case when 915 * drivers go to access report values. 916 */ 917 if (id == 0) { 918 /* 919 * Validating on id 0 means we should examine the first 920 * report in the list. 921 */ 922 report = list_entry( 923 hid->report_enum[type].report_list.next, 924 struct hid_report, list); 925 } else { 926 report = hid->report_enum[type].report_id_hash[id]; 927 } 928 if (!report) { 929 hid_err(hid, "missing %s %u\n", hid_report_names[type], id); 930 return NULL; 931 } 932 if (report->maxfield <= field_index) { 933 hid_err(hid, "not enough fields in %s %u\n", 934 hid_report_names[type], id); 935 return NULL; 936 } 937 if (report->field[field_index]->report_count < report_counts) { 938 hid_err(hid, "not enough values in %s %u field %u\n", 939 hid_report_names[type], id, field_index); 940 return NULL; 941 } 942 return report; 943 } 944 EXPORT_SYMBOL_GPL(hid_validate_values); 945 946 /** 947 * hid_open_report - open a driver-specific device report 948 * 949 * @device: hid device 950 * 951 * Parse a report description into a hid_device structure. Reports are 952 * enumerated, fields are attached to these reports. 953 * 0 returned on success, otherwise nonzero error value. 954 * 955 * This function (or the equivalent hid_parse() macro) should only be 956 * called from probe() in drivers, before starting the device. 957 */ 958 int hid_open_report(struct hid_device *device) 959 { 960 struct hid_parser *parser; 961 struct hid_item item; 962 unsigned int size; 963 __u8 *start; 964 __u8 *buf; 965 __u8 *end; 966 int ret; 967 static int (*dispatch_type[])(struct hid_parser *parser, 968 struct hid_item *item) = { 969 hid_parser_main, 970 hid_parser_global, 971 hid_parser_local, 972 hid_parser_reserved 973 }; 974 975 if (WARN_ON(device->status & HID_STAT_PARSED)) 976 return -EBUSY; 977 978 start = device->dev_rdesc; 979 if (WARN_ON(!start)) 980 return -ENODEV; 981 size = device->dev_rsize; 982 983 buf = kmemdup(start, size, GFP_KERNEL); 984 if (buf == NULL) 985 return -ENOMEM; 986 987 if (device->driver->report_fixup) 988 start = device->driver->report_fixup(device, buf, &size); 989 else 990 start = buf; 991 992 start = kmemdup(start, size, GFP_KERNEL); 993 kfree(buf); 994 if (start == NULL) 995 return -ENOMEM; 996 997 device->rdesc = start; 998 device->rsize = size; 999 1000 parser = vzalloc(sizeof(struct hid_parser)); 1001 if (!parser) { 1002 ret = -ENOMEM; 1003 goto err; 1004 } 1005 1006 parser->device = device; 1007 1008 end = start + size; 1009 1010 device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS, 1011 sizeof(struct hid_collection), GFP_KERNEL); 1012 if (!device->collection) { 1013 ret = -ENOMEM; 1014 goto err; 1015 } 1016 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS; 1017 1018 ret = -EINVAL; 1019 while ((start = fetch_item(start, end, &item)) != NULL) { 1020 1021 if (item.format != HID_ITEM_FORMAT_SHORT) { 1022 hid_err(device, "unexpected long global item\n"); 1023 goto err; 1024 } 1025 1026 if (dispatch_type[item.type](parser, &item)) { 1027 hid_err(device, "item %u %u %u %u parsing failed\n", 1028 item.format, (unsigned)item.size, 1029 (unsigned)item.type, (unsigned)item.tag); 1030 goto err; 1031 } 1032 1033 if (start == end) { 1034 if (parser->collection_stack_ptr) { 1035 hid_err(device, "unbalanced collection at end of report description\n"); 1036 goto err; 1037 } 1038 if (parser->local.delimiter_depth) { 1039 hid_err(device, "unbalanced delimiter at end of report description\n"); 1040 goto err; 1041 } 1042 vfree(parser); 1043 device->status |= HID_STAT_PARSED; 1044 return 0; 1045 } 1046 } 1047 1048 hid_err(device, "item fetching failed at offset %d\n", (int)(end - start)); 1049 err: 1050 vfree(parser); 1051 hid_close_report(device); 1052 return ret; 1053 } 1054 EXPORT_SYMBOL_GPL(hid_open_report); 1055 1056 /* 1057 * Convert a signed n-bit integer to signed 32-bit integer. Common 1058 * cases are done through the compiler, the screwed things has to be 1059 * done by hand. 1060 */ 1061 1062 static s32 snto32(__u32 value, unsigned n) 1063 { 1064 switch (n) { 1065 case 8: return ((__s8)value); 1066 case 16: return ((__s16)value); 1067 case 32: return ((__s32)value); 1068 } 1069 return value & (1 << (n - 1)) ? value | (~0U << n) : value; 1070 } 1071 1072 s32 hid_snto32(__u32 value, unsigned n) 1073 { 1074 return snto32(value, n); 1075 } 1076 EXPORT_SYMBOL_GPL(hid_snto32); 1077 1078 /* 1079 * Convert a signed 32-bit integer to a signed n-bit integer. 1080 */ 1081 1082 static u32 s32ton(__s32 value, unsigned n) 1083 { 1084 s32 a = value >> (n - 1); 1085 if (a && a != -1) 1086 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1; 1087 return value & ((1 << n) - 1); 1088 } 1089 1090 /* 1091 * Extract/implement a data field from/to a little endian report (bit array). 1092 * 1093 * Code sort-of follows HID spec: 1094 * http://www.usb.org/developers/hidpage/HID1_11.pdf 1095 * 1096 * While the USB HID spec allows unlimited length bit fields in "report 1097 * descriptors", most devices never use more than 16 bits. 1098 * One model of UPS is claimed to report "LINEV" as a 32-bit field. 1099 * Search linux-kernel and linux-usb-devel archives for "hid-core extract". 1100 */ 1101 1102 static u32 __extract(u8 *report, unsigned offset, int n) 1103 { 1104 unsigned int idx = offset / 8; 1105 unsigned int bit_nr = 0; 1106 unsigned int bit_shift = offset % 8; 1107 int bits_to_copy = 8 - bit_shift; 1108 u32 value = 0; 1109 u32 mask = n < 32 ? (1U << n) - 1 : ~0U; 1110 1111 while (n > 0) { 1112 value |= ((u32)report[idx] >> bit_shift) << bit_nr; 1113 n -= bits_to_copy; 1114 bit_nr += bits_to_copy; 1115 bits_to_copy = 8; 1116 bit_shift = 0; 1117 idx++; 1118 } 1119 1120 return value & mask; 1121 } 1122 1123 u32 hid_field_extract(const struct hid_device *hid, u8 *report, 1124 unsigned offset, unsigned n) 1125 { 1126 if (n > 32) { 1127 hid_warn(hid, "hid_field_extract() called with n (%d) > 32! (%s)\n", 1128 n, current->comm); 1129 n = 32; 1130 } 1131 1132 return __extract(report, offset, n); 1133 } 1134 EXPORT_SYMBOL_GPL(hid_field_extract); 1135 1136 /* 1137 * "implement" : set bits in a little endian bit stream. 1138 * Same concepts as "extract" (see comments above). 1139 * The data mangled in the bit stream remains in little endian 1140 * order the whole time. It make more sense to talk about 1141 * endianness of register values by considering a register 1142 * a "cached" copy of the little endian bit stream. 1143 */ 1144 1145 static void __implement(u8 *report, unsigned offset, int n, u32 value) 1146 { 1147 unsigned int idx = offset / 8; 1148 unsigned int bit_shift = offset % 8; 1149 int bits_to_set = 8 - bit_shift; 1150 1151 while (n - bits_to_set >= 0) { 1152 report[idx] &= ~(0xff << bit_shift); 1153 report[idx] |= value << bit_shift; 1154 value >>= bits_to_set; 1155 n -= bits_to_set; 1156 bits_to_set = 8; 1157 bit_shift = 0; 1158 idx++; 1159 } 1160 1161 /* last nibble */ 1162 if (n) { 1163 u8 bit_mask = ((1U << n) - 1); 1164 report[idx] &= ~(bit_mask << bit_shift); 1165 report[idx] |= value << bit_shift; 1166 } 1167 } 1168 1169 static void implement(const struct hid_device *hid, u8 *report, 1170 unsigned offset, unsigned n, u32 value) 1171 { 1172 if (unlikely(n > 32)) { 1173 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n", 1174 __func__, n, current->comm); 1175 n = 32; 1176 } else if (n < 32) { 1177 u32 m = (1U << n) - 1; 1178 1179 if (unlikely(value > m)) { 1180 hid_warn(hid, 1181 "%s() called with too large value %d (n: %d)! (%s)\n", 1182 __func__, value, n, current->comm); 1183 WARN_ON(1); 1184 value &= m; 1185 } 1186 } 1187 1188 __implement(report, offset, n, value); 1189 } 1190 1191 /* 1192 * Search an array for a value. 1193 */ 1194 1195 static int search(__s32 *array, __s32 value, unsigned n) 1196 { 1197 while (n--) { 1198 if (*array++ == value) 1199 return 0; 1200 } 1201 return -1; 1202 } 1203 1204 /** 1205 * hid_match_report - check if driver's raw_event should be called 1206 * 1207 * @hid: hid device 1208 * @report_type: type to match against 1209 * 1210 * compare hid->driver->report_table->report_type to report->type 1211 */ 1212 static int hid_match_report(struct hid_device *hid, struct hid_report *report) 1213 { 1214 const struct hid_report_id *id = hid->driver->report_table; 1215 1216 if (!id) /* NULL means all */ 1217 return 1; 1218 1219 for (; id->report_type != HID_TERMINATOR; id++) 1220 if (id->report_type == HID_ANY_ID || 1221 id->report_type == report->type) 1222 return 1; 1223 return 0; 1224 } 1225 1226 /** 1227 * hid_match_usage - check if driver's event should be called 1228 * 1229 * @hid: hid device 1230 * @usage: usage to match against 1231 * 1232 * compare hid->driver->usage_table->usage_{type,code} to 1233 * usage->usage_{type,code} 1234 */ 1235 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage) 1236 { 1237 const struct hid_usage_id *id = hid->driver->usage_table; 1238 1239 if (!id) /* NULL means all */ 1240 return 1; 1241 1242 for (; id->usage_type != HID_ANY_ID - 1; id++) 1243 if ((id->usage_hid == HID_ANY_ID || 1244 id->usage_hid == usage->hid) && 1245 (id->usage_type == HID_ANY_ID || 1246 id->usage_type == usage->type) && 1247 (id->usage_code == HID_ANY_ID || 1248 id->usage_code == usage->code)) 1249 return 1; 1250 return 0; 1251 } 1252 1253 static void hid_process_event(struct hid_device *hid, struct hid_field *field, 1254 struct hid_usage *usage, __s32 value, int interrupt) 1255 { 1256 struct hid_driver *hdrv = hid->driver; 1257 int ret; 1258 1259 if (!list_empty(&hid->debug_list)) 1260 hid_dump_input(hid, usage, value); 1261 1262 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) { 1263 ret = hdrv->event(hid, field, usage, value); 1264 if (ret != 0) { 1265 if (ret < 0) 1266 hid_err(hid, "%s's event failed with %d\n", 1267 hdrv->name, ret); 1268 return; 1269 } 1270 } 1271 1272 if (hid->claimed & HID_CLAIMED_INPUT) 1273 hidinput_hid_event(hid, field, usage, value); 1274 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event) 1275 hid->hiddev_hid_event(hid, field, usage, value); 1276 } 1277 1278 /* 1279 * Analyse a received field, and fetch the data from it. The field 1280 * content is stored for next report processing (we do differential 1281 * reporting to the layer). 1282 */ 1283 1284 static void hid_input_field(struct hid_device *hid, struct hid_field *field, 1285 __u8 *data, int interrupt) 1286 { 1287 unsigned n; 1288 unsigned count = field->report_count; 1289 unsigned offset = field->report_offset; 1290 unsigned size = field->report_size; 1291 __s32 min = field->logical_minimum; 1292 __s32 max = field->logical_maximum; 1293 __s32 *value; 1294 1295 value = kmalloc_array(count, sizeof(__s32), GFP_ATOMIC); 1296 if (!value) 1297 return; 1298 1299 for (n = 0; n < count; n++) { 1300 1301 value[n] = min < 0 ? 1302 snto32(hid_field_extract(hid, data, offset + n * size, 1303 size), size) : 1304 hid_field_extract(hid, data, offset + n * size, size); 1305 1306 /* Ignore report if ErrorRollOver */ 1307 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) && 1308 value[n] >= min && value[n] <= max && 1309 value[n] - min < field->maxusage && 1310 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) 1311 goto exit; 1312 } 1313 1314 for (n = 0; n < count; n++) { 1315 1316 if (HID_MAIN_ITEM_VARIABLE & field->flags) { 1317 hid_process_event(hid, field, &field->usage[n], value[n], interrupt); 1318 continue; 1319 } 1320 1321 if (field->value[n] >= min && field->value[n] <= max 1322 && field->value[n] - min < field->maxusage 1323 && field->usage[field->value[n] - min].hid 1324 && search(value, field->value[n], count)) 1325 hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt); 1326 1327 if (value[n] >= min && value[n] <= max 1328 && value[n] - min < field->maxusage 1329 && field->usage[value[n] - min].hid 1330 && search(field->value, value[n], count)) 1331 hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt); 1332 } 1333 1334 memcpy(field->value, value, count * sizeof(__s32)); 1335 exit: 1336 kfree(value); 1337 } 1338 1339 /* 1340 * Output the field into the report. 1341 */ 1342 1343 static void hid_output_field(const struct hid_device *hid, 1344 struct hid_field *field, __u8 *data) 1345 { 1346 unsigned count = field->report_count; 1347 unsigned offset = field->report_offset; 1348 unsigned size = field->report_size; 1349 unsigned n; 1350 1351 for (n = 0; n < count; n++) { 1352 if (field->logical_minimum < 0) /* signed values */ 1353 implement(hid, data, offset + n * size, size, 1354 s32ton(field->value[n], size)); 1355 else /* unsigned values */ 1356 implement(hid, data, offset + n * size, size, 1357 field->value[n]); 1358 } 1359 } 1360 1361 /* 1362 * Create a report. 'data' has to be allocated using 1363 * hid_alloc_report_buf() so that it has proper size. 1364 */ 1365 1366 void hid_output_report(struct hid_report *report, __u8 *data) 1367 { 1368 unsigned n; 1369 1370 if (report->id > 0) 1371 *data++ = report->id; 1372 1373 memset(data, 0, ((report->size - 1) >> 3) + 1); 1374 for (n = 0; n < report->maxfield; n++) 1375 hid_output_field(report->device, report->field[n], data); 1376 } 1377 EXPORT_SYMBOL_GPL(hid_output_report); 1378 1379 /* 1380 * Allocator for buffer that is going to be passed to hid_output_report() 1381 */ 1382 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags) 1383 { 1384 /* 1385 * 7 extra bytes are necessary to achieve proper functionality 1386 * of implement() working on 8 byte chunks 1387 */ 1388 1389 u32 len = hid_report_len(report) + 7; 1390 1391 return kmalloc(len, flags); 1392 } 1393 EXPORT_SYMBOL_GPL(hid_alloc_report_buf); 1394 1395 /* 1396 * Set a field value. The report this field belongs to has to be 1397 * created and transferred to the device, to set this value in the 1398 * device. 1399 */ 1400 1401 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value) 1402 { 1403 unsigned size; 1404 1405 if (!field) 1406 return -1; 1407 1408 size = field->report_size; 1409 1410 hid_dump_input(field->report->device, field->usage + offset, value); 1411 1412 if (offset >= field->report_count) { 1413 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n", 1414 offset, field->report_count); 1415 return -1; 1416 } 1417 if (field->logical_minimum < 0) { 1418 if (value != snto32(s32ton(value, size), size)) { 1419 hid_err(field->report->device, "value %d is out of range\n", value); 1420 return -1; 1421 } 1422 } 1423 field->value[offset] = value; 1424 return 0; 1425 } 1426 EXPORT_SYMBOL_GPL(hid_set_field); 1427 1428 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum, 1429 const u8 *data) 1430 { 1431 struct hid_report *report; 1432 unsigned int n = 0; /* Normally report number is 0 */ 1433 1434 /* Device uses numbered reports, data[0] is report number */ 1435 if (report_enum->numbered) 1436 n = *data; 1437 1438 report = report_enum->report_id_hash[n]; 1439 if (report == NULL) 1440 dbg_hid("undefined report_id %u received\n", n); 1441 1442 return report; 1443 } 1444 1445 /* 1446 * Implement a generic .request() callback, using .raw_request() 1447 * DO NOT USE in hid drivers directly, but through hid_hw_request instead. 1448 */ 1449 void __hid_request(struct hid_device *hid, struct hid_report *report, 1450 int reqtype) 1451 { 1452 char *buf; 1453 int ret; 1454 u32 len; 1455 1456 buf = hid_alloc_report_buf(report, GFP_KERNEL); 1457 if (!buf) 1458 return; 1459 1460 len = hid_report_len(report); 1461 1462 if (reqtype == HID_REQ_SET_REPORT) 1463 hid_output_report(report, buf); 1464 1465 ret = hid->ll_driver->raw_request(hid, report->id, buf, len, 1466 report->type, reqtype); 1467 if (ret < 0) { 1468 dbg_hid("unable to complete request: %d\n", ret); 1469 goto out; 1470 } 1471 1472 if (reqtype == HID_REQ_GET_REPORT) 1473 hid_input_report(hid, report->type, buf, ret, 0); 1474 1475 out: 1476 kfree(buf); 1477 } 1478 EXPORT_SYMBOL_GPL(__hid_request); 1479 1480 int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size, 1481 int interrupt) 1482 { 1483 struct hid_report_enum *report_enum = hid->report_enum + type; 1484 struct hid_report *report; 1485 struct hid_driver *hdrv; 1486 unsigned int a; 1487 u32 rsize, csize = size; 1488 u8 *cdata = data; 1489 int ret = 0; 1490 1491 report = hid_get_report(report_enum, data); 1492 if (!report) 1493 goto out; 1494 1495 if (report_enum->numbered) { 1496 cdata++; 1497 csize--; 1498 } 1499 1500 rsize = ((report->size - 1) >> 3) + 1; 1501 1502 if (rsize > HID_MAX_BUFFER_SIZE) 1503 rsize = HID_MAX_BUFFER_SIZE; 1504 1505 if (csize < rsize) { 1506 dbg_hid("report %d is too short, (%d < %d)\n", report->id, 1507 csize, rsize); 1508 memset(cdata + csize, 0, rsize - csize); 1509 } 1510 1511 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event) 1512 hid->hiddev_report_event(hid, report); 1513 if (hid->claimed & HID_CLAIMED_HIDRAW) { 1514 ret = hidraw_report_event(hid, data, size); 1515 if (ret) 1516 goto out; 1517 } 1518 1519 if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) { 1520 for (a = 0; a < report->maxfield; a++) 1521 hid_input_field(hid, report->field[a], cdata, interrupt); 1522 hdrv = hid->driver; 1523 if (hdrv && hdrv->report) 1524 hdrv->report(hid, report); 1525 } 1526 1527 if (hid->claimed & HID_CLAIMED_INPUT) 1528 hidinput_report_event(hid, report); 1529 out: 1530 return ret; 1531 } 1532 EXPORT_SYMBOL_GPL(hid_report_raw_event); 1533 1534 /** 1535 * hid_input_report - report data from lower layer (usb, bt...) 1536 * 1537 * @hid: hid device 1538 * @type: HID report type (HID_*_REPORT) 1539 * @data: report contents 1540 * @size: size of data parameter 1541 * @interrupt: distinguish between interrupt and control transfers 1542 * 1543 * This is data entry for lower layers. 1544 */ 1545 int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt) 1546 { 1547 struct hid_report_enum *report_enum; 1548 struct hid_driver *hdrv; 1549 struct hid_report *report; 1550 int ret = 0; 1551 1552 if (!hid) 1553 return -ENODEV; 1554 1555 if (down_trylock(&hid->driver_input_lock)) 1556 return -EBUSY; 1557 1558 if (!hid->driver) { 1559 ret = -ENODEV; 1560 goto unlock; 1561 } 1562 report_enum = hid->report_enum + type; 1563 hdrv = hid->driver; 1564 1565 if (!size) { 1566 dbg_hid("empty report\n"); 1567 ret = -1; 1568 goto unlock; 1569 } 1570 1571 /* Avoid unnecessary overhead if debugfs is disabled */ 1572 if (!list_empty(&hid->debug_list)) 1573 hid_dump_report(hid, type, data, size); 1574 1575 report = hid_get_report(report_enum, data); 1576 1577 if (!report) { 1578 ret = -1; 1579 goto unlock; 1580 } 1581 1582 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) { 1583 ret = hdrv->raw_event(hid, report, data, size); 1584 if (ret < 0) 1585 goto unlock; 1586 } 1587 1588 ret = hid_report_raw_event(hid, type, data, size, interrupt); 1589 1590 unlock: 1591 up(&hid->driver_input_lock); 1592 return ret; 1593 } 1594 EXPORT_SYMBOL_GPL(hid_input_report); 1595 1596 bool hid_match_one_id(const struct hid_device *hdev, 1597 const struct hid_device_id *id) 1598 { 1599 return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) && 1600 (id->group == HID_GROUP_ANY || id->group == hdev->group) && 1601 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) && 1602 (id->product == HID_ANY_ID || id->product == hdev->product); 1603 } 1604 1605 const struct hid_device_id *hid_match_id(const struct hid_device *hdev, 1606 const struct hid_device_id *id) 1607 { 1608 for (; id->bus; id++) 1609 if (hid_match_one_id(hdev, id)) 1610 return id; 1611 1612 return NULL; 1613 } 1614 1615 static const struct hid_device_id hid_hiddev_list[] = { 1616 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) }, 1617 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) }, 1618 { } 1619 }; 1620 1621 static bool hid_hiddev(struct hid_device *hdev) 1622 { 1623 return !!hid_match_id(hdev, hid_hiddev_list); 1624 } 1625 1626 1627 static ssize_t 1628 read_report_descriptor(struct file *filp, struct kobject *kobj, 1629 struct bin_attribute *attr, 1630 char *buf, loff_t off, size_t count) 1631 { 1632 struct device *dev = kobj_to_dev(kobj); 1633 struct hid_device *hdev = to_hid_device(dev); 1634 1635 if (off >= hdev->rsize) 1636 return 0; 1637 1638 if (off + count > hdev->rsize) 1639 count = hdev->rsize - off; 1640 1641 memcpy(buf, hdev->rdesc + off, count); 1642 1643 return count; 1644 } 1645 1646 static ssize_t 1647 show_country(struct device *dev, struct device_attribute *attr, 1648 char *buf) 1649 { 1650 struct hid_device *hdev = to_hid_device(dev); 1651 1652 return sprintf(buf, "%02x\n", hdev->country & 0xff); 1653 } 1654 1655 static struct bin_attribute dev_bin_attr_report_desc = { 1656 .attr = { .name = "report_descriptor", .mode = 0444 }, 1657 .read = read_report_descriptor, 1658 .size = HID_MAX_DESCRIPTOR_SIZE, 1659 }; 1660 1661 static const struct device_attribute dev_attr_country = { 1662 .attr = { .name = "country", .mode = 0444 }, 1663 .show = show_country, 1664 }; 1665 1666 int hid_connect(struct hid_device *hdev, unsigned int connect_mask) 1667 { 1668 static const char *types[] = { "Device", "Pointer", "Mouse", "Device", 1669 "Joystick", "Gamepad", "Keyboard", "Keypad", 1670 "Multi-Axis Controller" 1671 }; 1672 const char *type, *bus; 1673 char buf[64] = ""; 1674 unsigned int i; 1675 int len; 1676 int ret; 1677 1678 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE) 1679 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV); 1680 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE) 1681 connect_mask |= HID_CONNECT_HIDINPUT_FORCE; 1682 if (hdev->bus != BUS_USB) 1683 connect_mask &= ~HID_CONNECT_HIDDEV; 1684 if (hid_hiddev(hdev)) 1685 connect_mask |= HID_CONNECT_HIDDEV_FORCE; 1686 1687 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev, 1688 connect_mask & HID_CONNECT_HIDINPUT_FORCE)) 1689 hdev->claimed |= HID_CLAIMED_INPUT; 1690 1691 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect && 1692 !hdev->hiddev_connect(hdev, 1693 connect_mask & HID_CONNECT_HIDDEV_FORCE)) 1694 hdev->claimed |= HID_CLAIMED_HIDDEV; 1695 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev)) 1696 hdev->claimed |= HID_CLAIMED_HIDRAW; 1697 1698 if (connect_mask & HID_CONNECT_DRIVER) 1699 hdev->claimed |= HID_CLAIMED_DRIVER; 1700 1701 /* Drivers with the ->raw_event callback set are not required to connect 1702 * to any other listener. */ 1703 if (!hdev->claimed && !hdev->driver->raw_event) { 1704 hid_err(hdev, "device has no listeners, quitting\n"); 1705 return -ENODEV; 1706 } 1707 1708 if ((hdev->claimed & HID_CLAIMED_INPUT) && 1709 (connect_mask & HID_CONNECT_FF) && hdev->ff_init) 1710 hdev->ff_init(hdev); 1711 1712 len = 0; 1713 if (hdev->claimed & HID_CLAIMED_INPUT) 1714 len += sprintf(buf + len, "input"); 1715 if (hdev->claimed & HID_CLAIMED_HIDDEV) 1716 len += sprintf(buf + len, "%shiddev%d", len ? "," : "", 1717 ((struct hiddev *)hdev->hiddev)->minor); 1718 if (hdev->claimed & HID_CLAIMED_HIDRAW) 1719 len += sprintf(buf + len, "%shidraw%d", len ? "," : "", 1720 ((struct hidraw *)hdev->hidraw)->minor); 1721 1722 type = "Device"; 1723 for (i = 0; i < hdev->maxcollection; i++) { 1724 struct hid_collection *col = &hdev->collection[i]; 1725 if (col->type == HID_COLLECTION_APPLICATION && 1726 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK && 1727 (col->usage & 0xffff) < ARRAY_SIZE(types)) { 1728 type = types[col->usage & 0xffff]; 1729 break; 1730 } 1731 } 1732 1733 switch (hdev->bus) { 1734 case BUS_USB: 1735 bus = "USB"; 1736 break; 1737 case BUS_BLUETOOTH: 1738 bus = "BLUETOOTH"; 1739 break; 1740 case BUS_I2C: 1741 bus = "I2C"; 1742 break; 1743 default: 1744 bus = "<UNKNOWN>"; 1745 } 1746 1747 ret = device_create_file(&hdev->dev, &dev_attr_country); 1748 if (ret) 1749 hid_warn(hdev, 1750 "can't create sysfs country code attribute err: %d\n", ret); 1751 1752 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n", 1753 buf, bus, hdev->version >> 8, hdev->version & 0xff, 1754 type, hdev->name, hdev->phys); 1755 1756 return 0; 1757 } 1758 EXPORT_SYMBOL_GPL(hid_connect); 1759 1760 void hid_disconnect(struct hid_device *hdev) 1761 { 1762 device_remove_file(&hdev->dev, &dev_attr_country); 1763 if (hdev->claimed & HID_CLAIMED_INPUT) 1764 hidinput_disconnect(hdev); 1765 if (hdev->claimed & HID_CLAIMED_HIDDEV) 1766 hdev->hiddev_disconnect(hdev); 1767 if (hdev->claimed & HID_CLAIMED_HIDRAW) 1768 hidraw_disconnect(hdev); 1769 hdev->claimed = 0; 1770 } 1771 EXPORT_SYMBOL_GPL(hid_disconnect); 1772 1773 /** 1774 * hid_hw_start - start underlying HW 1775 * @hdev: hid device 1776 * @connect_mask: which outputs to connect, see HID_CONNECT_* 1777 * 1778 * Call this in probe function *after* hid_parse. This will setup HW 1779 * buffers and start the device (if not defeirred to device open). 1780 * hid_hw_stop must be called if this was successful. 1781 */ 1782 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask) 1783 { 1784 int error; 1785 1786 error = hdev->ll_driver->start(hdev); 1787 if (error) 1788 return error; 1789 1790 if (connect_mask) { 1791 error = hid_connect(hdev, connect_mask); 1792 if (error) { 1793 hdev->ll_driver->stop(hdev); 1794 return error; 1795 } 1796 } 1797 1798 return 0; 1799 } 1800 EXPORT_SYMBOL_GPL(hid_hw_start); 1801 1802 /** 1803 * hid_hw_stop - stop underlying HW 1804 * @hdev: hid device 1805 * 1806 * This is usually called from remove function or from probe when something 1807 * failed and hid_hw_start was called already. 1808 */ 1809 void hid_hw_stop(struct hid_device *hdev) 1810 { 1811 hid_disconnect(hdev); 1812 hdev->ll_driver->stop(hdev); 1813 } 1814 EXPORT_SYMBOL_GPL(hid_hw_stop); 1815 1816 /** 1817 * hid_hw_open - signal underlying HW to start delivering events 1818 * @hdev: hid device 1819 * 1820 * Tell underlying HW to start delivering events from the device. 1821 * This function should be called sometime after successful call 1822 * to hid_hw_start(). 1823 */ 1824 int hid_hw_open(struct hid_device *hdev) 1825 { 1826 int ret; 1827 1828 ret = mutex_lock_killable(&hdev->ll_open_lock); 1829 if (ret) 1830 return ret; 1831 1832 if (!hdev->ll_open_count++) { 1833 ret = hdev->ll_driver->open(hdev); 1834 if (ret) 1835 hdev->ll_open_count--; 1836 } 1837 1838 mutex_unlock(&hdev->ll_open_lock); 1839 return ret; 1840 } 1841 EXPORT_SYMBOL_GPL(hid_hw_open); 1842 1843 /** 1844 * hid_hw_close - signal underlaying HW to stop delivering events 1845 * 1846 * @hdev: hid device 1847 * 1848 * This function indicates that we are not interested in the events 1849 * from this device anymore. Delivery of events may or may not stop, 1850 * depending on the number of users still outstanding. 1851 */ 1852 void hid_hw_close(struct hid_device *hdev) 1853 { 1854 mutex_lock(&hdev->ll_open_lock); 1855 if (!--hdev->ll_open_count) 1856 hdev->ll_driver->close(hdev); 1857 mutex_unlock(&hdev->ll_open_lock); 1858 } 1859 EXPORT_SYMBOL_GPL(hid_hw_close); 1860 1861 struct hid_dynid { 1862 struct list_head list; 1863 struct hid_device_id id; 1864 }; 1865 1866 /** 1867 * store_new_id - add a new HID device ID to this driver and re-probe devices 1868 * @driver: target device driver 1869 * @buf: buffer for scanning device ID data 1870 * @count: input size 1871 * 1872 * Adds a new dynamic hid device ID to this driver, 1873 * and causes the driver to probe for all devices again. 1874 */ 1875 static ssize_t new_id_store(struct device_driver *drv, const char *buf, 1876 size_t count) 1877 { 1878 struct hid_driver *hdrv = to_hid_driver(drv); 1879 struct hid_dynid *dynid; 1880 __u32 bus, vendor, product; 1881 unsigned long driver_data = 0; 1882 int ret; 1883 1884 ret = sscanf(buf, "%x %x %x %lx", 1885 &bus, &vendor, &product, &driver_data); 1886 if (ret < 3) 1887 return -EINVAL; 1888 1889 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 1890 if (!dynid) 1891 return -ENOMEM; 1892 1893 dynid->id.bus = bus; 1894 dynid->id.group = HID_GROUP_ANY; 1895 dynid->id.vendor = vendor; 1896 dynid->id.product = product; 1897 dynid->id.driver_data = driver_data; 1898 1899 spin_lock(&hdrv->dyn_lock); 1900 list_add_tail(&dynid->list, &hdrv->dyn_list); 1901 spin_unlock(&hdrv->dyn_lock); 1902 1903 ret = driver_attach(&hdrv->driver); 1904 1905 return ret ? : count; 1906 } 1907 static DRIVER_ATTR_WO(new_id); 1908 1909 static struct attribute *hid_drv_attrs[] = { 1910 &driver_attr_new_id.attr, 1911 NULL, 1912 }; 1913 ATTRIBUTE_GROUPS(hid_drv); 1914 1915 static void hid_free_dynids(struct hid_driver *hdrv) 1916 { 1917 struct hid_dynid *dynid, *n; 1918 1919 spin_lock(&hdrv->dyn_lock); 1920 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) { 1921 list_del(&dynid->list); 1922 kfree(dynid); 1923 } 1924 spin_unlock(&hdrv->dyn_lock); 1925 } 1926 1927 const struct hid_device_id *hid_match_device(struct hid_device *hdev, 1928 struct hid_driver *hdrv) 1929 { 1930 struct hid_dynid *dynid; 1931 1932 spin_lock(&hdrv->dyn_lock); 1933 list_for_each_entry(dynid, &hdrv->dyn_list, list) { 1934 if (hid_match_one_id(hdev, &dynid->id)) { 1935 spin_unlock(&hdrv->dyn_lock); 1936 return &dynid->id; 1937 } 1938 } 1939 spin_unlock(&hdrv->dyn_lock); 1940 1941 return hid_match_id(hdev, hdrv->id_table); 1942 } 1943 EXPORT_SYMBOL_GPL(hid_match_device); 1944 1945 static int hid_bus_match(struct device *dev, struct device_driver *drv) 1946 { 1947 struct hid_driver *hdrv = to_hid_driver(drv); 1948 struct hid_device *hdev = to_hid_device(dev); 1949 1950 return hid_match_device(hdev, hdrv) != NULL; 1951 } 1952 1953 /** 1954 * hid_compare_device_paths - check if both devices share the same path 1955 * @hdev_a: hid device 1956 * @hdev_b: hid device 1957 * @separator: char to use as separator 1958 * 1959 * Check if two devices share the same path up to the last occurrence of 1960 * the separator char. Both paths must exist (i.e., zero-length paths 1961 * don't match). 1962 */ 1963 bool hid_compare_device_paths(struct hid_device *hdev_a, 1964 struct hid_device *hdev_b, char separator) 1965 { 1966 int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys; 1967 int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys; 1968 1969 if (n1 != n2 || n1 <= 0 || n2 <= 0) 1970 return false; 1971 1972 return !strncmp(hdev_a->phys, hdev_b->phys, n1); 1973 } 1974 EXPORT_SYMBOL_GPL(hid_compare_device_paths); 1975 1976 static int hid_device_probe(struct device *dev) 1977 { 1978 struct hid_driver *hdrv = to_hid_driver(dev->driver); 1979 struct hid_device *hdev = to_hid_device(dev); 1980 const struct hid_device_id *id; 1981 int ret = 0; 1982 1983 if (down_interruptible(&hdev->driver_input_lock)) { 1984 ret = -EINTR; 1985 goto end; 1986 } 1987 hdev->io_started = false; 1988 1989 clear_bit(ffs(HID_STAT_REPROBED), &hdev->status); 1990 1991 if (!hdev->driver) { 1992 id = hid_match_device(hdev, hdrv); 1993 if (id == NULL) { 1994 ret = -ENODEV; 1995 goto unlock; 1996 } 1997 1998 if (hdrv->match) { 1999 if (!hdrv->match(hdev, hid_ignore_special_drivers)) { 2000 ret = -ENODEV; 2001 goto unlock; 2002 } 2003 } else { 2004 /* 2005 * hid-generic implements .match(), so if 2006 * hid_ignore_special_drivers is set, we can safely 2007 * return. 2008 */ 2009 if (hid_ignore_special_drivers) { 2010 ret = -ENODEV; 2011 goto unlock; 2012 } 2013 } 2014 2015 /* reset the quirks that has been previously set */ 2016 hdev->quirks = hid_lookup_quirk(hdev); 2017 hdev->driver = hdrv; 2018 if (hdrv->probe) { 2019 ret = hdrv->probe(hdev, id); 2020 } else { /* default probe */ 2021 ret = hid_open_report(hdev); 2022 if (!ret) 2023 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT); 2024 } 2025 if (ret) { 2026 hid_close_report(hdev); 2027 hdev->driver = NULL; 2028 } 2029 } 2030 unlock: 2031 if (!hdev->io_started) 2032 up(&hdev->driver_input_lock); 2033 end: 2034 return ret; 2035 } 2036 2037 static int hid_device_remove(struct device *dev) 2038 { 2039 struct hid_device *hdev = to_hid_device(dev); 2040 struct hid_driver *hdrv; 2041 int ret = 0; 2042 2043 if (down_interruptible(&hdev->driver_input_lock)) { 2044 ret = -EINTR; 2045 goto end; 2046 } 2047 hdev->io_started = false; 2048 2049 hdrv = hdev->driver; 2050 if (hdrv) { 2051 if (hdrv->remove) 2052 hdrv->remove(hdev); 2053 else /* default remove */ 2054 hid_hw_stop(hdev); 2055 hid_close_report(hdev); 2056 hdev->driver = NULL; 2057 } 2058 2059 if (!hdev->io_started) 2060 up(&hdev->driver_input_lock); 2061 end: 2062 return ret; 2063 } 2064 2065 static ssize_t modalias_show(struct device *dev, struct device_attribute *a, 2066 char *buf) 2067 { 2068 struct hid_device *hdev = container_of(dev, struct hid_device, dev); 2069 2070 return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n", 2071 hdev->bus, hdev->group, hdev->vendor, hdev->product); 2072 } 2073 static DEVICE_ATTR_RO(modalias); 2074 2075 static struct attribute *hid_dev_attrs[] = { 2076 &dev_attr_modalias.attr, 2077 NULL, 2078 }; 2079 static struct bin_attribute *hid_dev_bin_attrs[] = { 2080 &dev_bin_attr_report_desc, 2081 NULL 2082 }; 2083 static const struct attribute_group hid_dev_group = { 2084 .attrs = hid_dev_attrs, 2085 .bin_attrs = hid_dev_bin_attrs, 2086 }; 2087 __ATTRIBUTE_GROUPS(hid_dev); 2088 2089 static int hid_uevent(struct device *dev, struct kobj_uevent_env *env) 2090 { 2091 struct hid_device *hdev = to_hid_device(dev); 2092 2093 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X", 2094 hdev->bus, hdev->vendor, hdev->product)) 2095 return -ENOMEM; 2096 2097 if (add_uevent_var(env, "HID_NAME=%s", hdev->name)) 2098 return -ENOMEM; 2099 2100 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys)) 2101 return -ENOMEM; 2102 2103 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq)) 2104 return -ENOMEM; 2105 2106 if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X", 2107 hdev->bus, hdev->group, hdev->vendor, hdev->product)) 2108 return -ENOMEM; 2109 2110 return 0; 2111 } 2112 2113 struct bus_type hid_bus_type = { 2114 .name = "hid", 2115 .dev_groups = hid_dev_groups, 2116 .drv_groups = hid_drv_groups, 2117 .match = hid_bus_match, 2118 .probe = hid_device_probe, 2119 .remove = hid_device_remove, 2120 .uevent = hid_uevent, 2121 }; 2122 EXPORT_SYMBOL(hid_bus_type); 2123 2124 int hid_add_device(struct hid_device *hdev) 2125 { 2126 static atomic_t id = ATOMIC_INIT(0); 2127 int ret; 2128 2129 if (WARN_ON(hdev->status & HID_STAT_ADDED)) 2130 return -EBUSY; 2131 2132 hdev->quirks = hid_lookup_quirk(hdev); 2133 2134 /* we need to kill them here, otherwise they will stay allocated to 2135 * wait for coming driver */ 2136 if (hid_ignore(hdev)) 2137 return -ENODEV; 2138 2139 /* 2140 * Check for the mandatory transport channel. 2141 */ 2142 if (!hdev->ll_driver->raw_request) { 2143 hid_err(hdev, "transport driver missing .raw_request()\n"); 2144 return -EINVAL; 2145 } 2146 2147 /* 2148 * Read the device report descriptor once and use as template 2149 * for the driver-specific modifications. 2150 */ 2151 ret = hdev->ll_driver->parse(hdev); 2152 if (ret) 2153 return ret; 2154 if (!hdev->dev_rdesc) 2155 return -ENODEV; 2156 2157 /* 2158 * Scan generic devices for group information 2159 */ 2160 if (hid_ignore_special_drivers) { 2161 hdev->group = HID_GROUP_GENERIC; 2162 } else if (!hdev->group && 2163 !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) { 2164 ret = hid_scan_report(hdev); 2165 if (ret) 2166 hid_warn(hdev, "bad device descriptor (%d)\n", ret); 2167 } 2168 2169 /* XXX hack, any other cleaner solution after the driver core 2170 * is converted to allow more than 20 bytes as the device name? */ 2171 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus, 2172 hdev->vendor, hdev->product, atomic_inc_return(&id)); 2173 2174 hid_debug_register(hdev, dev_name(&hdev->dev)); 2175 ret = device_add(&hdev->dev); 2176 if (!ret) 2177 hdev->status |= HID_STAT_ADDED; 2178 else 2179 hid_debug_unregister(hdev); 2180 2181 return ret; 2182 } 2183 EXPORT_SYMBOL_GPL(hid_add_device); 2184 2185 /** 2186 * hid_allocate_device - allocate new hid device descriptor 2187 * 2188 * Allocate and initialize hid device, so that hid_destroy_device might be 2189 * used to free it. 2190 * 2191 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded 2192 * error value. 2193 */ 2194 struct hid_device *hid_allocate_device(void) 2195 { 2196 struct hid_device *hdev; 2197 int ret = -ENOMEM; 2198 2199 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL); 2200 if (hdev == NULL) 2201 return ERR_PTR(ret); 2202 2203 device_initialize(&hdev->dev); 2204 hdev->dev.release = hid_device_release; 2205 hdev->dev.bus = &hid_bus_type; 2206 device_enable_async_suspend(&hdev->dev); 2207 2208 hid_close_report(hdev); 2209 2210 init_waitqueue_head(&hdev->debug_wait); 2211 INIT_LIST_HEAD(&hdev->debug_list); 2212 spin_lock_init(&hdev->debug_list_lock); 2213 sema_init(&hdev->driver_input_lock, 1); 2214 mutex_init(&hdev->ll_open_lock); 2215 2216 return hdev; 2217 } 2218 EXPORT_SYMBOL_GPL(hid_allocate_device); 2219 2220 static void hid_remove_device(struct hid_device *hdev) 2221 { 2222 if (hdev->status & HID_STAT_ADDED) { 2223 device_del(&hdev->dev); 2224 hid_debug_unregister(hdev); 2225 hdev->status &= ~HID_STAT_ADDED; 2226 } 2227 kfree(hdev->dev_rdesc); 2228 hdev->dev_rdesc = NULL; 2229 hdev->dev_rsize = 0; 2230 } 2231 2232 /** 2233 * hid_destroy_device - free previously allocated device 2234 * 2235 * @hdev: hid device 2236 * 2237 * If you allocate hid_device through hid_allocate_device, you should ever 2238 * free by this function. 2239 */ 2240 void hid_destroy_device(struct hid_device *hdev) 2241 { 2242 hid_remove_device(hdev); 2243 put_device(&hdev->dev); 2244 } 2245 EXPORT_SYMBOL_GPL(hid_destroy_device); 2246 2247 2248 static int __hid_bus_reprobe_drivers(struct device *dev, void *data) 2249 { 2250 struct hid_driver *hdrv = data; 2251 struct hid_device *hdev = to_hid_device(dev); 2252 2253 if (hdev->driver == hdrv && 2254 !hdrv->match(hdev, hid_ignore_special_drivers) && 2255 !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status)) 2256 return device_reprobe(dev); 2257 2258 return 0; 2259 } 2260 2261 static int __hid_bus_driver_added(struct device_driver *drv, void *data) 2262 { 2263 struct hid_driver *hdrv = to_hid_driver(drv); 2264 2265 if (hdrv->match) { 2266 bus_for_each_dev(&hid_bus_type, NULL, hdrv, 2267 __hid_bus_reprobe_drivers); 2268 } 2269 2270 return 0; 2271 } 2272 2273 static int __bus_removed_driver(struct device_driver *drv, void *data) 2274 { 2275 return bus_rescan_devices(&hid_bus_type); 2276 } 2277 2278 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner, 2279 const char *mod_name) 2280 { 2281 int ret; 2282 2283 hdrv->driver.name = hdrv->name; 2284 hdrv->driver.bus = &hid_bus_type; 2285 hdrv->driver.owner = owner; 2286 hdrv->driver.mod_name = mod_name; 2287 2288 INIT_LIST_HEAD(&hdrv->dyn_list); 2289 spin_lock_init(&hdrv->dyn_lock); 2290 2291 ret = driver_register(&hdrv->driver); 2292 2293 if (ret == 0) 2294 bus_for_each_drv(&hid_bus_type, NULL, NULL, 2295 __hid_bus_driver_added); 2296 2297 return ret; 2298 } 2299 EXPORT_SYMBOL_GPL(__hid_register_driver); 2300 2301 void hid_unregister_driver(struct hid_driver *hdrv) 2302 { 2303 driver_unregister(&hdrv->driver); 2304 hid_free_dynids(hdrv); 2305 2306 bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver); 2307 } 2308 EXPORT_SYMBOL_GPL(hid_unregister_driver); 2309 2310 int hid_check_keys_pressed(struct hid_device *hid) 2311 { 2312 struct hid_input *hidinput; 2313 int i; 2314 2315 if (!(hid->claimed & HID_CLAIMED_INPUT)) 2316 return 0; 2317 2318 list_for_each_entry(hidinput, &hid->inputs, list) { 2319 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++) 2320 if (hidinput->input->key[i]) 2321 return 1; 2322 } 2323 2324 return 0; 2325 } 2326 2327 EXPORT_SYMBOL_GPL(hid_check_keys_pressed); 2328 2329 static int __init hid_init(void) 2330 { 2331 int ret; 2332 2333 if (hid_debug) 2334 pr_warn("hid_debug is now used solely for parser and driver debugging.\n" 2335 "debugfs is now used for inspecting the device (report descriptor, reports)\n"); 2336 2337 ret = bus_register(&hid_bus_type); 2338 if (ret) { 2339 pr_err("can't register hid bus\n"); 2340 goto err; 2341 } 2342 2343 ret = hidraw_init(); 2344 if (ret) 2345 goto err_bus; 2346 2347 hid_debug_init(); 2348 2349 return 0; 2350 err_bus: 2351 bus_unregister(&hid_bus_type); 2352 err: 2353 return ret; 2354 } 2355 2356 static void __exit hid_exit(void) 2357 { 2358 hid_debug_exit(); 2359 hidraw_exit(); 2360 bus_unregister(&hid_bus_type); 2361 hid_quirks_exit(HID_BUS_ANY); 2362 } 2363 2364 module_init(hid_init); 2365 module_exit(hid_exit); 2366 2367 MODULE_AUTHOR("Andreas Gal"); 2368 MODULE_AUTHOR("Vojtech Pavlik"); 2369 MODULE_AUTHOR("Jiri Kosina"); 2370 MODULE_LICENSE("GPL"); 2371