xref: /openbmc/linux/drivers/hid/hid-core.c (revision f15cbe6f1a4b4d9df59142fc8e4abb973302cf44)
1 /*
2  *  HID support for Linux
3  *
4  *  Copyright (c) 1999 Andreas Gal
5  *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
6  *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
7  *  Copyright (c) 2006-2007 Jiri Kosina
8  */
9 
10 /*
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the Free
13  * Software Foundation; either version 2 of the License, or (at your option)
14  * any later version.
15  */
16 
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/list.h>
22 #include <linux/mm.h>
23 #include <linux/spinlock.h>
24 #include <asm/unaligned.h>
25 #include <asm/byteorder.h>
26 #include <linux/input.h>
27 #include <linux/wait.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sched.h>
30 
31 #include <linux/hid.h>
32 #include <linux/hiddev.h>
33 #include <linux/hid-debug.h>
34 #include <linux/hidraw.h>
35 
36 /*
37  * Version Information
38  */
39 
40 #define DRIVER_VERSION "v2.6"
41 #define DRIVER_AUTHOR "Andreas Gal, Vojtech Pavlik, Jiri Kosina"
42 #define DRIVER_DESC "HID core driver"
43 #define DRIVER_LICENSE "GPL"
44 
45 #ifdef CONFIG_HID_DEBUG
46 int hid_debug = 0;
47 module_param_named(debug, hid_debug, int, 0600);
48 MODULE_PARM_DESC(debug, "HID debugging (0=off, 1=probing info, 2=continuous data dumping)");
49 EXPORT_SYMBOL_GPL(hid_debug);
50 #endif
51 
52 /*
53  * Register a new report for a device.
54  */
55 
56 static struct hid_report *hid_register_report(struct hid_device *device, unsigned type, unsigned id)
57 {
58 	struct hid_report_enum *report_enum = device->report_enum + type;
59 	struct hid_report *report;
60 
61 	if (report_enum->report_id_hash[id])
62 		return report_enum->report_id_hash[id];
63 
64 	if (!(report = kzalloc(sizeof(struct hid_report), GFP_KERNEL)))
65 		return NULL;
66 
67 	if (id != 0)
68 		report_enum->numbered = 1;
69 
70 	report->id = id;
71 	report->type = type;
72 	report->size = 0;
73 	report->device = device;
74 	report_enum->report_id_hash[id] = report;
75 
76 	list_add_tail(&report->list, &report_enum->report_list);
77 
78 	return report;
79 }
80 
81 /*
82  * Register a new field for this report.
83  */
84 
85 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
86 {
87 	struct hid_field *field;
88 
89 	if (report->maxfield == HID_MAX_FIELDS) {
90 		dbg_hid("too many fields in report\n");
91 		return NULL;
92 	}
93 
94 	if (!(field = kzalloc(sizeof(struct hid_field) + usages * sizeof(struct hid_usage)
95 		+ values * sizeof(unsigned), GFP_KERNEL))) return NULL;
96 
97 	field->index = report->maxfield++;
98 	report->field[field->index] = field;
99 	field->usage = (struct hid_usage *)(field + 1);
100 	field->value = (s32 *)(field->usage + usages);
101 	field->report = report;
102 
103 	return field;
104 }
105 
106 /*
107  * Open a collection. The type/usage is pushed on the stack.
108  */
109 
110 static int open_collection(struct hid_parser *parser, unsigned type)
111 {
112 	struct hid_collection *collection;
113 	unsigned usage;
114 
115 	usage = parser->local.usage[0];
116 
117 	if (parser->collection_stack_ptr == HID_COLLECTION_STACK_SIZE) {
118 		dbg_hid("collection stack overflow\n");
119 		return -1;
120 	}
121 
122 	if (parser->device->maxcollection == parser->device->collection_size) {
123 		collection = kmalloc(sizeof(struct hid_collection) *
124 				parser->device->collection_size * 2, GFP_KERNEL);
125 		if (collection == NULL) {
126 			dbg_hid("failed to reallocate collection array\n");
127 			return -1;
128 		}
129 		memcpy(collection, parser->device->collection,
130 			sizeof(struct hid_collection) *
131 			parser->device->collection_size);
132 		memset(collection + parser->device->collection_size, 0,
133 			sizeof(struct hid_collection) *
134 			parser->device->collection_size);
135 		kfree(parser->device->collection);
136 		parser->device->collection = collection;
137 		parser->device->collection_size *= 2;
138 	}
139 
140 	parser->collection_stack[parser->collection_stack_ptr++] =
141 		parser->device->maxcollection;
142 
143 	collection = parser->device->collection +
144 		parser->device->maxcollection++;
145 	collection->type = type;
146 	collection->usage = usage;
147 	collection->level = parser->collection_stack_ptr - 1;
148 
149 	if (type == HID_COLLECTION_APPLICATION)
150 		parser->device->maxapplication++;
151 
152 	return 0;
153 }
154 
155 /*
156  * Close a collection.
157  */
158 
159 static int close_collection(struct hid_parser *parser)
160 {
161 	if (!parser->collection_stack_ptr) {
162 		dbg_hid("collection stack underflow\n");
163 		return -1;
164 	}
165 	parser->collection_stack_ptr--;
166 	return 0;
167 }
168 
169 /*
170  * Climb up the stack, search for the specified collection type
171  * and return the usage.
172  */
173 
174 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
175 {
176 	int n;
177 	for (n = parser->collection_stack_ptr - 1; n >= 0; n--)
178 		if (parser->device->collection[parser->collection_stack[n]].type == type)
179 			return parser->device->collection[parser->collection_stack[n]].usage;
180 	return 0; /* we know nothing about this usage type */
181 }
182 
183 /*
184  * Add a usage to the temporary parser table.
185  */
186 
187 static int hid_add_usage(struct hid_parser *parser, unsigned usage)
188 {
189 	if (parser->local.usage_index >= HID_MAX_USAGES) {
190 		dbg_hid("usage index exceeded\n");
191 		return -1;
192 	}
193 	parser->local.usage[parser->local.usage_index] = usage;
194 	parser->local.collection_index[parser->local.usage_index] =
195 		parser->collection_stack_ptr ?
196 		parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
197 	parser->local.usage_index++;
198 	return 0;
199 }
200 
201 /*
202  * Register a new field for this report.
203  */
204 
205 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
206 {
207 	struct hid_report *report;
208 	struct hid_field *field;
209 	int usages;
210 	unsigned offset;
211 	int i;
212 
213 	if (!(report = hid_register_report(parser->device, report_type, parser->global.report_id))) {
214 		dbg_hid("hid_register_report failed\n");
215 		return -1;
216 	}
217 
218 	if (parser->global.logical_maximum < parser->global.logical_minimum) {
219 		dbg_hid("logical range invalid %d %d\n", parser->global.logical_minimum, parser->global.logical_maximum);
220 		return -1;
221 	}
222 
223 	offset = report->size;
224 	report->size += parser->global.report_size * parser->global.report_count;
225 
226 	if (!parser->local.usage_index) /* Ignore padding fields */
227 		return 0;
228 
229 	usages = max_t(int, parser->local.usage_index, parser->global.report_count);
230 
231 	if ((field = hid_register_field(report, usages, parser->global.report_count)) == NULL)
232 		return 0;
233 
234 	field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
235 	field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
236 	field->application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
237 
238 	for (i = 0; i < usages; i++) {
239 		int j = i;
240 		/* Duplicate the last usage we parsed if we have excess values */
241 		if (i >= parser->local.usage_index)
242 			j = parser->local.usage_index - 1;
243 		field->usage[i].hid = parser->local.usage[j];
244 		field->usage[i].collection_index =
245 			parser->local.collection_index[j];
246 	}
247 
248 	field->maxusage = usages;
249 	field->flags = flags;
250 	field->report_offset = offset;
251 	field->report_type = report_type;
252 	field->report_size = parser->global.report_size;
253 	field->report_count = parser->global.report_count;
254 	field->logical_minimum = parser->global.logical_minimum;
255 	field->logical_maximum = parser->global.logical_maximum;
256 	field->physical_minimum = parser->global.physical_minimum;
257 	field->physical_maximum = parser->global.physical_maximum;
258 	field->unit_exponent = parser->global.unit_exponent;
259 	field->unit = parser->global.unit;
260 
261 	return 0;
262 }
263 
264 /*
265  * Read data value from item.
266  */
267 
268 static u32 item_udata(struct hid_item *item)
269 {
270 	switch (item->size) {
271 		case 1: return item->data.u8;
272 		case 2: return item->data.u16;
273 		case 4: return item->data.u32;
274 	}
275 	return 0;
276 }
277 
278 static s32 item_sdata(struct hid_item *item)
279 {
280 	switch (item->size) {
281 		case 1: return item->data.s8;
282 		case 2: return item->data.s16;
283 		case 4: return item->data.s32;
284 	}
285 	return 0;
286 }
287 
288 /*
289  * Process a global item.
290  */
291 
292 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
293 {
294 	switch (item->tag) {
295 
296 		case HID_GLOBAL_ITEM_TAG_PUSH:
297 
298 			if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
299 				dbg_hid("global enviroment stack overflow\n");
300 				return -1;
301 			}
302 
303 			memcpy(parser->global_stack + parser->global_stack_ptr++,
304 				&parser->global, sizeof(struct hid_global));
305 			return 0;
306 
307 		case HID_GLOBAL_ITEM_TAG_POP:
308 
309 			if (!parser->global_stack_ptr) {
310 				dbg_hid("global enviroment stack underflow\n");
311 				return -1;
312 			}
313 
314 			memcpy(&parser->global, parser->global_stack + --parser->global_stack_ptr,
315 				sizeof(struct hid_global));
316 			return 0;
317 
318 		case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
319 			parser->global.usage_page = item_udata(item);
320 			return 0;
321 
322 		case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
323 			parser->global.logical_minimum = item_sdata(item);
324 			return 0;
325 
326 		case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
327 			if (parser->global.logical_minimum < 0)
328 				parser->global.logical_maximum = item_sdata(item);
329 			else
330 				parser->global.logical_maximum = item_udata(item);
331 			return 0;
332 
333 		case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
334 			parser->global.physical_minimum = item_sdata(item);
335 			return 0;
336 
337 		case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
338 			if (parser->global.physical_minimum < 0)
339 				parser->global.physical_maximum = item_sdata(item);
340 			else
341 				parser->global.physical_maximum = item_udata(item);
342 			return 0;
343 
344 		case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
345 			parser->global.unit_exponent = item_sdata(item);
346 			return 0;
347 
348 		case HID_GLOBAL_ITEM_TAG_UNIT:
349 			parser->global.unit = item_udata(item);
350 			return 0;
351 
352 		case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
353 			if ((parser->global.report_size = item_udata(item)) > 32) {
354 				dbg_hid("invalid report_size %d\n", parser->global.report_size);
355 				return -1;
356 			}
357 			return 0;
358 
359 		case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
360 			if ((parser->global.report_count = item_udata(item)) > HID_MAX_USAGES) {
361 				dbg_hid("invalid report_count %d\n", parser->global.report_count);
362 				return -1;
363 			}
364 			return 0;
365 
366 		case HID_GLOBAL_ITEM_TAG_REPORT_ID:
367 			if ((parser->global.report_id = item_udata(item)) == 0) {
368 				dbg_hid("report_id 0 is invalid\n");
369 				return -1;
370 			}
371 			return 0;
372 
373 		default:
374 			dbg_hid("unknown global tag 0x%x\n", item->tag);
375 			return -1;
376 	}
377 }
378 
379 /*
380  * Process a local item.
381  */
382 
383 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
384 {
385 	__u32 data;
386 	unsigned n;
387 
388 	if (item->size == 0) {
389 		dbg_hid("item data expected for local item\n");
390 		return -1;
391 	}
392 
393 	data = item_udata(item);
394 
395 	switch (item->tag) {
396 
397 		case HID_LOCAL_ITEM_TAG_DELIMITER:
398 
399 			if (data) {
400 				/*
401 				 * We treat items before the first delimiter
402 				 * as global to all usage sets (branch 0).
403 				 * In the moment we process only these global
404 				 * items and the first delimiter set.
405 				 */
406 				if (parser->local.delimiter_depth != 0) {
407 					dbg_hid("nested delimiters\n");
408 					return -1;
409 				}
410 				parser->local.delimiter_depth++;
411 				parser->local.delimiter_branch++;
412 			} else {
413 				if (parser->local.delimiter_depth < 1) {
414 					dbg_hid("bogus close delimiter\n");
415 					return -1;
416 				}
417 				parser->local.delimiter_depth--;
418 			}
419 			return 1;
420 
421 		case HID_LOCAL_ITEM_TAG_USAGE:
422 
423 			if (parser->local.delimiter_branch > 1) {
424 				dbg_hid("alternative usage ignored\n");
425 				return 0;
426 			}
427 
428 			if (item->size <= 2)
429 				data = (parser->global.usage_page << 16) + data;
430 
431 			return hid_add_usage(parser, data);
432 
433 		case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
434 
435 			if (parser->local.delimiter_branch > 1) {
436 				dbg_hid("alternative usage ignored\n");
437 				return 0;
438 			}
439 
440 			if (item->size <= 2)
441 				data = (parser->global.usage_page << 16) + data;
442 
443 			parser->local.usage_minimum = data;
444 			return 0;
445 
446 		case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
447 
448 			if (parser->local.delimiter_branch > 1) {
449 				dbg_hid("alternative usage ignored\n");
450 				return 0;
451 			}
452 
453 			if (item->size <= 2)
454 				data = (parser->global.usage_page << 16) + data;
455 
456 			for (n = parser->local.usage_minimum; n <= data; n++)
457 				if (hid_add_usage(parser, n)) {
458 					dbg_hid("hid_add_usage failed\n");
459 					return -1;
460 				}
461 			return 0;
462 
463 		default:
464 
465 			dbg_hid("unknown local item tag 0x%x\n", item->tag);
466 			return 0;
467 	}
468 	return 0;
469 }
470 
471 /*
472  * Process a main item.
473  */
474 
475 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
476 {
477 	__u32 data;
478 	int ret;
479 
480 	data = item_udata(item);
481 
482 	switch (item->tag) {
483 		case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
484 			ret = open_collection(parser, data & 0xff);
485 			break;
486 		case HID_MAIN_ITEM_TAG_END_COLLECTION:
487 			ret = close_collection(parser);
488 			break;
489 		case HID_MAIN_ITEM_TAG_INPUT:
490 			ret = hid_add_field(parser, HID_INPUT_REPORT, data);
491 			break;
492 		case HID_MAIN_ITEM_TAG_OUTPUT:
493 			ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
494 			break;
495 		case HID_MAIN_ITEM_TAG_FEATURE:
496 			ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
497 			break;
498 		default:
499 			dbg_hid("unknown main item tag 0x%x\n", item->tag);
500 			ret = 0;
501 	}
502 
503 	memset(&parser->local, 0, sizeof(parser->local));	/* Reset the local parser environment */
504 
505 	return ret;
506 }
507 
508 /*
509  * Process a reserved item.
510  */
511 
512 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
513 {
514 	dbg_hid("reserved item type, tag 0x%x\n", item->tag);
515 	return 0;
516 }
517 
518 /*
519  * Free a report and all registered fields. The field->usage and
520  * field->value table's are allocated behind the field, so we need
521  * only to free(field) itself.
522  */
523 
524 static void hid_free_report(struct hid_report *report)
525 {
526 	unsigned n;
527 
528 	for (n = 0; n < report->maxfield; n++)
529 		kfree(report->field[n]);
530 	kfree(report);
531 }
532 
533 /*
534  * Free a device structure, all reports, and all fields.
535  */
536 
537 void hid_free_device(struct hid_device *device)
538 {
539 	unsigned i,j;
540 
541 	for (i = 0; i < HID_REPORT_TYPES; i++) {
542 		struct hid_report_enum *report_enum = device->report_enum + i;
543 
544 		for (j = 0; j < 256; j++) {
545 			struct hid_report *report = report_enum->report_id_hash[j];
546 			if (report)
547 				hid_free_report(report);
548 		}
549 	}
550 
551 	kfree(device->rdesc);
552 	kfree(device->collection);
553 	kfree(device);
554 }
555 EXPORT_SYMBOL_GPL(hid_free_device);
556 
557 /*
558  * Fetch a report description item from the data stream. We support long
559  * items, though they are not used yet.
560  */
561 
562 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
563 {
564 	u8 b;
565 
566 	if ((end - start) <= 0)
567 		return NULL;
568 
569 	b = *start++;
570 
571 	item->type = (b >> 2) & 3;
572 	item->tag  = (b >> 4) & 15;
573 
574 	if (item->tag == HID_ITEM_TAG_LONG) {
575 
576 		item->format = HID_ITEM_FORMAT_LONG;
577 
578 		if ((end - start) < 2)
579 			return NULL;
580 
581 		item->size = *start++;
582 		item->tag  = *start++;
583 
584 		if ((end - start) < item->size)
585 			return NULL;
586 
587 		item->data.longdata = start;
588 		start += item->size;
589 		return start;
590 	}
591 
592 	item->format = HID_ITEM_FORMAT_SHORT;
593 	item->size = b & 3;
594 
595 	switch (item->size) {
596 
597 		case 0:
598 			return start;
599 
600 		case 1:
601 			if ((end - start) < 1)
602 				return NULL;
603 			item->data.u8 = *start++;
604 			return start;
605 
606 		case 2:
607 			if ((end - start) < 2)
608 				return NULL;
609 			item->data.u16 = get_unaligned_le16(start);
610 			start = (__u8 *)((__le16 *)start + 1);
611 			return start;
612 
613 		case 3:
614 			item->size++;
615 			if ((end - start) < 4)
616 				return NULL;
617 			item->data.u32 = get_unaligned_le32(start);
618 			start = (__u8 *)((__le32 *)start + 1);
619 			return start;
620 	}
621 
622 	return NULL;
623 }
624 
625 /*
626  * Parse a report description into a hid_device structure. Reports are
627  * enumerated, fields are attached to these reports.
628  */
629 
630 struct hid_device *hid_parse_report(__u8 *start, unsigned size)
631 {
632 	struct hid_device *device;
633 	struct hid_parser *parser;
634 	struct hid_item item;
635 	__u8 *end;
636 	unsigned i;
637 	static int (*dispatch_type[])(struct hid_parser *parser,
638 				      struct hid_item *item) = {
639 		hid_parser_main,
640 		hid_parser_global,
641 		hid_parser_local,
642 		hid_parser_reserved
643 	};
644 
645 	if (!(device = kzalloc(sizeof(struct hid_device), GFP_KERNEL)))
646 		return NULL;
647 
648 	if (!(device->collection = kzalloc(sizeof(struct hid_collection) *
649 				   HID_DEFAULT_NUM_COLLECTIONS, GFP_KERNEL))) {
650 		kfree(device);
651 		return NULL;
652 	}
653 	device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
654 
655 	for (i = 0; i < HID_REPORT_TYPES; i++)
656 		INIT_LIST_HEAD(&device->report_enum[i].report_list);
657 
658 	if (!(device->rdesc = kmalloc(size, GFP_KERNEL))) {
659 		kfree(device->collection);
660 		kfree(device);
661 		return NULL;
662 	}
663 	memcpy(device->rdesc, start, size);
664 	device->rsize = size;
665 
666 	if (!(parser = vmalloc(sizeof(struct hid_parser)))) {
667 		kfree(device->rdesc);
668 		kfree(device->collection);
669 		kfree(device);
670 		return NULL;
671 	}
672 	memset(parser, 0, sizeof(struct hid_parser));
673 	parser->device = device;
674 
675 	end = start + size;
676 	while ((start = fetch_item(start, end, &item)) != NULL) {
677 
678 		if (item.format != HID_ITEM_FORMAT_SHORT) {
679 			dbg_hid("unexpected long global item\n");
680 			hid_free_device(device);
681 			vfree(parser);
682 			return NULL;
683 		}
684 
685 		if (dispatch_type[item.type](parser, &item)) {
686 			dbg_hid("item %u %u %u %u parsing failed\n",
687 				item.format, (unsigned)item.size, (unsigned)item.type, (unsigned)item.tag);
688 			hid_free_device(device);
689 			vfree(parser);
690 			return NULL;
691 		}
692 
693 		if (start == end) {
694 			if (parser->collection_stack_ptr) {
695 				dbg_hid("unbalanced collection at end of report description\n");
696 				hid_free_device(device);
697 				vfree(parser);
698 				return NULL;
699 			}
700 			if (parser->local.delimiter_depth) {
701 				dbg_hid("unbalanced delimiter at end of report description\n");
702 				hid_free_device(device);
703 				vfree(parser);
704 				return NULL;
705 			}
706 			vfree(parser);
707 			return device;
708 		}
709 	}
710 
711 	dbg_hid("item fetching failed at offset %d\n", (int)(end - start));
712 	hid_free_device(device);
713 	vfree(parser);
714 	return NULL;
715 }
716 EXPORT_SYMBOL_GPL(hid_parse_report);
717 
718 /*
719  * Convert a signed n-bit integer to signed 32-bit integer. Common
720  * cases are done through the compiler, the screwed things has to be
721  * done by hand.
722  */
723 
724 static s32 snto32(__u32 value, unsigned n)
725 {
726 	switch (n) {
727 		case 8:  return ((__s8)value);
728 		case 16: return ((__s16)value);
729 		case 32: return ((__s32)value);
730 	}
731 	return value & (1 << (n - 1)) ? value | (-1 << n) : value;
732 }
733 
734 /*
735  * Convert a signed 32-bit integer to a signed n-bit integer.
736  */
737 
738 static u32 s32ton(__s32 value, unsigned n)
739 {
740 	s32 a = value >> (n - 1);
741 	if (a && a != -1)
742 		return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
743 	return value & ((1 << n) - 1);
744 }
745 
746 /*
747  * Extract/implement a data field from/to a little endian report (bit array).
748  *
749  * Code sort-of follows HID spec:
750  *     http://www.usb.org/developers/devclass_docs/HID1_11.pdf
751  *
752  * While the USB HID spec allows unlimited length bit fields in "report
753  * descriptors", most devices never use more than 16 bits.
754  * One model of UPS is claimed to report "LINEV" as a 32-bit field.
755  * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
756  */
757 
758 static __inline__ __u32 extract(__u8 *report, unsigned offset, unsigned n)
759 {
760 	u64 x;
761 
762 	if (n > 32)
763 		printk(KERN_WARNING "HID: extract() called with n (%d) > 32! (%s)\n",
764 				n, current->comm);
765 
766 	report += offset >> 3;  /* adjust byte index */
767 	offset &= 7;            /* now only need bit offset into one byte */
768 	x = get_unaligned_le64(report);
769 	x = (x >> offset) & ((1ULL << n) - 1);  /* extract bit field */
770 	return (u32) x;
771 }
772 
773 /*
774  * "implement" : set bits in a little endian bit stream.
775  * Same concepts as "extract" (see comments above).
776  * The data mangled in the bit stream remains in little endian
777  * order the whole time. It make more sense to talk about
778  * endianness of register values by considering a register
779  * a "cached" copy of the little endiad bit stream.
780  */
781 static __inline__ void implement(__u8 *report, unsigned offset, unsigned n, __u32 value)
782 {
783 	u64 x;
784 	u64 m = (1ULL << n) - 1;
785 
786 	if (n > 32)
787 		printk(KERN_WARNING "HID: implement() called with n (%d) > 32! (%s)\n",
788 				n, current->comm);
789 
790 	if (value > m)
791 		printk(KERN_WARNING "HID: implement() called with too large value %d! (%s)\n",
792 				value, current->comm);
793 	WARN_ON(value > m);
794 	value &= m;
795 
796 	report += offset >> 3;
797 	offset &= 7;
798 
799 	x = get_unaligned_le64(report);
800 	x &= ~(m << offset);
801 	x |= ((u64)value) << offset;
802 	put_unaligned_le64(x, report);
803 }
804 
805 /*
806  * Search an array for a value.
807  */
808 
809 static __inline__ int search(__s32 *array, __s32 value, unsigned n)
810 {
811 	while (n--) {
812 		if (*array++ == value)
813 			return 0;
814 	}
815 	return -1;
816 }
817 
818 static void hid_process_event(struct hid_device *hid, struct hid_field *field, struct hid_usage *usage, __s32 value, int interrupt)
819 {
820 	hid_dump_input(usage, value);
821 	if (hid->claimed & HID_CLAIMED_INPUT)
822 		hidinput_hid_event(hid, field, usage, value);
823 	if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
824 		hid->hiddev_hid_event(hid, field, usage, value);
825 }
826 
827 /*
828  * Analyse a received field, and fetch the data from it. The field
829  * content is stored for next report processing (we do differential
830  * reporting to the layer).
831  */
832 
833 static void hid_input_field(struct hid_device *hid, struct hid_field *field,
834 			    __u8 *data, int interrupt)
835 {
836 	unsigned n;
837 	unsigned count = field->report_count;
838 	unsigned offset = field->report_offset;
839 	unsigned size = field->report_size;
840 	__s32 min = field->logical_minimum;
841 	__s32 max = field->logical_maximum;
842 	__s32 *value;
843 
844 	if (!(value = kmalloc(sizeof(__s32) * count, GFP_ATOMIC)))
845 		return;
846 
847 	for (n = 0; n < count; n++) {
848 
849 			value[n] = min < 0 ? snto32(extract(data, offset + n * size, size), size) :
850 						    extract(data, offset + n * size, size);
851 
852 			if (!(field->flags & HID_MAIN_ITEM_VARIABLE) /* Ignore report if ErrorRollOver */
853 			    && value[n] >= min && value[n] <= max
854 			    && field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
855 				goto exit;
856 	}
857 
858 	for (n = 0; n < count; n++) {
859 
860 		if (HID_MAIN_ITEM_VARIABLE & field->flags) {
861 			hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
862 			continue;
863 		}
864 
865 		if (field->value[n] >= min && field->value[n] <= max
866 			&& field->usage[field->value[n] - min].hid
867 			&& search(value, field->value[n], count))
868 				hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
869 
870 		if (value[n] >= min && value[n] <= max
871 			&& field->usage[value[n] - min].hid
872 			&& search(field->value, value[n], count))
873 				hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
874 	}
875 
876 	memcpy(field->value, value, count * sizeof(__s32));
877 exit:
878 	kfree(value);
879 }
880 
881 /*
882  * Output the field into the report.
883  */
884 
885 static void hid_output_field(struct hid_field *field, __u8 *data)
886 {
887 	unsigned count = field->report_count;
888 	unsigned offset = field->report_offset;
889 	unsigned size = field->report_size;
890 	unsigned bitsused = offset + count * size;
891 	unsigned n;
892 
893 	/* make sure the unused bits in the last byte are zeros */
894 	if (count > 0 && size > 0 && (bitsused % 8) != 0)
895 		data[(bitsused-1)/8] &= (1 << (bitsused % 8)) - 1;
896 
897 	for (n = 0; n < count; n++) {
898 		if (field->logical_minimum < 0)	/* signed values */
899 			implement(data, offset + n * size, size, s32ton(field->value[n], size));
900 		else				/* unsigned values */
901 			implement(data, offset + n * size, size, field->value[n]);
902 	}
903 }
904 
905 /*
906  * Create a report.
907  */
908 
909 void hid_output_report(struct hid_report *report, __u8 *data)
910 {
911 	unsigned n;
912 
913 	if (report->id > 0)
914 		*data++ = report->id;
915 
916 	for (n = 0; n < report->maxfield; n++)
917 		hid_output_field(report->field[n], data);
918 }
919 EXPORT_SYMBOL_GPL(hid_output_report);
920 
921 /*
922  * Set a field value. The report this field belongs to has to be
923  * created and transferred to the device, to set this value in the
924  * device.
925  */
926 
927 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
928 {
929 	unsigned size = field->report_size;
930 
931 	hid_dump_input(field->usage + offset, value);
932 
933 	if (offset >= field->report_count) {
934 		dbg_hid("offset (%d) exceeds report_count (%d)\n", offset, field->report_count);
935 		hid_dump_field(field, 8);
936 		return -1;
937 	}
938 	if (field->logical_minimum < 0) {
939 		if (value != snto32(s32ton(value, size), size)) {
940 			dbg_hid("value %d is out of range\n", value);
941 			return -1;
942 		}
943 	}
944 	field->value[offset] = value;
945 	return 0;
946 }
947 EXPORT_SYMBOL_GPL(hid_set_field);
948 
949 int hid_input_report(struct hid_device *hid, int type, u8 *data, int size, int interrupt)
950 {
951 	struct hid_report_enum *report_enum = hid->report_enum + type;
952 	struct hid_report *report;
953 	int n, rsize, i;
954 
955 	if (!hid)
956 		return -ENODEV;
957 
958 	if (!size) {
959 		dbg_hid("empty report\n");
960 		return -1;
961 	}
962 
963 	dbg_hid("report (size %u) (%snumbered)\n", size, report_enum->numbered ? "" : "un");
964 
965 	n = 0;                          /* Normally report number is 0 */
966 	if (report_enum->numbered) {    /* Device uses numbered reports, data[0] is report number */
967 		n = *data++;
968 		size--;
969 	}
970 
971 	/* dump the report */
972 	dbg_hid("report %d (size %u) = ", n, size);
973 	for (i = 0; i < size; i++)
974 		dbg_hid_line(" %02x", data[i]);
975 	dbg_hid_line("\n");
976 
977 	if (!(report = report_enum->report_id_hash[n])) {
978 		dbg_hid("undefined report_id %d received\n", n);
979 		return -1;
980 	}
981 
982 	rsize = ((report->size - 1) >> 3) + 1;
983 
984 	if (size < rsize) {
985 		dbg_hid("report %d is too short, (%d < %d)\n", report->id, size, rsize);
986 		memset(data + size, 0, rsize - size);
987 	}
988 
989 	if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
990 		hid->hiddev_report_event(hid, report);
991 	if (hid->claimed & HID_CLAIMED_HIDRAW) {
992 		/* numbered reports need to be passed with the report num */
993 		if (report_enum->numbered)
994 			hidraw_report_event(hid, data - 1, size + 1);
995 		else
996 			hidraw_report_event(hid, data, size);
997 	}
998 
999 	for (n = 0; n < report->maxfield; n++)
1000 		hid_input_field(hid, report->field[n], data, interrupt);
1001 
1002 	if (hid->claimed & HID_CLAIMED_INPUT)
1003 		hidinput_report_event(hid, report);
1004 
1005 	return 0;
1006 }
1007 EXPORT_SYMBOL_GPL(hid_input_report);
1008 
1009 static int __init hid_init(void)
1010 {
1011 	return hidraw_init();
1012 }
1013 
1014 static void __exit hid_exit(void)
1015 {
1016 	hidraw_exit();
1017 }
1018 
1019 module_init(hid_init);
1020 module_exit(hid_exit);
1021 
1022 MODULE_LICENSE(DRIVER_LICENSE);
1023 
1024