1 /* 2 * HID support for Linux 3 * 4 * Copyright (c) 1999 Andreas Gal 5 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz> 6 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc 7 * Copyright (c) 2006-2007 Jiri Kosina 8 */ 9 10 /* 11 * This program is free software; you can redistribute it and/or modify it 12 * under the terms of the GNU General Public License as published by the Free 13 * Software Foundation; either version 2 of the License, or (at your option) 14 * any later version. 15 */ 16 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/init.h> 20 #include <linux/kernel.h> 21 #include <linux/list.h> 22 #include <linux/mm.h> 23 #include <linux/spinlock.h> 24 #include <asm/unaligned.h> 25 #include <asm/byteorder.h> 26 #include <linux/input.h> 27 #include <linux/wait.h> 28 #include <linux/vmalloc.h> 29 #include <linux/sched.h> 30 31 #include <linux/hid.h> 32 #include <linux/hiddev.h> 33 #include <linux/hid-debug.h> 34 #include <linux/hidraw.h> 35 36 /* 37 * Version Information 38 */ 39 40 #define DRIVER_VERSION "v2.6" 41 #define DRIVER_AUTHOR "Andreas Gal, Vojtech Pavlik, Jiri Kosina" 42 #define DRIVER_DESC "HID core driver" 43 #define DRIVER_LICENSE "GPL" 44 45 #ifdef CONFIG_HID_DEBUG 46 int hid_debug = 0; 47 module_param_named(debug, hid_debug, int, 0600); 48 MODULE_PARM_DESC(debug, "HID debugging (0=off, 1=probing info, 2=continuous data dumping)"); 49 EXPORT_SYMBOL_GPL(hid_debug); 50 #endif 51 52 /* 53 * Register a new report for a device. 54 */ 55 56 static struct hid_report *hid_register_report(struct hid_device *device, unsigned type, unsigned id) 57 { 58 struct hid_report_enum *report_enum = device->report_enum + type; 59 struct hid_report *report; 60 61 if (report_enum->report_id_hash[id]) 62 return report_enum->report_id_hash[id]; 63 64 if (!(report = kzalloc(sizeof(struct hid_report), GFP_KERNEL))) 65 return NULL; 66 67 if (id != 0) 68 report_enum->numbered = 1; 69 70 report->id = id; 71 report->type = type; 72 report->size = 0; 73 report->device = device; 74 report_enum->report_id_hash[id] = report; 75 76 list_add_tail(&report->list, &report_enum->report_list); 77 78 return report; 79 } 80 81 /* 82 * Register a new field for this report. 83 */ 84 85 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values) 86 { 87 struct hid_field *field; 88 89 if (report->maxfield == HID_MAX_FIELDS) { 90 dbg_hid("too many fields in report\n"); 91 return NULL; 92 } 93 94 if (!(field = kzalloc(sizeof(struct hid_field) + usages * sizeof(struct hid_usage) 95 + values * sizeof(unsigned), GFP_KERNEL))) return NULL; 96 97 field->index = report->maxfield++; 98 report->field[field->index] = field; 99 field->usage = (struct hid_usage *)(field + 1); 100 field->value = (s32 *)(field->usage + usages); 101 field->report = report; 102 103 return field; 104 } 105 106 /* 107 * Open a collection. The type/usage is pushed on the stack. 108 */ 109 110 static int open_collection(struct hid_parser *parser, unsigned type) 111 { 112 struct hid_collection *collection; 113 unsigned usage; 114 115 usage = parser->local.usage[0]; 116 117 if (parser->collection_stack_ptr == HID_COLLECTION_STACK_SIZE) { 118 dbg_hid("collection stack overflow\n"); 119 return -1; 120 } 121 122 if (parser->device->maxcollection == parser->device->collection_size) { 123 collection = kmalloc(sizeof(struct hid_collection) * 124 parser->device->collection_size * 2, GFP_KERNEL); 125 if (collection == NULL) { 126 dbg_hid("failed to reallocate collection array\n"); 127 return -1; 128 } 129 memcpy(collection, parser->device->collection, 130 sizeof(struct hid_collection) * 131 parser->device->collection_size); 132 memset(collection + parser->device->collection_size, 0, 133 sizeof(struct hid_collection) * 134 parser->device->collection_size); 135 kfree(parser->device->collection); 136 parser->device->collection = collection; 137 parser->device->collection_size *= 2; 138 } 139 140 parser->collection_stack[parser->collection_stack_ptr++] = 141 parser->device->maxcollection; 142 143 collection = parser->device->collection + 144 parser->device->maxcollection++; 145 collection->type = type; 146 collection->usage = usage; 147 collection->level = parser->collection_stack_ptr - 1; 148 149 if (type == HID_COLLECTION_APPLICATION) 150 parser->device->maxapplication++; 151 152 return 0; 153 } 154 155 /* 156 * Close a collection. 157 */ 158 159 static int close_collection(struct hid_parser *parser) 160 { 161 if (!parser->collection_stack_ptr) { 162 dbg_hid("collection stack underflow\n"); 163 return -1; 164 } 165 parser->collection_stack_ptr--; 166 return 0; 167 } 168 169 /* 170 * Climb up the stack, search for the specified collection type 171 * and return the usage. 172 */ 173 174 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type) 175 { 176 int n; 177 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) 178 if (parser->device->collection[parser->collection_stack[n]].type == type) 179 return parser->device->collection[parser->collection_stack[n]].usage; 180 return 0; /* we know nothing about this usage type */ 181 } 182 183 /* 184 * Add a usage to the temporary parser table. 185 */ 186 187 static int hid_add_usage(struct hid_parser *parser, unsigned usage) 188 { 189 if (parser->local.usage_index >= HID_MAX_USAGES) { 190 dbg_hid("usage index exceeded\n"); 191 return -1; 192 } 193 parser->local.usage[parser->local.usage_index] = usage; 194 parser->local.collection_index[parser->local.usage_index] = 195 parser->collection_stack_ptr ? 196 parser->collection_stack[parser->collection_stack_ptr - 1] : 0; 197 parser->local.usage_index++; 198 return 0; 199 } 200 201 /* 202 * Register a new field for this report. 203 */ 204 205 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags) 206 { 207 struct hid_report *report; 208 struct hid_field *field; 209 int usages; 210 unsigned offset; 211 int i; 212 213 if (!(report = hid_register_report(parser->device, report_type, parser->global.report_id))) { 214 dbg_hid("hid_register_report failed\n"); 215 return -1; 216 } 217 218 if (parser->global.logical_maximum < parser->global.logical_minimum) { 219 dbg_hid("logical range invalid %d %d\n", parser->global.logical_minimum, parser->global.logical_maximum); 220 return -1; 221 } 222 223 offset = report->size; 224 report->size += parser->global.report_size * parser->global.report_count; 225 226 if (!parser->local.usage_index) /* Ignore padding fields */ 227 return 0; 228 229 usages = max_t(int, parser->local.usage_index, parser->global.report_count); 230 231 if ((field = hid_register_field(report, usages, parser->global.report_count)) == NULL) 232 return 0; 233 234 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL); 235 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL); 236 field->application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION); 237 238 for (i = 0; i < usages; i++) { 239 int j = i; 240 /* Duplicate the last usage we parsed if we have excess values */ 241 if (i >= parser->local.usage_index) 242 j = parser->local.usage_index - 1; 243 field->usage[i].hid = parser->local.usage[j]; 244 field->usage[i].collection_index = 245 parser->local.collection_index[j]; 246 } 247 248 field->maxusage = usages; 249 field->flags = flags; 250 field->report_offset = offset; 251 field->report_type = report_type; 252 field->report_size = parser->global.report_size; 253 field->report_count = parser->global.report_count; 254 field->logical_minimum = parser->global.logical_minimum; 255 field->logical_maximum = parser->global.logical_maximum; 256 field->physical_minimum = parser->global.physical_minimum; 257 field->physical_maximum = parser->global.physical_maximum; 258 field->unit_exponent = parser->global.unit_exponent; 259 field->unit = parser->global.unit; 260 261 return 0; 262 } 263 264 /* 265 * Read data value from item. 266 */ 267 268 static u32 item_udata(struct hid_item *item) 269 { 270 switch (item->size) { 271 case 1: return item->data.u8; 272 case 2: return item->data.u16; 273 case 4: return item->data.u32; 274 } 275 return 0; 276 } 277 278 static s32 item_sdata(struct hid_item *item) 279 { 280 switch (item->size) { 281 case 1: return item->data.s8; 282 case 2: return item->data.s16; 283 case 4: return item->data.s32; 284 } 285 return 0; 286 } 287 288 /* 289 * Process a global item. 290 */ 291 292 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item) 293 { 294 switch (item->tag) { 295 296 case HID_GLOBAL_ITEM_TAG_PUSH: 297 298 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) { 299 dbg_hid("global enviroment stack overflow\n"); 300 return -1; 301 } 302 303 memcpy(parser->global_stack + parser->global_stack_ptr++, 304 &parser->global, sizeof(struct hid_global)); 305 return 0; 306 307 case HID_GLOBAL_ITEM_TAG_POP: 308 309 if (!parser->global_stack_ptr) { 310 dbg_hid("global enviroment stack underflow\n"); 311 return -1; 312 } 313 314 memcpy(&parser->global, parser->global_stack + --parser->global_stack_ptr, 315 sizeof(struct hid_global)); 316 return 0; 317 318 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE: 319 parser->global.usage_page = item_udata(item); 320 return 0; 321 322 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM: 323 parser->global.logical_minimum = item_sdata(item); 324 return 0; 325 326 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM: 327 if (parser->global.logical_minimum < 0) 328 parser->global.logical_maximum = item_sdata(item); 329 else 330 parser->global.logical_maximum = item_udata(item); 331 return 0; 332 333 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM: 334 parser->global.physical_minimum = item_sdata(item); 335 return 0; 336 337 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM: 338 if (parser->global.physical_minimum < 0) 339 parser->global.physical_maximum = item_sdata(item); 340 else 341 parser->global.physical_maximum = item_udata(item); 342 return 0; 343 344 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT: 345 parser->global.unit_exponent = item_sdata(item); 346 return 0; 347 348 case HID_GLOBAL_ITEM_TAG_UNIT: 349 parser->global.unit = item_udata(item); 350 return 0; 351 352 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE: 353 if ((parser->global.report_size = item_udata(item)) > 32) { 354 dbg_hid("invalid report_size %d\n", parser->global.report_size); 355 return -1; 356 } 357 return 0; 358 359 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT: 360 if ((parser->global.report_count = item_udata(item)) > HID_MAX_USAGES) { 361 dbg_hid("invalid report_count %d\n", parser->global.report_count); 362 return -1; 363 } 364 return 0; 365 366 case HID_GLOBAL_ITEM_TAG_REPORT_ID: 367 if ((parser->global.report_id = item_udata(item)) == 0) { 368 dbg_hid("report_id 0 is invalid\n"); 369 return -1; 370 } 371 return 0; 372 373 default: 374 dbg_hid("unknown global tag 0x%x\n", item->tag); 375 return -1; 376 } 377 } 378 379 /* 380 * Process a local item. 381 */ 382 383 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item) 384 { 385 __u32 data; 386 unsigned n; 387 388 if (item->size == 0) { 389 dbg_hid("item data expected for local item\n"); 390 return -1; 391 } 392 393 data = item_udata(item); 394 395 switch (item->tag) { 396 397 case HID_LOCAL_ITEM_TAG_DELIMITER: 398 399 if (data) { 400 /* 401 * We treat items before the first delimiter 402 * as global to all usage sets (branch 0). 403 * In the moment we process only these global 404 * items and the first delimiter set. 405 */ 406 if (parser->local.delimiter_depth != 0) { 407 dbg_hid("nested delimiters\n"); 408 return -1; 409 } 410 parser->local.delimiter_depth++; 411 parser->local.delimiter_branch++; 412 } else { 413 if (parser->local.delimiter_depth < 1) { 414 dbg_hid("bogus close delimiter\n"); 415 return -1; 416 } 417 parser->local.delimiter_depth--; 418 } 419 return 1; 420 421 case HID_LOCAL_ITEM_TAG_USAGE: 422 423 if (parser->local.delimiter_branch > 1) { 424 dbg_hid("alternative usage ignored\n"); 425 return 0; 426 } 427 428 if (item->size <= 2) 429 data = (parser->global.usage_page << 16) + data; 430 431 return hid_add_usage(parser, data); 432 433 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM: 434 435 if (parser->local.delimiter_branch > 1) { 436 dbg_hid("alternative usage ignored\n"); 437 return 0; 438 } 439 440 if (item->size <= 2) 441 data = (parser->global.usage_page << 16) + data; 442 443 parser->local.usage_minimum = data; 444 return 0; 445 446 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM: 447 448 if (parser->local.delimiter_branch > 1) { 449 dbg_hid("alternative usage ignored\n"); 450 return 0; 451 } 452 453 if (item->size <= 2) 454 data = (parser->global.usage_page << 16) + data; 455 456 for (n = parser->local.usage_minimum; n <= data; n++) 457 if (hid_add_usage(parser, n)) { 458 dbg_hid("hid_add_usage failed\n"); 459 return -1; 460 } 461 return 0; 462 463 default: 464 465 dbg_hid("unknown local item tag 0x%x\n", item->tag); 466 return 0; 467 } 468 return 0; 469 } 470 471 /* 472 * Process a main item. 473 */ 474 475 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item) 476 { 477 __u32 data; 478 int ret; 479 480 data = item_udata(item); 481 482 switch (item->tag) { 483 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION: 484 ret = open_collection(parser, data & 0xff); 485 break; 486 case HID_MAIN_ITEM_TAG_END_COLLECTION: 487 ret = close_collection(parser); 488 break; 489 case HID_MAIN_ITEM_TAG_INPUT: 490 ret = hid_add_field(parser, HID_INPUT_REPORT, data); 491 break; 492 case HID_MAIN_ITEM_TAG_OUTPUT: 493 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data); 494 break; 495 case HID_MAIN_ITEM_TAG_FEATURE: 496 ret = hid_add_field(parser, HID_FEATURE_REPORT, data); 497 break; 498 default: 499 dbg_hid("unknown main item tag 0x%x\n", item->tag); 500 ret = 0; 501 } 502 503 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */ 504 505 return ret; 506 } 507 508 /* 509 * Process a reserved item. 510 */ 511 512 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item) 513 { 514 dbg_hid("reserved item type, tag 0x%x\n", item->tag); 515 return 0; 516 } 517 518 /* 519 * Free a report and all registered fields. The field->usage and 520 * field->value table's are allocated behind the field, so we need 521 * only to free(field) itself. 522 */ 523 524 static void hid_free_report(struct hid_report *report) 525 { 526 unsigned n; 527 528 for (n = 0; n < report->maxfield; n++) 529 kfree(report->field[n]); 530 kfree(report); 531 } 532 533 /* 534 * Free a device structure, all reports, and all fields. 535 */ 536 537 void hid_free_device(struct hid_device *device) 538 { 539 unsigned i,j; 540 541 for (i = 0; i < HID_REPORT_TYPES; i++) { 542 struct hid_report_enum *report_enum = device->report_enum + i; 543 544 for (j = 0; j < 256; j++) { 545 struct hid_report *report = report_enum->report_id_hash[j]; 546 if (report) 547 hid_free_report(report); 548 } 549 } 550 551 kfree(device->rdesc); 552 kfree(device->collection); 553 kfree(device); 554 } 555 EXPORT_SYMBOL_GPL(hid_free_device); 556 557 /* 558 * Fetch a report description item from the data stream. We support long 559 * items, though they are not used yet. 560 */ 561 562 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item) 563 { 564 u8 b; 565 566 if ((end - start) <= 0) 567 return NULL; 568 569 b = *start++; 570 571 item->type = (b >> 2) & 3; 572 item->tag = (b >> 4) & 15; 573 574 if (item->tag == HID_ITEM_TAG_LONG) { 575 576 item->format = HID_ITEM_FORMAT_LONG; 577 578 if ((end - start) < 2) 579 return NULL; 580 581 item->size = *start++; 582 item->tag = *start++; 583 584 if ((end - start) < item->size) 585 return NULL; 586 587 item->data.longdata = start; 588 start += item->size; 589 return start; 590 } 591 592 item->format = HID_ITEM_FORMAT_SHORT; 593 item->size = b & 3; 594 595 switch (item->size) { 596 597 case 0: 598 return start; 599 600 case 1: 601 if ((end - start) < 1) 602 return NULL; 603 item->data.u8 = *start++; 604 return start; 605 606 case 2: 607 if ((end - start) < 2) 608 return NULL; 609 item->data.u16 = get_unaligned_le16(start); 610 start = (__u8 *)((__le16 *)start + 1); 611 return start; 612 613 case 3: 614 item->size++; 615 if ((end - start) < 4) 616 return NULL; 617 item->data.u32 = get_unaligned_le32(start); 618 start = (__u8 *)((__le32 *)start + 1); 619 return start; 620 } 621 622 return NULL; 623 } 624 625 /* 626 * Parse a report description into a hid_device structure. Reports are 627 * enumerated, fields are attached to these reports. 628 */ 629 630 struct hid_device *hid_parse_report(__u8 *start, unsigned size) 631 { 632 struct hid_device *device; 633 struct hid_parser *parser; 634 struct hid_item item; 635 __u8 *end; 636 unsigned i; 637 static int (*dispatch_type[])(struct hid_parser *parser, 638 struct hid_item *item) = { 639 hid_parser_main, 640 hid_parser_global, 641 hid_parser_local, 642 hid_parser_reserved 643 }; 644 645 if (!(device = kzalloc(sizeof(struct hid_device), GFP_KERNEL))) 646 return NULL; 647 648 if (!(device->collection = kzalloc(sizeof(struct hid_collection) * 649 HID_DEFAULT_NUM_COLLECTIONS, GFP_KERNEL))) { 650 kfree(device); 651 return NULL; 652 } 653 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS; 654 655 for (i = 0; i < HID_REPORT_TYPES; i++) 656 INIT_LIST_HEAD(&device->report_enum[i].report_list); 657 658 if (!(device->rdesc = kmalloc(size, GFP_KERNEL))) { 659 kfree(device->collection); 660 kfree(device); 661 return NULL; 662 } 663 memcpy(device->rdesc, start, size); 664 device->rsize = size; 665 666 if (!(parser = vmalloc(sizeof(struct hid_parser)))) { 667 kfree(device->rdesc); 668 kfree(device->collection); 669 kfree(device); 670 return NULL; 671 } 672 memset(parser, 0, sizeof(struct hid_parser)); 673 parser->device = device; 674 675 end = start + size; 676 while ((start = fetch_item(start, end, &item)) != NULL) { 677 678 if (item.format != HID_ITEM_FORMAT_SHORT) { 679 dbg_hid("unexpected long global item\n"); 680 hid_free_device(device); 681 vfree(parser); 682 return NULL; 683 } 684 685 if (dispatch_type[item.type](parser, &item)) { 686 dbg_hid("item %u %u %u %u parsing failed\n", 687 item.format, (unsigned)item.size, (unsigned)item.type, (unsigned)item.tag); 688 hid_free_device(device); 689 vfree(parser); 690 return NULL; 691 } 692 693 if (start == end) { 694 if (parser->collection_stack_ptr) { 695 dbg_hid("unbalanced collection at end of report description\n"); 696 hid_free_device(device); 697 vfree(parser); 698 return NULL; 699 } 700 if (parser->local.delimiter_depth) { 701 dbg_hid("unbalanced delimiter at end of report description\n"); 702 hid_free_device(device); 703 vfree(parser); 704 return NULL; 705 } 706 vfree(parser); 707 return device; 708 } 709 } 710 711 dbg_hid("item fetching failed at offset %d\n", (int)(end - start)); 712 hid_free_device(device); 713 vfree(parser); 714 return NULL; 715 } 716 EXPORT_SYMBOL_GPL(hid_parse_report); 717 718 /* 719 * Convert a signed n-bit integer to signed 32-bit integer. Common 720 * cases are done through the compiler, the screwed things has to be 721 * done by hand. 722 */ 723 724 static s32 snto32(__u32 value, unsigned n) 725 { 726 switch (n) { 727 case 8: return ((__s8)value); 728 case 16: return ((__s16)value); 729 case 32: return ((__s32)value); 730 } 731 return value & (1 << (n - 1)) ? value | (-1 << n) : value; 732 } 733 734 /* 735 * Convert a signed 32-bit integer to a signed n-bit integer. 736 */ 737 738 static u32 s32ton(__s32 value, unsigned n) 739 { 740 s32 a = value >> (n - 1); 741 if (a && a != -1) 742 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1; 743 return value & ((1 << n) - 1); 744 } 745 746 /* 747 * Extract/implement a data field from/to a little endian report (bit array). 748 * 749 * Code sort-of follows HID spec: 750 * http://www.usb.org/developers/devclass_docs/HID1_11.pdf 751 * 752 * While the USB HID spec allows unlimited length bit fields in "report 753 * descriptors", most devices never use more than 16 bits. 754 * One model of UPS is claimed to report "LINEV" as a 32-bit field. 755 * Search linux-kernel and linux-usb-devel archives for "hid-core extract". 756 */ 757 758 static __inline__ __u32 extract(__u8 *report, unsigned offset, unsigned n) 759 { 760 u64 x; 761 762 if (n > 32) 763 printk(KERN_WARNING "HID: extract() called with n (%d) > 32! (%s)\n", 764 n, current->comm); 765 766 report += offset >> 3; /* adjust byte index */ 767 offset &= 7; /* now only need bit offset into one byte */ 768 x = get_unaligned_le64(report); 769 x = (x >> offset) & ((1ULL << n) - 1); /* extract bit field */ 770 return (u32) x; 771 } 772 773 /* 774 * "implement" : set bits in a little endian bit stream. 775 * Same concepts as "extract" (see comments above). 776 * The data mangled in the bit stream remains in little endian 777 * order the whole time. It make more sense to talk about 778 * endianness of register values by considering a register 779 * a "cached" copy of the little endiad bit stream. 780 */ 781 static __inline__ void implement(__u8 *report, unsigned offset, unsigned n, __u32 value) 782 { 783 u64 x; 784 u64 m = (1ULL << n) - 1; 785 786 if (n > 32) 787 printk(KERN_WARNING "HID: implement() called with n (%d) > 32! (%s)\n", 788 n, current->comm); 789 790 if (value > m) 791 printk(KERN_WARNING "HID: implement() called with too large value %d! (%s)\n", 792 value, current->comm); 793 WARN_ON(value > m); 794 value &= m; 795 796 report += offset >> 3; 797 offset &= 7; 798 799 x = get_unaligned_le64(report); 800 x &= ~(m << offset); 801 x |= ((u64)value) << offset; 802 put_unaligned_le64(x, report); 803 } 804 805 /* 806 * Search an array for a value. 807 */ 808 809 static __inline__ int search(__s32 *array, __s32 value, unsigned n) 810 { 811 while (n--) { 812 if (*array++ == value) 813 return 0; 814 } 815 return -1; 816 } 817 818 static void hid_process_event(struct hid_device *hid, struct hid_field *field, struct hid_usage *usage, __s32 value, int interrupt) 819 { 820 hid_dump_input(usage, value); 821 if (hid->claimed & HID_CLAIMED_INPUT) 822 hidinput_hid_event(hid, field, usage, value); 823 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event) 824 hid->hiddev_hid_event(hid, field, usage, value); 825 } 826 827 /* 828 * Analyse a received field, and fetch the data from it. The field 829 * content is stored for next report processing (we do differential 830 * reporting to the layer). 831 */ 832 833 static void hid_input_field(struct hid_device *hid, struct hid_field *field, 834 __u8 *data, int interrupt) 835 { 836 unsigned n; 837 unsigned count = field->report_count; 838 unsigned offset = field->report_offset; 839 unsigned size = field->report_size; 840 __s32 min = field->logical_minimum; 841 __s32 max = field->logical_maximum; 842 __s32 *value; 843 844 if (!(value = kmalloc(sizeof(__s32) * count, GFP_ATOMIC))) 845 return; 846 847 for (n = 0; n < count; n++) { 848 849 value[n] = min < 0 ? snto32(extract(data, offset + n * size, size), size) : 850 extract(data, offset + n * size, size); 851 852 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) /* Ignore report if ErrorRollOver */ 853 && value[n] >= min && value[n] <= max 854 && field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) 855 goto exit; 856 } 857 858 for (n = 0; n < count; n++) { 859 860 if (HID_MAIN_ITEM_VARIABLE & field->flags) { 861 hid_process_event(hid, field, &field->usage[n], value[n], interrupt); 862 continue; 863 } 864 865 if (field->value[n] >= min && field->value[n] <= max 866 && field->usage[field->value[n] - min].hid 867 && search(value, field->value[n], count)) 868 hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt); 869 870 if (value[n] >= min && value[n] <= max 871 && field->usage[value[n] - min].hid 872 && search(field->value, value[n], count)) 873 hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt); 874 } 875 876 memcpy(field->value, value, count * sizeof(__s32)); 877 exit: 878 kfree(value); 879 } 880 881 /* 882 * Output the field into the report. 883 */ 884 885 static void hid_output_field(struct hid_field *field, __u8 *data) 886 { 887 unsigned count = field->report_count; 888 unsigned offset = field->report_offset; 889 unsigned size = field->report_size; 890 unsigned bitsused = offset + count * size; 891 unsigned n; 892 893 /* make sure the unused bits in the last byte are zeros */ 894 if (count > 0 && size > 0 && (bitsused % 8) != 0) 895 data[(bitsused-1)/8] &= (1 << (bitsused % 8)) - 1; 896 897 for (n = 0; n < count; n++) { 898 if (field->logical_minimum < 0) /* signed values */ 899 implement(data, offset + n * size, size, s32ton(field->value[n], size)); 900 else /* unsigned values */ 901 implement(data, offset + n * size, size, field->value[n]); 902 } 903 } 904 905 /* 906 * Create a report. 907 */ 908 909 void hid_output_report(struct hid_report *report, __u8 *data) 910 { 911 unsigned n; 912 913 if (report->id > 0) 914 *data++ = report->id; 915 916 for (n = 0; n < report->maxfield; n++) 917 hid_output_field(report->field[n], data); 918 } 919 EXPORT_SYMBOL_GPL(hid_output_report); 920 921 /* 922 * Set a field value. The report this field belongs to has to be 923 * created and transferred to the device, to set this value in the 924 * device. 925 */ 926 927 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value) 928 { 929 unsigned size = field->report_size; 930 931 hid_dump_input(field->usage + offset, value); 932 933 if (offset >= field->report_count) { 934 dbg_hid("offset (%d) exceeds report_count (%d)\n", offset, field->report_count); 935 hid_dump_field(field, 8); 936 return -1; 937 } 938 if (field->logical_minimum < 0) { 939 if (value != snto32(s32ton(value, size), size)) { 940 dbg_hid("value %d is out of range\n", value); 941 return -1; 942 } 943 } 944 field->value[offset] = value; 945 return 0; 946 } 947 EXPORT_SYMBOL_GPL(hid_set_field); 948 949 int hid_input_report(struct hid_device *hid, int type, u8 *data, int size, int interrupt) 950 { 951 struct hid_report_enum *report_enum = hid->report_enum + type; 952 struct hid_report *report; 953 int n, rsize, i; 954 955 if (!hid) 956 return -ENODEV; 957 958 if (!size) { 959 dbg_hid("empty report\n"); 960 return -1; 961 } 962 963 dbg_hid("report (size %u) (%snumbered)\n", size, report_enum->numbered ? "" : "un"); 964 965 n = 0; /* Normally report number is 0 */ 966 if (report_enum->numbered) { /* Device uses numbered reports, data[0] is report number */ 967 n = *data++; 968 size--; 969 } 970 971 /* dump the report */ 972 dbg_hid("report %d (size %u) = ", n, size); 973 for (i = 0; i < size; i++) 974 dbg_hid_line(" %02x", data[i]); 975 dbg_hid_line("\n"); 976 977 if (!(report = report_enum->report_id_hash[n])) { 978 dbg_hid("undefined report_id %d received\n", n); 979 return -1; 980 } 981 982 rsize = ((report->size - 1) >> 3) + 1; 983 984 if (size < rsize) { 985 dbg_hid("report %d is too short, (%d < %d)\n", report->id, size, rsize); 986 memset(data + size, 0, rsize - size); 987 } 988 989 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event) 990 hid->hiddev_report_event(hid, report); 991 if (hid->claimed & HID_CLAIMED_HIDRAW) { 992 /* numbered reports need to be passed with the report num */ 993 if (report_enum->numbered) 994 hidraw_report_event(hid, data - 1, size + 1); 995 else 996 hidraw_report_event(hid, data, size); 997 } 998 999 for (n = 0; n < report->maxfield; n++) 1000 hid_input_field(hid, report->field[n], data, interrupt); 1001 1002 if (hid->claimed & HID_CLAIMED_INPUT) 1003 hidinput_report_event(hid, report); 1004 1005 return 0; 1006 } 1007 EXPORT_SYMBOL_GPL(hid_input_report); 1008 1009 static int __init hid_init(void) 1010 { 1011 return hidraw_init(); 1012 } 1013 1014 static void __exit hid_exit(void) 1015 { 1016 hidraw_exit(); 1017 } 1018 1019 module_init(hid_init); 1020 module_exit(hid_exit); 1021 1022 MODULE_LICENSE(DRIVER_LICENSE); 1023 1024