1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * HID support for Linux 4 * 5 * Copyright (c) 1999 Andreas Gal 6 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz> 7 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc 8 * Copyright (c) 2006-2012 Jiri Kosina 9 */ 10 11 /* 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 #include <linux/init.h> 19 #include <linux/kernel.h> 20 #include <linux/list.h> 21 #include <linux/mm.h> 22 #include <linux/spinlock.h> 23 #include <asm/unaligned.h> 24 #include <asm/byteorder.h> 25 #include <linux/input.h> 26 #include <linux/wait.h> 27 #include <linux/vmalloc.h> 28 #include <linux/sched.h> 29 #include <linux/semaphore.h> 30 31 #include <linux/hid.h> 32 #include <linux/hiddev.h> 33 #include <linux/hid-debug.h> 34 #include <linux/hidraw.h> 35 36 #include "hid-ids.h" 37 38 /* 39 * Version Information 40 */ 41 42 #define DRIVER_DESC "HID core driver" 43 44 int hid_debug = 0; 45 module_param_named(debug, hid_debug, int, 0600); 46 MODULE_PARM_DESC(debug, "toggle HID debugging messages"); 47 EXPORT_SYMBOL_GPL(hid_debug); 48 49 static int hid_ignore_special_drivers = 0; 50 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600); 51 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver"); 52 53 /* 54 * Register a new report for a device. 55 */ 56 57 struct hid_report *hid_register_report(struct hid_device *device, 58 unsigned int type, unsigned int id, 59 unsigned int application) 60 { 61 struct hid_report_enum *report_enum = device->report_enum + type; 62 struct hid_report *report; 63 64 if (id >= HID_MAX_IDS) 65 return NULL; 66 if (report_enum->report_id_hash[id]) 67 return report_enum->report_id_hash[id]; 68 69 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL); 70 if (!report) 71 return NULL; 72 73 if (id != 0) 74 report_enum->numbered = 1; 75 76 report->id = id; 77 report->type = type; 78 report->size = 0; 79 report->device = device; 80 report->application = application; 81 report_enum->report_id_hash[id] = report; 82 83 list_add_tail(&report->list, &report_enum->report_list); 84 85 return report; 86 } 87 EXPORT_SYMBOL_GPL(hid_register_report); 88 89 /* 90 * Register a new field for this report. 91 */ 92 93 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values) 94 { 95 struct hid_field *field; 96 97 if (report->maxfield == HID_MAX_FIELDS) { 98 hid_err(report->device, "too many fields in report\n"); 99 return NULL; 100 } 101 102 field = kzalloc((sizeof(struct hid_field) + 103 usages * sizeof(struct hid_usage) + 104 values * sizeof(unsigned)), GFP_KERNEL); 105 if (!field) 106 return NULL; 107 108 field->index = report->maxfield++; 109 report->field[field->index] = field; 110 field->usage = (struct hid_usage *)(field + 1); 111 field->value = (s32 *)(field->usage + usages); 112 field->report = report; 113 114 return field; 115 } 116 117 /* 118 * Open a collection. The type/usage is pushed on the stack. 119 */ 120 121 static int open_collection(struct hid_parser *parser, unsigned type) 122 { 123 struct hid_collection *collection; 124 unsigned usage; 125 int collection_index; 126 127 usage = parser->local.usage[0]; 128 129 if (parser->collection_stack_ptr == parser->collection_stack_size) { 130 unsigned int *collection_stack; 131 unsigned int new_size = parser->collection_stack_size + 132 HID_COLLECTION_STACK_SIZE; 133 134 collection_stack = krealloc(parser->collection_stack, 135 new_size * sizeof(unsigned int), 136 GFP_KERNEL); 137 if (!collection_stack) 138 return -ENOMEM; 139 140 parser->collection_stack = collection_stack; 141 parser->collection_stack_size = new_size; 142 } 143 144 if (parser->device->maxcollection == parser->device->collection_size) { 145 collection = kmalloc( 146 array3_size(sizeof(struct hid_collection), 147 parser->device->collection_size, 148 2), 149 GFP_KERNEL); 150 if (collection == NULL) { 151 hid_err(parser->device, "failed to reallocate collection array\n"); 152 return -ENOMEM; 153 } 154 memcpy(collection, parser->device->collection, 155 sizeof(struct hid_collection) * 156 parser->device->collection_size); 157 memset(collection + parser->device->collection_size, 0, 158 sizeof(struct hid_collection) * 159 parser->device->collection_size); 160 kfree(parser->device->collection); 161 parser->device->collection = collection; 162 parser->device->collection_size *= 2; 163 } 164 165 parser->collection_stack[parser->collection_stack_ptr++] = 166 parser->device->maxcollection; 167 168 collection_index = parser->device->maxcollection++; 169 collection = parser->device->collection + collection_index; 170 collection->type = type; 171 collection->usage = usage; 172 collection->level = parser->collection_stack_ptr - 1; 173 collection->parent_idx = (collection->level == 0) ? -1 : 174 parser->collection_stack[collection->level - 1]; 175 176 if (type == HID_COLLECTION_APPLICATION) 177 parser->device->maxapplication++; 178 179 return 0; 180 } 181 182 /* 183 * Close a collection. 184 */ 185 186 static int close_collection(struct hid_parser *parser) 187 { 188 if (!parser->collection_stack_ptr) { 189 hid_err(parser->device, "collection stack underflow\n"); 190 return -EINVAL; 191 } 192 parser->collection_stack_ptr--; 193 return 0; 194 } 195 196 /* 197 * Climb up the stack, search for the specified collection type 198 * and return the usage. 199 */ 200 201 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type) 202 { 203 struct hid_collection *collection = parser->device->collection; 204 int n; 205 206 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) { 207 unsigned index = parser->collection_stack[n]; 208 if (collection[index].type == type) 209 return collection[index].usage; 210 } 211 return 0; /* we know nothing about this usage type */ 212 } 213 214 /* 215 * Add a usage to the temporary parser table. 216 */ 217 218 static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size) 219 { 220 if (parser->local.usage_index >= HID_MAX_USAGES) { 221 hid_err(parser->device, "usage index exceeded\n"); 222 return -1; 223 } 224 parser->local.usage[parser->local.usage_index] = usage; 225 parser->local.usage_size[parser->local.usage_index] = size; 226 parser->local.collection_index[parser->local.usage_index] = 227 parser->collection_stack_ptr ? 228 parser->collection_stack[parser->collection_stack_ptr - 1] : 0; 229 parser->local.usage_index++; 230 return 0; 231 } 232 233 /* 234 * Register a new field for this report. 235 */ 236 237 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags) 238 { 239 struct hid_report *report; 240 struct hid_field *field; 241 unsigned int usages; 242 unsigned int offset; 243 unsigned int i; 244 unsigned int application; 245 246 application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION); 247 248 report = hid_register_report(parser->device, report_type, 249 parser->global.report_id, application); 250 if (!report) { 251 hid_err(parser->device, "hid_register_report failed\n"); 252 return -1; 253 } 254 255 /* Handle both signed and unsigned cases properly */ 256 if ((parser->global.logical_minimum < 0 && 257 parser->global.logical_maximum < 258 parser->global.logical_minimum) || 259 (parser->global.logical_minimum >= 0 && 260 (__u32)parser->global.logical_maximum < 261 (__u32)parser->global.logical_minimum)) { 262 dbg_hid("logical range invalid 0x%x 0x%x\n", 263 parser->global.logical_minimum, 264 parser->global.logical_maximum); 265 return -1; 266 } 267 268 offset = report->size; 269 report->size += parser->global.report_size * parser->global.report_count; 270 271 if (!parser->local.usage_index) /* Ignore padding fields */ 272 return 0; 273 274 usages = max_t(unsigned, parser->local.usage_index, 275 parser->global.report_count); 276 277 field = hid_register_field(report, usages, parser->global.report_count); 278 if (!field) 279 return 0; 280 281 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL); 282 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL); 283 field->application = application; 284 285 for (i = 0; i < usages; i++) { 286 unsigned j = i; 287 /* Duplicate the last usage we parsed if we have excess values */ 288 if (i >= parser->local.usage_index) 289 j = parser->local.usage_index - 1; 290 field->usage[i].hid = parser->local.usage[j]; 291 field->usage[i].collection_index = 292 parser->local.collection_index[j]; 293 field->usage[i].usage_index = i; 294 field->usage[i].resolution_multiplier = 1; 295 } 296 297 field->maxusage = usages; 298 field->flags = flags; 299 field->report_offset = offset; 300 field->report_type = report_type; 301 field->report_size = parser->global.report_size; 302 field->report_count = parser->global.report_count; 303 field->logical_minimum = parser->global.logical_minimum; 304 field->logical_maximum = parser->global.logical_maximum; 305 field->physical_minimum = parser->global.physical_minimum; 306 field->physical_maximum = parser->global.physical_maximum; 307 field->unit_exponent = parser->global.unit_exponent; 308 field->unit = parser->global.unit; 309 310 return 0; 311 } 312 313 /* 314 * Read data value from item. 315 */ 316 317 static u32 item_udata(struct hid_item *item) 318 { 319 switch (item->size) { 320 case 1: return item->data.u8; 321 case 2: return item->data.u16; 322 case 4: return item->data.u32; 323 } 324 return 0; 325 } 326 327 static s32 item_sdata(struct hid_item *item) 328 { 329 switch (item->size) { 330 case 1: return item->data.s8; 331 case 2: return item->data.s16; 332 case 4: return item->data.s32; 333 } 334 return 0; 335 } 336 337 /* 338 * Process a global item. 339 */ 340 341 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item) 342 { 343 __s32 raw_value; 344 switch (item->tag) { 345 case HID_GLOBAL_ITEM_TAG_PUSH: 346 347 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) { 348 hid_err(parser->device, "global environment stack overflow\n"); 349 return -1; 350 } 351 352 memcpy(parser->global_stack + parser->global_stack_ptr++, 353 &parser->global, sizeof(struct hid_global)); 354 return 0; 355 356 case HID_GLOBAL_ITEM_TAG_POP: 357 358 if (!parser->global_stack_ptr) { 359 hid_err(parser->device, "global environment stack underflow\n"); 360 return -1; 361 } 362 363 memcpy(&parser->global, parser->global_stack + 364 --parser->global_stack_ptr, sizeof(struct hid_global)); 365 return 0; 366 367 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE: 368 parser->global.usage_page = item_udata(item); 369 return 0; 370 371 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM: 372 parser->global.logical_minimum = item_sdata(item); 373 return 0; 374 375 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM: 376 if (parser->global.logical_minimum < 0) 377 parser->global.logical_maximum = item_sdata(item); 378 else 379 parser->global.logical_maximum = item_udata(item); 380 return 0; 381 382 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM: 383 parser->global.physical_minimum = item_sdata(item); 384 return 0; 385 386 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM: 387 if (parser->global.physical_minimum < 0) 388 parser->global.physical_maximum = item_sdata(item); 389 else 390 parser->global.physical_maximum = item_udata(item); 391 return 0; 392 393 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT: 394 /* Many devices provide unit exponent as a two's complement 395 * nibble due to the common misunderstanding of HID 396 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle 397 * both this and the standard encoding. */ 398 raw_value = item_sdata(item); 399 if (!(raw_value & 0xfffffff0)) 400 parser->global.unit_exponent = hid_snto32(raw_value, 4); 401 else 402 parser->global.unit_exponent = raw_value; 403 return 0; 404 405 case HID_GLOBAL_ITEM_TAG_UNIT: 406 parser->global.unit = item_udata(item); 407 return 0; 408 409 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE: 410 parser->global.report_size = item_udata(item); 411 if (parser->global.report_size > 256) { 412 hid_err(parser->device, "invalid report_size %d\n", 413 parser->global.report_size); 414 return -1; 415 } 416 return 0; 417 418 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT: 419 parser->global.report_count = item_udata(item); 420 if (parser->global.report_count > HID_MAX_USAGES) { 421 hid_err(parser->device, "invalid report_count %d\n", 422 parser->global.report_count); 423 return -1; 424 } 425 return 0; 426 427 case HID_GLOBAL_ITEM_TAG_REPORT_ID: 428 parser->global.report_id = item_udata(item); 429 if (parser->global.report_id == 0 || 430 parser->global.report_id >= HID_MAX_IDS) { 431 hid_err(parser->device, "report_id %u is invalid\n", 432 parser->global.report_id); 433 return -1; 434 } 435 return 0; 436 437 default: 438 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag); 439 return -1; 440 } 441 } 442 443 /* 444 * Process a local item. 445 */ 446 447 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item) 448 { 449 __u32 data; 450 unsigned n; 451 __u32 count; 452 453 data = item_udata(item); 454 455 switch (item->tag) { 456 case HID_LOCAL_ITEM_TAG_DELIMITER: 457 458 if (data) { 459 /* 460 * We treat items before the first delimiter 461 * as global to all usage sets (branch 0). 462 * In the moment we process only these global 463 * items and the first delimiter set. 464 */ 465 if (parser->local.delimiter_depth != 0) { 466 hid_err(parser->device, "nested delimiters\n"); 467 return -1; 468 } 469 parser->local.delimiter_depth++; 470 parser->local.delimiter_branch++; 471 } else { 472 if (parser->local.delimiter_depth < 1) { 473 hid_err(parser->device, "bogus close delimiter\n"); 474 return -1; 475 } 476 parser->local.delimiter_depth--; 477 } 478 return 0; 479 480 case HID_LOCAL_ITEM_TAG_USAGE: 481 482 if (parser->local.delimiter_branch > 1) { 483 dbg_hid("alternative usage ignored\n"); 484 return 0; 485 } 486 487 return hid_add_usage(parser, data, item->size); 488 489 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM: 490 491 if (parser->local.delimiter_branch > 1) { 492 dbg_hid("alternative usage ignored\n"); 493 return 0; 494 } 495 496 parser->local.usage_minimum = data; 497 return 0; 498 499 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM: 500 501 if (parser->local.delimiter_branch > 1) { 502 dbg_hid("alternative usage ignored\n"); 503 return 0; 504 } 505 506 count = data - parser->local.usage_minimum; 507 if (count + parser->local.usage_index >= HID_MAX_USAGES) { 508 /* 509 * We do not warn if the name is not set, we are 510 * actually pre-scanning the device. 511 */ 512 if (dev_name(&parser->device->dev)) 513 hid_warn(parser->device, 514 "ignoring exceeding usage max\n"); 515 data = HID_MAX_USAGES - parser->local.usage_index + 516 parser->local.usage_minimum - 1; 517 if (data <= 0) { 518 hid_err(parser->device, 519 "no more usage index available\n"); 520 return -1; 521 } 522 } 523 524 for (n = parser->local.usage_minimum; n <= data; n++) 525 if (hid_add_usage(parser, n, item->size)) { 526 dbg_hid("hid_add_usage failed\n"); 527 return -1; 528 } 529 return 0; 530 531 default: 532 533 dbg_hid("unknown local item tag 0x%x\n", item->tag); 534 return 0; 535 } 536 return 0; 537 } 538 539 /* 540 * Concatenate Usage Pages into Usages where relevant: 541 * As per specification, 6.2.2.8: "When the parser encounters a main item it 542 * concatenates the last declared Usage Page with a Usage to form a complete 543 * usage value." 544 */ 545 546 static void hid_concatenate_usage_page(struct hid_parser *parser) 547 { 548 int i; 549 550 for (i = 0; i < parser->local.usage_index; i++) 551 if (parser->local.usage_size[i] <= 2) 552 parser->local.usage[i] += parser->global.usage_page << 16; 553 } 554 555 /* 556 * Process a main item. 557 */ 558 559 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item) 560 { 561 __u32 data; 562 int ret; 563 564 hid_concatenate_usage_page(parser); 565 566 data = item_udata(item); 567 568 switch (item->tag) { 569 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION: 570 ret = open_collection(parser, data & 0xff); 571 break; 572 case HID_MAIN_ITEM_TAG_END_COLLECTION: 573 ret = close_collection(parser); 574 break; 575 case HID_MAIN_ITEM_TAG_INPUT: 576 ret = hid_add_field(parser, HID_INPUT_REPORT, data); 577 break; 578 case HID_MAIN_ITEM_TAG_OUTPUT: 579 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data); 580 break; 581 case HID_MAIN_ITEM_TAG_FEATURE: 582 ret = hid_add_field(parser, HID_FEATURE_REPORT, data); 583 break; 584 default: 585 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag); 586 ret = 0; 587 } 588 589 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */ 590 591 return ret; 592 } 593 594 /* 595 * Process a reserved item. 596 */ 597 598 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item) 599 { 600 dbg_hid("reserved item type, tag 0x%x\n", item->tag); 601 return 0; 602 } 603 604 /* 605 * Free a report and all registered fields. The field->usage and 606 * field->value table's are allocated behind the field, so we need 607 * only to free(field) itself. 608 */ 609 610 static void hid_free_report(struct hid_report *report) 611 { 612 unsigned n; 613 614 for (n = 0; n < report->maxfield; n++) 615 kfree(report->field[n]); 616 kfree(report); 617 } 618 619 /* 620 * Close report. This function returns the device 621 * state to the point prior to hid_open_report(). 622 */ 623 static void hid_close_report(struct hid_device *device) 624 { 625 unsigned i, j; 626 627 for (i = 0; i < HID_REPORT_TYPES; i++) { 628 struct hid_report_enum *report_enum = device->report_enum + i; 629 630 for (j = 0; j < HID_MAX_IDS; j++) { 631 struct hid_report *report = report_enum->report_id_hash[j]; 632 if (report) 633 hid_free_report(report); 634 } 635 memset(report_enum, 0, sizeof(*report_enum)); 636 INIT_LIST_HEAD(&report_enum->report_list); 637 } 638 639 kfree(device->rdesc); 640 device->rdesc = NULL; 641 device->rsize = 0; 642 643 kfree(device->collection); 644 device->collection = NULL; 645 device->collection_size = 0; 646 device->maxcollection = 0; 647 device->maxapplication = 0; 648 649 device->status &= ~HID_STAT_PARSED; 650 } 651 652 /* 653 * Free a device structure, all reports, and all fields. 654 */ 655 656 static void hid_device_release(struct device *dev) 657 { 658 struct hid_device *hid = to_hid_device(dev); 659 660 hid_close_report(hid); 661 kfree(hid->dev_rdesc); 662 kfree(hid); 663 } 664 665 /* 666 * Fetch a report description item from the data stream. We support long 667 * items, though they are not used yet. 668 */ 669 670 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item) 671 { 672 u8 b; 673 674 if ((end - start) <= 0) 675 return NULL; 676 677 b = *start++; 678 679 item->type = (b >> 2) & 3; 680 item->tag = (b >> 4) & 15; 681 682 if (item->tag == HID_ITEM_TAG_LONG) { 683 684 item->format = HID_ITEM_FORMAT_LONG; 685 686 if ((end - start) < 2) 687 return NULL; 688 689 item->size = *start++; 690 item->tag = *start++; 691 692 if ((end - start) < item->size) 693 return NULL; 694 695 item->data.longdata = start; 696 start += item->size; 697 return start; 698 } 699 700 item->format = HID_ITEM_FORMAT_SHORT; 701 item->size = b & 3; 702 703 switch (item->size) { 704 case 0: 705 return start; 706 707 case 1: 708 if ((end - start) < 1) 709 return NULL; 710 item->data.u8 = *start++; 711 return start; 712 713 case 2: 714 if ((end - start) < 2) 715 return NULL; 716 item->data.u16 = get_unaligned_le16(start); 717 start = (__u8 *)((__le16 *)start + 1); 718 return start; 719 720 case 3: 721 item->size++; 722 if ((end - start) < 4) 723 return NULL; 724 item->data.u32 = get_unaligned_le32(start); 725 start = (__u8 *)((__le32 *)start + 1); 726 return start; 727 } 728 729 return NULL; 730 } 731 732 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage) 733 { 734 struct hid_device *hid = parser->device; 735 736 if (usage == HID_DG_CONTACTID) 737 hid->group = HID_GROUP_MULTITOUCH; 738 } 739 740 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage) 741 { 742 if (usage == 0xff0000c5 && parser->global.report_count == 256 && 743 parser->global.report_size == 8) 744 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8; 745 } 746 747 static void hid_scan_collection(struct hid_parser *parser, unsigned type) 748 { 749 struct hid_device *hid = parser->device; 750 int i; 751 752 if (((parser->global.usage_page << 16) == HID_UP_SENSOR) && 753 type == HID_COLLECTION_PHYSICAL) 754 hid->group = HID_GROUP_SENSOR_HUB; 755 756 if (hid->vendor == USB_VENDOR_ID_MICROSOFT && 757 hid->product == USB_DEVICE_ID_MS_POWER_COVER && 758 hid->group == HID_GROUP_MULTITOUCH) 759 hid->group = HID_GROUP_GENERIC; 760 761 if ((parser->global.usage_page << 16) == HID_UP_GENDESK) 762 for (i = 0; i < parser->local.usage_index; i++) 763 if (parser->local.usage[i] == HID_GD_POINTER) 764 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER; 765 766 if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR) 767 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC; 768 } 769 770 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item) 771 { 772 __u32 data; 773 int i; 774 775 hid_concatenate_usage_page(parser); 776 777 data = item_udata(item); 778 779 switch (item->tag) { 780 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION: 781 hid_scan_collection(parser, data & 0xff); 782 break; 783 case HID_MAIN_ITEM_TAG_END_COLLECTION: 784 break; 785 case HID_MAIN_ITEM_TAG_INPUT: 786 /* ignore constant inputs, they will be ignored by hid-input */ 787 if (data & HID_MAIN_ITEM_CONSTANT) 788 break; 789 for (i = 0; i < parser->local.usage_index; i++) 790 hid_scan_input_usage(parser, parser->local.usage[i]); 791 break; 792 case HID_MAIN_ITEM_TAG_OUTPUT: 793 break; 794 case HID_MAIN_ITEM_TAG_FEATURE: 795 for (i = 0; i < parser->local.usage_index; i++) 796 hid_scan_feature_usage(parser, parser->local.usage[i]); 797 break; 798 } 799 800 /* Reset the local parser environment */ 801 memset(&parser->local, 0, sizeof(parser->local)); 802 803 return 0; 804 } 805 806 /* 807 * Scan a report descriptor before the device is added to the bus. 808 * Sets device groups and other properties that determine what driver 809 * to load. 810 */ 811 static int hid_scan_report(struct hid_device *hid) 812 { 813 struct hid_parser *parser; 814 struct hid_item item; 815 __u8 *start = hid->dev_rdesc; 816 __u8 *end = start + hid->dev_rsize; 817 static int (*dispatch_type[])(struct hid_parser *parser, 818 struct hid_item *item) = { 819 hid_scan_main, 820 hid_parser_global, 821 hid_parser_local, 822 hid_parser_reserved 823 }; 824 825 parser = vzalloc(sizeof(struct hid_parser)); 826 if (!parser) 827 return -ENOMEM; 828 829 parser->device = hid; 830 hid->group = HID_GROUP_GENERIC; 831 832 /* 833 * The parsing is simpler than the one in hid_open_report() as we should 834 * be robust against hid errors. Those errors will be raised by 835 * hid_open_report() anyway. 836 */ 837 while ((start = fetch_item(start, end, &item)) != NULL) 838 dispatch_type[item.type](parser, &item); 839 840 /* 841 * Handle special flags set during scanning. 842 */ 843 if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) && 844 (hid->group == HID_GROUP_MULTITOUCH)) 845 hid->group = HID_GROUP_MULTITOUCH_WIN_8; 846 847 /* 848 * Vendor specific handlings 849 */ 850 switch (hid->vendor) { 851 case USB_VENDOR_ID_WACOM: 852 hid->group = HID_GROUP_WACOM; 853 break; 854 case USB_VENDOR_ID_SYNAPTICS: 855 if (hid->group == HID_GROUP_GENERIC) 856 if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC) 857 && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER)) 858 /* 859 * hid-rmi should take care of them, 860 * not hid-generic 861 */ 862 hid->group = HID_GROUP_RMI; 863 break; 864 } 865 866 kfree(parser->collection_stack); 867 vfree(parser); 868 return 0; 869 } 870 871 /** 872 * hid_parse_report - parse device report 873 * 874 * @device: hid device 875 * @start: report start 876 * @size: report size 877 * 878 * Allocate the device report as read by the bus driver. This function should 879 * only be called from parse() in ll drivers. 880 */ 881 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size) 882 { 883 hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL); 884 if (!hid->dev_rdesc) 885 return -ENOMEM; 886 hid->dev_rsize = size; 887 return 0; 888 } 889 EXPORT_SYMBOL_GPL(hid_parse_report); 890 891 static const char * const hid_report_names[] = { 892 "HID_INPUT_REPORT", 893 "HID_OUTPUT_REPORT", 894 "HID_FEATURE_REPORT", 895 }; 896 /** 897 * hid_validate_values - validate existing device report's value indexes 898 * 899 * @device: hid device 900 * @type: which report type to examine 901 * @id: which report ID to examine (0 for first) 902 * @field_index: which report field to examine 903 * @report_counts: expected number of values 904 * 905 * Validate the number of values in a given field of a given report, after 906 * parsing. 907 */ 908 struct hid_report *hid_validate_values(struct hid_device *hid, 909 unsigned int type, unsigned int id, 910 unsigned int field_index, 911 unsigned int report_counts) 912 { 913 struct hid_report *report; 914 915 if (type > HID_FEATURE_REPORT) { 916 hid_err(hid, "invalid HID report type %u\n", type); 917 return NULL; 918 } 919 920 if (id >= HID_MAX_IDS) { 921 hid_err(hid, "invalid HID report id %u\n", id); 922 return NULL; 923 } 924 925 /* 926 * Explicitly not using hid_get_report() here since it depends on 927 * ->numbered being checked, which may not always be the case when 928 * drivers go to access report values. 929 */ 930 if (id == 0) { 931 /* 932 * Validating on id 0 means we should examine the first 933 * report in the list. 934 */ 935 report = list_entry( 936 hid->report_enum[type].report_list.next, 937 struct hid_report, list); 938 } else { 939 report = hid->report_enum[type].report_id_hash[id]; 940 } 941 if (!report) { 942 hid_err(hid, "missing %s %u\n", hid_report_names[type], id); 943 return NULL; 944 } 945 if (report->maxfield <= field_index) { 946 hid_err(hid, "not enough fields in %s %u\n", 947 hid_report_names[type], id); 948 return NULL; 949 } 950 if (report->field[field_index]->report_count < report_counts) { 951 hid_err(hid, "not enough values in %s %u field %u\n", 952 hid_report_names[type], id, field_index); 953 return NULL; 954 } 955 return report; 956 } 957 EXPORT_SYMBOL_GPL(hid_validate_values); 958 959 static int hid_calculate_multiplier(struct hid_device *hid, 960 struct hid_field *multiplier) 961 { 962 int m; 963 __s32 v = *multiplier->value; 964 __s32 lmin = multiplier->logical_minimum; 965 __s32 lmax = multiplier->logical_maximum; 966 __s32 pmin = multiplier->physical_minimum; 967 __s32 pmax = multiplier->physical_maximum; 968 969 /* 970 * "Because OS implementations will generally divide the control's 971 * reported count by the Effective Resolution Multiplier, designers 972 * should take care not to establish a potential Effective 973 * Resolution Multiplier of zero." 974 * HID Usage Table, v1.12, Section 4.3.1, p31 975 */ 976 if (lmax - lmin == 0) 977 return 1; 978 /* 979 * Handling the unit exponent is left as an exercise to whoever 980 * finds a device where that exponent is not 0. 981 */ 982 m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin); 983 if (unlikely(multiplier->unit_exponent != 0)) { 984 hid_warn(hid, 985 "unsupported Resolution Multiplier unit exponent %d\n", 986 multiplier->unit_exponent); 987 } 988 989 /* There are no devices with an effective multiplier > 255 */ 990 if (unlikely(m == 0 || m > 255 || m < -255)) { 991 hid_warn(hid, "unsupported Resolution Multiplier %d\n", m); 992 m = 1; 993 } 994 995 return m; 996 } 997 998 static void hid_apply_multiplier_to_field(struct hid_device *hid, 999 struct hid_field *field, 1000 struct hid_collection *multiplier_collection, 1001 int effective_multiplier) 1002 { 1003 struct hid_collection *collection; 1004 struct hid_usage *usage; 1005 int i; 1006 1007 /* 1008 * If multiplier_collection is NULL, the multiplier applies 1009 * to all fields in the report. 1010 * Otherwise, it is the Logical Collection the multiplier applies to 1011 * but our field may be in a subcollection of that collection. 1012 */ 1013 for (i = 0; i < field->maxusage; i++) { 1014 usage = &field->usage[i]; 1015 1016 collection = &hid->collection[usage->collection_index]; 1017 while (collection->parent_idx != -1 && 1018 collection != multiplier_collection) 1019 collection = &hid->collection[collection->parent_idx]; 1020 1021 if (collection->parent_idx != -1 || 1022 multiplier_collection == NULL) 1023 usage->resolution_multiplier = effective_multiplier; 1024 1025 } 1026 } 1027 1028 static void hid_apply_multiplier(struct hid_device *hid, 1029 struct hid_field *multiplier) 1030 { 1031 struct hid_report_enum *rep_enum; 1032 struct hid_report *rep; 1033 struct hid_field *field; 1034 struct hid_collection *multiplier_collection; 1035 int effective_multiplier; 1036 int i; 1037 1038 /* 1039 * "The Resolution Multiplier control must be contained in the same 1040 * Logical Collection as the control(s) to which it is to be applied. 1041 * If no Resolution Multiplier is defined, then the Resolution 1042 * Multiplier defaults to 1. If more than one control exists in a 1043 * Logical Collection, the Resolution Multiplier is associated with 1044 * all controls in the collection. If no Logical Collection is 1045 * defined, the Resolution Multiplier is associated with all 1046 * controls in the report." 1047 * HID Usage Table, v1.12, Section 4.3.1, p30 1048 * 1049 * Thus, search from the current collection upwards until we find a 1050 * logical collection. Then search all fields for that same parent 1051 * collection. Those are the fields the multiplier applies to. 1052 * 1053 * If we have more than one multiplier, it will overwrite the 1054 * applicable fields later. 1055 */ 1056 multiplier_collection = &hid->collection[multiplier->usage->collection_index]; 1057 while (multiplier_collection->parent_idx != -1 && 1058 multiplier_collection->type != HID_COLLECTION_LOGICAL) 1059 multiplier_collection = &hid->collection[multiplier_collection->parent_idx]; 1060 1061 effective_multiplier = hid_calculate_multiplier(hid, multiplier); 1062 1063 rep_enum = &hid->report_enum[HID_INPUT_REPORT]; 1064 list_for_each_entry(rep, &rep_enum->report_list, list) { 1065 for (i = 0; i < rep->maxfield; i++) { 1066 field = rep->field[i]; 1067 hid_apply_multiplier_to_field(hid, field, 1068 multiplier_collection, 1069 effective_multiplier); 1070 } 1071 } 1072 } 1073 1074 /* 1075 * hid_setup_resolution_multiplier - set up all resolution multipliers 1076 * 1077 * @device: hid device 1078 * 1079 * Search for all Resolution Multiplier Feature Reports and apply their 1080 * value to all matching Input items. This only updates the internal struct 1081 * fields. 1082 * 1083 * The Resolution Multiplier is applied by the hardware. If the multiplier 1084 * is anything other than 1, the hardware will send pre-multiplied events 1085 * so that the same physical interaction generates an accumulated 1086 * accumulated_value = value * * multiplier 1087 * This may be achieved by sending 1088 * - "value * multiplier" for each event, or 1089 * - "value" but "multiplier" times as frequently, or 1090 * - a combination of the above 1091 * The only guarantee is that the same physical interaction always generates 1092 * an accumulated 'value * multiplier'. 1093 * 1094 * This function must be called before any event processing and after 1095 * any SetRequest to the Resolution Multiplier. 1096 */ 1097 void hid_setup_resolution_multiplier(struct hid_device *hid) 1098 { 1099 struct hid_report_enum *rep_enum; 1100 struct hid_report *rep; 1101 struct hid_usage *usage; 1102 int i, j; 1103 1104 rep_enum = &hid->report_enum[HID_FEATURE_REPORT]; 1105 list_for_each_entry(rep, &rep_enum->report_list, list) { 1106 for (i = 0; i < rep->maxfield; i++) { 1107 /* Ignore if report count is out of bounds. */ 1108 if (rep->field[i]->report_count < 1) 1109 continue; 1110 1111 for (j = 0; j < rep->field[i]->maxusage; j++) { 1112 usage = &rep->field[i]->usage[j]; 1113 if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER) 1114 hid_apply_multiplier(hid, 1115 rep->field[i]); 1116 } 1117 } 1118 } 1119 } 1120 EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier); 1121 1122 /** 1123 * hid_open_report - open a driver-specific device report 1124 * 1125 * @device: hid device 1126 * 1127 * Parse a report description into a hid_device structure. Reports are 1128 * enumerated, fields are attached to these reports. 1129 * 0 returned on success, otherwise nonzero error value. 1130 * 1131 * This function (or the equivalent hid_parse() macro) should only be 1132 * called from probe() in drivers, before starting the device. 1133 */ 1134 int hid_open_report(struct hid_device *device) 1135 { 1136 struct hid_parser *parser; 1137 struct hid_item item; 1138 unsigned int size; 1139 __u8 *start; 1140 __u8 *buf; 1141 __u8 *end; 1142 int ret; 1143 static int (*dispatch_type[])(struct hid_parser *parser, 1144 struct hid_item *item) = { 1145 hid_parser_main, 1146 hid_parser_global, 1147 hid_parser_local, 1148 hid_parser_reserved 1149 }; 1150 1151 if (WARN_ON(device->status & HID_STAT_PARSED)) 1152 return -EBUSY; 1153 1154 start = device->dev_rdesc; 1155 if (WARN_ON(!start)) 1156 return -ENODEV; 1157 size = device->dev_rsize; 1158 1159 buf = kmemdup(start, size, GFP_KERNEL); 1160 if (buf == NULL) 1161 return -ENOMEM; 1162 1163 if (device->driver->report_fixup) 1164 start = device->driver->report_fixup(device, buf, &size); 1165 else 1166 start = buf; 1167 1168 start = kmemdup(start, size, GFP_KERNEL); 1169 kfree(buf); 1170 if (start == NULL) 1171 return -ENOMEM; 1172 1173 device->rdesc = start; 1174 device->rsize = size; 1175 1176 parser = vzalloc(sizeof(struct hid_parser)); 1177 if (!parser) { 1178 ret = -ENOMEM; 1179 goto alloc_err; 1180 } 1181 1182 parser->device = device; 1183 1184 end = start + size; 1185 1186 device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS, 1187 sizeof(struct hid_collection), GFP_KERNEL); 1188 if (!device->collection) { 1189 ret = -ENOMEM; 1190 goto err; 1191 } 1192 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS; 1193 1194 ret = -EINVAL; 1195 while ((start = fetch_item(start, end, &item)) != NULL) { 1196 1197 if (item.format != HID_ITEM_FORMAT_SHORT) { 1198 hid_err(device, "unexpected long global item\n"); 1199 goto err; 1200 } 1201 1202 if (dispatch_type[item.type](parser, &item)) { 1203 hid_err(device, "item %u %u %u %u parsing failed\n", 1204 item.format, (unsigned)item.size, 1205 (unsigned)item.type, (unsigned)item.tag); 1206 goto err; 1207 } 1208 1209 if (start == end) { 1210 if (parser->collection_stack_ptr) { 1211 hid_err(device, "unbalanced collection at end of report description\n"); 1212 goto err; 1213 } 1214 if (parser->local.delimiter_depth) { 1215 hid_err(device, "unbalanced delimiter at end of report description\n"); 1216 goto err; 1217 } 1218 1219 /* 1220 * fetch initial values in case the device's 1221 * default multiplier isn't the recommended 1 1222 */ 1223 hid_setup_resolution_multiplier(device); 1224 1225 kfree(parser->collection_stack); 1226 vfree(parser); 1227 device->status |= HID_STAT_PARSED; 1228 1229 return 0; 1230 } 1231 } 1232 1233 hid_err(device, "item fetching failed at offset %d\n", (int)(end - start)); 1234 err: 1235 kfree(parser->collection_stack); 1236 alloc_err: 1237 vfree(parser); 1238 hid_close_report(device); 1239 return ret; 1240 } 1241 EXPORT_SYMBOL_GPL(hid_open_report); 1242 1243 /* 1244 * Convert a signed n-bit integer to signed 32-bit integer. Common 1245 * cases are done through the compiler, the screwed things has to be 1246 * done by hand. 1247 */ 1248 1249 static s32 snto32(__u32 value, unsigned n) 1250 { 1251 switch (n) { 1252 case 8: return ((__s8)value); 1253 case 16: return ((__s16)value); 1254 case 32: return ((__s32)value); 1255 } 1256 return value & (1 << (n - 1)) ? value | (~0U << n) : value; 1257 } 1258 1259 s32 hid_snto32(__u32 value, unsigned n) 1260 { 1261 return snto32(value, n); 1262 } 1263 EXPORT_SYMBOL_GPL(hid_snto32); 1264 1265 /* 1266 * Convert a signed 32-bit integer to a signed n-bit integer. 1267 */ 1268 1269 static u32 s32ton(__s32 value, unsigned n) 1270 { 1271 s32 a = value >> (n - 1); 1272 if (a && a != -1) 1273 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1; 1274 return value & ((1 << n) - 1); 1275 } 1276 1277 /* 1278 * Extract/implement a data field from/to a little endian report (bit array). 1279 * 1280 * Code sort-of follows HID spec: 1281 * http://www.usb.org/developers/hidpage/HID1_11.pdf 1282 * 1283 * While the USB HID spec allows unlimited length bit fields in "report 1284 * descriptors", most devices never use more than 16 bits. 1285 * One model of UPS is claimed to report "LINEV" as a 32-bit field. 1286 * Search linux-kernel and linux-usb-devel archives for "hid-core extract". 1287 */ 1288 1289 static u32 __extract(u8 *report, unsigned offset, int n) 1290 { 1291 unsigned int idx = offset / 8; 1292 unsigned int bit_nr = 0; 1293 unsigned int bit_shift = offset % 8; 1294 int bits_to_copy = 8 - bit_shift; 1295 u32 value = 0; 1296 u32 mask = n < 32 ? (1U << n) - 1 : ~0U; 1297 1298 while (n > 0) { 1299 value |= ((u32)report[idx] >> bit_shift) << bit_nr; 1300 n -= bits_to_copy; 1301 bit_nr += bits_to_copy; 1302 bits_to_copy = 8; 1303 bit_shift = 0; 1304 idx++; 1305 } 1306 1307 return value & mask; 1308 } 1309 1310 u32 hid_field_extract(const struct hid_device *hid, u8 *report, 1311 unsigned offset, unsigned n) 1312 { 1313 if (n > 32) { 1314 hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n", 1315 __func__, n, current->comm); 1316 n = 32; 1317 } 1318 1319 return __extract(report, offset, n); 1320 } 1321 EXPORT_SYMBOL_GPL(hid_field_extract); 1322 1323 /* 1324 * "implement" : set bits in a little endian bit stream. 1325 * Same concepts as "extract" (see comments above). 1326 * The data mangled in the bit stream remains in little endian 1327 * order the whole time. It make more sense to talk about 1328 * endianness of register values by considering a register 1329 * a "cached" copy of the little endian bit stream. 1330 */ 1331 1332 static void __implement(u8 *report, unsigned offset, int n, u32 value) 1333 { 1334 unsigned int idx = offset / 8; 1335 unsigned int bit_shift = offset % 8; 1336 int bits_to_set = 8 - bit_shift; 1337 1338 while (n - bits_to_set >= 0) { 1339 report[idx] &= ~(0xff << bit_shift); 1340 report[idx] |= value << bit_shift; 1341 value >>= bits_to_set; 1342 n -= bits_to_set; 1343 bits_to_set = 8; 1344 bit_shift = 0; 1345 idx++; 1346 } 1347 1348 /* last nibble */ 1349 if (n) { 1350 u8 bit_mask = ((1U << n) - 1); 1351 report[idx] &= ~(bit_mask << bit_shift); 1352 report[idx] |= value << bit_shift; 1353 } 1354 } 1355 1356 static void implement(const struct hid_device *hid, u8 *report, 1357 unsigned offset, unsigned n, u32 value) 1358 { 1359 if (unlikely(n > 32)) { 1360 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n", 1361 __func__, n, current->comm); 1362 n = 32; 1363 } else if (n < 32) { 1364 u32 m = (1U << n) - 1; 1365 1366 if (unlikely(value > m)) { 1367 hid_warn(hid, 1368 "%s() called with too large value %d (n: %d)! (%s)\n", 1369 __func__, value, n, current->comm); 1370 WARN_ON(1); 1371 value &= m; 1372 } 1373 } 1374 1375 __implement(report, offset, n, value); 1376 } 1377 1378 /* 1379 * Search an array for a value. 1380 */ 1381 1382 static int search(__s32 *array, __s32 value, unsigned n) 1383 { 1384 while (n--) { 1385 if (*array++ == value) 1386 return 0; 1387 } 1388 return -1; 1389 } 1390 1391 /** 1392 * hid_match_report - check if driver's raw_event should be called 1393 * 1394 * @hid: hid device 1395 * @report_type: type to match against 1396 * 1397 * compare hid->driver->report_table->report_type to report->type 1398 */ 1399 static int hid_match_report(struct hid_device *hid, struct hid_report *report) 1400 { 1401 const struct hid_report_id *id = hid->driver->report_table; 1402 1403 if (!id) /* NULL means all */ 1404 return 1; 1405 1406 for (; id->report_type != HID_TERMINATOR; id++) 1407 if (id->report_type == HID_ANY_ID || 1408 id->report_type == report->type) 1409 return 1; 1410 return 0; 1411 } 1412 1413 /** 1414 * hid_match_usage - check if driver's event should be called 1415 * 1416 * @hid: hid device 1417 * @usage: usage to match against 1418 * 1419 * compare hid->driver->usage_table->usage_{type,code} to 1420 * usage->usage_{type,code} 1421 */ 1422 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage) 1423 { 1424 const struct hid_usage_id *id = hid->driver->usage_table; 1425 1426 if (!id) /* NULL means all */ 1427 return 1; 1428 1429 for (; id->usage_type != HID_ANY_ID - 1; id++) 1430 if ((id->usage_hid == HID_ANY_ID || 1431 id->usage_hid == usage->hid) && 1432 (id->usage_type == HID_ANY_ID || 1433 id->usage_type == usage->type) && 1434 (id->usage_code == HID_ANY_ID || 1435 id->usage_code == usage->code)) 1436 return 1; 1437 return 0; 1438 } 1439 1440 static void hid_process_event(struct hid_device *hid, struct hid_field *field, 1441 struct hid_usage *usage, __s32 value, int interrupt) 1442 { 1443 struct hid_driver *hdrv = hid->driver; 1444 int ret; 1445 1446 if (!list_empty(&hid->debug_list)) 1447 hid_dump_input(hid, usage, value); 1448 1449 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) { 1450 ret = hdrv->event(hid, field, usage, value); 1451 if (ret != 0) { 1452 if (ret < 0) 1453 hid_err(hid, "%s's event failed with %d\n", 1454 hdrv->name, ret); 1455 return; 1456 } 1457 } 1458 1459 if (hid->claimed & HID_CLAIMED_INPUT) 1460 hidinput_hid_event(hid, field, usage, value); 1461 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event) 1462 hid->hiddev_hid_event(hid, field, usage, value); 1463 } 1464 1465 /* 1466 * Analyse a received field, and fetch the data from it. The field 1467 * content is stored for next report processing (we do differential 1468 * reporting to the layer). 1469 */ 1470 1471 static void hid_input_field(struct hid_device *hid, struct hid_field *field, 1472 __u8 *data, int interrupt) 1473 { 1474 unsigned n; 1475 unsigned count = field->report_count; 1476 unsigned offset = field->report_offset; 1477 unsigned size = field->report_size; 1478 __s32 min = field->logical_minimum; 1479 __s32 max = field->logical_maximum; 1480 __s32 *value; 1481 1482 value = kmalloc_array(count, sizeof(__s32), GFP_ATOMIC); 1483 if (!value) 1484 return; 1485 1486 for (n = 0; n < count; n++) { 1487 1488 value[n] = min < 0 ? 1489 snto32(hid_field_extract(hid, data, offset + n * size, 1490 size), size) : 1491 hid_field_extract(hid, data, offset + n * size, size); 1492 1493 /* Ignore report if ErrorRollOver */ 1494 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) && 1495 value[n] >= min && value[n] <= max && 1496 value[n] - min < field->maxusage && 1497 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) 1498 goto exit; 1499 } 1500 1501 for (n = 0; n < count; n++) { 1502 1503 if (HID_MAIN_ITEM_VARIABLE & field->flags) { 1504 hid_process_event(hid, field, &field->usage[n], value[n], interrupt); 1505 continue; 1506 } 1507 1508 if (field->value[n] >= min && field->value[n] <= max 1509 && field->value[n] - min < field->maxusage 1510 && field->usage[field->value[n] - min].hid 1511 && search(value, field->value[n], count)) 1512 hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt); 1513 1514 if (value[n] >= min && value[n] <= max 1515 && value[n] - min < field->maxusage 1516 && field->usage[value[n] - min].hid 1517 && search(field->value, value[n], count)) 1518 hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt); 1519 } 1520 1521 memcpy(field->value, value, count * sizeof(__s32)); 1522 exit: 1523 kfree(value); 1524 } 1525 1526 /* 1527 * Output the field into the report. 1528 */ 1529 1530 static void hid_output_field(const struct hid_device *hid, 1531 struct hid_field *field, __u8 *data) 1532 { 1533 unsigned count = field->report_count; 1534 unsigned offset = field->report_offset; 1535 unsigned size = field->report_size; 1536 unsigned n; 1537 1538 for (n = 0; n < count; n++) { 1539 if (field->logical_minimum < 0) /* signed values */ 1540 implement(hid, data, offset + n * size, size, 1541 s32ton(field->value[n], size)); 1542 else /* unsigned values */ 1543 implement(hid, data, offset + n * size, size, 1544 field->value[n]); 1545 } 1546 } 1547 1548 /* 1549 * Create a report. 'data' has to be allocated using 1550 * hid_alloc_report_buf() so that it has proper size. 1551 */ 1552 1553 void hid_output_report(struct hid_report *report, __u8 *data) 1554 { 1555 unsigned n; 1556 1557 if (report->id > 0) 1558 *data++ = report->id; 1559 1560 memset(data, 0, ((report->size - 1) >> 3) + 1); 1561 for (n = 0; n < report->maxfield; n++) 1562 hid_output_field(report->device, report->field[n], data); 1563 } 1564 EXPORT_SYMBOL_GPL(hid_output_report); 1565 1566 /* 1567 * Allocator for buffer that is going to be passed to hid_output_report() 1568 */ 1569 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags) 1570 { 1571 /* 1572 * 7 extra bytes are necessary to achieve proper functionality 1573 * of implement() working on 8 byte chunks 1574 */ 1575 1576 u32 len = hid_report_len(report) + 7; 1577 1578 return kmalloc(len, flags); 1579 } 1580 EXPORT_SYMBOL_GPL(hid_alloc_report_buf); 1581 1582 /* 1583 * Set a field value. The report this field belongs to has to be 1584 * created and transferred to the device, to set this value in the 1585 * device. 1586 */ 1587 1588 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value) 1589 { 1590 unsigned size; 1591 1592 if (!field) 1593 return -1; 1594 1595 size = field->report_size; 1596 1597 hid_dump_input(field->report->device, field->usage + offset, value); 1598 1599 if (offset >= field->report_count) { 1600 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n", 1601 offset, field->report_count); 1602 return -1; 1603 } 1604 if (field->logical_minimum < 0) { 1605 if (value != snto32(s32ton(value, size), size)) { 1606 hid_err(field->report->device, "value %d is out of range\n", value); 1607 return -1; 1608 } 1609 } 1610 field->value[offset] = value; 1611 return 0; 1612 } 1613 EXPORT_SYMBOL_GPL(hid_set_field); 1614 1615 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum, 1616 const u8 *data) 1617 { 1618 struct hid_report *report; 1619 unsigned int n = 0; /* Normally report number is 0 */ 1620 1621 /* Device uses numbered reports, data[0] is report number */ 1622 if (report_enum->numbered) 1623 n = *data; 1624 1625 report = report_enum->report_id_hash[n]; 1626 if (report == NULL) 1627 dbg_hid("undefined report_id %u received\n", n); 1628 1629 return report; 1630 } 1631 1632 /* 1633 * Implement a generic .request() callback, using .raw_request() 1634 * DO NOT USE in hid drivers directly, but through hid_hw_request instead. 1635 */ 1636 int __hid_request(struct hid_device *hid, struct hid_report *report, 1637 int reqtype) 1638 { 1639 char *buf; 1640 int ret; 1641 u32 len; 1642 1643 buf = hid_alloc_report_buf(report, GFP_KERNEL); 1644 if (!buf) 1645 return -ENOMEM; 1646 1647 len = hid_report_len(report); 1648 1649 if (reqtype == HID_REQ_SET_REPORT) 1650 hid_output_report(report, buf); 1651 1652 ret = hid->ll_driver->raw_request(hid, report->id, buf, len, 1653 report->type, reqtype); 1654 if (ret < 0) { 1655 dbg_hid("unable to complete request: %d\n", ret); 1656 goto out; 1657 } 1658 1659 if (reqtype == HID_REQ_GET_REPORT) 1660 hid_input_report(hid, report->type, buf, ret, 0); 1661 1662 ret = 0; 1663 1664 out: 1665 kfree(buf); 1666 return ret; 1667 } 1668 EXPORT_SYMBOL_GPL(__hid_request); 1669 1670 int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size, 1671 int interrupt) 1672 { 1673 struct hid_report_enum *report_enum = hid->report_enum + type; 1674 struct hid_report *report; 1675 struct hid_driver *hdrv; 1676 unsigned int a; 1677 u32 rsize, csize = size; 1678 u8 *cdata = data; 1679 int ret = 0; 1680 1681 report = hid_get_report(report_enum, data); 1682 if (!report) 1683 goto out; 1684 1685 if (report_enum->numbered) { 1686 cdata++; 1687 csize--; 1688 } 1689 1690 rsize = ((report->size - 1) >> 3) + 1; 1691 1692 if (rsize > HID_MAX_BUFFER_SIZE) 1693 rsize = HID_MAX_BUFFER_SIZE; 1694 1695 if (csize < rsize) { 1696 dbg_hid("report %d is too short, (%d < %d)\n", report->id, 1697 csize, rsize); 1698 memset(cdata + csize, 0, rsize - csize); 1699 } 1700 1701 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event) 1702 hid->hiddev_report_event(hid, report); 1703 if (hid->claimed & HID_CLAIMED_HIDRAW) { 1704 ret = hidraw_report_event(hid, data, size); 1705 if (ret) 1706 goto out; 1707 } 1708 1709 if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) { 1710 for (a = 0; a < report->maxfield; a++) 1711 hid_input_field(hid, report->field[a], cdata, interrupt); 1712 hdrv = hid->driver; 1713 if (hdrv && hdrv->report) 1714 hdrv->report(hid, report); 1715 } 1716 1717 if (hid->claimed & HID_CLAIMED_INPUT) 1718 hidinput_report_event(hid, report); 1719 out: 1720 return ret; 1721 } 1722 EXPORT_SYMBOL_GPL(hid_report_raw_event); 1723 1724 /** 1725 * hid_input_report - report data from lower layer (usb, bt...) 1726 * 1727 * @hid: hid device 1728 * @type: HID report type (HID_*_REPORT) 1729 * @data: report contents 1730 * @size: size of data parameter 1731 * @interrupt: distinguish between interrupt and control transfers 1732 * 1733 * This is data entry for lower layers. 1734 */ 1735 int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt) 1736 { 1737 struct hid_report_enum *report_enum; 1738 struct hid_driver *hdrv; 1739 struct hid_report *report; 1740 int ret = 0; 1741 1742 if (!hid) 1743 return -ENODEV; 1744 1745 if (down_trylock(&hid->driver_input_lock)) 1746 return -EBUSY; 1747 1748 if (!hid->driver) { 1749 ret = -ENODEV; 1750 goto unlock; 1751 } 1752 report_enum = hid->report_enum + type; 1753 hdrv = hid->driver; 1754 1755 if (!size) { 1756 dbg_hid("empty report\n"); 1757 ret = -1; 1758 goto unlock; 1759 } 1760 1761 /* Avoid unnecessary overhead if debugfs is disabled */ 1762 if (!list_empty(&hid->debug_list)) 1763 hid_dump_report(hid, type, data, size); 1764 1765 report = hid_get_report(report_enum, data); 1766 1767 if (!report) { 1768 ret = -1; 1769 goto unlock; 1770 } 1771 1772 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) { 1773 ret = hdrv->raw_event(hid, report, data, size); 1774 if (ret < 0) 1775 goto unlock; 1776 } 1777 1778 ret = hid_report_raw_event(hid, type, data, size, interrupt); 1779 1780 unlock: 1781 up(&hid->driver_input_lock); 1782 return ret; 1783 } 1784 EXPORT_SYMBOL_GPL(hid_input_report); 1785 1786 bool hid_match_one_id(const struct hid_device *hdev, 1787 const struct hid_device_id *id) 1788 { 1789 return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) && 1790 (id->group == HID_GROUP_ANY || id->group == hdev->group) && 1791 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) && 1792 (id->product == HID_ANY_ID || id->product == hdev->product); 1793 } 1794 1795 const struct hid_device_id *hid_match_id(const struct hid_device *hdev, 1796 const struct hid_device_id *id) 1797 { 1798 for (; id->bus; id++) 1799 if (hid_match_one_id(hdev, id)) 1800 return id; 1801 1802 return NULL; 1803 } 1804 1805 static const struct hid_device_id hid_hiddev_list[] = { 1806 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) }, 1807 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) }, 1808 { } 1809 }; 1810 1811 static bool hid_hiddev(struct hid_device *hdev) 1812 { 1813 return !!hid_match_id(hdev, hid_hiddev_list); 1814 } 1815 1816 1817 static ssize_t 1818 read_report_descriptor(struct file *filp, struct kobject *kobj, 1819 struct bin_attribute *attr, 1820 char *buf, loff_t off, size_t count) 1821 { 1822 struct device *dev = kobj_to_dev(kobj); 1823 struct hid_device *hdev = to_hid_device(dev); 1824 1825 if (off >= hdev->rsize) 1826 return 0; 1827 1828 if (off + count > hdev->rsize) 1829 count = hdev->rsize - off; 1830 1831 memcpy(buf, hdev->rdesc + off, count); 1832 1833 return count; 1834 } 1835 1836 static ssize_t 1837 show_country(struct device *dev, struct device_attribute *attr, 1838 char *buf) 1839 { 1840 struct hid_device *hdev = to_hid_device(dev); 1841 1842 return sprintf(buf, "%02x\n", hdev->country & 0xff); 1843 } 1844 1845 static struct bin_attribute dev_bin_attr_report_desc = { 1846 .attr = { .name = "report_descriptor", .mode = 0444 }, 1847 .read = read_report_descriptor, 1848 .size = HID_MAX_DESCRIPTOR_SIZE, 1849 }; 1850 1851 static const struct device_attribute dev_attr_country = { 1852 .attr = { .name = "country", .mode = 0444 }, 1853 .show = show_country, 1854 }; 1855 1856 int hid_connect(struct hid_device *hdev, unsigned int connect_mask) 1857 { 1858 static const char *types[] = { "Device", "Pointer", "Mouse", "Device", 1859 "Joystick", "Gamepad", "Keyboard", "Keypad", 1860 "Multi-Axis Controller" 1861 }; 1862 const char *type, *bus; 1863 char buf[64] = ""; 1864 unsigned int i; 1865 int len; 1866 int ret; 1867 1868 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE) 1869 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV); 1870 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE) 1871 connect_mask |= HID_CONNECT_HIDINPUT_FORCE; 1872 if (hdev->bus != BUS_USB) 1873 connect_mask &= ~HID_CONNECT_HIDDEV; 1874 if (hid_hiddev(hdev)) 1875 connect_mask |= HID_CONNECT_HIDDEV_FORCE; 1876 1877 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev, 1878 connect_mask & HID_CONNECT_HIDINPUT_FORCE)) 1879 hdev->claimed |= HID_CLAIMED_INPUT; 1880 1881 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect && 1882 !hdev->hiddev_connect(hdev, 1883 connect_mask & HID_CONNECT_HIDDEV_FORCE)) 1884 hdev->claimed |= HID_CLAIMED_HIDDEV; 1885 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev)) 1886 hdev->claimed |= HID_CLAIMED_HIDRAW; 1887 1888 if (connect_mask & HID_CONNECT_DRIVER) 1889 hdev->claimed |= HID_CLAIMED_DRIVER; 1890 1891 /* Drivers with the ->raw_event callback set are not required to connect 1892 * to any other listener. */ 1893 if (!hdev->claimed && !hdev->driver->raw_event) { 1894 hid_err(hdev, "device has no listeners, quitting\n"); 1895 return -ENODEV; 1896 } 1897 1898 if ((hdev->claimed & HID_CLAIMED_INPUT) && 1899 (connect_mask & HID_CONNECT_FF) && hdev->ff_init) 1900 hdev->ff_init(hdev); 1901 1902 len = 0; 1903 if (hdev->claimed & HID_CLAIMED_INPUT) 1904 len += sprintf(buf + len, "input"); 1905 if (hdev->claimed & HID_CLAIMED_HIDDEV) 1906 len += sprintf(buf + len, "%shiddev%d", len ? "," : "", 1907 ((struct hiddev *)hdev->hiddev)->minor); 1908 if (hdev->claimed & HID_CLAIMED_HIDRAW) 1909 len += sprintf(buf + len, "%shidraw%d", len ? "," : "", 1910 ((struct hidraw *)hdev->hidraw)->minor); 1911 1912 type = "Device"; 1913 for (i = 0; i < hdev->maxcollection; i++) { 1914 struct hid_collection *col = &hdev->collection[i]; 1915 if (col->type == HID_COLLECTION_APPLICATION && 1916 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK && 1917 (col->usage & 0xffff) < ARRAY_SIZE(types)) { 1918 type = types[col->usage & 0xffff]; 1919 break; 1920 } 1921 } 1922 1923 switch (hdev->bus) { 1924 case BUS_USB: 1925 bus = "USB"; 1926 break; 1927 case BUS_BLUETOOTH: 1928 bus = "BLUETOOTH"; 1929 break; 1930 case BUS_I2C: 1931 bus = "I2C"; 1932 break; 1933 default: 1934 bus = "<UNKNOWN>"; 1935 } 1936 1937 ret = device_create_file(&hdev->dev, &dev_attr_country); 1938 if (ret) 1939 hid_warn(hdev, 1940 "can't create sysfs country code attribute err: %d\n", ret); 1941 1942 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n", 1943 buf, bus, hdev->version >> 8, hdev->version & 0xff, 1944 type, hdev->name, hdev->phys); 1945 1946 return 0; 1947 } 1948 EXPORT_SYMBOL_GPL(hid_connect); 1949 1950 void hid_disconnect(struct hid_device *hdev) 1951 { 1952 device_remove_file(&hdev->dev, &dev_attr_country); 1953 if (hdev->claimed & HID_CLAIMED_INPUT) 1954 hidinput_disconnect(hdev); 1955 if (hdev->claimed & HID_CLAIMED_HIDDEV) 1956 hdev->hiddev_disconnect(hdev); 1957 if (hdev->claimed & HID_CLAIMED_HIDRAW) 1958 hidraw_disconnect(hdev); 1959 hdev->claimed = 0; 1960 } 1961 EXPORT_SYMBOL_GPL(hid_disconnect); 1962 1963 /** 1964 * hid_hw_start - start underlying HW 1965 * @hdev: hid device 1966 * @connect_mask: which outputs to connect, see HID_CONNECT_* 1967 * 1968 * Call this in probe function *after* hid_parse. This will setup HW 1969 * buffers and start the device (if not defeirred to device open). 1970 * hid_hw_stop must be called if this was successful. 1971 */ 1972 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask) 1973 { 1974 int error; 1975 1976 error = hdev->ll_driver->start(hdev); 1977 if (error) 1978 return error; 1979 1980 if (connect_mask) { 1981 error = hid_connect(hdev, connect_mask); 1982 if (error) { 1983 hdev->ll_driver->stop(hdev); 1984 return error; 1985 } 1986 } 1987 1988 return 0; 1989 } 1990 EXPORT_SYMBOL_GPL(hid_hw_start); 1991 1992 /** 1993 * hid_hw_stop - stop underlying HW 1994 * @hdev: hid device 1995 * 1996 * This is usually called from remove function or from probe when something 1997 * failed and hid_hw_start was called already. 1998 */ 1999 void hid_hw_stop(struct hid_device *hdev) 2000 { 2001 hid_disconnect(hdev); 2002 hdev->ll_driver->stop(hdev); 2003 } 2004 EXPORT_SYMBOL_GPL(hid_hw_stop); 2005 2006 /** 2007 * hid_hw_open - signal underlying HW to start delivering events 2008 * @hdev: hid device 2009 * 2010 * Tell underlying HW to start delivering events from the device. 2011 * This function should be called sometime after successful call 2012 * to hid_hw_start(). 2013 */ 2014 int hid_hw_open(struct hid_device *hdev) 2015 { 2016 int ret; 2017 2018 ret = mutex_lock_killable(&hdev->ll_open_lock); 2019 if (ret) 2020 return ret; 2021 2022 if (!hdev->ll_open_count++) { 2023 ret = hdev->ll_driver->open(hdev); 2024 if (ret) 2025 hdev->ll_open_count--; 2026 } 2027 2028 mutex_unlock(&hdev->ll_open_lock); 2029 return ret; 2030 } 2031 EXPORT_SYMBOL_GPL(hid_hw_open); 2032 2033 /** 2034 * hid_hw_close - signal underlaying HW to stop delivering events 2035 * 2036 * @hdev: hid device 2037 * 2038 * This function indicates that we are not interested in the events 2039 * from this device anymore. Delivery of events may or may not stop, 2040 * depending on the number of users still outstanding. 2041 */ 2042 void hid_hw_close(struct hid_device *hdev) 2043 { 2044 mutex_lock(&hdev->ll_open_lock); 2045 if (!--hdev->ll_open_count) 2046 hdev->ll_driver->close(hdev); 2047 mutex_unlock(&hdev->ll_open_lock); 2048 } 2049 EXPORT_SYMBOL_GPL(hid_hw_close); 2050 2051 struct hid_dynid { 2052 struct list_head list; 2053 struct hid_device_id id; 2054 }; 2055 2056 /** 2057 * store_new_id - add a new HID device ID to this driver and re-probe devices 2058 * @driver: target device driver 2059 * @buf: buffer for scanning device ID data 2060 * @count: input size 2061 * 2062 * Adds a new dynamic hid device ID to this driver, 2063 * and causes the driver to probe for all devices again. 2064 */ 2065 static ssize_t new_id_store(struct device_driver *drv, const char *buf, 2066 size_t count) 2067 { 2068 struct hid_driver *hdrv = to_hid_driver(drv); 2069 struct hid_dynid *dynid; 2070 __u32 bus, vendor, product; 2071 unsigned long driver_data = 0; 2072 int ret; 2073 2074 ret = sscanf(buf, "%x %x %x %lx", 2075 &bus, &vendor, &product, &driver_data); 2076 if (ret < 3) 2077 return -EINVAL; 2078 2079 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 2080 if (!dynid) 2081 return -ENOMEM; 2082 2083 dynid->id.bus = bus; 2084 dynid->id.group = HID_GROUP_ANY; 2085 dynid->id.vendor = vendor; 2086 dynid->id.product = product; 2087 dynid->id.driver_data = driver_data; 2088 2089 spin_lock(&hdrv->dyn_lock); 2090 list_add_tail(&dynid->list, &hdrv->dyn_list); 2091 spin_unlock(&hdrv->dyn_lock); 2092 2093 ret = driver_attach(&hdrv->driver); 2094 2095 return ret ? : count; 2096 } 2097 static DRIVER_ATTR_WO(new_id); 2098 2099 static struct attribute *hid_drv_attrs[] = { 2100 &driver_attr_new_id.attr, 2101 NULL, 2102 }; 2103 ATTRIBUTE_GROUPS(hid_drv); 2104 2105 static void hid_free_dynids(struct hid_driver *hdrv) 2106 { 2107 struct hid_dynid *dynid, *n; 2108 2109 spin_lock(&hdrv->dyn_lock); 2110 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) { 2111 list_del(&dynid->list); 2112 kfree(dynid); 2113 } 2114 spin_unlock(&hdrv->dyn_lock); 2115 } 2116 2117 const struct hid_device_id *hid_match_device(struct hid_device *hdev, 2118 struct hid_driver *hdrv) 2119 { 2120 struct hid_dynid *dynid; 2121 2122 spin_lock(&hdrv->dyn_lock); 2123 list_for_each_entry(dynid, &hdrv->dyn_list, list) { 2124 if (hid_match_one_id(hdev, &dynid->id)) { 2125 spin_unlock(&hdrv->dyn_lock); 2126 return &dynid->id; 2127 } 2128 } 2129 spin_unlock(&hdrv->dyn_lock); 2130 2131 return hid_match_id(hdev, hdrv->id_table); 2132 } 2133 EXPORT_SYMBOL_GPL(hid_match_device); 2134 2135 static int hid_bus_match(struct device *dev, struct device_driver *drv) 2136 { 2137 struct hid_driver *hdrv = to_hid_driver(drv); 2138 struct hid_device *hdev = to_hid_device(dev); 2139 2140 return hid_match_device(hdev, hdrv) != NULL; 2141 } 2142 2143 /** 2144 * hid_compare_device_paths - check if both devices share the same path 2145 * @hdev_a: hid device 2146 * @hdev_b: hid device 2147 * @separator: char to use as separator 2148 * 2149 * Check if two devices share the same path up to the last occurrence of 2150 * the separator char. Both paths must exist (i.e., zero-length paths 2151 * don't match). 2152 */ 2153 bool hid_compare_device_paths(struct hid_device *hdev_a, 2154 struct hid_device *hdev_b, char separator) 2155 { 2156 int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys; 2157 int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys; 2158 2159 if (n1 != n2 || n1 <= 0 || n2 <= 0) 2160 return false; 2161 2162 return !strncmp(hdev_a->phys, hdev_b->phys, n1); 2163 } 2164 EXPORT_SYMBOL_GPL(hid_compare_device_paths); 2165 2166 static int hid_device_probe(struct device *dev) 2167 { 2168 struct hid_driver *hdrv = to_hid_driver(dev->driver); 2169 struct hid_device *hdev = to_hid_device(dev); 2170 const struct hid_device_id *id; 2171 int ret = 0; 2172 2173 if (down_interruptible(&hdev->driver_input_lock)) { 2174 ret = -EINTR; 2175 goto end; 2176 } 2177 hdev->io_started = false; 2178 2179 clear_bit(ffs(HID_STAT_REPROBED), &hdev->status); 2180 2181 if (!hdev->driver) { 2182 id = hid_match_device(hdev, hdrv); 2183 if (id == NULL) { 2184 ret = -ENODEV; 2185 goto unlock; 2186 } 2187 2188 if (hdrv->match) { 2189 if (!hdrv->match(hdev, hid_ignore_special_drivers)) { 2190 ret = -ENODEV; 2191 goto unlock; 2192 } 2193 } else { 2194 /* 2195 * hid-generic implements .match(), so if 2196 * hid_ignore_special_drivers is set, we can safely 2197 * return. 2198 */ 2199 if (hid_ignore_special_drivers) { 2200 ret = -ENODEV; 2201 goto unlock; 2202 } 2203 } 2204 2205 /* reset the quirks that has been previously set */ 2206 hdev->quirks = hid_lookup_quirk(hdev); 2207 hdev->driver = hdrv; 2208 if (hdrv->probe) { 2209 ret = hdrv->probe(hdev, id); 2210 } else { /* default probe */ 2211 ret = hid_open_report(hdev); 2212 if (!ret) 2213 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT); 2214 } 2215 if (ret) { 2216 hid_close_report(hdev); 2217 hdev->driver = NULL; 2218 } 2219 } 2220 unlock: 2221 if (!hdev->io_started) 2222 up(&hdev->driver_input_lock); 2223 end: 2224 return ret; 2225 } 2226 2227 static int hid_device_remove(struct device *dev) 2228 { 2229 struct hid_device *hdev = to_hid_device(dev); 2230 struct hid_driver *hdrv; 2231 int ret = 0; 2232 2233 if (down_interruptible(&hdev->driver_input_lock)) { 2234 ret = -EINTR; 2235 goto end; 2236 } 2237 hdev->io_started = false; 2238 2239 hdrv = hdev->driver; 2240 if (hdrv) { 2241 if (hdrv->remove) 2242 hdrv->remove(hdev); 2243 else /* default remove */ 2244 hid_hw_stop(hdev); 2245 hid_close_report(hdev); 2246 hdev->driver = NULL; 2247 } 2248 2249 if (!hdev->io_started) 2250 up(&hdev->driver_input_lock); 2251 end: 2252 return ret; 2253 } 2254 2255 static ssize_t modalias_show(struct device *dev, struct device_attribute *a, 2256 char *buf) 2257 { 2258 struct hid_device *hdev = container_of(dev, struct hid_device, dev); 2259 2260 return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n", 2261 hdev->bus, hdev->group, hdev->vendor, hdev->product); 2262 } 2263 static DEVICE_ATTR_RO(modalias); 2264 2265 static struct attribute *hid_dev_attrs[] = { 2266 &dev_attr_modalias.attr, 2267 NULL, 2268 }; 2269 static struct bin_attribute *hid_dev_bin_attrs[] = { 2270 &dev_bin_attr_report_desc, 2271 NULL 2272 }; 2273 static const struct attribute_group hid_dev_group = { 2274 .attrs = hid_dev_attrs, 2275 .bin_attrs = hid_dev_bin_attrs, 2276 }; 2277 __ATTRIBUTE_GROUPS(hid_dev); 2278 2279 static int hid_uevent(struct device *dev, struct kobj_uevent_env *env) 2280 { 2281 struct hid_device *hdev = to_hid_device(dev); 2282 2283 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X", 2284 hdev->bus, hdev->vendor, hdev->product)) 2285 return -ENOMEM; 2286 2287 if (add_uevent_var(env, "HID_NAME=%s", hdev->name)) 2288 return -ENOMEM; 2289 2290 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys)) 2291 return -ENOMEM; 2292 2293 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq)) 2294 return -ENOMEM; 2295 2296 if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X", 2297 hdev->bus, hdev->group, hdev->vendor, hdev->product)) 2298 return -ENOMEM; 2299 2300 return 0; 2301 } 2302 2303 struct bus_type hid_bus_type = { 2304 .name = "hid", 2305 .dev_groups = hid_dev_groups, 2306 .drv_groups = hid_drv_groups, 2307 .match = hid_bus_match, 2308 .probe = hid_device_probe, 2309 .remove = hid_device_remove, 2310 .uevent = hid_uevent, 2311 }; 2312 EXPORT_SYMBOL(hid_bus_type); 2313 2314 int hid_add_device(struct hid_device *hdev) 2315 { 2316 static atomic_t id = ATOMIC_INIT(0); 2317 int ret; 2318 2319 if (WARN_ON(hdev->status & HID_STAT_ADDED)) 2320 return -EBUSY; 2321 2322 hdev->quirks = hid_lookup_quirk(hdev); 2323 2324 /* we need to kill them here, otherwise they will stay allocated to 2325 * wait for coming driver */ 2326 if (hid_ignore(hdev)) 2327 return -ENODEV; 2328 2329 /* 2330 * Check for the mandatory transport channel. 2331 */ 2332 if (!hdev->ll_driver->raw_request) { 2333 hid_err(hdev, "transport driver missing .raw_request()\n"); 2334 return -EINVAL; 2335 } 2336 2337 /* 2338 * Read the device report descriptor once and use as template 2339 * for the driver-specific modifications. 2340 */ 2341 ret = hdev->ll_driver->parse(hdev); 2342 if (ret) 2343 return ret; 2344 if (!hdev->dev_rdesc) 2345 return -ENODEV; 2346 2347 /* 2348 * Scan generic devices for group information 2349 */ 2350 if (hid_ignore_special_drivers) { 2351 hdev->group = HID_GROUP_GENERIC; 2352 } else if (!hdev->group && 2353 !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) { 2354 ret = hid_scan_report(hdev); 2355 if (ret) 2356 hid_warn(hdev, "bad device descriptor (%d)\n", ret); 2357 } 2358 2359 /* XXX hack, any other cleaner solution after the driver core 2360 * is converted to allow more than 20 bytes as the device name? */ 2361 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus, 2362 hdev->vendor, hdev->product, atomic_inc_return(&id)); 2363 2364 hid_debug_register(hdev, dev_name(&hdev->dev)); 2365 ret = device_add(&hdev->dev); 2366 if (!ret) 2367 hdev->status |= HID_STAT_ADDED; 2368 else 2369 hid_debug_unregister(hdev); 2370 2371 return ret; 2372 } 2373 EXPORT_SYMBOL_GPL(hid_add_device); 2374 2375 /** 2376 * hid_allocate_device - allocate new hid device descriptor 2377 * 2378 * Allocate and initialize hid device, so that hid_destroy_device might be 2379 * used to free it. 2380 * 2381 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded 2382 * error value. 2383 */ 2384 struct hid_device *hid_allocate_device(void) 2385 { 2386 struct hid_device *hdev; 2387 int ret = -ENOMEM; 2388 2389 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL); 2390 if (hdev == NULL) 2391 return ERR_PTR(ret); 2392 2393 device_initialize(&hdev->dev); 2394 hdev->dev.release = hid_device_release; 2395 hdev->dev.bus = &hid_bus_type; 2396 device_enable_async_suspend(&hdev->dev); 2397 2398 hid_close_report(hdev); 2399 2400 init_waitqueue_head(&hdev->debug_wait); 2401 INIT_LIST_HEAD(&hdev->debug_list); 2402 spin_lock_init(&hdev->debug_list_lock); 2403 sema_init(&hdev->driver_input_lock, 1); 2404 mutex_init(&hdev->ll_open_lock); 2405 2406 return hdev; 2407 } 2408 EXPORT_SYMBOL_GPL(hid_allocate_device); 2409 2410 static void hid_remove_device(struct hid_device *hdev) 2411 { 2412 if (hdev->status & HID_STAT_ADDED) { 2413 device_del(&hdev->dev); 2414 hid_debug_unregister(hdev); 2415 hdev->status &= ~HID_STAT_ADDED; 2416 } 2417 kfree(hdev->dev_rdesc); 2418 hdev->dev_rdesc = NULL; 2419 hdev->dev_rsize = 0; 2420 } 2421 2422 /** 2423 * hid_destroy_device - free previously allocated device 2424 * 2425 * @hdev: hid device 2426 * 2427 * If you allocate hid_device through hid_allocate_device, you should ever 2428 * free by this function. 2429 */ 2430 void hid_destroy_device(struct hid_device *hdev) 2431 { 2432 hid_remove_device(hdev); 2433 put_device(&hdev->dev); 2434 } 2435 EXPORT_SYMBOL_GPL(hid_destroy_device); 2436 2437 2438 static int __hid_bus_reprobe_drivers(struct device *dev, void *data) 2439 { 2440 struct hid_driver *hdrv = data; 2441 struct hid_device *hdev = to_hid_device(dev); 2442 2443 if (hdev->driver == hdrv && 2444 !hdrv->match(hdev, hid_ignore_special_drivers) && 2445 !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status)) 2446 return device_reprobe(dev); 2447 2448 return 0; 2449 } 2450 2451 static int __hid_bus_driver_added(struct device_driver *drv, void *data) 2452 { 2453 struct hid_driver *hdrv = to_hid_driver(drv); 2454 2455 if (hdrv->match) { 2456 bus_for_each_dev(&hid_bus_type, NULL, hdrv, 2457 __hid_bus_reprobe_drivers); 2458 } 2459 2460 return 0; 2461 } 2462 2463 static int __bus_removed_driver(struct device_driver *drv, void *data) 2464 { 2465 return bus_rescan_devices(&hid_bus_type); 2466 } 2467 2468 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner, 2469 const char *mod_name) 2470 { 2471 int ret; 2472 2473 hdrv->driver.name = hdrv->name; 2474 hdrv->driver.bus = &hid_bus_type; 2475 hdrv->driver.owner = owner; 2476 hdrv->driver.mod_name = mod_name; 2477 2478 INIT_LIST_HEAD(&hdrv->dyn_list); 2479 spin_lock_init(&hdrv->dyn_lock); 2480 2481 ret = driver_register(&hdrv->driver); 2482 2483 if (ret == 0) 2484 bus_for_each_drv(&hid_bus_type, NULL, NULL, 2485 __hid_bus_driver_added); 2486 2487 return ret; 2488 } 2489 EXPORT_SYMBOL_GPL(__hid_register_driver); 2490 2491 void hid_unregister_driver(struct hid_driver *hdrv) 2492 { 2493 driver_unregister(&hdrv->driver); 2494 hid_free_dynids(hdrv); 2495 2496 bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver); 2497 } 2498 EXPORT_SYMBOL_GPL(hid_unregister_driver); 2499 2500 int hid_check_keys_pressed(struct hid_device *hid) 2501 { 2502 struct hid_input *hidinput; 2503 int i; 2504 2505 if (!(hid->claimed & HID_CLAIMED_INPUT)) 2506 return 0; 2507 2508 list_for_each_entry(hidinput, &hid->inputs, list) { 2509 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++) 2510 if (hidinput->input->key[i]) 2511 return 1; 2512 } 2513 2514 return 0; 2515 } 2516 2517 EXPORT_SYMBOL_GPL(hid_check_keys_pressed); 2518 2519 static int __init hid_init(void) 2520 { 2521 int ret; 2522 2523 if (hid_debug) 2524 pr_warn("hid_debug is now used solely for parser and driver debugging.\n" 2525 "debugfs is now used for inspecting the device (report descriptor, reports)\n"); 2526 2527 ret = bus_register(&hid_bus_type); 2528 if (ret) { 2529 pr_err("can't register hid bus\n"); 2530 goto err; 2531 } 2532 2533 ret = hidraw_init(); 2534 if (ret) 2535 goto err_bus; 2536 2537 hid_debug_init(); 2538 2539 return 0; 2540 err_bus: 2541 bus_unregister(&hid_bus_type); 2542 err: 2543 return ret; 2544 } 2545 2546 static void __exit hid_exit(void) 2547 { 2548 hid_debug_exit(); 2549 hidraw_exit(); 2550 bus_unregister(&hid_bus_type); 2551 hid_quirks_exit(HID_BUS_ANY); 2552 } 2553 2554 module_init(hid_init); 2555 module_exit(hid_exit); 2556 2557 MODULE_AUTHOR("Andreas Gal"); 2558 MODULE_AUTHOR("Vojtech Pavlik"); 2559 MODULE_AUTHOR("Jiri Kosina"); 2560 MODULE_LICENSE("GPL"); 2561