xref: /openbmc/linux/drivers/hid/hid-core.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  HID support for Linux
4  *
5  *  Copyright (c) 1999 Andreas Gal
6  *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
7  *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
8  *  Copyright (c) 2006-2012 Jiri Kosina
9  */
10 
11 /*
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/spinlock.h>
23 #include <asm/unaligned.h>
24 #include <asm/byteorder.h>
25 #include <linux/input.h>
26 #include <linux/wait.h>
27 #include <linux/vmalloc.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30 
31 #include <linux/hid.h>
32 #include <linux/hiddev.h>
33 #include <linux/hid-debug.h>
34 #include <linux/hidraw.h>
35 
36 #include "hid-ids.h"
37 
38 /*
39  * Version Information
40  */
41 
42 #define DRIVER_DESC "HID core driver"
43 
44 int hid_debug = 0;
45 module_param_named(debug, hid_debug, int, 0600);
46 MODULE_PARM_DESC(debug, "toggle HID debugging messages");
47 EXPORT_SYMBOL_GPL(hid_debug);
48 
49 static int hid_ignore_special_drivers = 0;
50 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
51 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
52 
53 /*
54  * Register a new report for a device.
55  */
56 
57 struct hid_report *hid_register_report(struct hid_device *device,
58 				       unsigned int type, unsigned int id,
59 				       unsigned int application)
60 {
61 	struct hid_report_enum *report_enum = device->report_enum + type;
62 	struct hid_report *report;
63 
64 	if (id >= HID_MAX_IDS)
65 		return NULL;
66 	if (report_enum->report_id_hash[id])
67 		return report_enum->report_id_hash[id];
68 
69 	report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
70 	if (!report)
71 		return NULL;
72 
73 	if (id != 0)
74 		report_enum->numbered = 1;
75 
76 	report->id = id;
77 	report->type = type;
78 	report->size = 0;
79 	report->device = device;
80 	report->application = application;
81 	report_enum->report_id_hash[id] = report;
82 
83 	list_add_tail(&report->list, &report_enum->report_list);
84 
85 	return report;
86 }
87 EXPORT_SYMBOL_GPL(hid_register_report);
88 
89 /*
90  * Register a new field for this report.
91  */
92 
93 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
94 {
95 	struct hid_field *field;
96 
97 	if (report->maxfield == HID_MAX_FIELDS) {
98 		hid_err(report->device, "too many fields in report\n");
99 		return NULL;
100 	}
101 
102 	field = kzalloc((sizeof(struct hid_field) +
103 			 usages * sizeof(struct hid_usage) +
104 			 values * sizeof(unsigned)), GFP_KERNEL);
105 	if (!field)
106 		return NULL;
107 
108 	field->index = report->maxfield++;
109 	report->field[field->index] = field;
110 	field->usage = (struct hid_usage *)(field + 1);
111 	field->value = (s32 *)(field->usage + usages);
112 	field->report = report;
113 
114 	return field;
115 }
116 
117 /*
118  * Open a collection. The type/usage is pushed on the stack.
119  */
120 
121 static int open_collection(struct hid_parser *parser, unsigned type)
122 {
123 	struct hid_collection *collection;
124 	unsigned usage;
125 	int collection_index;
126 
127 	usage = parser->local.usage[0];
128 
129 	if (parser->collection_stack_ptr == parser->collection_stack_size) {
130 		unsigned int *collection_stack;
131 		unsigned int new_size = parser->collection_stack_size +
132 					HID_COLLECTION_STACK_SIZE;
133 
134 		collection_stack = krealloc(parser->collection_stack,
135 					    new_size * sizeof(unsigned int),
136 					    GFP_KERNEL);
137 		if (!collection_stack)
138 			return -ENOMEM;
139 
140 		parser->collection_stack = collection_stack;
141 		parser->collection_stack_size = new_size;
142 	}
143 
144 	if (parser->device->maxcollection == parser->device->collection_size) {
145 		collection = kmalloc(
146 				array3_size(sizeof(struct hid_collection),
147 					    parser->device->collection_size,
148 					    2),
149 				GFP_KERNEL);
150 		if (collection == NULL) {
151 			hid_err(parser->device, "failed to reallocate collection array\n");
152 			return -ENOMEM;
153 		}
154 		memcpy(collection, parser->device->collection,
155 			sizeof(struct hid_collection) *
156 			parser->device->collection_size);
157 		memset(collection + parser->device->collection_size, 0,
158 			sizeof(struct hid_collection) *
159 			parser->device->collection_size);
160 		kfree(parser->device->collection);
161 		parser->device->collection = collection;
162 		parser->device->collection_size *= 2;
163 	}
164 
165 	parser->collection_stack[parser->collection_stack_ptr++] =
166 		parser->device->maxcollection;
167 
168 	collection_index = parser->device->maxcollection++;
169 	collection = parser->device->collection + collection_index;
170 	collection->type = type;
171 	collection->usage = usage;
172 	collection->level = parser->collection_stack_ptr - 1;
173 	collection->parent_idx = (collection->level == 0) ? -1 :
174 		parser->collection_stack[collection->level - 1];
175 
176 	if (type == HID_COLLECTION_APPLICATION)
177 		parser->device->maxapplication++;
178 
179 	return 0;
180 }
181 
182 /*
183  * Close a collection.
184  */
185 
186 static int close_collection(struct hid_parser *parser)
187 {
188 	if (!parser->collection_stack_ptr) {
189 		hid_err(parser->device, "collection stack underflow\n");
190 		return -EINVAL;
191 	}
192 	parser->collection_stack_ptr--;
193 	return 0;
194 }
195 
196 /*
197  * Climb up the stack, search for the specified collection type
198  * and return the usage.
199  */
200 
201 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
202 {
203 	struct hid_collection *collection = parser->device->collection;
204 	int n;
205 
206 	for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
207 		unsigned index = parser->collection_stack[n];
208 		if (collection[index].type == type)
209 			return collection[index].usage;
210 	}
211 	return 0; /* we know nothing about this usage type */
212 }
213 
214 /*
215  * Concatenate usage which defines 16 bits or less with the
216  * currently defined usage page to form a 32 bit usage
217  */
218 
219 static void complete_usage(struct hid_parser *parser, unsigned int index)
220 {
221 	parser->local.usage[index] &= 0xFFFF;
222 	parser->local.usage[index] |=
223 		(parser->global.usage_page & 0xFFFF) << 16;
224 }
225 
226 /*
227  * Add a usage to the temporary parser table.
228  */
229 
230 static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
231 {
232 	if (parser->local.usage_index >= HID_MAX_USAGES) {
233 		hid_err(parser->device, "usage index exceeded\n");
234 		return -1;
235 	}
236 	parser->local.usage[parser->local.usage_index] = usage;
237 
238 	/*
239 	 * If Usage item only includes usage id, concatenate it with
240 	 * currently defined usage page
241 	 */
242 	if (size <= 2)
243 		complete_usage(parser, parser->local.usage_index);
244 
245 	parser->local.usage_size[parser->local.usage_index] = size;
246 	parser->local.collection_index[parser->local.usage_index] =
247 		parser->collection_stack_ptr ?
248 		parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
249 	parser->local.usage_index++;
250 	return 0;
251 }
252 
253 /*
254  * Register a new field for this report.
255  */
256 
257 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
258 {
259 	struct hid_report *report;
260 	struct hid_field *field;
261 	unsigned int usages;
262 	unsigned int offset;
263 	unsigned int i;
264 	unsigned int application;
265 
266 	application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
267 
268 	report = hid_register_report(parser->device, report_type,
269 				     parser->global.report_id, application);
270 	if (!report) {
271 		hid_err(parser->device, "hid_register_report failed\n");
272 		return -1;
273 	}
274 
275 	/* Handle both signed and unsigned cases properly */
276 	if ((parser->global.logical_minimum < 0 &&
277 		parser->global.logical_maximum <
278 		parser->global.logical_minimum) ||
279 		(parser->global.logical_minimum >= 0 &&
280 		(__u32)parser->global.logical_maximum <
281 		(__u32)parser->global.logical_minimum)) {
282 		dbg_hid("logical range invalid 0x%x 0x%x\n",
283 			parser->global.logical_minimum,
284 			parser->global.logical_maximum);
285 		return -1;
286 	}
287 
288 	offset = report->size;
289 	report->size += parser->global.report_size * parser->global.report_count;
290 
291 	/* Total size check: Allow for possible report index byte */
292 	if (report->size > (HID_MAX_BUFFER_SIZE - 1) << 3) {
293 		hid_err(parser->device, "report is too long\n");
294 		return -1;
295 	}
296 
297 	if (!parser->local.usage_index) /* Ignore padding fields */
298 		return 0;
299 
300 	usages = max_t(unsigned, parser->local.usage_index,
301 				 parser->global.report_count);
302 
303 	field = hid_register_field(report, usages, parser->global.report_count);
304 	if (!field)
305 		return 0;
306 
307 	field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
308 	field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
309 	field->application = application;
310 
311 	for (i = 0; i < usages; i++) {
312 		unsigned j = i;
313 		/* Duplicate the last usage we parsed if we have excess values */
314 		if (i >= parser->local.usage_index)
315 			j = parser->local.usage_index - 1;
316 		field->usage[i].hid = parser->local.usage[j];
317 		field->usage[i].collection_index =
318 			parser->local.collection_index[j];
319 		field->usage[i].usage_index = i;
320 		field->usage[i].resolution_multiplier = 1;
321 	}
322 
323 	field->maxusage = usages;
324 	field->flags = flags;
325 	field->report_offset = offset;
326 	field->report_type = report_type;
327 	field->report_size = parser->global.report_size;
328 	field->report_count = parser->global.report_count;
329 	field->logical_minimum = parser->global.logical_minimum;
330 	field->logical_maximum = parser->global.logical_maximum;
331 	field->physical_minimum = parser->global.physical_minimum;
332 	field->physical_maximum = parser->global.physical_maximum;
333 	field->unit_exponent = parser->global.unit_exponent;
334 	field->unit = parser->global.unit;
335 
336 	return 0;
337 }
338 
339 /*
340  * Read data value from item.
341  */
342 
343 static u32 item_udata(struct hid_item *item)
344 {
345 	switch (item->size) {
346 	case 1: return item->data.u8;
347 	case 2: return item->data.u16;
348 	case 4: return item->data.u32;
349 	}
350 	return 0;
351 }
352 
353 static s32 item_sdata(struct hid_item *item)
354 {
355 	switch (item->size) {
356 	case 1: return item->data.s8;
357 	case 2: return item->data.s16;
358 	case 4: return item->data.s32;
359 	}
360 	return 0;
361 }
362 
363 /*
364  * Process a global item.
365  */
366 
367 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
368 {
369 	__s32 raw_value;
370 	switch (item->tag) {
371 	case HID_GLOBAL_ITEM_TAG_PUSH:
372 
373 		if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
374 			hid_err(parser->device, "global environment stack overflow\n");
375 			return -1;
376 		}
377 
378 		memcpy(parser->global_stack + parser->global_stack_ptr++,
379 			&parser->global, sizeof(struct hid_global));
380 		return 0;
381 
382 	case HID_GLOBAL_ITEM_TAG_POP:
383 
384 		if (!parser->global_stack_ptr) {
385 			hid_err(parser->device, "global environment stack underflow\n");
386 			return -1;
387 		}
388 
389 		memcpy(&parser->global, parser->global_stack +
390 			--parser->global_stack_ptr, sizeof(struct hid_global));
391 		return 0;
392 
393 	case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
394 		parser->global.usage_page = item_udata(item);
395 		return 0;
396 
397 	case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
398 		parser->global.logical_minimum = item_sdata(item);
399 		return 0;
400 
401 	case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
402 		if (parser->global.logical_minimum < 0)
403 			parser->global.logical_maximum = item_sdata(item);
404 		else
405 			parser->global.logical_maximum = item_udata(item);
406 		return 0;
407 
408 	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
409 		parser->global.physical_minimum = item_sdata(item);
410 		return 0;
411 
412 	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
413 		if (parser->global.physical_minimum < 0)
414 			parser->global.physical_maximum = item_sdata(item);
415 		else
416 			parser->global.physical_maximum = item_udata(item);
417 		return 0;
418 
419 	case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
420 		/* Many devices provide unit exponent as a two's complement
421 		 * nibble due to the common misunderstanding of HID
422 		 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
423 		 * both this and the standard encoding. */
424 		raw_value = item_sdata(item);
425 		if (!(raw_value & 0xfffffff0))
426 			parser->global.unit_exponent = hid_snto32(raw_value, 4);
427 		else
428 			parser->global.unit_exponent = raw_value;
429 		return 0;
430 
431 	case HID_GLOBAL_ITEM_TAG_UNIT:
432 		parser->global.unit = item_udata(item);
433 		return 0;
434 
435 	case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
436 		parser->global.report_size = item_udata(item);
437 		if (parser->global.report_size > 256) {
438 			hid_err(parser->device, "invalid report_size %d\n",
439 					parser->global.report_size);
440 			return -1;
441 		}
442 		return 0;
443 
444 	case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
445 		parser->global.report_count = item_udata(item);
446 		if (parser->global.report_count > HID_MAX_USAGES) {
447 			hid_err(parser->device, "invalid report_count %d\n",
448 					parser->global.report_count);
449 			return -1;
450 		}
451 		return 0;
452 
453 	case HID_GLOBAL_ITEM_TAG_REPORT_ID:
454 		parser->global.report_id = item_udata(item);
455 		if (parser->global.report_id == 0 ||
456 		    parser->global.report_id >= HID_MAX_IDS) {
457 			hid_err(parser->device, "report_id %u is invalid\n",
458 				parser->global.report_id);
459 			return -1;
460 		}
461 		return 0;
462 
463 	default:
464 		hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
465 		return -1;
466 	}
467 }
468 
469 /*
470  * Process a local item.
471  */
472 
473 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
474 {
475 	__u32 data;
476 	unsigned n;
477 	__u32 count;
478 
479 	data = item_udata(item);
480 
481 	switch (item->tag) {
482 	case HID_LOCAL_ITEM_TAG_DELIMITER:
483 
484 		if (data) {
485 			/*
486 			 * We treat items before the first delimiter
487 			 * as global to all usage sets (branch 0).
488 			 * In the moment we process only these global
489 			 * items and the first delimiter set.
490 			 */
491 			if (parser->local.delimiter_depth != 0) {
492 				hid_err(parser->device, "nested delimiters\n");
493 				return -1;
494 			}
495 			parser->local.delimiter_depth++;
496 			parser->local.delimiter_branch++;
497 		} else {
498 			if (parser->local.delimiter_depth < 1) {
499 				hid_err(parser->device, "bogus close delimiter\n");
500 				return -1;
501 			}
502 			parser->local.delimiter_depth--;
503 		}
504 		return 0;
505 
506 	case HID_LOCAL_ITEM_TAG_USAGE:
507 
508 		if (parser->local.delimiter_branch > 1) {
509 			dbg_hid("alternative usage ignored\n");
510 			return 0;
511 		}
512 
513 		return hid_add_usage(parser, data, item->size);
514 
515 	case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
516 
517 		if (parser->local.delimiter_branch > 1) {
518 			dbg_hid("alternative usage ignored\n");
519 			return 0;
520 		}
521 
522 		parser->local.usage_minimum = data;
523 		return 0;
524 
525 	case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
526 
527 		if (parser->local.delimiter_branch > 1) {
528 			dbg_hid("alternative usage ignored\n");
529 			return 0;
530 		}
531 
532 		count = data - parser->local.usage_minimum;
533 		if (count + parser->local.usage_index >= HID_MAX_USAGES) {
534 			/*
535 			 * We do not warn if the name is not set, we are
536 			 * actually pre-scanning the device.
537 			 */
538 			if (dev_name(&parser->device->dev))
539 				hid_warn(parser->device,
540 					 "ignoring exceeding usage max\n");
541 			data = HID_MAX_USAGES - parser->local.usage_index +
542 				parser->local.usage_minimum - 1;
543 			if (data <= 0) {
544 				hid_err(parser->device,
545 					"no more usage index available\n");
546 				return -1;
547 			}
548 		}
549 
550 		for (n = parser->local.usage_minimum; n <= data; n++)
551 			if (hid_add_usage(parser, n, item->size)) {
552 				dbg_hid("hid_add_usage failed\n");
553 				return -1;
554 			}
555 		return 0;
556 
557 	default:
558 
559 		dbg_hid("unknown local item tag 0x%x\n", item->tag);
560 		return 0;
561 	}
562 	return 0;
563 }
564 
565 /*
566  * Concatenate Usage Pages into Usages where relevant:
567  * As per specification, 6.2.2.8: "When the parser encounters a main item it
568  * concatenates the last declared Usage Page with a Usage to form a complete
569  * usage value."
570  */
571 
572 static void hid_concatenate_last_usage_page(struct hid_parser *parser)
573 {
574 	int i;
575 	unsigned int usage_page;
576 	unsigned int current_page;
577 
578 	if (!parser->local.usage_index)
579 		return;
580 
581 	usage_page = parser->global.usage_page;
582 
583 	/*
584 	 * Concatenate usage page again only if last declared Usage Page
585 	 * has not been already used in previous usages concatenation
586 	 */
587 	for (i = parser->local.usage_index - 1; i >= 0; i--) {
588 		if (parser->local.usage_size[i] > 2)
589 			/* Ignore extended usages */
590 			continue;
591 
592 		current_page = parser->local.usage[i] >> 16;
593 		if (current_page == usage_page)
594 			break;
595 
596 		complete_usage(parser, i);
597 	}
598 }
599 
600 /*
601  * Process a main item.
602  */
603 
604 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
605 {
606 	__u32 data;
607 	int ret;
608 
609 	hid_concatenate_last_usage_page(parser);
610 
611 	data = item_udata(item);
612 
613 	switch (item->tag) {
614 	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
615 		ret = open_collection(parser, data & 0xff);
616 		break;
617 	case HID_MAIN_ITEM_TAG_END_COLLECTION:
618 		ret = close_collection(parser);
619 		break;
620 	case HID_MAIN_ITEM_TAG_INPUT:
621 		ret = hid_add_field(parser, HID_INPUT_REPORT, data);
622 		break;
623 	case HID_MAIN_ITEM_TAG_OUTPUT:
624 		ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
625 		break;
626 	case HID_MAIN_ITEM_TAG_FEATURE:
627 		ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
628 		break;
629 	default:
630 		hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
631 		ret = 0;
632 	}
633 
634 	memset(&parser->local, 0, sizeof(parser->local));	/* Reset the local parser environment */
635 
636 	return ret;
637 }
638 
639 /*
640  * Process a reserved item.
641  */
642 
643 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
644 {
645 	dbg_hid("reserved item type, tag 0x%x\n", item->tag);
646 	return 0;
647 }
648 
649 /*
650  * Free a report and all registered fields. The field->usage and
651  * field->value table's are allocated behind the field, so we need
652  * only to free(field) itself.
653  */
654 
655 static void hid_free_report(struct hid_report *report)
656 {
657 	unsigned n;
658 
659 	for (n = 0; n < report->maxfield; n++)
660 		kfree(report->field[n]);
661 	kfree(report);
662 }
663 
664 /*
665  * Close report. This function returns the device
666  * state to the point prior to hid_open_report().
667  */
668 static void hid_close_report(struct hid_device *device)
669 {
670 	unsigned i, j;
671 
672 	for (i = 0; i < HID_REPORT_TYPES; i++) {
673 		struct hid_report_enum *report_enum = device->report_enum + i;
674 
675 		for (j = 0; j < HID_MAX_IDS; j++) {
676 			struct hid_report *report = report_enum->report_id_hash[j];
677 			if (report)
678 				hid_free_report(report);
679 		}
680 		memset(report_enum, 0, sizeof(*report_enum));
681 		INIT_LIST_HEAD(&report_enum->report_list);
682 	}
683 
684 	kfree(device->rdesc);
685 	device->rdesc = NULL;
686 	device->rsize = 0;
687 
688 	kfree(device->collection);
689 	device->collection = NULL;
690 	device->collection_size = 0;
691 	device->maxcollection = 0;
692 	device->maxapplication = 0;
693 
694 	device->status &= ~HID_STAT_PARSED;
695 }
696 
697 /*
698  * Free a device structure, all reports, and all fields.
699  */
700 
701 static void hid_device_release(struct device *dev)
702 {
703 	struct hid_device *hid = to_hid_device(dev);
704 
705 	hid_close_report(hid);
706 	kfree(hid->dev_rdesc);
707 	kfree(hid);
708 }
709 
710 /*
711  * Fetch a report description item from the data stream. We support long
712  * items, though they are not used yet.
713  */
714 
715 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
716 {
717 	u8 b;
718 
719 	if ((end - start) <= 0)
720 		return NULL;
721 
722 	b = *start++;
723 
724 	item->type = (b >> 2) & 3;
725 	item->tag  = (b >> 4) & 15;
726 
727 	if (item->tag == HID_ITEM_TAG_LONG) {
728 
729 		item->format = HID_ITEM_FORMAT_LONG;
730 
731 		if ((end - start) < 2)
732 			return NULL;
733 
734 		item->size = *start++;
735 		item->tag  = *start++;
736 
737 		if ((end - start) < item->size)
738 			return NULL;
739 
740 		item->data.longdata = start;
741 		start += item->size;
742 		return start;
743 	}
744 
745 	item->format = HID_ITEM_FORMAT_SHORT;
746 	item->size = b & 3;
747 
748 	switch (item->size) {
749 	case 0:
750 		return start;
751 
752 	case 1:
753 		if ((end - start) < 1)
754 			return NULL;
755 		item->data.u8 = *start++;
756 		return start;
757 
758 	case 2:
759 		if ((end - start) < 2)
760 			return NULL;
761 		item->data.u16 = get_unaligned_le16(start);
762 		start = (__u8 *)((__le16 *)start + 1);
763 		return start;
764 
765 	case 3:
766 		item->size++;
767 		if ((end - start) < 4)
768 			return NULL;
769 		item->data.u32 = get_unaligned_le32(start);
770 		start = (__u8 *)((__le32 *)start + 1);
771 		return start;
772 	}
773 
774 	return NULL;
775 }
776 
777 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
778 {
779 	struct hid_device *hid = parser->device;
780 
781 	if (usage == HID_DG_CONTACTID)
782 		hid->group = HID_GROUP_MULTITOUCH;
783 }
784 
785 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
786 {
787 	if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
788 	    parser->global.report_size == 8)
789 		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
790 
791 	if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
792 	    parser->global.report_size == 8)
793 		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
794 }
795 
796 static void hid_scan_collection(struct hid_parser *parser, unsigned type)
797 {
798 	struct hid_device *hid = parser->device;
799 	int i;
800 
801 	if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
802 	    type == HID_COLLECTION_PHYSICAL)
803 		hid->group = HID_GROUP_SENSOR_HUB;
804 
805 	if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
806 	    hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
807 	    hid->group == HID_GROUP_MULTITOUCH)
808 		hid->group = HID_GROUP_GENERIC;
809 
810 	if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
811 		for (i = 0; i < parser->local.usage_index; i++)
812 			if (parser->local.usage[i] == HID_GD_POINTER)
813 				parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
814 
815 	if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
816 		parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
817 }
818 
819 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
820 {
821 	__u32 data;
822 	int i;
823 
824 	hid_concatenate_last_usage_page(parser);
825 
826 	data = item_udata(item);
827 
828 	switch (item->tag) {
829 	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
830 		hid_scan_collection(parser, data & 0xff);
831 		break;
832 	case HID_MAIN_ITEM_TAG_END_COLLECTION:
833 		break;
834 	case HID_MAIN_ITEM_TAG_INPUT:
835 		/* ignore constant inputs, they will be ignored by hid-input */
836 		if (data & HID_MAIN_ITEM_CONSTANT)
837 			break;
838 		for (i = 0; i < parser->local.usage_index; i++)
839 			hid_scan_input_usage(parser, parser->local.usage[i]);
840 		break;
841 	case HID_MAIN_ITEM_TAG_OUTPUT:
842 		break;
843 	case HID_MAIN_ITEM_TAG_FEATURE:
844 		for (i = 0; i < parser->local.usage_index; i++)
845 			hid_scan_feature_usage(parser, parser->local.usage[i]);
846 		break;
847 	}
848 
849 	/* Reset the local parser environment */
850 	memset(&parser->local, 0, sizeof(parser->local));
851 
852 	return 0;
853 }
854 
855 /*
856  * Scan a report descriptor before the device is added to the bus.
857  * Sets device groups and other properties that determine what driver
858  * to load.
859  */
860 static int hid_scan_report(struct hid_device *hid)
861 {
862 	struct hid_parser *parser;
863 	struct hid_item item;
864 	__u8 *start = hid->dev_rdesc;
865 	__u8 *end = start + hid->dev_rsize;
866 	static int (*dispatch_type[])(struct hid_parser *parser,
867 				      struct hid_item *item) = {
868 		hid_scan_main,
869 		hid_parser_global,
870 		hid_parser_local,
871 		hid_parser_reserved
872 	};
873 
874 	parser = vzalloc(sizeof(struct hid_parser));
875 	if (!parser)
876 		return -ENOMEM;
877 
878 	parser->device = hid;
879 	hid->group = HID_GROUP_GENERIC;
880 
881 	/*
882 	 * The parsing is simpler than the one in hid_open_report() as we should
883 	 * be robust against hid errors. Those errors will be raised by
884 	 * hid_open_report() anyway.
885 	 */
886 	while ((start = fetch_item(start, end, &item)) != NULL)
887 		dispatch_type[item.type](parser, &item);
888 
889 	/*
890 	 * Handle special flags set during scanning.
891 	 */
892 	if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
893 	    (hid->group == HID_GROUP_MULTITOUCH))
894 		hid->group = HID_GROUP_MULTITOUCH_WIN_8;
895 
896 	/*
897 	 * Vendor specific handlings
898 	 */
899 	switch (hid->vendor) {
900 	case USB_VENDOR_ID_WACOM:
901 		hid->group = HID_GROUP_WACOM;
902 		break;
903 	case USB_VENDOR_ID_SYNAPTICS:
904 		if (hid->group == HID_GROUP_GENERIC)
905 			if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
906 			    && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
907 				/*
908 				 * hid-rmi should take care of them,
909 				 * not hid-generic
910 				 */
911 				hid->group = HID_GROUP_RMI;
912 		break;
913 	}
914 
915 	kfree(parser->collection_stack);
916 	vfree(parser);
917 	return 0;
918 }
919 
920 /**
921  * hid_parse_report - parse device report
922  *
923  * @device: hid device
924  * @start: report start
925  * @size: report size
926  *
927  * Allocate the device report as read by the bus driver. This function should
928  * only be called from parse() in ll drivers.
929  */
930 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
931 {
932 	hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
933 	if (!hid->dev_rdesc)
934 		return -ENOMEM;
935 	hid->dev_rsize = size;
936 	return 0;
937 }
938 EXPORT_SYMBOL_GPL(hid_parse_report);
939 
940 static const char * const hid_report_names[] = {
941 	"HID_INPUT_REPORT",
942 	"HID_OUTPUT_REPORT",
943 	"HID_FEATURE_REPORT",
944 };
945 /**
946  * hid_validate_values - validate existing device report's value indexes
947  *
948  * @device: hid device
949  * @type: which report type to examine
950  * @id: which report ID to examine (0 for first)
951  * @field_index: which report field to examine
952  * @report_counts: expected number of values
953  *
954  * Validate the number of values in a given field of a given report, after
955  * parsing.
956  */
957 struct hid_report *hid_validate_values(struct hid_device *hid,
958 				       unsigned int type, unsigned int id,
959 				       unsigned int field_index,
960 				       unsigned int report_counts)
961 {
962 	struct hid_report *report;
963 
964 	if (type > HID_FEATURE_REPORT) {
965 		hid_err(hid, "invalid HID report type %u\n", type);
966 		return NULL;
967 	}
968 
969 	if (id >= HID_MAX_IDS) {
970 		hid_err(hid, "invalid HID report id %u\n", id);
971 		return NULL;
972 	}
973 
974 	/*
975 	 * Explicitly not using hid_get_report() here since it depends on
976 	 * ->numbered being checked, which may not always be the case when
977 	 * drivers go to access report values.
978 	 */
979 	if (id == 0) {
980 		/*
981 		 * Validating on id 0 means we should examine the first
982 		 * report in the list.
983 		 */
984 		report = list_entry(
985 				hid->report_enum[type].report_list.next,
986 				struct hid_report, list);
987 	} else {
988 		report = hid->report_enum[type].report_id_hash[id];
989 	}
990 	if (!report) {
991 		hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
992 		return NULL;
993 	}
994 	if (report->maxfield <= field_index) {
995 		hid_err(hid, "not enough fields in %s %u\n",
996 			hid_report_names[type], id);
997 		return NULL;
998 	}
999 	if (report->field[field_index]->report_count < report_counts) {
1000 		hid_err(hid, "not enough values in %s %u field %u\n",
1001 			hid_report_names[type], id, field_index);
1002 		return NULL;
1003 	}
1004 	return report;
1005 }
1006 EXPORT_SYMBOL_GPL(hid_validate_values);
1007 
1008 static int hid_calculate_multiplier(struct hid_device *hid,
1009 				     struct hid_field *multiplier)
1010 {
1011 	int m;
1012 	__s32 v = *multiplier->value;
1013 	__s32 lmin = multiplier->logical_minimum;
1014 	__s32 lmax = multiplier->logical_maximum;
1015 	__s32 pmin = multiplier->physical_minimum;
1016 	__s32 pmax = multiplier->physical_maximum;
1017 
1018 	/*
1019 	 * "Because OS implementations will generally divide the control's
1020 	 * reported count by the Effective Resolution Multiplier, designers
1021 	 * should take care not to establish a potential Effective
1022 	 * Resolution Multiplier of zero."
1023 	 * HID Usage Table, v1.12, Section 4.3.1, p31
1024 	 */
1025 	if (lmax - lmin == 0)
1026 		return 1;
1027 	/*
1028 	 * Handling the unit exponent is left as an exercise to whoever
1029 	 * finds a device where that exponent is not 0.
1030 	 */
1031 	m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
1032 	if (unlikely(multiplier->unit_exponent != 0)) {
1033 		hid_warn(hid,
1034 			 "unsupported Resolution Multiplier unit exponent %d\n",
1035 			 multiplier->unit_exponent);
1036 	}
1037 
1038 	/* There are no devices with an effective multiplier > 255 */
1039 	if (unlikely(m == 0 || m > 255 || m < -255)) {
1040 		hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1041 		m = 1;
1042 	}
1043 
1044 	return m;
1045 }
1046 
1047 static void hid_apply_multiplier_to_field(struct hid_device *hid,
1048 					  struct hid_field *field,
1049 					  struct hid_collection *multiplier_collection,
1050 					  int effective_multiplier)
1051 {
1052 	struct hid_collection *collection;
1053 	struct hid_usage *usage;
1054 	int i;
1055 
1056 	/*
1057 	 * If multiplier_collection is NULL, the multiplier applies
1058 	 * to all fields in the report.
1059 	 * Otherwise, it is the Logical Collection the multiplier applies to
1060 	 * but our field may be in a subcollection of that collection.
1061 	 */
1062 	for (i = 0; i < field->maxusage; i++) {
1063 		usage = &field->usage[i];
1064 
1065 		collection = &hid->collection[usage->collection_index];
1066 		while (collection->parent_idx != -1 &&
1067 		       collection != multiplier_collection)
1068 			collection = &hid->collection[collection->parent_idx];
1069 
1070 		if (collection->parent_idx != -1 ||
1071 		    multiplier_collection == NULL)
1072 			usage->resolution_multiplier = effective_multiplier;
1073 
1074 	}
1075 }
1076 
1077 static void hid_apply_multiplier(struct hid_device *hid,
1078 				 struct hid_field *multiplier)
1079 {
1080 	struct hid_report_enum *rep_enum;
1081 	struct hid_report *rep;
1082 	struct hid_field *field;
1083 	struct hid_collection *multiplier_collection;
1084 	int effective_multiplier;
1085 	int i;
1086 
1087 	/*
1088 	 * "The Resolution Multiplier control must be contained in the same
1089 	 * Logical Collection as the control(s) to which it is to be applied.
1090 	 * If no Resolution Multiplier is defined, then the Resolution
1091 	 * Multiplier defaults to 1.  If more than one control exists in a
1092 	 * Logical Collection, the Resolution Multiplier is associated with
1093 	 * all controls in the collection. If no Logical Collection is
1094 	 * defined, the Resolution Multiplier is associated with all
1095 	 * controls in the report."
1096 	 * HID Usage Table, v1.12, Section 4.3.1, p30
1097 	 *
1098 	 * Thus, search from the current collection upwards until we find a
1099 	 * logical collection. Then search all fields for that same parent
1100 	 * collection. Those are the fields the multiplier applies to.
1101 	 *
1102 	 * If we have more than one multiplier, it will overwrite the
1103 	 * applicable fields later.
1104 	 */
1105 	multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1106 	while (multiplier_collection->parent_idx != -1 &&
1107 	       multiplier_collection->type != HID_COLLECTION_LOGICAL)
1108 		multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1109 
1110 	effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1111 
1112 	rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1113 	list_for_each_entry(rep, &rep_enum->report_list, list) {
1114 		for (i = 0; i < rep->maxfield; i++) {
1115 			field = rep->field[i];
1116 			hid_apply_multiplier_to_field(hid, field,
1117 						      multiplier_collection,
1118 						      effective_multiplier);
1119 		}
1120 	}
1121 }
1122 
1123 /*
1124  * hid_setup_resolution_multiplier - set up all resolution multipliers
1125  *
1126  * @device: hid device
1127  *
1128  * Search for all Resolution Multiplier Feature Reports and apply their
1129  * value to all matching Input items. This only updates the internal struct
1130  * fields.
1131  *
1132  * The Resolution Multiplier is applied by the hardware. If the multiplier
1133  * is anything other than 1, the hardware will send pre-multiplied events
1134  * so that the same physical interaction generates an accumulated
1135  *	accumulated_value = value * * multiplier
1136  * This may be achieved by sending
1137  * - "value * multiplier" for each event, or
1138  * - "value" but "multiplier" times as frequently, or
1139  * - a combination of the above
1140  * The only guarantee is that the same physical interaction always generates
1141  * an accumulated 'value * multiplier'.
1142  *
1143  * This function must be called before any event processing and after
1144  * any SetRequest to the Resolution Multiplier.
1145  */
1146 void hid_setup_resolution_multiplier(struct hid_device *hid)
1147 {
1148 	struct hid_report_enum *rep_enum;
1149 	struct hid_report *rep;
1150 	struct hid_usage *usage;
1151 	int i, j;
1152 
1153 	rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1154 	list_for_each_entry(rep, &rep_enum->report_list, list) {
1155 		for (i = 0; i < rep->maxfield; i++) {
1156 			/* Ignore if report count is out of bounds. */
1157 			if (rep->field[i]->report_count < 1)
1158 				continue;
1159 
1160 			for (j = 0; j < rep->field[i]->maxusage; j++) {
1161 				usage = &rep->field[i]->usage[j];
1162 				if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1163 					hid_apply_multiplier(hid,
1164 							     rep->field[i]);
1165 			}
1166 		}
1167 	}
1168 }
1169 EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1170 
1171 /**
1172  * hid_open_report - open a driver-specific device report
1173  *
1174  * @device: hid device
1175  *
1176  * Parse a report description into a hid_device structure. Reports are
1177  * enumerated, fields are attached to these reports.
1178  * 0 returned on success, otherwise nonzero error value.
1179  *
1180  * This function (or the equivalent hid_parse() macro) should only be
1181  * called from probe() in drivers, before starting the device.
1182  */
1183 int hid_open_report(struct hid_device *device)
1184 {
1185 	struct hid_parser *parser;
1186 	struct hid_item item;
1187 	unsigned int size;
1188 	__u8 *start;
1189 	__u8 *buf;
1190 	__u8 *end;
1191 	__u8 *next;
1192 	int ret;
1193 	static int (*dispatch_type[])(struct hid_parser *parser,
1194 				      struct hid_item *item) = {
1195 		hid_parser_main,
1196 		hid_parser_global,
1197 		hid_parser_local,
1198 		hid_parser_reserved
1199 	};
1200 
1201 	if (WARN_ON(device->status & HID_STAT_PARSED))
1202 		return -EBUSY;
1203 
1204 	start = device->dev_rdesc;
1205 	if (WARN_ON(!start))
1206 		return -ENODEV;
1207 	size = device->dev_rsize;
1208 
1209 	buf = kmemdup(start, size, GFP_KERNEL);
1210 	if (buf == NULL)
1211 		return -ENOMEM;
1212 
1213 	if (device->driver->report_fixup)
1214 		start = device->driver->report_fixup(device, buf, &size);
1215 	else
1216 		start = buf;
1217 
1218 	start = kmemdup(start, size, GFP_KERNEL);
1219 	kfree(buf);
1220 	if (start == NULL)
1221 		return -ENOMEM;
1222 
1223 	device->rdesc = start;
1224 	device->rsize = size;
1225 
1226 	parser = vzalloc(sizeof(struct hid_parser));
1227 	if (!parser) {
1228 		ret = -ENOMEM;
1229 		goto alloc_err;
1230 	}
1231 
1232 	parser->device = device;
1233 
1234 	end = start + size;
1235 
1236 	device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1237 				     sizeof(struct hid_collection), GFP_KERNEL);
1238 	if (!device->collection) {
1239 		ret = -ENOMEM;
1240 		goto err;
1241 	}
1242 	device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1243 
1244 	ret = -EINVAL;
1245 	while ((next = fetch_item(start, end, &item)) != NULL) {
1246 		start = next;
1247 
1248 		if (item.format != HID_ITEM_FORMAT_SHORT) {
1249 			hid_err(device, "unexpected long global item\n");
1250 			goto err;
1251 		}
1252 
1253 		if (dispatch_type[item.type](parser, &item)) {
1254 			hid_err(device, "item %u %u %u %u parsing failed\n",
1255 				item.format, (unsigned)item.size,
1256 				(unsigned)item.type, (unsigned)item.tag);
1257 			goto err;
1258 		}
1259 
1260 		if (start == end) {
1261 			if (parser->collection_stack_ptr) {
1262 				hid_err(device, "unbalanced collection at end of report description\n");
1263 				goto err;
1264 			}
1265 			if (parser->local.delimiter_depth) {
1266 				hid_err(device, "unbalanced delimiter at end of report description\n");
1267 				goto err;
1268 			}
1269 
1270 			/*
1271 			 * fetch initial values in case the device's
1272 			 * default multiplier isn't the recommended 1
1273 			 */
1274 			hid_setup_resolution_multiplier(device);
1275 
1276 			kfree(parser->collection_stack);
1277 			vfree(parser);
1278 			device->status |= HID_STAT_PARSED;
1279 
1280 			return 0;
1281 		}
1282 	}
1283 
1284 	hid_err(device, "item fetching failed at offset %u/%u\n",
1285 		size - (unsigned int)(end - start), size);
1286 err:
1287 	kfree(parser->collection_stack);
1288 alloc_err:
1289 	vfree(parser);
1290 	hid_close_report(device);
1291 	return ret;
1292 }
1293 EXPORT_SYMBOL_GPL(hid_open_report);
1294 
1295 /*
1296  * Convert a signed n-bit integer to signed 32-bit integer. Common
1297  * cases are done through the compiler, the screwed things has to be
1298  * done by hand.
1299  */
1300 
1301 static s32 snto32(__u32 value, unsigned n)
1302 {
1303 	switch (n) {
1304 	case 8:  return ((__s8)value);
1305 	case 16: return ((__s16)value);
1306 	case 32: return ((__s32)value);
1307 	}
1308 	return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1309 }
1310 
1311 s32 hid_snto32(__u32 value, unsigned n)
1312 {
1313 	return snto32(value, n);
1314 }
1315 EXPORT_SYMBOL_GPL(hid_snto32);
1316 
1317 /*
1318  * Convert a signed 32-bit integer to a signed n-bit integer.
1319  */
1320 
1321 static u32 s32ton(__s32 value, unsigned n)
1322 {
1323 	s32 a = value >> (n - 1);
1324 	if (a && a != -1)
1325 		return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1326 	return value & ((1 << n) - 1);
1327 }
1328 
1329 /*
1330  * Extract/implement a data field from/to a little endian report (bit array).
1331  *
1332  * Code sort-of follows HID spec:
1333  *     http://www.usb.org/developers/hidpage/HID1_11.pdf
1334  *
1335  * While the USB HID spec allows unlimited length bit fields in "report
1336  * descriptors", most devices never use more than 16 bits.
1337  * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1338  * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1339  */
1340 
1341 static u32 __extract(u8 *report, unsigned offset, int n)
1342 {
1343 	unsigned int idx = offset / 8;
1344 	unsigned int bit_nr = 0;
1345 	unsigned int bit_shift = offset % 8;
1346 	int bits_to_copy = 8 - bit_shift;
1347 	u32 value = 0;
1348 	u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1349 
1350 	while (n > 0) {
1351 		value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1352 		n -= bits_to_copy;
1353 		bit_nr += bits_to_copy;
1354 		bits_to_copy = 8;
1355 		bit_shift = 0;
1356 		idx++;
1357 	}
1358 
1359 	return value & mask;
1360 }
1361 
1362 u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1363 			unsigned offset, unsigned n)
1364 {
1365 	if (n > 32) {
1366 		hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1367 			      __func__, n, current->comm);
1368 		n = 32;
1369 	}
1370 
1371 	return __extract(report, offset, n);
1372 }
1373 EXPORT_SYMBOL_GPL(hid_field_extract);
1374 
1375 /*
1376  * "implement" : set bits in a little endian bit stream.
1377  * Same concepts as "extract" (see comments above).
1378  * The data mangled in the bit stream remains in little endian
1379  * order the whole time. It make more sense to talk about
1380  * endianness of register values by considering a register
1381  * a "cached" copy of the little endian bit stream.
1382  */
1383 
1384 static void __implement(u8 *report, unsigned offset, int n, u32 value)
1385 {
1386 	unsigned int idx = offset / 8;
1387 	unsigned int bit_shift = offset % 8;
1388 	int bits_to_set = 8 - bit_shift;
1389 
1390 	while (n - bits_to_set >= 0) {
1391 		report[idx] &= ~(0xff << bit_shift);
1392 		report[idx] |= value << bit_shift;
1393 		value >>= bits_to_set;
1394 		n -= bits_to_set;
1395 		bits_to_set = 8;
1396 		bit_shift = 0;
1397 		idx++;
1398 	}
1399 
1400 	/* last nibble */
1401 	if (n) {
1402 		u8 bit_mask = ((1U << n) - 1);
1403 		report[idx] &= ~(bit_mask << bit_shift);
1404 		report[idx] |= value << bit_shift;
1405 	}
1406 }
1407 
1408 static void implement(const struct hid_device *hid, u8 *report,
1409 		      unsigned offset, unsigned n, u32 value)
1410 {
1411 	if (unlikely(n > 32)) {
1412 		hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1413 			 __func__, n, current->comm);
1414 		n = 32;
1415 	} else if (n < 32) {
1416 		u32 m = (1U << n) - 1;
1417 
1418 		if (unlikely(value > m)) {
1419 			hid_warn(hid,
1420 				 "%s() called with too large value %d (n: %d)! (%s)\n",
1421 				 __func__, value, n, current->comm);
1422 			WARN_ON(1);
1423 			value &= m;
1424 		}
1425 	}
1426 
1427 	__implement(report, offset, n, value);
1428 }
1429 
1430 /*
1431  * Search an array for a value.
1432  */
1433 
1434 static int search(__s32 *array, __s32 value, unsigned n)
1435 {
1436 	while (n--) {
1437 		if (*array++ == value)
1438 			return 0;
1439 	}
1440 	return -1;
1441 }
1442 
1443 /**
1444  * hid_match_report - check if driver's raw_event should be called
1445  *
1446  * @hid: hid device
1447  * @report_type: type to match against
1448  *
1449  * compare hid->driver->report_table->report_type to report->type
1450  */
1451 static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1452 {
1453 	const struct hid_report_id *id = hid->driver->report_table;
1454 
1455 	if (!id) /* NULL means all */
1456 		return 1;
1457 
1458 	for (; id->report_type != HID_TERMINATOR; id++)
1459 		if (id->report_type == HID_ANY_ID ||
1460 				id->report_type == report->type)
1461 			return 1;
1462 	return 0;
1463 }
1464 
1465 /**
1466  * hid_match_usage - check if driver's event should be called
1467  *
1468  * @hid: hid device
1469  * @usage: usage to match against
1470  *
1471  * compare hid->driver->usage_table->usage_{type,code} to
1472  * usage->usage_{type,code}
1473  */
1474 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1475 {
1476 	const struct hid_usage_id *id = hid->driver->usage_table;
1477 
1478 	if (!id) /* NULL means all */
1479 		return 1;
1480 
1481 	for (; id->usage_type != HID_ANY_ID - 1; id++)
1482 		if ((id->usage_hid == HID_ANY_ID ||
1483 				id->usage_hid == usage->hid) &&
1484 				(id->usage_type == HID_ANY_ID ||
1485 				id->usage_type == usage->type) &&
1486 				(id->usage_code == HID_ANY_ID ||
1487 				 id->usage_code == usage->code))
1488 			return 1;
1489 	return 0;
1490 }
1491 
1492 static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1493 		struct hid_usage *usage, __s32 value, int interrupt)
1494 {
1495 	struct hid_driver *hdrv = hid->driver;
1496 	int ret;
1497 
1498 	if (!list_empty(&hid->debug_list))
1499 		hid_dump_input(hid, usage, value);
1500 
1501 	if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1502 		ret = hdrv->event(hid, field, usage, value);
1503 		if (ret != 0) {
1504 			if (ret < 0)
1505 				hid_err(hid, "%s's event failed with %d\n",
1506 						hdrv->name, ret);
1507 			return;
1508 		}
1509 	}
1510 
1511 	if (hid->claimed & HID_CLAIMED_INPUT)
1512 		hidinput_hid_event(hid, field, usage, value);
1513 	if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1514 		hid->hiddev_hid_event(hid, field, usage, value);
1515 }
1516 
1517 /*
1518  * Analyse a received field, and fetch the data from it. The field
1519  * content is stored for next report processing (we do differential
1520  * reporting to the layer).
1521  */
1522 
1523 static void hid_input_field(struct hid_device *hid, struct hid_field *field,
1524 			    __u8 *data, int interrupt)
1525 {
1526 	unsigned n;
1527 	unsigned count = field->report_count;
1528 	unsigned offset = field->report_offset;
1529 	unsigned size = field->report_size;
1530 	__s32 min = field->logical_minimum;
1531 	__s32 max = field->logical_maximum;
1532 	__s32 *value;
1533 
1534 	value = kmalloc_array(count, sizeof(__s32), GFP_ATOMIC);
1535 	if (!value)
1536 		return;
1537 
1538 	for (n = 0; n < count; n++) {
1539 
1540 		value[n] = min < 0 ?
1541 			snto32(hid_field_extract(hid, data, offset + n * size,
1542 			       size), size) :
1543 			hid_field_extract(hid, data, offset + n * size, size);
1544 
1545 		/* Ignore report if ErrorRollOver */
1546 		if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1547 		    value[n] >= min && value[n] <= max &&
1548 		    value[n] - min < field->maxusage &&
1549 		    field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
1550 			goto exit;
1551 	}
1552 
1553 	for (n = 0; n < count; n++) {
1554 
1555 		if (HID_MAIN_ITEM_VARIABLE & field->flags) {
1556 			hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
1557 			continue;
1558 		}
1559 
1560 		if (field->value[n] >= min && field->value[n] <= max
1561 			&& field->value[n] - min < field->maxusage
1562 			&& field->usage[field->value[n] - min].hid
1563 			&& search(value, field->value[n], count))
1564 				hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
1565 
1566 		if (value[n] >= min && value[n] <= max
1567 			&& value[n] - min < field->maxusage
1568 			&& field->usage[value[n] - min].hid
1569 			&& search(field->value, value[n], count))
1570 				hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
1571 	}
1572 
1573 	memcpy(field->value, value, count * sizeof(__s32));
1574 exit:
1575 	kfree(value);
1576 }
1577 
1578 /*
1579  * Output the field into the report.
1580  */
1581 
1582 static void hid_output_field(const struct hid_device *hid,
1583 			     struct hid_field *field, __u8 *data)
1584 {
1585 	unsigned count = field->report_count;
1586 	unsigned offset = field->report_offset;
1587 	unsigned size = field->report_size;
1588 	unsigned n;
1589 
1590 	for (n = 0; n < count; n++) {
1591 		if (field->logical_minimum < 0)	/* signed values */
1592 			implement(hid, data, offset + n * size, size,
1593 				  s32ton(field->value[n], size));
1594 		else				/* unsigned values */
1595 			implement(hid, data, offset + n * size, size,
1596 				  field->value[n]);
1597 	}
1598 }
1599 
1600 /*
1601  * Create a report. 'data' has to be allocated using
1602  * hid_alloc_report_buf() so that it has proper size.
1603  */
1604 
1605 void hid_output_report(struct hid_report *report, __u8 *data)
1606 {
1607 	unsigned n;
1608 
1609 	if (report->id > 0)
1610 		*data++ = report->id;
1611 
1612 	memset(data, 0, ((report->size - 1) >> 3) + 1);
1613 	for (n = 0; n < report->maxfield; n++)
1614 		hid_output_field(report->device, report->field[n], data);
1615 }
1616 EXPORT_SYMBOL_GPL(hid_output_report);
1617 
1618 /*
1619  * Allocator for buffer that is going to be passed to hid_output_report()
1620  */
1621 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1622 {
1623 	/*
1624 	 * 7 extra bytes are necessary to achieve proper functionality
1625 	 * of implement() working on 8 byte chunks
1626 	 */
1627 
1628 	u32 len = hid_report_len(report) + 7;
1629 
1630 	return kmalloc(len, flags);
1631 }
1632 EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1633 
1634 /*
1635  * Set a field value. The report this field belongs to has to be
1636  * created and transferred to the device, to set this value in the
1637  * device.
1638  */
1639 
1640 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1641 {
1642 	unsigned size;
1643 
1644 	if (!field)
1645 		return -1;
1646 
1647 	size = field->report_size;
1648 
1649 	hid_dump_input(field->report->device, field->usage + offset, value);
1650 
1651 	if (offset >= field->report_count) {
1652 		hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1653 				offset, field->report_count);
1654 		return -1;
1655 	}
1656 	if (field->logical_minimum < 0) {
1657 		if (value != snto32(s32ton(value, size), size)) {
1658 			hid_err(field->report->device, "value %d is out of range\n", value);
1659 			return -1;
1660 		}
1661 	}
1662 	field->value[offset] = value;
1663 	return 0;
1664 }
1665 EXPORT_SYMBOL_GPL(hid_set_field);
1666 
1667 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1668 		const u8 *data)
1669 {
1670 	struct hid_report *report;
1671 	unsigned int n = 0;	/* Normally report number is 0 */
1672 
1673 	/* Device uses numbered reports, data[0] is report number */
1674 	if (report_enum->numbered)
1675 		n = *data;
1676 
1677 	report = report_enum->report_id_hash[n];
1678 	if (report == NULL)
1679 		dbg_hid("undefined report_id %u received\n", n);
1680 
1681 	return report;
1682 }
1683 
1684 /*
1685  * Implement a generic .request() callback, using .raw_request()
1686  * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1687  */
1688 int __hid_request(struct hid_device *hid, struct hid_report *report,
1689 		int reqtype)
1690 {
1691 	char *buf;
1692 	int ret;
1693 	u32 len;
1694 
1695 	buf = hid_alloc_report_buf(report, GFP_KERNEL);
1696 	if (!buf)
1697 		return -ENOMEM;
1698 
1699 	len = hid_report_len(report);
1700 
1701 	if (reqtype == HID_REQ_SET_REPORT)
1702 		hid_output_report(report, buf);
1703 
1704 	ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1705 					  report->type, reqtype);
1706 	if (ret < 0) {
1707 		dbg_hid("unable to complete request: %d\n", ret);
1708 		goto out;
1709 	}
1710 
1711 	if (reqtype == HID_REQ_GET_REPORT)
1712 		hid_input_report(hid, report->type, buf, ret, 0);
1713 
1714 	ret = 0;
1715 
1716 out:
1717 	kfree(buf);
1718 	return ret;
1719 }
1720 EXPORT_SYMBOL_GPL(__hid_request);
1721 
1722 int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size,
1723 		int interrupt)
1724 {
1725 	struct hid_report_enum *report_enum = hid->report_enum + type;
1726 	struct hid_report *report;
1727 	struct hid_driver *hdrv;
1728 	unsigned int a;
1729 	u32 rsize, csize = size;
1730 	u8 *cdata = data;
1731 	int ret = 0;
1732 
1733 	report = hid_get_report(report_enum, data);
1734 	if (!report)
1735 		goto out;
1736 
1737 	if (report_enum->numbered) {
1738 		cdata++;
1739 		csize--;
1740 	}
1741 
1742 	rsize = ((report->size - 1) >> 3) + 1;
1743 
1744 	if (rsize > HID_MAX_BUFFER_SIZE)
1745 		rsize = HID_MAX_BUFFER_SIZE;
1746 
1747 	if (csize < rsize) {
1748 		dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1749 				csize, rsize);
1750 		memset(cdata + csize, 0, rsize - csize);
1751 	}
1752 
1753 	if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1754 		hid->hiddev_report_event(hid, report);
1755 	if (hid->claimed & HID_CLAIMED_HIDRAW) {
1756 		ret = hidraw_report_event(hid, data, size);
1757 		if (ret)
1758 			goto out;
1759 	}
1760 
1761 	if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
1762 		for (a = 0; a < report->maxfield; a++)
1763 			hid_input_field(hid, report->field[a], cdata, interrupt);
1764 		hdrv = hid->driver;
1765 		if (hdrv && hdrv->report)
1766 			hdrv->report(hid, report);
1767 	}
1768 
1769 	if (hid->claimed & HID_CLAIMED_INPUT)
1770 		hidinput_report_event(hid, report);
1771 out:
1772 	return ret;
1773 }
1774 EXPORT_SYMBOL_GPL(hid_report_raw_event);
1775 
1776 /**
1777  * hid_input_report - report data from lower layer (usb, bt...)
1778  *
1779  * @hid: hid device
1780  * @type: HID report type (HID_*_REPORT)
1781  * @data: report contents
1782  * @size: size of data parameter
1783  * @interrupt: distinguish between interrupt and control transfers
1784  *
1785  * This is data entry for lower layers.
1786  */
1787 int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt)
1788 {
1789 	struct hid_report_enum *report_enum;
1790 	struct hid_driver *hdrv;
1791 	struct hid_report *report;
1792 	int ret = 0;
1793 
1794 	if (!hid)
1795 		return -ENODEV;
1796 
1797 	if (down_trylock(&hid->driver_input_lock))
1798 		return -EBUSY;
1799 
1800 	if (!hid->driver) {
1801 		ret = -ENODEV;
1802 		goto unlock;
1803 	}
1804 	report_enum = hid->report_enum + type;
1805 	hdrv = hid->driver;
1806 
1807 	if (!size) {
1808 		dbg_hid("empty report\n");
1809 		ret = -1;
1810 		goto unlock;
1811 	}
1812 
1813 	/* Avoid unnecessary overhead if debugfs is disabled */
1814 	if (!list_empty(&hid->debug_list))
1815 		hid_dump_report(hid, type, data, size);
1816 
1817 	report = hid_get_report(report_enum, data);
1818 
1819 	if (!report) {
1820 		ret = -1;
1821 		goto unlock;
1822 	}
1823 
1824 	if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1825 		ret = hdrv->raw_event(hid, report, data, size);
1826 		if (ret < 0)
1827 			goto unlock;
1828 	}
1829 
1830 	ret = hid_report_raw_event(hid, type, data, size, interrupt);
1831 
1832 unlock:
1833 	up(&hid->driver_input_lock);
1834 	return ret;
1835 }
1836 EXPORT_SYMBOL_GPL(hid_input_report);
1837 
1838 bool hid_match_one_id(const struct hid_device *hdev,
1839 		      const struct hid_device_id *id)
1840 {
1841 	return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
1842 		(id->group == HID_GROUP_ANY || id->group == hdev->group) &&
1843 		(id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1844 		(id->product == HID_ANY_ID || id->product == hdev->product);
1845 }
1846 
1847 const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
1848 		const struct hid_device_id *id)
1849 {
1850 	for (; id->bus; id++)
1851 		if (hid_match_one_id(hdev, id))
1852 			return id;
1853 
1854 	return NULL;
1855 }
1856 
1857 static const struct hid_device_id hid_hiddev_list[] = {
1858 	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1859 	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1860 	{ }
1861 };
1862 
1863 static bool hid_hiddev(struct hid_device *hdev)
1864 {
1865 	return !!hid_match_id(hdev, hid_hiddev_list);
1866 }
1867 
1868 
1869 static ssize_t
1870 read_report_descriptor(struct file *filp, struct kobject *kobj,
1871 		struct bin_attribute *attr,
1872 		char *buf, loff_t off, size_t count)
1873 {
1874 	struct device *dev = kobj_to_dev(kobj);
1875 	struct hid_device *hdev = to_hid_device(dev);
1876 
1877 	if (off >= hdev->rsize)
1878 		return 0;
1879 
1880 	if (off + count > hdev->rsize)
1881 		count = hdev->rsize - off;
1882 
1883 	memcpy(buf, hdev->rdesc + off, count);
1884 
1885 	return count;
1886 }
1887 
1888 static ssize_t
1889 show_country(struct device *dev, struct device_attribute *attr,
1890 		char *buf)
1891 {
1892 	struct hid_device *hdev = to_hid_device(dev);
1893 
1894 	return sprintf(buf, "%02x\n", hdev->country & 0xff);
1895 }
1896 
1897 static struct bin_attribute dev_bin_attr_report_desc = {
1898 	.attr = { .name = "report_descriptor", .mode = 0444 },
1899 	.read = read_report_descriptor,
1900 	.size = HID_MAX_DESCRIPTOR_SIZE,
1901 };
1902 
1903 static const struct device_attribute dev_attr_country = {
1904 	.attr = { .name = "country", .mode = 0444 },
1905 	.show = show_country,
1906 };
1907 
1908 int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1909 {
1910 	static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1911 		"Joystick", "Gamepad", "Keyboard", "Keypad",
1912 		"Multi-Axis Controller"
1913 	};
1914 	const char *type, *bus;
1915 	char buf[64] = "";
1916 	unsigned int i;
1917 	int len;
1918 	int ret;
1919 
1920 	if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1921 		connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1922 	if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1923 		connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1924 	if (hdev->bus != BUS_USB)
1925 		connect_mask &= ~HID_CONNECT_HIDDEV;
1926 	if (hid_hiddev(hdev))
1927 		connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1928 
1929 	if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1930 				connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1931 		hdev->claimed |= HID_CLAIMED_INPUT;
1932 
1933 	if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1934 			!hdev->hiddev_connect(hdev,
1935 				connect_mask & HID_CONNECT_HIDDEV_FORCE))
1936 		hdev->claimed |= HID_CLAIMED_HIDDEV;
1937 	if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1938 		hdev->claimed |= HID_CLAIMED_HIDRAW;
1939 
1940 	if (connect_mask & HID_CONNECT_DRIVER)
1941 		hdev->claimed |= HID_CLAIMED_DRIVER;
1942 
1943 	/* Drivers with the ->raw_event callback set are not required to connect
1944 	 * to any other listener. */
1945 	if (!hdev->claimed && !hdev->driver->raw_event) {
1946 		hid_err(hdev, "device has no listeners, quitting\n");
1947 		return -ENODEV;
1948 	}
1949 
1950 	if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1951 			(connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1952 		hdev->ff_init(hdev);
1953 
1954 	len = 0;
1955 	if (hdev->claimed & HID_CLAIMED_INPUT)
1956 		len += sprintf(buf + len, "input");
1957 	if (hdev->claimed & HID_CLAIMED_HIDDEV)
1958 		len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1959 				((struct hiddev *)hdev->hiddev)->minor);
1960 	if (hdev->claimed & HID_CLAIMED_HIDRAW)
1961 		len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
1962 				((struct hidraw *)hdev->hidraw)->minor);
1963 
1964 	type = "Device";
1965 	for (i = 0; i < hdev->maxcollection; i++) {
1966 		struct hid_collection *col = &hdev->collection[i];
1967 		if (col->type == HID_COLLECTION_APPLICATION &&
1968 		   (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
1969 		   (col->usage & 0xffff) < ARRAY_SIZE(types)) {
1970 			type = types[col->usage & 0xffff];
1971 			break;
1972 		}
1973 	}
1974 
1975 	switch (hdev->bus) {
1976 	case BUS_USB:
1977 		bus = "USB";
1978 		break;
1979 	case BUS_BLUETOOTH:
1980 		bus = "BLUETOOTH";
1981 		break;
1982 	case BUS_I2C:
1983 		bus = "I2C";
1984 		break;
1985 	default:
1986 		bus = "<UNKNOWN>";
1987 	}
1988 
1989 	ret = device_create_file(&hdev->dev, &dev_attr_country);
1990 	if (ret)
1991 		hid_warn(hdev,
1992 			 "can't create sysfs country code attribute err: %d\n", ret);
1993 
1994 	hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
1995 		 buf, bus, hdev->version >> 8, hdev->version & 0xff,
1996 		 type, hdev->name, hdev->phys);
1997 
1998 	return 0;
1999 }
2000 EXPORT_SYMBOL_GPL(hid_connect);
2001 
2002 void hid_disconnect(struct hid_device *hdev)
2003 {
2004 	device_remove_file(&hdev->dev, &dev_attr_country);
2005 	if (hdev->claimed & HID_CLAIMED_INPUT)
2006 		hidinput_disconnect(hdev);
2007 	if (hdev->claimed & HID_CLAIMED_HIDDEV)
2008 		hdev->hiddev_disconnect(hdev);
2009 	if (hdev->claimed & HID_CLAIMED_HIDRAW)
2010 		hidraw_disconnect(hdev);
2011 	hdev->claimed = 0;
2012 }
2013 EXPORT_SYMBOL_GPL(hid_disconnect);
2014 
2015 /**
2016  * hid_hw_start - start underlying HW
2017  * @hdev: hid device
2018  * @connect_mask: which outputs to connect, see HID_CONNECT_*
2019  *
2020  * Call this in probe function *after* hid_parse. This will setup HW
2021  * buffers and start the device (if not defeirred to device open).
2022  * hid_hw_stop must be called if this was successful.
2023  */
2024 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
2025 {
2026 	int error;
2027 
2028 	error = hdev->ll_driver->start(hdev);
2029 	if (error)
2030 		return error;
2031 
2032 	if (connect_mask) {
2033 		error = hid_connect(hdev, connect_mask);
2034 		if (error) {
2035 			hdev->ll_driver->stop(hdev);
2036 			return error;
2037 		}
2038 	}
2039 
2040 	return 0;
2041 }
2042 EXPORT_SYMBOL_GPL(hid_hw_start);
2043 
2044 /**
2045  * hid_hw_stop - stop underlying HW
2046  * @hdev: hid device
2047  *
2048  * This is usually called from remove function or from probe when something
2049  * failed and hid_hw_start was called already.
2050  */
2051 void hid_hw_stop(struct hid_device *hdev)
2052 {
2053 	hid_disconnect(hdev);
2054 	hdev->ll_driver->stop(hdev);
2055 }
2056 EXPORT_SYMBOL_GPL(hid_hw_stop);
2057 
2058 /**
2059  * hid_hw_open - signal underlying HW to start delivering events
2060  * @hdev: hid device
2061  *
2062  * Tell underlying HW to start delivering events from the device.
2063  * This function should be called sometime after successful call
2064  * to hid_hw_start().
2065  */
2066 int hid_hw_open(struct hid_device *hdev)
2067 {
2068 	int ret;
2069 
2070 	ret = mutex_lock_killable(&hdev->ll_open_lock);
2071 	if (ret)
2072 		return ret;
2073 
2074 	if (!hdev->ll_open_count++) {
2075 		ret = hdev->ll_driver->open(hdev);
2076 		if (ret)
2077 			hdev->ll_open_count--;
2078 	}
2079 
2080 	mutex_unlock(&hdev->ll_open_lock);
2081 	return ret;
2082 }
2083 EXPORT_SYMBOL_GPL(hid_hw_open);
2084 
2085 /**
2086  * hid_hw_close - signal underlaying HW to stop delivering events
2087  *
2088  * @hdev: hid device
2089  *
2090  * This function indicates that we are not interested in the events
2091  * from this device anymore. Delivery of events may or may not stop,
2092  * depending on the number of users still outstanding.
2093  */
2094 void hid_hw_close(struct hid_device *hdev)
2095 {
2096 	mutex_lock(&hdev->ll_open_lock);
2097 	if (!--hdev->ll_open_count)
2098 		hdev->ll_driver->close(hdev);
2099 	mutex_unlock(&hdev->ll_open_lock);
2100 }
2101 EXPORT_SYMBOL_GPL(hid_hw_close);
2102 
2103 struct hid_dynid {
2104 	struct list_head list;
2105 	struct hid_device_id id;
2106 };
2107 
2108 /**
2109  * store_new_id - add a new HID device ID to this driver and re-probe devices
2110  * @driver: target device driver
2111  * @buf: buffer for scanning device ID data
2112  * @count: input size
2113  *
2114  * Adds a new dynamic hid device ID to this driver,
2115  * and causes the driver to probe for all devices again.
2116  */
2117 static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2118 		size_t count)
2119 {
2120 	struct hid_driver *hdrv = to_hid_driver(drv);
2121 	struct hid_dynid *dynid;
2122 	__u32 bus, vendor, product;
2123 	unsigned long driver_data = 0;
2124 	int ret;
2125 
2126 	ret = sscanf(buf, "%x %x %x %lx",
2127 			&bus, &vendor, &product, &driver_data);
2128 	if (ret < 3)
2129 		return -EINVAL;
2130 
2131 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2132 	if (!dynid)
2133 		return -ENOMEM;
2134 
2135 	dynid->id.bus = bus;
2136 	dynid->id.group = HID_GROUP_ANY;
2137 	dynid->id.vendor = vendor;
2138 	dynid->id.product = product;
2139 	dynid->id.driver_data = driver_data;
2140 
2141 	spin_lock(&hdrv->dyn_lock);
2142 	list_add_tail(&dynid->list, &hdrv->dyn_list);
2143 	spin_unlock(&hdrv->dyn_lock);
2144 
2145 	ret = driver_attach(&hdrv->driver);
2146 
2147 	return ret ? : count;
2148 }
2149 static DRIVER_ATTR_WO(new_id);
2150 
2151 static struct attribute *hid_drv_attrs[] = {
2152 	&driver_attr_new_id.attr,
2153 	NULL,
2154 };
2155 ATTRIBUTE_GROUPS(hid_drv);
2156 
2157 static void hid_free_dynids(struct hid_driver *hdrv)
2158 {
2159 	struct hid_dynid *dynid, *n;
2160 
2161 	spin_lock(&hdrv->dyn_lock);
2162 	list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2163 		list_del(&dynid->list);
2164 		kfree(dynid);
2165 	}
2166 	spin_unlock(&hdrv->dyn_lock);
2167 }
2168 
2169 const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2170 					     struct hid_driver *hdrv)
2171 {
2172 	struct hid_dynid *dynid;
2173 
2174 	spin_lock(&hdrv->dyn_lock);
2175 	list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2176 		if (hid_match_one_id(hdev, &dynid->id)) {
2177 			spin_unlock(&hdrv->dyn_lock);
2178 			return &dynid->id;
2179 		}
2180 	}
2181 	spin_unlock(&hdrv->dyn_lock);
2182 
2183 	return hid_match_id(hdev, hdrv->id_table);
2184 }
2185 EXPORT_SYMBOL_GPL(hid_match_device);
2186 
2187 static int hid_bus_match(struct device *dev, struct device_driver *drv)
2188 {
2189 	struct hid_driver *hdrv = to_hid_driver(drv);
2190 	struct hid_device *hdev = to_hid_device(dev);
2191 
2192 	return hid_match_device(hdev, hdrv) != NULL;
2193 }
2194 
2195 /**
2196  * hid_compare_device_paths - check if both devices share the same path
2197  * @hdev_a: hid device
2198  * @hdev_b: hid device
2199  * @separator: char to use as separator
2200  *
2201  * Check if two devices share the same path up to the last occurrence of
2202  * the separator char. Both paths must exist (i.e., zero-length paths
2203  * don't match).
2204  */
2205 bool hid_compare_device_paths(struct hid_device *hdev_a,
2206 			      struct hid_device *hdev_b, char separator)
2207 {
2208 	int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2209 	int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2210 
2211 	if (n1 != n2 || n1 <= 0 || n2 <= 0)
2212 		return false;
2213 
2214 	return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2215 }
2216 EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2217 
2218 static int hid_device_probe(struct device *dev)
2219 {
2220 	struct hid_driver *hdrv = to_hid_driver(dev->driver);
2221 	struct hid_device *hdev = to_hid_device(dev);
2222 	const struct hid_device_id *id;
2223 	int ret = 0;
2224 
2225 	if (down_interruptible(&hdev->driver_input_lock)) {
2226 		ret = -EINTR;
2227 		goto end;
2228 	}
2229 	hdev->io_started = false;
2230 
2231 	clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2232 
2233 	if (!hdev->driver) {
2234 		id = hid_match_device(hdev, hdrv);
2235 		if (id == NULL) {
2236 			ret = -ENODEV;
2237 			goto unlock;
2238 		}
2239 
2240 		if (hdrv->match) {
2241 			if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
2242 				ret = -ENODEV;
2243 				goto unlock;
2244 			}
2245 		} else {
2246 			/*
2247 			 * hid-generic implements .match(), so if
2248 			 * hid_ignore_special_drivers is set, we can safely
2249 			 * return.
2250 			 */
2251 			if (hid_ignore_special_drivers) {
2252 				ret = -ENODEV;
2253 				goto unlock;
2254 			}
2255 		}
2256 
2257 		/* reset the quirks that has been previously set */
2258 		hdev->quirks = hid_lookup_quirk(hdev);
2259 		hdev->driver = hdrv;
2260 		if (hdrv->probe) {
2261 			ret = hdrv->probe(hdev, id);
2262 		} else { /* default probe */
2263 			ret = hid_open_report(hdev);
2264 			if (!ret)
2265 				ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2266 		}
2267 		if (ret) {
2268 			hid_close_report(hdev);
2269 			hdev->driver = NULL;
2270 		}
2271 	}
2272 unlock:
2273 	if (!hdev->io_started)
2274 		up(&hdev->driver_input_lock);
2275 end:
2276 	return ret;
2277 }
2278 
2279 static int hid_device_remove(struct device *dev)
2280 {
2281 	struct hid_device *hdev = to_hid_device(dev);
2282 	struct hid_driver *hdrv;
2283 	int ret = 0;
2284 
2285 	if (down_interruptible(&hdev->driver_input_lock)) {
2286 		ret = -EINTR;
2287 		goto end;
2288 	}
2289 	hdev->io_started = false;
2290 
2291 	hdrv = hdev->driver;
2292 	if (hdrv) {
2293 		if (hdrv->remove)
2294 			hdrv->remove(hdev);
2295 		else /* default remove */
2296 			hid_hw_stop(hdev);
2297 		hid_close_report(hdev);
2298 		hdev->driver = NULL;
2299 	}
2300 
2301 	if (!hdev->io_started)
2302 		up(&hdev->driver_input_lock);
2303 end:
2304 	return ret;
2305 }
2306 
2307 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2308 			     char *buf)
2309 {
2310 	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2311 
2312 	return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2313 			 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2314 }
2315 static DEVICE_ATTR_RO(modalias);
2316 
2317 static struct attribute *hid_dev_attrs[] = {
2318 	&dev_attr_modalias.attr,
2319 	NULL,
2320 };
2321 static struct bin_attribute *hid_dev_bin_attrs[] = {
2322 	&dev_bin_attr_report_desc,
2323 	NULL
2324 };
2325 static const struct attribute_group hid_dev_group = {
2326 	.attrs = hid_dev_attrs,
2327 	.bin_attrs = hid_dev_bin_attrs,
2328 };
2329 __ATTRIBUTE_GROUPS(hid_dev);
2330 
2331 static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2332 {
2333 	struct hid_device *hdev = to_hid_device(dev);
2334 
2335 	if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2336 			hdev->bus, hdev->vendor, hdev->product))
2337 		return -ENOMEM;
2338 
2339 	if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2340 		return -ENOMEM;
2341 
2342 	if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2343 		return -ENOMEM;
2344 
2345 	if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2346 		return -ENOMEM;
2347 
2348 	if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2349 			   hdev->bus, hdev->group, hdev->vendor, hdev->product))
2350 		return -ENOMEM;
2351 
2352 	return 0;
2353 }
2354 
2355 struct bus_type hid_bus_type = {
2356 	.name		= "hid",
2357 	.dev_groups	= hid_dev_groups,
2358 	.drv_groups	= hid_drv_groups,
2359 	.match		= hid_bus_match,
2360 	.probe		= hid_device_probe,
2361 	.remove		= hid_device_remove,
2362 	.uevent		= hid_uevent,
2363 };
2364 EXPORT_SYMBOL(hid_bus_type);
2365 
2366 int hid_add_device(struct hid_device *hdev)
2367 {
2368 	static atomic_t id = ATOMIC_INIT(0);
2369 	int ret;
2370 
2371 	if (WARN_ON(hdev->status & HID_STAT_ADDED))
2372 		return -EBUSY;
2373 
2374 	hdev->quirks = hid_lookup_quirk(hdev);
2375 
2376 	/* we need to kill them here, otherwise they will stay allocated to
2377 	 * wait for coming driver */
2378 	if (hid_ignore(hdev))
2379 		return -ENODEV;
2380 
2381 	/*
2382 	 * Check for the mandatory transport channel.
2383 	 */
2384 	 if (!hdev->ll_driver->raw_request) {
2385 		hid_err(hdev, "transport driver missing .raw_request()\n");
2386 		return -EINVAL;
2387 	 }
2388 
2389 	/*
2390 	 * Read the device report descriptor once and use as template
2391 	 * for the driver-specific modifications.
2392 	 */
2393 	ret = hdev->ll_driver->parse(hdev);
2394 	if (ret)
2395 		return ret;
2396 	if (!hdev->dev_rdesc)
2397 		return -ENODEV;
2398 
2399 	/*
2400 	 * Scan generic devices for group information
2401 	 */
2402 	if (hid_ignore_special_drivers) {
2403 		hdev->group = HID_GROUP_GENERIC;
2404 	} else if (!hdev->group &&
2405 		   !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2406 		ret = hid_scan_report(hdev);
2407 		if (ret)
2408 			hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2409 	}
2410 
2411 	/* XXX hack, any other cleaner solution after the driver core
2412 	 * is converted to allow more than 20 bytes as the device name? */
2413 	dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2414 		     hdev->vendor, hdev->product, atomic_inc_return(&id));
2415 
2416 	hid_debug_register(hdev, dev_name(&hdev->dev));
2417 	ret = device_add(&hdev->dev);
2418 	if (!ret)
2419 		hdev->status |= HID_STAT_ADDED;
2420 	else
2421 		hid_debug_unregister(hdev);
2422 
2423 	return ret;
2424 }
2425 EXPORT_SYMBOL_GPL(hid_add_device);
2426 
2427 /**
2428  * hid_allocate_device - allocate new hid device descriptor
2429  *
2430  * Allocate and initialize hid device, so that hid_destroy_device might be
2431  * used to free it.
2432  *
2433  * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2434  * error value.
2435  */
2436 struct hid_device *hid_allocate_device(void)
2437 {
2438 	struct hid_device *hdev;
2439 	int ret = -ENOMEM;
2440 
2441 	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2442 	if (hdev == NULL)
2443 		return ERR_PTR(ret);
2444 
2445 	device_initialize(&hdev->dev);
2446 	hdev->dev.release = hid_device_release;
2447 	hdev->dev.bus = &hid_bus_type;
2448 	device_enable_async_suspend(&hdev->dev);
2449 
2450 	hid_close_report(hdev);
2451 
2452 	init_waitqueue_head(&hdev->debug_wait);
2453 	INIT_LIST_HEAD(&hdev->debug_list);
2454 	spin_lock_init(&hdev->debug_list_lock);
2455 	sema_init(&hdev->driver_input_lock, 1);
2456 	mutex_init(&hdev->ll_open_lock);
2457 
2458 	return hdev;
2459 }
2460 EXPORT_SYMBOL_GPL(hid_allocate_device);
2461 
2462 static void hid_remove_device(struct hid_device *hdev)
2463 {
2464 	if (hdev->status & HID_STAT_ADDED) {
2465 		device_del(&hdev->dev);
2466 		hid_debug_unregister(hdev);
2467 		hdev->status &= ~HID_STAT_ADDED;
2468 	}
2469 	kfree(hdev->dev_rdesc);
2470 	hdev->dev_rdesc = NULL;
2471 	hdev->dev_rsize = 0;
2472 }
2473 
2474 /**
2475  * hid_destroy_device - free previously allocated device
2476  *
2477  * @hdev: hid device
2478  *
2479  * If you allocate hid_device through hid_allocate_device, you should ever
2480  * free by this function.
2481  */
2482 void hid_destroy_device(struct hid_device *hdev)
2483 {
2484 	hid_remove_device(hdev);
2485 	put_device(&hdev->dev);
2486 }
2487 EXPORT_SYMBOL_GPL(hid_destroy_device);
2488 
2489 
2490 static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2491 {
2492 	struct hid_driver *hdrv = data;
2493 	struct hid_device *hdev = to_hid_device(dev);
2494 
2495 	if (hdev->driver == hdrv &&
2496 	    !hdrv->match(hdev, hid_ignore_special_drivers) &&
2497 	    !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2498 		return device_reprobe(dev);
2499 
2500 	return 0;
2501 }
2502 
2503 static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2504 {
2505 	struct hid_driver *hdrv = to_hid_driver(drv);
2506 
2507 	if (hdrv->match) {
2508 		bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2509 				 __hid_bus_reprobe_drivers);
2510 	}
2511 
2512 	return 0;
2513 }
2514 
2515 static int __bus_removed_driver(struct device_driver *drv, void *data)
2516 {
2517 	return bus_rescan_devices(&hid_bus_type);
2518 }
2519 
2520 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2521 		const char *mod_name)
2522 {
2523 	int ret;
2524 
2525 	hdrv->driver.name = hdrv->name;
2526 	hdrv->driver.bus = &hid_bus_type;
2527 	hdrv->driver.owner = owner;
2528 	hdrv->driver.mod_name = mod_name;
2529 
2530 	INIT_LIST_HEAD(&hdrv->dyn_list);
2531 	spin_lock_init(&hdrv->dyn_lock);
2532 
2533 	ret = driver_register(&hdrv->driver);
2534 
2535 	if (ret == 0)
2536 		bus_for_each_drv(&hid_bus_type, NULL, NULL,
2537 				 __hid_bus_driver_added);
2538 
2539 	return ret;
2540 }
2541 EXPORT_SYMBOL_GPL(__hid_register_driver);
2542 
2543 void hid_unregister_driver(struct hid_driver *hdrv)
2544 {
2545 	driver_unregister(&hdrv->driver);
2546 	hid_free_dynids(hdrv);
2547 
2548 	bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2549 }
2550 EXPORT_SYMBOL_GPL(hid_unregister_driver);
2551 
2552 int hid_check_keys_pressed(struct hid_device *hid)
2553 {
2554 	struct hid_input *hidinput;
2555 	int i;
2556 
2557 	if (!(hid->claimed & HID_CLAIMED_INPUT))
2558 		return 0;
2559 
2560 	list_for_each_entry(hidinput, &hid->inputs, list) {
2561 		for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2562 			if (hidinput->input->key[i])
2563 				return 1;
2564 	}
2565 
2566 	return 0;
2567 }
2568 
2569 EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2570 
2571 static int __init hid_init(void)
2572 {
2573 	int ret;
2574 
2575 	if (hid_debug)
2576 		pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2577 			"debugfs is now used for inspecting the device (report descriptor, reports)\n");
2578 
2579 	ret = bus_register(&hid_bus_type);
2580 	if (ret) {
2581 		pr_err("can't register hid bus\n");
2582 		goto err;
2583 	}
2584 
2585 	ret = hidraw_init();
2586 	if (ret)
2587 		goto err_bus;
2588 
2589 	hid_debug_init();
2590 
2591 	return 0;
2592 err_bus:
2593 	bus_unregister(&hid_bus_type);
2594 err:
2595 	return ret;
2596 }
2597 
2598 static void __exit hid_exit(void)
2599 {
2600 	hid_debug_exit();
2601 	hidraw_exit();
2602 	bus_unregister(&hid_bus_type);
2603 	hid_quirks_exit(HID_BUS_ANY);
2604 }
2605 
2606 module_init(hid_init);
2607 module_exit(hid_exit);
2608 
2609 MODULE_AUTHOR("Andreas Gal");
2610 MODULE_AUTHOR("Vojtech Pavlik");
2611 MODULE_AUTHOR("Jiri Kosina");
2612 MODULE_LICENSE("GPL");
2613