xref: /openbmc/linux/drivers/hid/hid-core.c (revision d003d772)
1 /*
2  *  HID support for Linux
3  *
4  *  Copyright (c) 1999 Andreas Gal
5  *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
6  *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
7  *  Copyright (c) 2006-2012 Jiri Kosina
8  */
9 
10 /*
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the Free
13  * Software Foundation; either version 2 of the License, or (at your option)
14  * any later version.
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/mm.h>
25 #include <linux/spinlock.h>
26 #include <asm/unaligned.h>
27 #include <asm/byteorder.h>
28 #include <linux/input.h>
29 #include <linux/wait.h>
30 #include <linux/vmalloc.h>
31 #include <linux/sched.h>
32 #include <linux/semaphore.h>
33 
34 #include <linux/hid.h>
35 #include <linux/hiddev.h>
36 #include <linux/hid-debug.h>
37 #include <linux/hidraw.h>
38 
39 #include "hid-ids.h"
40 
41 /*
42  * Version Information
43  */
44 
45 #define DRIVER_DESC "HID core driver"
46 
47 int hid_debug = 0;
48 module_param_named(debug, hid_debug, int, 0600);
49 MODULE_PARM_DESC(debug, "toggle HID debugging messages");
50 EXPORT_SYMBOL_GPL(hid_debug);
51 
52 static int hid_ignore_special_drivers = 0;
53 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
54 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
55 
56 /*
57  * Register a new report for a device.
58  */
59 
60 struct hid_report *hid_register_report(struct hid_device *device,
61 				       unsigned int type, unsigned int id,
62 				       unsigned int application)
63 {
64 	struct hid_report_enum *report_enum = device->report_enum + type;
65 	struct hid_report *report;
66 
67 	if (id >= HID_MAX_IDS)
68 		return NULL;
69 	if (report_enum->report_id_hash[id])
70 		return report_enum->report_id_hash[id];
71 
72 	report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
73 	if (!report)
74 		return NULL;
75 
76 	if (id != 0)
77 		report_enum->numbered = 1;
78 
79 	report->id = id;
80 	report->type = type;
81 	report->size = 0;
82 	report->device = device;
83 	report->application = application;
84 	report_enum->report_id_hash[id] = report;
85 
86 	list_add_tail(&report->list, &report_enum->report_list);
87 
88 	return report;
89 }
90 EXPORT_SYMBOL_GPL(hid_register_report);
91 
92 /*
93  * Register a new field for this report.
94  */
95 
96 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
97 {
98 	struct hid_field *field;
99 
100 	if (report->maxfield == HID_MAX_FIELDS) {
101 		hid_err(report->device, "too many fields in report\n");
102 		return NULL;
103 	}
104 
105 	field = kzalloc((sizeof(struct hid_field) +
106 			 usages * sizeof(struct hid_usage) +
107 			 values * sizeof(unsigned)), GFP_KERNEL);
108 	if (!field)
109 		return NULL;
110 
111 	field->index = report->maxfield++;
112 	report->field[field->index] = field;
113 	field->usage = (struct hid_usage *)(field + 1);
114 	field->value = (s32 *)(field->usage + usages);
115 	field->report = report;
116 
117 	return field;
118 }
119 
120 /*
121  * Open a collection. The type/usage is pushed on the stack.
122  */
123 
124 static int open_collection(struct hid_parser *parser, unsigned type)
125 {
126 	struct hid_collection *collection;
127 	unsigned usage;
128 	int collection_index;
129 
130 	usage = parser->local.usage[0];
131 
132 	if (parser->collection_stack_ptr == parser->collection_stack_size) {
133 		unsigned int *collection_stack;
134 		unsigned int new_size = parser->collection_stack_size +
135 					HID_COLLECTION_STACK_SIZE;
136 
137 		collection_stack = krealloc(parser->collection_stack,
138 					    new_size * sizeof(unsigned int),
139 					    GFP_KERNEL);
140 		if (!collection_stack)
141 			return -ENOMEM;
142 
143 		parser->collection_stack = collection_stack;
144 		parser->collection_stack_size = new_size;
145 	}
146 
147 	if (parser->device->maxcollection == parser->device->collection_size) {
148 		collection = kmalloc(
149 				array3_size(sizeof(struct hid_collection),
150 					    parser->device->collection_size,
151 					    2),
152 				GFP_KERNEL);
153 		if (collection == NULL) {
154 			hid_err(parser->device, "failed to reallocate collection array\n");
155 			return -ENOMEM;
156 		}
157 		memcpy(collection, parser->device->collection,
158 			sizeof(struct hid_collection) *
159 			parser->device->collection_size);
160 		memset(collection + parser->device->collection_size, 0,
161 			sizeof(struct hid_collection) *
162 			parser->device->collection_size);
163 		kfree(parser->device->collection);
164 		parser->device->collection = collection;
165 		parser->device->collection_size *= 2;
166 	}
167 
168 	parser->collection_stack[parser->collection_stack_ptr++] =
169 		parser->device->maxcollection;
170 
171 	collection_index = parser->device->maxcollection++;
172 	collection = parser->device->collection + collection_index;
173 	collection->type = type;
174 	collection->usage = usage;
175 	collection->level = parser->collection_stack_ptr - 1;
176 	collection->parent_idx = (collection->level == 0) ? -1 :
177 		parser->collection_stack[collection->level - 1];
178 
179 	if (type == HID_COLLECTION_APPLICATION)
180 		parser->device->maxapplication++;
181 
182 	return 0;
183 }
184 
185 /*
186  * Close a collection.
187  */
188 
189 static int close_collection(struct hid_parser *parser)
190 {
191 	if (!parser->collection_stack_ptr) {
192 		hid_err(parser->device, "collection stack underflow\n");
193 		return -EINVAL;
194 	}
195 	parser->collection_stack_ptr--;
196 	return 0;
197 }
198 
199 /*
200  * Climb up the stack, search for the specified collection type
201  * and return the usage.
202  */
203 
204 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
205 {
206 	struct hid_collection *collection = parser->device->collection;
207 	int n;
208 
209 	for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
210 		unsigned index = parser->collection_stack[n];
211 		if (collection[index].type == type)
212 			return collection[index].usage;
213 	}
214 	return 0; /* we know nothing about this usage type */
215 }
216 
217 /*
218  * Add a usage to the temporary parser table.
219  */
220 
221 static int hid_add_usage(struct hid_parser *parser, unsigned usage)
222 {
223 	if (parser->local.usage_index >= HID_MAX_USAGES) {
224 		hid_err(parser->device, "usage index exceeded\n");
225 		return -1;
226 	}
227 	parser->local.usage[parser->local.usage_index] = usage;
228 	parser->local.collection_index[parser->local.usage_index] =
229 		parser->collection_stack_ptr ?
230 		parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
231 	parser->local.usage_index++;
232 	return 0;
233 }
234 
235 /*
236  * Register a new field for this report.
237  */
238 
239 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
240 {
241 	struct hid_report *report;
242 	struct hid_field *field;
243 	unsigned int usages;
244 	unsigned int offset;
245 	unsigned int i;
246 	unsigned int application;
247 
248 	application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
249 
250 	report = hid_register_report(parser->device, report_type,
251 				     parser->global.report_id, application);
252 	if (!report) {
253 		hid_err(parser->device, "hid_register_report failed\n");
254 		return -1;
255 	}
256 
257 	/* Handle both signed and unsigned cases properly */
258 	if ((parser->global.logical_minimum < 0 &&
259 		parser->global.logical_maximum <
260 		parser->global.logical_minimum) ||
261 		(parser->global.logical_minimum >= 0 &&
262 		(__u32)parser->global.logical_maximum <
263 		(__u32)parser->global.logical_minimum)) {
264 		dbg_hid("logical range invalid 0x%x 0x%x\n",
265 			parser->global.logical_minimum,
266 			parser->global.logical_maximum);
267 		return -1;
268 	}
269 
270 	offset = report->size;
271 	report->size += parser->global.report_size * parser->global.report_count;
272 
273 	if (!parser->local.usage_index) /* Ignore padding fields */
274 		return 0;
275 
276 	usages = max_t(unsigned, parser->local.usage_index,
277 				 parser->global.report_count);
278 
279 	field = hid_register_field(report, usages, parser->global.report_count);
280 	if (!field)
281 		return 0;
282 
283 	field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
284 	field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
285 	field->application = application;
286 
287 	for (i = 0; i < usages; i++) {
288 		unsigned j = i;
289 		/* Duplicate the last usage we parsed if we have excess values */
290 		if (i >= parser->local.usage_index)
291 			j = parser->local.usage_index - 1;
292 		field->usage[i].hid = parser->local.usage[j];
293 		field->usage[i].collection_index =
294 			parser->local.collection_index[j];
295 		field->usage[i].usage_index = i;
296 		field->usage[i].resolution_multiplier = 1;
297 	}
298 
299 	field->maxusage = usages;
300 	field->flags = flags;
301 	field->report_offset = offset;
302 	field->report_type = report_type;
303 	field->report_size = parser->global.report_size;
304 	field->report_count = parser->global.report_count;
305 	field->logical_minimum = parser->global.logical_minimum;
306 	field->logical_maximum = parser->global.logical_maximum;
307 	field->physical_minimum = parser->global.physical_minimum;
308 	field->physical_maximum = parser->global.physical_maximum;
309 	field->unit_exponent = parser->global.unit_exponent;
310 	field->unit = parser->global.unit;
311 
312 	return 0;
313 }
314 
315 /*
316  * Read data value from item.
317  */
318 
319 static u32 item_udata(struct hid_item *item)
320 {
321 	switch (item->size) {
322 	case 1: return item->data.u8;
323 	case 2: return item->data.u16;
324 	case 4: return item->data.u32;
325 	}
326 	return 0;
327 }
328 
329 static s32 item_sdata(struct hid_item *item)
330 {
331 	switch (item->size) {
332 	case 1: return item->data.s8;
333 	case 2: return item->data.s16;
334 	case 4: return item->data.s32;
335 	}
336 	return 0;
337 }
338 
339 /*
340  * Process a global item.
341  */
342 
343 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
344 {
345 	__s32 raw_value;
346 	switch (item->tag) {
347 	case HID_GLOBAL_ITEM_TAG_PUSH:
348 
349 		if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
350 			hid_err(parser->device, "global environment stack overflow\n");
351 			return -1;
352 		}
353 
354 		memcpy(parser->global_stack + parser->global_stack_ptr++,
355 			&parser->global, sizeof(struct hid_global));
356 		return 0;
357 
358 	case HID_GLOBAL_ITEM_TAG_POP:
359 
360 		if (!parser->global_stack_ptr) {
361 			hid_err(parser->device, "global environment stack underflow\n");
362 			return -1;
363 		}
364 
365 		memcpy(&parser->global, parser->global_stack +
366 			--parser->global_stack_ptr, sizeof(struct hid_global));
367 		return 0;
368 
369 	case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
370 		parser->global.usage_page = item_udata(item);
371 		return 0;
372 
373 	case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
374 		parser->global.logical_minimum = item_sdata(item);
375 		return 0;
376 
377 	case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
378 		if (parser->global.logical_minimum < 0)
379 			parser->global.logical_maximum = item_sdata(item);
380 		else
381 			parser->global.logical_maximum = item_udata(item);
382 		return 0;
383 
384 	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
385 		parser->global.physical_minimum = item_sdata(item);
386 		return 0;
387 
388 	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
389 		if (parser->global.physical_minimum < 0)
390 			parser->global.physical_maximum = item_sdata(item);
391 		else
392 			parser->global.physical_maximum = item_udata(item);
393 		return 0;
394 
395 	case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
396 		/* Many devices provide unit exponent as a two's complement
397 		 * nibble due to the common misunderstanding of HID
398 		 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
399 		 * both this and the standard encoding. */
400 		raw_value = item_sdata(item);
401 		if (!(raw_value & 0xfffffff0))
402 			parser->global.unit_exponent = hid_snto32(raw_value, 4);
403 		else
404 			parser->global.unit_exponent = raw_value;
405 		return 0;
406 
407 	case HID_GLOBAL_ITEM_TAG_UNIT:
408 		parser->global.unit = item_udata(item);
409 		return 0;
410 
411 	case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
412 		parser->global.report_size = item_udata(item);
413 		if (parser->global.report_size > 256) {
414 			hid_err(parser->device, "invalid report_size %d\n",
415 					parser->global.report_size);
416 			return -1;
417 		}
418 		return 0;
419 
420 	case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
421 		parser->global.report_count = item_udata(item);
422 		if (parser->global.report_count > HID_MAX_USAGES) {
423 			hid_err(parser->device, "invalid report_count %d\n",
424 					parser->global.report_count);
425 			return -1;
426 		}
427 		return 0;
428 
429 	case HID_GLOBAL_ITEM_TAG_REPORT_ID:
430 		parser->global.report_id = item_udata(item);
431 		if (parser->global.report_id == 0 ||
432 		    parser->global.report_id >= HID_MAX_IDS) {
433 			hid_err(parser->device, "report_id %u is invalid\n",
434 				parser->global.report_id);
435 			return -1;
436 		}
437 		return 0;
438 
439 	default:
440 		hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
441 		return -1;
442 	}
443 }
444 
445 /*
446  * Process a local item.
447  */
448 
449 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
450 {
451 	__u32 data;
452 	unsigned n;
453 	__u32 count;
454 
455 	data = item_udata(item);
456 
457 	switch (item->tag) {
458 	case HID_LOCAL_ITEM_TAG_DELIMITER:
459 
460 		if (data) {
461 			/*
462 			 * We treat items before the first delimiter
463 			 * as global to all usage sets (branch 0).
464 			 * In the moment we process only these global
465 			 * items and the first delimiter set.
466 			 */
467 			if (parser->local.delimiter_depth != 0) {
468 				hid_err(parser->device, "nested delimiters\n");
469 				return -1;
470 			}
471 			parser->local.delimiter_depth++;
472 			parser->local.delimiter_branch++;
473 		} else {
474 			if (parser->local.delimiter_depth < 1) {
475 				hid_err(parser->device, "bogus close delimiter\n");
476 				return -1;
477 			}
478 			parser->local.delimiter_depth--;
479 		}
480 		return 0;
481 
482 	case HID_LOCAL_ITEM_TAG_USAGE:
483 
484 		if (parser->local.delimiter_branch > 1) {
485 			dbg_hid("alternative usage ignored\n");
486 			return 0;
487 		}
488 
489 		if (item->size <= 2)
490 			data = (parser->global.usage_page << 16) + data;
491 
492 		return hid_add_usage(parser, data);
493 
494 	case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
495 
496 		if (parser->local.delimiter_branch > 1) {
497 			dbg_hid("alternative usage ignored\n");
498 			return 0;
499 		}
500 
501 		if (item->size <= 2)
502 			data = (parser->global.usage_page << 16) + data;
503 
504 		parser->local.usage_minimum = data;
505 		return 0;
506 
507 	case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
508 
509 		if (parser->local.delimiter_branch > 1) {
510 			dbg_hid("alternative usage ignored\n");
511 			return 0;
512 		}
513 
514 		if (item->size <= 2)
515 			data = (parser->global.usage_page << 16) + data;
516 
517 		count = data - parser->local.usage_minimum;
518 		if (count + parser->local.usage_index >= HID_MAX_USAGES) {
519 			/*
520 			 * We do not warn if the name is not set, we are
521 			 * actually pre-scanning the device.
522 			 */
523 			if (dev_name(&parser->device->dev))
524 				hid_warn(parser->device,
525 					 "ignoring exceeding usage max\n");
526 			data = HID_MAX_USAGES - parser->local.usage_index +
527 				parser->local.usage_minimum - 1;
528 			if (data <= 0) {
529 				hid_err(parser->device,
530 					"no more usage index available\n");
531 				return -1;
532 			}
533 		}
534 
535 		for (n = parser->local.usage_minimum; n <= data; n++)
536 			if (hid_add_usage(parser, n)) {
537 				dbg_hid("hid_add_usage failed\n");
538 				return -1;
539 			}
540 		return 0;
541 
542 	default:
543 
544 		dbg_hid("unknown local item tag 0x%x\n", item->tag);
545 		return 0;
546 	}
547 	return 0;
548 }
549 
550 /*
551  * Process a main item.
552  */
553 
554 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
555 {
556 	__u32 data;
557 	int ret;
558 
559 	data = item_udata(item);
560 
561 	switch (item->tag) {
562 	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
563 		ret = open_collection(parser, data & 0xff);
564 		break;
565 	case HID_MAIN_ITEM_TAG_END_COLLECTION:
566 		ret = close_collection(parser);
567 		break;
568 	case HID_MAIN_ITEM_TAG_INPUT:
569 		ret = hid_add_field(parser, HID_INPUT_REPORT, data);
570 		break;
571 	case HID_MAIN_ITEM_TAG_OUTPUT:
572 		ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
573 		break;
574 	case HID_MAIN_ITEM_TAG_FEATURE:
575 		ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
576 		break;
577 	default:
578 		hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
579 		ret = 0;
580 	}
581 
582 	memset(&parser->local, 0, sizeof(parser->local));	/* Reset the local parser environment */
583 
584 	return ret;
585 }
586 
587 /*
588  * Process a reserved item.
589  */
590 
591 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
592 {
593 	dbg_hid("reserved item type, tag 0x%x\n", item->tag);
594 	return 0;
595 }
596 
597 /*
598  * Free a report and all registered fields. The field->usage and
599  * field->value table's are allocated behind the field, so we need
600  * only to free(field) itself.
601  */
602 
603 static void hid_free_report(struct hid_report *report)
604 {
605 	unsigned n;
606 
607 	for (n = 0; n < report->maxfield; n++)
608 		kfree(report->field[n]);
609 	kfree(report);
610 }
611 
612 /*
613  * Close report. This function returns the device
614  * state to the point prior to hid_open_report().
615  */
616 static void hid_close_report(struct hid_device *device)
617 {
618 	unsigned i, j;
619 
620 	for (i = 0; i < HID_REPORT_TYPES; i++) {
621 		struct hid_report_enum *report_enum = device->report_enum + i;
622 
623 		for (j = 0; j < HID_MAX_IDS; j++) {
624 			struct hid_report *report = report_enum->report_id_hash[j];
625 			if (report)
626 				hid_free_report(report);
627 		}
628 		memset(report_enum, 0, sizeof(*report_enum));
629 		INIT_LIST_HEAD(&report_enum->report_list);
630 	}
631 
632 	kfree(device->rdesc);
633 	device->rdesc = NULL;
634 	device->rsize = 0;
635 
636 	kfree(device->collection);
637 	device->collection = NULL;
638 	device->collection_size = 0;
639 	device->maxcollection = 0;
640 	device->maxapplication = 0;
641 
642 	device->status &= ~HID_STAT_PARSED;
643 }
644 
645 /*
646  * Free a device structure, all reports, and all fields.
647  */
648 
649 static void hid_device_release(struct device *dev)
650 {
651 	struct hid_device *hid = to_hid_device(dev);
652 
653 	hid_close_report(hid);
654 	kfree(hid->dev_rdesc);
655 	kfree(hid);
656 }
657 
658 /*
659  * Fetch a report description item from the data stream. We support long
660  * items, though they are not used yet.
661  */
662 
663 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
664 {
665 	u8 b;
666 
667 	if ((end - start) <= 0)
668 		return NULL;
669 
670 	b = *start++;
671 
672 	item->type = (b >> 2) & 3;
673 	item->tag  = (b >> 4) & 15;
674 
675 	if (item->tag == HID_ITEM_TAG_LONG) {
676 
677 		item->format = HID_ITEM_FORMAT_LONG;
678 
679 		if ((end - start) < 2)
680 			return NULL;
681 
682 		item->size = *start++;
683 		item->tag  = *start++;
684 
685 		if ((end - start) < item->size)
686 			return NULL;
687 
688 		item->data.longdata = start;
689 		start += item->size;
690 		return start;
691 	}
692 
693 	item->format = HID_ITEM_FORMAT_SHORT;
694 	item->size = b & 3;
695 
696 	switch (item->size) {
697 	case 0:
698 		return start;
699 
700 	case 1:
701 		if ((end - start) < 1)
702 			return NULL;
703 		item->data.u8 = *start++;
704 		return start;
705 
706 	case 2:
707 		if ((end - start) < 2)
708 			return NULL;
709 		item->data.u16 = get_unaligned_le16(start);
710 		start = (__u8 *)((__le16 *)start + 1);
711 		return start;
712 
713 	case 3:
714 		item->size++;
715 		if ((end - start) < 4)
716 			return NULL;
717 		item->data.u32 = get_unaligned_le32(start);
718 		start = (__u8 *)((__le32 *)start + 1);
719 		return start;
720 	}
721 
722 	return NULL;
723 }
724 
725 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
726 {
727 	struct hid_device *hid = parser->device;
728 
729 	if (usage == HID_DG_CONTACTID)
730 		hid->group = HID_GROUP_MULTITOUCH;
731 }
732 
733 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
734 {
735 	if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
736 	    parser->global.report_size == 8)
737 		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
738 }
739 
740 static void hid_scan_collection(struct hid_parser *parser, unsigned type)
741 {
742 	struct hid_device *hid = parser->device;
743 	int i;
744 
745 	if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
746 	    type == HID_COLLECTION_PHYSICAL)
747 		hid->group = HID_GROUP_SENSOR_HUB;
748 
749 	if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
750 	    hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
751 	    hid->group == HID_GROUP_MULTITOUCH)
752 		hid->group = HID_GROUP_GENERIC;
753 
754 	if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
755 		for (i = 0; i < parser->local.usage_index; i++)
756 			if (parser->local.usage[i] == HID_GD_POINTER)
757 				parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
758 
759 	if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
760 		parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
761 }
762 
763 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
764 {
765 	__u32 data;
766 	int i;
767 
768 	data = item_udata(item);
769 
770 	switch (item->tag) {
771 	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
772 		hid_scan_collection(parser, data & 0xff);
773 		break;
774 	case HID_MAIN_ITEM_TAG_END_COLLECTION:
775 		break;
776 	case HID_MAIN_ITEM_TAG_INPUT:
777 		/* ignore constant inputs, they will be ignored by hid-input */
778 		if (data & HID_MAIN_ITEM_CONSTANT)
779 			break;
780 		for (i = 0; i < parser->local.usage_index; i++)
781 			hid_scan_input_usage(parser, parser->local.usage[i]);
782 		break;
783 	case HID_MAIN_ITEM_TAG_OUTPUT:
784 		break;
785 	case HID_MAIN_ITEM_TAG_FEATURE:
786 		for (i = 0; i < parser->local.usage_index; i++)
787 			hid_scan_feature_usage(parser, parser->local.usage[i]);
788 		break;
789 	}
790 
791 	/* Reset the local parser environment */
792 	memset(&parser->local, 0, sizeof(parser->local));
793 
794 	return 0;
795 }
796 
797 /*
798  * Scan a report descriptor before the device is added to the bus.
799  * Sets device groups and other properties that determine what driver
800  * to load.
801  */
802 static int hid_scan_report(struct hid_device *hid)
803 {
804 	struct hid_parser *parser;
805 	struct hid_item item;
806 	__u8 *start = hid->dev_rdesc;
807 	__u8 *end = start + hid->dev_rsize;
808 	static int (*dispatch_type[])(struct hid_parser *parser,
809 				      struct hid_item *item) = {
810 		hid_scan_main,
811 		hid_parser_global,
812 		hid_parser_local,
813 		hid_parser_reserved
814 	};
815 
816 	parser = vzalloc(sizeof(struct hid_parser));
817 	if (!parser)
818 		return -ENOMEM;
819 
820 	parser->device = hid;
821 	hid->group = HID_GROUP_GENERIC;
822 
823 	/*
824 	 * The parsing is simpler than the one in hid_open_report() as we should
825 	 * be robust against hid errors. Those errors will be raised by
826 	 * hid_open_report() anyway.
827 	 */
828 	while ((start = fetch_item(start, end, &item)) != NULL)
829 		dispatch_type[item.type](parser, &item);
830 
831 	/*
832 	 * Handle special flags set during scanning.
833 	 */
834 	if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
835 	    (hid->group == HID_GROUP_MULTITOUCH))
836 		hid->group = HID_GROUP_MULTITOUCH_WIN_8;
837 
838 	/*
839 	 * Vendor specific handlings
840 	 */
841 	switch (hid->vendor) {
842 	case USB_VENDOR_ID_WACOM:
843 		hid->group = HID_GROUP_WACOM;
844 		break;
845 	case USB_VENDOR_ID_SYNAPTICS:
846 		if (hid->group == HID_GROUP_GENERIC)
847 			if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
848 			    && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
849 				/*
850 				 * hid-rmi should take care of them,
851 				 * not hid-generic
852 				 */
853 				hid->group = HID_GROUP_RMI;
854 		break;
855 	}
856 
857 	kfree(parser->collection_stack);
858 	vfree(parser);
859 	return 0;
860 }
861 
862 /**
863  * hid_parse_report - parse device report
864  *
865  * @device: hid device
866  * @start: report start
867  * @size: report size
868  *
869  * Allocate the device report as read by the bus driver. This function should
870  * only be called from parse() in ll drivers.
871  */
872 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
873 {
874 	hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
875 	if (!hid->dev_rdesc)
876 		return -ENOMEM;
877 	hid->dev_rsize = size;
878 	return 0;
879 }
880 EXPORT_SYMBOL_GPL(hid_parse_report);
881 
882 static const char * const hid_report_names[] = {
883 	"HID_INPUT_REPORT",
884 	"HID_OUTPUT_REPORT",
885 	"HID_FEATURE_REPORT",
886 };
887 /**
888  * hid_validate_values - validate existing device report's value indexes
889  *
890  * @device: hid device
891  * @type: which report type to examine
892  * @id: which report ID to examine (0 for first)
893  * @field_index: which report field to examine
894  * @report_counts: expected number of values
895  *
896  * Validate the number of values in a given field of a given report, after
897  * parsing.
898  */
899 struct hid_report *hid_validate_values(struct hid_device *hid,
900 				       unsigned int type, unsigned int id,
901 				       unsigned int field_index,
902 				       unsigned int report_counts)
903 {
904 	struct hid_report *report;
905 
906 	if (type > HID_FEATURE_REPORT) {
907 		hid_err(hid, "invalid HID report type %u\n", type);
908 		return NULL;
909 	}
910 
911 	if (id >= HID_MAX_IDS) {
912 		hid_err(hid, "invalid HID report id %u\n", id);
913 		return NULL;
914 	}
915 
916 	/*
917 	 * Explicitly not using hid_get_report() here since it depends on
918 	 * ->numbered being checked, which may not always be the case when
919 	 * drivers go to access report values.
920 	 */
921 	if (id == 0) {
922 		/*
923 		 * Validating on id 0 means we should examine the first
924 		 * report in the list.
925 		 */
926 		report = list_entry(
927 				hid->report_enum[type].report_list.next,
928 				struct hid_report, list);
929 	} else {
930 		report = hid->report_enum[type].report_id_hash[id];
931 	}
932 	if (!report) {
933 		hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
934 		return NULL;
935 	}
936 	if (report->maxfield <= field_index) {
937 		hid_err(hid, "not enough fields in %s %u\n",
938 			hid_report_names[type], id);
939 		return NULL;
940 	}
941 	if (report->field[field_index]->report_count < report_counts) {
942 		hid_err(hid, "not enough values in %s %u field %u\n",
943 			hid_report_names[type], id, field_index);
944 		return NULL;
945 	}
946 	return report;
947 }
948 EXPORT_SYMBOL_GPL(hid_validate_values);
949 
950 static int hid_calculate_multiplier(struct hid_device *hid,
951 				     struct hid_field *multiplier)
952 {
953 	int m;
954 	__s32 v = *multiplier->value;
955 	__s32 lmin = multiplier->logical_minimum;
956 	__s32 lmax = multiplier->logical_maximum;
957 	__s32 pmin = multiplier->physical_minimum;
958 	__s32 pmax = multiplier->physical_maximum;
959 
960 	/*
961 	 * "Because OS implementations will generally divide the control's
962 	 * reported count by the Effective Resolution Multiplier, designers
963 	 * should take care not to establish a potential Effective
964 	 * Resolution Multiplier of zero."
965 	 * HID Usage Table, v1.12, Section 4.3.1, p31
966 	 */
967 	if (lmax - lmin == 0)
968 		return 1;
969 	/*
970 	 * Handling the unit exponent is left as an exercise to whoever
971 	 * finds a device where that exponent is not 0.
972 	 */
973 	m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
974 	if (unlikely(multiplier->unit_exponent != 0)) {
975 		hid_warn(hid,
976 			 "unsupported Resolution Multiplier unit exponent %d\n",
977 			 multiplier->unit_exponent);
978 	}
979 
980 	/* There are no devices with an effective multiplier > 255 */
981 	if (unlikely(m == 0 || m > 255 || m < -255)) {
982 		hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
983 		m = 1;
984 	}
985 
986 	return m;
987 }
988 
989 static void hid_apply_multiplier_to_field(struct hid_device *hid,
990 					  struct hid_field *field,
991 					  struct hid_collection *multiplier_collection,
992 					  int effective_multiplier)
993 {
994 	struct hid_collection *collection;
995 	struct hid_usage *usage;
996 	int i;
997 
998 	/*
999 	 * If multiplier_collection is NULL, the multiplier applies
1000 	 * to all fields in the report.
1001 	 * Otherwise, it is the Logical Collection the multiplier applies to
1002 	 * but our field may be in a subcollection of that collection.
1003 	 */
1004 	for (i = 0; i < field->maxusage; i++) {
1005 		usage = &field->usage[i];
1006 
1007 		collection = &hid->collection[usage->collection_index];
1008 		while (collection->parent_idx != -1 &&
1009 		       collection != multiplier_collection)
1010 			collection = &hid->collection[collection->parent_idx];
1011 
1012 		if (collection->parent_idx != -1 ||
1013 		    multiplier_collection == NULL)
1014 			usage->resolution_multiplier = effective_multiplier;
1015 
1016 	}
1017 }
1018 
1019 static void hid_apply_multiplier(struct hid_device *hid,
1020 				 struct hid_field *multiplier)
1021 {
1022 	struct hid_report_enum *rep_enum;
1023 	struct hid_report *rep;
1024 	struct hid_field *field;
1025 	struct hid_collection *multiplier_collection;
1026 	int effective_multiplier;
1027 	int i;
1028 
1029 	/*
1030 	 * "The Resolution Multiplier control must be contained in the same
1031 	 * Logical Collection as the control(s) to which it is to be applied.
1032 	 * If no Resolution Multiplier is defined, then the Resolution
1033 	 * Multiplier defaults to 1.  If more than one control exists in a
1034 	 * Logical Collection, the Resolution Multiplier is associated with
1035 	 * all controls in the collection. If no Logical Collection is
1036 	 * defined, the Resolution Multiplier is associated with all
1037 	 * controls in the report."
1038 	 * HID Usage Table, v1.12, Section 4.3.1, p30
1039 	 *
1040 	 * Thus, search from the current collection upwards until we find a
1041 	 * logical collection. Then search all fields for that same parent
1042 	 * collection. Those are the fields the multiplier applies to.
1043 	 *
1044 	 * If we have more than one multiplier, it will overwrite the
1045 	 * applicable fields later.
1046 	 */
1047 	multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1048 	while (multiplier_collection->parent_idx != -1 &&
1049 	       multiplier_collection->type != HID_COLLECTION_LOGICAL)
1050 		multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1051 
1052 	effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1053 
1054 	rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1055 	list_for_each_entry(rep, &rep_enum->report_list, list) {
1056 		for (i = 0; i < rep->maxfield; i++) {
1057 			field = rep->field[i];
1058 			hid_apply_multiplier_to_field(hid, field,
1059 						      multiplier_collection,
1060 						      effective_multiplier);
1061 		}
1062 	}
1063 }
1064 
1065 /*
1066  * hid_setup_resolution_multiplier - set up all resolution multipliers
1067  *
1068  * @device: hid device
1069  *
1070  * Search for all Resolution Multiplier Feature Reports and apply their
1071  * value to all matching Input items. This only updates the internal struct
1072  * fields.
1073  *
1074  * The Resolution Multiplier is applied by the hardware. If the multiplier
1075  * is anything other than 1, the hardware will send pre-multiplied events
1076  * so that the same physical interaction generates an accumulated
1077  *	accumulated_value = value * * multiplier
1078  * This may be achieved by sending
1079  * - "value * multiplier" for each event, or
1080  * - "value" but "multiplier" times as frequently, or
1081  * - a combination of the above
1082  * The only guarantee is that the same physical interaction always generates
1083  * an accumulated 'value * multiplier'.
1084  *
1085  * This function must be called before any event processing and after
1086  * any SetRequest to the Resolution Multiplier.
1087  */
1088 void hid_setup_resolution_multiplier(struct hid_device *hid)
1089 {
1090 	struct hid_report_enum *rep_enum;
1091 	struct hid_report *rep;
1092 	struct hid_usage *usage;
1093 	int i, j;
1094 
1095 	rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1096 	list_for_each_entry(rep, &rep_enum->report_list, list) {
1097 		for (i = 0; i < rep->maxfield; i++) {
1098 			/* Ignore if report count is out of bounds. */
1099 			if (rep->field[i]->report_count < 1)
1100 				continue;
1101 
1102 			for (j = 0; j < rep->field[i]->maxusage; j++) {
1103 				usage = &rep->field[i]->usage[j];
1104 				if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1105 					hid_apply_multiplier(hid,
1106 							     rep->field[i]);
1107 			}
1108 		}
1109 	}
1110 }
1111 EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1112 
1113 /**
1114  * hid_open_report - open a driver-specific device report
1115  *
1116  * @device: hid device
1117  *
1118  * Parse a report description into a hid_device structure. Reports are
1119  * enumerated, fields are attached to these reports.
1120  * 0 returned on success, otherwise nonzero error value.
1121  *
1122  * This function (or the equivalent hid_parse() macro) should only be
1123  * called from probe() in drivers, before starting the device.
1124  */
1125 int hid_open_report(struct hid_device *device)
1126 {
1127 	struct hid_parser *parser;
1128 	struct hid_item item;
1129 	unsigned int size;
1130 	__u8 *start;
1131 	__u8 *buf;
1132 	__u8 *end;
1133 	int ret;
1134 	static int (*dispatch_type[])(struct hid_parser *parser,
1135 				      struct hid_item *item) = {
1136 		hid_parser_main,
1137 		hid_parser_global,
1138 		hid_parser_local,
1139 		hid_parser_reserved
1140 	};
1141 
1142 	if (WARN_ON(device->status & HID_STAT_PARSED))
1143 		return -EBUSY;
1144 
1145 	start = device->dev_rdesc;
1146 	if (WARN_ON(!start))
1147 		return -ENODEV;
1148 	size = device->dev_rsize;
1149 
1150 	buf = kmemdup(start, size, GFP_KERNEL);
1151 	if (buf == NULL)
1152 		return -ENOMEM;
1153 
1154 	if (device->driver->report_fixup)
1155 		start = device->driver->report_fixup(device, buf, &size);
1156 	else
1157 		start = buf;
1158 
1159 	start = kmemdup(start, size, GFP_KERNEL);
1160 	kfree(buf);
1161 	if (start == NULL)
1162 		return -ENOMEM;
1163 
1164 	device->rdesc = start;
1165 	device->rsize = size;
1166 
1167 	parser = vzalloc(sizeof(struct hid_parser));
1168 	if (!parser) {
1169 		ret = -ENOMEM;
1170 		goto alloc_err;
1171 	}
1172 
1173 	parser->device = device;
1174 
1175 	end = start + size;
1176 
1177 	device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1178 				     sizeof(struct hid_collection), GFP_KERNEL);
1179 	if (!device->collection) {
1180 		ret = -ENOMEM;
1181 		goto err;
1182 	}
1183 	device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1184 
1185 	ret = -EINVAL;
1186 	while ((start = fetch_item(start, end, &item)) != NULL) {
1187 
1188 		if (item.format != HID_ITEM_FORMAT_SHORT) {
1189 			hid_err(device, "unexpected long global item\n");
1190 			goto err;
1191 		}
1192 
1193 		if (dispatch_type[item.type](parser, &item)) {
1194 			hid_err(device, "item %u %u %u %u parsing failed\n",
1195 				item.format, (unsigned)item.size,
1196 				(unsigned)item.type, (unsigned)item.tag);
1197 			goto err;
1198 		}
1199 
1200 		if (start == end) {
1201 			if (parser->collection_stack_ptr) {
1202 				hid_err(device, "unbalanced collection at end of report description\n");
1203 				goto err;
1204 			}
1205 			if (parser->local.delimiter_depth) {
1206 				hid_err(device, "unbalanced delimiter at end of report description\n");
1207 				goto err;
1208 			}
1209 
1210 			/*
1211 			 * fetch initial values in case the device's
1212 			 * default multiplier isn't the recommended 1
1213 			 */
1214 			hid_setup_resolution_multiplier(device);
1215 
1216 			kfree(parser->collection_stack);
1217 			vfree(parser);
1218 			device->status |= HID_STAT_PARSED;
1219 
1220 			return 0;
1221 		}
1222 	}
1223 
1224 	hid_err(device, "item fetching failed at offset %d\n", (int)(end - start));
1225 err:
1226 	kfree(parser->collection_stack);
1227 alloc_err:
1228 	vfree(parser);
1229 	hid_close_report(device);
1230 	return ret;
1231 }
1232 EXPORT_SYMBOL_GPL(hid_open_report);
1233 
1234 /*
1235  * Convert a signed n-bit integer to signed 32-bit integer. Common
1236  * cases are done through the compiler, the screwed things has to be
1237  * done by hand.
1238  */
1239 
1240 static s32 snto32(__u32 value, unsigned n)
1241 {
1242 	switch (n) {
1243 	case 8:  return ((__s8)value);
1244 	case 16: return ((__s16)value);
1245 	case 32: return ((__s32)value);
1246 	}
1247 	return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1248 }
1249 
1250 s32 hid_snto32(__u32 value, unsigned n)
1251 {
1252 	return snto32(value, n);
1253 }
1254 EXPORT_SYMBOL_GPL(hid_snto32);
1255 
1256 /*
1257  * Convert a signed 32-bit integer to a signed n-bit integer.
1258  */
1259 
1260 static u32 s32ton(__s32 value, unsigned n)
1261 {
1262 	s32 a = value >> (n - 1);
1263 	if (a && a != -1)
1264 		return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1265 	return value & ((1 << n) - 1);
1266 }
1267 
1268 /*
1269  * Extract/implement a data field from/to a little endian report (bit array).
1270  *
1271  * Code sort-of follows HID spec:
1272  *     http://www.usb.org/developers/hidpage/HID1_11.pdf
1273  *
1274  * While the USB HID spec allows unlimited length bit fields in "report
1275  * descriptors", most devices never use more than 16 bits.
1276  * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1277  * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1278  */
1279 
1280 static u32 __extract(u8 *report, unsigned offset, int n)
1281 {
1282 	unsigned int idx = offset / 8;
1283 	unsigned int bit_nr = 0;
1284 	unsigned int bit_shift = offset % 8;
1285 	int bits_to_copy = 8 - bit_shift;
1286 	u32 value = 0;
1287 	u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1288 
1289 	while (n > 0) {
1290 		value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1291 		n -= bits_to_copy;
1292 		bit_nr += bits_to_copy;
1293 		bits_to_copy = 8;
1294 		bit_shift = 0;
1295 		idx++;
1296 	}
1297 
1298 	return value & mask;
1299 }
1300 
1301 u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1302 			unsigned offset, unsigned n)
1303 {
1304 	if (n > 256) {
1305 		hid_warn(hid, "hid_field_extract() called with n (%d) > 256! (%s)\n",
1306 			 n, current->comm);
1307 		n = 256;
1308 	}
1309 
1310 	return __extract(report, offset, n);
1311 }
1312 EXPORT_SYMBOL_GPL(hid_field_extract);
1313 
1314 /*
1315  * "implement" : set bits in a little endian bit stream.
1316  * Same concepts as "extract" (see comments above).
1317  * The data mangled in the bit stream remains in little endian
1318  * order the whole time. It make more sense to talk about
1319  * endianness of register values by considering a register
1320  * a "cached" copy of the little endian bit stream.
1321  */
1322 
1323 static void __implement(u8 *report, unsigned offset, int n, u32 value)
1324 {
1325 	unsigned int idx = offset / 8;
1326 	unsigned int bit_shift = offset % 8;
1327 	int bits_to_set = 8 - bit_shift;
1328 
1329 	while (n - bits_to_set >= 0) {
1330 		report[idx] &= ~(0xff << bit_shift);
1331 		report[idx] |= value << bit_shift;
1332 		value >>= bits_to_set;
1333 		n -= bits_to_set;
1334 		bits_to_set = 8;
1335 		bit_shift = 0;
1336 		idx++;
1337 	}
1338 
1339 	/* last nibble */
1340 	if (n) {
1341 		u8 bit_mask = ((1U << n) - 1);
1342 		report[idx] &= ~(bit_mask << bit_shift);
1343 		report[idx] |= value << bit_shift;
1344 	}
1345 }
1346 
1347 static void implement(const struct hid_device *hid, u8 *report,
1348 		      unsigned offset, unsigned n, u32 value)
1349 {
1350 	if (unlikely(n > 32)) {
1351 		hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1352 			 __func__, n, current->comm);
1353 		n = 32;
1354 	} else if (n < 32) {
1355 		u32 m = (1U << n) - 1;
1356 
1357 		if (unlikely(value > m)) {
1358 			hid_warn(hid,
1359 				 "%s() called with too large value %d (n: %d)! (%s)\n",
1360 				 __func__, value, n, current->comm);
1361 			WARN_ON(1);
1362 			value &= m;
1363 		}
1364 	}
1365 
1366 	__implement(report, offset, n, value);
1367 }
1368 
1369 /*
1370  * Search an array for a value.
1371  */
1372 
1373 static int search(__s32 *array, __s32 value, unsigned n)
1374 {
1375 	while (n--) {
1376 		if (*array++ == value)
1377 			return 0;
1378 	}
1379 	return -1;
1380 }
1381 
1382 /**
1383  * hid_match_report - check if driver's raw_event should be called
1384  *
1385  * @hid: hid device
1386  * @report_type: type to match against
1387  *
1388  * compare hid->driver->report_table->report_type to report->type
1389  */
1390 static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1391 {
1392 	const struct hid_report_id *id = hid->driver->report_table;
1393 
1394 	if (!id) /* NULL means all */
1395 		return 1;
1396 
1397 	for (; id->report_type != HID_TERMINATOR; id++)
1398 		if (id->report_type == HID_ANY_ID ||
1399 				id->report_type == report->type)
1400 			return 1;
1401 	return 0;
1402 }
1403 
1404 /**
1405  * hid_match_usage - check if driver's event should be called
1406  *
1407  * @hid: hid device
1408  * @usage: usage to match against
1409  *
1410  * compare hid->driver->usage_table->usage_{type,code} to
1411  * usage->usage_{type,code}
1412  */
1413 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1414 {
1415 	const struct hid_usage_id *id = hid->driver->usage_table;
1416 
1417 	if (!id) /* NULL means all */
1418 		return 1;
1419 
1420 	for (; id->usage_type != HID_ANY_ID - 1; id++)
1421 		if ((id->usage_hid == HID_ANY_ID ||
1422 				id->usage_hid == usage->hid) &&
1423 				(id->usage_type == HID_ANY_ID ||
1424 				id->usage_type == usage->type) &&
1425 				(id->usage_code == HID_ANY_ID ||
1426 				 id->usage_code == usage->code))
1427 			return 1;
1428 	return 0;
1429 }
1430 
1431 static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1432 		struct hid_usage *usage, __s32 value, int interrupt)
1433 {
1434 	struct hid_driver *hdrv = hid->driver;
1435 	int ret;
1436 
1437 	if (!list_empty(&hid->debug_list))
1438 		hid_dump_input(hid, usage, value);
1439 
1440 	if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1441 		ret = hdrv->event(hid, field, usage, value);
1442 		if (ret != 0) {
1443 			if (ret < 0)
1444 				hid_err(hid, "%s's event failed with %d\n",
1445 						hdrv->name, ret);
1446 			return;
1447 		}
1448 	}
1449 
1450 	if (hid->claimed & HID_CLAIMED_INPUT)
1451 		hidinput_hid_event(hid, field, usage, value);
1452 	if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1453 		hid->hiddev_hid_event(hid, field, usage, value);
1454 }
1455 
1456 /*
1457  * Analyse a received field, and fetch the data from it. The field
1458  * content is stored for next report processing (we do differential
1459  * reporting to the layer).
1460  */
1461 
1462 static void hid_input_field(struct hid_device *hid, struct hid_field *field,
1463 			    __u8 *data, int interrupt)
1464 {
1465 	unsigned n;
1466 	unsigned count = field->report_count;
1467 	unsigned offset = field->report_offset;
1468 	unsigned size = field->report_size;
1469 	__s32 min = field->logical_minimum;
1470 	__s32 max = field->logical_maximum;
1471 	__s32 *value;
1472 
1473 	value = kmalloc_array(count, sizeof(__s32), GFP_ATOMIC);
1474 	if (!value)
1475 		return;
1476 
1477 	for (n = 0; n < count; n++) {
1478 
1479 		value[n] = min < 0 ?
1480 			snto32(hid_field_extract(hid, data, offset + n * size,
1481 			       size), size) :
1482 			hid_field_extract(hid, data, offset + n * size, size);
1483 
1484 		/* Ignore report if ErrorRollOver */
1485 		if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1486 		    value[n] >= min && value[n] <= max &&
1487 		    value[n] - min < field->maxusage &&
1488 		    field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
1489 			goto exit;
1490 	}
1491 
1492 	for (n = 0; n < count; n++) {
1493 
1494 		if (HID_MAIN_ITEM_VARIABLE & field->flags) {
1495 			hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
1496 			continue;
1497 		}
1498 
1499 		if (field->value[n] >= min && field->value[n] <= max
1500 			&& field->value[n] - min < field->maxusage
1501 			&& field->usage[field->value[n] - min].hid
1502 			&& search(value, field->value[n], count))
1503 				hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
1504 
1505 		if (value[n] >= min && value[n] <= max
1506 			&& value[n] - min < field->maxusage
1507 			&& field->usage[value[n] - min].hid
1508 			&& search(field->value, value[n], count))
1509 				hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
1510 	}
1511 
1512 	memcpy(field->value, value, count * sizeof(__s32));
1513 exit:
1514 	kfree(value);
1515 }
1516 
1517 /*
1518  * Output the field into the report.
1519  */
1520 
1521 static void hid_output_field(const struct hid_device *hid,
1522 			     struct hid_field *field, __u8 *data)
1523 {
1524 	unsigned count = field->report_count;
1525 	unsigned offset = field->report_offset;
1526 	unsigned size = field->report_size;
1527 	unsigned n;
1528 
1529 	for (n = 0; n < count; n++) {
1530 		if (field->logical_minimum < 0)	/* signed values */
1531 			implement(hid, data, offset + n * size, size,
1532 				  s32ton(field->value[n], size));
1533 		else				/* unsigned values */
1534 			implement(hid, data, offset + n * size, size,
1535 				  field->value[n]);
1536 	}
1537 }
1538 
1539 /*
1540  * Create a report. 'data' has to be allocated using
1541  * hid_alloc_report_buf() so that it has proper size.
1542  */
1543 
1544 void hid_output_report(struct hid_report *report, __u8 *data)
1545 {
1546 	unsigned n;
1547 
1548 	if (report->id > 0)
1549 		*data++ = report->id;
1550 
1551 	memset(data, 0, ((report->size - 1) >> 3) + 1);
1552 	for (n = 0; n < report->maxfield; n++)
1553 		hid_output_field(report->device, report->field[n], data);
1554 }
1555 EXPORT_SYMBOL_GPL(hid_output_report);
1556 
1557 /*
1558  * Allocator for buffer that is going to be passed to hid_output_report()
1559  */
1560 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1561 {
1562 	/*
1563 	 * 7 extra bytes are necessary to achieve proper functionality
1564 	 * of implement() working on 8 byte chunks
1565 	 */
1566 
1567 	u32 len = hid_report_len(report) + 7;
1568 
1569 	return kmalloc(len, flags);
1570 }
1571 EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1572 
1573 /*
1574  * Set a field value. The report this field belongs to has to be
1575  * created and transferred to the device, to set this value in the
1576  * device.
1577  */
1578 
1579 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1580 {
1581 	unsigned size;
1582 
1583 	if (!field)
1584 		return -1;
1585 
1586 	size = field->report_size;
1587 
1588 	hid_dump_input(field->report->device, field->usage + offset, value);
1589 
1590 	if (offset >= field->report_count) {
1591 		hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1592 				offset, field->report_count);
1593 		return -1;
1594 	}
1595 	if (field->logical_minimum < 0) {
1596 		if (value != snto32(s32ton(value, size), size)) {
1597 			hid_err(field->report->device, "value %d is out of range\n", value);
1598 			return -1;
1599 		}
1600 	}
1601 	field->value[offset] = value;
1602 	return 0;
1603 }
1604 EXPORT_SYMBOL_GPL(hid_set_field);
1605 
1606 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1607 		const u8 *data)
1608 {
1609 	struct hid_report *report;
1610 	unsigned int n = 0;	/* Normally report number is 0 */
1611 
1612 	/* Device uses numbered reports, data[0] is report number */
1613 	if (report_enum->numbered)
1614 		n = *data;
1615 
1616 	report = report_enum->report_id_hash[n];
1617 	if (report == NULL)
1618 		dbg_hid("undefined report_id %u received\n", n);
1619 
1620 	return report;
1621 }
1622 
1623 /*
1624  * Implement a generic .request() callback, using .raw_request()
1625  * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1626  */
1627 void __hid_request(struct hid_device *hid, struct hid_report *report,
1628 		int reqtype)
1629 {
1630 	char *buf;
1631 	int ret;
1632 	u32 len;
1633 
1634 	buf = hid_alloc_report_buf(report, GFP_KERNEL);
1635 	if (!buf)
1636 		return;
1637 
1638 	len = hid_report_len(report);
1639 
1640 	if (reqtype == HID_REQ_SET_REPORT)
1641 		hid_output_report(report, buf);
1642 
1643 	ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1644 					  report->type, reqtype);
1645 	if (ret < 0) {
1646 		dbg_hid("unable to complete request: %d\n", ret);
1647 		goto out;
1648 	}
1649 
1650 	if (reqtype == HID_REQ_GET_REPORT)
1651 		hid_input_report(hid, report->type, buf, ret, 0);
1652 
1653 out:
1654 	kfree(buf);
1655 }
1656 EXPORT_SYMBOL_GPL(__hid_request);
1657 
1658 int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size,
1659 		int interrupt)
1660 {
1661 	struct hid_report_enum *report_enum = hid->report_enum + type;
1662 	struct hid_report *report;
1663 	struct hid_driver *hdrv;
1664 	unsigned int a;
1665 	u32 rsize, csize = size;
1666 	u8 *cdata = data;
1667 	int ret = 0;
1668 
1669 	report = hid_get_report(report_enum, data);
1670 	if (!report)
1671 		goto out;
1672 
1673 	if (report_enum->numbered) {
1674 		cdata++;
1675 		csize--;
1676 	}
1677 
1678 	rsize = ((report->size - 1) >> 3) + 1;
1679 
1680 	if (rsize > HID_MAX_BUFFER_SIZE)
1681 		rsize = HID_MAX_BUFFER_SIZE;
1682 
1683 	if (csize < rsize) {
1684 		dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1685 				csize, rsize);
1686 		memset(cdata + csize, 0, rsize - csize);
1687 	}
1688 
1689 	if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1690 		hid->hiddev_report_event(hid, report);
1691 	if (hid->claimed & HID_CLAIMED_HIDRAW) {
1692 		ret = hidraw_report_event(hid, data, size);
1693 		if (ret)
1694 			goto out;
1695 	}
1696 
1697 	if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
1698 		for (a = 0; a < report->maxfield; a++)
1699 			hid_input_field(hid, report->field[a], cdata, interrupt);
1700 		hdrv = hid->driver;
1701 		if (hdrv && hdrv->report)
1702 			hdrv->report(hid, report);
1703 	}
1704 
1705 	if (hid->claimed & HID_CLAIMED_INPUT)
1706 		hidinput_report_event(hid, report);
1707 out:
1708 	return ret;
1709 }
1710 EXPORT_SYMBOL_GPL(hid_report_raw_event);
1711 
1712 /**
1713  * hid_input_report - report data from lower layer (usb, bt...)
1714  *
1715  * @hid: hid device
1716  * @type: HID report type (HID_*_REPORT)
1717  * @data: report contents
1718  * @size: size of data parameter
1719  * @interrupt: distinguish between interrupt and control transfers
1720  *
1721  * This is data entry for lower layers.
1722  */
1723 int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt)
1724 {
1725 	struct hid_report_enum *report_enum;
1726 	struct hid_driver *hdrv;
1727 	struct hid_report *report;
1728 	int ret = 0;
1729 
1730 	if (!hid)
1731 		return -ENODEV;
1732 
1733 	if (down_trylock(&hid->driver_input_lock))
1734 		return -EBUSY;
1735 
1736 	if (!hid->driver) {
1737 		ret = -ENODEV;
1738 		goto unlock;
1739 	}
1740 	report_enum = hid->report_enum + type;
1741 	hdrv = hid->driver;
1742 
1743 	if (!size) {
1744 		dbg_hid("empty report\n");
1745 		ret = -1;
1746 		goto unlock;
1747 	}
1748 
1749 	/* Avoid unnecessary overhead if debugfs is disabled */
1750 	if (!list_empty(&hid->debug_list))
1751 		hid_dump_report(hid, type, data, size);
1752 
1753 	report = hid_get_report(report_enum, data);
1754 
1755 	if (!report) {
1756 		ret = -1;
1757 		goto unlock;
1758 	}
1759 
1760 	if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1761 		ret = hdrv->raw_event(hid, report, data, size);
1762 		if (ret < 0)
1763 			goto unlock;
1764 	}
1765 
1766 	ret = hid_report_raw_event(hid, type, data, size, interrupt);
1767 
1768 unlock:
1769 	up(&hid->driver_input_lock);
1770 	return ret;
1771 }
1772 EXPORT_SYMBOL_GPL(hid_input_report);
1773 
1774 bool hid_match_one_id(const struct hid_device *hdev,
1775 		      const struct hid_device_id *id)
1776 {
1777 	return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
1778 		(id->group == HID_GROUP_ANY || id->group == hdev->group) &&
1779 		(id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1780 		(id->product == HID_ANY_ID || id->product == hdev->product);
1781 }
1782 
1783 const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
1784 		const struct hid_device_id *id)
1785 {
1786 	for (; id->bus; id++)
1787 		if (hid_match_one_id(hdev, id))
1788 			return id;
1789 
1790 	return NULL;
1791 }
1792 
1793 static const struct hid_device_id hid_hiddev_list[] = {
1794 	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1795 	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1796 	{ }
1797 };
1798 
1799 static bool hid_hiddev(struct hid_device *hdev)
1800 {
1801 	return !!hid_match_id(hdev, hid_hiddev_list);
1802 }
1803 
1804 
1805 static ssize_t
1806 read_report_descriptor(struct file *filp, struct kobject *kobj,
1807 		struct bin_attribute *attr,
1808 		char *buf, loff_t off, size_t count)
1809 {
1810 	struct device *dev = kobj_to_dev(kobj);
1811 	struct hid_device *hdev = to_hid_device(dev);
1812 
1813 	if (off >= hdev->rsize)
1814 		return 0;
1815 
1816 	if (off + count > hdev->rsize)
1817 		count = hdev->rsize - off;
1818 
1819 	memcpy(buf, hdev->rdesc + off, count);
1820 
1821 	return count;
1822 }
1823 
1824 static ssize_t
1825 show_country(struct device *dev, struct device_attribute *attr,
1826 		char *buf)
1827 {
1828 	struct hid_device *hdev = to_hid_device(dev);
1829 
1830 	return sprintf(buf, "%02x\n", hdev->country & 0xff);
1831 }
1832 
1833 static struct bin_attribute dev_bin_attr_report_desc = {
1834 	.attr = { .name = "report_descriptor", .mode = 0444 },
1835 	.read = read_report_descriptor,
1836 	.size = HID_MAX_DESCRIPTOR_SIZE,
1837 };
1838 
1839 static const struct device_attribute dev_attr_country = {
1840 	.attr = { .name = "country", .mode = 0444 },
1841 	.show = show_country,
1842 };
1843 
1844 int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1845 {
1846 	static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1847 		"Joystick", "Gamepad", "Keyboard", "Keypad",
1848 		"Multi-Axis Controller"
1849 	};
1850 	const char *type, *bus;
1851 	char buf[64] = "";
1852 	unsigned int i;
1853 	int len;
1854 	int ret;
1855 
1856 	if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1857 		connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1858 	if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1859 		connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1860 	if (hdev->bus != BUS_USB)
1861 		connect_mask &= ~HID_CONNECT_HIDDEV;
1862 	if (hid_hiddev(hdev))
1863 		connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1864 
1865 	if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1866 				connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1867 		hdev->claimed |= HID_CLAIMED_INPUT;
1868 
1869 	if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1870 			!hdev->hiddev_connect(hdev,
1871 				connect_mask & HID_CONNECT_HIDDEV_FORCE))
1872 		hdev->claimed |= HID_CLAIMED_HIDDEV;
1873 	if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1874 		hdev->claimed |= HID_CLAIMED_HIDRAW;
1875 
1876 	if (connect_mask & HID_CONNECT_DRIVER)
1877 		hdev->claimed |= HID_CLAIMED_DRIVER;
1878 
1879 	/* Drivers with the ->raw_event callback set are not required to connect
1880 	 * to any other listener. */
1881 	if (!hdev->claimed && !hdev->driver->raw_event) {
1882 		hid_err(hdev, "device has no listeners, quitting\n");
1883 		return -ENODEV;
1884 	}
1885 
1886 	if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1887 			(connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1888 		hdev->ff_init(hdev);
1889 
1890 	len = 0;
1891 	if (hdev->claimed & HID_CLAIMED_INPUT)
1892 		len += sprintf(buf + len, "input");
1893 	if (hdev->claimed & HID_CLAIMED_HIDDEV)
1894 		len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1895 				((struct hiddev *)hdev->hiddev)->minor);
1896 	if (hdev->claimed & HID_CLAIMED_HIDRAW)
1897 		len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
1898 				((struct hidraw *)hdev->hidraw)->minor);
1899 
1900 	type = "Device";
1901 	for (i = 0; i < hdev->maxcollection; i++) {
1902 		struct hid_collection *col = &hdev->collection[i];
1903 		if (col->type == HID_COLLECTION_APPLICATION &&
1904 		   (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
1905 		   (col->usage & 0xffff) < ARRAY_SIZE(types)) {
1906 			type = types[col->usage & 0xffff];
1907 			break;
1908 		}
1909 	}
1910 
1911 	switch (hdev->bus) {
1912 	case BUS_USB:
1913 		bus = "USB";
1914 		break;
1915 	case BUS_BLUETOOTH:
1916 		bus = "BLUETOOTH";
1917 		break;
1918 	case BUS_I2C:
1919 		bus = "I2C";
1920 		break;
1921 	default:
1922 		bus = "<UNKNOWN>";
1923 	}
1924 
1925 	ret = device_create_file(&hdev->dev, &dev_attr_country);
1926 	if (ret)
1927 		hid_warn(hdev,
1928 			 "can't create sysfs country code attribute err: %d\n", ret);
1929 
1930 	hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
1931 		 buf, bus, hdev->version >> 8, hdev->version & 0xff,
1932 		 type, hdev->name, hdev->phys);
1933 
1934 	return 0;
1935 }
1936 EXPORT_SYMBOL_GPL(hid_connect);
1937 
1938 void hid_disconnect(struct hid_device *hdev)
1939 {
1940 	device_remove_file(&hdev->dev, &dev_attr_country);
1941 	if (hdev->claimed & HID_CLAIMED_INPUT)
1942 		hidinput_disconnect(hdev);
1943 	if (hdev->claimed & HID_CLAIMED_HIDDEV)
1944 		hdev->hiddev_disconnect(hdev);
1945 	if (hdev->claimed & HID_CLAIMED_HIDRAW)
1946 		hidraw_disconnect(hdev);
1947 	hdev->claimed = 0;
1948 }
1949 EXPORT_SYMBOL_GPL(hid_disconnect);
1950 
1951 /**
1952  * hid_hw_start - start underlying HW
1953  * @hdev: hid device
1954  * @connect_mask: which outputs to connect, see HID_CONNECT_*
1955  *
1956  * Call this in probe function *after* hid_parse. This will setup HW
1957  * buffers and start the device (if not defeirred to device open).
1958  * hid_hw_stop must be called if this was successful.
1959  */
1960 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
1961 {
1962 	int error;
1963 
1964 	error = hdev->ll_driver->start(hdev);
1965 	if (error)
1966 		return error;
1967 
1968 	if (connect_mask) {
1969 		error = hid_connect(hdev, connect_mask);
1970 		if (error) {
1971 			hdev->ll_driver->stop(hdev);
1972 			return error;
1973 		}
1974 	}
1975 
1976 	return 0;
1977 }
1978 EXPORT_SYMBOL_GPL(hid_hw_start);
1979 
1980 /**
1981  * hid_hw_stop - stop underlying HW
1982  * @hdev: hid device
1983  *
1984  * This is usually called from remove function or from probe when something
1985  * failed and hid_hw_start was called already.
1986  */
1987 void hid_hw_stop(struct hid_device *hdev)
1988 {
1989 	hid_disconnect(hdev);
1990 	hdev->ll_driver->stop(hdev);
1991 }
1992 EXPORT_SYMBOL_GPL(hid_hw_stop);
1993 
1994 /**
1995  * hid_hw_open - signal underlying HW to start delivering events
1996  * @hdev: hid device
1997  *
1998  * Tell underlying HW to start delivering events from the device.
1999  * This function should be called sometime after successful call
2000  * to hid_hw_start().
2001  */
2002 int hid_hw_open(struct hid_device *hdev)
2003 {
2004 	int ret;
2005 
2006 	ret = mutex_lock_killable(&hdev->ll_open_lock);
2007 	if (ret)
2008 		return ret;
2009 
2010 	if (!hdev->ll_open_count++) {
2011 		ret = hdev->ll_driver->open(hdev);
2012 		if (ret)
2013 			hdev->ll_open_count--;
2014 	}
2015 
2016 	mutex_unlock(&hdev->ll_open_lock);
2017 	return ret;
2018 }
2019 EXPORT_SYMBOL_GPL(hid_hw_open);
2020 
2021 /**
2022  * hid_hw_close - signal underlaying HW to stop delivering events
2023  *
2024  * @hdev: hid device
2025  *
2026  * This function indicates that we are not interested in the events
2027  * from this device anymore. Delivery of events may or may not stop,
2028  * depending on the number of users still outstanding.
2029  */
2030 void hid_hw_close(struct hid_device *hdev)
2031 {
2032 	mutex_lock(&hdev->ll_open_lock);
2033 	if (!--hdev->ll_open_count)
2034 		hdev->ll_driver->close(hdev);
2035 	mutex_unlock(&hdev->ll_open_lock);
2036 }
2037 EXPORT_SYMBOL_GPL(hid_hw_close);
2038 
2039 struct hid_dynid {
2040 	struct list_head list;
2041 	struct hid_device_id id;
2042 };
2043 
2044 /**
2045  * store_new_id - add a new HID device ID to this driver and re-probe devices
2046  * @driver: target device driver
2047  * @buf: buffer for scanning device ID data
2048  * @count: input size
2049  *
2050  * Adds a new dynamic hid device ID to this driver,
2051  * and causes the driver to probe for all devices again.
2052  */
2053 static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2054 		size_t count)
2055 {
2056 	struct hid_driver *hdrv = to_hid_driver(drv);
2057 	struct hid_dynid *dynid;
2058 	__u32 bus, vendor, product;
2059 	unsigned long driver_data = 0;
2060 	int ret;
2061 
2062 	ret = sscanf(buf, "%x %x %x %lx",
2063 			&bus, &vendor, &product, &driver_data);
2064 	if (ret < 3)
2065 		return -EINVAL;
2066 
2067 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2068 	if (!dynid)
2069 		return -ENOMEM;
2070 
2071 	dynid->id.bus = bus;
2072 	dynid->id.group = HID_GROUP_ANY;
2073 	dynid->id.vendor = vendor;
2074 	dynid->id.product = product;
2075 	dynid->id.driver_data = driver_data;
2076 
2077 	spin_lock(&hdrv->dyn_lock);
2078 	list_add_tail(&dynid->list, &hdrv->dyn_list);
2079 	spin_unlock(&hdrv->dyn_lock);
2080 
2081 	ret = driver_attach(&hdrv->driver);
2082 
2083 	return ret ? : count;
2084 }
2085 static DRIVER_ATTR_WO(new_id);
2086 
2087 static struct attribute *hid_drv_attrs[] = {
2088 	&driver_attr_new_id.attr,
2089 	NULL,
2090 };
2091 ATTRIBUTE_GROUPS(hid_drv);
2092 
2093 static void hid_free_dynids(struct hid_driver *hdrv)
2094 {
2095 	struct hid_dynid *dynid, *n;
2096 
2097 	spin_lock(&hdrv->dyn_lock);
2098 	list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2099 		list_del(&dynid->list);
2100 		kfree(dynid);
2101 	}
2102 	spin_unlock(&hdrv->dyn_lock);
2103 }
2104 
2105 const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2106 					     struct hid_driver *hdrv)
2107 {
2108 	struct hid_dynid *dynid;
2109 
2110 	spin_lock(&hdrv->dyn_lock);
2111 	list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2112 		if (hid_match_one_id(hdev, &dynid->id)) {
2113 			spin_unlock(&hdrv->dyn_lock);
2114 			return &dynid->id;
2115 		}
2116 	}
2117 	spin_unlock(&hdrv->dyn_lock);
2118 
2119 	return hid_match_id(hdev, hdrv->id_table);
2120 }
2121 EXPORT_SYMBOL_GPL(hid_match_device);
2122 
2123 static int hid_bus_match(struct device *dev, struct device_driver *drv)
2124 {
2125 	struct hid_driver *hdrv = to_hid_driver(drv);
2126 	struct hid_device *hdev = to_hid_device(dev);
2127 
2128 	return hid_match_device(hdev, hdrv) != NULL;
2129 }
2130 
2131 /**
2132  * hid_compare_device_paths - check if both devices share the same path
2133  * @hdev_a: hid device
2134  * @hdev_b: hid device
2135  * @separator: char to use as separator
2136  *
2137  * Check if two devices share the same path up to the last occurrence of
2138  * the separator char. Both paths must exist (i.e., zero-length paths
2139  * don't match).
2140  */
2141 bool hid_compare_device_paths(struct hid_device *hdev_a,
2142 			      struct hid_device *hdev_b, char separator)
2143 {
2144 	int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2145 	int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2146 
2147 	if (n1 != n2 || n1 <= 0 || n2 <= 0)
2148 		return false;
2149 
2150 	return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2151 }
2152 EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2153 
2154 static int hid_device_probe(struct device *dev)
2155 {
2156 	struct hid_driver *hdrv = to_hid_driver(dev->driver);
2157 	struct hid_device *hdev = to_hid_device(dev);
2158 	const struct hid_device_id *id;
2159 	int ret = 0;
2160 
2161 	if (down_interruptible(&hdev->driver_input_lock)) {
2162 		ret = -EINTR;
2163 		goto end;
2164 	}
2165 	hdev->io_started = false;
2166 
2167 	clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2168 
2169 	if (!hdev->driver) {
2170 		id = hid_match_device(hdev, hdrv);
2171 		if (id == NULL) {
2172 			ret = -ENODEV;
2173 			goto unlock;
2174 		}
2175 
2176 		if (hdrv->match) {
2177 			if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
2178 				ret = -ENODEV;
2179 				goto unlock;
2180 			}
2181 		} else {
2182 			/*
2183 			 * hid-generic implements .match(), so if
2184 			 * hid_ignore_special_drivers is set, we can safely
2185 			 * return.
2186 			 */
2187 			if (hid_ignore_special_drivers) {
2188 				ret = -ENODEV;
2189 				goto unlock;
2190 			}
2191 		}
2192 
2193 		/* reset the quirks that has been previously set */
2194 		hdev->quirks = hid_lookup_quirk(hdev);
2195 		hdev->driver = hdrv;
2196 		if (hdrv->probe) {
2197 			ret = hdrv->probe(hdev, id);
2198 		} else { /* default probe */
2199 			ret = hid_open_report(hdev);
2200 			if (!ret)
2201 				ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2202 		}
2203 		if (ret) {
2204 			hid_close_report(hdev);
2205 			hdev->driver = NULL;
2206 		}
2207 	}
2208 unlock:
2209 	if (!hdev->io_started)
2210 		up(&hdev->driver_input_lock);
2211 end:
2212 	return ret;
2213 }
2214 
2215 static int hid_device_remove(struct device *dev)
2216 {
2217 	struct hid_device *hdev = to_hid_device(dev);
2218 	struct hid_driver *hdrv;
2219 	int ret = 0;
2220 
2221 	if (down_interruptible(&hdev->driver_input_lock)) {
2222 		ret = -EINTR;
2223 		goto end;
2224 	}
2225 	hdev->io_started = false;
2226 
2227 	hdrv = hdev->driver;
2228 	if (hdrv) {
2229 		if (hdrv->remove)
2230 			hdrv->remove(hdev);
2231 		else /* default remove */
2232 			hid_hw_stop(hdev);
2233 		hid_close_report(hdev);
2234 		hdev->driver = NULL;
2235 	}
2236 
2237 	if (!hdev->io_started)
2238 		up(&hdev->driver_input_lock);
2239 end:
2240 	return ret;
2241 }
2242 
2243 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2244 			     char *buf)
2245 {
2246 	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2247 
2248 	return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2249 			 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2250 }
2251 static DEVICE_ATTR_RO(modalias);
2252 
2253 static struct attribute *hid_dev_attrs[] = {
2254 	&dev_attr_modalias.attr,
2255 	NULL,
2256 };
2257 static struct bin_attribute *hid_dev_bin_attrs[] = {
2258 	&dev_bin_attr_report_desc,
2259 	NULL
2260 };
2261 static const struct attribute_group hid_dev_group = {
2262 	.attrs = hid_dev_attrs,
2263 	.bin_attrs = hid_dev_bin_attrs,
2264 };
2265 __ATTRIBUTE_GROUPS(hid_dev);
2266 
2267 static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2268 {
2269 	struct hid_device *hdev = to_hid_device(dev);
2270 
2271 	if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2272 			hdev->bus, hdev->vendor, hdev->product))
2273 		return -ENOMEM;
2274 
2275 	if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2276 		return -ENOMEM;
2277 
2278 	if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2279 		return -ENOMEM;
2280 
2281 	if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2282 		return -ENOMEM;
2283 
2284 	if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2285 			   hdev->bus, hdev->group, hdev->vendor, hdev->product))
2286 		return -ENOMEM;
2287 
2288 	return 0;
2289 }
2290 
2291 struct bus_type hid_bus_type = {
2292 	.name		= "hid",
2293 	.dev_groups	= hid_dev_groups,
2294 	.drv_groups	= hid_drv_groups,
2295 	.match		= hid_bus_match,
2296 	.probe		= hid_device_probe,
2297 	.remove		= hid_device_remove,
2298 	.uevent		= hid_uevent,
2299 };
2300 EXPORT_SYMBOL(hid_bus_type);
2301 
2302 int hid_add_device(struct hid_device *hdev)
2303 {
2304 	static atomic_t id = ATOMIC_INIT(0);
2305 	int ret;
2306 
2307 	if (WARN_ON(hdev->status & HID_STAT_ADDED))
2308 		return -EBUSY;
2309 
2310 	hdev->quirks = hid_lookup_quirk(hdev);
2311 
2312 	/* we need to kill them here, otherwise they will stay allocated to
2313 	 * wait for coming driver */
2314 	if (hid_ignore(hdev))
2315 		return -ENODEV;
2316 
2317 	/*
2318 	 * Check for the mandatory transport channel.
2319 	 */
2320 	 if (!hdev->ll_driver->raw_request) {
2321 		hid_err(hdev, "transport driver missing .raw_request()\n");
2322 		return -EINVAL;
2323 	 }
2324 
2325 	/*
2326 	 * Read the device report descriptor once and use as template
2327 	 * for the driver-specific modifications.
2328 	 */
2329 	ret = hdev->ll_driver->parse(hdev);
2330 	if (ret)
2331 		return ret;
2332 	if (!hdev->dev_rdesc)
2333 		return -ENODEV;
2334 
2335 	/*
2336 	 * Scan generic devices for group information
2337 	 */
2338 	if (hid_ignore_special_drivers) {
2339 		hdev->group = HID_GROUP_GENERIC;
2340 	} else if (!hdev->group &&
2341 		   !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2342 		ret = hid_scan_report(hdev);
2343 		if (ret)
2344 			hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2345 	}
2346 
2347 	/* XXX hack, any other cleaner solution after the driver core
2348 	 * is converted to allow more than 20 bytes as the device name? */
2349 	dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2350 		     hdev->vendor, hdev->product, atomic_inc_return(&id));
2351 
2352 	hid_debug_register(hdev, dev_name(&hdev->dev));
2353 	ret = device_add(&hdev->dev);
2354 	if (!ret)
2355 		hdev->status |= HID_STAT_ADDED;
2356 	else
2357 		hid_debug_unregister(hdev);
2358 
2359 	return ret;
2360 }
2361 EXPORT_SYMBOL_GPL(hid_add_device);
2362 
2363 /**
2364  * hid_allocate_device - allocate new hid device descriptor
2365  *
2366  * Allocate and initialize hid device, so that hid_destroy_device might be
2367  * used to free it.
2368  *
2369  * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2370  * error value.
2371  */
2372 struct hid_device *hid_allocate_device(void)
2373 {
2374 	struct hid_device *hdev;
2375 	int ret = -ENOMEM;
2376 
2377 	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2378 	if (hdev == NULL)
2379 		return ERR_PTR(ret);
2380 
2381 	device_initialize(&hdev->dev);
2382 	hdev->dev.release = hid_device_release;
2383 	hdev->dev.bus = &hid_bus_type;
2384 	device_enable_async_suspend(&hdev->dev);
2385 
2386 	hid_close_report(hdev);
2387 
2388 	init_waitqueue_head(&hdev->debug_wait);
2389 	INIT_LIST_HEAD(&hdev->debug_list);
2390 	spin_lock_init(&hdev->debug_list_lock);
2391 	sema_init(&hdev->driver_input_lock, 1);
2392 	mutex_init(&hdev->ll_open_lock);
2393 
2394 	return hdev;
2395 }
2396 EXPORT_SYMBOL_GPL(hid_allocate_device);
2397 
2398 static void hid_remove_device(struct hid_device *hdev)
2399 {
2400 	if (hdev->status & HID_STAT_ADDED) {
2401 		device_del(&hdev->dev);
2402 		hid_debug_unregister(hdev);
2403 		hdev->status &= ~HID_STAT_ADDED;
2404 	}
2405 	kfree(hdev->dev_rdesc);
2406 	hdev->dev_rdesc = NULL;
2407 	hdev->dev_rsize = 0;
2408 }
2409 
2410 /**
2411  * hid_destroy_device - free previously allocated device
2412  *
2413  * @hdev: hid device
2414  *
2415  * If you allocate hid_device through hid_allocate_device, you should ever
2416  * free by this function.
2417  */
2418 void hid_destroy_device(struct hid_device *hdev)
2419 {
2420 	hid_remove_device(hdev);
2421 	put_device(&hdev->dev);
2422 }
2423 EXPORT_SYMBOL_GPL(hid_destroy_device);
2424 
2425 
2426 static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2427 {
2428 	struct hid_driver *hdrv = data;
2429 	struct hid_device *hdev = to_hid_device(dev);
2430 
2431 	if (hdev->driver == hdrv &&
2432 	    !hdrv->match(hdev, hid_ignore_special_drivers) &&
2433 	    !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2434 		return device_reprobe(dev);
2435 
2436 	return 0;
2437 }
2438 
2439 static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2440 {
2441 	struct hid_driver *hdrv = to_hid_driver(drv);
2442 
2443 	if (hdrv->match) {
2444 		bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2445 				 __hid_bus_reprobe_drivers);
2446 	}
2447 
2448 	return 0;
2449 }
2450 
2451 static int __bus_removed_driver(struct device_driver *drv, void *data)
2452 {
2453 	return bus_rescan_devices(&hid_bus_type);
2454 }
2455 
2456 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2457 		const char *mod_name)
2458 {
2459 	int ret;
2460 
2461 	hdrv->driver.name = hdrv->name;
2462 	hdrv->driver.bus = &hid_bus_type;
2463 	hdrv->driver.owner = owner;
2464 	hdrv->driver.mod_name = mod_name;
2465 
2466 	INIT_LIST_HEAD(&hdrv->dyn_list);
2467 	spin_lock_init(&hdrv->dyn_lock);
2468 
2469 	ret = driver_register(&hdrv->driver);
2470 
2471 	if (ret == 0)
2472 		bus_for_each_drv(&hid_bus_type, NULL, NULL,
2473 				 __hid_bus_driver_added);
2474 
2475 	return ret;
2476 }
2477 EXPORT_SYMBOL_GPL(__hid_register_driver);
2478 
2479 void hid_unregister_driver(struct hid_driver *hdrv)
2480 {
2481 	driver_unregister(&hdrv->driver);
2482 	hid_free_dynids(hdrv);
2483 
2484 	bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2485 }
2486 EXPORT_SYMBOL_GPL(hid_unregister_driver);
2487 
2488 int hid_check_keys_pressed(struct hid_device *hid)
2489 {
2490 	struct hid_input *hidinput;
2491 	int i;
2492 
2493 	if (!(hid->claimed & HID_CLAIMED_INPUT))
2494 		return 0;
2495 
2496 	list_for_each_entry(hidinput, &hid->inputs, list) {
2497 		for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2498 			if (hidinput->input->key[i])
2499 				return 1;
2500 	}
2501 
2502 	return 0;
2503 }
2504 
2505 EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2506 
2507 static int __init hid_init(void)
2508 {
2509 	int ret;
2510 
2511 	if (hid_debug)
2512 		pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2513 			"debugfs is now used for inspecting the device (report descriptor, reports)\n");
2514 
2515 	ret = bus_register(&hid_bus_type);
2516 	if (ret) {
2517 		pr_err("can't register hid bus\n");
2518 		goto err;
2519 	}
2520 
2521 	ret = hidraw_init();
2522 	if (ret)
2523 		goto err_bus;
2524 
2525 	hid_debug_init();
2526 
2527 	return 0;
2528 err_bus:
2529 	bus_unregister(&hid_bus_type);
2530 err:
2531 	return ret;
2532 }
2533 
2534 static void __exit hid_exit(void)
2535 {
2536 	hid_debug_exit();
2537 	hidraw_exit();
2538 	bus_unregister(&hid_bus_type);
2539 	hid_quirks_exit(HID_BUS_ANY);
2540 }
2541 
2542 module_init(hid_init);
2543 module_exit(hid_exit);
2544 
2545 MODULE_AUTHOR("Andreas Gal");
2546 MODULE_AUTHOR("Vojtech Pavlik");
2547 MODULE_AUTHOR("Jiri Kosina");
2548 MODULE_LICENSE("GPL");
2549