1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * HID support for Linux 4 * 5 * Copyright (c) 1999 Andreas Gal 6 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz> 7 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc 8 * Copyright (c) 2006-2012 Jiri Kosina 9 */ 10 11 /* 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 #include <linux/init.h> 19 #include <linux/kernel.h> 20 #include <linux/list.h> 21 #include <linux/mm.h> 22 #include <linux/spinlock.h> 23 #include <asm/unaligned.h> 24 #include <asm/byteorder.h> 25 #include <linux/input.h> 26 #include <linux/wait.h> 27 #include <linux/vmalloc.h> 28 #include <linux/sched.h> 29 #include <linux/semaphore.h> 30 #include <linux/async.h> 31 32 #include <linux/hid.h> 33 #include <linux/hiddev.h> 34 #include <linux/hid-debug.h> 35 #include <linux/hidraw.h> 36 37 #include "hid-ids.h" 38 39 /* 40 * Version Information 41 */ 42 43 #define DRIVER_DESC "HID core driver" 44 45 int hid_debug = 0; 46 module_param_named(debug, hid_debug, int, 0600); 47 MODULE_PARM_DESC(debug, "toggle HID debugging messages"); 48 EXPORT_SYMBOL_GPL(hid_debug); 49 50 static int hid_ignore_special_drivers = 0; 51 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600); 52 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver"); 53 54 /* 55 * Register a new report for a device. 56 */ 57 58 struct hid_report *hid_register_report(struct hid_device *device, 59 unsigned int type, unsigned int id, 60 unsigned int application) 61 { 62 struct hid_report_enum *report_enum = device->report_enum + type; 63 struct hid_report *report; 64 65 if (id >= HID_MAX_IDS) 66 return NULL; 67 if (report_enum->report_id_hash[id]) 68 return report_enum->report_id_hash[id]; 69 70 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL); 71 if (!report) 72 return NULL; 73 74 if (id != 0) 75 report_enum->numbered = 1; 76 77 report->id = id; 78 report->type = type; 79 report->size = 0; 80 report->device = device; 81 report->application = application; 82 report_enum->report_id_hash[id] = report; 83 84 list_add_tail(&report->list, &report_enum->report_list); 85 86 return report; 87 } 88 EXPORT_SYMBOL_GPL(hid_register_report); 89 90 /* 91 * Register a new field for this report. 92 */ 93 94 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values) 95 { 96 struct hid_field *field; 97 98 if (report->maxfield == HID_MAX_FIELDS) { 99 hid_err(report->device, "too many fields in report\n"); 100 return NULL; 101 } 102 103 field = kzalloc((sizeof(struct hid_field) + 104 usages * sizeof(struct hid_usage) + 105 values * sizeof(unsigned)), GFP_KERNEL); 106 if (!field) 107 return NULL; 108 109 field->index = report->maxfield++; 110 report->field[field->index] = field; 111 field->usage = (struct hid_usage *)(field + 1); 112 field->value = (s32 *)(field->usage + usages); 113 field->report = report; 114 115 return field; 116 } 117 118 /* 119 * Open a collection. The type/usage is pushed on the stack. 120 */ 121 122 static int open_collection(struct hid_parser *parser, unsigned type) 123 { 124 struct hid_collection *collection; 125 unsigned usage; 126 int collection_index; 127 128 usage = parser->local.usage[0]; 129 130 if (parser->collection_stack_ptr == parser->collection_stack_size) { 131 unsigned int *collection_stack; 132 unsigned int new_size = parser->collection_stack_size + 133 HID_COLLECTION_STACK_SIZE; 134 135 collection_stack = krealloc(parser->collection_stack, 136 new_size * sizeof(unsigned int), 137 GFP_KERNEL); 138 if (!collection_stack) 139 return -ENOMEM; 140 141 parser->collection_stack = collection_stack; 142 parser->collection_stack_size = new_size; 143 } 144 145 if (parser->device->maxcollection == parser->device->collection_size) { 146 collection = kmalloc( 147 array3_size(sizeof(struct hid_collection), 148 parser->device->collection_size, 149 2), 150 GFP_KERNEL); 151 if (collection == NULL) { 152 hid_err(parser->device, "failed to reallocate collection array\n"); 153 return -ENOMEM; 154 } 155 memcpy(collection, parser->device->collection, 156 sizeof(struct hid_collection) * 157 parser->device->collection_size); 158 memset(collection + parser->device->collection_size, 0, 159 sizeof(struct hid_collection) * 160 parser->device->collection_size); 161 kfree(parser->device->collection); 162 parser->device->collection = collection; 163 parser->device->collection_size *= 2; 164 } 165 166 parser->collection_stack[parser->collection_stack_ptr++] = 167 parser->device->maxcollection; 168 169 collection_index = parser->device->maxcollection++; 170 collection = parser->device->collection + collection_index; 171 collection->type = type; 172 collection->usage = usage; 173 collection->level = parser->collection_stack_ptr - 1; 174 collection->parent_idx = (collection->level == 0) ? -1 : 175 parser->collection_stack[collection->level - 1]; 176 177 if (type == HID_COLLECTION_APPLICATION) 178 parser->device->maxapplication++; 179 180 return 0; 181 } 182 183 /* 184 * Close a collection. 185 */ 186 187 static int close_collection(struct hid_parser *parser) 188 { 189 if (!parser->collection_stack_ptr) { 190 hid_err(parser->device, "collection stack underflow\n"); 191 return -EINVAL; 192 } 193 parser->collection_stack_ptr--; 194 return 0; 195 } 196 197 /* 198 * Climb up the stack, search for the specified collection type 199 * and return the usage. 200 */ 201 202 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type) 203 { 204 struct hid_collection *collection = parser->device->collection; 205 int n; 206 207 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) { 208 unsigned index = parser->collection_stack[n]; 209 if (collection[index].type == type) 210 return collection[index].usage; 211 } 212 return 0; /* we know nothing about this usage type */ 213 } 214 215 /* 216 * Add a usage to the temporary parser table. 217 */ 218 219 static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size) 220 { 221 if (parser->local.usage_index >= HID_MAX_USAGES) { 222 hid_err(parser->device, "usage index exceeded\n"); 223 return -1; 224 } 225 parser->local.usage[parser->local.usage_index] = usage; 226 parser->local.usage_size[parser->local.usage_index] = size; 227 parser->local.collection_index[parser->local.usage_index] = 228 parser->collection_stack_ptr ? 229 parser->collection_stack[parser->collection_stack_ptr - 1] : 0; 230 parser->local.usage_index++; 231 return 0; 232 } 233 234 /* 235 * Register a new field for this report. 236 */ 237 238 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags) 239 { 240 struct hid_report *report; 241 struct hid_field *field; 242 unsigned int usages; 243 unsigned int offset; 244 unsigned int i; 245 unsigned int application; 246 247 application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION); 248 249 report = hid_register_report(parser->device, report_type, 250 parser->global.report_id, application); 251 if (!report) { 252 hid_err(parser->device, "hid_register_report failed\n"); 253 return -1; 254 } 255 256 /* Handle both signed and unsigned cases properly */ 257 if ((parser->global.logical_minimum < 0 && 258 parser->global.logical_maximum < 259 parser->global.logical_minimum) || 260 (parser->global.logical_minimum >= 0 && 261 (__u32)parser->global.logical_maximum < 262 (__u32)parser->global.logical_minimum)) { 263 dbg_hid("logical range invalid 0x%x 0x%x\n", 264 parser->global.logical_minimum, 265 parser->global.logical_maximum); 266 return -1; 267 } 268 269 offset = report->size; 270 report->size += parser->global.report_size * parser->global.report_count; 271 272 if (!parser->local.usage_index) /* Ignore padding fields */ 273 return 0; 274 275 usages = max_t(unsigned, parser->local.usage_index, 276 parser->global.report_count); 277 278 field = hid_register_field(report, usages, parser->global.report_count); 279 if (!field) 280 return 0; 281 282 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL); 283 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL); 284 field->application = application; 285 286 for (i = 0; i < usages; i++) { 287 unsigned j = i; 288 /* Duplicate the last usage we parsed if we have excess values */ 289 if (i >= parser->local.usage_index) 290 j = parser->local.usage_index - 1; 291 field->usage[i].hid = parser->local.usage[j]; 292 field->usage[i].collection_index = 293 parser->local.collection_index[j]; 294 field->usage[i].usage_index = i; 295 field->usage[i].resolution_multiplier = 1; 296 } 297 298 field->maxusage = usages; 299 field->flags = flags; 300 field->report_offset = offset; 301 field->report_type = report_type; 302 field->report_size = parser->global.report_size; 303 field->report_count = parser->global.report_count; 304 field->logical_minimum = parser->global.logical_minimum; 305 field->logical_maximum = parser->global.logical_maximum; 306 field->physical_minimum = parser->global.physical_minimum; 307 field->physical_maximum = parser->global.physical_maximum; 308 field->unit_exponent = parser->global.unit_exponent; 309 field->unit = parser->global.unit; 310 311 return 0; 312 } 313 314 /* 315 * Read data value from item. 316 */ 317 318 static u32 item_udata(struct hid_item *item) 319 { 320 switch (item->size) { 321 case 1: return item->data.u8; 322 case 2: return item->data.u16; 323 case 4: return item->data.u32; 324 } 325 return 0; 326 } 327 328 static s32 item_sdata(struct hid_item *item) 329 { 330 switch (item->size) { 331 case 1: return item->data.s8; 332 case 2: return item->data.s16; 333 case 4: return item->data.s32; 334 } 335 return 0; 336 } 337 338 /* 339 * Process a global item. 340 */ 341 342 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item) 343 { 344 __s32 raw_value; 345 switch (item->tag) { 346 case HID_GLOBAL_ITEM_TAG_PUSH: 347 348 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) { 349 hid_err(parser->device, "global environment stack overflow\n"); 350 return -1; 351 } 352 353 memcpy(parser->global_stack + parser->global_stack_ptr++, 354 &parser->global, sizeof(struct hid_global)); 355 return 0; 356 357 case HID_GLOBAL_ITEM_TAG_POP: 358 359 if (!parser->global_stack_ptr) { 360 hid_err(parser->device, "global environment stack underflow\n"); 361 return -1; 362 } 363 364 memcpy(&parser->global, parser->global_stack + 365 --parser->global_stack_ptr, sizeof(struct hid_global)); 366 return 0; 367 368 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE: 369 parser->global.usage_page = item_udata(item); 370 return 0; 371 372 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM: 373 parser->global.logical_minimum = item_sdata(item); 374 return 0; 375 376 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM: 377 if (parser->global.logical_minimum < 0) 378 parser->global.logical_maximum = item_sdata(item); 379 else 380 parser->global.logical_maximum = item_udata(item); 381 return 0; 382 383 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM: 384 parser->global.physical_minimum = item_sdata(item); 385 return 0; 386 387 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM: 388 if (parser->global.physical_minimum < 0) 389 parser->global.physical_maximum = item_sdata(item); 390 else 391 parser->global.physical_maximum = item_udata(item); 392 return 0; 393 394 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT: 395 /* Many devices provide unit exponent as a two's complement 396 * nibble due to the common misunderstanding of HID 397 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle 398 * both this and the standard encoding. */ 399 raw_value = item_sdata(item); 400 if (!(raw_value & 0xfffffff0)) 401 parser->global.unit_exponent = hid_snto32(raw_value, 4); 402 else 403 parser->global.unit_exponent = raw_value; 404 return 0; 405 406 case HID_GLOBAL_ITEM_TAG_UNIT: 407 parser->global.unit = item_udata(item); 408 return 0; 409 410 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE: 411 parser->global.report_size = item_udata(item); 412 if (parser->global.report_size > 256) { 413 hid_err(parser->device, "invalid report_size %d\n", 414 parser->global.report_size); 415 return -1; 416 } 417 return 0; 418 419 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT: 420 parser->global.report_count = item_udata(item); 421 if (parser->global.report_count > HID_MAX_USAGES) { 422 hid_err(parser->device, "invalid report_count %d\n", 423 parser->global.report_count); 424 return -1; 425 } 426 return 0; 427 428 case HID_GLOBAL_ITEM_TAG_REPORT_ID: 429 parser->global.report_id = item_udata(item); 430 if (parser->global.report_id == 0 || 431 parser->global.report_id >= HID_MAX_IDS) { 432 hid_err(parser->device, "report_id %u is invalid\n", 433 parser->global.report_id); 434 return -1; 435 } 436 return 0; 437 438 default: 439 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag); 440 return -1; 441 } 442 } 443 444 /* 445 * Process a local item. 446 */ 447 448 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item) 449 { 450 __u32 data; 451 unsigned n; 452 __u32 count; 453 454 data = item_udata(item); 455 456 switch (item->tag) { 457 case HID_LOCAL_ITEM_TAG_DELIMITER: 458 459 if (data) { 460 /* 461 * We treat items before the first delimiter 462 * as global to all usage sets (branch 0). 463 * In the moment we process only these global 464 * items and the first delimiter set. 465 */ 466 if (parser->local.delimiter_depth != 0) { 467 hid_err(parser->device, "nested delimiters\n"); 468 return -1; 469 } 470 parser->local.delimiter_depth++; 471 parser->local.delimiter_branch++; 472 } else { 473 if (parser->local.delimiter_depth < 1) { 474 hid_err(parser->device, "bogus close delimiter\n"); 475 return -1; 476 } 477 parser->local.delimiter_depth--; 478 } 479 return 0; 480 481 case HID_LOCAL_ITEM_TAG_USAGE: 482 483 if (parser->local.delimiter_branch > 1) { 484 dbg_hid("alternative usage ignored\n"); 485 return 0; 486 } 487 488 return hid_add_usage(parser, data, item->size); 489 490 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM: 491 492 if (parser->local.delimiter_branch > 1) { 493 dbg_hid("alternative usage ignored\n"); 494 return 0; 495 } 496 497 parser->local.usage_minimum = data; 498 return 0; 499 500 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM: 501 502 if (parser->local.delimiter_branch > 1) { 503 dbg_hid("alternative usage ignored\n"); 504 return 0; 505 } 506 507 count = data - parser->local.usage_minimum; 508 if (count + parser->local.usage_index >= HID_MAX_USAGES) { 509 /* 510 * We do not warn if the name is not set, we are 511 * actually pre-scanning the device. 512 */ 513 if (dev_name(&parser->device->dev)) 514 hid_warn(parser->device, 515 "ignoring exceeding usage max\n"); 516 data = HID_MAX_USAGES - parser->local.usage_index + 517 parser->local.usage_minimum - 1; 518 if (data <= 0) { 519 hid_err(parser->device, 520 "no more usage index available\n"); 521 return -1; 522 } 523 } 524 525 for (n = parser->local.usage_minimum; n <= data; n++) 526 if (hid_add_usage(parser, n, item->size)) { 527 dbg_hid("hid_add_usage failed\n"); 528 return -1; 529 } 530 return 0; 531 532 default: 533 534 dbg_hid("unknown local item tag 0x%x\n", item->tag); 535 return 0; 536 } 537 return 0; 538 } 539 540 /* 541 * Concatenate Usage Pages into Usages where relevant: 542 * As per specification, 6.2.2.8: "When the parser encounters a main item it 543 * concatenates the last declared Usage Page with a Usage to form a complete 544 * usage value." 545 */ 546 547 static void hid_concatenate_usage_page(struct hid_parser *parser) 548 { 549 int i; 550 551 for (i = 0; i < parser->local.usage_index; i++) 552 if (parser->local.usage_size[i] <= 2) 553 parser->local.usage[i] += parser->global.usage_page << 16; 554 } 555 556 /* 557 * Process a main item. 558 */ 559 560 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item) 561 { 562 __u32 data; 563 int ret; 564 565 hid_concatenate_usage_page(parser); 566 567 data = item_udata(item); 568 569 switch (item->tag) { 570 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION: 571 ret = open_collection(parser, data & 0xff); 572 break; 573 case HID_MAIN_ITEM_TAG_END_COLLECTION: 574 ret = close_collection(parser); 575 break; 576 case HID_MAIN_ITEM_TAG_INPUT: 577 ret = hid_add_field(parser, HID_INPUT_REPORT, data); 578 break; 579 case HID_MAIN_ITEM_TAG_OUTPUT: 580 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data); 581 break; 582 case HID_MAIN_ITEM_TAG_FEATURE: 583 ret = hid_add_field(parser, HID_FEATURE_REPORT, data); 584 break; 585 default: 586 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag); 587 ret = 0; 588 } 589 590 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */ 591 592 return ret; 593 } 594 595 /* 596 * Process a reserved item. 597 */ 598 599 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item) 600 { 601 dbg_hid("reserved item type, tag 0x%x\n", item->tag); 602 return 0; 603 } 604 605 /* 606 * Free a report and all registered fields. The field->usage and 607 * field->value table's are allocated behind the field, so we need 608 * only to free(field) itself. 609 */ 610 611 static void hid_free_report(struct hid_report *report) 612 { 613 unsigned n; 614 615 for (n = 0; n < report->maxfield; n++) 616 kfree(report->field[n]); 617 kfree(report); 618 } 619 620 /* 621 * Close report. This function returns the device 622 * state to the point prior to hid_open_report(). 623 */ 624 static void hid_close_report(struct hid_device *device) 625 { 626 unsigned i, j; 627 628 for (i = 0; i < HID_REPORT_TYPES; i++) { 629 struct hid_report_enum *report_enum = device->report_enum + i; 630 631 for (j = 0; j < HID_MAX_IDS; j++) { 632 struct hid_report *report = report_enum->report_id_hash[j]; 633 if (report) 634 hid_free_report(report); 635 } 636 memset(report_enum, 0, sizeof(*report_enum)); 637 INIT_LIST_HEAD(&report_enum->report_list); 638 } 639 640 kfree(device->rdesc); 641 device->rdesc = NULL; 642 device->rsize = 0; 643 644 kfree(device->collection); 645 device->collection = NULL; 646 device->collection_size = 0; 647 device->maxcollection = 0; 648 device->maxapplication = 0; 649 650 device->status &= ~HID_STAT_PARSED; 651 } 652 653 /* 654 * Free a device structure, all reports, and all fields. 655 */ 656 657 static void hid_device_release(struct device *dev) 658 { 659 struct hid_device *hid = to_hid_device(dev); 660 661 hid_close_report(hid); 662 kfree(hid->dev_rdesc); 663 kfree(hid); 664 } 665 666 /* 667 * Fetch a report description item from the data stream. We support long 668 * items, though they are not used yet. 669 */ 670 671 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item) 672 { 673 u8 b; 674 675 if ((end - start) <= 0) 676 return NULL; 677 678 b = *start++; 679 680 item->type = (b >> 2) & 3; 681 item->tag = (b >> 4) & 15; 682 683 if (item->tag == HID_ITEM_TAG_LONG) { 684 685 item->format = HID_ITEM_FORMAT_LONG; 686 687 if ((end - start) < 2) 688 return NULL; 689 690 item->size = *start++; 691 item->tag = *start++; 692 693 if ((end - start) < item->size) 694 return NULL; 695 696 item->data.longdata = start; 697 start += item->size; 698 return start; 699 } 700 701 item->format = HID_ITEM_FORMAT_SHORT; 702 item->size = b & 3; 703 704 switch (item->size) { 705 case 0: 706 return start; 707 708 case 1: 709 if ((end - start) < 1) 710 return NULL; 711 item->data.u8 = *start++; 712 return start; 713 714 case 2: 715 if ((end - start) < 2) 716 return NULL; 717 item->data.u16 = get_unaligned_le16(start); 718 start = (__u8 *)((__le16 *)start + 1); 719 return start; 720 721 case 3: 722 item->size++; 723 if ((end - start) < 4) 724 return NULL; 725 item->data.u32 = get_unaligned_le32(start); 726 start = (__u8 *)((__le32 *)start + 1); 727 return start; 728 } 729 730 return NULL; 731 } 732 733 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage) 734 { 735 struct hid_device *hid = parser->device; 736 737 if (usage == HID_DG_CONTACTID) 738 hid->group = HID_GROUP_MULTITOUCH; 739 } 740 741 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage) 742 { 743 if (usage == 0xff0000c5 && parser->global.report_count == 256 && 744 parser->global.report_size == 8) 745 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8; 746 } 747 748 static void hid_scan_collection(struct hid_parser *parser, unsigned type) 749 { 750 struct hid_device *hid = parser->device; 751 int i; 752 753 if (((parser->global.usage_page << 16) == HID_UP_SENSOR) && 754 type == HID_COLLECTION_PHYSICAL) 755 hid->group = HID_GROUP_SENSOR_HUB; 756 757 if (hid->vendor == USB_VENDOR_ID_MICROSOFT && 758 hid->product == USB_DEVICE_ID_MS_POWER_COVER && 759 hid->group == HID_GROUP_MULTITOUCH) 760 hid->group = HID_GROUP_GENERIC; 761 762 if ((parser->global.usage_page << 16) == HID_UP_GENDESK) 763 for (i = 0; i < parser->local.usage_index; i++) 764 if (parser->local.usage[i] == HID_GD_POINTER) 765 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER; 766 767 if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR) 768 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC; 769 } 770 771 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item) 772 { 773 __u32 data; 774 int i; 775 776 hid_concatenate_usage_page(parser); 777 778 data = item_udata(item); 779 780 switch (item->tag) { 781 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION: 782 hid_scan_collection(parser, data & 0xff); 783 break; 784 case HID_MAIN_ITEM_TAG_END_COLLECTION: 785 break; 786 case HID_MAIN_ITEM_TAG_INPUT: 787 /* ignore constant inputs, they will be ignored by hid-input */ 788 if (data & HID_MAIN_ITEM_CONSTANT) 789 break; 790 for (i = 0; i < parser->local.usage_index; i++) 791 hid_scan_input_usage(parser, parser->local.usage[i]); 792 break; 793 case HID_MAIN_ITEM_TAG_OUTPUT: 794 break; 795 case HID_MAIN_ITEM_TAG_FEATURE: 796 for (i = 0; i < parser->local.usage_index; i++) 797 hid_scan_feature_usage(parser, parser->local.usage[i]); 798 break; 799 } 800 801 /* Reset the local parser environment */ 802 memset(&parser->local, 0, sizeof(parser->local)); 803 804 return 0; 805 } 806 807 /* 808 * Scan a report descriptor before the device is added to the bus. 809 * Sets device groups and other properties that determine what driver 810 * to load. 811 */ 812 static int hid_scan_report(struct hid_device *hid) 813 { 814 struct hid_parser *parser; 815 struct hid_item item; 816 __u8 *start = hid->dev_rdesc; 817 __u8 *end = start + hid->dev_rsize; 818 static int (*dispatch_type[])(struct hid_parser *parser, 819 struct hid_item *item) = { 820 hid_scan_main, 821 hid_parser_global, 822 hid_parser_local, 823 hid_parser_reserved 824 }; 825 826 parser = vzalloc(sizeof(struct hid_parser)); 827 if (!parser) 828 return -ENOMEM; 829 830 parser->device = hid; 831 hid->group = HID_GROUP_GENERIC; 832 833 /* 834 * The parsing is simpler than the one in hid_open_report() as we should 835 * be robust against hid errors. Those errors will be raised by 836 * hid_open_report() anyway. 837 */ 838 while ((start = fetch_item(start, end, &item)) != NULL) 839 dispatch_type[item.type](parser, &item); 840 841 /* 842 * Handle special flags set during scanning. 843 */ 844 if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) && 845 (hid->group == HID_GROUP_MULTITOUCH)) 846 hid->group = HID_GROUP_MULTITOUCH_WIN_8; 847 848 /* 849 * Vendor specific handlings 850 */ 851 switch (hid->vendor) { 852 case USB_VENDOR_ID_WACOM: 853 hid->group = HID_GROUP_WACOM; 854 break; 855 case USB_VENDOR_ID_SYNAPTICS: 856 if (hid->group == HID_GROUP_GENERIC) 857 if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC) 858 && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER)) 859 /* 860 * hid-rmi should take care of them, 861 * not hid-generic 862 */ 863 hid->group = HID_GROUP_RMI; 864 break; 865 } 866 867 kfree(parser->collection_stack); 868 vfree(parser); 869 return 0; 870 } 871 872 /** 873 * hid_parse_report - parse device report 874 * 875 * @device: hid device 876 * @start: report start 877 * @size: report size 878 * 879 * Allocate the device report as read by the bus driver. This function should 880 * only be called from parse() in ll drivers. 881 */ 882 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size) 883 { 884 hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL); 885 if (!hid->dev_rdesc) 886 return -ENOMEM; 887 hid->dev_rsize = size; 888 return 0; 889 } 890 EXPORT_SYMBOL_GPL(hid_parse_report); 891 892 static const char * const hid_report_names[] = { 893 "HID_INPUT_REPORT", 894 "HID_OUTPUT_REPORT", 895 "HID_FEATURE_REPORT", 896 }; 897 /** 898 * hid_validate_values - validate existing device report's value indexes 899 * 900 * @device: hid device 901 * @type: which report type to examine 902 * @id: which report ID to examine (0 for first) 903 * @field_index: which report field to examine 904 * @report_counts: expected number of values 905 * 906 * Validate the number of values in a given field of a given report, after 907 * parsing. 908 */ 909 struct hid_report *hid_validate_values(struct hid_device *hid, 910 unsigned int type, unsigned int id, 911 unsigned int field_index, 912 unsigned int report_counts) 913 { 914 struct hid_report *report; 915 916 if (type > HID_FEATURE_REPORT) { 917 hid_err(hid, "invalid HID report type %u\n", type); 918 return NULL; 919 } 920 921 if (id >= HID_MAX_IDS) { 922 hid_err(hid, "invalid HID report id %u\n", id); 923 return NULL; 924 } 925 926 /* 927 * Explicitly not using hid_get_report() here since it depends on 928 * ->numbered being checked, which may not always be the case when 929 * drivers go to access report values. 930 */ 931 if (id == 0) { 932 /* 933 * Validating on id 0 means we should examine the first 934 * report in the list. 935 */ 936 report = list_entry( 937 hid->report_enum[type].report_list.next, 938 struct hid_report, list); 939 } else { 940 report = hid->report_enum[type].report_id_hash[id]; 941 } 942 if (!report) { 943 hid_err(hid, "missing %s %u\n", hid_report_names[type], id); 944 return NULL; 945 } 946 if (report->maxfield <= field_index) { 947 hid_err(hid, "not enough fields in %s %u\n", 948 hid_report_names[type], id); 949 return NULL; 950 } 951 if (report->field[field_index]->report_count < report_counts) { 952 hid_err(hid, "not enough values in %s %u field %u\n", 953 hid_report_names[type], id, field_index); 954 return NULL; 955 } 956 return report; 957 } 958 EXPORT_SYMBOL_GPL(hid_validate_values); 959 960 static int hid_calculate_multiplier(struct hid_device *hid, 961 struct hid_field *multiplier) 962 { 963 int m; 964 __s32 v = *multiplier->value; 965 __s32 lmin = multiplier->logical_minimum; 966 __s32 lmax = multiplier->logical_maximum; 967 __s32 pmin = multiplier->physical_minimum; 968 __s32 pmax = multiplier->physical_maximum; 969 970 /* 971 * "Because OS implementations will generally divide the control's 972 * reported count by the Effective Resolution Multiplier, designers 973 * should take care not to establish a potential Effective 974 * Resolution Multiplier of zero." 975 * HID Usage Table, v1.12, Section 4.3.1, p31 976 */ 977 if (lmax - lmin == 0) 978 return 1; 979 /* 980 * Handling the unit exponent is left as an exercise to whoever 981 * finds a device where that exponent is not 0. 982 */ 983 m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin); 984 if (unlikely(multiplier->unit_exponent != 0)) { 985 hid_warn(hid, 986 "unsupported Resolution Multiplier unit exponent %d\n", 987 multiplier->unit_exponent); 988 } 989 990 /* There are no devices with an effective multiplier > 255 */ 991 if (unlikely(m == 0 || m > 255 || m < -255)) { 992 hid_warn(hid, "unsupported Resolution Multiplier %d\n", m); 993 m = 1; 994 } 995 996 return m; 997 } 998 999 static void hid_apply_multiplier_to_field(struct hid_device *hid, 1000 struct hid_field *field, 1001 struct hid_collection *multiplier_collection, 1002 int effective_multiplier) 1003 { 1004 struct hid_collection *collection; 1005 struct hid_usage *usage; 1006 int i; 1007 1008 /* 1009 * If multiplier_collection is NULL, the multiplier applies 1010 * to all fields in the report. 1011 * Otherwise, it is the Logical Collection the multiplier applies to 1012 * but our field may be in a subcollection of that collection. 1013 */ 1014 for (i = 0; i < field->maxusage; i++) { 1015 usage = &field->usage[i]; 1016 1017 collection = &hid->collection[usage->collection_index]; 1018 while (collection->parent_idx != -1 && 1019 collection != multiplier_collection) 1020 collection = &hid->collection[collection->parent_idx]; 1021 1022 if (collection->parent_idx != -1 || 1023 multiplier_collection == NULL) 1024 usage->resolution_multiplier = effective_multiplier; 1025 1026 } 1027 } 1028 1029 static void hid_apply_multiplier(struct hid_device *hid, 1030 struct hid_field *multiplier) 1031 { 1032 struct hid_report_enum *rep_enum; 1033 struct hid_report *rep; 1034 struct hid_field *field; 1035 struct hid_collection *multiplier_collection; 1036 int effective_multiplier; 1037 int i; 1038 1039 /* 1040 * "The Resolution Multiplier control must be contained in the same 1041 * Logical Collection as the control(s) to which it is to be applied. 1042 * If no Resolution Multiplier is defined, then the Resolution 1043 * Multiplier defaults to 1. If more than one control exists in a 1044 * Logical Collection, the Resolution Multiplier is associated with 1045 * all controls in the collection. If no Logical Collection is 1046 * defined, the Resolution Multiplier is associated with all 1047 * controls in the report." 1048 * HID Usage Table, v1.12, Section 4.3.1, p30 1049 * 1050 * Thus, search from the current collection upwards until we find a 1051 * logical collection. Then search all fields for that same parent 1052 * collection. Those are the fields the multiplier applies to. 1053 * 1054 * If we have more than one multiplier, it will overwrite the 1055 * applicable fields later. 1056 */ 1057 multiplier_collection = &hid->collection[multiplier->usage->collection_index]; 1058 while (multiplier_collection->parent_idx != -1 && 1059 multiplier_collection->type != HID_COLLECTION_LOGICAL) 1060 multiplier_collection = &hid->collection[multiplier_collection->parent_idx]; 1061 1062 effective_multiplier = hid_calculate_multiplier(hid, multiplier); 1063 1064 rep_enum = &hid->report_enum[HID_INPUT_REPORT]; 1065 list_for_each_entry(rep, &rep_enum->report_list, list) { 1066 for (i = 0; i < rep->maxfield; i++) { 1067 field = rep->field[i]; 1068 hid_apply_multiplier_to_field(hid, field, 1069 multiplier_collection, 1070 effective_multiplier); 1071 } 1072 } 1073 } 1074 1075 /* 1076 * hid_setup_resolution_multiplier - set up all resolution multipliers 1077 * 1078 * @device: hid device 1079 * 1080 * Search for all Resolution Multiplier Feature Reports and apply their 1081 * value to all matching Input items. This only updates the internal struct 1082 * fields. 1083 * 1084 * The Resolution Multiplier is applied by the hardware. If the multiplier 1085 * is anything other than 1, the hardware will send pre-multiplied events 1086 * so that the same physical interaction generates an accumulated 1087 * accumulated_value = value * * multiplier 1088 * This may be achieved by sending 1089 * - "value * multiplier" for each event, or 1090 * - "value" but "multiplier" times as frequently, or 1091 * - a combination of the above 1092 * The only guarantee is that the same physical interaction always generates 1093 * an accumulated 'value * multiplier'. 1094 * 1095 * This function must be called before any event processing and after 1096 * any SetRequest to the Resolution Multiplier. 1097 */ 1098 void hid_setup_resolution_multiplier(struct hid_device *hid) 1099 { 1100 struct hid_report_enum *rep_enum; 1101 struct hid_report *rep; 1102 struct hid_usage *usage; 1103 int i, j; 1104 1105 rep_enum = &hid->report_enum[HID_FEATURE_REPORT]; 1106 list_for_each_entry(rep, &rep_enum->report_list, list) { 1107 for (i = 0; i < rep->maxfield; i++) { 1108 /* Ignore if report count is out of bounds. */ 1109 if (rep->field[i]->report_count < 1) 1110 continue; 1111 1112 for (j = 0; j < rep->field[i]->maxusage; j++) { 1113 usage = &rep->field[i]->usage[j]; 1114 if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER) 1115 hid_apply_multiplier(hid, 1116 rep->field[i]); 1117 } 1118 } 1119 } 1120 } 1121 EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier); 1122 1123 /** 1124 * hid_open_report - open a driver-specific device report 1125 * 1126 * @device: hid device 1127 * 1128 * Parse a report description into a hid_device structure. Reports are 1129 * enumerated, fields are attached to these reports. 1130 * 0 returned on success, otherwise nonzero error value. 1131 * 1132 * This function (or the equivalent hid_parse() macro) should only be 1133 * called from probe() in drivers, before starting the device. 1134 */ 1135 int hid_open_report(struct hid_device *device) 1136 { 1137 struct hid_parser *parser; 1138 struct hid_item item; 1139 unsigned int size; 1140 __u8 *start; 1141 __u8 *buf; 1142 __u8 *end; 1143 int ret; 1144 static int (*dispatch_type[])(struct hid_parser *parser, 1145 struct hid_item *item) = { 1146 hid_parser_main, 1147 hid_parser_global, 1148 hid_parser_local, 1149 hid_parser_reserved 1150 }; 1151 1152 if (WARN_ON(device->status & HID_STAT_PARSED)) 1153 return -EBUSY; 1154 1155 start = device->dev_rdesc; 1156 if (WARN_ON(!start)) 1157 return -ENODEV; 1158 size = device->dev_rsize; 1159 1160 buf = kmemdup(start, size, GFP_KERNEL); 1161 if (buf == NULL) 1162 return -ENOMEM; 1163 1164 if (device->driver->report_fixup) 1165 start = device->driver->report_fixup(device, buf, &size); 1166 else 1167 start = buf; 1168 1169 start = kmemdup(start, size, GFP_KERNEL); 1170 kfree(buf); 1171 if (start == NULL) 1172 return -ENOMEM; 1173 1174 device->rdesc = start; 1175 device->rsize = size; 1176 1177 parser = vzalloc(sizeof(struct hid_parser)); 1178 if (!parser) { 1179 ret = -ENOMEM; 1180 goto alloc_err; 1181 } 1182 1183 parser->device = device; 1184 1185 end = start + size; 1186 1187 device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS, 1188 sizeof(struct hid_collection), GFP_KERNEL); 1189 if (!device->collection) { 1190 ret = -ENOMEM; 1191 goto err; 1192 } 1193 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS; 1194 1195 ret = -EINVAL; 1196 while ((start = fetch_item(start, end, &item)) != NULL) { 1197 1198 if (item.format != HID_ITEM_FORMAT_SHORT) { 1199 hid_err(device, "unexpected long global item\n"); 1200 goto err; 1201 } 1202 1203 if (dispatch_type[item.type](parser, &item)) { 1204 hid_err(device, "item %u %u %u %u parsing failed\n", 1205 item.format, (unsigned)item.size, 1206 (unsigned)item.type, (unsigned)item.tag); 1207 goto err; 1208 } 1209 1210 if (start == end) { 1211 if (parser->collection_stack_ptr) { 1212 hid_err(device, "unbalanced collection at end of report description\n"); 1213 goto err; 1214 } 1215 if (parser->local.delimiter_depth) { 1216 hid_err(device, "unbalanced delimiter at end of report description\n"); 1217 goto err; 1218 } 1219 1220 /* 1221 * fetch initial values in case the device's 1222 * default multiplier isn't the recommended 1 1223 */ 1224 hid_setup_resolution_multiplier(device); 1225 1226 kfree(parser->collection_stack); 1227 vfree(parser); 1228 device->status |= HID_STAT_PARSED; 1229 1230 return 0; 1231 } 1232 } 1233 1234 hid_err(device, "item fetching failed at offset %d\n", (int)(end - start)); 1235 err: 1236 kfree(parser->collection_stack); 1237 alloc_err: 1238 vfree(parser); 1239 hid_close_report(device); 1240 return ret; 1241 } 1242 EXPORT_SYMBOL_GPL(hid_open_report); 1243 1244 /* 1245 * Convert a signed n-bit integer to signed 32-bit integer. Common 1246 * cases are done through the compiler, the screwed things has to be 1247 * done by hand. 1248 */ 1249 1250 static s32 snto32(__u32 value, unsigned n) 1251 { 1252 switch (n) { 1253 case 8: return ((__s8)value); 1254 case 16: return ((__s16)value); 1255 case 32: return ((__s32)value); 1256 } 1257 return value & (1 << (n - 1)) ? value | (~0U << n) : value; 1258 } 1259 1260 s32 hid_snto32(__u32 value, unsigned n) 1261 { 1262 return snto32(value, n); 1263 } 1264 EXPORT_SYMBOL_GPL(hid_snto32); 1265 1266 /* 1267 * Convert a signed 32-bit integer to a signed n-bit integer. 1268 */ 1269 1270 static u32 s32ton(__s32 value, unsigned n) 1271 { 1272 s32 a = value >> (n - 1); 1273 if (a && a != -1) 1274 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1; 1275 return value & ((1 << n) - 1); 1276 } 1277 1278 /* 1279 * Extract/implement a data field from/to a little endian report (bit array). 1280 * 1281 * Code sort-of follows HID spec: 1282 * http://www.usb.org/developers/hidpage/HID1_11.pdf 1283 * 1284 * While the USB HID spec allows unlimited length bit fields in "report 1285 * descriptors", most devices never use more than 16 bits. 1286 * One model of UPS is claimed to report "LINEV" as a 32-bit field. 1287 * Search linux-kernel and linux-usb-devel archives for "hid-core extract". 1288 */ 1289 1290 static u32 __extract(u8 *report, unsigned offset, int n) 1291 { 1292 unsigned int idx = offset / 8; 1293 unsigned int bit_nr = 0; 1294 unsigned int bit_shift = offset % 8; 1295 int bits_to_copy = 8 - bit_shift; 1296 u32 value = 0; 1297 u32 mask = n < 32 ? (1U << n) - 1 : ~0U; 1298 1299 while (n > 0) { 1300 value |= ((u32)report[idx] >> bit_shift) << bit_nr; 1301 n -= bits_to_copy; 1302 bit_nr += bits_to_copy; 1303 bits_to_copy = 8; 1304 bit_shift = 0; 1305 idx++; 1306 } 1307 1308 return value & mask; 1309 } 1310 1311 u32 hid_field_extract(const struct hid_device *hid, u8 *report, 1312 unsigned offset, unsigned n) 1313 { 1314 if (n > 256) { 1315 hid_warn(hid, "hid_field_extract() called with n (%d) > 256! (%s)\n", 1316 n, current->comm); 1317 n = 256; 1318 } 1319 1320 return __extract(report, offset, n); 1321 } 1322 EXPORT_SYMBOL_GPL(hid_field_extract); 1323 1324 /* 1325 * "implement" : set bits in a little endian bit stream. 1326 * Same concepts as "extract" (see comments above). 1327 * The data mangled in the bit stream remains in little endian 1328 * order the whole time. It make more sense to talk about 1329 * endianness of register values by considering a register 1330 * a "cached" copy of the little endian bit stream. 1331 */ 1332 1333 static void __implement(u8 *report, unsigned offset, int n, u32 value) 1334 { 1335 unsigned int idx = offset / 8; 1336 unsigned int bit_shift = offset % 8; 1337 int bits_to_set = 8 - bit_shift; 1338 1339 while (n - bits_to_set >= 0) { 1340 report[idx] &= ~(0xff << bit_shift); 1341 report[idx] |= value << bit_shift; 1342 value >>= bits_to_set; 1343 n -= bits_to_set; 1344 bits_to_set = 8; 1345 bit_shift = 0; 1346 idx++; 1347 } 1348 1349 /* last nibble */ 1350 if (n) { 1351 u8 bit_mask = ((1U << n) - 1); 1352 report[idx] &= ~(bit_mask << bit_shift); 1353 report[idx] |= value << bit_shift; 1354 } 1355 } 1356 1357 static void implement(const struct hid_device *hid, u8 *report, 1358 unsigned offset, unsigned n, u32 value) 1359 { 1360 if (unlikely(n > 32)) { 1361 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n", 1362 __func__, n, current->comm); 1363 n = 32; 1364 } else if (n < 32) { 1365 u32 m = (1U << n) - 1; 1366 1367 if (unlikely(value > m)) { 1368 hid_warn(hid, 1369 "%s() called with too large value %d (n: %d)! (%s)\n", 1370 __func__, value, n, current->comm); 1371 WARN_ON(1); 1372 value &= m; 1373 } 1374 } 1375 1376 __implement(report, offset, n, value); 1377 } 1378 1379 /* 1380 * Search an array for a value. 1381 */ 1382 1383 static int search(__s32 *array, __s32 value, unsigned n) 1384 { 1385 while (n--) { 1386 if (*array++ == value) 1387 return 0; 1388 } 1389 return -1; 1390 } 1391 1392 /** 1393 * hid_match_report - check if driver's raw_event should be called 1394 * 1395 * @hid: hid device 1396 * @report_type: type to match against 1397 * 1398 * compare hid->driver->report_table->report_type to report->type 1399 */ 1400 static int hid_match_report(struct hid_device *hid, struct hid_report *report) 1401 { 1402 const struct hid_report_id *id = hid->driver->report_table; 1403 1404 if (!id) /* NULL means all */ 1405 return 1; 1406 1407 for (; id->report_type != HID_TERMINATOR; id++) 1408 if (id->report_type == HID_ANY_ID || 1409 id->report_type == report->type) 1410 return 1; 1411 return 0; 1412 } 1413 1414 /** 1415 * hid_match_usage - check if driver's event should be called 1416 * 1417 * @hid: hid device 1418 * @usage: usage to match against 1419 * 1420 * compare hid->driver->usage_table->usage_{type,code} to 1421 * usage->usage_{type,code} 1422 */ 1423 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage) 1424 { 1425 const struct hid_usage_id *id = hid->driver->usage_table; 1426 1427 if (!id) /* NULL means all */ 1428 return 1; 1429 1430 for (; id->usage_type != HID_ANY_ID - 1; id++) 1431 if ((id->usage_hid == HID_ANY_ID || 1432 id->usage_hid == usage->hid) && 1433 (id->usage_type == HID_ANY_ID || 1434 id->usage_type == usage->type) && 1435 (id->usage_code == HID_ANY_ID || 1436 id->usage_code == usage->code)) 1437 return 1; 1438 return 0; 1439 } 1440 1441 static void hid_process_event(struct hid_device *hid, struct hid_field *field, 1442 struct hid_usage *usage, __s32 value, int interrupt) 1443 { 1444 struct hid_driver *hdrv = hid->driver; 1445 int ret; 1446 1447 if (!list_empty(&hid->debug_list)) 1448 hid_dump_input(hid, usage, value); 1449 1450 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) { 1451 ret = hdrv->event(hid, field, usage, value); 1452 if (ret != 0) { 1453 if (ret < 0) 1454 hid_err(hid, "%s's event failed with %d\n", 1455 hdrv->name, ret); 1456 return; 1457 } 1458 } 1459 1460 if (hid->claimed & HID_CLAIMED_INPUT) 1461 hidinput_hid_event(hid, field, usage, value); 1462 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event) 1463 hid->hiddev_hid_event(hid, field, usage, value); 1464 } 1465 1466 /* 1467 * Analyse a received field, and fetch the data from it. The field 1468 * content is stored for next report processing (we do differential 1469 * reporting to the layer). 1470 */ 1471 1472 static void hid_input_field(struct hid_device *hid, struct hid_field *field, 1473 __u8 *data, int interrupt) 1474 { 1475 unsigned n; 1476 unsigned count = field->report_count; 1477 unsigned offset = field->report_offset; 1478 unsigned size = field->report_size; 1479 __s32 min = field->logical_minimum; 1480 __s32 max = field->logical_maximum; 1481 __s32 *value; 1482 1483 value = kmalloc_array(count, sizeof(__s32), GFP_ATOMIC); 1484 if (!value) 1485 return; 1486 1487 for (n = 0; n < count; n++) { 1488 1489 value[n] = min < 0 ? 1490 snto32(hid_field_extract(hid, data, offset + n * size, 1491 size), size) : 1492 hid_field_extract(hid, data, offset + n * size, size); 1493 1494 /* Ignore report if ErrorRollOver */ 1495 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) && 1496 value[n] >= min && value[n] <= max && 1497 value[n] - min < field->maxusage && 1498 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) 1499 goto exit; 1500 } 1501 1502 for (n = 0; n < count; n++) { 1503 1504 if (HID_MAIN_ITEM_VARIABLE & field->flags) { 1505 hid_process_event(hid, field, &field->usage[n], value[n], interrupt); 1506 continue; 1507 } 1508 1509 if (field->value[n] >= min && field->value[n] <= max 1510 && field->value[n] - min < field->maxusage 1511 && field->usage[field->value[n] - min].hid 1512 && search(value, field->value[n], count)) 1513 hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt); 1514 1515 if (value[n] >= min && value[n] <= max 1516 && value[n] - min < field->maxusage 1517 && field->usage[value[n] - min].hid 1518 && search(field->value, value[n], count)) 1519 hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt); 1520 } 1521 1522 memcpy(field->value, value, count * sizeof(__s32)); 1523 exit: 1524 kfree(value); 1525 } 1526 1527 /* 1528 * Output the field into the report. 1529 */ 1530 1531 static void hid_output_field(const struct hid_device *hid, 1532 struct hid_field *field, __u8 *data) 1533 { 1534 unsigned count = field->report_count; 1535 unsigned offset = field->report_offset; 1536 unsigned size = field->report_size; 1537 unsigned n; 1538 1539 for (n = 0; n < count; n++) { 1540 if (field->logical_minimum < 0) /* signed values */ 1541 implement(hid, data, offset + n * size, size, 1542 s32ton(field->value[n], size)); 1543 else /* unsigned values */ 1544 implement(hid, data, offset + n * size, size, 1545 field->value[n]); 1546 } 1547 } 1548 1549 /* 1550 * Create a report. 'data' has to be allocated using 1551 * hid_alloc_report_buf() so that it has proper size. 1552 */ 1553 1554 void hid_output_report(struct hid_report *report, __u8 *data) 1555 { 1556 unsigned n; 1557 1558 if (report->id > 0) 1559 *data++ = report->id; 1560 1561 memset(data, 0, ((report->size - 1) >> 3) + 1); 1562 for (n = 0; n < report->maxfield; n++) 1563 hid_output_field(report->device, report->field[n], data); 1564 } 1565 EXPORT_SYMBOL_GPL(hid_output_report); 1566 1567 /* 1568 * Allocator for buffer that is going to be passed to hid_output_report() 1569 */ 1570 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags) 1571 { 1572 /* 1573 * 7 extra bytes are necessary to achieve proper functionality 1574 * of implement() working on 8 byte chunks 1575 */ 1576 1577 u32 len = hid_report_len(report) + 7; 1578 1579 return kmalloc(len, flags); 1580 } 1581 EXPORT_SYMBOL_GPL(hid_alloc_report_buf); 1582 1583 /* 1584 * Set a field value. The report this field belongs to has to be 1585 * created and transferred to the device, to set this value in the 1586 * device. 1587 */ 1588 1589 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value) 1590 { 1591 unsigned size; 1592 1593 if (!field) 1594 return -1; 1595 1596 size = field->report_size; 1597 1598 hid_dump_input(field->report->device, field->usage + offset, value); 1599 1600 if (offset >= field->report_count) { 1601 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n", 1602 offset, field->report_count); 1603 return -1; 1604 } 1605 if (field->logical_minimum < 0) { 1606 if (value != snto32(s32ton(value, size), size)) { 1607 hid_err(field->report->device, "value %d is out of range\n", value); 1608 return -1; 1609 } 1610 } 1611 field->value[offset] = value; 1612 return 0; 1613 } 1614 EXPORT_SYMBOL_GPL(hid_set_field); 1615 1616 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum, 1617 const u8 *data) 1618 { 1619 struct hid_report *report; 1620 unsigned int n = 0; /* Normally report number is 0 */ 1621 1622 /* Device uses numbered reports, data[0] is report number */ 1623 if (report_enum->numbered) 1624 n = *data; 1625 1626 report = report_enum->report_id_hash[n]; 1627 if (report == NULL) 1628 dbg_hid("undefined report_id %u received\n", n); 1629 1630 return report; 1631 } 1632 1633 /* 1634 * Implement a generic .request() callback, using .raw_request() 1635 * DO NOT USE in hid drivers directly, but through hid_hw_request instead. 1636 */ 1637 int __hid_request(struct hid_device *hid, struct hid_report *report, 1638 int reqtype) 1639 { 1640 char *buf; 1641 int ret; 1642 u32 len; 1643 1644 buf = hid_alloc_report_buf(report, GFP_KERNEL); 1645 if (!buf) 1646 return -ENOMEM; 1647 1648 len = hid_report_len(report); 1649 1650 if (reqtype == HID_REQ_SET_REPORT) 1651 hid_output_report(report, buf); 1652 1653 ret = hid->ll_driver->raw_request(hid, report->id, buf, len, 1654 report->type, reqtype); 1655 if (ret < 0) { 1656 dbg_hid("unable to complete request: %d\n", ret); 1657 goto out; 1658 } 1659 1660 if (reqtype == HID_REQ_GET_REPORT) 1661 hid_input_report(hid, report->type, buf, ret, 0); 1662 1663 ret = 0; 1664 1665 out: 1666 kfree(buf); 1667 return ret; 1668 } 1669 EXPORT_SYMBOL_GPL(__hid_request); 1670 1671 int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size, 1672 int interrupt) 1673 { 1674 struct hid_report_enum *report_enum = hid->report_enum + type; 1675 struct hid_report *report; 1676 struct hid_driver *hdrv; 1677 unsigned int a; 1678 u32 rsize, csize = size; 1679 u8 *cdata = data; 1680 int ret = 0; 1681 1682 report = hid_get_report(report_enum, data); 1683 if (!report) 1684 goto out; 1685 1686 if (report_enum->numbered) { 1687 cdata++; 1688 csize--; 1689 } 1690 1691 rsize = ((report->size - 1) >> 3) + 1; 1692 1693 if (rsize > HID_MAX_BUFFER_SIZE) 1694 rsize = HID_MAX_BUFFER_SIZE; 1695 1696 if (csize < rsize) { 1697 dbg_hid("report %d is too short, (%d < %d)\n", report->id, 1698 csize, rsize); 1699 memset(cdata + csize, 0, rsize - csize); 1700 } 1701 1702 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event) 1703 hid->hiddev_report_event(hid, report); 1704 if (hid->claimed & HID_CLAIMED_HIDRAW) { 1705 ret = hidraw_report_event(hid, data, size); 1706 if (ret) 1707 goto out; 1708 } 1709 1710 if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) { 1711 for (a = 0; a < report->maxfield; a++) 1712 hid_input_field(hid, report->field[a], cdata, interrupt); 1713 hdrv = hid->driver; 1714 if (hdrv && hdrv->report) 1715 hdrv->report(hid, report); 1716 } 1717 1718 if (hid->claimed & HID_CLAIMED_INPUT) 1719 hidinput_report_event(hid, report); 1720 out: 1721 return ret; 1722 } 1723 EXPORT_SYMBOL_GPL(hid_report_raw_event); 1724 1725 /** 1726 * hid_input_report - report data from lower layer (usb, bt...) 1727 * 1728 * @hid: hid device 1729 * @type: HID report type (HID_*_REPORT) 1730 * @data: report contents 1731 * @size: size of data parameter 1732 * @interrupt: distinguish between interrupt and control transfers 1733 * 1734 * This is data entry for lower layers. 1735 */ 1736 int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt) 1737 { 1738 struct hid_report_enum *report_enum; 1739 struct hid_driver *hdrv; 1740 struct hid_report *report; 1741 int ret = 0; 1742 1743 if (!hid) 1744 return -ENODEV; 1745 1746 if (down_trylock(&hid->driver_input_lock)) 1747 return -EBUSY; 1748 1749 if (!hid->driver) { 1750 ret = -ENODEV; 1751 goto unlock; 1752 } 1753 report_enum = hid->report_enum + type; 1754 hdrv = hid->driver; 1755 1756 if (!size) { 1757 dbg_hid("empty report\n"); 1758 ret = -1; 1759 goto unlock; 1760 } 1761 1762 /* Avoid unnecessary overhead if debugfs is disabled */ 1763 if (!list_empty(&hid->debug_list)) 1764 hid_dump_report(hid, type, data, size); 1765 1766 report = hid_get_report(report_enum, data); 1767 1768 if (!report) { 1769 ret = -1; 1770 goto unlock; 1771 } 1772 1773 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) { 1774 ret = hdrv->raw_event(hid, report, data, size); 1775 if (ret < 0) 1776 goto unlock; 1777 } 1778 1779 ret = hid_report_raw_event(hid, type, data, size, interrupt); 1780 1781 unlock: 1782 up(&hid->driver_input_lock); 1783 return ret; 1784 } 1785 EXPORT_SYMBOL_GPL(hid_input_report); 1786 1787 bool hid_match_one_id(const struct hid_device *hdev, 1788 const struct hid_device_id *id) 1789 { 1790 return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) && 1791 (id->group == HID_GROUP_ANY || id->group == hdev->group) && 1792 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) && 1793 (id->product == HID_ANY_ID || id->product == hdev->product); 1794 } 1795 1796 const struct hid_device_id *hid_match_id(const struct hid_device *hdev, 1797 const struct hid_device_id *id) 1798 { 1799 for (; id->bus; id++) 1800 if (hid_match_one_id(hdev, id)) 1801 return id; 1802 1803 return NULL; 1804 } 1805 1806 static const struct hid_device_id hid_hiddev_list[] = { 1807 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) }, 1808 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) }, 1809 { } 1810 }; 1811 1812 static bool hid_hiddev(struct hid_device *hdev) 1813 { 1814 return !!hid_match_id(hdev, hid_hiddev_list); 1815 } 1816 1817 1818 static ssize_t 1819 read_report_descriptor(struct file *filp, struct kobject *kobj, 1820 struct bin_attribute *attr, 1821 char *buf, loff_t off, size_t count) 1822 { 1823 struct device *dev = kobj_to_dev(kobj); 1824 struct hid_device *hdev = to_hid_device(dev); 1825 1826 if (off >= hdev->rsize) 1827 return 0; 1828 1829 if (off + count > hdev->rsize) 1830 count = hdev->rsize - off; 1831 1832 memcpy(buf, hdev->rdesc + off, count); 1833 1834 return count; 1835 } 1836 1837 static ssize_t 1838 show_country(struct device *dev, struct device_attribute *attr, 1839 char *buf) 1840 { 1841 struct hid_device *hdev = to_hid_device(dev); 1842 1843 return sprintf(buf, "%02x\n", hdev->country & 0xff); 1844 } 1845 1846 static struct bin_attribute dev_bin_attr_report_desc = { 1847 .attr = { .name = "report_descriptor", .mode = 0444 }, 1848 .read = read_report_descriptor, 1849 .size = HID_MAX_DESCRIPTOR_SIZE, 1850 }; 1851 1852 static const struct device_attribute dev_attr_country = { 1853 .attr = { .name = "country", .mode = 0444 }, 1854 .show = show_country, 1855 }; 1856 1857 int hid_connect(struct hid_device *hdev, unsigned int connect_mask) 1858 { 1859 static const char *types[] = { "Device", "Pointer", "Mouse", "Device", 1860 "Joystick", "Gamepad", "Keyboard", "Keypad", 1861 "Multi-Axis Controller" 1862 }; 1863 const char *type, *bus; 1864 char buf[64] = ""; 1865 unsigned int i; 1866 int len; 1867 int ret; 1868 1869 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE) 1870 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV); 1871 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE) 1872 connect_mask |= HID_CONNECT_HIDINPUT_FORCE; 1873 if (hdev->bus != BUS_USB) 1874 connect_mask &= ~HID_CONNECT_HIDDEV; 1875 if (hid_hiddev(hdev)) 1876 connect_mask |= HID_CONNECT_HIDDEV_FORCE; 1877 1878 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev, 1879 connect_mask & HID_CONNECT_HIDINPUT_FORCE)) 1880 hdev->claimed |= HID_CLAIMED_INPUT; 1881 1882 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect && 1883 !hdev->hiddev_connect(hdev, 1884 connect_mask & HID_CONNECT_HIDDEV_FORCE)) 1885 hdev->claimed |= HID_CLAIMED_HIDDEV; 1886 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev)) 1887 hdev->claimed |= HID_CLAIMED_HIDRAW; 1888 1889 if (connect_mask & HID_CONNECT_DRIVER) 1890 hdev->claimed |= HID_CLAIMED_DRIVER; 1891 1892 /* Drivers with the ->raw_event callback set are not required to connect 1893 * to any other listener. */ 1894 if (!hdev->claimed && !hdev->driver->raw_event) { 1895 hid_err(hdev, "device has no listeners, quitting\n"); 1896 return -ENODEV; 1897 } 1898 1899 if ((hdev->claimed & HID_CLAIMED_INPUT) && 1900 (connect_mask & HID_CONNECT_FF) && hdev->ff_init) 1901 hdev->ff_init(hdev); 1902 1903 len = 0; 1904 if (hdev->claimed & HID_CLAIMED_INPUT) 1905 len += sprintf(buf + len, "input"); 1906 if (hdev->claimed & HID_CLAIMED_HIDDEV) 1907 len += sprintf(buf + len, "%shiddev%d", len ? "," : "", 1908 ((struct hiddev *)hdev->hiddev)->minor); 1909 if (hdev->claimed & HID_CLAIMED_HIDRAW) 1910 len += sprintf(buf + len, "%shidraw%d", len ? "," : "", 1911 ((struct hidraw *)hdev->hidraw)->minor); 1912 1913 type = "Device"; 1914 for (i = 0; i < hdev->maxcollection; i++) { 1915 struct hid_collection *col = &hdev->collection[i]; 1916 if (col->type == HID_COLLECTION_APPLICATION && 1917 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK && 1918 (col->usage & 0xffff) < ARRAY_SIZE(types)) { 1919 type = types[col->usage & 0xffff]; 1920 break; 1921 } 1922 } 1923 1924 switch (hdev->bus) { 1925 case BUS_USB: 1926 bus = "USB"; 1927 break; 1928 case BUS_BLUETOOTH: 1929 bus = "BLUETOOTH"; 1930 break; 1931 case BUS_I2C: 1932 bus = "I2C"; 1933 break; 1934 default: 1935 bus = "<UNKNOWN>"; 1936 } 1937 1938 ret = device_create_file(&hdev->dev, &dev_attr_country); 1939 if (ret) 1940 hid_warn(hdev, 1941 "can't create sysfs country code attribute err: %d\n", ret); 1942 1943 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n", 1944 buf, bus, hdev->version >> 8, hdev->version & 0xff, 1945 type, hdev->name, hdev->phys); 1946 1947 return 0; 1948 } 1949 EXPORT_SYMBOL_GPL(hid_connect); 1950 1951 void hid_disconnect(struct hid_device *hdev) 1952 { 1953 device_remove_file(&hdev->dev, &dev_attr_country); 1954 if (hdev->claimed & HID_CLAIMED_INPUT) 1955 hidinput_disconnect(hdev); 1956 if (hdev->claimed & HID_CLAIMED_HIDDEV) 1957 hdev->hiddev_disconnect(hdev); 1958 if (hdev->claimed & HID_CLAIMED_HIDRAW) 1959 hidraw_disconnect(hdev); 1960 hdev->claimed = 0; 1961 } 1962 EXPORT_SYMBOL_GPL(hid_disconnect); 1963 1964 /** 1965 * hid_hw_start - start underlying HW 1966 * @hdev: hid device 1967 * @connect_mask: which outputs to connect, see HID_CONNECT_* 1968 * 1969 * Call this in probe function *after* hid_parse. This will setup HW 1970 * buffers and start the device (if not defeirred to device open). 1971 * hid_hw_stop must be called if this was successful. 1972 */ 1973 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask) 1974 { 1975 int error; 1976 1977 error = hdev->ll_driver->start(hdev); 1978 if (error) 1979 return error; 1980 1981 if (connect_mask) { 1982 error = hid_connect(hdev, connect_mask); 1983 if (error) { 1984 hdev->ll_driver->stop(hdev); 1985 return error; 1986 } 1987 } 1988 1989 return 0; 1990 } 1991 EXPORT_SYMBOL_GPL(hid_hw_start); 1992 1993 /** 1994 * hid_hw_stop - stop underlying HW 1995 * @hdev: hid device 1996 * 1997 * This is usually called from remove function or from probe when something 1998 * failed and hid_hw_start was called already. 1999 */ 2000 void hid_hw_stop(struct hid_device *hdev) 2001 { 2002 hid_disconnect(hdev); 2003 hdev->ll_driver->stop(hdev); 2004 } 2005 EXPORT_SYMBOL_GPL(hid_hw_stop); 2006 2007 /** 2008 * hid_hw_open - signal underlying HW to start delivering events 2009 * @hdev: hid device 2010 * 2011 * Tell underlying HW to start delivering events from the device. 2012 * This function should be called sometime after successful call 2013 * to hid_hw_start(). 2014 */ 2015 int hid_hw_open(struct hid_device *hdev) 2016 { 2017 int ret; 2018 2019 ret = mutex_lock_killable(&hdev->ll_open_lock); 2020 if (ret) 2021 return ret; 2022 2023 if (!hdev->ll_open_count++) { 2024 ret = hdev->ll_driver->open(hdev); 2025 if (ret) 2026 hdev->ll_open_count--; 2027 } 2028 2029 mutex_unlock(&hdev->ll_open_lock); 2030 return ret; 2031 } 2032 EXPORT_SYMBOL_GPL(hid_hw_open); 2033 2034 /** 2035 * hid_hw_close - signal underlaying HW to stop delivering events 2036 * 2037 * @hdev: hid device 2038 * 2039 * This function indicates that we are not interested in the events 2040 * from this device anymore. Delivery of events may or may not stop, 2041 * depending on the number of users still outstanding. 2042 */ 2043 void hid_hw_close(struct hid_device *hdev) 2044 { 2045 mutex_lock(&hdev->ll_open_lock); 2046 if (!--hdev->ll_open_count) 2047 hdev->ll_driver->close(hdev); 2048 mutex_unlock(&hdev->ll_open_lock); 2049 } 2050 EXPORT_SYMBOL_GPL(hid_hw_close); 2051 2052 struct hid_dynid { 2053 struct list_head list; 2054 struct hid_device_id id; 2055 }; 2056 2057 /** 2058 * store_new_id - add a new HID device ID to this driver and re-probe devices 2059 * @driver: target device driver 2060 * @buf: buffer for scanning device ID data 2061 * @count: input size 2062 * 2063 * Adds a new dynamic hid device ID to this driver, 2064 * and causes the driver to probe for all devices again. 2065 */ 2066 static ssize_t new_id_store(struct device_driver *drv, const char *buf, 2067 size_t count) 2068 { 2069 struct hid_driver *hdrv = to_hid_driver(drv); 2070 struct hid_dynid *dynid; 2071 __u32 bus, vendor, product; 2072 unsigned long driver_data = 0; 2073 int ret; 2074 2075 ret = sscanf(buf, "%x %x %x %lx", 2076 &bus, &vendor, &product, &driver_data); 2077 if (ret < 3) 2078 return -EINVAL; 2079 2080 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 2081 if (!dynid) 2082 return -ENOMEM; 2083 2084 dynid->id.bus = bus; 2085 dynid->id.group = HID_GROUP_ANY; 2086 dynid->id.vendor = vendor; 2087 dynid->id.product = product; 2088 dynid->id.driver_data = driver_data; 2089 2090 spin_lock(&hdrv->dyn_lock); 2091 list_add_tail(&dynid->list, &hdrv->dyn_list); 2092 spin_unlock(&hdrv->dyn_lock); 2093 2094 ret = driver_attach(&hdrv->driver); 2095 2096 return ret ? : count; 2097 } 2098 static DRIVER_ATTR_WO(new_id); 2099 2100 static struct attribute *hid_drv_attrs[] = { 2101 &driver_attr_new_id.attr, 2102 NULL, 2103 }; 2104 ATTRIBUTE_GROUPS(hid_drv); 2105 2106 static void hid_free_dynids(struct hid_driver *hdrv) 2107 { 2108 struct hid_dynid *dynid, *n; 2109 2110 spin_lock(&hdrv->dyn_lock); 2111 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) { 2112 list_del(&dynid->list); 2113 kfree(dynid); 2114 } 2115 spin_unlock(&hdrv->dyn_lock); 2116 } 2117 2118 const struct hid_device_id *hid_match_device(struct hid_device *hdev, 2119 struct hid_driver *hdrv) 2120 { 2121 struct hid_dynid *dynid; 2122 2123 spin_lock(&hdrv->dyn_lock); 2124 list_for_each_entry(dynid, &hdrv->dyn_list, list) { 2125 if (hid_match_one_id(hdev, &dynid->id)) { 2126 spin_unlock(&hdrv->dyn_lock); 2127 return &dynid->id; 2128 } 2129 } 2130 spin_unlock(&hdrv->dyn_lock); 2131 2132 return hid_match_id(hdev, hdrv->id_table); 2133 } 2134 EXPORT_SYMBOL_GPL(hid_match_device); 2135 2136 static int hid_bus_match(struct device *dev, struct device_driver *drv) 2137 { 2138 struct hid_driver *hdrv = to_hid_driver(drv); 2139 struct hid_device *hdev = to_hid_device(dev); 2140 2141 return hid_match_device(hdev, hdrv) != NULL; 2142 } 2143 2144 /** 2145 * hid_compare_device_paths - check if both devices share the same path 2146 * @hdev_a: hid device 2147 * @hdev_b: hid device 2148 * @separator: char to use as separator 2149 * 2150 * Check if two devices share the same path up to the last occurrence of 2151 * the separator char. Both paths must exist (i.e., zero-length paths 2152 * don't match). 2153 */ 2154 bool hid_compare_device_paths(struct hid_device *hdev_a, 2155 struct hid_device *hdev_b, char separator) 2156 { 2157 int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys; 2158 int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys; 2159 2160 if (n1 != n2 || n1 <= 0 || n2 <= 0) 2161 return false; 2162 2163 return !strncmp(hdev_a->phys, hdev_b->phys, n1); 2164 } 2165 EXPORT_SYMBOL_GPL(hid_compare_device_paths); 2166 2167 static int hid_device_probe(struct device *dev) 2168 { 2169 struct hid_driver *hdrv = to_hid_driver(dev->driver); 2170 struct hid_device *hdev = to_hid_device(dev); 2171 const struct hid_device_id *id; 2172 int ret = 0; 2173 2174 if (down_interruptible(&hdev->driver_input_lock)) { 2175 ret = -EINTR; 2176 goto end; 2177 } 2178 hdev->io_started = false; 2179 2180 clear_bit(ffs(HID_STAT_REPROBED), &hdev->status); 2181 2182 if (!hdev->driver) { 2183 id = hid_match_device(hdev, hdrv); 2184 if (id == NULL) { 2185 ret = -ENODEV; 2186 goto unlock; 2187 } 2188 2189 if (hdrv->match) { 2190 if (!hdrv->match(hdev, hid_ignore_special_drivers)) { 2191 ret = -ENODEV; 2192 goto unlock; 2193 } 2194 } else { 2195 /* 2196 * hid-generic implements .match(), so if 2197 * hid_ignore_special_drivers is set, we can safely 2198 * return. 2199 */ 2200 if (hid_ignore_special_drivers) { 2201 ret = -ENODEV; 2202 goto unlock; 2203 } 2204 } 2205 2206 /* reset the quirks that has been previously set */ 2207 hdev->quirks = hid_lookup_quirk(hdev); 2208 hdev->driver = hdrv; 2209 if (hdrv->probe) { 2210 ret = hdrv->probe(hdev, id); 2211 } else { /* default probe */ 2212 ret = hid_open_report(hdev); 2213 if (!ret) 2214 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT); 2215 } 2216 if (ret) { 2217 hid_close_report(hdev); 2218 hdev->driver = NULL; 2219 } 2220 } 2221 unlock: 2222 if (!hdev->io_started) 2223 up(&hdev->driver_input_lock); 2224 end: 2225 return ret; 2226 } 2227 2228 static int hid_device_remove(struct device *dev) 2229 { 2230 struct hid_device *hdev = to_hid_device(dev); 2231 struct hid_driver *hdrv; 2232 int ret = 0; 2233 2234 if (down_interruptible(&hdev->driver_input_lock)) { 2235 ret = -EINTR; 2236 goto end; 2237 } 2238 hdev->io_started = false; 2239 2240 hdrv = hdev->driver; 2241 if (hdrv) { 2242 if (hdrv->remove) 2243 hdrv->remove(hdev); 2244 else /* default remove */ 2245 hid_hw_stop(hdev); 2246 hid_close_report(hdev); 2247 hdev->driver = NULL; 2248 } 2249 2250 if (!hdev->io_started) 2251 up(&hdev->driver_input_lock); 2252 end: 2253 return ret; 2254 } 2255 2256 static ssize_t modalias_show(struct device *dev, struct device_attribute *a, 2257 char *buf) 2258 { 2259 struct hid_device *hdev = container_of(dev, struct hid_device, dev); 2260 2261 return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n", 2262 hdev->bus, hdev->group, hdev->vendor, hdev->product); 2263 } 2264 static DEVICE_ATTR_RO(modalias); 2265 2266 static struct attribute *hid_dev_attrs[] = { 2267 &dev_attr_modalias.attr, 2268 NULL, 2269 }; 2270 static struct bin_attribute *hid_dev_bin_attrs[] = { 2271 &dev_bin_attr_report_desc, 2272 NULL 2273 }; 2274 static const struct attribute_group hid_dev_group = { 2275 .attrs = hid_dev_attrs, 2276 .bin_attrs = hid_dev_bin_attrs, 2277 }; 2278 __ATTRIBUTE_GROUPS(hid_dev); 2279 2280 static int hid_uevent(struct device *dev, struct kobj_uevent_env *env) 2281 { 2282 struct hid_device *hdev = to_hid_device(dev); 2283 2284 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X", 2285 hdev->bus, hdev->vendor, hdev->product)) 2286 return -ENOMEM; 2287 2288 if (add_uevent_var(env, "HID_NAME=%s", hdev->name)) 2289 return -ENOMEM; 2290 2291 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys)) 2292 return -ENOMEM; 2293 2294 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq)) 2295 return -ENOMEM; 2296 2297 if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X", 2298 hdev->bus, hdev->group, hdev->vendor, hdev->product)) 2299 return -ENOMEM; 2300 2301 return 0; 2302 } 2303 2304 struct bus_type hid_bus_type = { 2305 .name = "hid", 2306 .dev_groups = hid_dev_groups, 2307 .drv_groups = hid_drv_groups, 2308 .match = hid_bus_match, 2309 .probe = hid_device_probe, 2310 .remove = hid_device_remove, 2311 .uevent = hid_uevent, 2312 }; 2313 EXPORT_SYMBOL(hid_bus_type); 2314 2315 int hid_add_device(struct hid_device *hdev) 2316 { 2317 static atomic_t id = ATOMIC_INIT(0); 2318 int ret; 2319 2320 if (WARN_ON(hdev->status & HID_STAT_ADDED)) 2321 return -EBUSY; 2322 2323 hdev->quirks = hid_lookup_quirk(hdev); 2324 2325 /* we need to kill them here, otherwise they will stay allocated to 2326 * wait for coming driver */ 2327 if (hid_ignore(hdev)) 2328 return -ENODEV; 2329 2330 /* 2331 * Check for the mandatory transport channel. 2332 */ 2333 if (!hdev->ll_driver->raw_request) { 2334 hid_err(hdev, "transport driver missing .raw_request()\n"); 2335 return -EINVAL; 2336 } 2337 2338 /* 2339 * Read the device report descriptor once and use as template 2340 * for the driver-specific modifications. 2341 */ 2342 ret = hdev->ll_driver->parse(hdev); 2343 if (ret) 2344 return ret; 2345 if (!hdev->dev_rdesc) 2346 return -ENODEV; 2347 2348 /* 2349 * Scan generic devices for group information 2350 */ 2351 if (hid_ignore_special_drivers) { 2352 hdev->group = HID_GROUP_GENERIC; 2353 } else if (!hdev->group && 2354 !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) { 2355 ret = hid_scan_report(hdev); 2356 if (ret) 2357 hid_warn(hdev, "bad device descriptor (%d)\n", ret); 2358 } 2359 2360 /* XXX hack, any other cleaner solution after the driver core 2361 * is converted to allow more than 20 bytes as the device name? */ 2362 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus, 2363 hdev->vendor, hdev->product, atomic_inc_return(&id)); 2364 2365 /* 2366 * Try loading the module for the device before the add, so that we do 2367 * not first have hid-generic binding only to have it replaced 2368 * immediately afterwards with a specialized driver. 2369 */ 2370 if (!current_is_async()) 2371 request_module("hid:b%04Xg%04Xv%08Xp%08X", hdev->bus, 2372 hdev->group, hdev->vendor, hdev->product); 2373 2374 hid_debug_register(hdev, dev_name(&hdev->dev)); 2375 ret = device_add(&hdev->dev); 2376 if (!ret) 2377 hdev->status |= HID_STAT_ADDED; 2378 else 2379 hid_debug_unregister(hdev); 2380 2381 return ret; 2382 } 2383 EXPORT_SYMBOL_GPL(hid_add_device); 2384 2385 /** 2386 * hid_allocate_device - allocate new hid device descriptor 2387 * 2388 * Allocate and initialize hid device, so that hid_destroy_device might be 2389 * used to free it. 2390 * 2391 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded 2392 * error value. 2393 */ 2394 struct hid_device *hid_allocate_device(void) 2395 { 2396 struct hid_device *hdev; 2397 int ret = -ENOMEM; 2398 2399 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL); 2400 if (hdev == NULL) 2401 return ERR_PTR(ret); 2402 2403 device_initialize(&hdev->dev); 2404 hdev->dev.release = hid_device_release; 2405 hdev->dev.bus = &hid_bus_type; 2406 device_enable_async_suspend(&hdev->dev); 2407 2408 hid_close_report(hdev); 2409 2410 init_waitqueue_head(&hdev->debug_wait); 2411 INIT_LIST_HEAD(&hdev->debug_list); 2412 spin_lock_init(&hdev->debug_list_lock); 2413 sema_init(&hdev->driver_input_lock, 1); 2414 mutex_init(&hdev->ll_open_lock); 2415 2416 return hdev; 2417 } 2418 EXPORT_SYMBOL_GPL(hid_allocate_device); 2419 2420 static void hid_remove_device(struct hid_device *hdev) 2421 { 2422 if (hdev->status & HID_STAT_ADDED) { 2423 device_del(&hdev->dev); 2424 hid_debug_unregister(hdev); 2425 hdev->status &= ~HID_STAT_ADDED; 2426 } 2427 kfree(hdev->dev_rdesc); 2428 hdev->dev_rdesc = NULL; 2429 hdev->dev_rsize = 0; 2430 } 2431 2432 /** 2433 * hid_destroy_device - free previously allocated device 2434 * 2435 * @hdev: hid device 2436 * 2437 * If you allocate hid_device through hid_allocate_device, you should ever 2438 * free by this function. 2439 */ 2440 void hid_destroy_device(struct hid_device *hdev) 2441 { 2442 hid_remove_device(hdev); 2443 put_device(&hdev->dev); 2444 } 2445 EXPORT_SYMBOL_GPL(hid_destroy_device); 2446 2447 2448 static int __hid_bus_reprobe_drivers(struct device *dev, void *data) 2449 { 2450 struct hid_driver *hdrv = data; 2451 struct hid_device *hdev = to_hid_device(dev); 2452 2453 if (hdev->driver == hdrv && 2454 !hdrv->match(hdev, hid_ignore_special_drivers) && 2455 !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status)) 2456 return device_reprobe(dev); 2457 2458 return 0; 2459 } 2460 2461 static int __hid_bus_driver_added(struct device_driver *drv, void *data) 2462 { 2463 struct hid_driver *hdrv = to_hid_driver(drv); 2464 2465 if (hdrv->match) { 2466 bus_for_each_dev(&hid_bus_type, NULL, hdrv, 2467 __hid_bus_reprobe_drivers); 2468 } 2469 2470 return 0; 2471 } 2472 2473 static int __bus_removed_driver(struct device_driver *drv, void *data) 2474 { 2475 return bus_rescan_devices(&hid_bus_type); 2476 } 2477 2478 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner, 2479 const char *mod_name) 2480 { 2481 int ret; 2482 2483 hdrv->driver.name = hdrv->name; 2484 hdrv->driver.bus = &hid_bus_type; 2485 hdrv->driver.owner = owner; 2486 hdrv->driver.mod_name = mod_name; 2487 2488 INIT_LIST_HEAD(&hdrv->dyn_list); 2489 spin_lock_init(&hdrv->dyn_lock); 2490 2491 ret = driver_register(&hdrv->driver); 2492 2493 if (ret == 0) 2494 bus_for_each_drv(&hid_bus_type, NULL, NULL, 2495 __hid_bus_driver_added); 2496 2497 return ret; 2498 } 2499 EXPORT_SYMBOL_GPL(__hid_register_driver); 2500 2501 void hid_unregister_driver(struct hid_driver *hdrv) 2502 { 2503 driver_unregister(&hdrv->driver); 2504 hid_free_dynids(hdrv); 2505 2506 bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver); 2507 } 2508 EXPORT_SYMBOL_GPL(hid_unregister_driver); 2509 2510 int hid_check_keys_pressed(struct hid_device *hid) 2511 { 2512 struct hid_input *hidinput; 2513 int i; 2514 2515 if (!(hid->claimed & HID_CLAIMED_INPUT)) 2516 return 0; 2517 2518 list_for_each_entry(hidinput, &hid->inputs, list) { 2519 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++) 2520 if (hidinput->input->key[i]) 2521 return 1; 2522 } 2523 2524 return 0; 2525 } 2526 2527 EXPORT_SYMBOL_GPL(hid_check_keys_pressed); 2528 2529 static int __init hid_init(void) 2530 { 2531 int ret; 2532 2533 if (hid_debug) 2534 pr_warn("hid_debug is now used solely for parser and driver debugging.\n" 2535 "debugfs is now used for inspecting the device (report descriptor, reports)\n"); 2536 2537 ret = bus_register(&hid_bus_type); 2538 if (ret) { 2539 pr_err("can't register hid bus\n"); 2540 goto err; 2541 } 2542 2543 ret = hidraw_init(); 2544 if (ret) 2545 goto err_bus; 2546 2547 hid_debug_init(); 2548 2549 return 0; 2550 err_bus: 2551 bus_unregister(&hid_bus_type); 2552 err: 2553 return ret; 2554 } 2555 2556 static void __exit hid_exit(void) 2557 { 2558 hid_debug_exit(); 2559 hidraw_exit(); 2560 bus_unregister(&hid_bus_type); 2561 hid_quirks_exit(HID_BUS_ANY); 2562 } 2563 2564 module_init(hid_init); 2565 module_exit(hid_exit); 2566 2567 MODULE_AUTHOR("Andreas Gal"); 2568 MODULE_AUTHOR("Vojtech Pavlik"); 2569 MODULE_AUTHOR("Jiri Kosina"); 2570 MODULE_LICENSE("GPL"); 2571