1 /* 2 * HID support for Linux 3 * 4 * Copyright (c) 1999 Andreas Gal 5 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz> 6 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc 7 * Copyright (c) 2006-2012 Jiri Kosina 8 */ 9 10 /* 11 * This program is free software; you can redistribute it and/or modify it 12 * under the terms of the GNU General Public License as published by the Free 13 * Software Foundation; either version 2 of the License, or (at your option) 14 * any later version. 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/module.h> 20 #include <linux/slab.h> 21 #include <linux/init.h> 22 #include <linux/kernel.h> 23 #include <linux/list.h> 24 #include <linux/mm.h> 25 #include <linux/spinlock.h> 26 #include <asm/unaligned.h> 27 #include <asm/byteorder.h> 28 #include <linux/input.h> 29 #include <linux/wait.h> 30 #include <linux/vmalloc.h> 31 #include <linux/sched.h> 32 #include <linux/semaphore.h> 33 34 #include <linux/hid.h> 35 #include <linux/hiddev.h> 36 #include <linux/hid-debug.h> 37 #include <linux/hidraw.h> 38 39 #include "hid-ids.h" 40 41 /* 42 * Version Information 43 */ 44 45 #define DRIVER_DESC "HID core driver" 46 47 int hid_debug = 0; 48 module_param_named(debug, hid_debug, int, 0600); 49 MODULE_PARM_DESC(debug, "toggle HID debugging messages"); 50 EXPORT_SYMBOL_GPL(hid_debug); 51 52 static int hid_ignore_special_drivers = 0; 53 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600); 54 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver"); 55 56 /* 57 * Register a new report for a device. 58 */ 59 60 struct hid_report *hid_register_report(struct hid_device *device, unsigned type, unsigned id) 61 { 62 struct hid_report_enum *report_enum = device->report_enum + type; 63 struct hid_report *report; 64 65 if (id >= HID_MAX_IDS) 66 return NULL; 67 if (report_enum->report_id_hash[id]) 68 return report_enum->report_id_hash[id]; 69 70 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL); 71 if (!report) 72 return NULL; 73 74 if (id != 0) 75 report_enum->numbered = 1; 76 77 report->id = id; 78 report->type = type; 79 report->size = 0; 80 report->device = device; 81 report_enum->report_id_hash[id] = report; 82 83 list_add_tail(&report->list, &report_enum->report_list); 84 85 return report; 86 } 87 EXPORT_SYMBOL_GPL(hid_register_report); 88 89 /* 90 * Register a new field for this report. 91 */ 92 93 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values) 94 { 95 struct hid_field *field; 96 97 if (report->maxfield == HID_MAX_FIELDS) { 98 hid_err(report->device, "too many fields in report\n"); 99 return NULL; 100 } 101 102 field = kzalloc((sizeof(struct hid_field) + 103 usages * sizeof(struct hid_usage) + 104 values * sizeof(unsigned)), GFP_KERNEL); 105 if (!field) 106 return NULL; 107 108 field->index = report->maxfield++; 109 report->field[field->index] = field; 110 field->usage = (struct hid_usage *)(field + 1); 111 field->value = (s32 *)(field->usage + usages); 112 field->report = report; 113 114 return field; 115 } 116 117 /* 118 * Open a collection. The type/usage is pushed on the stack. 119 */ 120 121 static int open_collection(struct hid_parser *parser, unsigned type) 122 { 123 struct hid_collection *collection; 124 unsigned usage; 125 126 usage = parser->local.usage[0]; 127 128 if (parser->collection_stack_ptr == HID_COLLECTION_STACK_SIZE) { 129 hid_err(parser->device, "collection stack overflow\n"); 130 return -EINVAL; 131 } 132 133 if (parser->device->maxcollection == parser->device->collection_size) { 134 collection = kmalloc(sizeof(struct hid_collection) * 135 parser->device->collection_size * 2, GFP_KERNEL); 136 if (collection == NULL) { 137 hid_err(parser->device, "failed to reallocate collection array\n"); 138 return -ENOMEM; 139 } 140 memcpy(collection, parser->device->collection, 141 sizeof(struct hid_collection) * 142 parser->device->collection_size); 143 memset(collection + parser->device->collection_size, 0, 144 sizeof(struct hid_collection) * 145 parser->device->collection_size); 146 kfree(parser->device->collection); 147 parser->device->collection = collection; 148 parser->device->collection_size *= 2; 149 } 150 151 parser->collection_stack[parser->collection_stack_ptr++] = 152 parser->device->maxcollection; 153 154 collection = parser->device->collection + 155 parser->device->maxcollection++; 156 collection->type = type; 157 collection->usage = usage; 158 collection->level = parser->collection_stack_ptr - 1; 159 160 if (type == HID_COLLECTION_APPLICATION) 161 parser->device->maxapplication++; 162 163 return 0; 164 } 165 166 /* 167 * Close a collection. 168 */ 169 170 static int close_collection(struct hid_parser *parser) 171 { 172 if (!parser->collection_stack_ptr) { 173 hid_err(parser->device, "collection stack underflow\n"); 174 return -EINVAL; 175 } 176 parser->collection_stack_ptr--; 177 return 0; 178 } 179 180 /* 181 * Climb up the stack, search for the specified collection type 182 * and return the usage. 183 */ 184 185 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type) 186 { 187 struct hid_collection *collection = parser->device->collection; 188 int n; 189 190 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) { 191 unsigned index = parser->collection_stack[n]; 192 if (collection[index].type == type) 193 return collection[index].usage; 194 } 195 return 0; /* we know nothing about this usage type */ 196 } 197 198 /* 199 * Add a usage to the temporary parser table. 200 */ 201 202 static int hid_add_usage(struct hid_parser *parser, unsigned usage) 203 { 204 if (parser->local.usage_index >= HID_MAX_USAGES) { 205 hid_err(parser->device, "usage index exceeded\n"); 206 return -1; 207 } 208 parser->local.usage[parser->local.usage_index] = usage; 209 parser->local.collection_index[parser->local.usage_index] = 210 parser->collection_stack_ptr ? 211 parser->collection_stack[parser->collection_stack_ptr - 1] : 0; 212 parser->local.usage_index++; 213 return 0; 214 } 215 216 /* 217 * Register a new field for this report. 218 */ 219 220 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags) 221 { 222 struct hid_report *report; 223 struct hid_field *field; 224 unsigned usages; 225 unsigned offset; 226 unsigned i; 227 228 report = hid_register_report(parser->device, report_type, parser->global.report_id); 229 if (!report) { 230 hid_err(parser->device, "hid_register_report failed\n"); 231 return -1; 232 } 233 234 /* Handle both signed and unsigned cases properly */ 235 if ((parser->global.logical_minimum < 0 && 236 parser->global.logical_maximum < 237 parser->global.logical_minimum) || 238 (parser->global.logical_minimum >= 0 && 239 (__u32)parser->global.logical_maximum < 240 (__u32)parser->global.logical_minimum)) { 241 dbg_hid("logical range invalid 0x%x 0x%x\n", 242 parser->global.logical_minimum, 243 parser->global.logical_maximum); 244 return -1; 245 } 246 247 offset = report->size; 248 report->size += parser->global.report_size * parser->global.report_count; 249 250 if (!parser->local.usage_index) /* Ignore padding fields */ 251 return 0; 252 253 usages = max_t(unsigned, parser->local.usage_index, 254 parser->global.report_count); 255 256 field = hid_register_field(report, usages, parser->global.report_count); 257 if (!field) 258 return 0; 259 260 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL); 261 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL); 262 field->application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION); 263 264 for (i = 0; i < usages; i++) { 265 unsigned j = i; 266 /* Duplicate the last usage we parsed if we have excess values */ 267 if (i >= parser->local.usage_index) 268 j = parser->local.usage_index - 1; 269 field->usage[i].hid = parser->local.usage[j]; 270 field->usage[i].collection_index = 271 parser->local.collection_index[j]; 272 field->usage[i].usage_index = i; 273 } 274 275 field->maxusage = usages; 276 field->flags = flags; 277 field->report_offset = offset; 278 field->report_type = report_type; 279 field->report_size = parser->global.report_size; 280 field->report_count = parser->global.report_count; 281 field->logical_minimum = parser->global.logical_minimum; 282 field->logical_maximum = parser->global.logical_maximum; 283 field->physical_minimum = parser->global.physical_minimum; 284 field->physical_maximum = parser->global.physical_maximum; 285 field->unit_exponent = parser->global.unit_exponent; 286 field->unit = parser->global.unit; 287 288 return 0; 289 } 290 291 /* 292 * Read data value from item. 293 */ 294 295 static u32 item_udata(struct hid_item *item) 296 { 297 switch (item->size) { 298 case 1: return item->data.u8; 299 case 2: return item->data.u16; 300 case 4: return item->data.u32; 301 } 302 return 0; 303 } 304 305 static s32 item_sdata(struct hid_item *item) 306 { 307 switch (item->size) { 308 case 1: return item->data.s8; 309 case 2: return item->data.s16; 310 case 4: return item->data.s32; 311 } 312 return 0; 313 } 314 315 /* 316 * Process a global item. 317 */ 318 319 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item) 320 { 321 __s32 raw_value; 322 switch (item->tag) { 323 case HID_GLOBAL_ITEM_TAG_PUSH: 324 325 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) { 326 hid_err(parser->device, "global environment stack overflow\n"); 327 return -1; 328 } 329 330 memcpy(parser->global_stack + parser->global_stack_ptr++, 331 &parser->global, sizeof(struct hid_global)); 332 return 0; 333 334 case HID_GLOBAL_ITEM_TAG_POP: 335 336 if (!parser->global_stack_ptr) { 337 hid_err(parser->device, "global environment stack underflow\n"); 338 return -1; 339 } 340 341 memcpy(&parser->global, parser->global_stack + 342 --parser->global_stack_ptr, sizeof(struct hid_global)); 343 return 0; 344 345 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE: 346 parser->global.usage_page = item_udata(item); 347 return 0; 348 349 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM: 350 parser->global.logical_minimum = item_sdata(item); 351 return 0; 352 353 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM: 354 if (parser->global.logical_minimum < 0) 355 parser->global.logical_maximum = item_sdata(item); 356 else 357 parser->global.logical_maximum = item_udata(item); 358 return 0; 359 360 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM: 361 parser->global.physical_minimum = item_sdata(item); 362 return 0; 363 364 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM: 365 if (parser->global.physical_minimum < 0) 366 parser->global.physical_maximum = item_sdata(item); 367 else 368 parser->global.physical_maximum = item_udata(item); 369 return 0; 370 371 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT: 372 /* Many devices provide unit exponent as a two's complement 373 * nibble due to the common misunderstanding of HID 374 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle 375 * both this and the standard encoding. */ 376 raw_value = item_sdata(item); 377 if (!(raw_value & 0xfffffff0)) 378 parser->global.unit_exponent = hid_snto32(raw_value, 4); 379 else 380 parser->global.unit_exponent = raw_value; 381 return 0; 382 383 case HID_GLOBAL_ITEM_TAG_UNIT: 384 parser->global.unit = item_udata(item); 385 return 0; 386 387 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE: 388 parser->global.report_size = item_udata(item); 389 if (parser->global.report_size > 128) { 390 hid_err(parser->device, "invalid report_size %d\n", 391 parser->global.report_size); 392 return -1; 393 } 394 return 0; 395 396 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT: 397 parser->global.report_count = item_udata(item); 398 if (parser->global.report_count > HID_MAX_USAGES) { 399 hid_err(parser->device, "invalid report_count %d\n", 400 parser->global.report_count); 401 return -1; 402 } 403 return 0; 404 405 case HID_GLOBAL_ITEM_TAG_REPORT_ID: 406 parser->global.report_id = item_udata(item); 407 if (parser->global.report_id == 0 || 408 parser->global.report_id >= HID_MAX_IDS) { 409 hid_err(parser->device, "report_id %u is invalid\n", 410 parser->global.report_id); 411 return -1; 412 } 413 return 0; 414 415 default: 416 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag); 417 return -1; 418 } 419 } 420 421 /* 422 * Process a local item. 423 */ 424 425 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item) 426 { 427 __u32 data; 428 unsigned n; 429 __u32 count; 430 431 data = item_udata(item); 432 433 switch (item->tag) { 434 case HID_LOCAL_ITEM_TAG_DELIMITER: 435 436 if (data) { 437 /* 438 * We treat items before the first delimiter 439 * as global to all usage sets (branch 0). 440 * In the moment we process only these global 441 * items and the first delimiter set. 442 */ 443 if (parser->local.delimiter_depth != 0) { 444 hid_err(parser->device, "nested delimiters\n"); 445 return -1; 446 } 447 parser->local.delimiter_depth++; 448 parser->local.delimiter_branch++; 449 } else { 450 if (parser->local.delimiter_depth < 1) { 451 hid_err(parser->device, "bogus close delimiter\n"); 452 return -1; 453 } 454 parser->local.delimiter_depth--; 455 } 456 return 0; 457 458 case HID_LOCAL_ITEM_TAG_USAGE: 459 460 if (parser->local.delimiter_branch > 1) { 461 dbg_hid("alternative usage ignored\n"); 462 return 0; 463 } 464 465 if (item->size <= 2) 466 data = (parser->global.usage_page << 16) + data; 467 468 return hid_add_usage(parser, data); 469 470 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM: 471 472 if (parser->local.delimiter_branch > 1) { 473 dbg_hid("alternative usage ignored\n"); 474 return 0; 475 } 476 477 if (item->size <= 2) 478 data = (parser->global.usage_page << 16) + data; 479 480 parser->local.usage_minimum = data; 481 return 0; 482 483 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM: 484 485 if (parser->local.delimiter_branch > 1) { 486 dbg_hid("alternative usage ignored\n"); 487 return 0; 488 } 489 490 if (item->size <= 2) 491 data = (parser->global.usage_page << 16) + data; 492 493 count = data - parser->local.usage_minimum; 494 if (count + parser->local.usage_index >= HID_MAX_USAGES) { 495 /* 496 * We do not warn if the name is not set, we are 497 * actually pre-scanning the device. 498 */ 499 if (dev_name(&parser->device->dev)) 500 hid_warn(parser->device, 501 "ignoring exceeding usage max\n"); 502 data = HID_MAX_USAGES - parser->local.usage_index + 503 parser->local.usage_minimum - 1; 504 if (data <= 0) { 505 hid_err(parser->device, 506 "no more usage index available\n"); 507 return -1; 508 } 509 } 510 511 for (n = parser->local.usage_minimum; n <= data; n++) 512 if (hid_add_usage(parser, n)) { 513 dbg_hid("hid_add_usage failed\n"); 514 return -1; 515 } 516 return 0; 517 518 default: 519 520 dbg_hid("unknown local item tag 0x%x\n", item->tag); 521 return 0; 522 } 523 return 0; 524 } 525 526 /* 527 * Process a main item. 528 */ 529 530 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item) 531 { 532 __u32 data; 533 int ret; 534 535 data = item_udata(item); 536 537 switch (item->tag) { 538 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION: 539 ret = open_collection(parser, data & 0xff); 540 break; 541 case HID_MAIN_ITEM_TAG_END_COLLECTION: 542 ret = close_collection(parser); 543 break; 544 case HID_MAIN_ITEM_TAG_INPUT: 545 ret = hid_add_field(parser, HID_INPUT_REPORT, data); 546 break; 547 case HID_MAIN_ITEM_TAG_OUTPUT: 548 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data); 549 break; 550 case HID_MAIN_ITEM_TAG_FEATURE: 551 ret = hid_add_field(parser, HID_FEATURE_REPORT, data); 552 break; 553 default: 554 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag); 555 ret = 0; 556 } 557 558 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */ 559 560 return ret; 561 } 562 563 /* 564 * Process a reserved item. 565 */ 566 567 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item) 568 { 569 dbg_hid("reserved item type, tag 0x%x\n", item->tag); 570 return 0; 571 } 572 573 /* 574 * Free a report and all registered fields. The field->usage and 575 * field->value table's are allocated behind the field, so we need 576 * only to free(field) itself. 577 */ 578 579 static void hid_free_report(struct hid_report *report) 580 { 581 unsigned n; 582 583 for (n = 0; n < report->maxfield; n++) 584 kfree(report->field[n]); 585 kfree(report); 586 } 587 588 /* 589 * Close report. This function returns the device 590 * state to the point prior to hid_open_report(). 591 */ 592 static void hid_close_report(struct hid_device *device) 593 { 594 unsigned i, j; 595 596 for (i = 0; i < HID_REPORT_TYPES; i++) { 597 struct hid_report_enum *report_enum = device->report_enum + i; 598 599 for (j = 0; j < HID_MAX_IDS; j++) { 600 struct hid_report *report = report_enum->report_id_hash[j]; 601 if (report) 602 hid_free_report(report); 603 } 604 memset(report_enum, 0, sizeof(*report_enum)); 605 INIT_LIST_HEAD(&report_enum->report_list); 606 } 607 608 kfree(device->rdesc); 609 device->rdesc = NULL; 610 device->rsize = 0; 611 612 kfree(device->collection); 613 device->collection = NULL; 614 device->collection_size = 0; 615 device->maxcollection = 0; 616 device->maxapplication = 0; 617 618 device->status &= ~HID_STAT_PARSED; 619 } 620 621 /* 622 * Free a device structure, all reports, and all fields. 623 */ 624 625 static void hid_device_release(struct device *dev) 626 { 627 struct hid_device *hid = to_hid_device(dev); 628 629 hid_close_report(hid); 630 kfree(hid->dev_rdesc); 631 kfree(hid); 632 } 633 634 /* 635 * Fetch a report description item from the data stream. We support long 636 * items, though they are not used yet. 637 */ 638 639 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item) 640 { 641 u8 b; 642 643 if ((end - start) <= 0) 644 return NULL; 645 646 b = *start++; 647 648 item->type = (b >> 2) & 3; 649 item->tag = (b >> 4) & 15; 650 651 if (item->tag == HID_ITEM_TAG_LONG) { 652 653 item->format = HID_ITEM_FORMAT_LONG; 654 655 if ((end - start) < 2) 656 return NULL; 657 658 item->size = *start++; 659 item->tag = *start++; 660 661 if ((end - start) < item->size) 662 return NULL; 663 664 item->data.longdata = start; 665 start += item->size; 666 return start; 667 } 668 669 item->format = HID_ITEM_FORMAT_SHORT; 670 item->size = b & 3; 671 672 switch (item->size) { 673 case 0: 674 return start; 675 676 case 1: 677 if ((end - start) < 1) 678 return NULL; 679 item->data.u8 = *start++; 680 return start; 681 682 case 2: 683 if ((end - start) < 2) 684 return NULL; 685 item->data.u16 = get_unaligned_le16(start); 686 start = (__u8 *)((__le16 *)start + 1); 687 return start; 688 689 case 3: 690 item->size++; 691 if ((end - start) < 4) 692 return NULL; 693 item->data.u32 = get_unaligned_le32(start); 694 start = (__u8 *)((__le32 *)start + 1); 695 return start; 696 } 697 698 return NULL; 699 } 700 701 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage) 702 { 703 struct hid_device *hid = parser->device; 704 705 if (usage == HID_DG_CONTACTID) 706 hid->group = HID_GROUP_MULTITOUCH; 707 } 708 709 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage) 710 { 711 if (usage == 0xff0000c5 && parser->global.report_count == 256 && 712 parser->global.report_size == 8) 713 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8; 714 } 715 716 static void hid_scan_collection(struct hid_parser *parser, unsigned type) 717 { 718 struct hid_device *hid = parser->device; 719 int i; 720 721 if (((parser->global.usage_page << 16) == HID_UP_SENSOR) && 722 type == HID_COLLECTION_PHYSICAL) 723 hid->group = HID_GROUP_SENSOR_HUB; 724 725 if (hid->vendor == USB_VENDOR_ID_MICROSOFT && 726 hid->product == USB_DEVICE_ID_MS_POWER_COVER && 727 hid->group == HID_GROUP_MULTITOUCH) 728 hid->group = HID_GROUP_GENERIC; 729 730 if ((parser->global.usage_page << 16) == HID_UP_GENDESK) 731 for (i = 0; i < parser->local.usage_index; i++) 732 if (parser->local.usage[i] == HID_GD_POINTER) 733 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER; 734 735 if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR) 736 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC; 737 } 738 739 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item) 740 { 741 __u32 data; 742 int i; 743 744 data = item_udata(item); 745 746 switch (item->tag) { 747 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION: 748 hid_scan_collection(parser, data & 0xff); 749 break; 750 case HID_MAIN_ITEM_TAG_END_COLLECTION: 751 break; 752 case HID_MAIN_ITEM_TAG_INPUT: 753 /* ignore constant inputs, they will be ignored by hid-input */ 754 if (data & HID_MAIN_ITEM_CONSTANT) 755 break; 756 for (i = 0; i < parser->local.usage_index; i++) 757 hid_scan_input_usage(parser, parser->local.usage[i]); 758 break; 759 case HID_MAIN_ITEM_TAG_OUTPUT: 760 break; 761 case HID_MAIN_ITEM_TAG_FEATURE: 762 for (i = 0; i < parser->local.usage_index; i++) 763 hid_scan_feature_usage(parser, parser->local.usage[i]); 764 break; 765 } 766 767 /* Reset the local parser environment */ 768 memset(&parser->local, 0, sizeof(parser->local)); 769 770 return 0; 771 } 772 773 /* 774 * Scan a report descriptor before the device is added to the bus. 775 * Sets device groups and other properties that determine what driver 776 * to load. 777 */ 778 static int hid_scan_report(struct hid_device *hid) 779 { 780 struct hid_parser *parser; 781 struct hid_item item; 782 __u8 *start = hid->dev_rdesc; 783 __u8 *end = start + hid->dev_rsize; 784 static int (*dispatch_type[])(struct hid_parser *parser, 785 struct hid_item *item) = { 786 hid_scan_main, 787 hid_parser_global, 788 hid_parser_local, 789 hid_parser_reserved 790 }; 791 792 parser = vzalloc(sizeof(struct hid_parser)); 793 if (!parser) 794 return -ENOMEM; 795 796 parser->device = hid; 797 hid->group = HID_GROUP_GENERIC; 798 799 /* 800 * The parsing is simpler than the one in hid_open_report() as we should 801 * be robust against hid errors. Those errors will be raised by 802 * hid_open_report() anyway. 803 */ 804 while ((start = fetch_item(start, end, &item)) != NULL) 805 dispatch_type[item.type](parser, &item); 806 807 /* 808 * Handle special flags set during scanning. 809 */ 810 if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) && 811 (hid->group == HID_GROUP_MULTITOUCH)) 812 hid->group = HID_GROUP_MULTITOUCH_WIN_8; 813 814 /* 815 * Vendor specific handlings 816 */ 817 switch (hid->vendor) { 818 case USB_VENDOR_ID_WACOM: 819 hid->group = HID_GROUP_WACOM; 820 break; 821 case USB_VENDOR_ID_SYNAPTICS: 822 if (hid->group == HID_GROUP_GENERIC) 823 if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC) 824 && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER)) 825 /* 826 * hid-rmi should take care of them, 827 * not hid-generic 828 */ 829 hid->group = HID_GROUP_RMI; 830 break; 831 } 832 833 vfree(parser); 834 return 0; 835 } 836 837 /** 838 * hid_parse_report - parse device report 839 * 840 * @device: hid device 841 * @start: report start 842 * @size: report size 843 * 844 * Allocate the device report as read by the bus driver. This function should 845 * only be called from parse() in ll drivers. 846 */ 847 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size) 848 { 849 hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL); 850 if (!hid->dev_rdesc) 851 return -ENOMEM; 852 hid->dev_rsize = size; 853 return 0; 854 } 855 EXPORT_SYMBOL_GPL(hid_parse_report); 856 857 static const char * const hid_report_names[] = { 858 "HID_INPUT_REPORT", 859 "HID_OUTPUT_REPORT", 860 "HID_FEATURE_REPORT", 861 }; 862 /** 863 * hid_validate_values - validate existing device report's value indexes 864 * 865 * @device: hid device 866 * @type: which report type to examine 867 * @id: which report ID to examine (0 for first) 868 * @field_index: which report field to examine 869 * @report_counts: expected number of values 870 * 871 * Validate the number of values in a given field of a given report, after 872 * parsing. 873 */ 874 struct hid_report *hid_validate_values(struct hid_device *hid, 875 unsigned int type, unsigned int id, 876 unsigned int field_index, 877 unsigned int report_counts) 878 { 879 struct hid_report *report; 880 881 if (type > HID_FEATURE_REPORT) { 882 hid_err(hid, "invalid HID report type %u\n", type); 883 return NULL; 884 } 885 886 if (id >= HID_MAX_IDS) { 887 hid_err(hid, "invalid HID report id %u\n", id); 888 return NULL; 889 } 890 891 /* 892 * Explicitly not using hid_get_report() here since it depends on 893 * ->numbered being checked, which may not always be the case when 894 * drivers go to access report values. 895 */ 896 if (id == 0) { 897 /* 898 * Validating on id 0 means we should examine the first 899 * report in the list. 900 */ 901 report = list_entry( 902 hid->report_enum[type].report_list.next, 903 struct hid_report, list); 904 } else { 905 report = hid->report_enum[type].report_id_hash[id]; 906 } 907 if (!report) { 908 hid_err(hid, "missing %s %u\n", hid_report_names[type], id); 909 return NULL; 910 } 911 if (report->maxfield <= field_index) { 912 hid_err(hid, "not enough fields in %s %u\n", 913 hid_report_names[type], id); 914 return NULL; 915 } 916 if (report->field[field_index]->report_count < report_counts) { 917 hid_err(hid, "not enough values in %s %u field %u\n", 918 hid_report_names[type], id, field_index); 919 return NULL; 920 } 921 return report; 922 } 923 EXPORT_SYMBOL_GPL(hid_validate_values); 924 925 /** 926 * hid_open_report - open a driver-specific device report 927 * 928 * @device: hid device 929 * 930 * Parse a report description into a hid_device structure. Reports are 931 * enumerated, fields are attached to these reports. 932 * 0 returned on success, otherwise nonzero error value. 933 * 934 * This function (or the equivalent hid_parse() macro) should only be 935 * called from probe() in drivers, before starting the device. 936 */ 937 int hid_open_report(struct hid_device *device) 938 { 939 struct hid_parser *parser; 940 struct hid_item item; 941 unsigned int size; 942 __u8 *start; 943 __u8 *buf; 944 __u8 *end; 945 int ret; 946 static int (*dispatch_type[])(struct hid_parser *parser, 947 struct hid_item *item) = { 948 hid_parser_main, 949 hid_parser_global, 950 hid_parser_local, 951 hid_parser_reserved 952 }; 953 954 if (WARN_ON(device->status & HID_STAT_PARSED)) 955 return -EBUSY; 956 957 start = device->dev_rdesc; 958 if (WARN_ON(!start)) 959 return -ENODEV; 960 size = device->dev_rsize; 961 962 buf = kmemdup(start, size, GFP_KERNEL); 963 if (buf == NULL) 964 return -ENOMEM; 965 966 if (device->driver->report_fixup) 967 start = device->driver->report_fixup(device, buf, &size); 968 else 969 start = buf; 970 971 start = kmemdup(start, size, GFP_KERNEL); 972 kfree(buf); 973 if (start == NULL) 974 return -ENOMEM; 975 976 device->rdesc = start; 977 device->rsize = size; 978 979 parser = vzalloc(sizeof(struct hid_parser)); 980 if (!parser) { 981 ret = -ENOMEM; 982 goto err; 983 } 984 985 parser->device = device; 986 987 end = start + size; 988 989 device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS, 990 sizeof(struct hid_collection), GFP_KERNEL); 991 if (!device->collection) { 992 ret = -ENOMEM; 993 goto err; 994 } 995 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS; 996 997 ret = -EINVAL; 998 while ((start = fetch_item(start, end, &item)) != NULL) { 999 1000 if (item.format != HID_ITEM_FORMAT_SHORT) { 1001 hid_err(device, "unexpected long global item\n"); 1002 goto err; 1003 } 1004 1005 if (dispatch_type[item.type](parser, &item)) { 1006 hid_err(device, "item %u %u %u %u parsing failed\n", 1007 item.format, (unsigned)item.size, 1008 (unsigned)item.type, (unsigned)item.tag); 1009 goto err; 1010 } 1011 1012 if (start == end) { 1013 if (parser->collection_stack_ptr) { 1014 hid_err(device, "unbalanced collection at end of report description\n"); 1015 goto err; 1016 } 1017 if (parser->local.delimiter_depth) { 1018 hid_err(device, "unbalanced delimiter at end of report description\n"); 1019 goto err; 1020 } 1021 vfree(parser); 1022 device->status |= HID_STAT_PARSED; 1023 return 0; 1024 } 1025 } 1026 1027 hid_err(device, "item fetching failed at offset %d\n", (int)(end - start)); 1028 err: 1029 vfree(parser); 1030 hid_close_report(device); 1031 return ret; 1032 } 1033 EXPORT_SYMBOL_GPL(hid_open_report); 1034 1035 /* 1036 * Convert a signed n-bit integer to signed 32-bit integer. Common 1037 * cases are done through the compiler, the screwed things has to be 1038 * done by hand. 1039 */ 1040 1041 static s32 snto32(__u32 value, unsigned n) 1042 { 1043 switch (n) { 1044 case 8: return ((__s8)value); 1045 case 16: return ((__s16)value); 1046 case 32: return ((__s32)value); 1047 } 1048 return value & (1 << (n - 1)) ? value | (~0U << n) : value; 1049 } 1050 1051 s32 hid_snto32(__u32 value, unsigned n) 1052 { 1053 return snto32(value, n); 1054 } 1055 EXPORT_SYMBOL_GPL(hid_snto32); 1056 1057 /* 1058 * Convert a signed 32-bit integer to a signed n-bit integer. 1059 */ 1060 1061 static u32 s32ton(__s32 value, unsigned n) 1062 { 1063 s32 a = value >> (n - 1); 1064 if (a && a != -1) 1065 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1; 1066 return value & ((1 << n) - 1); 1067 } 1068 1069 /* 1070 * Extract/implement a data field from/to a little endian report (bit array). 1071 * 1072 * Code sort-of follows HID spec: 1073 * http://www.usb.org/developers/hidpage/HID1_11.pdf 1074 * 1075 * While the USB HID spec allows unlimited length bit fields in "report 1076 * descriptors", most devices never use more than 16 bits. 1077 * One model of UPS is claimed to report "LINEV" as a 32-bit field. 1078 * Search linux-kernel and linux-usb-devel archives for "hid-core extract". 1079 */ 1080 1081 static u32 __extract(u8 *report, unsigned offset, int n) 1082 { 1083 unsigned int idx = offset / 8; 1084 unsigned int bit_nr = 0; 1085 unsigned int bit_shift = offset % 8; 1086 int bits_to_copy = 8 - bit_shift; 1087 u32 value = 0; 1088 u32 mask = n < 32 ? (1U << n) - 1 : ~0U; 1089 1090 while (n > 0) { 1091 value |= ((u32)report[idx] >> bit_shift) << bit_nr; 1092 n -= bits_to_copy; 1093 bit_nr += bits_to_copy; 1094 bits_to_copy = 8; 1095 bit_shift = 0; 1096 idx++; 1097 } 1098 1099 return value & mask; 1100 } 1101 1102 u32 hid_field_extract(const struct hid_device *hid, u8 *report, 1103 unsigned offset, unsigned n) 1104 { 1105 if (n > 32) { 1106 hid_warn(hid, "hid_field_extract() called with n (%d) > 32! (%s)\n", 1107 n, current->comm); 1108 n = 32; 1109 } 1110 1111 return __extract(report, offset, n); 1112 } 1113 EXPORT_SYMBOL_GPL(hid_field_extract); 1114 1115 /* 1116 * "implement" : set bits in a little endian bit stream. 1117 * Same concepts as "extract" (see comments above). 1118 * The data mangled in the bit stream remains in little endian 1119 * order the whole time. It make more sense to talk about 1120 * endianness of register values by considering a register 1121 * a "cached" copy of the little endian bit stream. 1122 */ 1123 1124 static void __implement(u8 *report, unsigned offset, int n, u32 value) 1125 { 1126 unsigned int idx = offset / 8; 1127 unsigned int bit_shift = offset % 8; 1128 int bits_to_set = 8 - bit_shift; 1129 1130 while (n - bits_to_set >= 0) { 1131 report[idx] &= ~(0xff << bit_shift); 1132 report[idx] |= value << bit_shift; 1133 value >>= bits_to_set; 1134 n -= bits_to_set; 1135 bits_to_set = 8; 1136 bit_shift = 0; 1137 idx++; 1138 } 1139 1140 /* last nibble */ 1141 if (n) { 1142 u8 bit_mask = ((1U << n) - 1); 1143 report[idx] &= ~(bit_mask << bit_shift); 1144 report[idx] |= value << bit_shift; 1145 } 1146 } 1147 1148 static void implement(const struct hid_device *hid, u8 *report, 1149 unsigned offset, unsigned n, u32 value) 1150 { 1151 if (unlikely(n > 32)) { 1152 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n", 1153 __func__, n, current->comm); 1154 n = 32; 1155 } else if (n < 32) { 1156 u32 m = (1U << n) - 1; 1157 1158 if (unlikely(value > m)) { 1159 hid_warn(hid, 1160 "%s() called with too large value %d (n: %d)! (%s)\n", 1161 __func__, value, n, current->comm); 1162 WARN_ON(1); 1163 value &= m; 1164 } 1165 } 1166 1167 __implement(report, offset, n, value); 1168 } 1169 1170 /* 1171 * Search an array for a value. 1172 */ 1173 1174 static int search(__s32 *array, __s32 value, unsigned n) 1175 { 1176 while (n--) { 1177 if (*array++ == value) 1178 return 0; 1179 } 1180 return -1; 1181 } 1182 1183 /** 1184 * hid_match_report - check if driver's raw_event should be called 1185 * 1186 * @hid: hid device 1187 * @report_type: type to match against 1188 * 1189 * compare hid->driver->report_table->report_type to report->type 1190 */ 1191 static int hid_match_report(struct hid_device *hid, struct hid_report *report) 1192 { 1193 const struct hid_report_id *id = hid->driver->report_table; 1194 1195 if (!id) /* NULL means all */ 1196 return 1; 1197 1198 for (; id->report_type != HID_TERMINATOR; id++) 1199 if (id->report_type == HID_ANY_ID || 1200 id->report_type == report->type) 1201 return 1; 1202 return 0; 1203 } 1204 1205 /** 1206 * hid_match_usage - check if driver's event should be called 1207 * 1208 * @hid: hid device 1209 * @usage: usage to match against 1210 * 1211 * compare hid->driver->usage_table->usage_{type,code} to 1212 * usage->usage_{type,code} 1213 */ 1214 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage) 1215 { 1216 const struct hid_usage_id *id = hid->driver->usage_table; 1217 1218 if (!id) /* NULL means all */ 1219 return 1; 1220 1221 for (; id->usage_type != HID_ANY_ID - 1; id++) 1222 if ((id->usage_hid == HID_ANY_ID || 1223 id->usage_hid == usage->hid) && 1224 (id->usage_type == HID_ANY_ID || 1225 id->usage_type == usage->type) && 1226 (id->usage_code == HID_ANY_ID || 1227 id->usage_code == usage->code)) 1228 return 1; 1229 return 0; 1230 } 1231 1232 static void hid_process_event(struct hid_device *hid, struct hid_field *field, 1233 struct hid_usage *usage, __s32 value, int interrupt) 1234 { 1235 struct hid_driver *hdrv = hid->driver; 1236 int ret; 1237 1238 if (!list_empty(&hid->debug_list)) 1239 hid_dump_input(hid, usage, value); 1240 1241 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) { 1242 ret = hdrv->event(hid, field, usage, value); 1243 if (ret != 0) { 1244 if (ret < 0) 1245 hid_err(hid, "%s's event failed with %d\n", 1246 hdrv->name, ret); 1247 return; 1248 } 1249 } 1250 1251 if (hid->claimed & HID_CLAIMED_INPUT) 1252 hidinput_hid_event(hid, field, usage, value); 1253 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event) 1254 hid->hiddev_hid_event(hid, field, usage, value); 1255 } 1256 1257 /* 1258 * Analyse a received field, and fetch the data from it. The field 1259 * content is stored for next report processing (we do differential 1260 * reporting to the layer). 1261 */ 1262 1263 static void hid_input_field(struct hid_device *hid, struct hid_field *field, 1264 __u8 *data, int interrupt) 1265 { 1266 unsigned n; 1267 unsigned count = field->report_count; 1268 unsigned offset = field->report_offset; 1269 unsigned size = field->report_size; 1270 __s32 min = field->logical_minimum; 1271 __s32 max = field->logical_maximum; 1272 __s32 *value; 1273 1274 value = kmalloc(sizeof(__s32) * count, GFP_ATOMIC); 1275 if (!value) 1276 return; 1277 1278 for (n = 0; n < count; n++) { 1279 1280 value[n] = min < 0 ? 1281 snto32(hid_field_extract(hid, data, offset + n * size, 1282 size), size) : 1283 hid_field_extract(hid, data, offset + n * size, size); 1284 1285 /* Ignore report if ErrorRollOver */ 1286 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) && 1287 value[n] >= min && value[n] <= max && 1288 value[n] - min < field->maxusage && 1289 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) 1290 goto exit; 1291 } 1292 1293 for (n = 0; n < count; n++) { 1294 1295 if (HID_MAIN_ITEM_VARIABLE & field->flags) { 1296 hid_process_event(hid, field, &field->usage[n], value[n], interrupt); 1297 continue; 1298 } 1299 1300 if (field->value[n] >= min && field->value[n] <= max 1301 && field->value[n] - min < field->maxusage 1302 && field->usage[field->value[n] - min].hid 1303 && search(value, field->value[n], count)) 1304 hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt); 1305 1306 if (value[n] >= min && value[n] <= max 1307 && value[n] - min < field->maxusage 1308 && field->usage[value[n] - min].hid 1309 && search(field->value, value[n], count)) 1310 hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt); 1311 } 1312 1313 memcpy(field->value, value, count * sizeof(__s32)); 1314 exit: 1315 kfree(value); 1316 } 1317 1318 /* 1319 * Output the field into the report. 1320 */ 1321 1322 static void hid_output_field(const struct hid_device *hid, 1323 struct hid_field *field, __u8 *data) 1324 { 1325 unsigned count = field->report_count; 1326 unsigned offset = field->report_offset; 1327 unsigned size = field->report_size; 1328 unsigned n; 1329 1330 for (n = 0; n < count; n++) { 1331 if (field->logical_minimum < 0) /* signed values */ 1332 implement(hid, data, offset + n * size, size, 1333 s32ton(field->value[n], size)); 1334 else /* unsigned values */ 1335 implement(hid, data, offset + n * size, size, 1336 field->value[n]); 1337 } 1338 } 1339 1340 /* 1341 * Create a report. 'data' has to be allocated using 1342 * hid_alloc_report_buf() so that it has proper size. 1343 */ 1344 1345 void hid_output_report(struct hid_report *report, __u8 *data) 1346 { 1347 unsigned n; 1348 1349 if (report->id > 0) 1350 *data++ = report->id; 1351 1352 memset(data, 0, ((report->size - 1) >> 3) + 1); 1353 for (n = 0; n < report->maxfield; n++) 1354 hid_output_field(report->device, report->field[n], data); 1355 } 1356 EXPORT_SYMBOL_GPL(hid_output_report); 1357 1358 /* 1359 * Allocator for buffer that is going to be passed to hid_output_report() 1360 */ 1361 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags) 1362 { 1363 /* 1364 * 7 extra bytes are necessary to achieve proper functionality 1365 * of implement() working on 8 byte chunks 1366 */ 1367 1368 u32 len = hid_report_len(report) + 7; 1369 1370 return kmalloc(len, flags); 1371 } 1372 EXPORT_SYMBOL_GPL(hid_alloc_report_buf); 1373 1374 /* 1375 * Set a field value. The report this field belongs to has to be 1376 * created and transferred to the device, to set this value in the 1377 * device. 1378 */ 1379 1380 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value) 1381 { 1382 unsigned size; 1383 1384 if (!field) 1385 return -1; 1386 1387 size = field->report_size; 1388 1389 hid_dump_input(field->report->device, field->usage + offset, value); 1390 1391 if (offset >= field->report_count) { 1392 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n", 1393 offset, field->report_count); 1394 return -1; 1395 } 1396 if (field->logical_minimum < 0) { 1397 if (value != snto32(s32ton(value, size), size)) { 1398 hid_err(field->report->device, "value %d is out of range\n", value); 1399 return -1; 1400 } 1401 } 1402 field->value[offset] = value; 1403 return 0; 1404 } 1405 EXPORT_SYMBOL_GPL(hid_set_field); 1406 1407 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum, 1408 const u8 *data) 1409 { 1410 struct hid_report *report; 1411 unsigned int n = 0; /* Normally report number is 0 */ 1412 1413 /* Device uses numbered reports, data[0] is report number */ 1414 if (report_enum->numbered) 1415 n = *data; 1416 1417 report = report_enum->report_id_hash[n]; 1418 if (report == NULL) 1419 dbg_hid("undefined report_id %u received\n", n); 1420 1421 return report; 1422 } 1423 1424 /* 1425 * Implement a generic .request() callback, using .raw_request() 1426 * DO NOT USE in hid drivers directly, but through hid_hw_request instead. 1427 */ 1428 void __hid_request(struct hid_device *hid, struct hid_report *report, 1429 int reqtype) 1430 { 1431 char *buf; 1432 int ret; 1433 u32 len; 1434 1435 buf = hid_alloc_report_buf(report, GFP_KERNEL); 1436 if (!buf) 1437 return; 1438 1439 len = hid_report_len(report); 1440 1441 if (reqtype == HID_REQ_SET_REPORT) 1442 hid_output_report(report, buf); 1443 1444 ret = hid->ll_driver->raw_request(hid, report->id, buf, len, 1445 report->type, reqtype); 1446 if (ret < 0) { 1447 dbg_hid("unable to complete request: %d\n", ret); 1448 goto out; 1449 } 1450 1451 if (reqtype == HID_REQ_GET_REPORT) 1452 hid_input_report(hid, report->type, buf, ret, 0); 1453 1454 out: 1455 kfree(buf); 1456 } 1457 EXPORT_SYMBOL_GPL(__hid_request); 1458 1459 int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size, 1460 int interrupt) 1461 { 1462 struct hid_report_enum *report_enum = hid->report_enum + type; 1463 struct hid_report *report; 1464 struct hid_driver *hdrv; 1465 unsigned int a; 1466 u32 rsize, csize = size; 1467 u8 *cdata = data; 1468 int ret = 0; 1469 1470 report = hid_get_report(report_enum, data); 1471 if (!report) 1472 goto out; 1473 1474 if (report_enum->numbered) { 1475 cdata++; 1476 csize--; 1477 } 1478 1479 rsize = ((report->size - 1) >> 3) + 1; 1480 1481 if (rsize > HID_MAX_BUFFER_SIZE) 1482 rsize = HID_MAX_BUFFER_SIZE; 1483 1484 if (csize < rsize) { 1485 dbg_hid("report %d is too short, (%d < %d)\n", report->id, 1486 csize, rsize); 1487 memset(cdata + csize, 0, rsize - csize); 1488 } 1489 1490 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event) 1491 hid->hiddev_report_event(hid, report); 1492 if (hid->claimed & HID_CLAIMED_HIDRAW) { 1493 ret = hidraw_report_event(hid, data, size); 1494 if (ret) 1495 goto out; 1496 } 1497 1498 if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) { 1499 for (a = 0; a < report->maxfield; a++) 1500 hid_input_field(hid, report->field[a], cdata, interrupt); 1501 hdrv = hid->driver; 1502 if (hdrv && hdrv->report) 1503 hdrv->report(hid, report); 1504 } 1505 1506 if (hid->claimed & HID_CLAIMED_INPUT) 1507 hidinput_report_event(hid, report); 1508 out: 1509 return ret; 1510 } 1511 EXPORT_SYMBOL_GPL(hid_report_raw_event); 1512 1513 /** 1514 * hid_input_report - report data from lower layer (usb, bt...) 1515 * 1516 * @hid: hid device 1517 * @type: HID report type (HID_*_REPORT) 1518 * @data: report contents 1519 * @size: size of data parameter 1520 * @interrupt: distinguish between interrupt and control transfers 1521 * 1522 * This is data entry for lower layers. 1523 */ 1524 int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt) 1525 { 1526 struct hid_report_enum *report_enum; 1527 struct hid_driver *hdrv; 1528 struct hid_report *report; 1529 int ret = 0; 1530 1531 if (!hid) 1532 return -ENODEV; 1533 1534 if (down_trylock(&hid->driver_input_lock)) 1535 return -EBUSY; 1536 1537 if (!hid->driver) { 1538 ret = -ENODEV; 1539 goto unlock; 1540 } 1541 report_enum = hid->report_enum + type; 1542 hdrv = hid->driver; 1543 1544 if (!size) { 1545 dbg_hid("empty report\n"); 1546 ret = -1; 1547 goto unlock; 1548 } 1549 1550 /* Avoid unnecessary overhead if debugfs is disabled */ 1551 if (!list_empty(&hid->debug_list)) 1552 hid_dump_report(hid, type, data, size); 1553 1554 report = hid_get_report(report_enum, data); 1555 1556 if (!report) { 1557 ret = -1; 1558 goto unlock; 1559 } 1560 1561 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) { 1562 ret = hdrv->raw_event(hid, report, data, size); 1563 if (ret < 0) 1564 goto unlock; 1565 } 1566 1567 ret = hid_report_raw_event(hid, type, data, size, interrupt); 1568 1569 unlock: 1570 up(&hid->driver_input_lock); 1571 return ret; 1572 } 1573 EXPORT_SYMBOL_GPL(hid_input_report); 1574 1575 bool hid_match_one_id(const struct hid_device *hdev, 1576 const struct hid_device_id *id) 1577 { 1578 return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) && 1579 (id->group == HID_GROUP_ANY || id->group == hdev->group) && 1580 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) && 1581 (id->product == HID_ANY_ID || id->product == hdev->product); 1582 } 1583 1584 const struct hid_device_id *hid_match_id(const struct hid_device *hdev, 1585 const struct hid_device_id *id) 1586 { 1587 for (; id->bus; id++) 1588 if (hid_match_one_id(hdev, id)) 1589 return id; 1590 1591 return NULL; 1592 } 1593 1594 static const struct hid_device_id hid_hiddev_list[] = { 1595 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) }, 1596 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) }, 1597 { } 1598 }; 1599 1600 static bool hid_hiddev(struct hid_device *hdev) 1601 { 1602 return !!hid_match_id(hdev, hid_hiddev_list); 1603 } 1604 1605 1606 static ssize_t 1607 read_report_descriptor(struct file *filp, struct kobject *kobj, 1608 struct bin_attribute *attr, 1609 char *buf, loff_t off, size_t count) 1610 { 1611 struct device *dev = kobj_to_dev(kobj); 1612 struct hid_device *hdev = to_hid_device(dev); 1613 1614 if (off >= hdev->rsize) 1615 return 0; 1616 1617 if (off + count > hdev->rsize) 1618 count = hdev->rsize - off; 1619 1620 memcpy(buf, hdev->rdesc + off, count); 1621 1622 return count; 1623 } 1624 1625 static ssize_t 1626 show_country(struct device *dev, struct device_attribute *attr, 1627 char *buf) 1628 { 1629 struct hid_device *hdev = to_hid_device(dev); 1630 1631 return sprintf(buf, "%02x\n", hdev->country & 0xff); 1632 } 1633 1634 static struct bin_attribute dev_bin_attr_report_desc = { 1635 .attr = { .name = "report_descriptor", .mode = 0444 }, 1636 .read = read_report_descriptor, 1637 .size = HID_MAX_DESCRIPTOR_SIZE, 1638 }; 1639 1640 static const struct device_attribute dev_attr_country = { 1641 .attr = { .name = "country", .mode = 0444 }, 1642 .show = show_country, 1643 }; 1644 1645 int hid_connect(struct hid_device *hdev, unsigned int connect_mask) 1646 { 1647 static const char *types[] = { "Device", "Pointer", "Mouse", "Device", 1648 "Joystick", "Gamepad", "Keyboard", "Keypad", 1649 "Multi-Axis Controller" 1650 }; 1651 const char *type, *bus; 1652 char buf[64] = ""; 1653 unsigned int i; 1654 int len; 1655 int ret; 1656 1657 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE) 1658 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV); 1659 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE) 1660 connect_mask |= HID_CONNECT_HIDINPUT_FORCE; 1661 if (hdev->bus != BUS_USB) 1662 connect_mask &= ~HID_CONNECT_HIDDEV; 1663 if (hid_hiddev(hdev)) 1664 connect_mask |= HID_CONNECT_HIDDEV_FORCE; 1665 1666 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev, 1667 connect_mask & HID_CONNECT_HIDINPUT_FORCE)) 1668 hdev->claimed |= HID_CLAIMED_INPUT; 1669 1670 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect && 1671 !hdev->hiddev_connect(hdev, 1672 connect_mask & HID_CONNECT_HIDDEV_FORCE)) 1673 hdev->claimed |= HID_CLAIMED_HIDDEV; 1674 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev)) 1675 hdev->claimed |= HID_CLAIMED_HIDRAW; 1676 1677 if (connect_mask & HID_CONNECT_DRIVER) 1678 hdev->claimed |= HID_CLAIMED_DRIVER; 1679 1680 /* Drivers with the ->raw_event callback set are not required to connect 1681 * to any other listener. */ 1682 if (!hdev->claimed && !hdev->driver->raw_event) { 1683 hid_err(hdev, "device has no listeners, quitting\n"); 1684 return -ENODEV; 1685 } 1686 1687 if ((hdev->claimed & HID_CLAIMED_INPUT) && 1688 (connect_mask & HID_CONNECT_FF) && hdev->ff_init) 1689 hdev->ff_init(hdev); 1690 1691 len = 0; 1692 if (hdev->claimed & HID_CLAIMED_INPUT) 1693 len += sprintf(buf + len, "input"); 1694 if (hdev->claimed & HID_CLAIMED_HIDDEV) 1695 len += sprintf(buf + len, "%shiddev%d", len ? "," : "", 1696 ((struct hiddev *)hdev->hiddev)->minor); 1697 if (hdev->claimed & HID_CLAIMED_HIDRAW) 1698 len += sprintf(buf + len, "%shidraw%d", len ? "," : "", 1699 ((struct hidraw *)hdev->hidraw)->minor); 1700 1701 type = "Device"; 1702 for (i = 0; i < hdev->maxcollection; i++) { 1703 struct hid_collection *col = &hdev->collection[i]; 1704 if (col->type == HID_COLLECTION_APPLICATION && 1705 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK && 1706 (col->usage & 0xffff) < ARRAY_SIZE(types)) { 1707 type = types[col->usage & 0xffff]; 1708 break; 1709 } 1710 } 1711 1712 switch (hdev->bus) { 1713 case BUS_USB: 1714 bus = "USB"; 1715 break; 1716 case BUS_BLUETOOTH: 1717 bus = "BLUETOOTH"; 1718 break; 1719 case BUS_I2C: 1720 bus = "I2C"; 1721 break; 1722 default: 1723 bus = "<UNKNOWN>"; 1724 } 1725 1726 ret = device_create_file(&hdev->dev, &dev_attr_country); 1727 if (ret) 1728 hid_warn(hdev, 1729 "can't create sysfs country code attribute err: %d\n", ret); 1730 1731 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n", 1732 buf, bus, hdev->version >> 8, hdev->version & 0xff, 1733 type, hdev->name, hdev->phys); 1734 1735 return 0; 1736 } 1737 EXPORT_SYMBOL_GPL(hid_connect); 1738 1739 void hid_disconnect(struct hid_device *hdev) 1740 { 1741 device_remove_file(&hdev->dev, &dev_attr_country); 1742 if (hdev->claimed & HID_CLAIMED_INPUT) 1743 hidinput_disconnect(hdev); 1744 if (hdev->claimed & HID_CLAIMED_HIDDEV) 1745 hdev->hiddev_disconnect(hdev); 1746 if (hdev->claimed & HID_CLAIMED_HIDRAW) 1747 hidraw_disconnect(hdev); 1748 hdev->claimed = 0; 1749 } 1750 EXPORT_SYMBOL_GPL(hid_disconnect); 1751 1752 /** 1753 * hid_hw_start - start underlying HW 1754 * @hdev: hid device 1755 * @connect_mask: which outputs to connect, see HID_CONNECT_* 1756 * 1757 * Call this in probe function *after* hid_parse. This will setup HW 1758 * buffers and start the device (if not defeirred to device open). 1759 * hid_hw_stop must be called if this was successful. 1760 */ 1761 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask) 1762 { 1763 int error; 1764 1765 error = hdev->ll_driver->start(hdev); 1766 if (error) 1767 return error; 1768 1769 if (connect_mask) { 1770 error = hid_connect(hdev, connect_mask); 1771 if (error) { 1772 hdev->ll_driver->stop(hdev); 1773 return error; 1774 } 1775 } 1776 1777 return 0; 1778 } 1779 EXPORT_SYMBOL_GPL(hid_hw_start); 1780 1781 /** 1782 * hid_hw_stop - stop underlying HW 1783 * @hdev: hid device 1784 * 1785 * This is usually called from remove function or from probe when something 1786 * failed and hid_hw_start was called already. 1787 */ 1788 void hid_hw_stop(struct hid_device *hdev) 1789 { 1790 hid_disconnect(hdev); 1791 hdev->ll_driver->stop(hdev); 1792 } 1793 EXPORT_SYMBOL_GPL(hid_hw_stop); 1794 1795 /** 1796 * hid_hw_open - signal underlying HW to start delivering events 1797 * @hdev: hid device 1798 * 1799 * Tell underlying HW to start delivering events from the device. 1800 * This function should be called sometime after successful call 1801 * to hid_hiw_start(). 1802 */ 1803 int hid_hw_open(struct hid_device *hdev) 1804 { 1805 int ret; 1806 1807 ret = mutex_lock_killable(&hdev->ll_open_lock); 1808 if (ret) 1809 return ret; 1810 1811 if (!hdev->ll_open_count++) { 1812 ret = hdev->ll_driver->open(hdev); 1813 if (ret) 1814 hdev->ll_open_count--; 1815 } 1816 1817 mutex_unlock(&hdev->ll_open_lock); 1818 return ret; 1819 } 1820 EXPORT_SYMBOL_GPL(hid_hw_open); 1821 1822 /** 1823 * hid_hw_close - signal underlaying HW to stop delivering events 1824 * 1825 * @hdev: hid device 1826 * 1827 * This function indicates that we are not interested in the events 1828 * from this device anymore. Delivery of events may or may not stop, 1829 * depending on the number of users still outstanding. 1830 */ 1831 void hid_hw_close(struct hid_device *hdev) 1832 { 1833 mutex_lock(&hdev->ll_open_lock); 1834 if (!--hdev->ll_open_count) 1835 hdev->ll_driver->close(hdev); 1836 mutex_unlock(&hdev->ll_open_lock); 1837 } 1838 EXPORT_SYMBOL_GPL(hid_hw_close); 1839 1840 struct hid_dynid { 1841 struct list_head list; 1842 struct hid_device_id id; 1843 }; 1844 1845 /** 1846 * store_new_id - add a new HID device ID to this driver and re-probe devices 1847 * @driver: target device driver 1848 * @buf: buffer for scanning device ID data 1849 * @count: input size 1850 * 1851 * Adds a new dynamic hid device ID to this driver, 1852 * and causes the driver to probe for all devices again. 1853 */ 1854 static ssize_t new_id_store(struct device_driver *drv, const char *buf, 1855 size_t count) 1856 { 1857 struct hid_driver *hdrv = to_hid_driver(drv); 1858 struct hid_dynid *dynid; 1859 __u32 bus, vendor, product; 1860 unsigned long driver_data = 0; 1861 int ret; 1862 1863 ret = sscanf(buf, "%x %x %x %lx", 1864 &bus, &vendor, &product, &driver_data); 1865 if (ret < 3) 1866 return -EINVAL; 1867 1868 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 1869 if (!dynid) 1870 return -ENOMEM; 1871 1872 dynid->id.bus = bus; 1873 dynid->id.group = HID_GROUP_ANY; 1874 dynid->id.vendor = vendor; 1875 dynid->id.product = product; 1876 dynid->id.driver_data = driver_data; 1877 1878 spin_lock(&hdrv->dyn_lock); 1879 list_add_tail(&dynid->list, &hdrv->dyn_list); 1880 spin_unlock(&hdrv->dyn_lock); 1881 1882 ret = driver_attach(&hdrv->driver); 1883 1884 return ret ? : count; 1885 } 1886 static DRIVER_ATTR_WO(new_id); 1887 1888 static struct attribute *hid_drv_attrs[] = { 1889 &driver_attr_new_id.attr, 1890 NULL, 1891 }; 1892 ATTRIBUTE_GROUPS(hid_drv); 1893 1894 static void hid_free_dynids(struct hid_driver *hdrv) 1895 { 1896 struct hid_dynid *dynid, *n; 1897 1898 spin_lock(&hdrv->dyn_lock); 1899 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) { 1900 list_del(&dynid->list); 1901 kfree(dynid); 1902 } 1903 spin_unlock(&hdrv->dyn_lock); 1904 } 1905 1906 const struct hid_device_id *hid_match_device(struct hid_device *hdev, 1907 struct hid_driver *hdrv) 1908 { 1909 struct hid_dynid *dynid; 1910 1911 spin_lock(&hdrv->dyn_lock); 1912 list_for_each_entry(dynid, &hdrv->dyn_list, list) { 1913 if (hid_match_one_id(hdev, &dynid->id)) { 1914 spin_unlock(&hdrv->dyn_lock); 1915 return &dynid->id; 1916 } 1917 } 1918 spin_unlock(&hdrv->dyn_lock); 1919 1920 return hid_match_id(hdev, hdrv->id_table); 1921 } 1922 EXPORT_SYMBOL_GPL(hid_match_device); 1923 1924 static int hid_bus_match(struct device *dev, struct device_driver *drv) 1925 { 1926 struct hid_driver *hdrv = to_hid_driver(drv); 1927 struct hid_device *hdev = to_hid_device(dev); 1928 1929 return hid_match_device(hdev, hdrv) != NULL; 1930 } 1931 1932 static int hid_device_probe(struct device *dev) 1933 { 1934 struct hid_driver *hdrv = to_hid_driver(dev->driver); 1935 struct hid_device *hdev = to_hid_device(dev); 1936 const struct hid_device_id *id; 1937 int ret = 0; 1938 1939 if (down_interruptible(&hdev->driver_input_lock)) { 1940 ret = -EINTR; 1941 goto end; 1942 } 1943 hdev->io_started = false; 1944 1945 if (!hdev->driver) { 1946 id = hid_match_device(hdev, hdrv); 1947 if (id == NULL) { 1948 ret = -ENODEV; 1949 goto unlock; 1950 } 1951 1952 if (hdrv->match) { 1953 if (!hdrv->match(hdev, hid_ignore_special_drivers)) { 1954 ret = -ENODEV; 1955 goto unlock; 1956 } 1957 } else { 1958 /* 1959 * hid-generic implements .match(), so if 1960 * hid_ignore_special_drivers is set, we can safely 1961 * return. 1962 */ 1963 if (hid_ignore_special_drivers) { 1964 ret = -ENODEV; 1965 goto unlock; 1966 } 1967 } 1968 1969 /* reset the quirks that has been previously set */ 1970 hdev->quirks = hid_lookup_quirk(hdev); 1971 hdev->driver = hdrv; 1972 if (hdrv->probe) { 1973 ret = hdrv->probe(hdev, id); 1974 } else { /* default probe */ 1975 ret = hid_open_report(hdev); 1976 if (!ret) 1977 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT); 1978 } 1979 if (ret) { 1980 hid_close_report(hdev); 1981 hdev->driver = NULL; 1982 } 1983 } 1984 unlock: 1985 if (!hdev->io_started) 1986 up(&hdev->driver_input_lock); 1987 end: 1988 return ret; 1989 } 1990 1991 static int hid_device_remove(struct device *dev) 1992 { 1993 struct hid_device *hdev = to_hid_device(dev); 1994 struct hid_driver *hdrv; 1995 int ret = 0; 1996 1997 if (down_interruptible(&hdev->driver_input_lock)) { 1998 ret = -EINTR; 1999 goto end; 2000 } 2001 hdev->io_started = false; 2002 2003 hdrv = hdev->driver; 2004 if (hdrv) { 2005 if (hdrv->remove) 2006 hdrv->remove(hdev); 2007 else /* default remove */ 2008 hid_hw_stop(hdev); 2009 hid_close_report(hdev); 2010 hdev->driver = NULL; 2011 } 2012 2013 if (!hdev->io_started) 2014 up(&hdev->driver_input_lock); 2015 end: 2016 return ret; 2017 } 2018 2019 static ssize_t modalias_show(struct device *dev, struct device_attribute *a, 2020 char *buf) 2021 { 2022 struct hid_device *hdev = container_of(dev, struct hid_device, dev); 2023 2024 return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n", 2025 hdev->bus, hdev->group, hdev->vendor, hdev->product); 2026 } 2027 static DEVICE_ATTR_RO(modalias); 2028 2029 static struct attribute *hid_dev_attrs[] = { 2030 &dev_attr_modalias.attr, 2031 NULL, 2032 }; 2033 static struct bin_attribute *hid_dev_bin_attrs[] = { 2034 &dev_bin_attr_report_desc, 2035 NULL 2036 }; 2037 static const struct attribute_group hid_dev_group = { 2038 .attrs = hid_dev_attrs, 2039 .bin_attrs = hid_dev_bin_attrs, 2040 }; 2041 __ATTRIBUTE_GROUPS(hid_dev); 2042 2043 static int hid_uevent(struct device *dev, struct kobj_uevent_env *env) 2044 { 2045 struct hid_device *hdev = to_hid_device(dev); 2046 2047 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X", 2048 hdev->bus, hdev->vendor, hdev->product)) 2049 return -ENOMEM; 2050 2051 if (add_uevent_var(env, "HID_NAME=%s", hdev->name)) 2052 return -ENOMEM; 2053 2054 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys)) 2055 return -ENOMEM; 2056 2057 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq)) 2058 return -ENOMEM; 2059 2060 if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X", 2061 hdev->bus, hdev->group, hdev->vendor, hdev->product)) 2062 return -ENOMEM; 2063 2064 return 0; 2065 } 2066 2067 struct bus_type hid_bus_type = { 2068 .name = "hid", 2069 .dev_groups = hid_dev_groups, 2070 .drv_groups = hid_drv_groups, 2071 .match = hid_bus_match, 2072 .probe = hid_device_probe, 2073 .remove = hid_device_remove, 2074 .uevent = hid_uevent, 2075 }; 2076 EXPORT_SYMBOL(hid_bus_type); 2077 2078 int hid_add_device(struct hid_device *hdev) 2079 { 2080 static atomic_t id = ATOMIC_INIT(0); 2081 int ret; 2082 2083 if (WARN_ON(hdev->status & HID_STAT_ADDED)) 2084 return -EBUSY; 2085 2086 hdev->quirks = hid_lookup_quirk(hdev); 2087 2088 /* we need to kill them here, otherwise they will stay allocated to 2089 * wait for coming driver */ 2090 if (hid_ignore(hdev)) 2091 return -ENODEV; 2092 2093 /* 2094 * Check for the mandatory transport channel. 2095 */ 2096 if (!hdev->ll_driver->raw_request) { 2097 hid_err(hdev, "transport driver missing .raw_request()\n"); 2098 return -EINVAL; 2099 } 2100 2101 /* 2102 * Read the device report descriptor once and use as template 2103 * for the driver-specific modifications. 2104 */ 2105 ret = hdev->ll_driver->parse(hdev); 2106 if (ret) 2107 return ret; 2108 if (!hdev->dev_rdesc) 2109 return -ENODEV; 2110 2111 /* 2112 * Scan generic devices for group information 2113 */ 2114 if (hid_ignore_special_drivers) { 2115 hdev->group = HID_GROUP_GENERIC; 2116 } else if (!hdev->group && 2117 !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) { 2118 ret = hid_scan_report(hdev); 2119 if (ret) 2120 hid_warn(hdev, "bad device descriptor (%d)\n", ret); 2121 } 2122 2123 /* XXX hack, any other cleaner solution after the driver core 2124 * is converted to allow more than 20 bytes as the device name? */ 2125 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus, 2126 hdev->vendor, hdev->product, atomic_inc_return(&id)); 2127 2128 hid_debug_register(hdev, dev_name(&hdev->dev)); 2129 ret = device_add(&hdev->dev); 2130 if (!ret) 2131 hdev->status |= HID_STAT_ADDED; 2132 else 2133 hid_debug_unregister(hdev); 2134 2135 return ret; 2136 } 2137 EXPORT_SYMBOL_GPL(hid_add_device); 2138 2139 /** 2140 * hid_allocate_device - allocate new hid device descriptor 2141 * 2142 * Allocate and initialize hid device, so that hid_destroy_device might be 2143 * used to free it. 2144 * 2145 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded 2146 * error value. 2147 */ 2148 struct hid_device *hid_allocate_device(void) 2149 { 2150 struct hid_device *hdev; 2151 int ret = -ENOMEM; 2152 2153 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL); 2154 if (hdev == NULL) 2155 return ERR_PTR(ret); 2156 2157 device_initialize(&hdev->dev); 2158 hdev->dev.release = hid_device_release; 2159 hdev->dev.bus = &hid_bus_type; 2160 device_enable_async_suspend(&hdev->dev); 2161 2162 hid_close_report(hdev); 2163 2164 init_waitqueue_head(&hdev->debug_wait); 2165 INIT_LIST_HEAD(&hdev->debug_list); 2166 spin_lock_init(&hdev->debug_list_lock); 2167 sema_init(&hdev->driver_input_lock, 1); 2168 mutex_init(&hdev->ll_open_lock); 2169 2170 return hdev; 2171 } 2172 EXPORT_SYMBOL_GPL(hid_allocate_device); 2173 2174 static void hid_remove_device(struct hid_device *hdev) 2175 { 2176 if (hdev->status & HID_STAT_ADDED) { 2177 device_del(&hdev->dev); 2178 hid_debug_unregister(hdev); 2179 hdev->status &= ~HID_STAT_ADDED; 2180 } 2181 kfree(hdev->dev_rdesc); 2182 hdev->dev_rdesc = NULL; 2183 hdev->dev_rsize = 0; 2184 } 2185 2186 /** 2187 * hid_destroy_device - free previously allocated device 2188 * 2189 * @hdev: hid device 2190 * 2191 * If you allocate hid_device through hid_allocate_device, you should ever 2192 * free by this function. 2193 */ 2194 void hid_destroy_device(struct hid_device *hdev) 2195 { 2196 hid_remove_device(hdev); 2197 put_device(&hdev->dev); 2198 } 2199 EXPORT_SYMBOL_GPL(hid_destroy_device); 2200 2201 2202 static int __hid_bus_reprobe_drivers(struct device *dev, void *data) 2203 { 2204 struct hid_driver *hdrv = data; 2205 struct hid_device *hdev = to_hid_device(dev); 2206 2207 if (hdev->driver == hdrv && 2208 !hdrv->match(hdev, hid_ignore_special_drivers)) 2209 return device_reprobe(dev); 2210 2211 return 0; 2212 } 2213 2214 static int __hid_bus_driver_added(struct device_driver *drv, void *data) 2215 { 2216 struct hid_driver *hdrv = to_hid_driver(drv); 2217 2218 if (hdrv->match) { 2219 bus_for_each_dev(&hid_bus_type, NULL, hdrv, 2220 __hid_bus_reprobe_drivers); 2221 } 2222 2223 return 0; 2224 } 2225 2226 static int __bus_removed_driver(struct device_driver *drv, void *data) 2227 { 2228 return bus_rescan_devices(&hid_bus_type); 2229 } 2230 2231 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner, 2232 const char *mod_name) 2233 { 2234 int ret; 2235 2236 hdrv->driver.name = hdrv->name; 2237 hdrv->driver.bus = &hid_bus_type; 2238 hdrv->driver.owner = owner; 2239 hdrv->driver.mod_name = mod_name; 2240 2241 INIT_LIST_HEAD(&hdrv->dyn_list); 2242 spin_lock_init(&hdrv->dyn_lock); 2243 2244 ret = driver_register(&hdrv->driver); 2245 2246 if (ret == 0) 2247 bus_for_each_drv(&hid_bus_type, NULL, NULL, 2248 __hid_bus_driver_added); 2249 2250 return ret; 2251 } 2252 EXPORT_SYMBOL_GPL(__hid_register_driver); 2253 2254 void hid_unregister_driver(struct hid_driver *hdrv) 2255 { 2256 driver_unregister(&hdrv->driver); 2257 hid_free_dynids(hdrv); 2258 2259 bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver); 2260 } 2261 EXPORT_SYMBOL_GPL(hid_unregister_driver); 2262 2263 int hid_check_keys_pressed(struct hid_device *hid) 2264 { 2265 struct hid_input *hidinput; 2266 int i; 2267 2268 if (!(hid->claimed & HID_CLAIMED_INPUT)) 2269 return 0; 2270 2271 list_for_each_entry(hidinput, &hid->inputs, list) { 2272 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++) 2273 if (hidinput->input->key[i]) 2274 return 1; 2275 } 2276 2277 return 0; 2278 } 2279 2280 EXPORT_SYMBOL_GPL(hid_check_keys_pressed); 2281 2282 static int __init hid_init(void) 2283 { 2284 int ret; 2285 2286 if (hid_debug) 2287 pr_warn("hid_debug is now used solely for parser and driver debugging.\n" 2288 "debugfs is now used for inspecting the device (report descriptor, reports)\n"); 2289 2290 ret = bus_register(&hid_bus_type); 2291 if (ret) { 2292 pr_err("can't register hid bus\n"); 2293 goto err; 2294 } 2295 2296 ret = hidraw_init(); 2297 if (ret) 2298 goto err_bus; 2299 2300 hid_debug_init(); 2301 2302 return 0; 2303 err_bus: 2304 bus_unregister(&hid_bus_type); 2305 err: 2306 return ret; 2307 } 2308 2309 static void __exit hid_exit(void) 2310 { 2311 hid_debug_exit(); 2312 hidraw_exit(); 2313 bus_unregister(&hid_bus_type); 2314 hid_quirks_exit(HID_BUS_ANY); 2315 } 2316 2317 module_init(hid_init); 2318 module_exit(hid_exit); 2319 2320 MODULE_AUTHOR("Andreas Gal"); 2321 MODULE_AUTHOR("Vojtech Pavlik"); 2322 MODULE_AUTHOR("Jiri Kosina"); 2323 MODULE_LICENSE("GPL"); 2324