xref: /openbmc/linux/drivers/hid/hid-core.c (revision 2359ccdd)
1 /*
2  *  HID support for Linux
3  *
4  *  Copyright (c) 1999 Andreas Gal
5  *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
6  *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
7  *  Copyright (c) 2006-2012 Jiri Kosina
8  */
9 
10 /*
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the Free
13  * Software Foundation; either version 2 of the License, or (at your option)
14  * any later version.
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/mm.h>
25 #include <linux/spinlock.h>
26 #include <asm/unaligned.h>
27 #include <asm/byteorder.h>
28 #include <linux/input.h>
29 #include <linux/wait.h>
30 #include <linux/vmalloc.h>
31 #include <linux/sched.h>
32 #include <linux/semaphore.h>
33 
34 #include <linux/hid.h>
35 #include <linux/hiddev.h>
36 #include <linux/hid-debug.h>
37 #include <linux/hidraw.h>
38 
39 #include "hid-ids.h"
40 
41 /*
42  * Version Information
43  */
44 
45 #define DRIVER_DESC "HID core driver"
46 
47 int hid_debug = 0;
48 module_param_named(debug, hid_debug, int, 0600);
49 MODULE_PARM_DESC(debug, "toggle HID debugging messages");
50 EXPORT_SYMBOL_GPL(hid_debug);
51 
52 static int hid_ignore_special_drivers = 0;
53 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
54 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
55 
56 /*
57  * Register a new report for a device.
58  */
59 
60 struct hid_report *hid_register_report(struct hid_device *device, unsigned type, unsigned id)
61 {
62 	struct hid_report_enum *report_enum = device->report_enum + type;
63 	struct hid_report *report;
64 
65 	if (id >= HID_MAX_IDS)
66 		return NULL;
67 	if (report_enum->report_id_hash[id])
68 		return report_enum->report_id_hash[id];
69 
70 	report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
71 	if (!report)
72 		return NULL;
73 
74 	if (id != 0)
75 		report_enum->numbered = 1;
76 
77 	report->id = id;
78 	report->type = type;
79 	report->size = 0;
80 	report->device = device;
81 	report_enum->report_id_hash[id] = report;
82 
83 	list_add_tail(&report->list, &report_enum->report_list);
84 
85 	return report;
86 }
87 EXPORT_SYMBOL_GPL(hid_register_report);
88 
89 /*
90  * Register a new field for this report.
91  */
92 
93 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
94 {
95 	struct hid_field *field;
96 
97 	if (report->maxfield == HID_MAX_FIELDS) {
98 		hid_err(report->device, "too many fields in report\n");
99 		return NULL;
100 	}
101 
102 	field = kzalloc((sizeof(struct hid_field) +
103 			 usages * sizeof(struct hid_usage) +
104 			 values * sizeof(unsigned)), GFP_KERNEL);
105 	if (!field)
106 		return NULL;
107 
108 	field->index = report->maxfield++;
109 	report->field[field->index] = field;
110 	field->usage = (struct hid_usage *)(field + 1);
111 	field->value = (s32 *)(field->usage + usages);
112 	field->report = report;
113 
114 	return field;
115 }
116 
117 /*
118  * Open a collection. The type/usage is pushed on the stack.
119  */
120 
121 static int open_collection(struct hid_parser *parser, unsigned type)
122 {
123 	struct hid_collection *collection;
124 	unsigned usage;
125 
126 	usage = parser->local.usage[0];
127 
128 	if (parser->collection_stack_ptr == HID_COLLECTION_STACK_SIZE) {
129 		hid_err(parser->device, "collection stack overflow\n");
130 		return -EINVAL;
131 	}
132 
133 	if (parser->device->maxcollection == parser->device->collection_size) {
134 		collection = kmalloc(sizeof(struct hid_collection) *
135 				parser->device->collection_size * 2, GFP_KERNEL);
136 		if (collection == NULL) {
137 			hid_err(parser->device, "failed to reallocate collection array\n");
138 			return -ENOMEM;
139 		}
140 		memcpy(collection, parser->device->collection,
141 			sizeof(struct hid_collection) *
142 			parser->device->collection_size);
143 		memset(collection + parser->device->collection_size, 0,
144 			sizeof(struct hid_collection) *
145 			parser->device->collection_size);
146 		kfree(parser->device->collection);
147 		parser->device->collection = collection;
148 		parser->device->collection_size *= 2;
149 	}
150 
151 	parser->collection_stack[parser->collection_stack_ptr++] =
152 		parser->device->maxcollection;
153 
154 	collection = parser->device->collection +
155 		parser->device->maxcollection++;
156 	collection->type = type;
157 	collection->usage = usage;
158 	collection->level = parser->collection_stack_ptr - 1;
159 
160 	if (type == HID_COLLECTION_APPLICATION)
161 		parser->device->maxapplication++;
162 
163 	return 0;
164 }
165 
166 /*
167  * Close a collection.
168  */
169 
170 static int close_collection(struct hid_parser *parser)
171 {
172 	if (!parser->collection_stack_ptr) {
173 		hid_err(parser->device, "collection stack underflow\n");
174 		return -EINVAL;
175 	}
176 	parser->collection_stack_ptr--;
177 	return 0;
178 }
179 
180 /*
181  * Climb up the stack, search for the specified collection type
182  * and return the usage.
183  */
184 
185 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
186 {
187 	struct hid_collection *collection = parser->device->collection;
188 	int n;
189 
190 	for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
191 		unsigned index = parser->collection_stack[n];
192 		if (collection[index].type == type)
193 			return collection[index].usage;
194 	}
195 	return 0; /* we know nothing about this usage type */
196 }
197 
198 /*
199  * Add a usage to the temporary parser table.
200  */
201 
202 static int hid_add_usage(struct hid_parser *parser, unsigned usage)
203 {
204 	if (parser->local.usage_index >= HID_MAX_USAGES) {
205 		hid_err(parser->device, "usage index exceeded\n");
206 		return -1;
207 	}
208 	parser->local.usage[parser->local.usage_index] = usage;
209 	parser->local.collection_index[parser->local.usage_index] =
210 		parser->collection_stack_ptr ?
211 		parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
212 	parser->local.usage_index++;
213 	return 0;
214 }
215 
216 /*
217  * Register a new field for this report.
218  */
219 
220 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
221 {
222 	struct hid_report *report;
223 	struct hid_field *field;
224 	unsigned usages;
225 	unsigned offset;
226 	unsigned i;
227 
228 	report = hid_register_report(parser->device, report_type, parser->global.report_id);
229 	if (!report) {
230 		hid_err(parser->device, "hid_register_report failed\n");
231 		return -1;
232 	}
233 
234 	/* Handle both signed and unsigned cases properly */
235 	if ((parser->global.logical_minimum < 0 &&
236 		parser->global.logical_maximum <
237 		parser->global.logical_minimum) ||
238 		(parser->global.logical_minimum >= 0 &&
239 		(__u32)parser->global.logical_maximum <
240 		(__u32)parser->global.logical_minimum)) {
241 		dbg_hid("logical range invalid 0x%x 0x%x\n",
242 			parser->global.logical_minimum,
243 			parser->global.logical_maximum);
244 		return -1;
245 	}
246 
247 	offset = report->size;
248 	report->size += parser->global.report_size * parser->global.report_count;
249 
250 	if (!parser->local.usage_index) /* Ignore padding fields */
251 		return 0;
252 
253 	usages = max_t(unsigned, parser->local.usage_index,
254 				 parser->global.report_count);
255 
256 	field = hid_register_field(report, usages, parser->global.report_count);
257 	if (!field)
258 		return 0;
259 
260 	field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
261 	field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
262 	field->application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
263 
264 	for (i = 0; i < usages; i++) {
265 		unsigned j = i;
266 		/* Duplicate the last usage we parsed if we have excess values */
267 		if (i >= parser->local.usage_index)
268 			j = parser->local.usage_index - 1;
269 		field->usage[i].hid = parser->local.usage[j];
270 		field->usage[i].collection_index =
271 			parser->local.collection_index[j];
272 		field->usage[i].usage_index = i;
273 	}
274 
275 	field->maxusage = usages;
276 	field->flags = flags;
277 	field->report_offset = offset;
278 	field->report_type = report_type;
279 	field->report_size = parser->global.report_size;
280 	field->report_count = parser->global.report_count;
281 	field->logical_minimum = parser->global.logical_minimum;
282 	field->logical_maximum = parser->global.logical_maximum;
283 	field->physical_minimum = parser->global.physical_minimum;
284 	field->physical_maximum = parser->global.physical_maximum;
285 	field->unit_exponent = parser->global.unit_exponent;
286 	field->unit = parser->global.unit;
287 
288 	return 0;
289 }
290 
291 /*
292  * Read data value from item.
293  */
294 
295 static u32 item_udata(struct hid_item *item)
296 {
297 	switch (item->size) {
298 	case 1: return item->data.u8;
299 	case 2: return item->data.u16;
300 	case 4: return item->data.u32;
301 	}
302 	return 0;
303 }
304 
305 static s32 item_sdata(struct hid_item *item)
306 {
307 	switch (item->size) {
308 	case 1: return item->data.s8;
309 	case 2: return item->data.s16;
310 	case 4: return item->data.s32;
311 	}
312 	return 0;
313 }
314 
315 /*
316  * Process a global item.
317  */
318 
319 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
320 {
321 	__s32 raw_value;
322 	switch (item->tag) {
323 	case HID_GLOBAL_ITEM_TAG_PUSH:
324 
325 		if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
326 			hid_err(parser->device, "global environment stack overflow\n");
327 			return -1;
328 		}
329 
330 		memcpy(parser->global_stack + parser->global_stack_ptr++,
331 			&parser->global, sizeof(struct hid_global));
332 		return 0;
333 
334 	case HID_GLOBAL_ITEM_TAG_POP:
335 
336 		if (!parser->global_stack_ptr) {
337 			hid_err(parser->device, "global environment stack underflow\n");
338 			return -1;
339 		}
340 
341 		memcpy(&parser->global, parser->global_stack +
342 			--parser->global_stack_ptr, sizeof(struct hid_global));
343 		return 0;
344 
345 	case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
346 		parser->global.usage_page = item_udata(item);
347 		return 0;
348 
349 	case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
350 		parser->global.logical_minimum = item_sdata(item);
351 		return 0;
352 
353 	case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
354 		if (parser->global.logical_minimum < 0)
355 			parser->global.logical_maximum = item_sdata(item);
356 		else
357 			parser->global.logical_maximum = item_udata(item);
358 		return 0;
359 
360 	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
361 		parser->global.physical_minimum = item_sdata(item);
362 		return 0;
363 
364 	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
365 		if (parser->global.physical_minimum < 0)
366 			parser->global.physical_maximum = item_sdata(item);
367 		else
368 			parser->global.physical_maximum = item_udata(item);
369 		return 0;
370 
371 	case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
372 		/* Many devices provide unit exponent as a two's complement
373 		 * nibble due to the common misunderstanding of HID
374 		 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
375 		 * both this and the standard encoding. */
376 		raw_value = item_sdata(item);
377 		if (!(raw_value & 0xfffffff0))
378 			parser->global.unit_exponent = hid_snto32(raw_value, 4);
379 		else
380 			parser->global.unit_exponent = raw_value;
381 		return 0;
382 
383 	case HID_GLOBAL_ITEM_TAG_UNIT:
384 		parser->global.unit = item_udata(item);
385 		return 0;
386 
387 	case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
388 		parser->global.report_size = item_udata(item);
389 		if (parser->global.report_size > 128) {
390 			hid_err(parser->device, "invalid report_size %d\n",
391 					parser->global.report_size);
392 			return -1;
393 		}
394 		return 0;
395 
396 	case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
397 		parser->global.report_count = item_udata(item);
398 		if (parser->global.report_count > HID_MAX_USAGES) {
399 			hid_err(parser->device, "invalid report_count %d\n",
400 					parser->global.report_count);
401 			return -1;
402 		}
403 		return 0;
404 
405 	case HID_GLOBAL_ITEM_TAG_REPORT_ID:
406 		parser->global.report_id = item_udata(item);
407 		if (parser->global.report_id == 0 ||
408 		    parser->global.report_id >= HID_MAX_IDS) {
409 			hid_err(parser->device, "report_id %u is invalid\n",
410 				parser->global.report_id);
411 			return -1;
412 		}
413 		return 0;
414 
415 	default:
416 		hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
417 		return -1;
418 	}
419 }
420 
421 /*
422  * Process a local item.
423  */
424 
425 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
426 {
427 	__u32 data;
428 	unsigned n;
429 	__u32 count;
430 
431 	data = item_udata(item);
432 
433 	switch (item->tag) {
434 	case HID_LOCAL_ITEM_TAG_DELIMITER:
435 
436 		if (data) {
437 			/*
438 			 * We treat items before the first delimiter
439 			 * as global to all usage sets (branch 0).
440 			 * In the moment we process only these global
441 			 * items and the first delimiter set.
442 			 */
443 			if (parser->local.delimiter_depth != 0) {
444 				hid_err(parser->device, "nested delimiters\n");
445 				return -1;
446 			}
447 			parser->local.delimiter_depth++;
448 			parser->local.delimiter_branch++;
449 		} else {
450 			if (parser->local.delimiter_depth < 1) {
451 				hid_err(parser->device, "bogus close delimiter\n");
452 				return -1;
453 			}
454 			parser->local.delimiter_depth--;
455 		}
456 		return 0;
457 
458 	case HID_LOCAL_ITEM_TAG_USAGE:
459 
460 		if (parser->local.delimiter_branch > 1) {
461 			dbg_hid("alternative usage ignored\n");
462 			return 0;
463 		}
464 
465 		if (item->size <= 2)
466 			data = (parser->global.usage_page << 16) + data;
467 
468 		return hid_add_usage(parser, data);
469 
470 	case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
471 
472 		if (parser->local.delimiter_branch > 1) {
473 			dbg_hid("alternative usage ignored\n");
474 			return 0;
475 		}
476 
477 		if (item->size <= 2)
478 			data = (parser->global.usage_page << 16) + data;
479 
480 		parser->local.usage_minimum = data;
481 		return 0;
482 
483 	case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
484 
485 		if (parser->local.delimiter_branch > 1) {
486 			dbg_hid("alternative usage ignored\n");
487 			return 0;
488 		}
489 
490 		if (item->size <= 2)
491 			data = (parser->global.usage_page << 16) + data;
492 
493 		count = data - parser->local.usage_minimum;
494 		if (count + parser->local.usage_index >= HID_MAX_USAGES) {
495 			/*
496 			 * We do not warn if the name is not set, we are
497 			 * actually pre-scanning the device.
498 			 */
499 			if (dev_name(&parser->device->dev))
500 				hid_warn(parser->device,
501 					 "ignoring exceeding usage max\n");
502 			data = HID_MAX_USAGES - parser->local.usage_index +
503 				parser->local.usage_minimum - 1;
504 			if (data <= 0) {
505 				hid_err(parser->device,
506 					"no more usage index available\n");
507 				return -1;
508 			}
509 		}
510 
511 		for (n = parser->local.usage_minimum; n <= data; n++)
512 			if (hid_add_usage(parser, n)) {
513 				dbg_hid("hid_add_usage failed\n");
514 				return -1;
515 			}
516 		return 0;
517 
518 	default:
519 
520 		dbg_hid("unknown local item tag 0x%x\n", item->tag);
521 		return 0;
522 	}
523 	return 0;
524 }
525 
526 /*
527  * Process a main item.
528  */
529 
530 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
531 {
532 	__u32 data;
533 	int ret;
534 
535 	data = item_udata(item);
536 
537 	switch (item->tag) {
538 	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
539 		ret = open_collection(parser, data & 0xff);
540 		break;
541 	case HID_MAIN_ITEM_TAG_END_COLLECTION:
542 		ret = close_collection(parser);
543 		break;
544 	case HID_MAIN_ITEM_TAG_INPUT:
545 		ret = hid_add_field(parser, HID_INPUT_REPORT, data);
546 		break;
547 	case HID_MAIN_ITEM_TAG_OUTPUT:
548 		ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
549 		break;
550 	case HID_MAIN_ITEM_TAG_FEATURE:
551 		ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
552 		break;
553 	default:
554 		hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
555 		ret = 0;
556 	}
557 
558 	memset(&parser->local, 0, sizeof(parser->local));	/* Reset the local parser environment */
559 
560 	return ret;
561 }
562 
563 /*
564  * Process a reserved item.
565  */
566 
567 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
568 {
569 	dbg_hid("reserved item type, tag 0x%x\n", item->tag);
570 	return 0;
571 }
572 
573 /*
574  * Free a report and all registered fields. The field->usage and
575  * field->value table's are allocated behind the field, so we need
576  * only to free(field) itself.
577  */
578 
579 static void hid_free_report(struct hid_report *report)
580 {
581 	unsigned n;
582 
583 	for (n = 0; n < report->maxfield; n++)
584 		kfree(report->field[n]);
585 	kfree(report);
586 }
587 
588 /*
589  * Close report. This function returns the device
590  * state to the point prior to hid_open_report().
591  */
592 static void hid_close_report(struct hid_device *device)
593 {
594 	unsigned i, j;
595 
596 	for (i = 0; i < HID_REPORT_TYPES; i++) {
597 		struct hid_report_enum *report_enum = device->report_enum + i;
598 
599 		for (j = 0; j < HID_MAX_IDS; j++) {
600 			struct hid_report *report = report_enum->report_id_hash[j];
601 			if (report)
602 				hid_free_report(report);
603 		}
604 		memset(report_enum, 0, sizeof(*report_enum));
605 		INIT_LIST_HEAD(&report_enum->report_list);
606 	}
607 
608 	kfree(device->rdesc);
609 	device->rdesc = NULL;
610 	device->rsize = 0;
611 
612 	kfree(device->collection);
613 	device->collection = NULL;
614 	device->collection_size = 0;
615 	device->maxcollection = 0;
616 	device->maxapplication = 0;
617 
618 	device->status &= ~HID_STAT_PARSED;
619 }
620 
621 /*
622  * Free a device structure, all reports, and all fields.
623  */
624 
625 static void hid_device_release(struct device *dev)
626 {
627 	struct hid_device *hid = to_hid_device(dev);
628 
629 	hid_close_report(hid);
630 	kfree(hid->dev_rdesc);
631 	kfree(hid);
632 }
633 
634 /*
635  * Fetch a report description item from the data stream. We support long
636  * items, though they are not used yet.
637  */
638 
639 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
640 {
641 	u8 b;
642 
643 	if ((end - start) <= 0)
644 		return NULL;
645 
646 	b = *start++;
647 
648 	item->type = (b >> 2) & 3;
649 	item->tag  = (b >> 4) & 15;
650 
651 	if (item->tag == HID_ITEM_TAG_LONG) {
652 
653 		item->format = HID_ITEM_FORMAT_LONG;
654 
655 		if ((end - start) < 2)
656 			return NULL;
657 
658 		item->size = *start++;
659 		item->tag  = *start++;
660 
661 		if ((end - start) < item->size)
662 			return NULL;
663 
664 		item->data.longdata = start;
665 		start += item->size;
666 		return start;
667 	}
668 
669 	item->format = HID_ITEM_FORMAT_SHORT;
670 	item->size = b & 3;
671 
672 	switch (item->size) {
673 	case 0:
674 		return start;
675 
676 	case 1:
677 		if ((end - start) < 1)
678 			return NULL;
679 		item->data.u8 = *start++;
680 		return start;
681 
682 	case 2:
683 		if ((end - start) < 2)
684 			return NULL;
685 		item->data.u16 = get_unaligned_le16(start);
686 		start = (__u8 *)((__le16 *)start + 1);
687 		return start;
688 
689 	case 3:
690 		item->size++;
691 		if ((end - start) < 4)
692 			return NULL;
693 		item->data.u32 = get_unaligned_le32(start);
694 		start = (__u8 *)((__le32 *)start + 1);
695 		return start;
696 	}
697 
698 	return NULL;
699 }
700 
701 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
702 {
703 	struct hid_device *hid = parser->device;
704 
705 	if (usage == HID_DG_CONTACTID)
706 		hid->group = HID_GROUP_MULTITOUCH;
707 }
708 
709 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
710 {
711 	if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
712 	    parser->global.report_size == 8)
713 		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
714 }
715 
716 static void hid_scan_collection(struct hid_parser *parser, unsigned type)
717 {
718 	struct hid_device *hid = parser->device;
719 	int i;
720 
721 	if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
722 	    type == HID_COLLECTION_PHYSICAL)
723 		hid->group = HID_GROUP_SENSOR_HUB;
724 
725 	if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
726 	    hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
727 	    hid->group == HID_GROUP_MULTITOUCH)
728 		hid->group = HID_GROUP_GENERIC;
729 
730 	if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
731 		for (i = 0; i < parser->local.usage_index; i++)
732 			if (parser->local.usage[i] == HID_GD_POINTER)
733 				parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
734 
735 	if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
736 		parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
737 }
738 
739 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
740 {
741 	__u32 data;
742 	int i;
743 
744 	data = item_udata(item);
745 
746 	switch (item->tag) {
747 	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
748 		hid_scan_collection(parser, data & 0xff);
749 		break;
750 	case HID_MAIN_ITEM_TAG_END_COLLECTION:
751 		break;
752 	case HID_MAIN_ITEM_TAG_INPUT:
753 		/* ignore constant inputs, they will be ignored by hid-input */
754 		if (data & HID_MAIN_ITEM_CONSTANT)
755 			break;
756 		for (i = 0; i < parser->local.usage_index; i++)
757 			hid_scan_input_usage(parser, parser->local.usage[i]);
758 		break;
759 	case HID_MAIN_ITEM_TAG_OUTPUT:
760 		break;
761 	case HID_MAIN_ITEM_TAG_FEATURE:
762 		for (i = 0; i < parser->local.usage_index; i++)
763 			hid_scan_feature_usage(parser, parser->local.usage[i]);
764 		break;
765 	}
766 
767 	/* Reset the local parser environment */
768 	memset(&parser->local, 0, sizeof(parser->local));
769 
770 	return 0;
771 }
772 
773 /*
774  * Scan a report descriptor before the device is added to the bus.
775  * Sets device groups and other properties that determine what driver
776  * to load.
777  */
778 static int hid_scan_report(struct hid_device *hid)
779 {
780 	struct hid_parser *parser;
781 	struct hid_item item;
782 	__u8 *start = hid->dev_rdesc;
783 	__u8 *end = start + hid->dev_rsize;
784 	static int (*dispatch_type[])(struct hid_parser *parser,
785 				      struct hid_item *item) = {
786 		hid_scan_main,
787 		hid_parser_global,
788 		hid_parser_local,
789 		hid_parser_reserved
790 	};
791 
792 	parser = vzalloc(sizeof(struct hid_parser));
793 	if (!parser)
794 		return -ENOMEM;
795 
796 	parser->device = hid;
797 	hid->group = HID_GROUP_GENERIC;
798 
799 	/*
800 	 * The parsing is simpler than the one in hid_open_report() as we should
801 	 * be robust against hid errors. Those errors will be raised by
802 	 * hid_open_report() anyway.
803 	 */
804 	while ((start = fetch_item(start, end, &item)) != NULL)
805 		dispatch_type[item.type](parser, &item);
806 
807 	/*
808 	 * Handle special flags set during scanning.
809 	 */
810 	if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
811 	    (hid->group == HID_GROUP_MULTITOUCH))
812 		hid->group = HID_GROUP_MULTITOUCH_WIN_8;
813 
814 	/*
815 	 * Vendor specific handlings
816 	 */
817 	switch (hid->vendor) {
818 	case USB_VENDOR_ID_WACOM:
819 		hid->group = HID_GROUP_WACOM;
820 		break;
821 	case USB_VENDOR_ID_SYNAPTICS:
822 		if (hid->group == HID_GROUP_GENERIC)
823 			if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
824 			    && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
825 				/*
826 				 * hid-rmi should take care of them,
827 				 * not hid-generic
828 				 */
829 				hid->group = HID_GROUP_RMI;
830 		break;
831 	}
832 
833 	vfree(parser);
834 	return 0;
835 }
836 
837 /**
838  * hid_parse_report - parse device report
839  *
840  * @device: hid device
841  * @start: report start
842  * @size: report size
843  *
844  * Allocate the device report as read by the bus driver. This function should
845  * only be called from parse() in ll drivers.
846  */
847 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
848 {
849 	hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
850 	if (!hid->dev_rdesc)
851 		return -ENOMEM;
852 	hid->dev_rsize = size;
853 	return 0;
854 }
855 EXPORT_SYMBOL_GPL(hid_parse_report);
856 
857 static const char * const hid_report_names[] = {
858 	"HID_INPUT_REPORT",
859 	"HID_OUTPUT_REPORT",
860 	"HID_FEATURE_REPORT",
861 };
862 /**
863  * hid_validate_values - validate existing device report's value indexes
864  *
865  * @device: hid device
866  * @type: which report type to examine
867  * @id: which report ID to examine (0 for first)
868  * @field_index: which report field to examine
869  * @report_counts: expected number of values
870  *
871  * Validate the number of values in a given field of a given report, after
872  * parsing.
873  */
874 struct hid_report *hid_validate_values(struct hid_device *hid,
875 				       unsigned int type, unsigned int id,
876 				       unsigned int field_index,
877 				       unsigned int report_counts)
878 {
879 	struct hid_report *report;
880 
881 	if (type > HID_FEATURE_REPORT) {
882 		hid_err(hid, "invalid HID report type %u\n", type);
883 		return NULL;
884 	}
885 
886 	if (id >= HID_MAX_IDS) {
887 		hid_err(hid, "invalid HID report id %u\n", id);
888 		return NULL;
889 	}
890 
891 	/*
892 	 * Explicitly not using hid_get_report() here since it depends on
893 	 * ->numbered being checked, which may not always be the case when
894 	 * drivers go to access report values.
895 	 */
896 	if (id == 0) {
897 		/*
898 		 * Validating on id 0 means we should examine the first
899 		 * report in the list.
900 		 */
901 		report = list_entry(
902 				hid->report_enum[type].report_list.next,
903 				struct hid_report, list);
904 	} else {
905 		report = hid->report_enum[type].report_id_hash[id];
906 	}
907 	if (!report) {
908 		hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
909 		return NULL;
910 	}
911 	if (report->maxfield <= field_index) {
912 		hid_err(hid, "not enough fields in %s %u\n",
913 			hid_report_names[type], id);
914 		return NULL;
915 	}
916 	if (report->field[field_index]->report_count < report_counts) {
917 		hid_err(hid, "not enough values in %s %u field %u\n",
918 			hid_report_names[type], id, field_index);
919 		return NULL;
920 	}
921 	return report;
922 }
923 EXPORT_SYMBOL_GPL(hid_validate_values);
924 
925 /**
926  * hid_open_report - open a driver-specific device report
927  *
928  * @device: hid device
929  *
930  * Parse a report description into a hid_device structure. Reports are
931  * enumerated, fields are attached to these reports.
932  * 0 returned on success, otherwise nonzero error value.
933  *
934  * This function (or the equivalent hid_parse() macro) should only be
935  * called from probe() in drivers, before starting the device.
936  */
937 int hid_open_report(struct hid_device *device)
938 {
939 	struct hid_parser *parser;
940 	struct hid_item item;
941 	unsigned int size;
942 	__u8 *start;
943 	__u8 *buf;
944 	__u8 *end;
945 	int ret;
946 	static int (*dispatch_type[])(struct hid_parser *parser,
947 				      struct hid_item *item) = {
948 		hid_parser_main,
949 		hid_parser_global,
950 		hid_parser_local,
951 		hid_parser_reserved
952 	};
953 
954 	if (WARN_ON(device->status & HID_STAT_PARSED))
955 		return -EBUSY;
956 
957 	start = device->dev_rdesc;
958 	if (WARN_ON(!start))
959 		return -ENODEV;
960 	size = device->dev_rsize;
961 
962 	buf = kmemdup(start, size, GFP_KERNEL);
963 	if (buf == NULL)
964 		return -ENOMEM;
965 
966 	if (device->driver->report_fixup)
967 		start = device->driver->report_fixup(device, buf, &size);
968 	else
969 		start = buf;
970 
971 	start = kmemdup(start, size, GFP_KERNEL);
972 	kfree(buf);
973 	if (start == NULL)
974 		return -ENOMEM;
975 
976 	device->rdesc = start;
977 	device->rsize = size;
978 
979 	parser = vzalloc(sizeof(struct hid_parser));
980 	if (!parser) {
981 		ret = -ENOMEM;
982 		goto err;
983 	}
984 
985 	parser->device = device;
986 
987 	end = start + size;
988 
989 	device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
990 				     sizeof(struct hid_collection), GFP_KERNEL);
991 	if (!device->collection) {
992 		ret = -ENOMEM;
993 		goto err;
994 	}
995 	device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
996 
997 	ret = -EINVAL;
998 	while ((start = fetch_item(start, end, &item)) != NULL) {
999 
1000 		if (item.format != HID_ITEM_FORMAT_SHORT) {
1001 			hid_err(device, "unexpected long global item\n");
1002 			goto err;
1003 		}
1004 
1005 		if (dispatch_type[item.type](parser, &item)) {
1006 			hid_err(device, "item %u %u %u %u parsing failed\n",
1007 				item.format, (unsigned)item.size,
1008 				(unsigned)item.type, (unsigned)item.tag);
1009 			goto err;
1010 		}
1011 
1012 		if (start == end) {
1013 			if (parser->collection_stack_ptr) {
1014 				hid_err(device, "unbalanced collection at end of report description\n");
1015 				goto err;
1016 			}
1017 			if (parser->local.delimiter_depth) {
1018 				hid_err(device, "unbalanced delimiter at end of report description\n");
1019 				goto err;
1020 			}
1021 			vfree(parser);
1022 			device->status |= HID_STAT_PARSED;
1023 			return 0;
1024 		}
1025 	}
1026 
1027 	hid_err(device, "item fetching failed at offset %d\n", (int)(end - start));
1028 err:
1029 	vfree(parser);
1030 	hid_close_report(device);
1031 	return ret;
1032 }
1033 EXPORT_SYMBOL_GPL(hid_open_report);
1034 
1035 /*
1036  * Convert a signed n-bit integer to signed 32-bit integer. Common
1037  * cases are done through the compiler, the screwed things has to be
1038  * done by hand.
1039  */
1040 
1041 static s32 snto32(__u32 value, unsigned n)
1042 {
1043 	switch (n) {
1044 	case 8:  return ((__s8)value);
1045 	case 16: return ((__s16)value);
1046 	case 32: return ((__s32)value);
1047 	}
1048 	return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1049 }
1050 
1051 s32 hid_snto32(__u32 value, unsigned n)
1052 {
1053 	return snto32(value, n);
1054 }
1055 EXPORT_SYMBOL_GPL(hid_snto32);
1056 
1057 /*
1058  * Convert a signed 32-bit integer to a signed n-bit integer.
1059  */
1060 
1061 static u32 s32ton(__s32 value, unsigned n)
1062 {
1063 	s32 a = value >> (n - 1);
1064 	if (a && a != -1)
1065 		return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1066 	return value & ((1 << n) - 1);
1067 }
1068 
1069 /*
1070  * Extract/implement a data field from/to a little endian report (bit array).
1071  *
1072  * Code sort-of follows HID spec:
1073  *     http://www.usb.org/developers/hidpage/HID1_11.pdf
1074  *
1075  * While the USB HID spec allows unlimited length bit fields in "report
1076  * descriptors", most devices never use more than 16 bits.
1077  * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1078  * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1079  */
1080 
1081 static u32 __extract(u8 *report, unsigned offset, int n)
1082 {
1083 	unsigned int idx = offset / 8;
1084 	unsigned int bit_nr = 0;
1085 	unsigned int bit_shift = offset % 8;
1086 	int bits_to_copy = 8 - bit_shift;
1087 	u32 value = 0;
1088 	u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1089 
1090 	while (n > 0) {
1091 		value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1092 		n -= bits_to_copy;
1093 		bit_nr += bits_to_copy;
1094 		bits_to_copy = 8;
1095 		bit_shift = 0;
1096 		idx++;
1097 	}
1098 
1099 	return value & mask;
1100 }
1101 
1102 u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1103 			unsigned offset, unsigned n)
1104 {
1105 	if (n > 32) {
1106 		hid_warn(hid, "hid_field_extract() called with n (%d) > 32! (%s)\n",
1107 			 n, current->comm);
1108 		n = 32;
1109 	}
1110 
1111 	return __extract(report, offset, n);
1112 }
1113 EXPORT_SYMBOL_GPL(hid_field_extract);
1114 
1115 /*
1116  * "implement" : set bits in a little endian bit stream.
1117  * Same concepts as "extract" (see comments above).
1118  * The data mangled in the bit stream remains in little endian
1119  * order the whole time. It make more sense to talk about
1120  * endianness of register values by considering a register
1121  * a "cached" copy of the little endian bit stream.
1122  */
1123 
1124 static void __implement(u8 *report, unsigned offset, int n, u32 value)
1125 {
1126 	unsigned int idx = offset / 8;
1127 	unsigned int bit_shift = offset % 8;
1128 	int bits_to_set = 8 - bit_shift;
1129 
1130 	while (n - bits_to_set >= 0) {
1131 		report[idx] &= ~(0xff << bit_shift);
1132 		report[idx] |= value << bit_shift;
1133 		value >>= bits_to_set;
1134 		n -= bits_to_set;
1135 		bits_to_set = 8;
1136 		bit_shift = 0;
1137 		idx++;
1138 	}
1139 
1140 	/* last nibble */
1141 	if (n) {
1142 		u8 bit_mask = ((1U << n) - 1);
1143 		report[idx] &= ~(bit_mask << bit_shift);
1144 		report[idx] |= value << bit_shift;
1145 	}
1146 }
1147 
1148 static void implement(const struct hid_device *hid, u8 *report,
1149 		      unsigned offset, unsigned n, u32 value)
1150 {
1151 	if (unlikely(n > 32)) {
1152 		hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1153 			 __func__, n, current->comm);
1154 		n = 32;
1155 	} else if (n < 32) {
1156 		u32 m = (1U << n) - 1;
1157 
1158 		if (unlikely(value > m)) {
1159 			hid_warn(hid,
1160 				 "%s() called with too large value %d (n: %d)! (%s)\n",
1161 				 __func__, value, n, current->comm);
1162 			WARN_ON(1);
1163 			value &= m;
1164 		}
1165 	}
1166 
1167 	__implement(report, offset, n, value);
1168 }
1169 
1170 /*
1171  * Search an array for a value.
1172  */
1173 
1174 static int search(__s32 *array, __s32 value, unsigned n)
1175 {
1176 	while (n--) {
1177 		if (*array++ == value)
1178 			return 0;
1179 	}
1180 	return -1;
1181 }
1182 
1183 /**
1184  * hid_match_report - check if driver's raw_event should be called
1185  *
1186  * @hid: hid device
1187  * @report_type: type to match against
1188  *
1189  * compare hid->driver->report_table->report_type to report->type
1190  */
1191 static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1192 {
1193 	const struct hid_report_id *id = hid->driver->report_table;
1194 
1195 	if (!id) /* NULL means all */
1196 		return 1;
1197 
1198 	for (; id->report_type != HID_TERMINATOR; id++)
1199 		if (id->report_type == HID_ANY_ID ||
1200 				id->report_type == report->type)
1201 			return 1;
1202 	return 0;
1203 }
1204 
1205 /**
1206  * hid_match_usage - check if driver's event should be called
1207  *
1208  * @hid: hid device
1209  * @usage: usage to match against
1210  *
1211  * compare hid->driver->usage_table->usage_{type,code} to
1212  * usage->usage_{type,code}
1213  */
1214 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1215 {
1216 	const struct hid_usage_id *id = hid->driver->usage_table;
1217 
1218 	if (!id) /* NULL means all */
1219 		return 1;
1220 
1221 	for (; id->usage_type != HID_ANY_ID - 1; id++)
1222 		if ((id->usage_hid == HID_ANY_ID ||
1223 				id->usage_hid == usage->hid) &&
1224 				(id->usage_type == HID_ANY_ID ||
1225 				id->usage_type == usage->type) &&
1226 				(id->usage_code == HID_ANY_ID ||
1227 				 id->usage_code == usage->code))
1228 			return 1;
1229 	return 0;
1230 }
1231 
1232 static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1233 		struct hid_usage *usage, __s32 value, int interrupt)
1234 {
1235 	struct hid_driver *hdrv = hid->driver;
1236 	int ret;
1237 
1238 	if (!list_empty(&hid->debug_list))
1239 		hid_dump_input(hid, usage, value);
1240 
1241 	if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1242 		ret = hdrv->event(hid, field, usage, value);
1243 		if (ret != 0) {
1244 			if (ret < 0)
1245 				hid_err(hid, "%s's event failed with %d\n",
1246 						hdrv->name, ret);
1247 			return;
1248 		}
1249 	}
1250 
1251 	if (hid->claimed & HID_CLAIMED_INPUT)
1252 		hidinput_hid_event(hid, field, usage, value);
1253 	if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1254 		hid->hiddev_hid_event(hid, field, usage, value);
1255 }
1256 
1257 /*
1258  * Analyse a received field, and fetch the data from it. The field
1259  * content is stored for next report processing (we do differential
1260  * reporting to the layer).
1261  */
1262 
1263 static void hid_input_field(struct hid_device *hid, struct hid_field *field,
1264 			    __u8 *data, int interrupt)
1265 {
1266 	unsigned n;
1267 	unsigned count = field->report_count;
1268 	unsigned offset = field->report_offset;
1269 	unsigned size = field->report_size;
1270 	__s32 min = field->logical_minimum;
1271 	__s32 max = field->logical_maximum;
1272 	__s32 *value;
1273 
1274 	value = kmalloc(sizeof(__s32) * count, GFP_ATOMIC);
1275 	if (!value)
1276 		return;
1277 
1278 	for (n = 0; n < count; n++) {
1279 
1280 		value[n] = min < 0 ?
1281 			snto32(hid_field_extract(hid, data, offset + n * size,
1282 			       size), size) :
1283 			hid_field_extract(hid, data, offset + n * size, size);
1284 
1285 		/* Ignore report if ErrorRollOver */
1286 		if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1287 		    value[n] >= min && value[n] <= max &&
1288 		    value[n] - min < field->maxusage &&
1289 		    field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
1290 			goto exit;
1291 	}
1292 
1293 	for (n = 0; n < count; n++) {
1294 
1295 		if (HID_MAIN_ITEM_VARIABLE & field->flags) {
1296 			hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
1297 			continue;
1298 		}
1299 
1300 		if (field->value[n] >= min && field->value[n] <= max
1301 			&& field->value[n] - min < field->maxusage
1302 			&& field->usage[field->value[n] - min].hid
1303 			&& search(value, field->value[n], count))
1304 				hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
1305 
1306 		if (value[n] >= min && value[n] <= max
1307 			&& value[n] - min < field->maxusage
1308 			&& field->usage[value[n] - min].hid
1309 			&& search(field->value, value[n], count))
1310 				hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
1311 	}
1312 
1313 	memcpy(field->value, value, count * sizeof(__s32));
1314 exit:
1315 	kfree(value);
1316 }
1317 
1318 /*
1319  * Output the field into the report.
1320  */
1321 
1322 static void hid_output_field(const struct hid_device *hid,
1323 			     struct hid_field *field, __u8 *data)
1324 {
1325 	unsigned count = field->report_count;
1326 	unsigned offset = field->report_offset;
1327 	unsigned size = field->report_size;
1328 	unsigned n;
1329 
1330 	for (n = 0; n < count; n++) {
1331 		if (field->logical_minimum < 0)	/* signed values */
1332 			implement(hid, data, offset + n * size, size,
1333 				  s32ton(field->value[n], size));
1334 		else				/* unsigned values */
1335 			implement(hid, data, offset + n * size, size,
1336 				  field->value[n]);
1337 	}
1338 }
1339 
1340 /*
1341  * Create a report. 'data' has to be allocated using
1342  * hid_alloc_report_buf() so that it has proper size.
1343  */
1344 
1345 void hid_output_report(struct hid_report *report, __u8 *data)
1346 {
1347 	unsigned n;
1348 
1349 	if (report->id > 0)
1350 		*data++ = report->id;
1351 
1352 	memset(data, 0, ((report->size - 1) >> 3) + 1);
1353 	for (n = 0; n < report->maxfield; n++)
1354 		hid_output_field(report->device, report->field[n], data);
1355 }
1356 EXPORT_SYMBOL_GPL(hid_output_report);
1357 
1358 /*
1359  * Allocator for buffer that is going to be passed to hid_output_report()
1360  */
1361 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1362 {
1363 	/*
1364 	 * 7 extra bytes are necessary to achieve proper functionality
1365 	 * of implement() working on 8 byte chunks
1366 	 */
1367 
1368 	u32 len = hid_report_len(report) + 7;
1369 
1370 	return kmalloc(len, flags);
1371 }
1372 EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1373 
1374 /*
1375  * Set a field value. The report this field belongs to has to be
1376  * created and transferred to the device, to set this value in the
1377  * device.
1378  */
1379 
1380 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1381 {
1382 	unsigned size;
1383 
1384 	if (!field)
1385 		return -1;
1386 
1387 	size = field->report_size;
1388 
1389 	hid_dump_input(field->report->device, field->usage + offset, value);
1390 
1391 	if (offset >= field->report_count) {
1392 		hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1393 				offset, field->report_count);
1394 		return -1;
1395 	}
1396 	if (field->logical_minimum < 0) {
1397 		if (value != snto32(s32ton(value, size), size)) {
1398 			hid_err(field->report->device, "value %d is out of range\n", value);
1399 			return -1;
1400 		}
1401 	}
1402 	field->value[offset] = value;
1403 	return 0;
1404 }
1405 EXPORT_SYMBOL_GPL(hid_set_field);
1406 
1407 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1408 		const u8 *data)
1409 {
1410 	struct hid_report *report;
1411 	unsigned int n = 0;	/* Normally report number is 0 */
1412 
1413 	/* Device uses numbered reports, data[0] is report number */
1414 	if (report_enum->numbered)
1415 		n = *data;
1416 
1417 	report = report_enum->report_id_hash[n];
1418 	if (report == NULL)
1419 		dbg_hid("undefined report_id %u received\n", n);
1420 
1421 	return report;
1422 }
1423 
1424 /*
1425  * Implement a generic .request() callback, using .raw_request()
1426  * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1427  */
1428 void __hid_request(struct hid_device *hid, struct hid_report *report,
1429 		int reqtype)
1430 {
1431 	char *buf;
1432 	int ret;
1433 	u32 len;
1434 
1435 	buf = hid_alloc_report_buf(report, GFP_KERNEL);
1436 	if (!buf)
1437 		return;
1438 
1439 	len = hid_report_len(report);
1440 
1441 	if (reqtype == HID_REQ_SET_REPORT)
1442 		hid_output_report(report, buf);
1443 
1444 	ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1445 					  report->type, reqtype);
1446 	if (ret < 0) {
1447 		dbg_hid("unable to complete request: %d\n", ret);
1448 		goto out;
1449 	}
1450 
1451 	if (reqtype == HID_REQ_GET_REPORT)
1452 		hid_input_report(hid, report->type, buf, ret, 0);
1453 
1454 out:
1455 	kfree(buf);
1456 }
1457 EXPORT_SYMBOL_GPL(__hid_request);
1458 
1459 int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size,
1460 		int interrupt)
1461 {
1462 	struct hid_report_enum *report_enum = hid->report_enum + type;
1463 	struct hid_report *report;
1464 	struct hid_driver *hdrv;
1465 	unsigned int a;
1466 	u32 rsize, csize = size;
1467 	u8 *cdata = data;
1468 	int ret = 0;
1469 
1470 	report = hid_get_report(report_enum, data);
1471 	if (!report)
1472 		goto out;
1473 
1474 	if (report_enum->numbered) {
1475 		cdata++;
1476 		csize--;
1477 	}
1478 
1479 	rsize = ((report->size - 1) >> 3) + 1;
1480 
1481 	if (rsize > HID_MAX_BUFFER_SIZE)
1482 		rsize = HID_MAX_BUFFER_SIZE;
1483 
1484 	if (csize < rsize) {
1485 		dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1486 				csize, rsize);
1487 		memset(cdata + csize, 0, rsize - csize);
1488 	}
1489 
1490 	if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1491 		hid->hiddev_report_event(hid, report);
1492 	if (hid->claimed & HID_CLAIMED_HIDRAW) {
1493 		ret = hidraw_report_event(hid, data, size);
1494 		if (ret)
1495 			goto out;
1496 	}
1497 
1498 	if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
1499 		for (a = 0; a < report->maxfield; a++)
1500 			hid_input_field(hid, report->field[a], cdata, interrupt);
1501 		hdrv = hid->driver;
1502 		if (hdrv && hdrv->report)
1503 			hdrv->report(hid, report);
1504 	}
1505 
1506 	if (hid->claimed & HID_CLAIMED_INPUT)
1507 		hidinput_report_event(hid, report);
1508 out:
1509 	return ret;
1510 }
1511 EXPORT_SYMBOL_GPL(hid_report_raw_event);
1512 
1513 /**
1514  * hid_input_report - report data from lower layer (usb, bt...)
1515  *
1516  * @hid: hid device
1517  * @type: HID report type (HID_*_REPORT)
1518  * @data: report contents
1519  * @size: size of data parameter
1520  * @interrupt: distinguish between interrupt and control transfers
1521  *
1522  * This is data entry for lower layers.
1523  */
1524 int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt)
1525 {
1526 	struct hid_report_enum *report_enum;
1527 	struct hid_driver *hdrv;
1528 	struct hid_report *report;
1529 	int ret = 0;
1530 
1531 	if (!hid)
1532 		return -ENODEV;
1533 
1534 	if (down_trylock(&hid->driver_input_lock))
1535 		return -EBUSY;
1536 
1537 	if (!hid->driver) {
1538 		ret = -ENODEV;
1539 		goto unlock;
1540 	}
1541 	report_enum = hid->report_enum + type;
1542 	hdrv = hid->driver;
1543 
1544 	if (!size) {
1545 		dbg_hid("empty report\n");
1546 		ret = -1;
1547 		goto unlock;
1548 	}
1549 
1550 	/* Avoid unnecessary overhead if debugfs is disabled */
1551 	if (!list_empty(&hid->debug_list))
1552 		hid_dump_report(hid, type, data, size);
1553 
1554 	report = hid_get_report(report_enum, data);
1555 
1556 	if (!report) {
1557 		ret = -1;
1558 		goto unlock;
1559 	}
1560 
1561 	if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1562 		ret = hdrv->raw_event(hid, report, data, size);
1563 		if (ret < 0)
1564 			goto unlock;
1565 	}
1566 
1567 	ret = hid_report_raw_event(hid, type, data, size, interrupt);
1568 
1569 unlock:
1570 	up(&hid->driver_input_lock);
1571 	return ret;
1572 }
1573 EXPORT_SYMBOL_GPL(hid_input_report);
1574 
1575 bool hid_match_one_id(const struct hid_device *hdev,
1576 		      const struct hid_device_id *id)
1577 {
1578 	return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
1579 		(id->group == HID_GROUP_ANY || id->group == hdev->group) &&
1580 		(id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1581 		(id->product == HID_ANY_ID || id->product == hdev->product);
1582 }
1583 
1584 const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
1585 		const struct hid_device_id *id)
1586 {
1587 	for (; id->bus; id++)
1588 		if (hid_match_one_id(hdev, id))
1589 			return id;
1590 
1591 	return NULL;
1592 }
1593 
1594 static const struct hid_device_id hid_hiddev_list[] = {
1595 	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1596 	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1597 	{ }
1598 };
1599 
1600 static bool hid_hiddev(struct hid_device *hdev)
1601 {
1602 	return !!hid_match_id(hdev, hid_hiddev_list);
1603 }
1604 
1605 
1606 static ssize_t
1607 read_report_descriptor(struct file *filp, struct kobject *kobj,
1608 		struct bin_attribute *attr,
1609 		char *buf, loff_t off, size_t count)
1610 {
1611 	struct device *dev = kobj_to_dev(kobj);
1612 	struct hid_device *hdev = to_hid_device(dev);
1613 
1614 	if (off >= hdev->rsize)
1615 		return 0;
1616 
1617 	if (off + count > hdev->rsize)
1618 		count = hdev->rsize - off;
1619 
1620 	memcpy(buf, hdev->rdesc + off, count);
1621 
1622 	return count;
1623 }
1624 
1625 static ssize_t
1626 show_country(struct device *dev, struct device_attribute *attr,
1627 		char *buf)
1628 {
1629 	struct hid_device *hdev = to_hid_device(dev);
1630 
1631 	return sprintf(buf, "%02x\n", hdev->country & 0xff);
1632 }
1633 
1634 static struct bin_attribute dev_bin_attr_report_desc = {
1635 	.attr = { .name = "report_descriptor", .mode = 0444 },
1636 	.read = read_report_descriptor,
1637 	.size = HID_MAX_DESCRIPTOR_SIZE,
1638 };
1639 
1640 static const struct device_attribute dev_attr_country = {
1641 	.attr = { .name = "country", .mode = 0444 },
1642 	.show = show_country,
1643 };
1644 
1645 int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1646 {
1647 	static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1648 		"Joystick", "Gamepad", "Keyboard", "Keypad",
1649 		"Multi-Axis Controller"
1650 	};
1651 	const char *type, *bus;
1652 	char buf[64] = "";
1653 	unsigned int i;
1654 	int len;
1655 	int ret;
1656 
1657 	if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1658 		connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1659 	if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1660 		connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1661 	if (hdev->bus != BUS_USB)
1662 		connect_mask &= ~HID_CONNECT_HIDDEV;
1663 	if (hid_hiddev(hdev))
1664 		connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1665 
1666 	if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1667 				connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1668 		hdev->claimed |= HID_CLAIMED_INPUT;
1669 
1670 	if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1671 			!hdev->hiddev_connect(hdev,
1672 				connect_mask & HID_CONNECT_HIDDEV_FORCE))
1673 		hdev->claimed |= HID_CLAIMED_HIDDEV;
1674 	if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1675 		hdev->claimed |= HID_CLAIMED_HIDRAW;
1676 
1677 	if (connect_mask & HID_CONNECT_DRIVER)
1678 		hdev->claimed |= HID_CLAIMED_DRIVER;
1679 
1680 	/* Drivers with the ->raw_event callback set are not required to connect
1681 	 * to any other listener. */
1682 	if (!hdev->claimed && !hdev->driver->raw_event) {
1683 		hid_err(hdev, "device has no listeners, quitting\n");
1684 		return -ENODEV;
1685 	}
1686 
1687 	if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1688 			(connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1689 		hdev->ff_init(hdev);
1690 
1691 	len = 0;
1692 	if (hdev->claimed & HID_CLAIMED_INPUT)
1693 		len += sprintf(buf + len, "input");
1694 	if (hdev->claimed & HID_CLAIMED_HIDDEV)
1695 		len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1696 				((struct hiddev *)hdev->hiddev)->minor);
1697 	if (hdev->claimed & HID_CLAIMED_HIDRAW)
1698 		len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
1699 				((struct hidraw *)hdev->hidraw)->minor);
1700 
1701 	type = "Device";
1702 	for (i = 0; i < hdev->maxcollection; i++) {
1703 		struct hid_collection *col = &hdev->collection[i];
1704 		if (col->type == HID_COLLECTION_APPLICATION &&
1705 		   (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
1706 		   (col->usage & 0xffff) < ARRAY_SIZE(types)) {
1707 			type = types[col->usage & 0xffff];
1708 			break;
1709 		}
1710 	}
1711 
1712 	switch (hdev->bus) {
1713 	case BUS_USB:
1714 		bus = "USB";
1715 		break;
1716 	case BUS_BLUETOOTH:
1717 		bus = "BLUETOOTH";
1718 		break;
1719 	case BUS_I2C:
1720 		bus = "I2C";
1721 		break;
1722 	default:
1723 		bus = "<UNKNOWN>";
1724 	}
1725 
1726 	ret = device_create_file(&hdev->dev, &dev_attr_country);
1727 	if (ret)
1728 		hid_warn(hdev,
1729 			 "can't create sysfs country code attribute err: %d\n", ret);
1730 
1731 	hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
1732 		 buf, bus, hdev->version >> 8, hdev->version & 0xff,
1733 		 type, hdev->name, hdev->phys);
1734 
1735 	return 0;
1736 }
1737 EXPORT_SYMBOL_GPL(hid_connect);
1738 
1739 void hid_disconnect(struct hid_device *hdev)
1740 {
1741 	device_remove_file(&hdev->dev, &dev_attr_country);
1742 	if (hdev->claimed & HID_CLAIMED_INPUT)
1743 		hidinput_disconnect(hdev);
1744 	if (hdev->claimed & HID_CLAIMED_HIDDEV)
1745 		hdev->hiddev_disconnect(hdev);
1746 	if (hdev->claimed & HID_CLAIMED_HIDRAW)
1747 		hidraw_disconnect(hdev);
1748 	hdev->claimed = 0;
1749 }
1750 EXPORT_SYMBOL_GPL(hid_disconnect);
1751 
1752 /**
1753  * hid_hw_start - start underlying HW
1754  * @hdev: hid device
1755  * @connect_mask: which outputs to connect, see HID_CONNECT_*
1756  *
1757  * Call this in probe function *after* hid_parse. This will setup HW
1758  * buffers and start the device (if not defeirred to device open).
1759  * hid_hw_stop must be called if this was successful.
1760  */
1761 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
1762 {
1763 	int error;
1764 
1765 	error = hdev->ll_driver->start(hdev);
1766 	if (error)
1767 		return error;
1768 
1769 	if (connect_mask) {
1770 		error = hid_connect(hdev, connect_mask);
1771 		if (error) {
1772 			hdev->ll_driver->stop(hdev);
1773 			return error;
1774 		}
1775 	}
1776 
1777 	return 0;
1778 }
1779 EXPORT_SYMBOL_GPL(hid_hw_start);
1780 
1781 /**
1782  * hid_hw_stop - stop underlying HW
1783  * @hdev: hid device
1784  *
1785  * This is usually called from remove function or from probe when something
1786  * failed and hid_hw_start was called already.
1787  */
1788 void hid_hw_stop(struct hid_device *hdev)
1789 {
1790 	hid_disconnect(hdev);
1791 	hdev->ll_driver->stop(hdev);
1792 }
1793 EXPORT_SYMBOL_GPL(hid_hw_stop);
1794 
1795 /**
1796  * hid_hw_open - signal underlying HW to start delivering events
1797  * @hdev: hid device
1798  *
1799  * Tell underlying HW to start delivering events from the device.
1800  * This function should be called sometime after successful call
1801  * to hid_hiw_start().
1802  */
1803 int hid_hw_open(struct hid_device *hdev)
1804 {
1805 	int ret;
1806 
1807 	ret = mutex_lock_killable(&hdev->ll_open_lock);
1808 	if (ret)
1809 		return ret;
1810 
1811 	if (!hdev->ll_open_count++) {
1812 		ret = hdev->ll_driver->open(hdev);
1813 		if (ret)
1814 			hdev->ll_open_count--;
1815 	}
1816 
1817 	mutex_unlock(&hdev->ll_open_lock);
1818 	return ret;
1819 }
1820 EXPORT_SYMBOL_GPL(hid_hw_open);
1821 
1822 /**
1823  * hid_hw_close - signal underlaying HW to stop delivering events
1824  *
1825  * @hdev: hid device
1826  *
1827  * This function indicates that we are not interested in the events
1828  * from this device anymore. Delivery of events may or may not stop,
1829  * depending on the number of users still outstanding.
1830  */
1831 void hid_hw_close(struct hid_device *hdev)
1832 {
1833 	mutex_lock(&hdev->ll_open_lock);
1834 	if (!--hdev->ll_open_count)
1835 		hdev->ll_driver->close(hdev);
1836 	mutex_unlock(&hdev->ll_open_lock);
1837 }
1838 EXPORT_SYMBOL_GPL(hid_hw_close);
1839 
1840 struct hid_dynid {
1841 	struct list_head list;
1842 	struct hid_device_id id;
1843 };
1844 
1845 /**
1846  * store_new_id - add a new HID device ID to this driver and re-probe devices
1847  * @driver: target device driver
1848  * @buf: buffer for scanning device ID data
1849  * @count: input size
1850  *
1851  * Adds a new dynamic hid device ID to this driver,
1852  * and causes the driver to probe for all devices again.
1853  */
1854 static ssize_t new_id_store(struct device_driver *drv, const char *buf,
1855 		size_t count)
1856 {
1857 	struct hid_driver *hdrv = to_hid_driver(drv);
1858 	struct hid_dynid *dynid;
1859 	__u32 bus, vendor, product;
1860 	unsigned long driver_data = 0;
1861 	int ret;
1862 
1863 	ret = sscanf(buf, "%x %x %x %lx",
1864 			&bus, &vendor, &product, &driver_data);
1865 	if (ret < 3)
1866 		return -EINVAL;
1867 
1868 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
1869 	if (!dynid)
1870 		return -ENOMEM;
1871 
1872 	dynid->id.bus = bus;
1873 	dynid->id.group = HID_GROUP_ANY;
1874 	dynid->id.vendor = vendor;
1875 	dynid->id.product = product;
1876 	dynid->id.driver_data = driver_data;
1877 
1878 	spin_lock(&hdrv->dyn_lock);
1879 	list_add_tail(&dynid->list, &hdrv->dyn_list);
1880 	spin_unlock(&hdrv->dyn_lock);
1881 
1882 	ret = driver_attach(&hdrv->driver);
1883 
1884 	return ret ? : count;
1885 }
1886 static DRIVER_ATTR_WO(new_id);
1887 
1888 static struct attribute *hid_drv_attrs[] = {
1889 	&driver_attr_new_id.attr,
1890 	NULL,
1891 };
1892 ATTRIBUTE_GROUPS(hid_drv);
1893 
1894 static void hid_free_dynids(struct hid_driver *hdrv)
1895 {
1896 	struct hid_dynid *dynid, *n;
1897 
1898 	spin_lock(&hdrv->dyn_lock);
1899 	list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
1900 		list_del(&dynid->list);
1901 		kfree(dynid);
1902 	}
1903 	spin_unlock(&hdrv->dyn_lock);
1904 }
1905 
1906 const struct hid_device_id *hid_match_device(struct hid_device *hdev,
1907 					     struct hid_driver *hdrv)
1908 {
1909 	struct hid_dynid *dynid;
1910 
1911 	spin_lock(&hdrv->dyn_lock);
1912 	list_for_each_entry(dynid, &hdrv->dyn_list, list) {
1913 		if (hid_match_one_id(hdev, &dynid->id)) {
1914 			spin_unlock(&hdrv->dyn_lock);
1915 			return &dynid->id;
1916 		}
1917 	}
1918 	spin_unlock(&hdrv->dyn_lock);
1919 
1920 	return hid_match_id(hdev, hdrv->id_table);
1921 }
1922 EXPORT_SYMBOL_GPL(hid_match_device);
1923 
1924 static int hid_bus_match(struct device *dev, struct device_driver *drv)
1925 {
1926 	struct hid_driver *hdrv = to_hid_driver(drv);
1927 	struct hid_device *hdev = to_hid_device(dev);
1928 
1929 	return hid_match_device(hdev, hdrv) != NULL;
1930 }
1931 
1932 static int hid_device_probe(struct device *dev)
1933 {
1934 	struct hid_driver *hdrv = to_hid_driver(dev->driver);
1935 	struct hid_device *hdev = to_hid_device(dev);
1936 	const struct hid_device_id *id;
1937 	int ret = 0;
1938 
1939 	if (down_interruptible(&hdev->driver_input_lock)) {
1940 		ret = -EINTR;
1941 		goto end;
1942 	}
1943 	hdev->io_started = false;
1944 
1945 	if (!hdev->driver) {
1946 		id = hid_match_device(hdev, hdrv);
1947 		if (id == NULL) {
1948 			ret = -ENODEV;
1949 			goto unlock;
1950 		}
1951 
1952 		if (hdrv->match) {
1953 			if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
1954 				ret = -ENODEV;
1955 				goto unlock;
1956 			}
1957 		} else {
1958 			/*
1959 			 * hid-generic implements .match(), so if
1960 			 * hid_ignore_special_drivers is set, we can safely
1961 			 * return.
1962 			 */
1963 			if (hid_ignore_special_drivers) {
1964 				ret = -ENODEV;
1965 				goto unlock;
1966 			}
1967 		}
1968 
1969 		/* reset the quirks that has been previously set */
1970 		hdev->quirks = hid_lookup_quirk(hdev);
1971 		hdev->driver = hdrv;
1972 		if (hdrv->probe) {
1973 			ret = hdrv->probe(hdev, id);
1974 		} else { /* default probe */
1975 			ret = hid_open_report(hdev);
1976 			if (!ret)
1977 				ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
1978 		}
1979 		if (ret) {
1980 			hid_close_report(hdev);
1981 			hdev->driver = NULL;
1982 		}
1983 	}
1984 unlock:
1985 	if (!hdev->io_started)
1986 		up(&hdev->driver_input_lock);
1987 end:
1988 	return ret;
1989 }
1990 
1991 static int hid_device_remove(struct device *dev)
1992 {
1993 	struct hid_device *hdev = to_hid_device(dev);
1994 	struct hid_driver *hdrv;
1995 	int ret = 0;
1996 
1997 	if (down_interruptible(&hdev->driver_input_lock)) {
1998 		ret = -EINTR;
1999 		goto end;
2000 	}
2001 	hdev->io_started = false;
2002 
2003 	hdrv = hdev->driver;
2004 	if (hdrv) {
2005 		if (hdrv->remove)
2006 			hdrv->remove(hdev);
2007 		else /* default remove */
2008 			hid_hw_stop(hdev);
2009 		hid_close_report(hdev);
2010 		hdev->driver = NULL;
2011 	}
2012 
2013 	if (!hdev->io_started)
2014 		up(&hdev->driver_input_lock);
2015 end:
2016 	return ret;
2017 }
2018 
2019 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2020 			     char *buf)
2021 {
2022 	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2023 
2024 	return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2025 			 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2026 }
2027 static DEVICE_ATTR_RO(modalias);
2028 
2029 static struct attribute *hid_dev_attrs[] = {
2030 	&dev_attr_modalias.attr,
2031 	NULL,
2032 };
2033 static struct bin_attribute *hid_dev_bin_attrs[] = {
2034 	&dev_bin_attr_report_desc,
2035 	NULL
2036 };
2037 static const struct attribute_group hid_dev_group = {
2038 	.attrs = hid_dev_attrs,
2039 	.bin_attrs = hid_dev_bin_attrs,
2040 };
2041 __ATTRIBUTE_GROUPS(hid_dev);
2042 
2043 static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2044 {
2045 	struct hid_device *hdev = to_hid_device(dev);
2046 
2047 	if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2048 			hdev->bus, hdev->vendor, hdev->product))
2049 		return -ENOMEM;
2050 
2051 	if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2052 		return -ENOMEM;
2053 
2054 	if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2055 		return -ENOMEM;
2056 
2057 	if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2058 		return -ENOMEM;
2059 
2060 	if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2061 			   hdev->bus, hdev->group, hdev->vendor, hdev->product))
2062 		return -ENOMEM;
2063 
2064 	return 0;
2065 }
2066 
2067 struct bus_type hid_bus_type = {
2068 	.name		= "hid",
2069 	.dev_groups	= hid_dev_groups,
2070 	.drv_groups	= hid_drv_groups,
2071 	.match		= hid_bus_match,
2072 	.probe		= hid_device_probe,
2073 	.remove		= hid_device_remove,
2074 	.uevent		= hid_uevent,
2075 };
2076 EXPORT_SYMBOL(hid_bus_type);
2077 
2078 int hid_add_device(struct hid_device *hdev)
2079 {
2080 	static atomic_t id = ATOMIC_INIT(0);
2081 	int ret;
2082 
2083 	if (WARN_ON(hdev->status & HID_STAT_ADDED))
2084 		return -EBUSY;
2085 
2086 	hdev->quirks = hid_lookup_quirk(hdev);
2087 
2088 	/* we need to kill them here, otherwise they will stay allocated to
2089 	 * wait for coming driver */
2090 	if (hid_ignore(hdev))
2091 		return -ENODEV;
2092 
2093 	/*
2094 	 * Check for the mandatory transport channel.
2095 	 */
2096 	 if (!hdev->ll_driver->raw_request) {
2097 		hid_err(hdev, "transport driver missing .raw_request()\n");
2098 		return -EINVAL;
2099 	 }
2100 
2101 	/*
2102 	 * Read the device report descriptor once and use as template
2103 	 * for the driver-specific modifications.
2104 	 */
2105 	ret = hdev->ll_driver->parse(hdev);
2106 	if (ret)
2107 		return ret;
2108 	if (!hdev->dev_rdesc)
2109 		return -ENODEV;
2110 
2111 	/*
2112 	 * Scan generic devices for group information
2113 	 */
2114 	if (hid_ignore_special_drivers) {
2115 		hdev->group = HID_GROUP_GENERIC;
2116 	} else if (!hdev->group &&
2117 		   !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2118 		ret = hid_scan_report(hdev);
2119 		if (ret)
2120 			hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2121 	}
2122 
2123 	/* XXX hack, any other cleaner solution after the driver core
2124 	 * is converted to allow more than 20 bytes as the device name? */
2125 	dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2126 		     hdev->vendor, hdev->product, atomic_inc_return(&id));
2127 
2128 	hid_debug_register(hdev, dev_name(&hdev->dev));
2129 	ret = device_add(&hdev->dev);
2130 	if (!ret)
2131 		hdev->status |= HID_STAT_ADDED;
2132 	else
2133 		hid_debug_unregister(hdev);
2134 
2135 	return ret;
2136 }
2137 EXPORT_SYMBOL_GPL(hid_add_device);
2138 
2139 /**
2140  * hid_allocate_device - allocate new hid device descriptor
2141  *
2142  * Allocate and initialize hid device, so that hid_destroy_device might be
2143  * used to free it.
2144  *
2145  * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2146  * error value.
2147  */
2148 struct hid_device *hid_allocate_device(void)
2149 {
2150 	struct hid_device *hdev;
2151 	int ret = -ENOMEM;
2152 
2153 	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2154 	if (hdev == NULL)
2155 		return ERR_PTR(ret);
2156 
2157 	device_initialize(&hdev->dev);
2158 	hdev->dev.release = hid_device_release;
2159 	hdev->dev.bus = &hid_bus_type;
2160 	device_enable_async_suspend(&hdev->dev);
2161 
2162 	hid_close_report(hdev);
2163 
2164 	init_waitqueue_head(&hdev->debug_wait);
2165 	INIT_LIST_HEAD(&hdev->debug_list);
2166 	spin_lock_init(&hdev->debug_list_lock);
2167 	sema_init(&hdev->driver_input_lock, 1);
2168 	mutex_init(&hdev->ll_open_lock);
2169 
2170 	return hdev;
2171 }
2172 EXPORT_SYMBOL_GPL(hid_allocate_device);
2173 
2174 static void hid_remove_device(struct hid_device *hdev)
2175 {
2176 	if (hdev->status & HID_STAT_ADDED) {
2177 		device_del(&hdev->dev);
2178 		hid_debug_unregister(hdev);
2179 		hdev->status &= ~HID_STAT_ADDED;
2180 	}
2181 	kfree(hdev->dev_rdesc);
2182 	hdev->dev_rdesc = NULL;
2183 	hdev->dev_rsize = 0;
2184 }
2185 
2186 /**
2187  * hid_destroy_device - free previously allocated device
2188  *
2189  * @hdev: hid device
2190  *
2191  * If you allocate hid_device through hid_allocate_device, you should ever
2192  * free by this function.
2193  */
2194 void hid_destroy_device(struct hid_device *hdev)
2195 {
2196 	hid_remove_device(hdev);
2197 	put_device(&hdev->dev);
2198 }
2199 EXPORT_SYMBOL_GPL(hid_destroy_device);
2200 
2201 
2202 static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2203 {
2204 	struct hid_driver *hdrv = data;
2205 	struct hid_device *hdev = to_hid_device(dev);
2206 
2207 	if (hdev->driver == hdrv &&
2208 	    !hdrv->match(hdev, hid_ignore_special_drivers))
2209 		return device_reprobe(dev);
2210 
2211 	return 0;
2212 }
2213 
2214 static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2215 {
2216 	struct hid_driver *hdrv = to_hid_driver(drv);
2217 
2218 	if (hdrv->match) {
2219 		bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2220 				 __hid_bus_reprobe_drivers);
2221 	}
2222 
2223 	return 0;
2224 }
2225 
2226 static int __bus_removed_driver(struct device_driver *drv, void *data)
2227 {
2228 	return bus_rescan_devices(&hid_bus_type);
2229 }
2230 
2231 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2232 		const char *mod_name)
2233 {
2234 	int ret;
2235 
2236 	hdrv->driver.name = hdrv->name;
2237 	hdrv->driver.bus = &hid_bus_type;
2238 	hdrv->driver.owner = owner;
2239 	hdrv->driver.mod_name = mod_name;
2240 
2241 	INIT_LIST_HEAD(&hdrv->dyn_list);
2242 	spin_lock_init(&hdrv->dyn_lock);
2243 
2244 	ret = driver_register(&hdrv->driver);
2245 
2246 	if (ret == 0)
2247 		bus_for_each_drv(&hid_bus_type, NULL, NULL,
2248 				 __hid_bus_driver_added);
2249 
2250 	return ret;
2251 }
2252 EXPORT_SYMBOL_GPL(__hid_register_driver);
2253 
2254 void hid_unregister_driver(struct hid_driver *hdrv)
2255 {
2256 	driver_unregister(&hdrv->driver);
2257 	hid_free_dynids(hdrv);
2258 
2259 	bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2260 }
2261 EXPORT_SYMBOL_GPL(hid_unregister_driver);
2262 
2263 int hid_check_keys_pressed(struct hid_device *hid)
2264 {
2265 	struct hid_input *hidinput;
2266 	int i;
2267 
2268 	if (!(hid->claimed & HID_CLAIMED_INPUT))
2269 		return 0;
2270 
2271 	list_for_each_entry(hidinput, &hid->inputs, list) {
2272 		for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2273 			if (hidinput->input->key[i])
2274 				return 1;
2275 	}
2276 
2277 	return 0;
2278 }
2279 
2280 EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2281 
2282 static int __init hid_init(void)
2283 {
2284 	int ret;
2285 
2286 	if (hid_debug)
2287 		pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2288 			"debugfs is now used for inspecting the device (report descriptor, reports)\n");
2289 
2290 	ret = bus_register(&hid_bus_type);
2291 	if (ret) {
2292 		pr_err("can't register hid bus\n");
2293 		goto err;
2294 	}
2295 
2296 	ret = hidraw_init();
2297 	if (ret)
2298 		goto err_bus;
2299 
2300 	hid_debug_init();
2301 
2302 	return 0;
2303 err_bus:
2304 	bus_unregister(&hid_bus_type);
2305 err:
2306 	return ret;
2307 }
2308 
2309 static void __exit hid_exit(void)
2310 {
2311 	hid_debug_exit();
2312 	hidraw_exit();
2313 	bus_unregister(&hid_bus_type);
2314 	hid_quirks_exit(HID_BUS_ANY);
2315 }
2316 
2317 module_init(hid_init);
2318 module_exit(hid_exit);
2319 
2320 MODULE_AUTHOR("Andreas Gal");
2321 MODULE_AUTHOR("Vojtech Pavlik");
2322 MODULE_AUTHOR("Jiri Kosina");
2323 MODULE_LICENSE("GPL");
2324