xref: /openbmc/linux/drivers/hid/hid-core.c (revision 1830dad34c070161fda2ff1db77b39ffa78aa380)
1 /*
2  *  HID support for Linux
3  *
4  *  Copyright (c) 1999 Andreas Gal
5  *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
6  *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
7  *  Copyright (c) 2006-2012 Jiri Kosina
8  */
9 
10 /*
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the Free
13  * Software Foundation; either version 2 of the License, or (at your option)
14  * any later version.
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/mm.h>
25 #include <linux/spinlock.h>
26 #include <asm/unaligned.h>
27 #include <asm/byteorder.h>
28 #include <linux/input.h>
29 #include <linux/wait.h>
30 #include <linux/vmalloc.h>
31 #include <linux/sched.h>
32 #include <linux/semaphore.h>
33 
34 #include <linux/hid.h>
35 #include <linux/hiddev.h>
36 #include <linux/hid-debug.h>
37 #include <linux/hidraw.h>
38 
39 #include "hid-ids.h"
40 
41 /*
42  * Version Information
43  */
44 
45 #define DRIVER_DESC "HID core driver"
46 
47 int hid_debug = 0;
48 module_param_named(debug, hid_debug, int, 0600);
49 MODULE_PARM_DESC(debug, "toggle HID debugging messages");
50 EXPORT_SYMBOL_GPL(hid_debug);
51 
52 static int hid_ignore_special_drivers = 0;
53 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
54 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
55 
56 /*
57  * Register a new report for a device.
58  */
59 
60 struct hid_report *hid_register_report(struct hid_device *device,
61 				       unsigned int type, unsigned int id,
62 				       unsigned int application)
63 {
64 	struct hid_report_enum *report_enum = device->report_enum + type;
65 	struct hid_report *report;
66 
67 	if (id >= HID_MAX_IDS)
68 		return NULL;
69 	if (report_enum->report_id_hash[id])
70 		return report_enum->report_id_hash[id];
71 
72 	report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
73 	if (!report)
74 		return NULL;
75 
76 	if (id != 0)
77 		report_enum->numbered = 1;
78 
79 	report->id = id;
80 	report->type = type;
81 	report->size = 0;
82 	report->device = device;
83 	report->application = application;
84 	report_enum->report_id_hash[id] = report;
85 
86 	list_add_tail(&report->list, &report_enum->report_list);
87 
88 	return report;
89 }
90 EXPORT_SYMBOL_GPL(hid_register_report);
91 
92 /*
93  * Register a new field for this report.
94  */
95 
96 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
97 {
98 	struct hid_field *field;
99 
100 	if (report->maxfield == HID_MAX_FIELDS) {
101 		hid_err(report->device, "too many fields in report\n");
102 		return NULL;
103 	}
104 
105 	field = kzalloc((sizeof(struct hid_field) +
106 			 usages * sizeof(struct hid_usage) +
107 			 values * sizeof(unsigned)), GFP_KERNEL);
108 	if (!field)
109 		return NULL;
110 
111 	field->index = report->maxfield++;
112 	report->field[field->index] = field;
113 	field->usage = (struct hid_usage *)(field + 1);
114 	field->value = (s32 *)(field->usage + usages);
115 	field->report = report;
116 
117 	return field;
118 }
119 
120 /*
121  * Open a collection. The type/usage is pushed on the stack.
122  */
123 
124 static int open_collection(struct hid_parser *parser, unsigned type)
125 {
126 	struct hid_collection *collection;
127 	unsigned usage;
128 
129 	usage = parser->local.usage[0];
130 
131 	if (parser->collection_stack_ptr == parser->collection_stack_size) {
132 		unsigned int *collection_stack;
133 		unsigned int new_size = parser->collection_stack_size +
134 					HID_COLLECTION_STACK_SIZE;
135 
136 		collection_stack = krealloc(parser->collection_stack,
137 					    new_size * sizeof(unsigned int),
138 					    GFP_KERNEL);
139 		if (!collection_stack)
140 			return -ENOMEM;
141 
142 		parser->collection_stack = collection_stack;
143 		parser->collection_stack_size = new_size;
144 	}
145 
146 	if (parser->device->maxcollection == parser->device->collection_size) {
147 		collection = kmalloc(
148 				array3_size(sizeof(struct hid_collection),
149 					    parser->device->collection_size,
150 					    2),
151 				GFP_KERNEL);
152 		if (collection == NULL) {
153 			hid_err(parser->device, "failed to reallocate collection array\n");
154 			return -ENOMEM;
155 		}
156 		memcpy(collection, parser->device->collection,
157 			sizeof(struct hid_collection) *
158 			parser->device->collection_size);
159 		memset(collection + parser->device->collection_size, 0,
160 			sizeof(struct hid_collection) *
161 			parser->device->collection_size);
162 		kfree(parser->device->collection);
163 		parser->device->collection = collection;
164 		parser->device->collection_size *= 2;
165 	}
166 
167 	parser->collection_stack[parser->collection_stack_ptr++] =
168 		parser->device->maxcollection;
169 
170 	collection = parser->device->collection +
171 		parser->device->maxcollection++;
172 	collection->type = type;
173 	collection->usage = usage;
174 	collection->level = parser->collection_stack_ptr - 1;
175 
176 	if (type == HID_COLLECTION_APPLICATION)
177 		parser->device->maxapplication++;
178 
179 	return 0;
180 }
181 
182 /*
183  * Close a collection.
184  */
185 
186 static int close_collection(struct hid_parser *parser)
187 {
188 	if (!parser->collection_stack_ptr) {
189 		hid_err(parser->device, "collection stack underflow\n");
190 		return -EINVAL;
191 	}
192 	parser->collection_stack_ptr--;
193 	return 0;
194 }
195 
196 /*
197  * Climb up the stack, search for the specified collection type
198  * and return the usage.
199  */
200 
201 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
202 {
203 	struct hid_collection *collection = parser->device->collection;
204 	int n;
205 
206 	for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
207 		unsigned index = parser->collection_stack[n];
208 		if (collection[index].type == type)
209 			return collection[index].usage;
210 	}
211 	return 0; /* we know nothing about this usage type */
212 }
213 
214 /*
215  * Add a usage to the temporary parser table.
216  */
217 
218 static int hid_add_usage(struct hid_parser *parser, unsigned usage)
219 {
220 	if (parser->local.usage_index >= HID_MAX_USAGES) {
221 		hid_err(parser->device, "usage index exceeded\n");
222 		return -1;
223 	}
224 	parser->local.usage[parser->local.usage_index] = usage;
225 	parser->local.collection_index[parser->local.usage_index] =
226 		parser->collection_stack_ptr ?
227 		parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
228 	parser->local.usage_index++;
229 	return 0;
230 }
231 
232 /*
233  * Register a new field for this report.
234  */
235 
236 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
237 {
238 	struct hid_report *report;
239 	struct hid_field *field;
240 	unsigned int usages;
241 	unsigned int offset;
242 	unsigned int i;
243 	unsigned int application;
244 
245 	application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
246 
247 	report = hid_register_report(parser->device, report_type,
248 				     parser->global.report_id, application);
249 	if (!report) {
250 		hid_err(parser->device, "hid_register_report failed\n");
251 		return -1;
252 	}
253 
254 	/* Handle both signed and unsigned cases properly */
255 	if ((parser->global.logical_minimum < 0 &&
256 		parser->global.logical_maximum <
257 		parser->global.logical_minimum) ||
258 		(parser->global.logical_minimum >= 0 &&
259 		(__u32)parser->global.logical_maximum <
260 		(__u32)parser->global.logical_minimum)) {
261 		dbg_hid("logical range invalid 0x%x 0x%x\n",
262 			parser->global.logical_minimum,
263 			parser->global.logical_maximum);
264 		return -1;
265 	}
266 
267 	offset = report->size;
268 	report->size += parser->global.report_size * parser->global.report_count;
269 
270 	if (!parser->local.usage_index) /* Ignore padding fields */
271 		return 0;
272 
273 	usages = max_t(unsigned, parser->local.usage_index,
274 				 parser->global.report_count);
275 
276 	field = hid_register_field(report, usages, parser->global.report_count);
277 	if (!field)
278 		return 0;
279 
280 	field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
281 	field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
282 	field->application = application;
283 
284 	for (i = 0; i < usages; i++) {
285 		unsigned j = i;
286 		/* Duplicate the last usage we parsed if we have excess values */
287 		if (i >= parser->local.usage_index)
288 			j = parser->local.usage_index - 1;
289 		field->usage[i].hid = parser->local.usage[j];
290 		field->usage[i].collection_index =
291 			parser->local.collection_index[j];
292 		field->usage[i].usage_index = i;
293 	}
294 
295 	field->maxusage = usages;
296 	field->flags = flags;
297 	field->report_offset = offset;
298 	field->report_type = report_type;
299 	field->report_size = parser->global.report_size;
300 	field->report_count = parser->global.report_count;
301 	field->logical_minimum = parser->global.logical_minimum;
302 	field->logical_maximum = parser->global.logical_maximum;
303 	field->physical_minimum = parser->global.physical_minimum;
304 	field->physical_maximum = parser->global.physical_maximum;
305 	field->unit_exponent = parser->global.unit_exponent;
306 	field->unit = parser->global.unit;
307 
308 	return 0;
309 }
310 
311 /*
312  * Read data value from item.
313  */
314 
315 static u32 item_udata(struct hid_item *item)
316 {
317 	switch (item->size) {
318 	case 1: return item->data.u8;
319 	case 2: return item->data.u16;
320 	case 4: return item->data.u32;
321 	}
322 	return 0;
323 }
324 
325 static s32 item_sdata(struct hid_item *item)
326 {
327 	switch (item->size) {
328 	case 1: return item->data.s8;
329 	case 2: return item->data.s16;
330 	case 4: return item->data.s32;
331 	}
332 	return 0;
333 }
334 
335 /*
336  * Process a global item.
337  */
338 
339 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
340 {
341 	__s32 raw_value;
342 	switch (item->tag) {
343 	case HID_GLOBAL_ITEM_TAG_PUSH:
344 
345 		if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
346 			hid_err(parser->device, "global environment stack overflow\n");
347 			return -1;
348 		}
349 
350 		memcpy(parser->global_stack + parser->global_stack_ptr++,
351 			&parser->global, sizeof(struct hid_global));
352 		return 0;
353 
354 	case HID_GLOBAL_ITEM_TAG_POP:
355 
356 		if (!parser->global_stack_ptr) {
357 			hid_err(parser->device, "global environment stack underflow\n");
358 			return -1;
359 		}
360 
361 		memcpy(&parser->global, parser->global_stack +
362 			--parser->global_stack_ptr, sizeof(struct hid_global));
363 		return 0;
364 
365 	case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
366 		parser->global.usage_page = item_udata(item);
367 		return 0;
368 
369 	case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
370 		parser->global.logical_minimum = item_sdata(item);
371 		return 0;
372 
373 	case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
374 		if (parser->global.logical_minimum < 0)
375 			parser->global.logical_maximum = item_sdata(item);
376 		else
377 			parser->global.logical_maximum = item_udata(item);
378 		return 0;
379 
380 	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
381 		parser->global.physical_minimum = item_sdata(item);
382 		return 0;
383 
384 	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
385 		if (parser->global.physical_minimum < 0)
386 			parser->global.physical_maximum = item_sdata(item);
387 		else
388 			parser->global.physical_maximum = item_udata(item);
389 		return 0;
390 
391 	case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
392 		/* Many devices provide unit exponent as a two's complement
393 		 * nibble due to the common misunderstanding of HID
394 		 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
395 		 * both this and the standard encoding. */
396 		raw_value = item_sdata(item);
397 		if (!(raw_value & 0xfffffff0))
398 			parser->global.unit_exponent = hid_snto32(raw_value, 4);
399 		else
400 			parser->global.unit_exponent = raw_value;
401 		return 0;
402 
403 	case HID_GLOBAL_ITEM_TAG_UNIT:
404 		parser->global.unit = item_udata(item);
405 		return 0;
406 
407 	case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
408 		parser->global.report_size = item_udata(item);
409 		if (parser->global.report_size > 128) {
410 			hid_err(parser->device, "invalid report_size %d\n",
411 					parser->global.report_size);
412 			return -1;
413 		}
414 		return 0;
415 
416 	case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
417 		parser->global.report_count = item_udata(item);
418 		if (parser->global.report_count > HID_MAX_USAGES) {
419 			hid_err(parser->device, "invalid report_count %d\n",
420 					parser->global.report_count);
421 			return -1;
422 		}
423 		return 0;
424 
425 	case HID_GLOBAL_ITEM_TAG_REPORT_ID:
426 		parser->global.report_id = item_udata(item);
427 		if (parser->global.report_id == 0 ||
428 		    parser->global.report_id >= HID_MAX_IDS) {
429 			hid_err(parser->device, "report_id %u is invalid\n",
430 				parser->global.report_id);
431 			return -1;
432 		}
433 		return 0;
434 
435 	default:
436 		hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
437 		return -1;
438 	}
439 }
440 
441 /*
442  * Process a local item.
443  */
444 
445 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
446 {
447 	__u32 data;
448 	unsigned n;
449 	__u32 count;
450 
451 	data = item_udata(item);
452 
453 	switch (item->tag) {
454 	case HID_LOCAL_ITEM_TAG_DELIMITER:
455 
456 		if (data) {
457 			/*
458 			 * We treat items before the first delimiter
459 			 * as global to all usage sets (branch 0).
460 			 * In the moment we process only these global
461 			 * items and the first delimiter set.
462 			 */
463 			if (parser->local.delimiter_depth != 0) {
464 				hid_err(parser->device, "nested delimiters\n");
465 				return -1;
466 			}
467 			parser->local.delimiter_depth++;
468 			parser->local.delimiter_branch++;
469 		} else {
470 			if (parser->local.delimiter_depth < 1) {
471 				hid_err(parser->device, "bogus close delimiter\n");
472 				return -1;
473 			}
474 			parser->local.delimiter_depth--;
475 		}
476 		return 0;
477 
478 	case HID_LOCAL_ITEM_TAG_USAGE:
479 
480 		if (parser->local.delimiter_branch > 1) {
481 			dbg_hid("alternative usage ignored\n");
482 			return 0;
483 		}
484 
485 		if (item->size <= 2)
486 			data = (parser->global.usage_page << 16) + data;
487 
488 		return hid_add_usage(parser, data);
489 
490 	case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
491 
492 		if (parser->local.delimiter_branch > 1) {
493 			dbg_hid("alternative usage ignored\n");
494 			return 0;
495 		}
496 
497 		if (item->size <= 2)
498 			data = (parser->global.usage_page << 16) + data;
499 
500 		parser->local.usage_minimum = data;
501 		return 0;
502 
503 	case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
504 
505 		if (parser->local.delimiter_branch > 1) {
506 			dbg_hid("alternative usage ignored\n");
507 			return 0;
508 		}
509 
510 		if (item->size <= 2)
511 			data = (parser->global.usage_page << 16) + data;
512 
513 		count = data - parser->local.usage_minimum;
514 		if (count + parser->local.usage_index >= HID_MAX_USAGES) {
515 			/*
516 			 * We do not warn if the name is not set, we are
517 			 * actually pre-scanning the device.
518 			 */
519 			if (dev_name(&parser->device->dev))
520 				hid_warn(parser->device,
521 					 "ignoring exceeding usage max\n");
522 			data = HID_MAX_USAGES - parser->local.usage_index +
523 				parser->local.usage_minimum - 1;
524 			if (data <= 0) {
525 				hid_err(parser->device,
526 					"no more usage index available\n");
527 				return -1;
528 			}
529 		}
530 
531 		for (n = parser->local.usage_minimum; n <= data; n++)
532 			if (hid_add_usage(parser, n)) {
533 				dbg_hid("hid_add_usage failed\n");
534 				return -1;
535 			}
536 		return 0;
537 
538 	default:
539 
540 		dbg_hid("unknown local item tag 0x%x\n", item->tag);
541 		return 0;
542 	}
543 	return 0;
544 }
545 
546 /*
547  * Process a main item.
548  */
549 
550 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
551 {
552 	__u32 data;
553 	int ret;
554 
555 	data = item_udata(item);
556 
557 	switch (item->tag) {
558 	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
559 		ret = open_collection(parser, data & 0xff);
560 		break;
561 	case HID_MAIN_ITEM_TAG_END_COLLECTION:
562 		ret = close_collection(parser);
563 		break;
564 	case HID_MAIN_ITEM_TAG_INPUT:
565 		ret = hid_add_field(parser, HID_INPUT_REPORT, data);
566 		break;
567 	case HID_MAIN_ITEM_TAG_OUTPUT:
568 		ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
569 		break;
570 	case HID_MAIN_ITEM_TAG_FEATURE:
571 		ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
572 		break;
573 	default:
574 		hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
575 		ret = 0;
576 	}
577 
578 	memset(&parser->local, 0, sizeof(parser->local));	/* Reset the local parser environment */
579 
580 	return ret;
581 }
582 
583 /*
584  * Process a reserved item.
585  */
586 
587 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
588 {
589 	dbg_hid("reserved item type, tag 0x%x\n", item->tag);
590 	return 0;
591 }
592 
593 /*
594  * Free a report and all registered fields. The field->usage and
595  * field->value table's are allocated behind the field, so we need
596  * only to free(field) itself.
597  */
598 
599 static void hid_free_report(struct hid_report *report)
600 {
601 	unsigned n;
602 
603 	for (n = 0; n < report->maxfield; n++)
604 		kfree(report->field[n]);
605 	kfree(report);
606 }
607 
608 /*
609  * Close report. This function returns the device
610  * state to the point prior to hid_open_report().
611  */
612 static void hid_close_report(struct hid_device *device)
613 {
614 	unsigned i, j;
615 
616 	for (i = 0; i < HID_REPORT_TYPES; i++) {
617 		struct hid_report_enum *report_enum = device->report_enum + i;
618 
619 		for (j = 0; j < HID_MAX_IDS; j++) {
620 			struct hid_report *report = report_enum->report_id_hash[j];
621 			if (report)
622 				hid_free_report(report);
623 		}
624 		memset(report_enum, 0, sizeof(*report_enum));
625 		INIT_LIST_HEAD(&report_enum->report_list);
626 	}
627 
628 	kfree(device->rdesc);
629 	device->rdesc = NULL;
630 	device->rsize = 0;
631 
632 	kfree(device->collection);
633 	device->collection = NULL;
634 	device->collection_size = 0;
635 	device->maxcollection = 0;
636 	device->maxapplication = 0;
637 
638 	device->status &= ~HID_STAT_PARSED;
639 }
640 
641 /*
642  * Free a device structure, all reports, and all fields.
643  */
644 
645 static void hid_device_release(struct device *dev)
646 {
647 	struct hid_device *hid = to_hid_device(dev);
648 
649 	hid_close_report(hid);
650 	kfree(hid->dev_rdesc);
651 	kfree(hid);
652 }
653 
654 /*
655  * Fetch a report description item from the data stream. We support long
656  * items, though they are not used yet.
657  */
658 
659 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
660 {
661 	u8 b;
662 
663 	if ((end - start) <= 0)
664 		return NULL;
665 
666 	b = *start++;
667 
668 	item->type = (b >> 2) & 3;
669 	item->tag  = (b >> 4) & 15;
670 
671 	if (item->tag == HID_ITEM_TAG_LONG) {
672 
673 		item->format = HID_ITEM_FORMAT_LONG;
674 
675 		if ((end - start) < 2)
676 			return NULL;
677 
678 		item->size = *start++;
679 		item->tag  = *start++;
680 
681 		if ((end - start) < item->size)
682 			return NULL;
683 
684 		item->data.longdata = start;
685 		start += item->size;
686 		return start;
687 	}
688 
689 	item->format = HID_ITEM_FORMAT_SHORT;
690 	item->size = b & 3;
691 
692 	switch (item->size) {
693 	case 0:
694 		return start;
695 
696 	case 1:
697 		if ((end - start) < 1)
698 			return NULL;
699 		item->data.u8 = *start++;
700 		return start;
701 
702 	case 2:
703 		if ((end - start) < 2)
704 			return NULL;
705 		item->data.u16 = get_unaligned_le16(start);
706 		start = (__u8 *)((__le16 *)start + 1);
707 		return start;
708 
709 	case 3:
710 		item->size++;
711 		if ((end - start) < 4)
712 			return NULL;
713 		item->data.u32 = get_unaligned_le32(start);
714 		start = (__u8 *)((__le32 *)start + 1);
715 		return start;
716 	}
717 
718 	return NULL;
719 }
720 
721 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
722 {
723 	struct hid_device *hid = parser->device;
724 
725 	if (usage == HID_DG_CONTACTID)
726 		hid->group = HID_GROUP_MULTITOUCH;
727 }
728 
729 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
730 {
731 	if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
732 	    parser->global.report_size == 8)
733 		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
734 }
735 
736 static void hid_scan_collection(struct hid_parser *parser, unsigned type)
737 {
738 	struct hid_device *hid = parser->device;
739 	int i;
740 
741 	if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
742 	    type == HID_COLLECTION_PHYSICAL)
743 		hid->group = HID_GROUP_SENSOR_HUB;
744 
745 	if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
746 	    hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
747 	    hid->group == HID_GROUP_MULTITOUCH)
748 		hid->group = HID_GROUP_GENERIC;
749 
750 	if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
751 		for (i = 0; i < parser->local.usage_index; i++)
752 			if (parser->local.usage[i] == HID_GD_POINTER)
753 				parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
754 
755 	if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
756 		parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
757 }
758 
759 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
760 {
761 	__u32 data;
762 	int i;
763 
764 	data = item_udata(item);
765 
766 	switch (item->tag) {
767 	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
768 		hid_scan_collection(parser, data & 0xff);
769 		break;
770 	case HID_MAIN_ITEM_TAG_END_COLLECTION:
771 		break;
772 	case HID_MAIN_ITEM_TAG_INPUT:
773 		/* ignore constant inputs, they will be ignored by hid-input */
774 		if (data & HID_MAIN_ITEM_CONSTANT)
775 			break;
776 		for (i = 0; i < parser->local.usage_index; i++)
777 			hid_scan_input_usage(parser, parser->local.usage[i]);
778 		break;
779 	case HID_MAIN_ITEM_TAG_OUTPUT:
780 		break;
781 	case HID_MAIN_ITEM_TAG_FEATURE:
782 		for (i = 0; i < parser->local.usage_index; i++)
783 			hid_scan_feature_usage(parser, parser->local.usage[i]);
784 		break;
785 	}
786 
787 	/* Reset the local parser environment */
788 	memset(&parser->local, 0, sizeof(parser->local));
789 
790 	return 0;
791 }
792 
793 /*
794  * Scan a report descriptor before the device is added to the bus.
795  * Sets device groups and other properties that determine what driver
796  * to load.
797  */
798 static int hid_scan_report(struct hid_device *hid)
799 {
800 	struct hid_parser *parser;
801 	struct hid_item item;
802 	__u8 *start = hid->dev_rdesc;
803 	__u8 *end = start + hid->dev_rsize;
804 	static int (*dispatch_type[])(struct hid_parser *parser,
805 				      struct hid_item *item) = {
806 		hid_scan_main,
807 		hid_parser_global,
808 		hid_parser_local,
809 		hid_parser_reserved
810 	};
811 
812 	parser = vzalloc(sizeof(struct hid_parser));
813 	if (!parser)
814 		return -ENOMEM;
815 
816 	parser->device = hid;
817 	hid->group = HID_GROUP_GENERIC;
818 
819 	/*
820 	 * The parsing is simpler than the one in hid_open_report() as we should
821 	 * be robust against hid errors. Those errors will be raised by
822 	 * hid_open_report() anyway.
823 	 */
824 	while ((start = fetch_item(start, end, &item)) != NULL)
825 		dispatch_type[item.type](parser, &item);
826 
827 	/*
828 	 * Handle special flags set during scanning.
829 	 */
830 	if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
831 	    (hid->group == HID_GROUP_MULTITOUCH))
832 		hid->group = HID_GROUP_MULTITOUCH_WIN_8;
833 
834 	/*
835 	 * Vendor specific handlings
836 	 */
837 	switch (hid->vendor) {
838 	case USB_VENDOR_ID_WACOM:
839 		hid->group = HID_GROUP_WACOM;
840 		break;
841 	case USB_VENDOR_ID_SYNAPTICS:
842 		if (hid->group == HID_GROUP_GENERIC)
843 			if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
844 			    && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
845 				/*
846 				 * hid-rmi should take care of them,
847 				 * not hid-generic
848 				 */
849 				hid->group = HID_GROUP_RMI;
850 		break;
851 	}
852 
853 	kfree(parser->collection_stack);
854 	vfree(parser);
855 	return 0;
856 }
857 
858 /**
859  * hid_parse_report - parse device report
860  *
861  * @device: hid device
862  * @start: report start
863  * @size: report size
864  *
865  * Allocate the device report as read by the bus driver. This function should
866  * only be called from parse() in ll drivers.
867  */
868 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
869 {
870 	hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
871 	if (!hid->dev_rdesc)
872 		return -ENOMEM;
873 	hid->dev_rsize = size;
874 	return 0;
875 }
876 EXPORT_SYMBOL_GPL(hid_parse_report);
877 
878 static const char * const hid_report_names[] = {
879 	"HID_INPUT_REPORT",
880 	"HID_OUTPUT_REPORT",
881 	"HID_FEATURE_REPORT",
882 };
883 /**
884  * hid_validate_values - validate existing device report's value indexes
885  *
886  * @device: hid device
887  * @type: which report type to examine
888  * @id: which report ID to examine (0 for first)
889  * @field_index: which report field to examine
890  * @report_counts: expected number of values
891  *
892  * Validate the number of values in a given field of a given report, after
893  * parsing.
894  */
895 struct hid_report *hid_validate_values(struct hid_device *hid,
896 				       unsigned int type, unsigned int id,
897 				       unsigned int field_index,
898 				       unsigned int report_counts)
899 {
900 	struct hid_report *report;
901 
902 	if (type > HID_FEATURE_REPORT) {
903 		hid_err(hid, "invalid HID report type %u\n", type);
904 		return NULL;
905 	}
906 
907 	if (id >= HID_MAX_IDS) {
908 		hid_err(hid, "invalid HID report id %u\n", id);
909 		return NULL;
910 	}
911 
912 	/*
913 	 * Explicitly not using hid_get_report() here since it depends on
914 	 * ->numbered being checked, which may not always be the case when
915 	 * drivers go to access report values.
916 	 */
917 	if (id == 0) {
918 		/*
919 		 * Validating on id 0 means we should examine the first
920 		 * report in the list.
921 		 */
922 		report = list_entry(
923 				hid->report_enum[type].report_list.next,
924 				struct hid_report, list);
925 	} else {
926 		report = hid->report_enum[type].report_id_hash[id];
927 	}
928 	if (!report) {
929 		hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
930 		return NULL;
931 	}
932 	if (report->maxfield <= field_index) {
933 		hid_err(hid, "not enough fields in %s %u\n",
934 			hid_report_names[type], id);
935 		return NULL;
936 	}
937 	if (report->field[field_index]->report_count < report_counts) {
938 		hid_err(hid, "not enough values in %s %u field %u\n",
939 			hid_report_names[type], id, field_index);
940 		return NULL;
941 	}
942 	return report;
943 }
944 EXPORT_SYMBOL_GPL(hid_validate_values);
945 
946 /**
947  * hid_open_report - open a driver-specific device report
948  *
949  * @device: hid device
950  *
951  * Parse a report description into a hid_device structure. Reports are
952  * enumerated, fields are attached to these reports.
953  * 0 returned on success, otherwise nonzero error value.
954  *
955  * This function (or the equivalent hid_parse() macro) should only be
956  * called from probe() in drivers, before starting the device.
957  */
958 int hid_open_report(struct hid_device *device)
959 {
960 	struct hid_parser *parser;
961 	struct hid_item item;
962 	unsigned int size;
963 	__u8 *start;
964 	__u8 *buf;
965 	__u8 *end;
966 	int ret;
967 	static int (*dispatch_type[])(struct hid_parser *parser,
968 				      struct hid_item *item) = {
969 		hid_parser_main,
970 		hid_parser_global,
971 		hid_parser_local,
972 		hid_parser_reserved
973 	};
974 
975 	if (WARN_ON(device->status & HID_STAT_PARSED))
976 		return -EBUSY;
977 
978 	start = device->dev_rdesc;
979 	if (WARN_ON(!start))
980 		return -ENODEV;
981 	size = device->dev_rsize;
982 
983 	buf = kmemdup(start, size, GFP_KERNEL);
984 	if (buf == NULL)
985 		return -ENOMEM;
986 
987 	if (device->driver->report_fixup)
988 		start = device->driver->report_fixup(device, buf, &size);
989 	else
990 		start = buf;
991 
992 	start = kmemdup(start, size, GFP_KERNEL);
993 	kfree(buf);
994 	if (start == NULL)
995 		return -ENOMEM;
996 
997 	device->rdesc = start;
998 	device->rsize = size;
999 
1000 	parser = vzalloc(sizeof(struct hid_parser));
1001 	if (!parser) {
1002 		ret = -ENOMEM;
1003 		goto alloc_err;
1004 	}
1005 
1006 	parser->device = device;
1007 
1008 	end = start + size;
1009 
1010 	device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1011 				     sizeof(struct hid_collection), GFP_KERNEL);
1012 	if (!device->collection) {
1013 		ret = -ENOMEM;
1014 		goto err;
1015 	}
1016 	device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1017 
1018 	ret = -EINVAL;
1019 	while ((start = fetch_item(start, end, &item)) != NULL) {
1020 
1021 		if (item.format != HID_ITEM_FORMAT_SHORT) {
1022 			hid_err(device, "unexpected long global item\n");
1023 			goto err;
1024 		}
1025 
1026 		if (dispatch_type[item.type](parser, &item)) {
1027 			hid_err(device, "item %u %u %u %u parsing failed\n",
1028 				item.format, (unsigned)item.size,
1029 				(unsigned)item.type, (unsigned)item.tag);
1030 			goto err;
1031 		}
1032 
1033 		if (start == end) {
1034 			if (parser->collection_stack_ptr) {
1035 				hid_err(device, "unbalanced collection at end of report description\n");
1036 				goto err;
1037 			}
1038 			if (parser->local.delimiter_depth) {
1039 				hid_err(device, "unbalanced delimiter at end of report description\n");
1040 				goto err;
1041 			}
1042 			kfree(parser->collection_stack);
1043 			vfree(parser);
1044 			device->status |= HID_STAT_PARSED;
1045 			return 0;
1046 		}
1047 	}
1048 
1049 	hid_err(device, "item fetching failed at offset %d\n", (int)(end - start));
1050 err:
1051 	kfree(parser->collection_stack);
1052 alloc_err:
1053 	vfree(parser);
1054 	hid_close_report(device);
1055 	return ret;
1056 }
1057 EXPORT_SYMBOL_GPL(hid_open_report);
1058 
1059 /*
1060  * Convert a signed n-bit integer to signed 32-bit integer. Common
1061  * cases are done through the compiler, the screwed things has to be
1062  * done by hand.
1063  */
1064 
1065 static s32 snto32(__u32 value, unsigned n)
1066 {
1067 	switch (n) {
1068 	case 8:  return ((__s8)value);
1069 	case 16: return ((__s16)value);
1070 	case 32: return ((__s32)value);
1071 	}
1072 	return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1073 }
1074 
1075 s32 hid_snto32(__u32 value, unsigned n)
1076 {
1077 	return snto32(value, n);
1078 }
1079 EXPORT_SYMBOL_GPL(hid_snto32);
1080 
1081 /*
1082  * Convert a signed 32-bit integer to a signed n-bit integer.
1083  */
1084 
1085 static u32 s32ton(__s32 value, unsigned n)
1086 {
1087 	s32 a = value >> (n - 1);
1088 	if (a && a != -1)
1089 		return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1090 	return value & ((1 << n) - 1);
1091 }
1092 
1093 /*
1094  * Extract/implement a data field from/to a little endian report (bit array).
1095  *
1096  * Code sort-of follows HID spec:
1097  *     http://www.usb.org/developers/hidpage/HID1_11.pdf
1098  *
1099  * While the USB HID spec allows unlimited length bit fields in "report
1100  * descriptors", most devices never use more than 16 bits.
1101  * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1102  * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1103  */
1104 
1105 static u32 __extract(u8 *report, unsigned offset, int n)
1106 {
1107 	unsigned int idx = offset / 8;
1108 	unsigned int bit_nr = 0;
1109 	unsigned int bit_shift = offset % 8;
1110 	int bits_to_copy = 8 - bit_shift;
1111 	u32 value = 0;
1112 	u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1113 
1114 	while (n > 0) {
1115 		value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1116 		n -= bits_to_copy;
1117 		bit_nr += bits_to_copy;
1118 		bits_to_copy = 8;
1119 		bit_shift = 0;
1120 		idx++;
1121 	}
1122 
1123 	return value & mask;
1124 }
1125 
1126 u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1127 			unsigned offset, unsigned n)
1128 {
1129 	if (n > 32) {
1130 		hid_warn(hid, "hid_field_extract() called with n (%d) > 32! (%s)\n",
1131 			 n, current->comm);
1132 		n = 32;
1133 	}
1134 
1135 	return __extract(report, offset, n);
1136 }
1137 EXPORT_SYMBOL_GPL(hid_field_extract);
1138 
1139 /*
1140  * "implement" : set bits in a little endian bit stream.
1141  * Same concepts as "extract" (see comments above).
1142  * The data mangled in the bit stream remains in little endian
1143  * order the whole time. It make more sense to talk about
1144  * endianness of register values by considering a register
1145  * a "cached" copy of the little endian bit stream.
1146  */
1147 
1148 static void __implement(u8 *report, unsigned offset, int n, u32 value)
1149 {
1150 	unsigned int idx = offset / 8;
1151 	unsigned int bit_shift = offset % 8;
1152 	int bits_to_set = 8 - bit_shift;
1153 
1154 	while (n - bits_to_set >= 0) {
1155 		report[idx] &= ~(0xff << bit_shift);
1156 		report[idx] |= value << bit_shift;
1157 		value >>= bits_to_set;
1158 		n -= bits_to_set;
1159 		bits_to_set = 8;
1160 		bit_shift = 0;
1161 		idx++;
1162 	}
1163 
1164 	/* last nibble */
1165 	if (n) {
1166 		u8 bit_mask = ((1U << n) - 1);
1167 		report[idx] &= ~(bit_mask << bit_shift);
1168 		report[idx] |= value << bit_shift;
1169 	}
1170 }
1171 
1172 static void implement(const struct hid_device *hid, u8 *report,
1173 		      unsigned offset, unsigned n, u32 value)
1174 {
1175 	if (unlikely(n > 32)) {
1176 		hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1177 			 __func__, n, current->comm);
1178 		n = 32;
1179 	} else if (n < 32) {
1180 		u32 m = (1U << n) - 1;
1181 
1182 		if (unlikely(value > m)) {
1183 			hid_warn(hid,
1184 				 "%s() called with too large value %d (n: %d)! (%s)\n",
1185 				 __func__, value, n, current->comm);
1186 			WARN_ON(1);
1187 			value &= m;
1188 		}
1189 	}
1190 
1191 	__implement(report, offset, n, value);
1192 }
1193 
1194 /*
1195  * Search an array for a value.
1196  */
1197 
1198 static int search(__s32 *array, __s32 value, unsigned n)
1199 {
1200 	while (n--) {
1201 		if (*array++ == value)
1202 			return 0;
1203 	}
1204 	return -1;
1205 }
1206 
1207 /**
1208  * hid_match_report - check if driver's raw_event should be called
1209  *
1210  * @hid: hid device
1211  * @report_type: type to match against
1212  *
1213  * compare hid->driver->report_table->report_type to report->type
1214  */
1215 static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1216 {
1217 	const struct hid_report_id *id = hid->driver->report_table;
1218 
1219 	if (!id) /* NULL means all */
1220 		return 1;
1221 
1222 	for (; id->report_type != HID_TERMINATOR; id++)
1223 		if (id->report_type == HID_ANY_ID ||
1224 				id->report_type == report->type)
1225 			return 1;
1226 	return 0;
1227 }
1228 
1229 /**
1230  * hid_match_usage - check if driver's event should be called
1231  *
1232  * @hid: hid device
1233  * @usage: usage to match against
1234  *
1235  * compare hid->driver->usage_table->usage_{type,code} to
1236  * usage->usage_{type,code}
1237  */
1238 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1239 {
1240 	const struct hid_usage_id *id = hid->driver->usage_table;
1241 
1242 	if (!id) /* NULL means all */
1243 		return 1;
1244 
1245 	for (; id->usage_type != HID_ANY_ID - 1; id++)
1246 		if ((id->usage_hid == HID_ANY_ID ||
1247 				id->usage_hid == usage->hid) &&
1248 				(id->usage_type == HID_ANY_ID ||
1249 				id->usage_type == usage->type) &&
1250 				(id->usage_code == HID_ANY_ID ||
1251 				 id->usage_code == usage->code))
1252 			return 1;
1253 	return 0;
1254 }
1255 
1256 static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1257 		struct hid_usage *usage, __s32 value, int interrupt)
1258 {
1259 	struct hid_driver *hdrv = hid->driver;
1260 	int ret;
1261 
1262 	if (!list_empty(&hid->debug_list))
1263 		hid_dump_input(hid, usage, value);
1264 
1265 	if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1266 		ret = hdrv->event(hid, field, usage, value);
1267 		if (ret != 0) {
1268 			if (ret < 0)
1269 				hid_err(hid, "%s's event failed with %d\n",
1270 						hdrv->name, ret);
1271 			return;
1272 		}
1273 	}
1274 
1275 	if (hid->claimed & HID_CLAIMED_INPUT)
1276 		hidinput_hid_event(hid, field, usage, value);
1277 	if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1278 		hid->hiddev_hid_event(hid, field, usage, value);
1279 }
1280 
1281 /*
1282  * Analyse a received field, and fetch the data from it. The field
1283  * content is stored for next report processing (we do differential
1284  * reporting to the layer).
1285  */
1286 
1287 static void hid_input_field(struct hid_device *hid, struct hid_field *field,
1288 			    __u8 *data, int interrupt)
1289 {
1290 	unsigned n;
1291 	unsigned count = field->report_count;
1292 	unsigned offset = field->report_offset;
1293 	unsigned size = field->report_size;
1294 	__s32 min = field->logical_minimum;
1295 	__s32 max = field->logical_maximum;
1296 	__s32 *value;
1297 
1298 	value = kmalloc_array(count, sizeof(__s32), GFP_ATOMIC);
1299 	if (!value)
1300 		return;
1301 
1302 	for (n = 0; n < count; n++) {
1303 
1304 		value[n] = min < 0 ?
1305 			snto32(hid_field_extract(hid, data, offset + n * size,
1306 			       size), size) :
1307 			hid_field_extract(hid, data, offset + n * size, size);
1308 
1309 		/* Ignore report if ErrorRollOver */
1310 		if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1311 		    value[n] >= min && value[n] <= max &&
1312 		    value[n] - min < field->maxusage &&
1313 		    field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
1314 			goto exit;
1315 	}
1316 
1317 	for (n = 0; n < count; n++) {
1318 
1319 		if (HID_MAIN_ITEM_VARIABLE & field->flags) {
1320 			hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
1321 			continue;
1322 		}
1323 
1324 		if (field->value[n] >= min && field->value[n] <= max
1325 			&& field->value[n] - min < field->maxusage
1326 			&& field->usage[field->value[n] - min].hid
1327 			&& search(value, field->value[n], count))
1328 				hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
1329 
1330 		if (value[n] >= min && value[n] <= max
1331 			&& value[n] - min < field->maxusage
1332 			&& field->usage[value[n] - min].hid
1333 			&& search(field->value, value[n], count))
1334 				hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
1335 	}
1336 
1337 	memcpy(field->value, value, count * sizeof(__s32));
1338 exit:
1339 	kfree(value);
1340 }
1341 
1342 /*
1343  * Output the field into the report.
1344  */
1345 
1346 static void hid_output_field(const struct hid_device *hid,
1347 			     struct hid_field *field, __u8 *data)
1348 {
1349 	unsigned count = field->report_count;
1350 	unsigned offset = field->report_offset;
1351 	unsigned size = field->report_size;
1352 	unsigned n;
1353 
1354 	for (n = 0; n < count; n++) {
1355 		if (field->logical_minimum < 0)	/* signed values */
1356 			implement(hid, data, offset + n * size, size,
1357 				  s32ton(field->value[n], size));
1358 		else				/* unsigned values */
1359 			implement(hid, data, offset + n * size, size,
1360 				  field->value[n]);
1361 	}
1362 }
1363 
1364 /*
1365  * Create a report. 'data' has to be allocated using
1366  * hid_alloc_report_buf() so that it has proper size.
1367  */
1368 
1369 void hid_output_report(struct hid_report *report, __u8 *data)
1370 {
1371 	unsigned n;
1372 
1373 	if (report->id > 0)
1374 		*data++ = report->id;
1375 
1376 	memset(data, 0, ((report->size - 1) >> 3) + 1);
1377 	for (n = 0; n < report->maxfield; n++)
1378 		hid_output_field(report->device, report->field[n], data);
1379 }
1380 EXPORT_SYMBOL_GPL(hid_output_report);
1381 
1382 /*
1383  * Allocator for buffer that is going to be passed to hid_output_report()
1384  */
1385 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1386 {
1387 	/*
1388 	 * 7 extra bytes are necessary to achieve proper functionality
1389 	 * of implement() working on 8 byte chunks
1390 	 */
1391 
1392 	u32 len = hid_report_len(report) + 7;
1393 
1394 	return kmalloc(len, flags);
1395 }
1396 EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1397 
1398 /*
1399  * Set a field value. The report this field belongs to has to be
1400  * created and transferred to the device, to set this value in the
1401  * device.
1402  */
1403 
1404 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1405 {
1406 	unsigned size;
1407 
1408 	if (!field)
1409 		return -1;
1410 
1411 	size = field->report_size;
1412 
1413 	hid_dump_input(field->report->device, field->usage + offset, value);
1414 
1415 	if (offset >= field->report_count) {
1416 		hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1417 				offset, field->report_count);
1418 		return -1;
1419 	}
1420 	if (field->logical_minimum < 0) {
1421 		if (value != snto32(s32ton(value, size), size)) {
1422 			hid_err(field->report->device, "value %d is out of range\n", value);
1423 			return -1;
1424 		}
1425 	}
1426 	field->value[offset] = value;
1427 	return 0;
1428 }
1429 EXPORT_SYMBOL_GPL(hid_set_field);
1430 
1431 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1432 		const u8 *data)
1433 {
1434 	struct hid_report *report;
1435 	unsigned int n = 0;	/* Normally report number is 0 */
1436 
1437 	/* Device uses numbered reports, data[0] is report number */
1438 	if (report_enum->numbered)
1439 		n = *data;
1440 
1441 	report = report_enum->report_id_hash[n];
1442 	if (report == NULL)
1443 		dbg_hid("undefined report_id %u received\n", n);
1444 
1445 	return report;
1446 }
1447 
1448 /*
1449  * Implement a generic .request() callback, using .raw_request()
1450  * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1451  */
1452 void __hid_request(struct hid_device *hid, struct hid_report *report,
1453 		int reqtype)
1454 {
1455 	char *buf;
1456 	int ret;
1457 	u32 len;
1458 
1459 	buf = hid_alloc_report_buf(report, GFP_KERNEL);
1460 	if (!buf)
1461 		return;
1462 
1463 	len = hid_report_len(report);
1464 
1465 	if (reqtype == HID_REQ_SET_REPORT)
1466 		hid_output_report(report, buf);
1467 
1468 	ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1469 					  report->type, reqtype);
1470 	if (ret < 0) {
1471 		dbg_hid("unable to complete request: %d\n", ret);
1472 		goto out;
1473 	}
1474 
1475 	if (reqtype == HID_REQ_GET_REPORT)
1476 		hid_input_report(hid, report->type, buf, ret, 0);
1477 
1478 out:
1479 	kfree(buf);
1480 }
1481 EXPORT_SYMBOL_GPL(__hid_request);
1482 
1483 int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size,
1484 		int interrupt)
1485 {
1486 	struct hid_report_enum *report_enum = hid->report_enum + type;
1487 	struct hid_report *report;
1488 	struct hid_driver *hdrv;
1489 	unsigned int a;
1490 	u32 rsize, csize = size;
1491 	u8 *cdata = data;
1492 	int ret = 0;
1493 
1494 	report = hid_get_report(report_enum, data);
1495 	if (!report)
1496 		goto out;
1497 
1498 	if (report_enum->numbered) {
1499 		cdata++;
1500 		csize--;
1501 	}
1502 
1503 	rsize = ((report->size - 1) >> 3) + 1;
1504 
1505 	if (rsize > HID_MAX_BUFFER_SIZE)
1506 		rsize = HID_MAX_BUFFER_SIZE;
1507 
1508 	if (csize < rsize) {
1509 		dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1510 				csize, rsize);
1511 		memset(cdata + csize, 0, rsize - csize);
1512 	}
1513 
1514 	if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1515 		hid->hiddev_report_event(hid, report);
1516 	if (hid->claimed & HID_CLAIMED_HIDRAW) {
1517 		ret = hidraw_report_event(hid, data, size);
1518 		if (ret)
1519 			goto out;
1520 	}
1521 
1522 	if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
1523 		for (a = 0; a < report->maxfield; a++)
1524 			hid_input_field(hid, report->field[a], cdata, interrupt);
1525 		hdrv = hid->driver;
1526 		if (hdrv && hdrv->report)
1527 			hdrv->report(hid, report);
1528 	}
1529 
1530 	if (hid->claimed & HID_CLAIMED_INPUT)
1531 		hidinput_report_event(hid, report);
1532 out:
1533 	return ret;
1534 }
1535 EXPORT_SYMBOL_GPL(hid_report_raw_event);
1536 
1537 /**
1538  * hid_input_report - report data from lower layer (usb, bt...)
1539  *
1540  * @hid: hid device
1541  * @type: HID report type (HID_*_REPORT)
1542  * @data: report contents
1543  * @size: size of data parameter
1544  * @interrupt: distinguish between interrupt and control transfers
1545  *
1546  * This is data entry for lower layers.
1547  */
1548 int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt)
1549 {
1550 	struct hid_report_enum *report_enum;
1551 	struct hid_driver *hdrv;
1552 	struct hid_report *report;
1553 	int ret = 0;
1554 
1555 	if (!hid)
1556 		return -ENODEV;
1557 
1558 	if (down_trylock(&hid->driver_input_lock))
1559 		return -EBUSY;
1560 
1561 	if (!hid->driver) {
1562 		ret = -ENODEV;
1563 		goto unlock;
1564 	}
1565 	report_enum = hid->report_enum + type;
1566 	hdrv = hid->driver;
1567 
1568 	if (!size) {
1569 		dbg_hid("empty report\n");
1570 		ret = -1;
1571 		goto unlock;
1572 	}
1573 
1574 	/* Avoid unnecessary overhead if debugfs is disabled */
1575 	if (!list_empty(&hid->debug_list))
1576 		hid_dump_report(hid, type, data, size);
1577 
1578 	report = hid_get_report(report_enum, data);
1579 
1580 	if (!report) {
1581 		ret = -1;
1582 		goto unlock;
1583 	}
1584 
1585 	if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1586 		ret = hdrv->raw_event(hid, report, data, size);
1587 		if (ret < 0)
1588 			goto unlock;
1589 	}
1590 
1591 	ret = hid_report_raw_event(hid, type, data, size, interrupt);
1592 
1593 unlock:
1594 	up(&hid->driver_input_lock);
1595 	return ret;
1596 }
1597 EXPORT_SYMBOL_GPL(hid_input_report);
1598 
1599 bool hid_match_one_id(const struct hid_device *hdev,
1600 		      const struct hid_device_id *id)
1601 {
1602 	return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
1603 		(id->group == HID_GROUP_ANY || id->group == hdev->group) &&
1604 		(id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1605 		(id->product == HID_ANY_ID || id->product == hdev->product);
1606 }
1607 
1608 const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
1609 		const struct hid_device_id *id)
1610 {
1611 	for (; id->bus; id++)
1612 		if (hid_match_one_id(hdev, id))
1613 			return id;
1614 
1615 	return NULL;
1616 }
1617 
1618 static const struct hid_device_id hid_hiddev_list[] = {
1619 	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1620 	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1621 	{ }
1622 };
1623 
1624 static bool hid_hiddev(struct hid_device *hdev)
1625 {
1626 	return !!hid_match_id(hdev, hid_hiddev_list);
1627 }
1628 
1629 
1630 static ssize_t
1631 read_report_descriptor(struct file *filp, struct kobject *kobj,
1632 		struct bin_attribute *attr,
1633 		char *buf, loff_t off, size_t count)
1634 {
1635 	struct device *dev = kobj_to_dev(kobj);
1636 	struct hid_device *hdev = to_hid_device(dev);
1637 
1638 	if (off >= hdev->rsize)
1639 		return 0;
1640 
1641 	if (off + count > hdev->rsize)
1642 		count = hdev->rsize - off;
1643 
1644 	memcpy(buf, hdev->rdesc + off, count);
1645 
1646 	return count;
1647 }
1648 
1649 static ssize_t
1650 show_country(struct device *dev, struct device_attribute *attr,
1651 		char *buf)
1652 {
1653 	struct hid_device *hdev = to_hid_device(dev);
1654 
1655 	return sprintf(buf, "%02x\n", hdev->country & 0xff);
1656 }
1657 
1658 static struct bin_attribute dev_bin_attr_report_desc = {
1659 	.attr = { .name = "report_descriptor", .mode = 0444 },
1660 	.read = read_report_descriptor,
1661 	.size = HID_MAX_DESCRIPTOR_SIZE,
1662 };
1663 
1664 static const struct device_attribute dev_attr_country = {
1665 	.attr = { .name = "country", .mode = 0444 },
1666 	.show = show_country,
1667 };
1668 
1669 int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1670 {
1671 	static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1672 		"Joystick", "Gamepad", "Keyboard", "Keypad",
1673 		"Multi-Axis Controller"
1674 	};
1675 	const char *type, *bus;
1676 	char buf[64] = "";
1677 	unsigned int i;
1678 	int len;
1679 	int ret;
1680 
1681 	if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1682 		connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1683 	if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1684 		connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1685 	if (hdev->bus != BUS_USB)
1686 		connect_mask &= ~HID_CONNECT_HIDDEV;
1687 	if (hid_hiddev(hdev))
1688 		connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1689 
1690 	if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1691 				connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1692 		hdev->claimed |= HID_CLAIMED_INPUT;
1693 
1694 	if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1695 			!hdev->hiddev_connect(hdev,
1696 				connect_mask & HID_CONNECT_HIDDEV_FORCE))
1697 		hdev->claimed |= HID_CLAIMED_HIDDEV;
1698 	if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1699 		hdev->claimed |= HID_CLAIMED_HIDRAW;
1700 
1701 	if (connect_mask & HID_CONNECT_DRIVER)
1702 		hdev->claimed |= HID_CLAIMED_DRIVER;
1703 
1704 	/* Drivers with the ->raw_event callback set are not required to connect
1705 	 * to any other listener. */
1706 	if (!hdev->claimed && !hdev->driver->raw_event) {
1707 		hid_err(hdev, "device has no listeners, quitting\n");
1708 		return -ENODEV;
1709 	}
1710 
1711 	if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1712 			(connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1713 		hdev->ff_init(hdev);
1714 
1715 	len = 0;
1716 	if (hdev->claimed & HID_CLAIMED_INPUT)
1717 		len += sprintf(buf + len, "input");
1718 	if (hdev->claimed & HID_CLAIMED_HIDDEV)
1719 		len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1720 				((struct hiddev *)hdev->hiddev)->minor);
1721 	if (hdev->claimed & HID_CLAIMED_HIDRAW)
1722 		len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
1723 				((struct hidraw *)hdev->hidraw)->minor);
1724 
1725 	type = "Device";
1726 	for (i = 0; i < hdev->maxcollection; i++) {
1727 		struct hid_collection *col = &hdev->collection[i];
1728 		if (col->type == HID_COLLECTION_APPLICATION &&
1729 		   (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
1730 		   (col->usage & 0xffff) < ARRAY_SIZE(types)) {
1731 			type = types[col->usage & 0xffff];
1732 			break;
1733 		}
1734 	}
1735 
1736 	switch (hdev->bus) {
1737 	case BUS_USB:
1738 		bus = "USB";
1739 		break;
1740 	case BUS_BLUETOOTH:
1741 		bus = "BLUETOOTH";
1742 		break;
1743 	case BUS_I2C:
1744 		bus = "I2C";
1745 		break;
1746 	default:
1747 		bus = "<UNKNOWN>";
1748 	}
1749 
1750 	ret = device_create_file(&hdev->dev, &dev_attr_country);
1751 	if (ret)
1752 		hid_warn(hdev,
1753 			 "can't create sysfs country code attribute err: %d\n", ret);
1754 
1755 	hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
1756 		 buf, bus, hdev->version >> 8, hdev->version & 0xff,
1757 		 type, hdev->name, hdev->phys);
1758 
1759 	return 0;
1760 }
1761 EXPORT_SYMBOL_GPL(hid_connect);
1762 
1763 void hid_disconnect(struct hid_device *hdev)
1764 {
1765 	device_remove_file(&hdev->dev, &dev_attr_country);
1766 	if (hdev->claimed & HID_CLAIMED_INPUT)
1767 		hidinput_disconnect(hdev);
1768 	if (hdev->claimed & HID_CLAIMED_HIDDEV)
1769 		hdev->hiddev_disconnect(hdev);
1770 	if (hdev->claimed & HID_CLAIMED_HIDRAW)
1771 		hidraw_disconnect(hdev);
1772 	hdev->claimed = 0;
1773 }
1774 EXPORT_SYMBOL_GPL(hid_disconnect);
1775 
1776 /**
1777  * hid_hw_start - start underlying HW
1778  * @hdev: hid device
1779  * @connect_mask: which outputs to connect, see HID_CONNECT_*
1780  *
1781  * Call this in probe function *after* hid_parse. This will setup HW
1782  * buffers and start the device (if not defeirred to device open).
1783  * hid_hw_stop must be called if this was successful.
1784  */
1785 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
1786 {
1787 	int error;
1788 
1789 	error = hdev->ll_driver->start(hdev);
1790 	if (error)
1791 		return error;
1792 
1793 	if (connect_mask) {
1794 		error = hid_connect(hdev, connect_mask);
1795 		if (error) {
1796 			hdev->ll_driver->stop(hdev);
1797 			return error;
1798 		}
1799 	}
1800 
1801 	return 0;
1802 }
1803 EXPORT_SYMBOL_GPL(hid_hw_start);
1804 
1805 /**
1806  * hid_hw_stop - stop underlying HW
1807  * @hdev: hid device
1808  *
1809  * This is usually called from remove function or from probe when something
1810  * failed and hid_hw_start was called already.
1811  */
1812 void hid_hw_stop(struct hid_device *hdev)
1813 {
1814 	hid_disconnect(hdev);
1815 	hdev->ll_driver->stop(hdev);
1816 }
1817 EXPORT_SYMBOL_GPL(hid_hw_stop);
1818 
1819 /**
1820  * hid_hw_open - signal underlying HW to start delivering events
1821  * @hdev: hid device
1822  *
1823  * Tell underlying HW to start delivering events from the device.
1824  * This function should be called sometime after successful call
1825  * to hid_hw_start().
1826  */
1827 int hid_hw_open(struct hid_device *hdev)
1828 {
1829 	int ret;
1830 
1831 	ret = mutex_lock_killable(&hdev->ll_open_lock);
1832 	if (ret)
1833 		return ret;
1834 
1835 	if (!hdev->ll_open_count++) {
1836 		ret = hdev->ll_driver->open(hdev);
1837 		if (ret)
1838 			hdev->ll_open_count--;
1839 	}
1840 
1841 	mutex_unlock(&hdev->ll_open_lock);
1842 	return ret;
1843 }
1844 EXPORT_SYMBOL_GPL(hid_hw_open);
1845 
1846 /**
1847  * hid_hw_close - signal underlaying HW to stop delivering events
1848  *
1849  * @hdev: hid device
1850  *
1851  * This function indicates that we are not interested in the events
1852  * from this device anymore. Delivery of events may or may not stop,
1853  * depending on the number of users still outstanding.
1854  */
1855 void hid_hw_close(struct hid_device *hdev)
1856 {
1857 	mutex_lock(&hdev->ll_open_lock);
1858 	if (!--hdev->ll_open_count)
1859 		hdev->ll_driver->close(hdev);
1860 	mutex_unlock(&hdev->ll_open_lock);
1861 }
1862 EXPORT_SYMBOL_GPL(hid_hw_close);
1863 
1864 struct hid_dynid {
1865 	struct list_head list;
1866 	struct hid_device_id id;
1867 };
1868 
1869 /**
1870  * store_new_id - add a new HID device ID to this driver and re-probe devices
1871  * @driver: target device driver
1872  * @buf: buffer for scanning device ID data
1873  * @count: input size
1874  *
1875  * Adds a new dynamic hid device ID to this driver,
1876  * and causes the driver to probe for all devices again.
1877  */
1878 static ssize_t new_id_store(struct device_driver *drv, const char *buf,
1879 		size_t count)
1880 {
1881 	struct hid_driver *hdrv = to_hid_driver(drv);
1882 	struct hid_dynid *dynid;
1883 	__u32 bus, vendor, product;
1884 	unsigned long driver_data = 0;
1885 	int ret;
1886 
1887 	ret = sscanf(buf, "%x %x %x %lx",
1888 			&bus, &vendor, &product, &driver_data);
1889 	if (ret < 3)
1890 		return -EINVAL;
1891 
1892 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
1893 	if (!dynid)
1894 		return -ENOMEM;
1895 
1896 	dynid->id.bus = bus;
1897 	dynid->id.group = HID_GROUP_ANY;
1898 	dynid->id.vendor = vendor;
1899 	dynid->id.product = product;
1900 	dynid->id.driver_data = driver_data;
1901 
1902 	spin_lock(&hdrv->dyn_lock);
1903 	list_add_tail(&dynid->list, &hdrv->dyn_list);
1904 	spin_unlock(&hdrv->dyn_lock);
1905 
1906 	ret = driver_attach(&hdrv->driver);
1907 
1908 	return ret ? : count;
1909 }
1910 static DRIVER_ATTR_WO(new_id);
1911 
1912 static struct attribute *hid_drv_attrs[] = {
1913 	&driver_attr_new_id.attr,
1914 	NULL,
1915 };
1916 ATTRIBUTE_GROUPS(hid_drv);
1917 
1918 static void hid_free_dynids(struct hid_driver *hdrv)
1919 {
1920 	struct hid_dynid *dynid, *n;
1921 
1922 	spin_lock(&hdrv->dyn_lock);
1923 	list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
1924 		list_del(&dynid->list);
1925 		kfree(dynid);
1926 	}
1927 	spin_unlock(&hdrv->dyn_lock);
1928 }
1929 
1930 const struct hid_device_id *hid_match_device(struct hid_device *hdev,
1931 					     struct hid_driver *hdrv)
1932 {
1933 	struct hid_dynid *dynid;
1934 
1935 	spin_lock(&hdrv->dyn_lock);
1936 	list_for_each_entry(dynid, &hdrv->dyn_list, list) {
1937 		if (hid_match_one_id(hdev, &dynid->id)) {
1938 			spin_unlock(&hdrv->dyn_lock);
1939 			return &dynid->id;
1940 		}
1941 	}
1942 	spin_unlock(&hdrv->dyn_lock);
1943 
1944 	return hid_match_id(hdev, hdrv->id_table);
1945 }
1946 EXPORT_SYMBOL_GPL(hid_match_device);
1947 
1948 static int hid_bus_match(struct device *dev, struct device_driver *drv)
1949 {
1950 	struct hid_driver *hdrv = to_hid_driver(drv);
1951 	struct hid_device *hdev = to_hid_device(dev);
1952 
1953 	return hid_match_device(hdev, hdrv) != NULL;
1954 }
1955 
1956 /**
1957  * hid_compare_device_paths - check if both devices share the same path
1958  * @hdev_a: hid device
1959  * @hdev_b: hid device
1960  * @separator: char to use as separator
1961  *
1962  * Check if two devices share the same path up to the last occurrence of
1963  * the separator char. Both paths must exist (i.e., zero-length paths
1964  * don't match).
1965  */
1966 bool hid_compare_device_paths(struct hid_device *hdev_a,
1967 			      struct hid_device *hdev_b, char separator)
1968 {
1969 	int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
1970 	int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
1971 
1972 	if (n1 != n2 || n1 <= 0 || n2 <= 0)
1973 		return false;
1974 
1975 	return !strncmp(hdev_a->phys, hdev_b->phys, n1);
1976 }
1977 EXPORT_SYMBOL_GPL(hid_compare_device_paths);
1978 
1979 static int hid_device_probe(struct device *dev)
1980 {
1981 	struct hid_driver *hdrv = to_hid_driver(dev->driver);
1982 	struct hid_device *hdev = to_hid_device(dev);
1983 	const struct hid_device_id *id;
1984 	int ret = 0;
1985 
1986 	if (down_interruptible(&hdev->driver_input_lock)) {
1987 		ret = -EINTR;
1988 		goto end;
1989 	}
1990 	hdev->io_started = false;
1991 
1992 	clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
1993 
1994 	if (!hdev->driver) {
1995 		id = hid_match_device(hdev, hdrv);
1996 		if (id == NULL) {
1997 			ret = -ENODEV;
1998 			goto unlock;
1999 		}
2000 
2001 		if (hdrv->match) {
2002 			if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
2003 				ret = -ENODEV;
2004 				goto unlock;
2005 			}
2006 		} else {
2007 			/*
2008 			 * hid-generic implements .match(), so if
2009 			 * hid_ignore_special_drivers is set, we can safely
2010 			 * return.
2011 			 */
2012 			if (hid_ignore_special_drivers) {
2013 				ret = -ENODEV;
2014 				goto unlock;
2015 			}
2016 		}
2017 
2018 		/* reset the quirks that has been previously set */
2019 		hdev->quirks = hid_lookup_quirk(hdev);
2020 		hdev->driver = hdrv;
2021 		if (hdrv->probe) {
2022 			ret = hdrv->probe(hdev, id);
2023 		} else { /* default probe */
2024 			ret = hid_open_report(hdev);
2025 			if (!ret)
2026 				ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2027 		}
2028 		if (ret) {
2029 			hid_close_report(hdev);
2030 			hdev->driver = NULL;
2031 		}
2032 	}
2033 unlock:
2034 	if (!hdev->io_started)
2035 		up(&hdev->driver_input_lock);
2036 end:
2037 	return ret;
2038 }
2039 
2040 static int hid_device_remove(struct device *dev)
2041 {
2042 	struct hid_device *hdev = to_hid_device(dev);
2043 	struct hid_driver *hdrv;
2044 	int ret = 0;
2045 
2046 	if (down_interruptible(&hdev->driver_input_lock)) {
2047 		ret = -EINTR;
2048 		goto end;
2049 	}
2050 	hdev->io_started = false;
2051 
2052 	hdrv = hdev->driver;
2053 	if (hdrv) {
2054 		if (hdrv->remove)
2055 			hdrv->remove(hdev);
2056 		else /* default remove */
2057 			hid_hw_stop(hdev);
2058 		hid_close_report(hdev);
2059 		hdev->driver = NULL;
2060 	}
2061 
2062 	if (!hdev->io_started)
2063 		up(&hdev->driver_input_lock);
2064 end:
2065 	return ret;
2066 }
2067 
2068 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2069 			     char *buf)
2070 {
2071 	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2072 
2073 	return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2074 			 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2075 }
2076 static DEVICE_ATTR_RO(modalias);
2077 
2078 static struct attribute *hid_dev_attrs[] = {
2079 	&dev_attr_modalias.attr,
2080 	NULL,
2081 };
2082 static struct bin_attribute *hid_dev_bin_attrs[] = {
2083 	&dev_bin_attr_report_desc,
2084 	NULL
2085 };
2086 static const struct attribute_group hid_dev_group = {
2087 	.attrs = hid_dev_attrs,
2088 	.bin_attrs = hid_dev_bin_attrs,
2089 };
2090 __ATTRIBUTE_GROUPS(hid_dev);
2091 
2092 static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2093 {
2094 	struct hid_device *hdev = to_hid_device(dev);
2095 
2096 	if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2097 			hdev->bus, hdev->vendor, hdev->product))
2098 		return -ENOMEM;
2099 
2100 	if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2101 		return -ENOMEM;
2102 
2103 	if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2104 		return -ENOMEM;
2105 
2106 	if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2107 		return -ENOMEM;
2108 
2109 	if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2110 			   hdev->bus, hdev->group, hdev->vendor, hdev->product))
2111 		return -ENOMEM;
2112 
2113 	return 0;
2114 }
2115 
2116 struct bus_type hid_bus_type = {
2117 	.name		= "hid",
2118 	.dev_groups	= hid_dev_groups,
2119 	.drv_groups	= hid_drv_groups,
2120 	.match		= hid_bus_match,
2121 	.probe		= hid_device_probe,
2122 	.remove		= hid_device_remove,
2123 	.uevent		= hid_uevent,
2124 };
2125 EXPORT_SYMBOL(hid_bus_type);
2126 
2127 int hid_add_device(struct hid_device *hdev)
2128 {
2129 	static atomic_t id = ATOMIC_INIT(0);
2130 	int ret;
2131 
2132 	if (WARN_ON(hdev->status & HID_STAT_ADDED))
2133 		return -EBUSY;
2134 
2135 	hdev->quirks = hid_lookup_quirk(hdev);
2136 
2137 	/* we need to kill them here, otherwise they will stay allocated to
2138 	 * wait for coming driver */
2139 	if (hid_ignore(hdev))
2140 		return -ENODEV;
2141 
2142 	/*
2143 	 * Check for the mandatory transport channel.
2144 	 */
2145 	 if (!hdev->ll_driver->raw_request) {
2146 		hid_err(hdev, "transport driver missing .raw_request()\n");
2147 		return -EINVAL;
2148 	 }
2149 
2150 	/*
2151 	 * Read the device report descriptor once and use as template
2152 	 * for the driver-specific modifications.
2153 	 */
2154 	ret = hdev->ll_driver->parse(hdev);
2155 	if (ret)
2156 		return ret;
2157 	if (!hdev->dev_rdesc)
2158 		return -ENODEV;
2159 
2160 	/*
2161 	 * Scan generic devices for group information
2162 	 */
2163 	if (hid_ignore_special_drivers) {
2164 		hdev->group = HID_GROUP_GENERIC;
2165 	} else if (!hdev->group &&
2166 		   !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2167 		ret = hid_scan_report(hdev);
2168 		if (ret)
2169 			hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2170 	}
2171 
2172 	/* XXX hack, any other cleaner solution after the driver core
2173 	 * is converted to allow more than 20 bytes as the device name? */
2174 	dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2175 		     hdev->vendor, hdev->product, atomic_inc_return(&id));
2176 
2177 	hid_debug_register(hdev, dev_name(&hdev->dev));
2178 	ret = device_add(&hdev->dev);
2179 	if (!ret)
2180 		hdev->status |= HID_STAT_ADDED;
2181 	else
2182 		hid_debug_unregister(hdev);
2183 
2184 	return ret;
2185 }
2186 EXPORT_SYMBOL_GPL(hid_add_device);
2187 
2188 /**
2189  * hid_allocate_device - allocate new hid device descriptor
2190  *
2191  * Allocate and initialize hid device, so that hid_destroy_device might be
2192  * used to free it.
2193  *
2194  * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2195  * error value.
2196  */
2197 struct hid_device *hid_allocate_device(void)
2198 {
2199 	struct hid_device *hdev;
2200 	int ret = -ENOMEM;
2201 
2202 	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2203 	if (hdev == NULL)
2204 		return ERR_PTR(ret);
2205 
2206 	device_initialize(&hdev->dev);
2207 	hdev->dev.release = hid_device_release;
2208 	hdev->dev.bus = &hid_bus_type;
2209 	device_enable_async_suspend(&hdev->dev);
2210 
2211 	hid_close_report(hdev);
2212 
2213 	init_waitqueue_head(&hdev->debug_wait);
2214 	INIT_LIST_HEAD(&hdev->debug_list);
2215 	spin_lock_init(&hdev->debug_list_lock);
2216 	sema_init(&hdev->driver_input_lock, 1);
2217 	mutex_init(&hdev->ll_open_lock);
2218 
2219 	return hdev;
2220 }
2221 EXPORT_SYMBOL_GPL(hid_allocate_device);
2222 
2223 static void hid_remove_device(struct hid_device *hdev)
2224 {
2225 	if (hdev->status & HID_STAT_ADDED) {
2226 		device_del(&hdev->dev);
2227 		hid_debug_unregister(hdev);
2228 		hdev->status &= ~HID_STAT_ADDED;
2229 	}
2230 	kfree(hdev->dev_rdesc);
2231 	hdev->dev_rdesc = NULL;
2232 	hdev->dev_rsize = 0;
2233 }
2234 
2235 /**
2236  * hid_destroy_device - free previously allocated device
2237  *
2238  * @hdev: hid device
2239  *
2240  * If you allocate hid_device through hid_allocate_device, you should ever
2241  * free by this function.
2242  */
2243 void hid_destroy_device(struct hid_device *hdev)
2244 {
2245 	hid_remove_device(hdev);
2246 	put_device(&hdev->dev);
2247 }
2248 EXPORT_SYMBOL_GPL(hid_destroy_device);
2249 
2250 
2251 static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2252 {
2253 	struct hid_driver *hdrv = data;
2254 	struct hid_device *hdev = to_hid_device(dev);
2255 
2256 	if (hdev->driver == hdrv &&
2257 	    !hdrv->match(hdev, hid_ignore_special_drivers) &&
2258 	    !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2259 		return device_reprobe(dev);
2260 
2261 	return 0;
2262 }
2263 
2264 static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2265 {
2266 	struct hid_driver *hdrv = to_hid_driver(drv);
2267 
2268 	if (hdrv->match) {
2269 		bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2270 				 __hid_bus_reprobe_drivers);
2271 	}
2272 
2273 	return 0;
2274 }
2275 
2276 static int __bus_removed_driver(struct device_driver *drv, void *data)
2277 {
2278 	return bus_rescan_devices(&hid_bus_type);
2279 }
2280 
2281 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2282 		const char *mod_name)
2283 {
2284 	int ret;
2285 
2286 	hdrv->driver.name = hdrv->name;
2287 	hdrv->driver.bus = &hid_bus_type;
2288 	hdrv->driver.owner = owner;
2289 	hdrv->driver.mod_name = mod_name;
2290 
2291 	INIT_LIST_HEAD(&hdrv->dyn_list);
2292 	spin_lock_init(&hdrv->dyn_lock);
2293 
2294 	ret = driver_register(&hdrv->driver);
2295 
2296 	if (ret == 0)
2297 		bus_for_each_drv(&hid_bus_type, NULL, NULL,
2298 				 __hid_bus_driver_added);
2299 
2300 	return ret;
2301 }
2302 EXPORT_SYMBOL_GPL(__hid_register_driver);
2303 
2304 void hid_unregister_driver(struct hid_driver *hdrv)
2305 {
2306 	driver_unregister(&hdrv->driver);
2307 	hid_free_dynids(hdrv);
2308 
2309 	bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2310 }
2311 EXPORT_SYMBOL_GPL(hid_unregister_driver);
2312 
2313 int hid_check_keys_pressed(struct hid_device *hid)
2314 {
2315 	struct hid_input *hidinput;
2316 	int i;
2317 
2318 	if (!(hid->claimed & HID_CLAIMED_INPUT))
2319 		return 0;
2320 
2321 	list_for_each_entry(hidinput, &hid->inputs, list) {
2322 		for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2323 			if (hidinput->input->key[i])
2324 				return 1;
2325 	}
2326 
2327 	return 0;
2328 }
2329 
2330 EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2331 
2332 static int __init hid_init(void)
2333 {
2334 	int ret;
2335 
2336 	if (hid_debug)
2337 		pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2338 			"debugfs is now used for inspecting the device (report descriptor, reports)\n");
2339 
2340 	ret = bus_register(&hid_bus_type);
2341 	if (ret) {
2342 		pr_err("can't register hid bus\n");
2343 		goto err;
2344 	}
2345 
2346 	ret = hidraw_init();
2347 	if (ret)
2348 		goto err_bus;
2349 
2350 	hid_debug_init();
2351 
2352 	return 0;
2353 err_bus:
2354 	bus_unregister(&hid_bus_type);
2355 err:
2356 	return ret;
2357 }
2358 
2359 static void __exit hid_exit(void)
2360 {
2361 	hid_debug_exit();
2362 	hidraw_exit();
2363 	bus_unregister(&hid_bus_type);
2364 	hid_quirks_exit(HID_BUS_ANY);
2365 }
2366 
2367 module_init(hid_init);
2368 module_exit(hid_exit);
2369 
2370 MODULE_AUTHOR("Andreas Gal");
2371 MODULE_AUTHOR("Vojtech Pavlik");
2372 MODULE_AUTHOR("Jiri Kosina");
2373 MODULE_LICENSE("GPL");
2374