1 /* 2 * HID support for Linux 3 * 4 * Copyright (c) 1999 Andreas Gal 5 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz> 6 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc 7 * Copyright (c) 2006-2012 Jiri Kosina 8 */ 9 10 /* 11 * This program is free software; you can redistribute it and/or modify it 12 * under the terms of the GNU General Public License as published by the Free 13 * Software Foundation; either version 2 of the License, or (at your option) 14 * any later version. 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/module.h> 20 #include <linux/slab.h> 21 #include <linux/init.h> 22 #include <linux/kernel.h> 23 #include <linux/list.h> 24 #include <linux/mm.h> 25 #include <linux/spinlock.h> 26 #include <asm/unaligned.h> 27 #include <asm/byteorder.h> 28 #include <linux/input.h> 29 #include <linux/wait.h> 30 #include <linux/vmalloc.h> 31 #include <linux/sched.h> 32 #include <linux/semaphore.h> 33 34 #include <linux/hid.h> 35 #include <linux/hiddev.h> 36 #include <linux/hid-debug.h> 37 #include <linux/hidraw.h> 38 39 #include "hid-ids.h" 40 41 /* 42 * Version Information 43 */ 44 45 #define DRIVER_DESC "HID core driver" 46 47 int hid_debug = 0; 48 module_param_named(debug, hid_debug, int, 0600); 49 MODULE_PARM_DESC(debug, "toggle HID debugging messages"); 50 EXPORT_SYMBOL_GPL(hid_debug); 51 52 static int hid_ignore_special_drivers = 0; 53 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600); 54 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver"); 55 56 /* 57 * Register a new report for a device. 58 */ 59 60 struct hid_report *hid_register_report(struct hid_device *device, 61 unsigned int type, unsigned int id, 62 unsigned int application) 63 { 64 struct hid_report_enum *report_enum = device->report_enum + type; 65 struct hid_report *report; 66 67 if (id >= HID_MAX_IDS) 68 return NULL; 69 if (report_enum->report_id_hash[id]) 70 return report_enum->report_id_hash[id]; 71 72 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL); 73 if (!report) 74 return NULL; 75 76 if (id != 0) 77 report_enum->numbered = 1; 78 79 report->id = id; 80 report->type = type; 81 report->size = 0; 82 report->device = device; 83 report->application = application; 84 report_enum->report_id_hash[id] = report; 85 86 list_add_tail(&report->list, &report_enum->report_list); 87 88 return report; 89 } 90 EXPORT_SYMBOL_GPL(hid_register_report); 91 92 /* 93 * Register a new field for this report. 94 */ 95 96 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values) 97 { 98 struct hid_field *field; 99 100 if (report->maxfield == HID_MAX_FIELDS) { 101 hid_err(report->device, "too many fields in report\n"); 102 return NULL; 103 } 104 105 field = kzalloc((sizeof(struct hid_field) + 106 usages * sizeof(struct hid_usage) + 107 values * sizeof(unsigned)), GFP_KERNEL); 108 if (!field) 109 return NULL; 110 111 field->index = report->maxfield++; 112 report->field[field->index] = field; 113 field->usage = (struct hid_usage *)(field + 1); 114 field->value = (s32 *)(field->usage + usages); 115 field->report = report; 116 117 return field; 118 } 119 120 /* 121 * Open a collection. The type/usage is pushed on the stack. 122 */ 123 124 static int open_collection(struct hid_parser *parser, unsigned type) 125 { 126 struct hid_collection *collection; 127 unsigned usage; 128 129 usage = parser->local.usage[0]; 130 131 if (parser->collection_stack_ptr == parser->collection_stack_size) { 132 unsigned int *collection_stack; 133 unsigned int new_size = parser->collection_stack_size + 134 HID_COLLECTION_STACK_SIZE; 135 136 collection_stack = krealloc(parser->collection_stack, 137 new_size * sizeof(unsigned int), 138 GFP_KERNEL); 139 if (!collection_stack) 140 return -ENOMEM; 141 142 parser->collection_stack = collection_stack; 143 parser->collection_stack_size = new_size; 144 } 145 146 if (parser->device->maxcollection == parser->device->collection_size) { 147 collection = kmalloc( 148 array3_size(sizeof(struct hid_collection), 149 parser->device->collection_size, 150 2), 151 GFP_KERNEL); 152 if (collection == NULL) { 153 hid_err(parser->device, "failed to reallocate collection array\n"); 154 return -ENOMEM; 155 } 156 memcpy(collection, parser->device->collection, 157 sizeof(struct hid_collection) * 158 parser->device->collection_size); 159 memset(collection + parser->device->collection_size, 0, 160 sizeof(struct hid_collection) * 161 parser->device->collection_size); 162 kfree(parser->device->collection); 163 parser->device->collection = collection; 164 parser->device->collection_size *= 2; 165 } 166 167 parser->collection_stack[parser->collection_stack_ptr++] = 168 parser->device->maxcollection; 169 170 collection = parser->device->collection + 171 parser->device->maxcollection++; 172 collection->type = type; 173 collection->usage = usage; 174 collection->level = parser->collection_stack_ptr - 1; 175 176 if (type == HID_COLLECTION_APPLICATION) 177 parser->device->maxapplication++; 178 179 return 0; 180 } 181 182 /* 183 * Close a collection. 184 */ 185 186 static int close_collection(struct hid_parser *parser) 187 { 188 if (!parser->collection_stack_ptr) { 189 hid_err(parser->device, "collection stack underflow\n"); 190 return -EINVAL; 191 } 192 parser->collection_stack_ptr--; 193 return 0; 194 } 195 196 /* 197 * Climb up the stack, search for the specified collection type 198 * and return the usage. 199 */ 200 201 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type) 202 { 203 struct hid_collection *collection = parser->device->collection; 204 int n; 205 206 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) { 207 unsigned index = parser->collection_stack[n]; 208 if (collection[index].type == type) 209 return collection[index].usage; 210 } 211 return 0; /* we know nothing about this usage type */ 212 } 213 214 /* 215 * Add a usage to the temporary parser table. 216 */ 217 218 static int hid_add_usage(struct hid_parser *parser, unsigned usage) 219 { 220 if (parser->local.usage_index >= HID_MAX_USAGES) { 221 hid_err(parser->device, "usage index exceeded\n"); 222 return -1; 223 } 224 parser->local.usage[parser->local.usage_index] = usage; 225 parser->local.collection_index[parser->local.usage_index] = 226 parser->collection_stack_ptr ? 227 parser->collection_stack[parser->collection_stack_ptr - 1] : 0; 228 parser->local.usage_index++; 229 return 0; 230 } 231 232 /* 233 * Register a new field for this report. 234 */ 235 236 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags) 237 { 238 struct hid_report *report; 239 struct hid_field *field; 240 unsigned int usages; 241 unsigned int offset; 242 unsigned int i; 243 unsigned int application; 244 245 application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION); 246 247 report = hid_register_report(parser->device, report_type, 248 parser->global.report_id, application); 249 if (!report) { 250 hid_err(parser->device, "hid_register_report failed\n"); 251 return -1; 252 } 253 254 /* Handle both signed and unsigned cases properly */ 255 if ((parser->global.logical_minimum < 0 && 256 parser->global.logical_maximum < 257 parser->global.logical_minimum) || 258 (parser->global.logical_minimum >= 0 && 259 (__u32)parser->global.logical_maximum < 260 (__u32)parser->global.logical_minimum)) { 261 dbg_hid("logical range invalid 0x%x 0x%x\n", 262 parser->global.logical_minimum, 263 parser->global.logical_maximum); 264 return -1; 265 } 266 267 offset = report->size; 268 report->size += parser->global.report_size * parser->global.report_count; 269 270 if (!parser->local.usage_index) /* Ignore padding fields */ 271 return 0; 272 273 usages = max_t(unsigned, parser->local.usage_index, 274 parser->global.report_count); 275 276 field = hid_register_field(report, usages, parser->global.report_count); 277 if (!field) 278 return 0; 279 280 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL); 281 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL); 282 field->application = application; 283 284 for (i = 0; i < usages; i++) { 285 unsigned j = i; 286 /* Duplicate the last usage we parsed if we have excess values */ 287 if (i >= parser->local.usage_index) 288 j = parser->local.usage_index - 1; 289 field->usage[i].hid = parser->local.usage[j]; 290 field->usage[i].collection_index = 291 parser->local.collection_index[j]; 292 field->usage[i].usage_index = i; 293 } 294 295 field->maxusage = usages; 296 field->flags = flags; 297 field->report_offset = offset; 298 field->report_type = report_type; 299 field->report_size = parser->global.report_size; 300 field->report_count = parser->global.report_count; 301 field->logical_minimum = parser->global.logical_minimum; 302 field->logical_maximum = parser->global.logical_maximum; 303 field->physical_minimum = parser->global.physical_minimum; 304 field->physical_maximum = parser->global.physical_maximum; 305 field->unit_exponent = parser->global.unit_exponent; 306 field->unit = parser->global.unit; 307 308 return 0; 309 } 310 311 /* 312 * Read data value from item. 313 */ 314 315 static u32 item_udata(struct hid_item *item) 316 { 317 switch (item->size) { 318 case 1: return item->data.u8; 319 case 2: return item->data.u16; 320 case 4: return item->data.u32; 321 } 322 return 0; 323 } 324 325 static s32 item_sdata(struct hid_item *item) 326 { 327 switch (item->size) { 328 case 1: return item->data.s8; 329 case 2: return item->data.s16; 330 case 4: return item->data.s32; 331 } 332 return 0; 333 } 334 335 /* 336 * Process a global item. 337 */ 338 339 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item) 340 { 341 __s32 raw_value; 342 switch (item->tag) { 343 case HID_GLOBAL_ITEM_TAG_PUSH: 344 345 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) { 346 hid_err(parser->device, "global environment stack overflow\n"); 347 return -1; 348 } 349 350 memcpy(parser->global_stack + parser->global_stack_ptr++, 351 &parser->global, sizeof(struct hid_global)); 352 return 0; 353 354 case HID_GLOBAL_ITEM_TAG_POP: 355 356 if (!parser->global_stack_ptr) { 357 hid_err(parser->device, "global environment stack underflow\n"); 358 return -1; 359 } 360 361 memcpy(&parser->global, parser->global_stack + 362 --parser->global_stack_ptr, sizeof(struct hid_global)); 363 return 0; 364 365 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE: 366 parser->global.usage_page = item_udata(item); 367 return 0; 368 369 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM: 370 parser->global.logical_minimum = item_sdata(item); 371 return 0; 372 373 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM: 374 if (parser->global.logical_minimum < 0) 375 parser->global.logical_maximum = item_sdata(item); 376 else 377 parser->global.logical_maximum = item_udata(item); 378 return 0; 379 380 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM: 381 parser->global.physical_minimum = item_sdata(item); 382 return 0; 383 384 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM: 385 if (parser->global.physical_minimum < 0) 386 parser->global.physical_maximum = item_sdata(item); 387 else 388 parser->global.physical_maximum = item_udata(item); 389 return 0; 390 391 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT: 392 /* Many devices provide unit exponent as a two's complement 393 * nibble due to the common misunderstanding of HID 394 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle 395 * both this and the standard encoding. */ 396 raw_value = item_sdata(item); 397 if (!(raw_value & 0xfffffff0)) 398 parser->global.unit_exponent = hid_snto32(raw_value, 4); 399 else 400 parser->global.unit_exponent = raw_value; 401 return 0; 402 403 case HID_GLOBAL_ITEM_TAG_UNIT: 404 parser->global.unit = item_udata(item); 405 return 0; 406 407 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE: 408 parser->global.report_size = item_udata(item); 409 if (parser->global.report_size > 128) { 410 hid_err(parser->device, "invalid report_size %d\n", 411 parser->global.report_size); 412 return -1; 413 } 414 return 0; 415 416 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT: 417 parser->global.report_count = item_udata(item); 418 if (parser->global.report_count > HID_MAX_USAGES) { 419 hid_err(parser->device, "invalid report_count %d\n", 420 parser->global.report_count); 421 return -1; 422 } 423 return 0; 424 425 case HID_GLOBAL_ITEM_TAG_REPORT_ID: 426 parser->global.report_id = item_udata(item); 427 if (parser->global.report_id == 0 || 428 parser->global.report_id >= HID_MAX_IDS) { 429 hid_err(parser->device, "report_id %u is invalid\n", 430 parser->global.report_id); 431 return -1; 432 } 433 return 0; 434 435 default: 436 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag); 437 return -1; 438 } 439 } 440 441 /* 442 * Process a local item. 443 */ 444 445 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item) 446 { 447 __u32 data; 448 unsigned n; 449 __u32 count; 450 451 data = item_udata(item); 452 453 switch (item->tag) { 454 case HID_LOCAL_ITEM_TAG_DELIMITER: 455 456 if (data) { 457 /* 458 * We treat items before the first delimiter 459 * as global to all usage sets (branch 0). 460 * In the moment we process only these global 461 * items and the first delimiter set. 462 */ 463 if (parser->local.delimiter_depth != 0) { 464 hid_err(parser->device, "nested delimiters\n"); 465 return -1; 466 } 467 parser->local.delimiter_depth++; 468 parser->local.delimiter_branch++; 469 } else { 470 if (parser->local.delimiter_depth < 1) { 471 hid_err(parser->device, "bogus close delimiter\n"); 472 return -1; 473 } 474 parser->local.delimiter_depth--; 475 } 476 return 0; 477 478 case HID_LOCAL_ITEM_TAG_USAGE: 479 480 if (parser->local.delimiter_branch > 1) { 481 dbg_hid("alternative usage ignored\n"); 482 return 0; 483 } 484 485 if (item->size <= 2) 486 data = (parser->global.usage_page << 16) + data; 487 488 return hid_add_usage(parser, data); 489 490 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM: 491 492 if (parser->local.delimiter_branch > 1) { 493 dbg_hid("alternative usage ignored\n"); 494 return 0; 495 } 496 497 if (item->size <= 2) 498 data = (parser->global.usage_page << 16) + data; 499 500 parser->local.usage_minimum = data; 501 return 0; 502 503 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM: 504 505 if (parser->local.delimiter_branch > 1) { 506 dbg_hid("alternative usage ignored\n"); 507 return 0; 508 } 509 510 if (item->size <= 2) 511 data = (parser->global.usage_page << 16) + data; 512 513 count = data - parser->local.usage_minimum; 514 if (count + parser->local.usage_index >= HID_MAX_USAGES) { 515 /* 516 * We do not warn if the name is not set, we are 517 * actually pre-scanning the device. 518 */ 519 if (dev_name(&parser->device->dev)) 520 hid_warn(parser->device, 521 "ignoring exceeding usage max\n"); 522 data = HID_MAX_USAGES - parser->local.usage_index + 523 parser->local.usage_minimum - 1; 524 if (data <= 0) { 525 hid_err(parser->device, 526 "no more usage index available\n"); 527 return -1; 528 } 529 } 530 531 for (n = parser->local.usage_minimum; n <= data; n++) 532 if (hid_add_usage(parser, n)) { 533 dbg_hid("hid_add_usage failed\n"); 534 return -1; 535 } 536 return 0; 537 538 default: 539 540 dbg_hid("unknown local item tag 0x%x\n", item->tag); 541 return 0; 542 } 543 return 0; 544 } 545 546 /* 547 * Process a main item. 548 */ 549 550 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item) 551 { 552 __u32 data; 553 int ret; 554 555 data = item_udata(item); 556 557 switch (item->tag) { 558 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION: 559 ret = open_collection(parser, data & 0xff); 560 break; 561 case HID_MAIN_ITEM_TAG_END_COLLECTION: 562 ret = close_collection(parser); 563 break; 564 case HID_MAIN_ITEM_TAG_INPUT: 565 ret = hid_add_field(parser, HID_INPUT_REPORT, data); 566 break; 567 case HID_MAIN_ITEM_TAG_OUTPUT: 568 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data); 569 break; 570 case HID_MAIN_ITEM_TAG_FEATURE: 571 ret = hid_add_field(parser, HID_FEATURE_REPORT, data); 572 break; 573 default: 574 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag); 575 ret = 0; 576 } 577 578 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */ 579 580 return ret; 581 } 582 583 /* 584 * Process a reserved item. 585 */ 586 587 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item) 588 { 589 dbg_hid("reserved item type, tag 0x%x\n", item->tag); 590 return 0; 591 } 592 593 /* 594 * Free a report and all registered fields. The field->usage and 595 * field->value table's are allocated behind the field, so we need 596 * only to free(field) itself. 597 */ 598 599 static void hid_free_report(struct hid_report *report) 600 { 601 unsigned n; 602 603 for (n = 0; n < report->maxfield; n++) 604 kfree(report->field[n]); 605 kfree(report); 606 } 607 608 /* 609 * Close report. This function returns the device 610 * state to the point prior to hid_open_report(). 611 */ 612 static void hid_close_report(struct hid_device *device) 613 { 614 unsigned i, j; 615 616 for (i = 0; i < HID_REPORT_TYPES; i++) { 617 struct hid_report_enum *report_enum = device->report_enum + i; 618 619 for (j = 0; j < HID_MAX_IDS; j++) { 620 struct hid_report *report = report_enum->report_id_hash[j]; 621 if (report) 622 hid_free_report(report); 623 } 624 memset(report_enum, 0, sizeof(*report_enum)); 625 INIT_LIST_HEAD(&report_enum->report_list); 626 } 627 628 kfree(device->rdesc); 629 device->rdesc = NULL; 630 device->rsize = 0; 631 632 kfree(device->collection); 633 device->collection = NULL; 634 device->collection_size = 0; 635 device->maxcollection = 0; 636 device->maxapplication = 0; 637 638 device->status &= ~HID_STAT_PARSED; 639 } 640 641 /* 642 * Free a device structure, all reports, and all fields. 643 */ 644 645 static void hid_device_release(struct device *dev) 646 { 647 struct hid_device *hid = to_hid_device(dev); 648 649 hid_close_report(hid); 650 kfree(hid->dev_rdesc); 651 kfree(hid); 652 } 653 654 /* 655 * Fetch a report description item from the data stream. We support long 656 * items, though they are not used yet. 657 */ 658 659 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item) 660 { 661 u8 b; 662 663 if ((end - start) <= 0) 664 return NULL; 665 666 b = *start++; 667 668 item->type = (b >> 2) & 3; 669 item->tag = (b >> 4) & 15; 670 671 if (item->tag == HID_ITEM_TAG_LONG) { 672 673 item->format = HID_ITEM_FORMAT_LONG; 674 675 if ((end - start) < 2) 676 return NULL; 677 678 item->size = *start++; 679 item->tag = *start++; 680 681 if ((end - start) < item->size) 682 return NULL; 683 684 item->data.longdata = start; 685 start += item->size; 686 return start; 687 } 688 689 item->format = HID_ITEM_FORMAT_SHORT; 690 item->size = b & 3; 691 692 switch (item->size) { 693 case 0: 694 return start; 695 696 case 1: 697 if ((end - start) < 1) 698 return NULL; 699 item->data.u8 = *start++; 700 return start; 701 702 case 2: 703 if ((end - start) < 2) 704 return NULL; 705 item->data.u16 = get_unaligned_le16(start); 706 start = (__u8 *)((__le16 *)start + 1); 707 return start; 708 709 case 3: 710 item->size++; 711 if ((end - start) < 4) 712 return NULL; 713 item->data.u32 = get_unaligned_le32(start); 714 start = (__u8 *)((__le32 *)start + 1); 715 return start; 716 } 717 718 return NULL; 719 } 720 721 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage) 722 { 723 struct hid_device *hid = parser->device; 724 725 if (usage == HID_DG_CONTACTID) 726 hid->group = HID_GROUP_MULTITOUCH; 727 } 728 729 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage) 730 { 731 if (usage == 0xff0000c5 && parser->global.report_count == 256 && 732 parser->global.report_size == 8) 733 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8; 734 } 735 736 static void hid_scan_collection(struct hid_parser *parser, unsigned type) 737 { 738 struct hid_device *hid = parser->device; 739 int i; 740 741 if (((parser->global.usage_page << 16) == HID_UP_SENSOR) && 742 type == HID_COLLECTION_PHYSICAL) 743 hid->group = HID_GROUP_SENSOR_HUB; 744 745 if (hid->vendor == USB_VENDOR_ID_MICROSOFT && 746 hid->product == USB_DEVICE_ID_MS_POWER_COVER && 747 hid->group == HID_GROUP_MULTITOUCH) 748 hid->group = HID_GROUP_GENERIC; 749 750 if ((parser->global.usage_page << 16) == HID_UP_GENDESK) 751 for (i = 0; i < parser->local.usage_index; i++) 752 if (parser->local.usage[i] == HID_GD_POINTER) 753 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER; 754 755 if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR) 756 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC; 757 } 758 759 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item) 760 { 761 __u32 data; 762 int i; 763 764 data = item_udata(item); 765 766 switch (item->tag) { 767 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION: 768 hid_scan_collection(parser, data & 0xff); 769 break; 770 case HID_MAIN_ITEM_TAG_END_COLLECTION: 771 break; 772 case HID_MAIN_ITEM_TAG_INPUT: 773 /* ignore constant inputs, they will be ignored by hid-input */ 774 if (data & HID_MAIN_ITEM_CONSTANT) 775 break; 776 for (i = 0; i < parser->local.usage_index; i++) 777 hid_scan_input_usage(parser, parser->local.usage[i]); 778 break; 779 case HID_MAIN_ITEM_TAG_OUTPUT: 780 break; 781 case HID_MAIN_ITEM_TAG_FEATURE: 782 for (i = 0; i < parser->local.usage_index; i++) 783 hid_scan_feature_usage(parser, parser->local.usage[i]); 784 break; 785 } 786 787 /* Reset the local parser environment */ 788 memset(&parser->local, 0, sizeof(parser->local)); 789 790 return 0; 791 } 792 793 /* 794 * Scan a report descriptor before the device is added to the bus. 795 * Sets device groups and other properties that determine what driver 796 * to load. 797 */ 798 static int hid_scan_report(struct hid_device *hid) 799 { 800 struct hid_parser *parser; 801 struct hid_item item; 802 __u8 *start = hid->dev_rdesc; 803 __u8 *end = start + hid->dev_rsize; 804 static int (*dispatch_type[])(struct hid_parser *parser, 805 struct hid_item *item) = { 806 hid_scan_main, 807 hid_parser_global, 808 hid_parser_local, 809 hid_parser_reserved 810 }; 811 812 parser = vzalloc(sizeof(struct hid_parser)); 813 if (!parser) 814 return -ENOMEM; 815 816 parser->device = hid; 817 hid->group = HID_GROUP_GENERIC; 818 819 /* 820 * The parsing is simpler than the one in hid_open_report() as we should 821 * be robust against hid errors. Those errors will be raised by 822 * hid_open_report() anyway. 823 */ 824 while ((start = fetch_item(start, end, &item)) != NULL) 825 dispatch_type[item.type](parser, &item); 826 827 /* 828 * Handle special flags set during scanning. 829 */ 830 if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) && 831 (hid->group == HID_GROUP_MULTITOUCH)) 832 hid->group = HID_GROUP_MULTITOUCH_WIN_8; 833 834 /* 835 * Vendor specific handlings 836 */ 837 switch (hid->vendor) { 838 case USB_VENDOR_ID_WACOM: 839 hid->group = HID_GROUP_WACOM; 840 break; 841 case USB_VENDOR_ID_SYNAPTICS: 842 if (hid->group == HID_GROUP_GENERIC) 843 if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC) 844 && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER)) 845 /* 846 * hid-rmi should take care of them, 847 * not hid-generic 848 */ 849 hid->group = HID_GROUP_RMI; 850 break; 851 } 852 853 kfree(parser->collection_stack); 854 vfree(parser); 855 return 0; 856 } 857 858 /** 859 * hid_parse_report - parse device report 860 * 861 * @device: hid device 862 * @start: report start 863 * @size: report size 864 * 865 * Allocate the device report as read by the bus driver. This function should 866 * only be called from parse() in ll drivers. 867 */ 868 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size) 869 { 870 hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL); 871 if (!hid->dev_rdesc) 872 return -ENOMEM; 873 hid->dev_rsize = size; 874 return 0; 875 } 876 EXPORT_SYMBOL_GPL(hid_parse_report); 877 878 static const char * const hid_report_names[] = { 879 "HID_INPUT_REPORT", 880 "HID_OUTPUT_REPORT", 881 "HID_FEATURE_REPORT", 882 }; 883 /** 884 * hid_validate_values - validate existing device report's value indexes 885 * 886 * @device: hid device 887 * @type: which report type to examine 888 * @id: which report ID to examine (0 for first) 889 * @field_index: which report field to examine 890 * @report_counts: expected number of values 891 * 892 * Validate the number of values in a given field of a given report, after 893 * parsing. 894 */ 895 struct hid_report *hid_validate_values(struct hid_device *hid, 896 unsigned int type, unsigned int id, 897 unsigned int field_index, 898 unsigned int report_counts) 899 { 900 struct hid_report *report; 901 902 if (type > HID_FEATURE_REPORT) { 903 hid_err(hid, "invalid HID report type %u\n", type); 904 return NULL; 905 } 906 907 if (id >= HID_MAX_IDS) { 908 hid_err(hid, "invalid HID report id %u\n", id); 909 return NULL; 910 } 911 912 /* 913 * Explicitly not using hid_get_report() here since it depends on 914 * ->numbered being checked, which may not always be the case when 915 * drivers go to access report values. 916 */ 917 if (id == 0) { 918 /* 919 * Validating on id 0 means we should examine the first 920 * report in the list. 921 */ 922 report = list_entry( 923 hid->report_enum[type].report_list.next, 924 struct hid_report, list); 925 } else { 926 report = hid->report_enum[type].report_id_hash[id]; 927 } 928 if (!report) { 929 hid_err(hid, "missing %s %u\n", hid_report_names[type], id); 930 return NULL; 931 } 932 if (report->maxfield <= field_index) { 933 hid_err(hid, "not enough fields in %s %u\n", 934 hid_report_names[type], id); 935 return NULL; 936 } 937 if (report->field[field_index]->report_count < report_counts) { 938 hid_err(hid, "not enough values in %s %u field %u\n", 939 hid_report_names[type], id, field_index); 940 return NULL; 941 } 942 return report; 943 } 944 EXPORT_SYMBOL_GPL(hid_validate_values); 945 946 /** 947 * hid_open_report - open a driver-specific device report 948 * 949 * @device: hid device 950 * 951 * Parse a report description into a hid_device structure. Reports are 952 * enumerated, fields are attached to these reports. 953 * 0 returned on success, otherwise nonzero error value. 954 * 955 * This function (or the equivalent hid_parse() macro) should only be 956 * called from probe() in drivers, before starting the device. 957 */ 958 int hid_open_report(struct hid_device *device) 959 { 960 struct hid_parser *parser; 961 struct hid_item item; 962 unsigned int size; 963 __u8 *start; 964 __u8 *buf; 965 __u8 *end; 966 int ret; 967 static int (*dispatch_type[])(struct hid_parser *parser, 968 struct hid_item *item) = { 969 hid_parser_main, 970 hid_parser_global, 971 hid_parser_local, 972 hid_parser_reserved 973 }; 974 975 if (WARN_ON(device->status & HID_STAT_PARSED)) 976 return -EBUSY; 977 978 start = device->dev_rdesc; 979 if (WARN_ON(!start)) 980 return -ENODEV; 981 size = device->dev_rsize; 982 983 buf = kmemdup(start, size, GFP_KERNEL); 984 if (buf == NULL) 985 return -ENOMEM; 986 987 if (device->driver->report_fixup) 988 start = device->driver->report_fixup(device, buf, &size); 989 else 990 start = buf; 991 992 start = kmemdup(start, size, GFP_KERNEL); 993 kfree(buf); 994 if (start == NULL) 995 return -ENOMEM; 996 997 device->rdesc = start; 998 device->rsize = size; 999 1000 parser = vzalloc(sizeof(struct hid_parser)); 1001 if (!parser) { 1002 ret = -ENOMEM; 1003 goto alloc_err; 1004 } 1005 1006 parser->device = device; 1007 1008 end = start + size; 1009 1010 device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS, 1011 sizeof(struct hid_collection), GFP_KERNEL); 1012 if (!device->collection) { 1013 ret = -ENOMEM; 1014 goto err; 1015 } 1016 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS; 1017 1018 ret = -EINVAL; 1019 while ((start = fetch_item(start, end, &item)) != NULL) { 1020 1021 if (item.format != HID_ITEM_FORMAT_SHORT) { 1022 hid_err(device, "unexpected long global item\n"); 1023 goto err; 1024 } 1025 1026 if (dispatch_type[item.type](parser, &item)) { 1027 hid_err(device, "item %u %u %u %u parsing failed\n", 1028 item.format, (unsigned)item.size, 1029 (unsigned)item.type, (unsigned)item.tag); 1030 goto err; 1031 } 1032 1033 if (start == end) { 1034 if (parser->collection_stack_ptr) { 1035 hid_err(device, "unbalanced collection at end of report description\n"); 1036 goto err; 1037 } 1038 if (parser->local.delimiter_depth) { 1039 hid_err(device, "unbalanced delimiter at end of report description\n"); 1040 goto err; 1041 } 1042 kfree(parser->collection_stack); 1043 vfree(parser); 1044 device->status |= HID_STAT_PARSED; 1045 return 0; 1046 } 1047 } 1048 1049 hid_err(device, "item fetching failed at offset %d\n", (int)(end - start)); 1050 err: 1051 kfree(parser->collection_stack); 1052 alloc_err: 1053 vfree(parser); 1054 hid_close_report(device); 1055 return ret; 1056 } 1057 EXPORT_SYMBOL_GPL(hid_open_report); 1058 1059 /* 1060 * Convert a signed n-bit integer to signed 32-bit integer. Common 1061 * cases are done through the compiler, the screwed things has to be 1062 * done by hand. 1063 */ 1064 1065 static s32 snto32(__u32 value, unsigned n) 1066 { 1067 switch (n) { 1068 case 8: return ((__s8)value); 1069 case 16: return ((__s16)value); 1070 case 32: return ((__s32)value); 1071 } 1072 return value & (1 << (n - 1)) ? value | (~0U << n) : value; 1073 } 1074 1075 s32 hid_snto32(__u32 value, unsigned n) 1076 { 1077 return snto32(value, n); 1078 } 1079 EXPORT_SYMBOL_GPL(hid_snto32); 1080 1081 /* 1082 * Convert a signed 32-bit integer to a signed n-bit integer. 1083 */ 1084 1085 static u32 s32ton(__s32 value, unsigned n) 1086 { 1087 s32 a = value >> (n - 1); 1088 if (a && a != -1) 1089 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1; 1090 return value & ((1 << n) - 1); 1091 } 1092 1093 /* 1094 * Extract/implement a data field from/to a little endian report (bit array). 1095 * 1096 * Code sort-of follows HID spec: 1097 * http://www.usb.org/developers/hidpage/HID1_11.pdf 1098 * 1099 * While the USB HID spec allows unlimited length bit fields in "report 1100 * descriptors", most devices never use more than 16 bits. 1101 * One model of UPS is claimed to report "LINEV" as a 32-bit field. 1102 * Search linux-kernel and linux-usb-devel archives for "hid-core extract". 1103 */ 1104 1105 static u32 __extract(u8 *report, unsigned offset, int n) 1106 { 1107 unsigned int idx = offset / 8; 1108 unsigned int bit_nr = 0; 1109 unsigned int bit_shift = offset % 8; 1110 int bits_to_copy = 8 - bit_shift; 1111 u32 value = 0; 1112 u32 mask = n < 32 ? (1U << n) - 1 : ~0U; 1113 1114 while (n > 0) { 1115 value |= ((u32)report[idx] >> bit_shift) << bit_nr; 1116 n -= bits_to_copy; 1117 bit_nr += bits_to_copy; 1118 bits_to_copy = 8; 1119 bit_shift = 0; 1120 idx++; 1121 } 1122 1123 return value & mask; 1124 } 1125 1126 u32 hid_field_extract(const struct hid_device *hid, u8 *report, 1127 unsigned offset, unsigned n) 1128 { 1129 if (n > 32) { 1130 hid_warn(hid, "hid_field_extract() called with n (%d) > 32! (%s)\n", 1131 n, current->comm); 1132 n = 32; 1133 } 1134 1135 return __extract(report, offset, n); 1136 } 1137 EXPORT_SYMBOL_GPL(hid_field_extract); 1138 1139 /* 1140 * "implement" : set bits in a little endian bit stream. 1141 * Same concepts as "extract" (see comments above). 1142 * The data mangled in the bit stream remains in little endian 1143 * order the whole time. It make more sense to talk about 1144 * endianness of register values by considering a register 1145 * a "cached" copy of the little endian bit stream. 1146 */ 1147 1148 static void __implement(u8 *report, unsigned offset, int n, u32 value) 1149 { 1150 unsigned int idx = offset / 8; 1151 unsigned int bit_shift = offset % 8; 1152 int bits_to_set = 8 - bit_shift; 1153 1154 while (n - bits_to_set >= 0) { 1155 report[idx] &= ~(0xff << bit_shift); 1156 report[idx] |= value << bit_shift; 1157 value >>= bits_to_set; 1158 n -= bits_to_set; 1159 bits_to_set = 8; 1160 bit_shift = 0; 1161 idx++; 1162 } 1163 1164 /* last nibble */ 1165 if (n) { 1166 u8 bit_mask = ((1U << n) - 1); 1167 report[idx] &= ~(bit_mask << bit_shift); 1168 report[idx] |= value << bit_shift; 1169 } 1170 } 1171 1172 static void implement(const struct hid_device *hid, u8 *report, 1173 unsigned offset, unsigned n, u32 value) 1174 { 1175 if (unlikely(n > 32)) { 1176 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n", 1177 __func__, n, current->comm); 1178 n = 32; 1179 } else if (n < 32) { 1180 u32 m = (1U << n) - 1; 1181 1182 if (unlikely(value > m)) { 1183 hid_warn(hid, 1184 "%s() called with too large value %d (n: %d)! (%s)\n", 1185 __func__, value, n, current->comm); 1186 WARN_ON(1); 1187 value &= m; 1188 } 1189 } 1190 1191 __implement(report, offset, n, value); 1192 } 1193 1194 /* 1195 * Search an array for a value. 1196 */ 1197 1198 static int search(__s32 *array, __s32 value, unsigned n) 1199 { 1200 while (n--) { 1201 if (*array++ == value) 1202 return 0; 1203 } 1204 return -1; 1205 } 1206 1207 /** 1208 * hid_match_report - check if driver's raw_event should be called 1209 * 1210 * @hid: hid device 1211 * @report_type: type to match against 1212 * 1213 * compare hid->driver->report_table->report_type to report->type 1214 */ 1215 static int hid_match_report(struct hid_device *hid, struct hid_report *report) 1216 { 1217 const struct hid_report_id *id = hid->driver->report_table; 1218 1219 if (!id) /* NULL means all */ 1220 return 1; 1221 1222 for (; id->report_type != HID_TERMINATOR; id++) 1223 if (id->report_type == HID_ANY_ID || 1224 id->report_type == report->type) 1225 return 1; 1226 return 0; 1227 } 1228 1229 /** 1230 * hid_match_usage - check if driver's event should be called 1231 * 1232 * @hid: hid device 1233 * @usage: usage to match against 1234 * 1235 * compare hid->driver->usage_table->usage_{type,code} to 1236 * usage->usage_{type,code} 1237 */ 1238 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage) 1239 { 1240 const struct hid_usage_id *id = hid->driver->usage_table; 1241 1242 if (!id) /* NULL means all */ 1243 return 1; 1244 1245 for (; id->usage_type != HID_ANY_ID - 1; id++) 1246 if ((id->usage_hid == HID_ANY_ID || 1247 id->usage_hid == usage->hid) && 1248 (id->usage_type == HID_ANY_ID || 1249 id->usage_type == usage->type) && 1250 (id->usage_code == HID_ANY_ID || 1251 id->usage_code == usage->code)) 1252 return 1; 1253 return 0; 1254 } 1255 1256 static void hid_process_event(struct hid_device *hid, struct hid_field *field, 1257 struct hid_usage *usage, __s32 value, int interrupt) 1258 { 1259 struct hid_driver *hdrv = hid->driver; 1260 int ret; 1261 1262 if (!list_empty(&hid->debug_list)) 1263 hid_dump_input(hid, usage, value); 1264 1265 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) { 1266 ret = hdrv->event(hid, field, usage, value); 1267 if (ret != 0) { 1268 if (ret < 0) 1269 hid_err(hid, "%s's event failed with %d\n", 1270 hdrv->name, ret); 1271 return; 1272 } 1273 } 1274 1275 if (hid->claimed & HID_CLAIMED_INPUT) 1276 hidinput_hid_event(hid, field, usage, value); 1277 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event) 1278 hid->hiddev_hid_event(hid, field, usage, value); 1279 } 1280 1281 /* 1282 * Analyse a received field, and fetch the data from it. The field 1283 * content is stored for next report processing (we do differential 1284 * reporting to the layer). 1285 */ 1286 1287 static void hid_input_field(struct hid_device *hid, struct hid_field *field, 1288 __u8 *data, int interrupt) 1289 { 1290 unsigned n; 1291 unsigned count = field->report_count; 1292 unsigned offset = field->report_offset; 1293 unsigned size = field->report_size; 1294 __s32 min = field->logical_minimum; 1295 __s32 max = field->logical_maximum; 1296 __s32 *value; 1297 1298 value = kmalloc_array(count, sizeof(__s32), GFP_ATOMIC); 1299 if (!value) 1300 return; 1301 1302 for (n = 0; n < count; n++) { 1303 1304 value[n] = min < 0 ? 1305 snto32(hid_field_extract(hid, data, offset + n * size, 1306 size), size) : 1307 hid_field_extract(hid, data, offset + n * size, size); 1308 1309 /* Ignore report if ErrorRollOver */ 1310 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) && 1311 value[n] >= min && value[n] <= max && 1312 value[n] - min < field->maxusage && 1313 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) 1314 goto exit; 1315 } 1316 1317 for (n = 0; n < count; n++) { 1318 1319 if (HID_MAIN_ITEM_VARIABLE & field->flags) { 1320 hid_process_event(hid, field, &field->usage[n], value[n], interrupt); 1321 continue; 1322 } 1323 1324 if (field->value[n] >= min && field->value[n] <= max 1325 && field->value[n] - min < field->maxusage 1326 && field->usage[field->value[n] - min].hid 1327 && search(value, field->value[n], count)) 1328 hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt); 1329 1330 if (value[n] >= min && value[n] <= max 1331 && value[n] - min < field->maxusage 1332 && field->usage[value[n] - min].hid 1333 && search(field->value, value[n], count)) 1334 hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt); 1335 } 1336 1337 memcpy(field->value, value, count * sizeof(__s32)); 1338 exit: 1339 kfree(value); 1340 } 1341 1342 /* 1343 * Output the field into the report. 1344 */ 1345 1346 static void hid_output_field(const struct hid_device *hid, 1347 struct hid_field *field, __u8 *data) 1348 { 1349 unsigned count = field->report_count; 1350 unsigned offset = field->report_offset; 1351 unsigned size = field->report_size; 1352 unsigned n; 1353 1354 for (n = 0; n < count; n++) { 1355 if (field->logical_minimum < 0) /* signed values */ 1356 implement(hid, data, offset + n * size, size, 1357 s32ton(field->value[n], size)); 1358 else /* unsigned values */ 1359 implement(hid, data, offset + n * size, size, 1360 field->value[n]); 1361 } 1362 } 1363 1364 /* 1365 * Create a report. 'data' has to be allocated using 1366 * hid_alloc_report_buf() so that it has proper size. 1367 */ 1368 1369 void hid_output_report(struct hid_report *report, __u8 *data) 1370 { 1371 unsigned n; 1372 1373 if (report->id > 0) 1374 *data++ = report->id; 1375 1376 memset(data, 0, ((report->size - 1) >> 3) + 1); 1377 for (n = 0; n < report->maxfield; n++) 1378 hid_output_field(report->device, report->field[n], data); 1379 } 1380 EXPORT_SYMBOL_GPL(hid_output_report); 1381 1382 /* 1383 * Allocator for buffer that is going to be passed to hid_output_report() 1384 */ 1385 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags) 1386 { 1387 /* 1388 * 7 extra bytes are necessary to achieve proper functionality 1389 * of implement() working on 8 byte chunks 1390 */ 1391 1392 u32 len = hid_report_len(report) + 7; 1393 1394 return kmalloc(len, flags); 1395 } 1396 EXPORT_SYMBOL_GPL(hid_alloc_report_buf); 1397 1398 /* 1399 * Set a field value. The report this field belongs to has to be 1400 * created and transferred to the device, to set this value in the 1401 * device. 1402 */ 1403 1404 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value) 1405 { 1406 unsigned size; 1407 1408 if (!field) 1409 return -1; 1410 1411 size = field->report_size; 1412 1413 hid_dump_input(field->report->device, field->usage + offset, value); 1414 1415 if (offset >= field->report_count) { 1416 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n", 1417 offset, field->report_count); 1418 return -1; 1419 } 1420 if (field->logical_minimum < 0) { 1421 if (value != snto32(s32ton(value, size), size)) { 1422 hid_err(field->report->device, "value %d is out of range\n", value); 1423 return -1; 1424 } 1425 } 1426 field->value[offset] = value; 1427 return 0; 1428 } 1429 EXPORT_SYMBOL_GPL(hid_set_field); 1430 1431 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum, 1432 const u8 *data) 1433 { 1434 struct hid_report *report; 1435 unsigned int n = 0; /* Normally report number is 0 */ 1436 1437 /* Device uses numbered reports, data[0] is report number */ 1438 if (report_enum->numbered) 1439 n = *data; 1440 1441 report = report_enum->report_id_hash[n]; 1442 if (report == NULL) 1443 dbg_hid("undefined report_id %u received\n", n); 1444 1445 return report; 1446 } 1447 1448 /* 1449 * Implement a generic .request() callback, using .raw_request() 1450 * DO NOT USE in hid drivers directly, but through hid_hw_request instead. 1451 */ 1452 void __hid_request(struct hid_device *hid, struct hid_report *report, 1453 int reqtype) 1454 { 1455 char *buf; 1456 int ret; 1457 u32 len; 1458 1459 buf = hid_alloc_report_buf(report, GFP_KERNEL); 1460 if (!buf) 1461 return; 1462 1463 len = hid_report_len(report); 1464 1465 if (reqtype == HID_REQ_SET_REPORT) 1466 hid_output_report(report, buf); 1467 1468 ret = hid->ll_driver->raw_request(hid, report->id, buf, len, 1469 report->type, reqtype); 1470 if (ret < 0) { 1471 dbg_hid("unable to complete request: %d\n", ret); 1472 goto out; 1473 } 1474 1475 if (reqtype == HID_REQ_GET_REPORT) 1476 hid_input_report(hid, report->type, buf, ret, 0); 1477 1478 out: 1479 kfree(buf); 1480 } 1481 EXPORT_SYMBOL_GPL(__hid_request); 1482 1483 int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size, 1484 int interrupt) 1485 { 1486 struct hid_report_enum *report_enum = hid->report_enum + type; 1487 struct hid_report *report; 1488 struct hid_driver *hdrv; 1489 unsigned int a; 1490 u32 rsize, csize = size; 1491 u8 *cdata = data; 1492 int ret = 0; 1493 1494 report = hid_get_report(report_enum, data); 1495 if (!report) 1496 goto out; 1497 1498 if (report_enum->numbered) { 1499 cdata++; 1500 csize--; 1501 } 1502 1503 rsize = ((report->size - 1) >> 3) + 1; 1504 1505 if (rsize > HID_MAX_BUFFER_SIZE) 1506 rsize = HID_MAX_BUFFER_SIZE; 1507 1508 if (csize < rsize) { 1509 dbg_hid("report %d is too short, (%d < %d)\n", report->id, 1510 csize, rsize); 1511 memset(cdata + csize, 0, rsize - csize); 1512 } 1513 1514 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event) 1515 hid->hiddev_report_event(hid, report); 1516 if (hid->claimed & HID_CLAIMED_HIDRAW) { 1517 ret = hidraw_report_event(hid, data, size); 1518 if (ret) 1519 goto out; 1520 } 1521 1522 if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) { 1523 for (a = 0; a < report->maxfield; a++) 1524 hid_input_field(hid, report->field[a], cdata, interrupt); 1525 hdrv = hid->driver; 1526 if (hdrv && hdrv->report) 1527 hdrv->report(hid, report); 1528 } 1529 1530 if (hid->claimed & HID_CLAIMED_INPUT) 1531 hidinput_report_event(hid, report); 1532 out: 1533 return ret; 1534 } 1535 EXPORT_SYMBOL_GPL(hid_report_raw_event); 1536 1537 /** 1538 * hid_input_report - report data from lower layer (usb, bt...) 1539 * 1540 * @hid: hid device 1541 * @type: HID report type (HID_*_REPORT) 1542 * @data: report contents 1543 * @size: size of data parameter 1544 * @interrupt: distinguish between interrupt and control transfers 1545 * 1546 * This is data entry for lower layers. 1547 */ 1548 int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt) 1549 { 1550 struct hid_report_enum *report_enum; 1551 struct hid_driver *hdrv; 1552 struct hid_report *report; 1553 int ret = 0; 1554 1555 if (!hid) 1556 return -ENODEV; 1557 1558 if (down_trylock(&hid->driver_input_lock)) 1559 return -EBUSY; 1560 1561 if (!hid->driver) { 1562 ret = -ENODEV; 1563 goto unlock; 1564 } 1565 report_enum = hid->report_enum + type; 1566 hdrv = hid->driver; 1567 1568 if (!size) { 1569 dbg_hid("empty report\n"); 1570 ret = -1; 1571 goto unlock; 1572 } 1573 1574 /* Avoid unnecessary overhead if debugfs is disabled */ 1575 if (!list_empty(&hid->debug_list)) 1576 hid_dump_report(hid, type, data, size); 1577 1578 report = hid_get_report(report_enum, data); 1579 1580 if (!report) { 1581 ret = -1; 1582 goto unlock; 1583 } 1584 1585 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) { 1586 ret = hdrv->raw_event(hid, report, data, size); 1587 if (ret < 0) 1588 goto unlock; 1589 } 1590 1591 ret = hid_report_raw_event(hid, type, data, size, interrupt); 1592 1593 unlock: 1594 up(&hid->driver_input_lock); 1595 return ret; 1596 } 1597 EXPORT_SYMBOL_GPL(hid_input_report); 1598 1599 bool hid_match_one_id(const struct hid_device *hdev, 1600 const struct hid_device_id *id) 1601 { 1602 return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) && 1603 (id->group == HID_GROUP_ANY || id->group == hdev->group) && 1604 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) && 1605 (id->product == HID_ANY_ID || id->product == hdev->product); 1606 } 1607 1608 const struct hid_device_id *hid_match_id(const struct hid_device *hdev, 1609 const struct hid_device_id *id) 1610 { 1611 for (; id->bus; id++) 1612 if (hid_match_one_id(hdev, id)) 1613 return id; 1614 1615 return NULL; 1616 } 1617 1618 static const struct hid_device_id hid_hiddev_list[] = { 1619 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) }, 1620 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) }, 1621 { } 1622 }; 1623 1624 static bool hid_hiddev(struct hid_device *hdev) 1625 { 1626 return !!hid_match_id(hdev, hid_hiddev_list); 1627 } 1628 1629 1630 static ssize_t 1631 read_report_descriptor(struct file *filp, struct kobject *kobj, 1632 struct bin_attribute *attr, 1633 char *buf, loff_t off, size_t count) 1634 { 1635 struct device *dev = kobj_to_dev(kobj); 1636 struct hid_device *hdev = to_hid_device(dev); 1637 1638 if (off >= hdev->rsize) 1639 return 0; 1640 1641 if (off + count > hdev->rsize) 1642 count = hdev->rsize - off; 1643 1644 memcpy(buf, hdev->rdesc + off, count); 1645 1646 return count; 1647 } 1648 1649 static ssize_t 1650 show_country(struct device *dev, struct device_attribute *attr, 1651 char *buf) 1652 { 1653 struct hid_device *hdev = to_hid_device(dev); 1654 1655 return sprintf(buf, "%02x\n", hdev->country & 0xff); 1656 } 1657 1658 static struct bin_attribute dev_bin_attr_report_desc = { 1659 .attr = { .name = "report_descriptor", .mode = 0444 }, 1660 .read = read_report_descriptor, 1661 .size = HID_MAX_DESCRIPTOR_SIZE, 1662 }; 1663 1664 static const struct device_attribute dev_attr_country = { 1665 .attr = { .name = "country", .mode = 0444 }, 1666 .show = show_country, 1667 }; 1668 1669 int hid_connect(struct hid_device *hdev, unsigned int connect_mask) 1670 { 1671 static const char *types[] = { "Device", "Pointer", "Mouse", "Device", 1672 "Joystick", "Gamepad", "Keyboard", "Keypad", 1673 "Multi-Axis Controller" 1674 }; 1675 const char *type, *bus; 1676 char buf[64] = ""; 1677 unsigned int i; 1678 int len; 1679 int ret; 1680 1681 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE) 1682 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV); 1683 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE) 1684 connect_mask |= HID_CONNECT_HIDINPUT_FORCE; 1685 if (hdev->bus != BUS_USB) 1686 connect_mask &= ~HID_CONNECT_HIDDEV; 1687 if (hid_hiddev(hdev)) 1688 connect_mask |= HID_CONNECT_HIDDEV_FORCE; 1689 1690 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev, 1691 connect_mask & HID_CONNECT_HIDINPUT_FORCE)) 1692 hdev->claimed |= HID_CLAIMED_INPUT; 1693 1694 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect && 1695 !hdev->hiddev_connect(hdev, 1696 connect_mask & HID_CONNECT_HIDDEV_FORCE)) 1697 hdev->claimed |= HID_CLAIMED_HIDDEV; 1698 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev)) 1699 hdev->claimed |= HID_CLAIMED_HIDRAW; 1700 1701 if (connect_mask & HID_CONNECT_DRIVER) 1702 hdev->claimed |= HID_CLAIMED_DRIVER; 1703 1704 /* Drivers with the ->raw_event callback set are not required to connect 1705 * to any other listener. */ 1706 if (!hdev->claimed && !hdev->driver->raw_event) { 1707 hid_err(hdev, "device has no listeners, quitting\n"); 1708 return -ENODEV; 1709 } 1710 1711 if ((hdev->claimed & HID_CLAIMED_INPUT) && 1712 (connect_mask & HID_CONNECT_FF) && hdev->ff_init) 1713 hdev->ff_init(hdev); 1714 1715 len = 0; 1716 if (hdev->claimed & HID_CLAIMED_INPUT) 1717 len += sprintf(buf + len, "input"); 1718 if (hdev->claimed & HID_CLAIMED_HIDDEV) 1719 len += sprintf(buf + len, "%shiddev%d", len ? "," : "", 1720 ((struct hiddev *)hdev->hiddev)->minor); 1721 if (hdev->claimed & HID_CLAIMED_HIDRAW) 1722 len += sprintf(buf + len, "%shidraw%d", len ? "," : "", 1723 ((struct hidraw *)hdev->hidraw)->minor); 1724 1725 type = "Device"; 1726 for (i = 0; i < hdev->maxcollection; i++) { 1727 struct hid_collection *col = &hdev->collection[i]; 1728 if (col->type == HID_COLLECTION_APPLICATION && 1729 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK && 1730 (col->usage & 0xffff) < ARRAY_SIZE(types)) { 1731 type = types[col->usage & 0xffff]; 1732 break; 1733 } 1734 } 1735 1736 switch (hdev->bus) { 1737 case BUS_USB: 1738 bus = "USB"; 1739 break; 1740 case BUS_BLUETOOTH: 1741 bus = "BLUETOOTH"; 1742 break; 1743 case BUS_I2C: 1744 bus = "I2C"; 1745 break; 1746 default: 1747 bus = "<UNKNOWN>"; 1748 } 1749 1750 ret = device_create_file(&hdev->dev, &dev_attr_country); 1751 if (ret) 1752 hid_warn(hdev, 1753 "can't create sysfs country code attribute err: %d\n", ret); 1754 1755 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n", 1756 buf, bus, hdev->version >> 8, hdev->version & 0xff, 1757 type, hdev->name, hdev->phys); 1758 1759 return 0; 1760 } 1761 EXPORT_SYMBOL_GPL(hid_connect); 1762 1763 void hid_disconnect(struct hid_device *hdev) 1764 { 1765 device_remove_file(&hdev->dev, &dev_attr_country); 1766 if (hdev->claimed & HID_CLAIMED_INPUT) 1767 hidinput_disconnect(hdev); 1768 if (hdev->claimed & HID_CLAIMED_HIDDEV) 1769 hdev->hiddev_disconnect(hdev); 1770 if (hdev->claimed & HID_CLAIMED_HIDRAW) 1771 hidraw_disconnect(hdev); 1772 hdev->claimed = 0; 1773 } 1774 EXPORT_SYMBOL_GPL(hid_disconnect); 1775 1776 /** 1777 * hid_hw_start - start underlying HW 1778 * @hdev: hid device 1779 * @connect_mask: which outputs to connect, see HID_CONNECT_* 1780 * 1781 * Call this in probe function *after* hid_parse. This will setup HW 1782 * buffers and start the device (if not defeirred to device open). 1783 * hid_hw_stop must be called if this was successful. 1784 */ 1785 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask) 1786 { 1787 int error; 1788 1789 error = hdev->ll_driver->start(hdev); 1790 if (error) 1791 return error; 1792 1793 if (connect_mask) { 1794 error = hid_connect(hdev, connect_mask); 1795 if (error) { 1796 hdev->ll_driver->stop(hdev); 1797 return error; 1798 } 1799 } 1800 1801 return 0; 1802 } 1803 EXPORT_SYMBOL_GPL(hid_hw_start); 1804 1805 /** 1806 * hid_hw_stop - stop underlying HW 1807 * @hdev: hid device 1808 * 1809 * This is usually called from remove function or from probe when something 1810 * failed and hid_hw_start was called already. 1811 */ 1812 void hid_hw_stop(struct hid_device *hdev) 1813 { 1814 hid_disconnect(hdev); 1815 hdev->ll_driver->stop(hdev); 1816 } 1817 EXPORT_SYMBOL_GPL(hid_hw_stop); 1818 1819 /** 1820 * hid_hw_open - signal underlying HW to start delivering events 1821 * @hdev: hid device 1822 * 1823 * Tell underlying HW to start delivering events from the device. 1824 * This function should be called sometime after successful call 1825 * to hid_hw_start(). 1826 */ 1827 int hid_hw_open(struct hid_device *hdev) 1828 { 1829 int ret; 1830 1831 ret = mutex_lock_killable(&hdev->ll_open_lock); 1832 if (ret) 1833 return ret; 1834 1835 if (!hdev->ll_open_count++) { 1836 ret = hdev->ll_driver->open(hdev); 1837 if (ret) 1838 hdev->ll_open_count--; 1839 } 1840 1841 mutex_unlock(&hdev->ll_open_lock); 1842 return ret; 1843 } 1844 EXPORT_SYMBOL_GPL(hid_hw_open); 1845 1846 /** 1847 * hid_hw_close - signal underlaying HW to stop delivering events 1848 * 1849 * @hdev: hid device 1850 * 1851 * This function indicates that we are not interested in the events 1852 * from this device anymore. Delivery of events may or may not stop, 1853 * depending on the number of users still outstanding. 1854 */ 1855 void hid_hw_close(struct hid_device *hdev) 1856 { 1857 mutex_lock(&hdev->ll_open_lock); 1858 if (!--hdev->ll_open_count) 1859 hdev->ll_driver->close(hdev); 1860 mutex_unlock(&hdev->ll_open_lock); 1861 } 1862 EXPORT_SYMBOL_GPL(hid_hw_close); 1863 1864 struct hid_dynid { 1865 struct list_head list; 1866 struct hid_device_id id; 1867 }; 1868 1869 /** 1870 * store_new_id - add a new HID device ID to this driver and re-probe devices 1871 * @driver: target device driver 1872 * @buf: buffer for scanning device ID data 1873 * @count: input size 1874 * 1875 * Adds a new dynamic hid device ID to this driver, 1876 * and causes the driver to probe for all devices again. 1877 */ 1878 static ssize_t new_id_store(struct device_driver *drv, const char *buf, 1879 size_t count) 1880 { 1881 struct hid_driver *hdrv = to_hid_driver(drv); 1882 struct hid_dynid *dynid; 1883 __u32 bus, vendor, product; 1884 unsigned long driver_data = 0; 1885 int ret; 1886 1887 ret = sscanf(buf, "%x %x %x %lx", 1888 &bus, &vendor, &product, &driver_data); 1889 if (ret < 3) 1890 return -EINVAL; 1891 1892 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 1893 if (!dynid) 1894 return -ENOMEM; 1895 1896 dynid->id.bus = bus; 1897 dynid->id.group = HID_GROUP_ANY; 1898 dynid->id.vendor = vendor; 1899 dynid->id.product = product; 1900 dynid->id.driver_data = driver_data; 1901 1902 spin_lock(&hdrv->dyn_lock); 1903 list_add_tail(&dynid->list, &hdrv->dyn_list); 1904 spin_unlock(&hdrv->dyn_lock); 1905 1906 ret = driver_attach(&hdrv->driver); 1907 1908 return ret ? : count; 1909 } 1910 static DRIVER_ATTR_WO(new_id); 1911 1912 static struct attribute *hid_drv_attrs[] = { 1913 &driver_attr_new_id.attr, 1914 NULL, 1915 }; 1916 ATTRIBUTE_GROUPS(hid_drv); 1917 1918 static void hid_free_dynids(struct hid_driver *hdrv) 1919 { 1920 struct hid_dynid *dynid, *n; 1921 1922 spin_lock(&hdrv->dyn_lock); 1923 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) { 1924 list_del(&dynid->list); 1925 kfree(dynid); 1926 } 1927 spin_unlock(&hdrv->dyn_lock); 1928 } 1929 1930 const struct hid_device_id *hid_match_device(struct hid_device *hdev, 1931 struct hid_driver *hdrv) 1932 { 1933 struct hid_dynid *dynid; 1934 1935 spin_lock(&hdrv->dyn_lock); 1936 list_for_each_entry(dynid, &hdrv->dyn_list, list) { 1937 if (hid_match_one_id(hdev, &dynid->id)) { 1938 spin_unlock(&hdrv->dyn_lock); 1939 return &dynid->id; 1940 } 1941 } 1942 spin_unlock(&hdrv->dyn_lock); 1943 1944 return hid_match_id(hdev, hdrv->id_table); 1945 } 1946 EXPORT_SYMBOL_GPL(hid_match_device); 1947 1948 static int hid_bus_match(struct device *dev, struct device_driver *drv) 1949 { 1950 struct hid_driver *hdrv = to_hid_driver(drv); 1951 struct hid_device *hdev = to_hid_device(dev); 1952 1953 return hid_match_device(hdev, hdrv) != NULL; 1954 } 1955 1956 /** 1957 * hid_compare_device_paths - check if both devices share the same path 1958 * @hdev_a: hid device 1959 * @hdev_b: hid device 1960 * @separator: char to use as separator 1961 * 1962 * Check if two devices share the same path up to the last occurrence of 1963 * the separator char. Both paths must exist (i.e., zero-length paths 1964 * don't match). 1965 */ 1966 bool hid_compare_device_paths(struct hid_device *hdev_a, 1967 struct hid_device *hdev_b, char separator) 1968 { 1969 int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys; 1970 int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys; 1971 1972 if (n1 != n2 || n1 <= 0 || n2 <= 0) 1973 return false; 1974 1975 return !strncmp(hdev_a->phys, hdev_b->phys, n1); 1976 } 1977 EXPORT_SYMBOL_GPL(hid_compare_device_paths); 1978 1979 static int hid_device_probe(struct device *dev) 1980 { 1981 struct hid_driver *hdrv = to_hid_driver(dev->driver); 1982 struct hid_device *hdev = to_hid_device(dev); 1983 const struct hid_device_id *id; 1984 int ret = 0; 1985 1986 if (down_interruptible(&hdev->driver_input_lock)) { 1987 ret = -EINTR; 1988 goto end; 1989 } 1990 hdev->io_started = false; 1991 1992 clear_bit(ffs(HID_STAT_REPROBED), &hdev->status); 1993 1994 if (!hdev->driver) { 1995 id = hid_match_device(hdev, hdrv); 1996 if (id == NULL) { 1997 ret = -ENODEV; 1998 goto unlock; 1999 } 2000 2001 if (hdrv->match) { 2002 if (!hdrv->match(hdev, hid_ignore_special_drivers)) { 2003 ret = -ENODEV; 2004 goto unlock; 2005 } 2006 } else { 2007 /* 2008 * hid-generic implements .match(), so if 2009 * hid_ignore_special_drivers is set, we can safely 2010 * return. 2011 */ 2012 if (hid_ignore_special_drivers) { 2013 ret = -ENODEV; 2014 goto unlock; 2015 } 2016 } 2017 2018 /* reset the quirks that has been previously set */ 2019 hdev->quirks = hid_lookup_quirk(hdev); 2020 hdev->driver = hdrv; 2021 if (hdrv->probe) { 2022 ret = hdrv->probe(hdev, id); 2023 } else { /* default probe */ 2024 ret = hid_open_report(hdev); 2025 if (!ret) 2026 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT); 2027 } 2028 if (ret) { 2029 hid_close_report(hdev); 2030 hdev->driver = NULL; 2031 } 2032 } 2033 unlock: 2034 if (!hdev->io_started) 2035 up(&hdev->driver_input_lock); 2036 end: 2037 return ret; 2038 } 2039 2040 static int hid_device_remove(struct device *dev) 2041 { 2042 struct hid_device *hdev = to_hid_device(dev); 2043 struct hid_driver *hdrv; 2044 int ret = 0; 2045 2046 if (down_interruptible(&hdev->driver_input_lock)) { 2047 ret = -EINTR; 2048 goto end; 2049 } 2050 hdev->io_started = false; 2051 2052 hdrv = hdev->driver; 2053 if (hdrv) { 2054 if (hdrv->remove) 2055 hdrv->remove(hdev); 2056 else /* default remove */ 2057 hid_hw_stop(hdev); 2058 hid_close_report(hdev); 2059 hdev->driver = NULL; 2060 } 2061 2062 if (!hdev->io_started) 2063 up(&hdev->driver_input_lock); 2064 end: 2065 return ret; 2066 } 2067 2068 static ssize_t modalias_show(struct device *dev, struct device_attribute *a, 2069 char *buf) 2070 { 2071 struct hid_device *hdev = container_of(dev, struct hid_device, dev); 2072 2073 return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n", 2074 hdev->bus, hdev->group, hdev->vendor, hdev->product); 2075 } 2076 static DEVICE_ATTR_RO(modalias); 2077 2078 static struct attribute *hid_dev_attrs[] = { 2079 &dev_attr_modalias.attr, 2080 NULL, 2081 }; 2082 static struct bin_attribute *hid_dev_bin_attrs[] = { 2083 &dev_bin_attr_report_desc, 2084 NULL 2085 }; 2086 static const struct attribute_group hid_dev_group = { 2087 .attrs = hid_dev_attrs, 2088 .bin_attrs = hid_dev_bin_attrs, 2089 }; 2090 __ATTRIBUTE_GROUPS(hid_dev); 2091 2092 static int hid_uevent(struct device *dev, struct kobj_uevent_env *env) 2093 { 2094 struct hid_device *hdev = to_hid_device(dev); 2095 2096 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X", 2097 hdev->bus, hdev->vendor, hdev->product)) 2098 return -ENOMEM; 2099 2100 if (add_uevent_var(env, "HID_NAME=%s", hdev->name)) 2101 return -ENOMEM; 2102 2103 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys)) 2104 return -ENOMEM; 2105 2106 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq)) 2107 return -ENOMEM; 2108 2109 if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X", 2110 hdev->bus, hdev->group, hdev->vendor, hdev->product)) 2111 return -ENOMEM; 2112 2113 return 0; 2114 } 2115 2116 struct bus_type hid_bus_type = { 2117 .name = "hid", 2118 .dev_groups = hid_dev_groups, 2119 .drv_groups = hid_drv_groups, 2120 .match = hid_bus_match, 2121 .probe = hid_device_probe, 2122 .remove = hid_device_remove, 2123 .uevent = hid_uevent, 2124 }; 2125 EXPORT_SYMBOL(hid_bus_type); 2126 2127 int hid_add_device(struct hid_device *hdev) 2128 { 2129 static atomic_t id = ATOMIC_INIT(0); 2130 int ret; 2131 2132 if (WARN_ON(hdev->status & HID_STAT_ADDED)) 2133 return -EBUSY; 2134 2135 hdev->quirks = hid_lookup_quirk(hdev); 2136 2137 /* we need to kill them here, otherwise they will stay allocated to 2138 * wait for coming driver */ 2139 if (hid_ignore(hdev)) 2140 return -ENODEV; 2141 2142 /* 2143 * Check for the mandatory transport channel. 2144 */ 2145 if (!hdev->ll_driver->raw_request) { 2146 hid_err(hdev, "transport driver missing .raw_request()\n"); 2147 return -EINVAL; 2148 } 2149 2150 /* 2151 * Read the device report descriptor once and use as template 2152 * for the driver-specific modifications. 2153 */ 2154 ret = hdev->ll_driver->parse(hdev); 2155 if (ret) 2156 return ret; 2157 if (!hdev->dev_rdesc) 2158 return -ENODEV; 2159 2160 /* 2161 * Scan generic devices for group information 2162 */ 2163 if (hid_ignore_special_drivers) { 2164 hdev->group = HID_GROUP_GENERIC; 2165 } else if (!hdev->group && 2166 !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) { 2167 ret = hid_scan_report(hdev); 2168 if (ret) 2169 hid_warn(hdev, "bad device descriptor (%d)\n", ret); 2170 } 2171 2172 /* XXX hack, any other cleaner solution after the driver core 2173 * is converted to allow more than 20 bytes as the device name? */ 2174 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus, 2175 hdev->vendor, hdev->product, atomic_inc_return(&id)); 2176 2177 hid_debug_register(hdev, dev_name(&hdev->dev)); 2178 ret = device_add(&hdev->dev); 2179 if (!ret) 2180 hdev->status |= HID_STAT_ADDED; 2181 else 2182 hid_debug_unregister(hdev); 2183 2184 return ret; 2185 } 2186 EXPORT_SYMBOL_GPL(hid_add_device); 2187 2188 /** 2189 * hid_allocate_device - allocate new hid device descriptor 2190 * 2191 * Allocate and initialize hid device, so that hid_destroy_device might be 2192 * used to free it. 2193 * 2194 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded 2195 * error value. 2196 */ 2197 struct hid_device *hid_allocate_device(void) 2198 { 2199 struct hid_device *hdev; 2200 int ret = -ENOMEM; 2201 2202 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL); 2203 if (hdev == NULL) 2204 return ERR_PTR(ret); 2205 2206 device_initialize(&hdev->dev); 2207 hdev->dev.release = hid_device_release; 2208 hdev->dev.bus = &hid_bus_type; 2209 device_enable_async_suspend(&hdev->dev); 2210 2211 hid_close_report(hdev); 2212 2213 init_waitqueue_head(&hdev->debug_wait); 2214 INIT_LIST_HEAD(&hdev->debug_list); 2215 spin_lock_init(&hdev->debug_list_lock); 2216 sema_init(&hdev->driver_input_lock, 1); 2217 mutex_init(&hdev->ll_open_lock); 2218 2219 return hdev; 2220 } 2221 EXPORT_SYMBOL_GPL(hid_allocate_device); 2222 2223 static void hid_remove_device(struct hid_device *hdev) 2224 { 2225 if (hdev->status & HID_STAT_ADDED) { 2226 device_del(&hdev->dev); 2227 hid_debug_unregister(hdev); 2228 hdev->status &= ~HID_STAT_ADDED; 2229 } 2230 kfree(hdev->dev_rdesc); 2231 hdev->dev_rdesc = NULL; 2232 hdev->dev_rsize = 0; 2233 } 2234 2235 /** 2236 * hid_destroy_device - free previously allocated device 2237 * 2238 * @hdev: hid device 2239 * 2240 * If you allocate hid_device through hid_allocate_device, you should ever 2241 * free by this function. 2242 */ 2243 void hid_destroy_device(struct hid_device *hdev) 2244 { 2245 hid_remove_device(hdev); 2246 put_device(&hdev->dev); 2247 } 2248 EXPORT_SYMBOL_GPL(hid_destroy_device); 2249 2250 2251 static int __hid_bus_reprobe_drivers(struct device *dev, void *data) 2252 { 2253 struct hid_driver *hdrv = data; 2254 struct hid_device *hdev = to_hid_device(dev); 2255 2256 if (hdev->driver == hdrv && 2257 !hdrv->match(hdev, hid_ignore_special_drivers) && 2258 !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status)) 2259 return device_reprobe(dev); 2260 2261 return 0; 2262 } 2263 2264 static int __hid_bus_driver_added(struct device_driver *drv, void *data) 2265 { 2266 struct hid_driver *hdrv = to_hid_driver(drv); 2267 2268 if (hdrv->match) { 2269 bus_for_each_dev(&hid_bus_type, NULL, hdrv, 2270 __hid_bus_reprobe_drivers); 2271 } 2272 2273 return 0; 2274 } 2275 2276 static int __bus_removed_driver(struct device_driver *drv, void *data) 2277 { 2278 return bus_rescan_devices(&hid_bus_type); 2279 } 2280 2281 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner, 2282 const char *mod_name) 2283 { 2284 int ret; 2285 2286 hdrv->driver.name = hdrv->name; 2287 hdrv->driver.bus = &hid_bus_type; 2288 hdrv->driver.owner = owner; 2289 hdrv->driver.mod_name = mod_name; 2290 2291 INIT_LIST_HEAD(&hdrv->dyn_list); 2292 spin_lock_init(&hdrv->dyn_lock); 2293 2294 ret = driver_register(&hdrv->driver); 2295 2296 if (ret == 0) 2297 bus_for_each_drv(&hid_bus_type, NULL, NULL, 2298 __hid_bus_driver_added); 2299 2300 return ret; 2301 } 2302 EXPORT_SYMBOL_GPL(__hid_register_driver); 2303 2304 void hid_unregister_driver(struct hid_driver *hdrv) 2305 { 2306 driver_unregister(&hdrv->driver); 2307 hid_free_dynids(hdrv); 2308 2309 bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver); 2310 } 2311 EXPORT_SYMBOL_GPL(hid_unregister_driver); 2312 2313 int hid_check_keys_pressed(struct hid_device *hid) 2314 { 2315 struct hid_input *hidinput; 2316 int i; 2317 2318 if (!(hid->claimed & HID_CLAIMED_INPUT)) 2319 return 0; 2320 2321 list_for_each_entry(hidinput, &hid->inputs, list) { 2322 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++) 2323 if (hidinput->input->key[i]) 2324 return 1; 2325 } 2326 2327 return 0; 2328 } 2329 2330 EXPORT_SYMBOL_GPL(hid_check_keys_pressed); 2331 2332 static int __init hid_init(void) 2333 { 2334 int ret; 2335 2336 if (hid_debug) 2337 pr_warn("hid_debug is now used solely for parser and driver debugging.\n" 2338 "debugfs is now used for inspecting the device (report descriptor, reports)\n"); 2339 2340 ret = bus_register(&hid_bus_type); 2341 if (ret) { 2342 pr_err("can't register hid bus\n"); 2343 goto err; 2344 } 2345 2346 ret = hidraw_init(); 2347 if (ret) 2348 goto err_bus; 2349 2350 hid_debug_init(); 2351 2352 return 0; 2353 err_bus: 2354 bus_unregister(&hid_bus_type); 2355 err: 2356 return ret; 2357 } 2358 2359 static void __exit hid_exit(void) 2360 { 2361 hid_debug_exit(); 2362 hidraw_exit(); 2363 bus_unregister(&hid_bus_type); 2364 hid_quirks_exit(HID_BUS_ANY); 2365 } 2366 2367 module_init(hid_init); 2368 module_exit(hid_exit); 2369 2370 MODULE_AUTHOR("Andreas Gal"); 2371 MODULE_AUTHOR("Vojtech Pavlik"); 2372 MODULE_AUTHOR("Jiri Kosina"); 2373 MODULE_LICENSE("GPL"); 2374