xref: /openbmc/linux/drivers/hid/hid-core.c (revision 0e96cf7f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  HID support for Linux
4  *
5  *  Copyright (c) 1999 Andreas Gal
6  *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
7  *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
8  *  Copyright (c) 2006-2012 Jiri Kosina
9  */
10 
11 /*
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/spinlock.h>
23 #include <asm/unaligned.h>
24 #include <asm/byteorder.h>
25 #include <linux/input.h>
26 #include <linux/wait.h>
27 #include <linux/vmalloc.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30 
31 #include <linux/hid.h>
32 #include <linux/hiddev.h>
33 #include <linux/hid-debug.h>
34 #include <linux/hidraw.h>
35 
36 #include "hid-ids.h"
37 
38 /*
39  * Version Information
40  */
41 
42 #define DRIVER_DESC "HID core driver"
43 
44 int hid_debug = 0;
45 module_param_named(debug, hid_debug, int, 0600);
46 MODULE_PARM_DESC(debug, "toggle HID debugging messages");
47 EXPORT_SYMBOL_GPL(hid_debug);
48 
49 static int hid_ignore_special_drivers = 0;
50 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
51 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
52 
53 /*
54  * Register a new report for a device.
55  */
56 
57 struct hid_report *hid_register_report(struct hid_device *device,
58 				       unsigned int type, unsigned int id,
59 				       unsigned int application)
60 {
61 	struct hid_report_enum *report_enum = device->report_enum + type;
62 	struct hid_report *report;
63 
64 	if (id >= HID_MAX_IDS)
65 		return NULL;
66 	if (report_enum->report_id_hash[id])
67 		return report_enum->report_id_hash[id];
68 
69 	report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
70 	if (!report)
71 		return NULL;
72 
73 	if (id != 0)
74 		report_enum->numbered = 1;
75 
76 	report->id = id;
77 	report->type = type;
78 	report->size = 0;
79 	report->device = device;
80 	report->application = application;
81 	report_enum->report_id_hash[id] = report;
82 
83 	list_add_tail(&report->list, &report_enum->report_list);
84 
85 	return report;
86 }
87 EXPORT_SYMBOL_GPL(hid_register_report);
88 
89 /*
90  * Register a new field for this report.
91  */
92 
93 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
94 {
95 	struct hid_field *field;
96 
97 	if (report->maxfield == HID_MAX_FIELDS) {
98 		hid_err(report->device, "too many fields in report\n");
99 		return NULL;
100 	}
101 
102 	field = kzalloc((sizeof(struct hid_field) +
103 			 usages * sizeof(struct hid_usage) +
104 			 values * sizeof(unsigned)), GFP_KERNEL);
105 	if (!field)
106 		return NULL;
107 
108 	field->index = report->maxfield++;
109 	report->field[field->index] = field;
110 	field->usage = (struct hid_usage *)(field + 1);
111 	field->value = (s32 *)(field->usage + usages);
112 	field->report = report;
113 
114 	return field;
115 }
116 
117 /*
118  * Open a collection. The type/usage is pushed on the stack.
119  */
120 
121 static int open_collection(struct hid_parser *parser, unsigned type)
122 {
123 	struct hid_collection *collection;
124 	unsigned usage;
125 	int collection_index;
126 
127 	usage = parser->local.usage[0];
128 
129 	if (parser->collection_stack_ptr == parser->collection_stack_size) {
130 		unsigned int *collection_stack;
131 		unsigned int new_size = parser->collection_stack_size +
132 					HID_COLLECTION_STACK_SIZE;
133 
134 		collection_stack = krealloc(parser->collection_stack,
135 					    new_size * sizeof(unsigned int),
136 					    GFP_KERNEL);
137 		if (!collection_stack)
138 			return -ENOMEM;
139 
140 		parser->collection_stack = collection_stack;
141 		parser->collection_stack_size = new_size;
142 	}
143 
144 	if (parser->device->maxcollection == parser->device->collection_size) {
145 		collection = kmalloc(
146 				array3_size(sizeof(struct hid_collection),
147 					    parser->device->collection_size,
148 					    2),
149 				GFP_KERNEL);
150 		if (collection == NULL) {
151 			hid_err(parser->device, "failed to reallocate collection array\n");
152 			return -ENOMEM;
153 		}
154 		memcpy(collection, parser->device->collection,
155 			sizeof(struct hid_collection) *
156 			parser->device->collection_size);
157 		memset(collection + parser->device->collection_size, 0,
158 			sizeof(struct hid_collection) *
159 			parser->device->collection_size);
160 		kfree(parser->device->collection);
161 		parser->device->collection = collection;
162 		parser->device->collection_size *= 2;
163 	}
164 
165 	parser->collection_stack[parser->collection_stack_ptr++] =
166 		parser->device->maxcollection;
167 
168 	collection_index = parser->device->maxcollection++;
169 	collection = parser->device->collection + collection_index;
170 	collection->type = type;
171 	collection->usage = usage;
172 	collection->level = parser->collection_stack_ptr - 1;
173 	collection->parent_idx = (collection->level == 0) ? -1 :
174 		parser->collection_stack[collection->level - 1];
175 
176 	if (type == HID_COLLECTION_APPLICATION)
177 		parser->device->maxapplication++;
178 
179 	return 0;
180 }
181 
182 /*
183  * Close a collection.
184  */
185 
186 static int close_collection(struct hid_parser *parser)
187 {
188 	if (!parser->collection_stack_ptr) {
189 		hid_err(parser->device, "collection stack underflow\n");
190 		return -EINVAL;
191 	}
192 	parser->collection_stack_ptr--;
193 	return 0;
194 }
195 
196 /*
197  * Climb up the stack, search for the specified collection type
198  * and return the usage.
199  */
200 
201 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
202 {
203 	struct hid_collection *collection = parser->device->collection;
204 	int n;
205 
206 	for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
207 		unsigned index = parser->collection_stack[n];
208 		if (collection[index].type == type)
209 			return collection[index].usage;
210 	}
211 	return 0; /* we know nothing about this usage type */
212 }
213 
214 /*
215  * Add a usage to the temporary parser table.
216  */
217 
218 static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
219 {
220 	if (parser->local.usage_index >= HID_MAX_USAGES) {
221 		hid_err(parser->device, "usage index exceeded\n");
222 		return -1;
223 	}
224 	parser->local.usage[parser->local.usage_index] = usage;
225 	parser->local.usage_size[parser->local.usage_index] = size;
226 	parser->local.collection_index[parser->local.usage_index] =
227 		parser->collection_stack_ptr ?
228 		parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
229 	parser->local.usage_index++;
230 	return 0;
231 }
232 
233 /*
234  * Register a new field for this report.
235  */
236 
237 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
238 {
239 	struct hid_report *report;
240 	struct hid_field *field;
241 	unsigned int usages;
242 	unsigned int offset;
243 	unsigned int i;
244 	unsigned int application;
245 
246 	application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
247 
248 	report = hid_register_report(parser->device, report_type,
249 				     parser->global.report_id, application);
250 	if (!report) {
251 		hid_err(parser->device, "hid_register_report failed\n");
252 		return -1;
253 	}
254 
255 	/* Handle both signed and unsigned cases properly */
256 	if ((parser->global.logical_minimum < 0 &&
257 		parser->global.logical_maximum <
258 		parser->global.logical_minimum) ||
259 		(parser->global.logical_minimum >= 0 &&
260 		(__u32)parser->global.logical_maximum <
261 		(__u32)parser->global.logical_minimum)) {
262 		dbg_hid("logical range invalid 0x%x 0x%x\n",
263 			parser->global.logical_minimum,
264 			parser->global.logical_maximum);
265 		return -1;
266 	}
267 
268 	offset = report->size;
269 	report->size += parser->global.report_size * parser->global.report_count;
270 
271 	if (!parser->local.usage_index) /* Ignore padding fields */
272 		return 0;
273 
274 	usages = max_t(unsigned, parser->local.usage_index,
275 				 parser->global.report_count);
276 
277 	field = hid_register_field(report, usages, parser->global.report_count);
278 	if (!field)
279 		return 0;
280 
281 	field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
282 	field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
283 	field->application = application;
284 
285 	for (i = 0; i < usages; i++) {
286 		unsigned j = i;
287 		/* Duplicate the last usage we parsed if we have excess values */
288 		if (i >= parser->local.usage_index)
289 			j = parser->local.usage_index - 1;
290 		field->usage[i].hid = parser->local.usage[j];
291 		field->usage[i].collection_index =
292 			parser->local.collection_index[j];
293 		field->usage[i].usage_index = i;
294 		field->usage[i].resolution_multiplier = 1;
295 	}
296 
297 	field->maxusage = usages;
298 	field->flags = flags;
299 	field->report_offset = offset;
300 	field->report_type = report_type;
301 	field->report_size = parser->global.report_size;
302 	field->report_count = parser->global.report_count;
303 	field->logical_minimum = parser->global.logical_minimum;
304 	field->logical_maximum = parser->global.logical_maximum;
305 	field->physical_minimum = parser->global.physical_minimum;
306 	field->physical_maximum = parser->global.physical_maximum;
307 	field->unit_exponent = parser->global.unit_exponent;
308 	field->unit = parser->global.unit;
309 
310 	return 0;
311 }
312 
313 /*
314  * Read data value from item.
315  */
316 
317 static u32 item_udata(struct hid_item *item)
318 {
319 	switch (item->size) {
320 	case 1: return item->data.u8;
321 	case 2: return item->data.u16;
322 	case 4: return item->data.u32;
323 	}
324 	return 0;
325 }
326 
327 static s32 item_sdata(struct hid_item *item)
328 {
329 	switch (item->size) {
330 	case 1: return item->data.s8;
331 	case 2: return item->data.s16;
332 	case 4: return item->data.s32;
333 	}
334 	return 0;
335 }
336 
337 /*
338  * Process a global item.
339  */
340 
341 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
342 {
343 	__s32 raw_value;
344 	switch (item->tag) {
345 	case HID_GLOBAL_ITEM_TAG_PUSH:
346 
347 		if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
348 			hid_err(parser->device, "global environment stack overflow\n");
349 			return -1;
350 		}
351 
352 		memcpy(parser->global_stack + parser->global_stack_ptr++,
353 			&parser->global, sizeof(struct hid_global));
354 		return 0;
355 
356 	case HID_GLOBAL_ITEM_TAG_POP:
357 
358 		if (!parser->global_stack_ptr) {
359 			hid_err(parser->device, "global environment stack underflow\n");
360 			return -1;
361 		}
362 
363 		memcpy(&parser->global, parser->global_stack +
364 			--parser->global_stack_ptr, sizeof(struct hid_global));
365 		return 0;
366 
367 	case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
368 		parser->global.usage_page = item_udata(item);
369 		return 0;
370 
371 	case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
372 		parser->global.logical_minimum = item_sdata(item);
373 		return 0;
374 
375 	case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
376 		if (parser->global.logical_minimum < 0)
377 			parser->global.logical_maximum = item_sdata(item);
378 		else
379 			parser->global.logical_maximum = item_udata(item);
380 		return 0;
381 
382 	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
383 		parser->global.physical_minimum = item_sdata(item);
384 		return 0;
385 
386 	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
387 		if (parser->global.physical_minimum < 0)
388 			parser->global.physical_maximum = item_sdata(item);
389 		else
390 			parser->global.physical_maximum = item_udata(item);
391 		return 0;
392 
393 	case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
394 		/* Many devices provide unit exponent as a two's complement
395 		 * nibble due to the common misunderstanding of HID
396 		 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
397 		 * both this and the standard encoding. */
398 		raw_value = item_sdata(item);
399 		if (!(raw_value & 0xfffffff0))
400 			parser->global.unit_exponent = hid_snto32(raw_value, 4);
401 		else
402 			parser->global.unit_exponent = raw_value;
403 		return 0;
404 
405 	case HID_GLOBAL_ITEM_TAG_UNIT:
406 		parser->global.unit = item_udata(item);
407 		return 0;
408 
409 	case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
410 		parser->global.report_size = item_udata(item);
411 		if (parser->global.report_size > 256) {
412 			hid_err(parser->device, "invalid report_size %d\n",
413 					parser->global.report_size);
414 			return -1;
415 		}
416 		return 0;
417 
418 	case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
419 		parser->global.report_count = item_udata(item);
420 		if (parser->global.report_count > HID_MAX_USAGES) {
421 			hid_err(parser->device, "invalid report_count %d\n",
422 					parser->global.report_count);
423 			return -1;
424 		}
425 		return 0;
426 
427 	case HID_GLOBAL_ITEM_TAG_REPORT_ID:
428 		parser->global.report_id = item_udata(item);
429 		if (parser->global.report_id == 0 ||
430 		    parser->global.report_id >= HID_MAX_IDS) {
431 			hid_err(parser->device, "report_id %u is invalid\n",
432 				parser->global.report_id);
433 			return -1;
434 		}
435 		return 0;
436 
437 	default:
438 		hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
439 		return -1;
440 	}
441 }
442 
443 /*
444  * Process a local item.
445  */
446 
447 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
448 {
449 	__u32 data;
450 	unsigned n;
451 	__u32 count;
452 
453 	data = item_udata(item);
454 
455 	switch (item->tag) {
456 	case HID_LOCAL_ITEM_TAG_DELIMITER:
457 
458 		if (data) {
459 			/*
460 			 * We treat items before the first delimiter
461 			 * as global to all usage sets (branch 0).
462 			 * In the moment we process only these global
463 			 * items and the first delimiter set.
464 			 */
465 			if (parser->local.delimiter_depth != 0) {
466 				hid_err(parser->device, "nested delimiters\n");
467 				return -1;
468 			}
469 			parser->local.delimiter_depth++;
470 			parser->local.delimiter_branch++;
471 		} else {
472 			if (parser->local.delimiter_depth < 1) {
473 				hid_err(parser->device, "bogus close delimiter\n");
474 				return -1;
475 			}
476 			parser->local.delimiter_depth--;
477 		}
478 		return 0;
479 
480 	case HID_LOCAL_ITEM_TAG_USAGE:
481 
482 		if (parser->local.delimiter_branch > 1) {
483 			dbg_hid("alternative usage ignored\n");
484 			return 0;
485 		}
486 
487 		return hid_add_usage(parser, data, item->size);
488 
489 	case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
490 
491 		if (parser->local.delimiter_branch > 1) {
492 			dbg_hid("alternative usage ignored\n");
493 			return 0;
494 		}
495 
496 		parser->local.usage_minimum = data;
497 		return 0;
498 
499 	case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
500 
501 		if (parser->local.delimiter_branch > 1) {
502 			dbg_hid("alternative usage ignored\n");
503 			return 0;
504 		}
505 
506 		count = data - parser->local.usage_minimum;
507 		if (count + parser->local.usage_index >= HID_MAX_USAGES) {
508 			/*
509 			 * We do not warn if the name is not set, we are
510 			 * actually pre-scanning the device.
511 			 */
512 			if (dev_name(&parser->device->dev))
513 				hid_warn(parser->device,
514 					 "ignoring exceeding usage max\n");
515 			data = HID_MAX_USAGES - parser->local.usage_index +
516 				parser->local.usage_minimum - 1;
517 			if (data <= 0) {
518 				hid_err(parser->device,
519 					"no more usage index available\n");
520 				return -1;
521 			}
522 		}
523 
524 		for (n = parser->local.usage_minimum; n <= data; n++)
525 			if (hid_add_usage(parser, n, item->size)) {
526 				dbg_hid("hid_add_usage failed\n");
527 				return -1;
528 			}
529 		return 0;
530 
531 	default:
532 
533 		dbg_hid("unknown local item tag 0x%x\n", item->tag);
534 		return 0;
535 	}
536 	return 0;
537 }
538 
539 /*
540  * Concatenate Usage Pages into Usages where relevant:
541  * As per specification, 6.2.2.8: "When the parser encounters a main item it
542  * concatenates the last declared Usage Page with a Usage to form a complete
543  * usage value."
544  */
545 
546 static void hid_concatenate_usage_page(struct hid_parser *parser)
547 {
548 	int i;
549 
550 	for (i = 0; i < parser->local.usage_index; i++)
551 		if (parser->local.usage_size[i] <= 2)
552 			parser->local.usage[i] += parser->global.usage_page << 16;
553 }
554 
555 /*
556  * Process a main item.
557  */
558 
559 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
560 {
561 	__u32 data;
562 	int ret;
563 
564 	hid_concatenate_usage_page(parser);
565 
566 	data = item_udata(item);
567 
568 	switch (item->tag) {
569 	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
570 		ret = open_collection(parser, data & 0xff);
571 		break;
572 	case HID_MAIN_ITEM_TAG_END_COLLECTION:
573 		ret = close_collection(parser);
574 		break;
575 	case HID_MAIN_ITEM_TAG_INPUT:
576 		ret = hid_add_field(parser, HID_INPUT_REPORT, data);
577 		break;
578 	case HID_MAIN_ITEM_TAG_OUTPUT:
579 		ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
580 		break;
581 	case HID_MAIN_ITEM_TAG_FEATURE:
582 		ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
583 		break;
584 	default:
585 		hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
586 		ret = 0;
587 	}
588 
589 	memset(&parser->local, 0, sizeof(parser->local));	/* Reset the local parser environment */
590 
591 	return ret;
592 }
593 
594 /*
595  * Process a reserved item.
596  */
597 
598 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
599 {
600 	dbg_hid("reserved item type, tag 0x%x\n", item->tag);
601 	return 0;
602 }
603 
604 /*
605  * Free a report and all registered fields. The field->usage and
606  * field->value table's are allocated behind the field, so we need
607  * only to free(field) itself.
608  */
609 
610 static void hid_free_report(struct hid_report *report)
611 {
612 	unsigned n;
613 
614 	for (n = 0; n < report->maxfield; n++)
615 		kfree(report->field[n]);
616 	kfree(report);
617 }
618 
619 /*
620  * Close report. This function returns the device
621  * state to the point prior to hid_open_report().
622  */
623 static void hid_close_report(struct hid_device *device)
624 {
625 	unsigned i, j;
626 
627 	for (i = 0; i < HID_REPORT_TYPES; i++) {
628 		struct hid_report_enum *report_enum = device->report_enum + i;
629 
630 		for (j = 0; j < HID_MAX_IDS; j++) {
631 			struct hid_report *report = report_enum->report_id_hash[j];
632 			if (report)
633 				hid_free_report(report);
634 		}
635 		memset(report_enum, 0, sizeof(*report_enum));
636 		INIT_LIST_HEAD(&report_enum->report_list);
637 	}
638 
639 	kfree(device->rdesc);
640 	device->rdesc = NULL;
641 	device->rsize = 0;
642 
643 	kfree(device->collection);
644 	device->collection = NULL;
645 	device->collection_size = 0;
646 	device->maxcollection = 0;
647 	device->maxapplication = 0;
648 
649 	device->status &= ~HID_STAT_PARSED;
650 }
651 
652 /*
653  * Free a device structure, all reports, and all fields.
654  */
655 
656 static void hid_device_release(struct device *dev)
657 {
658 	struct hid_device *hid = to_hid_device(dev);
659 
660 	hid_close_report(hid);
661 	kfree(hid->dev_rdesc);
662 	kfree(hid);
663 }
664 
665 /*
666  * Fetch a report description item from the data stream. We support long
667  * items, though they are not used yet.
668  */
669 
670 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
671 {
672 	u8 b;
673 
674 	if ((end - start) <= 0)
675 		return NULL;
676 
677 	b = *start++;
678 
679 	item->type = (b >> 2) & 3;
680 	item->tag  = (b >> 4) & 15;
681 
682 	if (item->tag == HID_ITEM_TAG_LONG) {
683 
684 		item->format = HID_ITEM_FORMAT_LONG;
685 
686 		if ((end - start) < 2)
687 			return NULL;
688 
689 		item->size = *start++;
690 		item->tag  = *start++;
691 
692 		if ((end - start) < item->size)
693 			return NULL;
694 
695 		item->data.longdata = start;
696 		start += item->size;
697 		return start;
698 	}
699 
700 	item->format = HID_ITEM_FORMAT_SHORT;
701 	item->size = b & 3;
702 
703 	switch (item->size) {
704 	case 0:
705 		return start;
706 
707 	case 1:
708 		if ((end - start) < 1)
709 			return NULL;
710 		item->data.u8 = *start++;
711 		return start;
712 
713 	case 2:
714 		if ((end - start) < 2)
715 			return NULL;
716 		item->data.u16 = get_unaligned_le16(start);
717 		start = (__u8 *)((__le16 *)start + 1);
718 		return start;
719 
720 	case 3:
721 		item->size++;
722 		if ((end - start) < 4)
723 			return NULL;
724 		item->data.u32 = get_unaligned_le32(start);
725 		start = (__u8 *)((__le32 *)start + 1);
726 		return start;
727 	}
728 
729 	return NULL;
730 }
731 
732 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
733 {
734 	struct hid_device *hid = parser->device;
735 
736 	if (usage == HID_DG_CONTACTID)
737 		hid->group = HID_GROUP_MULTITOUCH;
738 }
739 
740 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
741 {
742 	if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
743 	    parser->global.report_size == 8)
744 		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
745 }
746 
747 static void hid_scan_collection(struct hid_parser *parser, unsigned type)
748 {
749 	struct hid_device *hid = parser->device;
750 	int i;
751 
752 	if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
753 	    type == HID_COLLECTION_PHYSICAL)
754 		hid->group = HID_GROUP_SENSOR_HUB;
755 
756 	if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
757 	    hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
758 	    hid->group == HID_GROUP_MULTITOUCH)
759 		hid->group = HID_GROUP_GENERIC;
760 
761 	if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
762 		for (i = 0; i < parser->local.usage_index; i++)
763 			if (parser->local.usage[i] == HID_GD_POINTER)
764 				parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
765 
766 	if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
767 		parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
768 }
769 
770 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
771 {
772 	__u32 data;
773 	int i;
774 
775 	hid_concatenate_usage_page(parser);
776 
777 	data = item_udata(item);
778 
779 	switch (item->tag) {
780 	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
781 		hid_scan_collection(parser, data & 0xff);
782 		break;
783 	case HID_MAIN_ITEM_TAG_END_COLLECTION:
784 		break;
785 	case HID_MAIN_ITEM_TAG_INPUT:
786 		/* ignore constant inputs, they will be ignored by hid-input */
787 		if (data & HID_MAIN_ITEM_CONSTANT)
788 			break;
789 		for (i = 0; i < parser->local.usage_index; i++)
790 			hid_scan_input_usage(parser, parser->local.usage[i]);
791 		break;
792 	case HID_MAIN_ITEM_TAG_OUTPUT:
793 		break;
794 	case HID_MAIN_ITEM_TAG_FEATURE:
795 		for (i = 0; i < parser->local.usage_index; i++)
796 			hid_scan_feature_usage(parser, parser->local.usage[i]);
797 		break;
798 	}
799 
800 	/* Reset the local parser environment */
801 	memset(&parser->local, 0, sizeof(parser->local));
802 
803 	return 0;
804 }
805 
806 /*
807  * Scan a report descriptor before the device is added to the bus.
808  * Sets device groups and other properties that determine what driver
809  * to load.
810  */
811 static int hid_scan_report(struct hid_device *hid)
812 {
813 	struct hid_parser *parser;
814 	struct hid_item item;
815 	__u8 *start = hid->dev_rdesc;
816 	__u8 *end = start + hid->dev_rsize;
817 	static int (*dispatch_type[])(struct hid_parser *parser,
818 				      struct hid_item *item) = {
819 		hid_scan_main,
820 		hid_parser_global,
821 		hid_parser_local,
822 		hid_parser_reserved
823 	};
824 
825 	parser = vzalloc(sizeof(struct hid_parser));
826 	if (!parser)
827 		return -ENOMEM;
828 
829 	parser->device = hid;
830 	hid->group = HID_GROUP_GENERIC;
831 
832 	/*
833 	 * The parsing is simpler than the one in hid_open_report() as we should
834 	 * be robust against hid errors. Those errors will be raised by
835 	 * hid_open_report() anyway.
836 	 */
837 	while ((start = fetch_item(start, end, &item)) != NULL)
838 		dispatch_type[item.type](parser, &item);
839 
840 	/*
841 	 * Handle special flags set during scanning.
842 	 */
843 	if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
844 	    (hid->group == HID_GROUP_MULTITOUCH))
845 		hid->group = HID_GROUP_MULTITOUCH_WIN_8;
846 
847 	/*
848 	 * Vendor specific handlings
849 	 */
850 	switch (hid->vendor) {
851 	case USB_VENDOR_ID_WACOM:
852 		hid->group = HID_GROUP_WACOM;
853 		break;
854 	case USB_VENDOR_ID_SYNAPTICS:
855 		if (hid->group == HID_GROUP_GENERIC)
856 			if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
857 			    && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
858 				/*
859 				 * hid-rmi should take care of them,
860 				 * not hid-generic
861 				 */
862 				hid->group = HID_GROUP_RMI;
863 		break;
864 	}
865 
866 	kfree(parser->collection_stack);
867 	vfree(parser);
868 	return 0;
869 }
870 
871 /**
872  * hid_parse_report - parse device report
873  *
874  * @device: hid device
875  * @start: report start
876  * @size: report size
877  *
878  * Allocate the device report as read by the bus driver. This function should
879  * only be called from parse() in ll drivers.
880  */
881 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
882 {
883 	hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
884 	if (!hid->dev_rdesc)
885 		return -ENOMEM;
886 	hid->dev_rsize = size;
887 	return 0;
888 }
889 EXPORT_SYMBOL_GPL(hid_parse_report);
890 
891 static const char * const hid_report_names[] = {
892 	"HID_INPUT_REPORT",
893 	"HID_OUTPUT_REPORT",
894 	"HID_FEATURE_REPORT",
895 };
896 /**
897  * hid_validate_values - validate existing device report's value indexes
898  *
899  * @device: hid device
900  * @type: which report type to examine
901  * @id: which report ID to examine (0 for first)
902  * @field_index: which report field to examine
903  * @report_counts: expected number of values
904  *
905  * Validate the number of values in a given field of a given report, after
906  * parsing.
907  */
908 struct hid_report *hid_validate_values(struct hid_device *hid,
909 				       unsigned int type, unsigned int id,
910 				       unsigned int field_index,
911 				       unsigned int report_counts)
912 {
913 	struct hid_report *report;
914 
915 	if (type > HID_FEATURE_REPORT) {
916 		hid_err(hid, "invalid HID report type %u\n", type);
917 		return NULL;
918 	}
919 
920 	if (id >= HID_MAX_IDS) {
921 		hid_err(hid, "invalid HID report id %u\n", id);
922 		return NULL;
923 	}
924 
925 	/*
926 	 * Explicitly not using hid_get_report() here since it depends on
927 	 * ->numbered being checked, which may not always be the case when
928 	 * drivers go to access report values.
929 	 */
930 	if (id == 0) {
931 		/*
932 		 * Validating on id 0 means we should examine the first
933 		 * report in the list.
934 		 */
935 		report = list_entry(
936 				hid->report_enum[type].report_list.next,
937 				struct hid_report, list);
938 	} else {
939 		report = hid->report_enum[type].report_id_hash[id];
940 	}
941 	if (!report) {
942 		hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
943 		return NULL;
944 	}
945 	if (report->maxfield <= field_index) {
946 		hid_err(hid, "not enough fields in %s %u\n",
947 			hid_report_names[type], id);
948 		return NULL;
949 	}
950 	if (report->field[field_index]->report_count < report_counts) {
951 		hid_err(hid, "not enough values in %s %u field %u\n",
952 			hid_report_names[type], id, field_index);
953 		return NULL;
954 	}
955 	return report;
956 }
957 EXPORT_SYMBOL_GPL(hid_validate_values);
958 
959 static int hid_calculate_multiplier(struct hid_device *hid,
960 				     struct hid_field *multiplier)
961 {
962 	int m;
963 	__s32 v = *multiplier->value;
964 	__s32 lmin = multiplier->logical_minimum;
965 	__s32 lmax = multiplier->logical_maximum;
966 	__s32 pmin = multiplier->physical_minimum;
967 	__s32 pmax = multiplier->physical_maximum;
968 
969 	/*
970 	 * "Because OS implementations will generally divide the control's
971 	 * reported count by the Effective Resolution Multiplier, designers
972 	 * should take care not to establish a potential Effective
973 	 * Resolution Multiplier of zero."
974 	 * HID Usage Table, v1.12, Section 4.3.1, p31
975 	 */
976 	if (lmax - lmin == 0)
977 		return 1;
978 	/*
979 	 * Handling the unit exponent is left as an exercise to whoever
980 	 * finds a device where that exponent is not 0.
981 	 */
982 	m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
983 	if (unlikely(multiplier->unit_exponent != 0)) {
984 		hid_warn(hid,
985 			 "unsupported Resolution Multiplier unit exponent %d\n",
986 			 multiplier->unit_exponent);
987 	}
988 
989 	/* There are no devices with an effective multiplier > 255 */
990 	if (unlikely(m == 0 || m > 255 || m < -255)) {
991 		hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
992 		m = 1;
993 	}
994 
995 	return m;
996 }
997 
998 static void hid_apply_multiplier_to_field(struct hid_device *hid,
999 					  struct hid_field *field,
1000 					  struct hid_collection *multiplier_collection,
1001 					  int effective_multiplier)
1002 {
1003 	struct hid_collection *collection;
1004 	struct hid_usage *usage;
1005 	int i;
1006 
1007 	/*
1008 	 * If multiplier_collection is NULL, the multiplier applies
1009 	 * to all fields in the report.
1010 	 * Otherwise, it is the Logical Collection the multiplier applies to
1011 	 * but our field may be in a subcollection of that collection.
1012 	 */
1013 	for (i = 0; i < field->maxusage; i++) {
1014 		usage = &field->usage[i];
1015 
1016 		collection = &hid->collection[usage->collection_index];
1017 		while (collection->parent_idx != -1 &&
1018 		       collection != multiplier_collection)
1019 			collection = &hid->collection[collection->parent_idx];
1020 
1021 		if (collection->parent_idx != -1 ||
1022 		    multiplier_collection == NULL)
1023 			usage->resolution_multiplier = effective_multiplier;
1024 
1025 	}
1026 }
1027 
1028 static void hid_apply_multiplier(struct hid_device *hid,
1029 				 struct hid_field *multiplier)
1030 {
1031 	struct hid_report_enum *rep_enum;
1032 	struct hid_report *rep;
1033 	struct hid_field *field;
1034 	struct hid_collection *multiplier_collection;
1035 	int effective_multiplier;
1036 	int i;
1037 
1038 	/*
1039 	 * "The Resolution Multiplier control must be contained in the same
1040 	 * Logical Collection as the control(s) to which it is to be applied.
1041 	 * If no Resolution Multiplier is defined, then the Resolution
1042 	 * Multiplier defaults to 1.  If more than one control exists in a
1043 	 * Logical Collection, the Resolution Multiplier is associated with
1044 	 * all controls in the collection. If no Logical Collection is
1045 	 * defined, the Resolution Multiplier is associated with all
1046 	 * controls in the report."
1047 	 * HID Usage Table, v1.12, Section 4.3.1, p30
1048 	 *
1049 	 * Thus, search from the current collection upwards until we find a
1050 	 * logical collection. Then search all fields for that same parent
1051 	 * collection. Those are the fields the multiplier applies to.
1052 	 *
1053 	 * If we have more than one multiplier, it will overwrite the
1054 	 * applicable fields later.
1055 	 */
1056 	multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1057 	while (multiplier_collection->parent_idx != -1 &&
1058 	       multiplier_collection->type != HID_COLLECTION_LOGICAL)
1059 		multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1060 
1061 	effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1062 
1063 	rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1064 	list_for_each_entry(rep, &rep_enum->report_list, list) {
1065 		for (i = 0; i < rep->maxfield; i++) {
1066 			field = rep->field[i];
1067 			hid_apply_multiplier_to_field(hid, field,
1068 						      multiplier_collection,
1069 						      effective_multiplier);
1070 		}
1071 	}
1072 }
1073 
1074 /*
1075  * hid_setup_resolution_multiplier - set up all resolution multipliers
1076  *
1077  * @device: hid device
1078  *
1079  * Search for all Resolution Multiplier Feature Reports and apply their
1080  * value to all matching Input items. This only updates the internal struct
1081  * fields.
1082  *
1083  * The Resolution Multiplier is applied by the hardware. If the multiplier
1084  * is anything other than 1, the hardware will send pre-multiplied events
1085  * so that the same physical interaction generates an accumulated
1086  *	accumulated_value = value * * multiplier
1087  * This may be achieved by sending
1088  * - "value * multiplier" for each event, or
1089  * - "value" but "multiplier" times as frequently, or
1090  * - a combination of the above
1091  * The only guarantee is that the same physical interaction always generates
1092  * an accumulated 'value * multiplier'.
1093  *
1094  * This function must be called before any event processing and after
1095  * any SetRequest to the Resolution Multiplier.
1096  */
1097 void hid_setup_resolution_multiplier(struct hid_device *hid)
1098 {
1099 	struct hid_report_enum *rep_enum;
1100 	struct hid_report *rep;
1101 	struct hid_usage *usage;
1102 	int i, j;
1103 
1104 	rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1105 	list_for_each_entry(rep, &rep_enum->report_list, list) {
1106 		for (i = 0; i < rep->maxfield; i++) {
1107 			/* Ignore if report count is out of bounds. */
1108 			if (rep->field[i]->report_count < 1)
1109 				continue;
1110 
1111 			for (j = 0; j < rep->field[i]->maxusage; j++) {
1112 				usage = &rep->field[i]->usage[j];
1113 				if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1114 					hid_apply_multiplier(hid,
1115 							     rep->field[i]);
1116 			}
1117 		}
1118 	}
1119 }
1120 EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1121 
1122 /**
1123  * hid_open_report - open a driver-specific device report
1124  *
1125  * @device: hid device
1126  *
1127  * Parse a report description into a hid_device structure. Reports are
1128  * enumerated, fields are attached to these reports.
1129  * 0 returned on success, otherwise nonzero error value.
1130  *
1131  * This function (or the equivalent hid_parse() macro) should only be
1132  * called from probe() in drivers, before starting the device.
1133  */
1134 int hid_open_report(struct hid_device *device)
1135 {
1136 	struct hid_parser *parser;
1137 	struct hid_item item;
1138 	unsigned int size;
1139 	__u8 *start;
1140 	__u8 *buf;
1141 	__u8 *end;
1142 	int ret;
1143 	static int (*dispatch_type[])(struct hid_parser *parser,
1144 				      struct hid_item *item) = {
1145 		hid_parser_main,
1146 		hid_parser_global,
1147 		hid_parser_local,
1148 		hid_parser_reserved
1149 	};
1150 
1151 	if (WARN_ON(device->status & HID_STAT_PARSED))
1152 		return -EBUSY;
1153 
1154 	start = device->dev_rdesc;
1155 	if (WARN_ON(!start))
1156 		return -ENODEV;
1157 	size = device->dev_rsize;
1158 
1159 	buf = kmemdup(start, size, GFP_KERNEL);
1160 	if (buf == NULL)
1161 		return -ENOMEM;
1162 
1163 	if (device->driver->report_fixup)
1164 		start = device->driver->report_fixup(device, buf, &size);
1165 	else
1166 		start = buf;
1167 
1168 	start = kmemdup(start, size, GFP_KERNEL);
1169 	kfree(buf);
1170 	if (start == NULL)
1171 		return -ENOMEM;
1172 
1173 	device->rdesc = start;
1174 	device->rsize = size;
1175 
1176 	parser = vzalloc(sizeof(struct hid_parser));
1177 	if (!parser) {
1178 		ret = -ENOMEM;
1179 		goto alloc_err;
1180 	}
1181 
1182 	parser->device = device;
1183 
1184 	end = start + size;
1185 
1186 	device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1187 				     sizeof(struct hid_collection), GFP_KERNEL);
1188 	if (!device->collection) {
1189 		ret = -ENOMEM;
1190 		goto err;
1191 	}
1192 	device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1193 
1194 	ret = -EINVAL;
1195 	while ((start = fetch_item(start, end, &item)) != NULL) {
1196 
1197 		if (item.format != HID_ITEM_FORMAT_SHORT) {
1198 			hid_err(device, "unexpected long global item\n");
1199 			goto err;
1200 		}
1201 
1202 		if (dispatch_type[item.type](parser, &item)) {
1203 			hid_err(device, "item %u %u %u %u parsing failed\n",
1204 				item.format, (unsigned)item.size,
1205 				(unsigned)item.type, (unsigned)item.tag);
1206 			goto err;
1207 		}
1208 
1209 		if (start == end) {
1210 			if (parser->collection_stack_ptr) {
1211 				hid_err(device, "unbalanced collection at end of report description\n");
1212 				goto err;
1213 			}
1214 			if (parser->local.delimiter_depth) {
1215 				hid_err(device, "unbalanced delimiter at end of report description\n");
1216 				goto err;
1217 			}
1218 
1219 			/*
1220 			 * fetch initial values in case the device's
1221 			 * default multiplier isn't the recommended 1
1222 			 */
1223 			hid_setup_resolution_multiplier(device);
1224 
1225 			kfree(parser->collection_stack);
1226 			vfree(parser);
1227 			device->status |= HID_STAT_PARSED;
1228 
1229 			return 0;
1230 		}
1231 	}
1232 
1233 	hid_err(device, "item fetching failed at offset %d\n", (int)(end - start));
1234 err:
1235 	kfree(parser->collection_stack);
1236 alloc_err:
1237 	vfree(parser);
1238 	hid_close_report(device);
1239 	return ret;
1240 }
1241 EXPORT_SYMBOL_GPL(hid_open_report);
1242 
1243 /*
1244  * Convert a signed n-bit integer to signed 32-bit integer. Common
1245  * cases are done through the compiler, the screwed things has to be
1246  * done by hand.
1247  */
1248 
1249 static s32 snto32(__u32 value, unsigned n)
1250 {
1251 	switch (n) {
1252 	case 8:  return ((__s8)value);
1253 	case 16: return ((__s16)value);
1254 	case 32: return ((__s32)value);
1255 	}
1256 	return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1257 }
1258 
1259 s32 hid_snto32(__u32 value, unsigned n)
1260 {
1261 	return snto32(value, n);
1262 }
1263 EXPORT_SYMBOL_GPL(hid_snto32);
1264 
1265 /*
1266  * Convert a signed 32-bit integer to a signed n-bit integer.
1267  */
1268 
1269 static u32 s32ton(__s32 value, unsigned n)
1270 {
1271 	s32 a = value >> (n - 1);
1272 	if (a && a != -1)
1273 		return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1274 	return value & ((1 << n) - 1);
1275 }
1276 
1277 /*
1278  * Extract/implement a data field from/to a little endian report (bit array).
1279  *
1280  * Code sort-of follows HID spec:
1281  *     http://www.usb.org/developers/hidpage/HID1_11.pdf
1282  *
1283  * While the USB HID spec allows unlimited length bit fields in "report
1284  * descriptors", most devices never use more than 16 bits.
1285  * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1286  * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1287  */
1288 
1289 static u32 __extract(u8 *report, unsigned offset, int n)
1290 {
1291 	unsigned int idx = offset / 8;
1292 	unsigned int bit_nr = 0;
1293 	unsigned int bit_shift = offset % 8;
1294 	int bits_to_copy = 8 - bit_shift;
1295 	u32 value = 0;
1296 	u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1297 
1298 	while (n > 0) {
1299 		value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1300 		n -= bits_to_copy;
1301 		bit_nr += bits_to_copy;
1302 		bits_to_copy = 8;
1303 		bit_shift = 0;
1304 		idx++;
1305 	}
1306 
1307 	return value & mask;
1308 }
1309 
1310 u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1311 			unsigned offset, unsigned n)
1312 {
1313 	if (n > 32) {
1314 		hid_warn(hid, "hid_field_extract() called with n (%d) > 32! (%s)\n",
1315 			 n, current->comm);
1316 		n = 32;
1317 	}
1318 
1319 	return __extract(report, offset, n);
1320 }
1321 EXPORT_SYMBOL_GPL(hid_field_extract);
1322 
1323 /*
1324  * "implement" : set bits in a little endian bit stream.
1325  * Same concepts as "extract" (see comments above).
1326  * The data mangled in the bit stream remains in little endian
1327  * order the whole time. It make more sense to talk about
1328  * endianness of register values by considering a register
1329  * a "cached" copy of the little endian bit stream.
1330  */
1331 
1332 static void __implement(u8 *report, unsigned offset, int n, u32 value)
1333 {
1334 	unsigned int idx = offset / 8;
1335 	unsigned int bit_shift = offset % 8;
1336 	int bits_to_set = 8 - bit_shift;
1337 
1338 	while (n - bits_to_set >= 0) {
1339 		report[idx] &= ~(0xff << bit_shift);
1340 		report[idx] |= value << bit_shift;
1341 		value >>= bits_to_set;
1342 		n -= bits_to_set;
1343 		bits_to_set = 8;
1344 		bit_shift = 0;
1345 		idx++;
1346 	}
1347 
1348 	/* last nibble */
1349 	if (n) {
1350 		u8 bit_mask = ((1U << n) - 1);
1351 		report[idx] &= ~(bit_mask << bit_shift);
1352 		report[idx] |= value << bit_shift;
1353 	}
1354 }
1355 
1356 static void implement(const struct hid_device *hid, u8 *report,
1357 		      unsigned offset, unsigned n, u32 value)
1358 {
1359 	if (unlikely(n > 32)) {
1360 		hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1361 			 __func__, n, current->comm);
1362 		n = 32;
1363 	} else if (n < 32) {
1364 		u32 m = (1U << n) - 1;
1365 
1366 		if (unlikely(value > m)) {
1367 			hid_warn(hid,
1368 				 "%s() called with too large value %d (n: %d)! (%s)\n",
1369 				 __func__, value, n, current->comm);
1370 			WARN_ON(1);
1371 			value &= m;
1372 		}
1373 	}
1374 
1375 	__implement(report, offset, n, value);
1376 }
1377 
1378 /*
1379  * Search an array for a value.
1380  */
1381 
1382 static int search(__s32 *array, __s32 value, unsigned n)
1383 {
1384 	while (n--) {
1385 		if (*array++ == value)
1386 			return 0;
1387 	}
1388 	return -1;
1389 }
1390 
1391 /**
1392  * hid_match_report - check if driver's raw_event should be called
1393  *
1394  * @hid: hid device
1395  * @report_type: type to match against
1396  *
1397  * compare hid->driver->report_table->report_type to report->type
1398  */
1399 static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1400 {
1401 	const struct hid_report_id *id = hid->driver->report_table;
1402 
1403 	if (!id) /* NULL means all */
1404 		return 1;
1405 
1406 	for (; id->report_type != HID_TERMINATOR; id++)
1407 		if (id->report_type == HID_ANY_ID ||
1408 				id->report_type == report->type)
1409 			return 1;
1410 	return 0;
1411 }
1412 
1413 /**
1414  * hid_match_usage - check if driver's event should be called
1415  *
1416  * @hid: hid device
1417  * @usage: usage to match against
1418  *
1419  * compare hid->driver->usage_table->usage_{type,code} to
1420  * usage->usage_{type,code}
1421  */
1422 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1423 {
1424 	const struct hid_usage_id *id = hid->driver->usage_table;
1425 
1426 	if (!id) /* NULL means all */
1427 		return 1;
1428 
1429 	for (; id->usage_type != HID_ANY_ID - 1; id++)
1430 		if ((id->usage_hid == HID_ANY_ID ||
1431 				id->usage_hid == usage->hid) &&
1432 				(id->usage_type == HID_ANY_ID ||
1433 				id->usage_type == usage->type) &&
1434 				(id->usage_code == HID_ANY_ID ||
1435 				 id->usage_code == usage->code))
1436 			return 1;
1437 	return 0;
1438 }
1439 
1440 static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1441 		struct hid_usage *usage, __s32 value, int interrupt)
1442 {
1443 	struct hid_driver *hdrv = hid->driver;
1444 	int ret;
1445 
1446 	if (!list_empty(&hid->debug_list))
1447 		hid_dump_input(hid, usage, value);
1448 
1449 	if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1450 		ret = hdrv->event(hid, field, usage, value);
1451 		if (ret != 0) {
1452 			if (ret < 0)
1453 				hid_err(hid, "%s's event failed with %d\n",
1454 						hdrv->name, ret);
1455 			return;
1456 		}
1457 	}
1458 
1459 	if (hid->claimed & HID_CLAIMED_INPUT)
1460 		hidinput_hid_event(hid, field, usage, value);
1461 	if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1462 		hid->hiddev_hid_event(hid, field, usage, value);
1463 }
1464 
1465 /*
1466  * Analyse a received field, and fetch the data from it. The field
1467  * content is stored for next report processing (we do differential
1468  * reporting to the layer).
1469  */
1470 
1471 static void hid_input_field(struct hid_device *hid, struct hid_field *field,
1472 			    __u8 *data, int interrupt)
1473 {
1474 	unsigned n;
1475 	unsigned count = field->report_count;
1476 	unsigned offset = field->report_offset;
1477 	unsigned size = field->report_size;
1478 	__s32 min = field->logical_minimum;
1479 	__s32 max = field->logical_maximum;
1480 	__s32 *value;
1481 
1482 	value = kmalloc_array(count, sizeof(__s32), GFP_ATOMIC);
1483 	if (!value)
1484 		return;
1485 
1486 	for (n = 0; n < count; n++) {
1487 
1488 		value[n] = min < 0 ?
1489 			snto32(hid_field_extract(hid, data, offset + n * size,
1490 			       size), size) :
1491 			hid_field_extract(hid, data, offset + n * size, size);
1492 
1493 		/* Ignore report if ErrorRollOver */
1494 		if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1495 		    value[n] >= min && value[n] <= max &&
1496 		    value[n] - min < field->maxusage &&
1497 		    field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
1498 			goto exit;
1499 	}
1500 
1501 	for (n = 0; n < count; n++) {
1502 
1503 		if (HID_MAIN_ITEM_VARIABLE & field->flags) {
1504 			hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
1505 			continue;
1506 		}
1507 
1508 		if (field->value[n] >= min && field->value[n] <= max
1509 			&& field->value[n] - min < field->maxusage
1510 			&& field->usage[field->value[n] - min].hid
1511 			&& search(value, field->value[n], count))
1512 				hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
1513 
1514 		if (value[n] >= min && value[n] <= max
1515 			&& value[n] - min < field->maxusage
1516 			&& field->usage[value[n] - min].hid
1517 			&& search(field->value, value[n], count))
1518 				hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
1519 	}
1520 
1521 	memcpy(field->value, value, count * sizeof(__s32));
1522 exit:
1523 	kfree(value);
1524 }
1525 
1526 /*
1527  * Output the field into the report.
1528  */
1529 
1530 static void hid_output_field(const struct hid_device *hid,
1531 			     struct hid_field *field, __u8 *data)
1532 {
1533 	unsigned count = field->report_count;
1534 	unsigned offset = field->report_offset;
1535 	unsigned size = field->report_size;
1536 	unsigned n;
1537 
1538 	for (n = 0; n < count; n++) {
1539 		if (field->logical_minimum < 0)	/* signed values */
1540 			implement(hid, data, offset + n * size, size,
1541 				  s32ton(field->value[n], size));
1542 		else				/* unsigned values */
1543 			implement(hid, data, offset + n * size, size,
1544 				  field->value[n]);
1545 	}
1546 }
1547 
1548 /*
1549  * Create a report. 'data' has to be allocated using
1550  * hid_alloc_report_buf() so that it has proper size.
1551  */
1552 
1553 void hid_output_report(struct hid_report *report, __u8 *data)
1554 {
1555 	unsigned n;
1556 
1557 	if (report->id > 0)
1558 		*data++ = report->id;
1559 
1560 	memset(data, 0, ((report->size - 1) >> 3) + 1);
1561 	for (n = 0; n < report->maxfield; n++)
1562 		hid_output_field(report->device, report->field[n], data);
1563 }
1564 EXPORT_SYMBOL_GPL(hid_output_report);
1565 
1566 /*
1567  * Allocator for buffer that is going to be passed to hid_output_report()
1568  */
1569 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1570 {
1571 	/*
1572 	 * 7 extra bytes are necessary to achieve proper functionality
1573 	 * of implement() working on 8 byte chunks
1574 	 */
1575 
1576 	u32 len = hid_report_len(report) + 7;
1577 
1578 	return kmalloc(len, flags);
1579 }
1580 EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1581 
1582 /*
1583  * Set a field value. The report this field belongs to has to be
1584  * created and transferred to the device, to set this value in the
1585  * device.
1586  */
1587 
1588 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1589 {
1590 	unsigned size;
1591 
1592 	if (!field)
1593 		return -1;
1594 
1595 	size = field->report_size;
1596 
1597 	hid_dump_input(field->report->device, field->usage + offset, value);
1598 
1599 	if (offset >= field->report_count) {
1600 		hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1601 				offset, field->report_count);
1602 		return -1;
1603 	}
1604 	if (field->logical_minimum < 0) {
1605 		if (value != snto32(s32ton(value, size), size)) {
1606 			hid_err(field->report->device, "value %d is out of range\n", value);
1607 			return -1;
1608 		}
1609 	}
1610 	field->value[offset] = value;
1611 	return 0;
1612 }
1613 EXPORT_SYMBOL_GPL(hid_set_field);
1614 
1615 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1616 		const u8 *data)
1617 {
1618 	struct hid_report *report;
1619 	unsigned int n = 0;	/* Normally report number is 0 */
1620 
1621 	/* Device uses numbered reports, data[0] is report number */
1622 	if (report_enum->numbered)
1623 		n = *data;
1624 
1625 	report = report_enum->report_id_hash[n];
1626 	if (report == NULL)
1627 		dbg_hid("undefined report_id %u received\n", n);
1628 
1629 	return report;
1630 }
1631 
1632 /*
1633  * Implement a generic .request() callback, using .raw_request()
1634  * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1635  */
1636 int __hid_request(struct hid_device *hid, struct hid_report *report,
1637 		int reqtype)
1638 {
1639 	char *buf;
1640 	int ret;
1641 	u32 len;
1642 
1643 	buf = hid_alloc_report_buf(report, GFP_KERNEL);
1644 	if (!buf)
1645 		return -ENOMEM;
1646 
1647 	len = hid_report_len(report);
1648 
1649 	if (reqtype == HID_REQ_SET_REPORT)
1650 		hid_output_report(report, buf);
1651 
1652 	ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1653 					  report->type, reqtype);
1654 	if (ret < 0) {
1655 		dbg_hid("unable to complete request: %d\n", ret);
1656 		goto out;
1657 	}
1658 
1659 	if (reqtype == HID_REQ_GET_REPORT)
1660 		hid_input_report(hid, report->type, buf, ret, 0);
1661 
1662 	ret = 0;
1663 
1664 out:
1665 	kfree(buf);
1666 	return ret;
1667 }
1668 EXPORT_SYMBOL_GPL(__hid_request);
1669 
1670 int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size,
1671 		int interrupt)
1672 {
1673 	struct hid_report_enum *report_enum = hid->report_enum + type;
1674 	struct hid_report *report;
1675 	struct hid_driver *hdrv;
1676 	unsigned int a;
1677 	u32 rsize, csize = size;
1678 	u8 *cdata = data;
1679 	int ret = 0;
1680 
1681 	report = hid_get_report(report_enum, data);
1682 	if (!report)
1683 		goto out;
1684 
1685 	if (report_enum->numbered) {
1686 		cdata++;
1687 		csize--;
1688 	}
1689 
1690 	rsize = ((report->size - 1) >> 3) + 1;
1691 
1692 	if (rsize > HID_MAX_BUFFER_SIZE)
1693 		rsize = HID_MAX_BUFFER_SIZE;
1694 
1695 	if (csize < rsize) {
1696 		dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1697 				csize, rsize);
1698 		memset(cdata + csize, 0, rsize - csize);
1699 	}
1700 
1701 	if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1702 		hid->hiddev_report_event(hid, report);
1703 	if (hid->claimed & HID_CLAIMED_HIDRAW) {
1704 		ret = hidraw_report_event(hid, data, size);
1705 		if (ret)
1706 			goto out;
1707 	}
1708 
1709 	if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
1710 		for (a = 0; a < report->maxfield; a++)
1711 			hid_input_field(hid, report->field[a], cdata, interrupt);
1712 		hdrv = hid->driver;
1713 		if (hdrv && hdrv->report)
1714 			hdrv->report(hid, report);
1715 	}
1716 
1717 	if (hid->claimed & HID_CLAIMED_INPUT)
1718 		hidinput_report_event(hid, report);
1719 out:
1720 	return ret;
1721 }
1722 EXPORT_SYMBOL_GPL(hid_report_raw_event);
1723 
1724 /**
1725  * hid_input_report - report data from lower layer (usb, bt...)
1726  *
1727  * @hid: hid device
1728  * @type: HID report type (HID_*_REPORT)
1729  * @data: report contents
1730  * @size: size of data parameter
1731  * @interrupt: distinguish between interrupt and control transfers
1732  *
1733  * This is data entry for lower layers.
1734  */
1735 int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt)
1736 {
1737 	struct hid_report_enum *report_enum;
1738 	struct hid_driver *hdrv;
1739 	struct hid_report *report;
1740 	int ret = 0;
1741 
1742 	if (!hid)
1743 		return -ENODEV;
1744 
1745 	if (down_trylock(&hid->driver_input_lock))
1746 		return -EBUSY;
1747 
1748 	if (!hid->driver) {
1749 		ret = -ENODEV;
1750 		goto unlock;
1751 	}
1752 	report_enum = hid->report_enum + type;
1753 	hdrv = hid->driver;
1754 
1755 	if (!size) {
1756 		dbg_hid("empty report\n");
1757 		ret = -1;
1758 		goto unlock;
1759 	}
1760 
1761 	/* Avoid unnecessary overhead if debugfs is disabled */
1762 	if (!list_empty(&hid->debug_list))
1763 		hid_dump_report(hid, type, data, size);
1764 
1765 	report = hid_get_report(report_enum, data);
1766 
1767 	if (!report) {
1768 		ret = -1;
1769 		goto unlock;
1770 	}
1771 
1772 	if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1773 		ret = hdrv->raw_event(hid, report, data, size);
1774 		if (ret < 0)
1775 			goto unlock;
1776 	}
1777 
1778 	ret = hid_report_raw_event(hid, type, data, size, interrupt);
1779 
1780 unlock:
1781 	up(&hid->driver_input_lock);
1782 	return ret;
1783 }
1784 EXPORT_SYMBOL_GPL(hid_input_report);
1785 
1786 bool hid_match_one_id(const struct hid_device *hdev,
1787 		      const struct hid_device_id *id)
1788 {
1789 	return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
1790 		(id->group == HID_GROUP_ANY || id->group == hdev->group) &&
1791 		(id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1792 		(id->product == HID_ANY_ID || id->product == hdev->product);
1793 }
1794 
1795 const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
1796 		const struct hid_device_id *id)
1797 {
1798 	for (; id->bus; id++)
1799 		if (hid_match_one_id(hdev, id))
1800 			return id;
1801 
1802 	return NULL;
1803 }
1804 
1805 static const struct hid_device_id hid_hiddev_list[] = {
1806 	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1807 	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1808 	{ }
1809 };
1810 
1811 static bool hid_hiddev(struct hid_device *hdev)
1812 {
1813 	return !!hid_match_id(hdev, hid_hiddev_list);
1814 }
1815 
1816 
1817 static ssize_t
1818 read_report_descriptor(struct file *filp, struct kobject *kobj,
1819 		struct bin_attribute *attr,
1820 		char *buf, loff_t off, size_t count)
1821 {
1822 	struct device *dev = kobj_to_dev(kobj);
1823 	struct hid_device *hdev = to_hid_device(dev);
1824 
1825 	if (off >= hdev->rsize)
1826 		return 0;
1827 
1828 	if (off + count > hdev->rsize)
1829 		count = hdev->rsize - off;
1830 
1831 	memcpy(buf, hdev->rdesc + off, count);
1832 
1833 	return count;
1834 }
1835 
1836 static ssize_t
1837 show_country(struct device *dev, struct device_attribute *attr,
1838 		char *buf)
1839 {
1840 	struct hid_device *hdev = to_hid_device(dev);
1841 
1842 	return sprintf(buf, "%02x\n", hdev->country & 0xff);
1843 }
1844 
1845 static struct bin_attribute dev_bin_attr_report_desc = {
1846 	.attr = { .name = "report_descriptor", .mode = 0444 },
1847 	.read = read_report_descriptor,
1848 	.size = HID_MAX_DESCRIPTOR_SIZE,
1849 };
1850 
1851 static const struct device_attribute dev_attr_country = {
1852 	.attr = { .name = "country", .mode = 0444 },
1853 	.show = show_country,
1854 };
1855 
1856 int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1857 {
1858 	static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1859 		"Joystick", "Gamepad", "Keyboard", "Keypad",
1860 		"Multi-Axis Controller"
1861 	};
1862 	const char *type, *bus;
1863 	char buf[64] = "";
1864 	unsigned int i;
1865 	int len;
1866 	int ret;
1867 
1868 	if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1869 		connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1870 	if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1871 		connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1872 	if (hdev->bus != BUS_USB)
1873 		connect_mask &= ~HID_CONNECT_HIDDEV;
1874 	if (hid_hiddev(hdev))
1875 		connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1876 
1877 	if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1878 				connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1879 		hdev->claimed |= HID_CLAIMED_INPUT;
1880 
1881 	if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1882 			!hdev->hiddev_connect(hdev,
1883 				connect_mask & HID_CONNECT_HIDDEV_FORCE))
1884 		hdev->claimed |= HID_CLAIMED_HIDDEV;
1885 	if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1886 		hdev->claimed |= HID_CLAIMED_HIDRAW;
1887 
1888 	if (connect_mask & HID_CONNECT_DRIVER)
1889 		hdev->claimed |= HID_CLAIMED_DRIVER;
1890 
1891 	/* Drivers with the ->raw_event callback set are not required to connect
1892 	 * to any other listener. */
1893 	if (!hdev->claimed && !hdev->driver->raw_event) {
1894 		hid_err(hdev, "device has no listeners, quitting\n");
1895 		return -ENODEV;
1896 	}
1897 
1898 	if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1899 			(connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1900 		hdev->ff_init(hdev);
1901 
1902 	len = 0;
1903 	if (hdev->claimed & HID_CLAIMED_INPUT)
1904 		len += sprintf(buf + len, "input");
1905 	if (hdev->claimed & HID_CLAIMED_HIDDEV)
1906 		len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1907 				((struct hiddev *)hdev->hiddev)->minor);
1908 	if (hdev->claimed & HID_CLAIMED_HIDRAW)
1909 		len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
1910 				((struct hidraw *)hdev->hidraw)->minor);
1911 
1912 	type = "Device";
1913 	for (i = 0; i < hdev->maxcollection; i++) {
1914 		struct hid_collection *col = &hdev->collection[i];
1915 		if (col->type == HID_COLLECTION_APPLICATION &&
1916 		   (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
1917 		   (col->usage & 0xffff) < ARRAY_SIZE(types)) {
1918 			type = types[col->usage & 0xffff];
1919 			break;
1920 		}
1921 	}
1922 
1923 	switch (hdev->bus) {
1924 	case BUS_USB:
1925 		bus = "USB";
1926 		break;
1927 	case BUS_BLUETOOTH:
1928 		bus = "BLUETOOTH";
1929 		break;
1930 	case BUS_I2C:
1931 		bus = "I2C";
1932 		break;
1933 	default:
1934 		bus = "<UNKNOWN>";
1935 	}
1936 
1937 	ret = device_create_file(&hdev->dev, &dev_attr_country);
1938 	if (ret)
1939 		hid_warn(hdev,
1940 			 "can't create sysfs country code attribute err: %d\n", ret);
1941 
1942 	hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
1943 		 buf, bus, hdev->version >> 8, hdev->version & 0xff,
1944 		 type, hdev->name, hdev->phys);
1945 
1946 	return 0;
1947 }
1948 EXPORT_SYMBOL_GPL(hid_connect);
1949 
1950 void hid_disconnect(struct hid_device *hdev)
1951 {
1952 	device_remove_file(&hdev->dev, &dev_attr_country);
1953 	if (hdev->claimed & HID_CLAIMED_INPUT)
1954 		hidinput_disconnect(hdev);
1955 	if (hdev->claimed & HID_CLAIMED_HIDDEV)
1956 		hdev->hiddev_disconnect(hdev);
1957 	if (hdev->claimed & HID_CLAIMED_HIDRAW)
1958 		hidraw_disconnect(hdev);
1959 	hdev->claimed = 0;
1960 }
1961 EXPORT_SYMBOL_GPL(hid_disconnect);
1962 
1963 /**
1964  * hid_hw_start - start underlying HW
1965  * @hdev: hid device
1966  * @connect_mask: which outputs to connect, see HID_CONNECT_*
1967  *
1968  * Call this in probe function *after* hid_parse. This will setup HW
1969  * buffers and start the device (if not defeirred to device open).
1970  * hid_hw_stop must be called if this was successful.
1971  */
1972 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
1973 {
1974 	int error;
1975 
1976 	error = hdev->ll_driver->start(hdev);
1977 	if (error)
1978 		return error;
1979 
1980 	if (connect_mask) {
1981 		error = hid_connect(hdev, connect_mask);
1982 		if (error) {
1983 			hdev->ll_driver->stop(hdev);
1984 			return error;
1985 		}
1986 	}
1987 
1988 	return 0;
1989 }
1990 EXPORT_SYMBOL_GPL(hid_hw_start);
1991 
1992 /**
1993  * hid_hw_stop - stop underlying HW
1994  * @hdev: hid device
1995  *
1996  * This is usually called from remove function or from probe when something
1997  * failed and hid_hw_start was called already.
1998  */
1999 void hid_hw_stop(struct hid_device *hdev)
2000 {
2001 	hid_disconnect(hdev);
2002 	hdev->ll_driver->stop(hdev);
2003 }
2004 EXPORT_SYMBOL_GPL(hid_hw_stop);
2005 
2006 /**
2007  * hid_hw_open - signal underlying HW to start delivering events
2008  * @hdev: hid device
2009  *
2010  * Tell underlying HW to start delivering events from the device.
2011  * This function should be called sometime after successful call
2012  * to hid_hw_start().
2013  */
2014 int hid_hw_open(struct hid_device *hdev)
2015 {
2016 	int ret;
2017 
2018 	ret = mutex_lock_killable(&hdev->ll_open_lock);
2019 	if (ret)
2020 		return ret;
2021 
2022 	if (!hdev->ll_open_count++) {
2023 		ret = hdev->ll_driver->open(hdev);
2024 		if (ret)
2025 			hdev->ll_open_count--;
2026 	}
2027 
2028 	mutex_unlock(&hdev->ll_open_lock);
2029 	return ret;
2030 }
2031 EXPORT_SYMBOL_GPL(hid_hw_open);
2032 
2033 /**
2034  * hid_hw_close - signal underlaying HW to stop delivering events
2035  *
2036  * @hdev: hid device
2037  *
2038  * This function indicates that we are not interested in the events
2039  * from this device anymore. Delivery of events may or may not stop,
2040  * depending on the number of users still outstanding.
2041  */
2042 void hid_hw_close(struct hid_device *hdev)
2043 {
2044 	mutex_lock(&hdev->ll_open_lock);
2045 	if (!--hdev->ll_open_count)
2046 		hdev->ll_driver->close(hdev);
2047 	mutex_unlock(&hdev->ll_open_lock);
2048 }
2049 EXPORT_SYMBOL_GPL(hid_hw_close);
2050 
2051 struct hid_dynid {
2052 	struct list_head list;
2053 	struct hid_device_id id;
2054 };
2055 
2056 /**
2057  * store_new_id - add a new HID device ID to this driver and re-probe devices
2058  * @driver: target device driver
2059  * @buf: buffer for scanning device ID data
2060  * @count: input size
2061  *
2062  * Adds a new dynamic hid device ID to this driver,
2063  * and causes the driver to probe for all devices again.
2064  */
2065 static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2066 		size_t count)
2067 {
2068 	struct hid_driver *hdrv = to_hid_driver(drv);
2069 	struct hid_dynid *dynid;
2070 	__u32 bus, vendor, product;
2071 	unsigned long driver_data = 0;
2072 	int ret;
2073 
2074 	ret = sscanf(buf, "%x %x %x %lx",
2075 			&bus, &vendor, &product, &driver_data);
2076 	if (ret < 3)
2077 		return -EINVAL;
2078 
2079 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2080 	if (!dynid)
2081 		return -ENOMEM;
2082 
2083 	dynid->id.bus = bus;
2084 	dynid->id.group = HID_GROUP_ANY;
2085 	dynid->id.vendor = vendor;
2086 	dynid->id.product = product;
2087 	dynid->id.driver_data = driver_data;
2088 
2089 	spin_lock(&hdrv->dyn_lock);
2090 	list_add_tail(&dynid->list, &hdrv->dyn_list);
2091 	spin_unlock(&hdrv->dyn_lock);
2092 
2093 	ret = driver_attach(&hdrv->driver);
2094 
2095 	return ret ? : count;
2096 }
2097 static DRIVER_ATTR_WO(new_id);
2098 
2099 static struct attribute *hid_drv_attrs[] = {
2100 	&driver_attr_new_id.attr,
2101 	NULL,
2102 };
2103 ATTRIBUTE_GROUPS(hid_drv);
2104 
2105 static void hid_free_dynids(struct hid_driver *hdrv)
2106 {
2107 	struct hid_dynid *dynid, *n;
2108 
2109 	spin_lock(&hdrv->dyn_lock);
2110 	list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2111 		list_del(&dynid->list);
2112 		kfree(dynid);
2113 	}
2114 	spin_unlock(&hdrv->dyn_lock);
2115 }
2116 
2117 const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2118 					     struct hid_driver *hdrv)
2119 {
2120 	struct hid_dynid *dynid;
2121 
2122 	spin_lock(&hdrv->dyn_lock);
2123 	list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2124 		if (hid_match_one_id(hdev, &dynid->id)) {
2125 			spin_unlock(&hdrv->dyn_lock);
2126 			return &dynid->id;
2127 		}
2128 	}
2129 	spin_unlock(&hdrv->dyn_lock);
2130 
2131 	return hid_match_id(hdev, hdrv->id_table);
2132 }
2133 EXPORT_SYMBOL_GPL(hid_match_device);
2134 
2135 static int hid_bus_match(struct device *dev, struct device_driver *drv)
2136 {
2137 	struct hid_driver *hdrv = to_hid_driver(drv);
2138 	struct hid_device *hdev = to_hid_device(dev);
2139 
2140 	return hid_match_device(hdev, hdrv) != NULL;
2141 }
2142 
2143 /**
2144  * hid_compare_device_paths - check if both devices share the same path
2145  * @hdev_a: hid device
2146  * @hdev_b: hid device
2147  * @separator: char to use as separator
2148  *
2149  * Check if two devices share the same path up to the last occurrence of
2150  * the separator char. Both paths must exist (i.e., zero-length paths
2151  * don't match).
2152  */
2153 bool hid_compare_device_paths(struct hid_device *hdev_a,
2154 			      struct hid_device *hdev_b, char separator)
2155 {
2156 	int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2157 	int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2158 
2159 	if (n1 != n2 || n1 <= 0 || n2 <= 0)
2160 		return false;
2161 
2162 	return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2163 }
2164 EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2165 
2166 static int hid_device_probe(struct device *dev)
2167 {
2168 	struct hid_driver *hdrv = to_hid_driver(dev->driver);
2169 	struct hid_device *hdev = to_hid_device(dev);
2170 	const struct hid_device_id *id;
2171 	int ret = 0;
2172 
2173 	if (down_interruptible(&hdev->driver_input_lock)) {
2174 		ret = -EINTR;
2175 		goto end;
2176 	}
2177 	hdev->io_started = false;
2178 
2179 	clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2180 
2181 	if (!hdev->driver) {
2182 		id = hid_match_device(hdev, hdrv);
2183 		if (id == NULL) {
2184 			ret = -ENODEV;
2185 			goto unlock;
2186 		}
2187 
2188 		if (hdrv->match) {
2189 			if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
2190 				ret = -ENODEV;
2191 				goto unlock;
2192 			}
2193 		} else {
2194 			/*
2195 			 * hid-generic implements .match(), so if
2196 			 * hid_ignore_special_drivers is set, we can safely
2197 			 * return.
2198 			 */
2199 			if (hid_ignore_special_drivers) {
2200 				ret = -ENODEV;
2201 				goto unlock;
2202 			}
2203 		}
2204 
2205 		/* reset the quirks that has been previously set */
2206 		hdev->quirks = hid_lookup_quirk(hdev);
2207 		hdev->driver = hdrv;
2208 		if (hdrv->probe) {
2209 			ret = hdrv->probe(hdev, id);
2210 		} else { /* default probe */
2211 			ret = hid_open_report(hdev);
2212 			if (!ret)
2213 				ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2214 		}
2215 		if (ret) {
2216 			hid_close_report(hdev);
2217 			hdev->driver = NULL;
2218 		}
2219 	}
2220 unlock:
2221 	if (!hdev->io_started)
2222 		up(&hdev->driver_input_lock);
2223 end:
2224 	return ret;
2225 }
2226 
2227 static int hid_device_remove(struct device *dev)
2228 {
2229 	struct hid_device *hdev = to_hid_device(dev);
2230 	struct hid_driver *hdrv;
2231 	int ret = 0;
2232 
2233 	if (down_interruptible(&hdev->driver_input_lock)) {
2234 		ret = -EINTR;
2235 		goto end;
2236 	}
2237 	hdev->io_started = false;
2238 
2239 	hdrv = hdev->driver;
2240 	if (hdrv) {
2241 		if (hdrv->remove)
2242 			hdrv->remove(hdev);
2243 		else /* default remove */
2244 			hid_hw_stop(hdev);
2245 		hid_close_report(hdev);
2246 		hdev->driver = NULL;
2247 	}
2248 
2249 	if (!hdev->io_started)
2250 		up(&hdev->driver_input_lock);
2251 end:
2252 	return ret;
2253 }
2254 
2255 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2256 			     char *buf)
2257 {
2258 	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2259 
2260 	return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2261 			 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2262 }
2263 static DEVICE_ATTR_RO(modalias);
2264 
2265 static struct attribute *hid_dev_attrs[] = {
2266 	&dev_attr_modalias.attr,
2267 	NULL,
2268 };
2269 static struct bin_attribute *hid_dev_bin_attrs[] = {
2270 	&dev_bin_attr_report_desc,
2271 	NULL
2272 };
2273 static const struct attribute_group hid_dev_group = {
2274 	.attrs = hid_dev_attrs,
2275 	.bin_attrs = hid_dev_bin_attrs,
2276 };
2277 __ATTRIBUTE_GROUPS(hid_dev);
2278 
2279 static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2280 {
2281 	struct hid_device *hdev = to_hid_device(dev);
2282 
2283 	if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2284 			hdev->bus, hdev->vendor, hdev->product))
2285 		return -ENOMEM;
2286 
2287 	if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2288 		return -ENOMEM;
2289 
2290 	if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2291 		return -ENOMEM;
2292 
2293 	if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2294 		return -ENOMEM;
2295 
2296 	if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2297 			   hdev->bus, hdev->group, hdev->vendor, hdev->product))
2298 		return -ENOMEM;
2299 
2300 	return 0;
2301 }
2302 
2303 struct bus_type hid_bus_type = {
2304 	.name		= "hid",
2305 	.dev_groups	= hid_dev_groups,
2306 	.drv_groups	= hid_drv_groups,
2307 	.match		= hid_bus_match,
2308 	.probe		= hid_device_probe,
2309 	.remove		= hid_device_remove,
2310 	.uevent		= hid_uevent,
2311 };
2312 EXPORT_SYMBOL(hid_bus_type);
2313 
2314 int hid_add_device(struct hid_device *hdev)
2315 {
2316 	static atomic_t id = ATOMIC_INIT(0);
2317 	int ret;
2318 
2319 	if (WARN_ON(hdev->status & HID_STAT_ADDED))
2320 		return -EBUSY;
2321 
2322 	hdev->quirks = hid_lookup_quirk(hdev);
2323 
2324 	/* we need to kill them here, otherwise they will stay allocated to
2325 	 * wait for coming driver */
2326 	if (hid_ignore(hdev))
2327 		return -ENODEV;
2328 
2329 	/*
2330 	 * Check for the mandatory transport channel.
2331 	 */
2332 	 if (!hdev->ll_driver->raw_request) {
2333 		hid_err(hdev, "transport driver missing .raw_request()\n");
2334 		return -EINVAL;
2335 	 }
2336 
2337 	/*
2338 	 * Read the device report descriptor once and use as template
2339 	 * for the driver-specific modifications.
2340 	 */
2341 	ret = hdev->ll_driver->parse(hdev);
2342 	if (ret)
2343 		return ret;
2344 	if (!hdev->dev_rdesc)
2345 		return -ENODEV;
2346 
2347 	/*
2348 	 * Scan generic devices for group information
2349 	 */
2350 	if (hid_ignore_special_drivers) {
2351 		hdev->group = HID_GROUP_GENERIC;
2352 	} else if (!hdev->group &&
2353 		   !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2354 		ret = hid_scan_report(hdev);
2355 		if (ret)
2356 			hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2357 	}
2358 
2359 	/* XXX hack, any other cleaner solution after the driver core
2360 	 * is converted to allow more than 20 bytes as the device name? */
2361 	dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2362 		     hdev->vendor, hdev->product, atomic_inc_return(&id));
2363 
2364 	hid_debug_register(hdev, dev_name(&hdev->dev));
2365 	ret = device_add(&hdev->dev);
2366 	if (!ret)
2367 		hdev->status |= HID_STAT_ADDED;
2368 	else
2369 		hid_debug_unregister(hdev);
2370 
2371 	return ret;
2372 }
2373 EXPORT_SYMBOL_GPL(hid_add_device);
2374 
2375 /**
2376  * hid_allocate_device - allocate new hid device descriptor
2377  *
2378  * Allocate and initialize hid device, so that hid_destroy_device might be
2379  * used to free it.
2380  *
2381  * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2382  * error value.
2383  */
2384 struct hid_device *hid_allocate_device(void)
2385 {
2386 	struct hid_device *hdev;
2387 	int ret = -ENOMEM;
2388 
2389 	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2390 	if (hdev == NULL)
2391 		return ERR_PTR(ret);
2392 
2393 	device_initialize(&hdev->dev);
2394 	hdev->dev.release = hid_device_release;
2395 	hdev->dev.bus = &hid_bus_type;
2396 	device_enable_async_suspend(&hdev->dev);
2397 
2398 	hid_close_report(hdev);
2399 
2400 	init_waitqueue_head(&hdev->debug_wait);
2401 	INIT_LIST_HEAD(&hdev->debug_list);
2402 	spin_lock_init(&hdev->debug_list_lock);
2403 	sema_init(&hdev->driver_input_lock, 1);
2404 	mutex_init(&hdev->ll_open_lock);
2405 
2406 	return hdev;
2407 }
2408 EXPORT_SYMBOL_GPL(hid_allocate_device);
2409 
2410 static void hid_remove_device(struct hid_device *hdev)
2411 {
2412 	if (hdev->status & HID_STAT_ADDED) {
2413 		device_del(&hdev->dev);
2414 		hid_debug_unregister(hdev);
2415 		hdev->status &= ~HID_STAT_ADDED;
2416 	}
2417 	kfree(hdev->dev_rdesc);
2418 	hdev->dev_rdesc = NULL;
2419 	hdev->dev_rsize = 0;
2420 }
2421 
2422 /**
2423  * hid_destroy_device - free previously allocated device
2424  *
2425  * @hdev: hid device
2426  *
2427  * If you allocate hid_device through hid_allocate_device, you should ever
2428  * free by this function.
2429  */
2430 void hid_destroy_device(struct hid_device *hdev)
2431 {
2432 	hid_remove_device(hdev);
2433 	put_device(&hdev->dev);
2434 }
2435 EXPORT_SYMBOL_GPL(hid_destroy_device);
2436 
2437 
2438 static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2439 {
2440 	struct hid_driver *hdrv = data;
2441 	struct hid_device *hdev = to_hid_device(dev);
2442 
2443 	if (hdev->driver == hdrv &&
2444 	    !hdrv->match(hdev, hid_ignore_special_drivers) &&
2445 	    !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2446 		return device_reprobe(dev);
2447 
2448 	return 0;
2449 }
2450 
2451 static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2452 {
2453 	struct hid_driver *hdrv = to_hid_driver(drv);
2454 
2455 	if (hdrv->match) {
2456 		bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2457 				 __hid_bus_reprobe_drivers);
2458 	}
2459 
2460 	return 0;
2461 }
2462 
2463 static int __bus_removed_driver(struct device_driver *drv, void *data)
2464 {
2465 	return bus_rescan_devices(&hid_bus_type);
2466 }
2467 
2468 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2469 		const char *mod_name)
2470 {
2471 	int ret;
2472 
2473 	hdrv->driver.name = hdrv->name;
2474 	hdrv->driver.bus = &hid_bus_type;
2475 	hdrv->driver.owner = owner;
2476 	hdrv->driver.mod_name = mod_name;
2477 
2478 	INIT_LIST_HEAD(&hdrv->dyn_list);
2479 	spin_lock_init(&hdrv->dyn_lock);
2480 
2481 	ret = driver_register(&hdrv->driver);
2482 
2483 	if (ret == 0)
2484 		bus_for_each_drv(&hid_bus_type, NULL, NULL,
2485 				 __hid_bus_driver_added);
2486 
2487 	return ret;
2488 }
2489 EXPORT_SYMBOL_GPL(__hid_register_driver);
2490 
2491 void hid_unregister_driver(struct hid_driver *hdrv)
2492 {
2493 	driver_unregister(&hdrv->driver);
2494 	hid_free_dynids(hdrv);
2495 
2496 	bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2497 }
2498 EXPORT_SYMBOL_GPL(hid_unregister_driver);
2499 
2500 int hid_check_keys_pressed(struct hid_device *hid)
2501 {
2502 	struct hid_input *hidinput;
2503 	int i;
2504 
2505 	if (!(hid->claimed & HID_CLAIMED_INPUT))
2506 		return 0;
2507 
2508 	list_for_each_entry(hidinput, &hid->inputs, list) {
2509 		for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2510 			if (hidinput->input->key[i])
2511 				return 1;
2512 	}
2513 
2514 	return 0;
2515 }
2516 
2517 EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2518 
2519 static int __init hid_init(void)
2520 {
2521 	int ret;
2522 
2523 	if (hid_debug)
2524 		pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2525 			"debugfs is now used for inspecting the device (report descriptor, reports)\n");
2526 
2527 	ret = bus_register(&hid_bus_type);
2528 	if (ret) {
2529 		pr_err("can't register hid bus\n");
2530 		goto err;
2531 	}
2532 
2533 	ret = hidraw_init();
2534 	if (ret)
2535 		goto err_bus;
2536 
2537 	hid_debug_init();
2538 
2539 	return 0;
2540 err_bus:
2541 	bus_unregister(&hid_bus_type);
2542 err:
2543 	return ret;
2544 }
2545 
2546 static void __exit hid_exit(void)
2547 {
2548 	hid_debug_exit();
2549 	hidraw_exit();
2550 	bus_unregister(&hid_bus_type);
2551 	hid_quirks_exit(HID_BUS_ANY);
2552 }
2553 
2554 module_init(hid_init);
2555 module_exit(hid_exit);
2556 
2557 MODULE_AUTHOR("Andreas Gal");
2558 MODULE_AUTHOR("Vojtech Pavlik");
2559 MODULE_AUTHOR("Jiri Kosina");
2560 MODULE_LICENSE("GPL");
2561