1 /* 2 * HID support for Linux 3 * 4 * Copyright (c) 1999 Andreas Gal 5 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz> 6 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc 7 * Copyright (c) 2006-2012 Jiri Kosina 8 */ 9 10 /* 11 * This program is free software; you can redistribute it and/or modify it 12 * under the terms of the GNU General Public License as published by the Free 13 * Software Foundation; either version 2 of the License, or (at your option) 14 * any later version. 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/module.h> 20 #include <linux/slab.h> 21 #include <linux/init.h> 22 #include <linux/kernel.h> 23 #include <linux/list.h> 24 #include <linux/mm.h> 25 #include <linux/spinlock.h> 26 #include <asm/unaligned.h> 27 #include <asm/byteorder.h> 28 #include <linux/input.h> 29 #include <linux/wait.h> 30 #include <linux/vmalloc.h> 31 #include <linux/sched.h> 32 #include <linux/semaphore.h> 33 34 #include <linux/hid.h> 35 #include <linux/hiddev.h> 36 #include <linux/hid-debug.h> 37 #include <linux/hidraw.h> 38 39 #include "hid-ids.h" 40 41 /* 42 * Version Information 43 */ 44 45 #define DRIVER_DESC "HID core driver" 46 47 int hid_debug = 0; 48 module_param_named(debug, hid_debug, int, 0600); 49 MODULE_PARM_DESC(debug, "toggle HID debugging messages"); 50 EXPORT_SYMBOL_GPL(hid_debug); 51 52 static int hid_ignore_special_drivers = 0; 53 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600); 54 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver"); 55 56 /* 57 * Register a new report for a device. 58 */ 59 60 struct hid_report *hid_register_report(struct hid_device *device, 61 unsigned int type, unsigned int id, 62 unsigned int application) 63 { 64 struct hid_report_enum *report_enum = device->report_enum + type; 65 struct hid_report *report; 66 67 if (id >= HID_MAX_IDS) 68 return NULL; 69 if (report_enum->report_id_hash[id]) 70 return report_enum->report_id_hash[id]; 71 72 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL); 73 if (!report) 74 return NULL; 75 76 if (id != 0) 77 report_enum->numbered = 1; 78 79 report->id = id; 80 report->type = type; 81 report->size = 0; 82 report->device = device; 83 report->application = application; 84 report_enum->report_id_hash[id] = report; 85 86 list_add_tail(&report->list, &report_enum->report_list); 87 88 return report; 89 } 90 EXPORT_SYMBOL_GPL(hid_register_report); 91 92 /* 93 * Register a new field for this report. 94 */ 95 96 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values) 97 { 98 struct hid_field *field; 99 100 if (report->maxfield == HID_MAX_FIELDS) { 101 hid_err(report->device, "too many fields in report\n"); 102 return NULL; 103 } 104 105 field = kzalloc((sizeof(struct hid_field) + 106 usages * sizeof(struct hid_usage) + 107 values * sizeof(unsigned)), GFP_KERNEL); 108 if (!field) 109 return NULL; 110 111 field->index = report->maxfield++; 112 report->field[field->index] = field; 113 field->usage = (struct hid_usage *)(field + 1); 114 field->value = (s32 *)(field->usage + usages); 115 field->report = report; 116 117 return field; 118 } 119 120 /* 121 * Open a collection. The type/usage is pushed on the stack. 122 */ 123 124 static int open_collection(struct hid_parser *parser, unsigned type) 125 { 126 struct hid_collection *collection; 127 unsigned usage; 128 129 usage = parser->local.usage[0]; 130 131 if (parser->collection_stack_ptr == HID_COLLECTION_STACK_SIZE) { 132 hid_err(parser->device, "collection stack overflow\n"); 133 return -EINVAL; 134 } 135 136 if (parser->device->maxcollection == parser->device->collection_size) { 137 collection = kmalloc( 138 array3_size(sizeof(struct hid_collection), 139 parser->device->collection_size, 140 2), 141 GFP_KERNEL); 142 if (collection == NULL) { 143 hid_err(parser->device, "failed to reallocate collection array\n"); 144 return -ENOMEM; 145 } 146 memcpy(collection, parser->device->collection, 147 sizeof(struct hid_collection) * 148 parser->device->collection_size); 149 memset(collection + parser->device->collection_size, 0, 150 sizeof(struct hid_collection) * 151 parser->device->collection_size); 152 kfree(parser->device->collection); 153 parser->device->collection = collection; 154 parser->device->collection_size *= 2; 155 } 156 157 parser->collection_stack[parser->collection_stack_ptr++] = 158 parser->device->maxcollection; 159 160 collection = parser->device->collection + 161 parser->device->maxcollection++; 162 collection->type = type; 163 collection->usage = usage; 164 collection->level = parser->collection_stack_ptr - 1; 165 166 if (type == HID_COLLECTION_APPLICATION) 167 parser->device->maxapplication++; 168 169 return 0; 170 } 171 172 /* 173 * Close a collection. 174 */ 175 176 static int close_collection(struct hid_parser *parser) 177 { 178 if (!parser->collection_stack_ptr) { 179 hid_err(parser->device, "collection stack underflow\n"); 180 return -EINVAL; 181 } 182 parser->collection_stack_ptr--; 183 return 0; 184 } 185 186 /* 187 * Climb up the stack, search for the specified collection type 188 * and return the usage. 189 */ 190 191 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type) 192 { 193 struct hid_collection *collection = parser->device->collection; 194 int n; 195 196 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) { 197 unsigned index = parser->collection_stack[n]; 198 if (collection[index].type == type) 199 return collection[index].usage; 200 } 201 return 0; /* we know nothing about this usage type */ 202 } 203 204 /* 205 * Add a usage to the temporary parser table. 206 */ 207 208 static int hid_add_usage(struct hid_parser *parser, unsigned usage) 209 { 210 if (parser->local.usage_index >= HID_MAX_USAGES) { 211 hid_err(parser->device, "usage index exceeded\n"); 212 return -1; 213 } 214 parser->local.usage[parser->local.usage_index] = usage; 215 parser->local.collection_index[parser->local.usage_index] = 216 parser->collection_stack_ptr ? 217 parser->collection_stack[parser->collection_stack_ptr - 1] : 0; 218 parser->local.usage_index++; 219 return 0; 220 } 221 222 /* 223 * Register a new field for this report. 224 */ 225 226 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags) 227 { 228 struct hid_report *report; 229 struct hid_field *field; 230 unsigned int usages; 231 unsigned int offset; 232 unsigned int i; 233 unsigned int application; 234 235 application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION); 236 237 report = hid_register_report(parser->device, report_type, 238 parser->global.report_id, application); 239 if (!report) { 240 hid_err(parser->device, "hid_register_report failed\n"); 241 return -1; 242 } 243 244 /* Handle both signed and unsigned cases properly */ 245 if ((parser->global.logical_minimum < 0 && 246 parser->global.logical_maximum < 247 parser->global.logical_minimum) || 248 (parser->global.logical_minimum >= 0 && 249 (__u32)parser->global.logical_maximum < 250 (__u32)parser->global.logical_minimum)) { 251 dbg_hid("logical range invalid 0x%x 0x%x\n", 252 parser->global.logical_minimum, 253 parser->global.logical_maximum); 254 return -1; 255 } 256 257 offset = report->size; 258 report->size += parser->global.report_size * parser->global.report_count; 259 260 if (!parser->local.usage_index) /* Ignore padding fields */ 261 return 0; 262 263 usages = max_t(unsigned, parser->local.usage_index, 264 parser->global.report_count); 265 266 field = hid_register_field(report, usages, parser->global.report_count); 267 if (!field) 268 return 0; 269 270 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL); 271 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL); 272 field->application = application; 273 274 for (i = 0; i < usages; i++) { 275 unsigned j = i; 276 /* Duplicate the last usage we parsed if we have excess values */ 277 if (i >= parser->local.usage_index) 278 j = parser->local.usage_index - 1; 279 field->usage[i].hid = parser->local.usage[j]; 280 field->usage[i].collection_index = 281 parser->local.collection_index[j]; 282 field->usage[i].usage_index = i; 283 } 284 285 field->maxusage = usages; 286 field->flags = flags; 287 field->report_offset = offset; 288 field->report_type = report_type; 289 field->report_size = parser->global.report_size; 290 field->report_count = parser->global.report_count; 291 field->logical_minimum = parser->global.logical_minimum; 292 field->logical_maximum = parser->global.logical_maximum; 293 field->physical_minimum = parser->global.physical_minimum; 294 field->physical_maximum = parser->global.physical_maximum; 295 field->unit_exponent = parser->global.unit_exponent; 296 field->unit = parser->global.unit; 297 298 return 0; 299 } 300 301 /* 302 * Read data value from item. 303 */ 304 305 static u32 item_udata(struct hid_item *item) 306 { 307 switch (item->size) { 308 case 1: return item->data.u8; 309 case 2: return item->data.u16; 310 case 4: return item->data.u32; 311 } 312 return 0; 313 } 314 315 static s32 item_sdata(struct hid_item *item) 316 { 317 switch (item->size) { 318 case 1: return item->data.s8; 319 case 2: return item->data.s16; 320 case 4: return item->data.s32; 321 } 322 return 0; 323 } 324 325 /* 326 * Process a global item. 327 */ 328 329 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item) 330 { 331 __s32 raw_value; 332 switch (item->tag) { 333 case HID_GLOBAL_ITEM_TAG_PUSH: 334 335 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) { 336 hid_err(parser->device, "global environment stack overflow\n"); 337 return -1; 338 } 339 340 memcpy(parser->global_stack + parser->global_stack_ptr++, 341 &parser->global, sizeof(struct hid_global)); 342 return 0; 343 344 case HID_GLOBAL_ITEM_TAG_POP: 345 346 if (!parser->global_stack_ptr) { 347 hid_err(parser->device, "global environment stack underflow\n"); 348 return -1; 349 } 350 351 memcpy(&parser->global, parser->global_stack + 352 --parser->global_stack_ptr, sizeof(struct hid_global)); 353 return 0; 354 355 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE: 356 parser->global.usage_page = item_udata(item); 357 return 0; 358 359 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM: 360 parser->global.logical_minimum = item_sdata(item); 361 return 0; 362 363 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM: 364 if (parser->global.logical_minimum < 0) 365 parser->global.logical_maximum = item_sdata(item); 366 else 367 parser->global.logical_maximum = item_udata(item); 368 return 0; 369 370 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM: 371 parser->global.physical_minimum = item_sdata(item); 372 return 0; 373 374 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM: 375 if (parser->global.physical_minimum < 0) 376 parser->global.physical_maximum = item_sdata(item); 377 else 378 parser->global.physical_maximum = item_udata(item); 379 return 0; 380 381 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT: 382 /* Many devices provide unit exponent as a two's complement 383 * nibble due to the common misunderstanding of HID 384 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle 385 * both this and the standard encoding. */ 386 raw_value = item_sdata(item); 387 if (!(raw_value & 0xfffffff0)) 388 parser->global.unit_exponent = hid_snto32(raw_value, 4); 389 else 390 parser->global.unit_exponent = raw_value; 391 return 0; 392 393 case HID_GLOBAL_ITEM_TAG_UNIT: 394 parser->global.unit = item_udata(item); 395 return 0; 396 397 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE: 398 parser->global.report_size = item_udata(item); 399 if (parser->global.report_size > 128) { 400 hid_err(parser->device, "invalid report_size %d\n", 401 parser->global.report_size); 402 return -1; 403 } 404 return 0; 405 406 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT: 407 parser->global.report_count = item_udata(item); 408 if (parser->global.report_count > HID_MAX_USAGES) { 409 hid_err(parser->device, "invalid report_count %d\n", 410 parser->global.report_count); 411 return -1; 412 } 413 return 0; 414 415 case HID_GLOBAL_ITEM_TAG_REPORT_ID: 416 parser->global.report_id = item_udata(item); 417 if (parser->global.report_id == 0 || 418 parser->global.report_id >= HID_MAX_IDS) { 419 hid_err(parser->device, "report_id %u is invalid\n", 420 parser->global.report_id); 421 return -1; 422 } 423 return 0; 424 425 default: 426 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag); 427 return -1; 428 } 429 } 430 431 /* 432 * Process a local item. 433 */ 434 435 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item) 436 { 437 __u32 data; 438 unsigned n; 439 __u32 count; 440 441 data = item_udata(item); 442 443 switch (item->tag) { 444 case HID_LOCAL_ITEM_TAG_DELIMITER: 445 446 if (data) { 447 /* 448 * We treat items before the first delimiter 449 * as global to all usage sets (branch 0). 450 * In the moment we process only these global 451 * items and the first delimiter set. 452 */ 453 if (parser->local.delimiter_depth != 0) { 454 hid_err(parser->device, "nested delimiters\n"); 455 return -1; 456 } 457 parser->local.delimiter_depth++; 458 parser->local.delimiter_branch++; 459 } else { 460 if (parser->local.delimiter_depth < 1) { 461 hid_err(parser->device, "bogus close delimiter\n"); 462 return -1; 463 } 464 parser->local.delimiter_depth--; 465 } 466 return 0; 467 468 case HID_LOCAL_ITEM_TAG_USAGE: 469 470 if (parser->local.delimiter_branch > 1) { 471 dbg_hid("alternative usage ignored\n"); 472 return 0; 473 } 474 475 if (item->size <= 2) 476 data = (parser->global.usage_page << 16) + data; 477 478 return hid_add_usage(parser, data); 479 480 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM: 481 482 if (parser->local.delimiter_branch > 1) { 483 dbg_hid("alternative usage ignored\n"); 484 return 0; 485 } 486 487 if (item->size <= 2) 488 data = (parser->global.usage_page << 16) + data; 489 490 parser->local.usage_minimum = data; 491 return 0; 492 493 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM: 494 495 if (parser->local.delimiter_branch > 1) { 496 dbg_hid("alternative usage ignored\n"); 497 return 0; 498 } 499 500 if (item->size <= 2) 501 data = (parser->global.usage_page << 16) + data; 502 503 count = data - parser->local.usage_minimum; 504 if (count + parser->local.usage_index >= HID_MAX_USAGES) { 505 /* 506 * We do not warn if the name is not set, we are 507 * actually pre-scanning the device. 508 */ 509 if (dev_name(&parser->device->dev)) 510 hid_warn(parser->device, 511 "ignoring exceeding usage max\n"); 512 data = HID_MAX_USAGES - parser->local.usage_index + 513 parser->local.usage_minimum - 1; 514 if (data <= 0) { 515 hid_err(parser->device, 516 "no more usage index available\n"); 517 return -1; 518 } 519 } 520 521 for (n = parser->local.usage_minimum; n <= data; n++) 522 if (hid_add_usage(parser, n)) { 523 dbg_hid("hid_add_usage failed\n"); 524 return -1; 525 } 526 return 0; 527 528 default: 529 530 dbg_hid("unknown local item tag 0x%x\n", item->tag); 531 return 0; 532 } 533 return 0; 534 } 535 536 /* 537 * Process a main item. 538 */ 539 540 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item) 541 { 542 __u32 data; 543 int ret; 544 545 data = item_udata(item); 546 547 switch (item->tag) { 548 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION: 549 ret = open_collection(parser, data & 0xff); 550 break; 551 case HID_MAIN_ITEM_TAG_END_COLLECTION: 552 ret = close_collection(parser); 553 break; 554 case HID_MAIN_ITEM_TAG_INPUT: 555 ret = hid_add_field(parser, HID_INPUT_REPORT, data); 556 break; 557 case HID_MAIN_ITEM_TAG_OUTPUT: 558 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data); 559 break; 560 case HID_MAIN_ITEM_TAG_FEATURE: 561 ret = hid_add_field(parser, HID_FEATURE_REPORT, data); 562 break; 563 default: 564 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag); 565 ret = 0; 566 } 567 568 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */ 569 570 return ret; 571 } 572 573 /* 574 * Process a reserved item. 575 */ 576 577 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item) 578 { 579 dbg_hid("reserved item type, tag 0x%x\n", item->tag); 580 return 0; 581 } 582 583 /* 584 * Free a report and all registered fields. The field->usage and 585 * field->value table's are allocated behind the field, so we need 586 * only to free(field) itself. 587 */ 588 589 static void hid_free_report(struct hid_report *report) 590 { 591 unsigned n; 592 593 for (n = 0; n < report->maxfield; n++) 594 kfree(report->field[n]); 595 kfree(report); 596 } 597 598 /* 599 * Close report. This function returns the device 600 * state to the point prior to hid_open_report(). 601 */ 602 static void hid_close_report(struct hid_device *device) 603 { 604 unsigned i, j; 605 606 for (i = 0; i < HID_REPORT_TYPES; i++) { 607 struct hid_report_enum *report_enum = device->report_enum + i; 608 609 for (j = 0; j < HID_MAX_IDS; j++) { 610 struct hid_report *report = report_enum->report_id_hash[j]; 611 if (report) 612 hid_free_report(report); 613 } 614 memset(report_enum, 0, sizeof(*report_enum)); 615 INIT_LIST_HEAD(&report_enum->report_list); 616 } 617 618 kfree(device->rdesc); 619 device->rdesc = NULL; 620 device->rsize = 0; 621 622 kfree(device->collection); 623 device->collection = NULL; 624 device->collection_size = 0; 625 device->maxcollection = 0; 626 device->maxapplication = 0; 627 628 device->status &= ~HID_STAT_PARSED; 629 } 630 631 /* 632 * Free a device structure, all reports, and all fields. 633 */ 634 635 static void hid_device_release(struct device *dev) 636 { 637 struct hid_device *hid = to_hid_device(dev); 638 639 hid_close_report(hid); 640 kfree(hid->dev_rdesc); 641 kfree(hid); 642 } 643 644 /* 645 * Fetch a report description item from the data stream. We support long 646 * items, though they are not used yet. 647 */ 648 649 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item) 650 { 651 u8 b; 652 653 if ((end - start) <= 0) 654 return NULL; 655 656 b = *start++; 657 658 item->type = (b >> 2) & 3; 659 item->tag = (b >> 4) & 15; 660 661 if (item->tag == HID_ITEM_TAG_LONG) { 662 663 item->format = HID_ITEM_FORMAT_LONG; 664 665 if ((end - start) < 2) 666 return NULL; 667 668 item->size = *start++; 669 item->tag = *start++; 670 671 if ((end - start) < item->size) 672 return NULL; 673 674 item->data.longdata = start; 675 start += item->size; 676 return start; 677 } 678 679 item->format = HID_ITEM_FORMAT_SHORT; 680 item->size = b & 3; 681 682 switch (item->size) { 683 case 0: 684 return start; 685 686 case 1: 687 if ((end - start) < 1) 688 return NULL; 689 item->data.u8 = *start++; 690 return start; 691 692 case 2: 693 if ((end - start) < 2) 694 return NULL; 695 item->data.u16 = get_unaligned_le16(start); 696 start = (__u8 *)((__le16 *)start + 1); 697 return start; 698 699 case 3: 700 item->size++; 701 if ((end - start) < 4) 702 return NULL; 703 item->data.u32 = get_unaligned_le32(start); 704 start = (__u8 *)((__le32 *)start + 1); 705 return start; 706 } 707 708 return NULL; 709 } 710 711 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage) 712 { 713 struct hid_device *hid = parser->device; 714 715 if (usage == HID_DG_CONTACTID) 716 hid->group = HID_GROUP_MULTITOUCH; 717 } 718 719 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage) 720 { 721 if (usage == 0xff0000c5 && parser->global.report_count == 256 && 722 parser->global.report_size == 8) 723 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8; 724 } 725 726 static void hid_scan_collection(struct hid_parser *parser, unsigned type) 727 { 728 struct hid_device *hid = parser->device; 729 int i; 730 731 if (((parser->global.usage_page << 16) == HID_UP_SENSOR) && 732 type == HID_COLLECTION_PHYSICAL) 733 hid->group = HID_GROUP_SENSOR_HUB; 734 735 if (hid->vendor == USB_VENDOR_ID_MICROSOFT && 736 hid->product == USB_DEVICE_ID_MS_POWER_COVER && 737 hid->group == HID_GROUP_MULTITOUCH) 738 hid->group = HID_GROUP_GENERIC; 739 740 if ((parser->global.usage_page << 16) == HID_UP_GENDESK) 741 for (i = 0; i < parser->local.usage_index; i++) 742 if (parser->local.usage[i] == HID_GD_POINTER) 743 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER; 744 745 if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR) 746 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC; 747 } 748 749 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item) 750 { 751 __u32 data; 752 int i; 753 754 data = item_udata(item); 755 756 switch (item->tag) { 757 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION: 758 hid_scan_collection(parser, data & 0xff); 759 break; 760 case HID_MAIN_ITEM_TAG_END_COLLECTION: 761 break; 762 case HID_MAIN_ITEM_TAG_INPUT: 763 /* ignore constant inputs, they will be ignored by hid-input */ 764 if (data & HID_MAIN_ITEM_CONSTANT) 765 break; 766 for (i = 0; i < parser->local.usage_index; i++) 767 hid_scan_input_usage(parser, parser->local.usage[i]); 768 break; 769 case HID_MAIN_ITEM_TAG_OUTPUT: 770 break; 771 case HID_MAIN_ITEM_TAG_FEATURE: 772 for (i = 0; i < parser->local.usage_index; i++) 773 hid_scan_feature_usage(parser, parser->local.usage[i]); 774 break; 775 } 776 777 /* Reset the local parser environment */ 778 memset(&parser->local, 0, sizeof(parser->local)); 779 780 return 0; 781 } 782 783 /* 784 * Scan a report descriptor before the device is added to the bus. 785 * Sets device groups and other properties that determine what driver 786 * to load. 787 */ 788 static int hid_scan_report(struct hid_device *hid) 789 { 790 struct hid_parser *parser; 791 struct hid_item item; 792 __u8 *start = hid->dev_rdesc; 793 __u8 *end = start + hid->dev_rsize; 794 static int (*dispatch_type[])(struct hid_parser *parser, 795 struct hid_item *item) = { 796 hid_scan_main, 797 hid_parser_global, 798 hid_parser_local, 799 hid_parser_reserved 800 }; 801 802 parser = vzalloc(sizeof(struct hid_parser)); 803 if (!parser) 804 return -ENOMEM; 805 806 parser->device = hid; 807 hid->group = HID_GROUP_GENERIC; 808 809 /* 810 * The parsing is simpler than the one in hid_open_report() as we should 811 * be robust against hid errors. Those errors will be raised by 812 * hid_open_report() anyway. 813 */ 814 while ((start = fetch_item(start, end, &item)) != NULL) 815 dispatch_type[item.type](parser, &item); 816 817 /* 818 * Handle special flags set during scanning. 819 */ 820 if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) && 821 (hid->group == HID_GROUP_MULTITOUCH)) 822 hid->group = HID_GROUP_MULTITOUCH_WIN_8; 823 824 /* 825 * Vendor specific handlings 826 */ 827 switch (hid->vendor) { 828 case USB_VENDOR_ID_WACOM: 829 hid->group = HID_GROUP_WACOM; 830 break; 831 case USB_VENDOR_ID_SYNAPTICS: 832 if (hid->group == HID_GROUP_GENERIC) 833 if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC) 834 && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER)) 835 /* 836 * hid-rmi should take care of them, 837 * not hid-generic 838 */ 839 hid->group = HID_GROUP_RMI; 840 break; 841 } 842 843 vfree(parser); 844 return 0; 845 } 846 847 /** 848 * hid_parse_report - parse device report 849 * 850 * @device: hid device 851 * @start: report start 852 * @size: report size 853 * 854 * Allocate the device report as read by the bus driver. This function should 855 * only be called from parse() in ll drivers. 856 */ 857 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size) 858 { 859 hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL); 860 if (!hid->dev_rdesc) 861 return -ENOMEM; 862 hid->dev_rsize = size; 863 return 0; 864 } 865 EXPORT_SYMBOL_GPL(hid_parse_report); 866 867 static const char * const hid_report_names[] = { 868 "HID_INPUT_REPORT", 869 "HID_OUTPUT_REPORT", 870 "HID_FEATURE_REPORT", 871 }; 872 /** 873 * hid_validate_values - validate existing device report's value indexes 874 * 875 * @device: hid device 876 * @type: which report type to examine 877 * @id: which report ID to examine (0 for first) 878 * @field_index: which report field to examine 879 * @report_counts: expected number of values 880 * 881 * Validate the number of values in a given field of a given report, after 882 * parsing. 883 */ 884 struct hid_report *hid_validate_values(struct hid_device *hid, 885 unsigned int type, unsigned int id, 886 unsigned int field_index, 887 unsigned int report_counts) 888 { 889 struct hid_report *report; 890 891 if (type > HID_FEATURE_REPORT) { 892 hid_err(hid, "invalid HID report type %u\n", type); 893 return NULL; 894 } 895 896 if (id >= HID_MAX_IDS) { 897 hid_err(hid, "invalid HID report id %u\n", id); 898 return NULL; 899 } 900 901 /* 902 * Explicitly not using hid_get_report() here since it depends on 903 * ->numbered being checked, which may not always be the case when 904 * drivers go to access report values. 905 */ 906 if (id == 0) { 907 /* 908 * Validating on id 0 means we should examine the first 909 * report in the list. 910 */ 911 report = list_entry( 912 hid->report_enum[type].report_list.next, 913 struct hid_report, list); 914 } else { 915 report = hid->report_enum[type].report_id_hash[id]; 916 } 917 if (!report) { 918 hid_err(hid, "missing %s %u\n", hid_report_names[type], id); 919 return NULL; 920 } 921 if (report->maxfield <= field_index) { 922 hid_err(hid, "not enough fields in %s %u\n", 923 hid_report_names[type], id); 924 return NULL; 925 } 926 if (report->field[field_index]->report_count < report_counts) { 927 hid_err(hid, "not enough values in %s %u field %u\n", 928 hid_report_names[type], id, field_index); 929 return NULL; 930 } 931 return report; 932 } 933 EXPORT_SYMBOL_GPL(hid_validate_values); 934 935 /** 936 * hid_open_report - open a driver-specific device report 937 * 938 * @device: hid device 939 * 940 * Parse a report description into a hid_device structure. Reports are 941 * enumerated, fields are attached to these reports. 942 * 0 returned on success, otherwise nonzero error value. 943 * 944 * This function (or the equivalent hid_parse() macro) should only be 945 * called from probe() in drivers, before starting the device. 946 */ 947 int hid_open_report(struct hid_device *device) 948 { 949 struct hid_parser *parser; 950 struct hid_item item; 951 unsigned int size; 952 __u8 *start; 953 __u8 *buf; 954 __u8 *end; 955 int ret; 956 static int (*dispatch_type[])(struct hid_parser *parser, 957 struct hid_item *item) = { 958 hid_parser_main, 959 hid_parser_global, 960 hid_parser_local, 961 hid_parser_reserved 962 }; 963 964 if (WARN_ON(device->status & HID_STAT_PARSED)) 965 return -EBUSY; 966 967 start = device->dev_rdesc; 968 if (WARN_ON(!start)) 969 return -ENODEV; 970 size = device->dev_rsize; 971 972 buf = kmemdup(start, size, GFP_KERNEL); 973 if (buf == NULL) 974 return -ENOMEM; 975 976 if (device->driver->report_fixup) 977 start = device->driver->report_fixup(device, buf, &size); 978 else 979 start = buf; 980 981 start = kmemdup(start, size, GFP_KERNEL); 982 kfree(buf); 983 if (start == NULL) 984 return -ENOMEM; 985 986 device->rdesc = start; 987 device->rsize = size; 988 989 parser = vzalloc(sizeof(struct hid_parser)); 990 if (!parser) { 991 ret = -ENOMEM; 992 goto err; 993 } 994 995 parser->device = device; 996 997 end = start + size; 998 999 device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS, 1000 sizeof(struct hid_collection), GFP_KERNEL); 1001 if (!device->collection) { 1002 ret = -ENOMEM; 1003 goto err; 1004 } 1005 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS; 1006 1007 ret = -EINVAL; 1008 while ((start = fetch_item(start, end, &item)) != NULL) { 1009 1010 if (item.format != HID_ITEM_FORMAT_SHORT) { 1011 hid_err(device, "unexpected long global item\n"); 1012 goto err; 1013 } 1014 1015 if (dispatch_type[item.type](parser, &item)) { 1016 hid_err(device, "item %u %u %u %u parsing failed\n", 1017 item.format, (unsigned)item.size, 1018 (unsigned)item.type, (unsigned)item.tag); 1019 goto err; 1020 } 1021 1022 if (start == end) { 1023 if (parser->collection_stack_ptr) { 1024 hid_err(device, "unbalanced collection at end of report description\n"); 1025 goto err; 1026 } 1027 if (parser->local.delimiter_depth) { 1028 hid_err(device, "unbalanced delimiter at end of report description\n"); 1029 goto err; 1030 } 1031 vfree(parser); 1032 device->status |= HID_STAT_PARSED; 1033 return 0; 1034 } 1035 } 1036 1037 hid_err(device, "item fetching failed at offset %d\n", (int)(end - start)); 1038 err: 1039 vfree(parser); 1040 hid_close_report(device); 1041 return ret; 1042 } 1043 EXPORT_SYMBOL_GPL(hid_open_report); 1044 1045 /* 1046 * Convert a signed n-bit integer to signed 32-bit integer. Common 1047 * cases are done through the compiler, the screwed things has to be 1048 * done by hand. 1049 */ 1050 1051 static s32 snto32(__u32 value, unsigned n) 1052 { 1053 switch (n) { 1054 case 8: return ((__s8)value); 1055 case 16: return ((__s16)value); 1056 case 32: return ((__s32)value); 1057 } 1058 return value & (1 << (n - 1)) ? value | (~0U << n) : value; 1059 } 1060 1061 s32 hid_snto32(__u32 value, unsigned n) 1062 { 1063 return snto32(value, n); 1064 } 1065 EXPORT_SYMBOL_GPL(hid_snto32); 1066 1067 /* 1068 * Convert a signed 32-bit integer to a signed n-bit integer. 1069 */ 1070 1071 static u32 s32ton(__s32 value, unsigned n) 1072 { 1073 s32 a = value >> (n - 1); 1074 if (a && a != -1) 1075 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1; 1076 return value & ((1 << n) - 1); 1077 } 1078 1079 /* 1080 * Extract/implement a data field from/to a little endian report (bit array). 1081 * 1082 * Code sort-of follows HID spec: 1083 * http://www.usb.org/developers/hidpage/HID1_11.pdf 1084 * 1085 * While the USB HID spec allows unlimited length bit fields in "report 1086 * descriptors", most devices never use more than 16 bits. 1087 * One model of UPS is claimed to report "LINEV" as a 32-bit field. 1088 * Search linux-kernel and linux-usb-devel archives for "hid-core extract". 1089 */ 1090 1091 static u32 __extract(u8 *report, unsigned offset, int n) 1092 { 1093 unsigned int idx = offset / 8; 1094 unsigned int bit_nr = 0; 1095 unsigned int bit_shift = offset % 8; 1096 int bits_to_copy = 8 - bit_shift; 1097 u32 value = 0; 1098 u32 mask = n < 32 ? (1U << n) - 1 : ~0U; 1099 1100 while (n > 0) { 1101 value |= ((u32)report[idx] >> bit_shift) << bit_nr; 1102 n -= bits_to_copy; 1103 bit_nr += bits_to_copy; 1104 bits_to_copy = 8; 1105 bit_shift = 0; 1106 idx++; 1107 } 1108 1109 return value & mask; 1110 } 1111 1112 u32 hid_field_extract(const struct hid_device *hid, u8 *report, 1113 unsigned offset, unsigned n) 1114 { 1115 if (n > 32) { 1116 hid_warn(hid, "hid_field_extract() called with n (%d) > 32! (%s)\n", 1117 n, current->comm); 1118 n = 32; 1119 } 1120 1121 return __extract(report, offset, n); 1122 } 1123 EXPORT_SYMBOL_GPL(hid_field_extract); 1124 1125 /* 1126 * "implement" : set bits in a little endian bit stream. 1127 * Same concepts as "extract" (see comments above). 1128 * The data mangled in the bit stream remains in little endian 1129 * order the whole time. It make more sense to talk about 1130 * endianness of register values by considering a register 1131 * a "cached" copy of the little endian bit stream. 1132 */ 1133 1134 static void __implement(u8 *report, unsigned offset, int n, u32 value) 1135 { 1136 unsigned int idx = offset / 8; 1137 unsigned int bit_shift = offset % 8; 1138 int bits_to_set = 8 - bit_shift; 1139 1140 while (n - bits_to_set >= 0) { 1141 report[idx] &= ~(0xff << bit_shift); 1142 report[idx] |= value << bit_shift; 1143 value >>= bits_to_set; 1144 n -= bits_to_set; 1145 bits_to_set = 8; 1146 bit_shift = 0; 1147 idx++; 1148 } 1149 1150 /* last nibble */ 1151 if (n) { 1152 u8 bit_mask = ((1U << n) - 1); 1153 report[idx] &= ~(bit_mask << bit_shift); 1154 report[idx] |= value << bit_shift; 1155 } 1156 } 1157 1158 static void implement(const struct hid_device *hid, u8 *report, 1159 unsigned offset, unsigned n, u32 value) 1160 { 1161 if (unlikely(n > 32)) { 1162 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n", 1163 __func__, n, current->comm); 1164 n = 32; 1165 } else if (n < 32) { 1166 u32 m = (1U << n) - 1; 1167 1168 if (unlikely(value > m)) { 1169 hid_warn(hid, 1170 "%s() called with too large value %d (n: %d)! (%s)\n", 1171 __func__, value, n, current->comm); 1172 WARN_ON(1); 1173 value &= m; 1174 } 1175 } 1176 1177 __implement(report, offset, n, value); 1178 } 1179 1180 /* 1181 * Search an array for a value. 1182 */ 1183 1184 static int search(__s32 *array, __s32 value, unsigned n) 1185 { 1186 while (n--) { 1187 if (*array++ == value) 1188 return 0; 1189 } 1190 return -1; 1191 } 1192 1193 /** 1194 * hid_match_report - check if driver's raw_event should be called 1195 * 1196 * @hid: hid device 1197 * @report_type: type to match against 1198 * 1199 * compare hid->driver->report_table->report_type to report->type 1200 */ 1201 static int hid_match_report(struct hid_device *hid, struct hid_report *report) 1202 { 1203 const struct hid_report_id *id = hid->driver->report_table; 1204 1205 if (!id) /* NULL means all */ 1206 return 1; 1207 1208 for (; id->report_type != HID_TERMINATOR; id++) 1209 if (id->report_type == HID_ANY_ID || 1210 id->report_type == report->type) 1211 return 1; 1212 return 0; 1213 } 1214 1215 /** 1216 * hid_match_usage - check if driver's event should be called 1217 * 1218 * @hid: hid device 1219 * @usage: usage to match against 1220 * 1221 * compare hid->driver->usage_table->usage_{type,code} to 1222 * usage->usage_{type,code} 1223 */ 1224 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage) 1225 { 1226 const struct hid_usage_id *id = hid->driver->usage_table; 1227 1228 if (!id) /* NULL means all */ 1229 return 1; 1230 1231 for (; id->usage_type != HID_ANY_ID - 1; id++) 1232 if ((id->usage_hid == HID_ANY_ID || 1233 id->usage_hid == usage->hid) && 1234 (id->usage_type == HID_ANY_ID || 1235 id->usage_type == usage->type) && 1236 (id->usage_code == HID_ANY_ID || 1237 id->usage_code == usage->code)) 1238 return 1; 1239 return 0; 1240 } 1241 1242 static void hid_process_event(struct hid_device *hid, struct hid_field *field, 1243 struct hid_usage *usage, __s32 value, int interrupt) 1244 { 1245 struct hid_driver *hdrv = hid->driver; 1246 int ret; 1247 1248 if (!list_empty(&hid->debug_list)) 1249 hid_dump_input(hid, usage, value); 1250 1251 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) { 1252 ret = hdrv->event(hid, field, usage, value); 1253 if (ret != 0) { 1254 if (ret < 0) 1255 hid_err(hid, "%s's event failed with %d\n", 1256 hdrv->name, ret); 1257 return; 1258 } 1259 } 1260 1261 if (hid->claimed & HID_CLAIMED_INPUT) 1262 hidinput_hid_event(hid, field, usage, value); 1263 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event) 1264 hid->hiddev_hid_event(hid, field, usage, value); 1265 } 1266 1267 /* 1268 * Analyse a received field, and fetch the data from it. The field 1269 * content is stored for next report processing (we do differential 1270 * reporting to the layer). 1271 */ 1272 1273 static void hid_input_field(struct hid_device *hid, struct hid_field *field, 1274 __u8 *data, int interrupt) 1275 { 1276 unsigned n; 1277 unsigned count = field->report_count; 1278 unsigned offset = field->report_offset; 1279 unsigned size = field->report_size; 1280 __s32 min = field->logical_minimum; 1281 __s32 max = field->logical_maximum; 1282 __s32 *value; 1283 1284 value = kmalloc_array(count, sizeof(__s32), GFP_ATOMIC); 1285 if (!value) 1286 return; 1287 1288 for (n = 0; n < count; n++) { 1289 1290 value[n] = min < 0 ? 1291 snto32(hid_field_extract(hid, data, offset + n * size, 1292 size), size) : 1293 hid_field_extract(hid, data, offset + n * size, size); 1294 1295 /* Ignore report if ErrorRollOver */ 1296 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) && 1297 value[n] >= min && value[n] <= max && 1298 value[n] - min < field->maxusage && 1299 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) 1300 goto exit; 1301 } 1302 1303 for (n = 0; n < count; n++) { 1304 1305 if (HID_MAIN_ITEM_VARIABLE & field->flags) { 1306 hid_process_event(hid, field, &field->usage[n], value[n], interrupt); 1307 continue; 1308 } 1309 1310 if (field->value[n] >= min && field->value[n] <= max 1311 && field->value[n] - min < field->maxusage 1312 && field->usage[field->value[n] - min].hid 1313 && search(value, field->value[n], count)) 1314 hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt); 1315 1316 if (value[n] >= min && value[n] <= max 1317 && value[n] - min < field->maxusage 1318 && field->usage[value[n] - min].hid 1319 && search(field->value, value[n], count)) 1320 hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt); 1321 } 1322 1323 memcpy(field->value, value, count * sizeof(__s32)); 1324 exit: 1325 kfree(value); 1326 } 1327 1328 /* 1329 * Output the field into the report. 1330 */ 1331 1332 static void hid_output_field(const struct hid_device *hid, 1333 struct hid_field *field, __u8 *data) 1334 { 1335 unsigned count = field->report_count; 1336 unsigned offset = field->report_offset; 1337 unsigned size = field->report_size; 1338 unsigned n; 1339 1340 for (n = 0; n < count; n++) { 1341 if (field->logical_minimum < 0) /* signed values */ 1342 implement(hid, data, offset + n * size, size, 1343 s32ton(field->value[n], size)); 1344 else /* unsigned values */ 1345 implement(hid, data, offset + n * size, size, 1346 field->value[n]); 1347 } 1348 } 1349 1350 /* 1351 * Create a report. 'data' has to be allocated using 1352 * hid_alloc_report_buf() so that it has proper size. 1353 */ 1354 1355 void hid_output_report(struct hid_report *report, __u8 *data) 1356 { 1357 unsigned n; 1358 1359 if (report->id > 0) 1360 *data++ = report->id; 1361 1362 memset(data, 0, ((report->size - 1) >> 3) + 1); 1363 for (n = 0; n < report->maxfield; n++) 1364 hid_output_field(report->device, report->field[n], data); 1365 } 1366 EXPORT_SYMBOL_GPL(hid_output_report); 1367 1368 /* 1369 * Allocator for buffer that is going to be passed to hid_output_report() 1370 */ 1371 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags) 1372 { 1373 /* 1374 * 7 extra bytes are necessary to achieve proper functionality 1375 * of implement() working on 8 byte chunks 1376 */ 1377 1378 u32 len = hid_report_len(report) + 7; 1379 1380 return kmalloc(len, flags); 1381 } 1382 EXPORT_SYMBOL_GPL(hid_alloc_report_buf); 1383 1384 /* 1385 * Set a field value. The report this field belongs to has to be 1386 * created and transferred to the device, to set this value in the 1387 * device. 1388 */ 1389 1390 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value) 1391 { 1392 unsigned size; 1393 1394 if (!field) 1395 return -1; 1396 1397 size = field->report_size; 1398 1399 hid_dump_input(field->report->device, field->usage + offset, value); 1400 1401 if (offset >= field->report_count) { 1402 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n", 1403 offset, field->report_count); 1404 return -1; 1405 } 1406 if (field->logical_minimum < 0) { 1407 if (value != snto32(s32ton(value, size), size)) { 1408 hid_err(field->report->device, "value %d is out of range\n", value); 1409 return -1; 1410 } 1411 } 1412 field->value[offset] = value; 1413 return 0; 1414 } 1415 EXPORT_SYMBOL_GPL(hid_set_field); 1416 1417 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum, 1418 const u8 *data) 1419 { 1420 struct hid_report *report; 1421 unsigned int n = 0; /* Normally report number is 0 */ 1422 1423 /* Device uses numbered reports, data[0] is report number */ 1424 if (report_enum->numbered) 1425 n = *data; 1426 1427 report = report_enum->report_id_hash[n]; 1428 if (report == NULL) 1429 dbg_hid("undefined report_id %u received\n", n); 1430 1431 return report; 1432 } 1433 1434 /* 1435 * Implement a generic .request() callback, using .raw_request() 1436 * DO NOT USE in hid drivers directly, but through hid_hw_request instead. 1437 */ 1438 void __hid_request(struct hid_device *hid, struct hid_report *report, 1439 int reqtype) 1440 { 1441 char *buf; 1442 int ret; 1443 u32 len; 1444 1445 buf = hid_alloc_report_buf(report, GFP_KERNEL); 1446 if (!buf) 1447 return; 1448 1449 len = hid_report_len(report); 1450 1451 if (reqtype == HID_REQ_SET_REPORT) 1452 hid_output_report(report, buf); 1453 1454 ret = hid->ll_driver->raw_request(hid, report->id, buf, len, 1455 report->type, reqtype); 1456 if (ret < 0) { 1457 dbg_hid("unable to complete request: %d\n", ret); 1458 goto out; 1459 } 1460 1461 if (reqtype == HID_REQ_GET_REPORT) 1462 hid_input_report(hid, report->type, buf, ret, 0); 1463 1464 out: 1465 kfree(buf); 1466 } 1467 EXPORT_SYMBOL_GPL(__hid_request); 1468 1469 int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size, 1470 int interrupt) 1471 { 1472 struct hid_report_enum *report_enum = hid->report_enum + type; 1473 struct hid_report *report; 1474 struct hid_driver *hdrv; 1475 unsigned int a; 1476 u32 rsize, csize = size; 1477 u8 *cdata = data; 1478 int ret = 0; 1479 1480 report = hid_get_report(report_enum, data); 1481 if (!report) 1482 goto out; 1483 1484 if (report_enum->numbered) { 1485 cdata++; 1486 csize--; 1487 } 1488 1489 rsize = ((report->size - 1) >> 3) + 1; 1490 1491 if (rsize > HID_MAX_BUFFER_SIZE) 1492 rsize = HID_MAX_BUFFER_SIZE; 1493 1494 if (csize < rsize) { 1495 dbg_hid("report %d is too short, (%d < %d)\n", report->id, 1496 csize, rsize); 1497 memset(cdata + csize, 0, rsize - csize); 1498 } 1499 1500 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event) 1501 hid->hiddev_report_event(hid, report); 1502 if (hid->claimed & HID_CLAIMED_HIDRAW) { 1503 ret = hidraw_report_event(hid, data, size); 1504 if (ret) 1505 goto out; 1506 } 1507 1508 if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) { 1509 for (a = 0; a < report->maxfield; a++) 1510 hid_input_field(hid, report->field[a], cdata, interrupt); 1511 hdrv = hid->driver; 1512 if (hdrv && hdrv->report) 1513 hdrv->report(hid, report); 1514 } 1515 1516 if (hid->claimed & HID_CLAIMED_INPUT) 1517 hidinput_report_event(hid, report); 1518 out: 1519 return ret; 1520 } 1521 EXPORT_SYMBOL_GPL(hid_report_raw_event); 1522 1523 /** 1524 * hid_input_report - report data from lower layer (usb, bt...) 1525 * 1526 * @hid: hid device 1527 * @type: HID report type (HID_*_REPORT) 1528 * @data: report contents 1529 * @size: size of data parameter 1530 * @interrupt: distinguish between interrupt and control transfers 1531 * 1532 * This is data entry for lower layers. 1533 */ 1534 int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt) 1535 { 1536 struct hid_report_enum *report_enum; 1537 struct hid_driver *hdrv; 1538 struct hid_report *report; 1539 int ret = 0; 1540 1541 if (!hid) 1542 return -ENODEV; 1543 1544 if (down_trylock(&hid->driver_input_lock)) 1545 return -EBUSY; 1546 1547 if (!hid->driver) { 1548 ret = -ENODEV; 1549 goto unlock; 1550 } 1551 report_enum = hid->report_enum + type; 1552 hdrv = hid->driver; 1553 1554 if (!size) { 1555 dbg_hid("empty report\n"); 1556 ret = -1; 1557 goto unlock; 1558 } 1559 1560 /* Avoid unnecessary overhead if debugfs is disabled */ 1561 if (!list_empty(&hid->debug_list)) 1562 hid_dump_report(hid, type, data, size); 1563 1564 report = hid_get_report(report_enum, data); 1565 1566 if (!report) { 1567 ret = -1; 1568 goto unlock; 1569 } 1570 1571 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) { 1572 ret = hdrv->raw_event(hid, report, data, size); 1573 if (ret < 0) 1574 goto unlock; 1575 } 1576 1577 ret = hid_report_raw_event(hid, type, data, size, interrupt); 1578 1579 unlock: 1580 up(&hid->driver_input_lock); 1581 return ret; 1582 } 1583 EXPORT_SYMBOL_GPL(hid_input_report); 1584 1585 bool hid_match_one_id(const struct hid_device *hdev, 1586 const struct hid_device_id *id) 1587 { 1588 return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) && 1589 (id->group == HID_GROUP_ANY || id->group == hdev->group) && 1590 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) && 1591 (id->product == HID_ANY_ID || id->product == hdev->product); 1592 } 1593 1594 const struct hid_device_id *hid_match_id(const struct hid_device *hdev, 1595 const struct hid_device_id *id) 1596 { 1597 for (; id->bus; id++) 1598 if (hid_match_one_id(hdev, id)) 1599 return id; 1600 1601 return NULL; 1602 } 1603 1604 static const struct hid_device_id hid_hiddev_list[] = { 1605 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) }, 1606 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) }, 1607 { } 1608 }; 1609 1610 static bool hid_hiddev(struct hid_device *hdev) 1611 { 1612 return !!hid_match_id(hdev, hid_hiddev_list); 1613 } 1614 1615 1616 static ssize_t 1617 read_report_descriptor(struct file *filp, struct kobject *kobj, 1618 struct bin_attribute *attr, 1619 char *buf, loff_t off, size_t count) 1620 { 1621 struct device *dev = kobj_to_dev(kobj); 1622 struct hid_device *hdev = to_hid_device(dev); 1623 1624 if (off >= hdev->rsize) 1625 return 0; 1626 1627 if (off + count > hdev->rsize) 1628 count = hdev->rsize - off; 1629 1630 memcpy(buf, hdev->rdesc + off, count); 1631 1632 return count; 1633 } 1634 1635 static ssize_t 1636 show_country(struct device *dev, struct device_attribute *attr, 1637 char *buf) 1638 { 1639 struct hid_device *hdev = to_hid_device(dev); 1640 1641 return sprintf(buf, "%02x\n", hdev->country & 0xff); 1642 } 1643 1644 static struct bin_attribute dev_bin_attr_report_desc = { 1645 .attr = { .name = "report_descriptor", .mode = 0444 }, 1646 .read = read_report_descriptor, 1647 .size = HID_MAX_DESCRIPTOR_SIZE, 1648 }; 1649 1650 static const struct device_attribute dev_attr_country = { 1651 .attr = { .name = "country", .mode = 0444 }, 1652 .show = show_country, 1653 }; 1654 1655 int hid_connect(struct hid_device *hdev, unsigned int connect_mask) 1656 { 1657 static const char *types[] = { "Device", "Pointer", "Mouse", "Device", 1658 "Joystick", "Gamepad", "Keyboard", "Keypad", 1659 "Multi-Axis Controller" 1660 }; 1661 const char *type, *bus; 1662 char buf[64] = ""; 1663 unsigned int i; 1664 int len; 1665 int ret; 1666 1667 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE) 1668 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV); 1669 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE) 1670 connect_mask |= HID_CONNECT_HIDINPUT_FORCE; 1671 if (hdev->bus != BUS_USB) 1672 connect_mask &= ~HID_CONNECT_HIDDEV; 1673 if (hid_hiddev(hdev)) 1674 connect_mask |= HID_CONNECT_HIDDEV_FORCE; 1675 1676 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev, 1677 connect_mask & HID_CONNECT_HIDINPUT_FORCE)) 1678 hdev->claimed |= HID_CLAIMED_INPUT; 1679 1680 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect && 1681 !hdev->hiddev_connect(hdev, 1682 connect_mask & HID_CONNECT_HIDDEV_FORCE)) 1683 hdev->claimed |= HID_CLAIMED_HIDDEV; 1684 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev)) 1685 hdev->claimed |= HID_CLAIMED_HIDRAW; 1686 1687 if (connect_mask & HID_CONNECT_DRIVER) 1688 hdev->claimed |= HID_CLAIMED_DRIVER; 1689 1690 /* Drivers with the ->raw_event callback set are not required to connect 1691 * to any other listener. */ 1692 if (!hdev->claimed && !hdev->driver->raw_event) { 1693 hid_err(hdev, "device has no listeners, quitting\n"); 1694 return -ENODEV; 1695 } 1696 1697 if ((hdev->claimed & HID_CLAIMED_INPUT) && 1698 (connect_mask & HID_CONNECT_FF) && hdev->ff_init) 1699 hdev->ff_init(hdev); 1700 1701 len = 0; 1702 if (hdev->claimed & HID_CLAIMED_INPUT) 1703 len += sprintf(buf + len, "input"); 1704 if (hdev->claimed & HID_CLAIMED_HIDDEV) 1705 len += sprintf(buf + len, "%shiddev%d", len ? "," : "", 1706 ((struct hiddev *)hdev->hiddev)->minor); 1707 if (hdev->claimed & HID_CLAIMED_HIDRAW) 1708 len += sprintf(buf + len, "%shidraw%d", len ? "," : "", 1709 ((struct hidraw *)hdev->hidraw)->minor); 1710 1711 type = "Device"; 1712 for (i = 0; i < hdev->maxcollection; i++) { 1713 struct hid_collection *col = &hdev->collection[i]; 1714 if (col->type == HID_COLLECTION_APPLICATION && 1715 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK && 1716 (col->usage & 0xffff) < ARRAY_SIZE(types)) { 1717 type = types[col->usage & 0xffff]; 1718 break; 1719 } 1720 } 1721 1722 switch (hdev->bus) { 1723 case BUS_USB: 1724 bus = "USB"; 1725 break; 1726 case BUS_BLUETOOTH: 1727 bus = "BLUETOOTH"; 1728 break; 1729 case BUS_I2C: 1730 bus = "I2C"; 1731 break; 1732 default: 1733 bus = "<UNKNOWN>"; 1734 } 1735 1736 ret = device_create_file(&hdev->dev, &dev_attr_country); 1737 if (ret) 1738 hid_warn(hdev, 1739 "can't create sysfs country code attribute err: %d\n", ret); 1740 1741 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n", 1742 buf, bus, hdev->version >> 8, hdev->version & 0xff, 1743 type, hdev->name, hdev->phys); 1744 1745 return 0; 1746 } 1747 EXPORT_SYMBOL_GPL(hid_connect); 1748 1749 void hid_disconnect(struct hid_device *hdev) 1750 { 1751 device_remove_file(&hdev->dev, &dev_attr_country); 1752 if (hdev->claimed & HID_CLAIMED_INPUT) 1753 hidinput_disconnect(hdev); 1754 if (hdev->claimed & HID_CLAIMED_HIDDEV) 1755 hdev->hiddev_disconnect(hdev); 1756 if (hdev->claimed & HID_CLAIMED_HIDRAW) 1757 hidraw_disconnect(hdev); 1758 hdev->claimed = 0; 1759 } 1760 EXPORT_SYMBOL_GPL(hid_disconnect); 1761 1762 /** 1763 * hid_hw_start - start underlying HW 1764 * @hdev: hid device 1765 * @connect_mask: which outputs to connect, see HID_CONNECT_* 1766 * 1767 * Call this in probe function *after* hid_parse. This will setup HW 1768 * buffers and start the device (if not defeirred to device open). 1769 * hid_hw_stop must be called if this was successful. 1770 */ 1771 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask) 1772 { 1773 int error; 1774 1775 error = hdev->ll_driver->start(hdev); 1776 if (error) 1777 return error; 1778 1779 if (connect_mask) { 1780 error = hid_connect(hdev, connect_mask); 1781 if (error) { 1782 hdev->ll_driver->stop(hdev); 1783 return error; 1784 } 1785 } 1786 1787 return 0; 1788 } 1789 EXPORT_SYMBOL_GPL(hid_hw_start); 1790 1791 /** 1792 * hid_hw_stop - stop underlying HW 1793 * @hdev: hid device 1794 * 1795 * This is usually called from remove function or from probe when something 1796 * failed and hid_hw_start was called already. 1797 */ 1798 void hid_hw_stop(struct hid_device *hdev) 1799 { 1800 hid_disconnect(hdev); 1801 hdev->ll_driver->stop(hdev); 1802 } 1803 EXPORT_SYMBOL_GPL(hid_hw_stop); 1804 1805 /** 1806 * hid_hw_open - signal underlying HW to start delivering events 1807 * @hdev: hid device 1808 * 1809 * Tell underlying HW to start delivering events from the device. 1810 * This function should be called sometime after successful call 1811 * to hid_hw_start(). 1812 */ 1813 int hid_hw_open(struct hid_device *hdev) 1814 { 1815 int ret; 1816 1817 ret = mutex_lock_killable(&hdev->ll_open_lock); 1818 if (ret) 1819 return ret; 1820 1821 if (!hdev->ll_open_count++) { 1822 ret = hdev->ll_driver->open(hdev); 1823 if (ret) 1824 hdev->ll_open_count--; 1825 } 1826 1827 mutex_unlock(&hdev->ll_open_lock); 1828 return ret; 1829 } 1830 EXPORT_SYMBOL_GPL(hid_hw_open); 1831 1832 /** 1833 * hid_hw_close - signal underlaying HW to stop delivering events 1834 * 1835 * @hdev: hid device 1836 * 1837 * This function indicates that we are not interested in the events 1838 * from this device anymore. Delivery of events may or may not stop, 1839 * depending on the number of users still outstanding. 1840 */ 1841 void hid_hw_close(struct hid_device *hdev) 1842 { 1843 mutex_lock(&hdev->ll_open_lock); 1844 if (!--hdev->ll_open_count) 1845 hdev->ll_driver->close(hdev); 1846 mutex_unlock(&hdev->ll_open_lock); 1847 } 1848 EXPORT_SYMBOL_GPL(hid_hw_close); 1849 1850 struct hid_dynid { 1851 struct list_head list; 1852 struct hid_device_id id; 1853 }; 1854 1855 /** 1856 * store_new_id - add a new HID device ID to this driver and re-probe devices 1857 * @driver: target device driver 1858 * @buf: buffer for scanning device ID data 1859 * @count: input size 1860 * 1861 * Adds a new dynamic hid device ID to this driver, 1862 * and causes the driver to probe for all devices again. 1863 */ 1864 static ssize_t new_id_store(struct device_driver *drv, const char *buf, 1865 size_t count) 1866 { 1867 struct hid_driver *hdrv = to_hid_driver(drv); 1868 struct hid_dynid *dynid; 1869 __u32 bus, vendor, product; 1870 unsigned long driver_data = 0; 1871 int ret; 1872 1873 ret = sscanf(buf, "%x %x %x %lx", 1874 &bus, &vendor, &product, &driver_data); 1875 if (ret < 3) 1876 return -EINVAL; 1877 1878 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 1879 if (!dynid) 1880 return -ENOMEM; 1881 1882 dynid->id.bus = bus; 1883 dynid->id.group = HID_GROUP_ANY; 1884 dynid->id.vendor = vendor; 1885 dynid->id.product = product; 1886 dynid->id.driver_data = driver_data; 1887 1888 spin_lock(&hdrv->dyn_lock); 1889 list_add_tail(&dynid->list, &hdrv->dyn_list); 1890 spin_unlock(&hdrv->dyn_lock); 1891 1892 ret = driver_attach(&hdrv->driver); 1893 1894 return ret ? : count; 1895 } 1896 static DRIVER_ATTR_WO(new_id); 1897 1898 static struct attribute *hid_drv_attrs[] = { 1899 &driver_attr_new_id.attr, 1900 NULL, 1901 }; 1902 ATTRIBUTE_GROUPS(hid_drv); 1903 1904 static void hid_free_dynids(struct hid_driver *hdrv) 1905 { 1906 struct hid_dynid *dynid, *n; 1907 1908 spin_lock(&hdrv->dyn_lock); 1909 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) { 1910 list_del(&dynid->list); 1911 kfree(dynid); 1912 } 1913 spin_unlock(&hdrv->dyn_lock); 1914 } 1915 1916 const struct hid_device_id *hid_match_device(struct hid_device *hdev, 1917 struct hid_driver *hdrv) 1918 { 1919 struct hid_dynid *dynid; 1920 1921 spin_lock(&hdrv->dyn_lock); 1922 list_for_each_entry(dynid, &hdrv->dyn_list, list) { 1923 if (hid_match_one_id(hdev, &dynid->id)) { 1924 spin_unlock(&hdrv->dyn_lock); 1925 return &dynid->id; 1926 } 1927 } 1928 spin_unlock(&hdrv->dyn_lock); 1929 1930 return hid_match_id(hdev, hdrv->id_table); 1931 } 1932 EXPORT_SYMBOL_GPL(hid_match_device); 1933 1934 static int hid_bus_match(struct device *dev, struct device_driver *drv) 1935 { 1936 struct hid_driver *hdrv = to_hid_driver(drv); 1937 struct hid_device *hdev = to_hid_device(dev); 1938 1939 return hid_match_device(hdev, hdrv) != NULL; 1940 } 1941 1942 static int hid_device_probe(struct device *dev) 1943 { 1944 struct hid_driver *hdrv = to_hid_driver(dev->driver); 1945 struct hid_device *hdev = to_hid_device(dev); 1946 const struct hid_device_id *id; 1947 int ret = 0; 1948 1949 if (down_interruptible(&hdev->driver_input_lock)) { 1950 ret = -EINTR; 1951 goto end; 1952 } 1953 hdev->io_started = false; 1954 1955 clear_bit(ffs(HID_STAT_REPROBED), &hdev->status); 1956 1957 if (!hdev->driver) { 1958 id = hid_match_device(hdev, hdrv); 1959 if (id == NULL) { 1960 ret = -ENODEV; 1961 goto unlock; 1962 } 1963 1964 if (hdrv->match) { 1965 if (!hdrv->match(hdev, hid_ignore_special_drivers)) { 1966 ret = -ENODEV; 1967 goto unlock; 1968 } 1969 } else { 1970 /* 1971 * hid-generic implements .match(), so if 1972 * hid_ignore_special_drivers is set, we can safely 1973 * return. 1974 */ 1975 if (hid_ignore_special_drivers) { 1976 ret = -ENODEV; 1977 goto unlock; 1978 } 1979 } 1980 1981 /* reset the quirks that has been previously set */ 1982 hdev->quirks = hid_lookup_quirk(hdev); 1983 hdev->driver = hdrv; 1984 if (hdrv->probe) { 1985 ret = hdrv->probe(hdev, id); 1986 } else { /* default probe */ 1987 ret = hid_open_report(hdev); 1988 if (!ret) 1989 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT); 1990 } 1991 if (ret) { 1992 hid_close_report(hdev); 1993 hdev->driver = NULL; 1994 } 1995 } 1996 unlock: 1997 if (!hdev->io_started) 1998 up(&hdev->driver_input_lock); 1999 end: 2000 return ret; 2001 } 2002 2003 static int hid_device_remove(struct device *dev) 2004 { 2005 struct hid_device *hdev = to_hid_device(dev); 2006 struct hid_driver *hdrv; 2007 int ret = 0; 2008 2009 if (down_interruptible(&hdev->driver_input_lock)) { 2010 ret = -EINTR; 2011 goto end; 2012 } 2013 hdev->io_started = false; 2014 2015 hdrv = hdev->driver; 2016 if (hdrv) { 2017 if (hdrv->remove) 2018 hdrv->remove(hdev); 2019 else /* default remove */ 2020 hid_hw_stop(hdev); 2021 hid_close_report(hdev); 2022 hdev->driver = NULL; 2023 } 2024 2025 if (!hdev->io_started) 2026 up(&hdev->driver_input_lock); 2027 end: 2028 return ret; 2029 } 2030 2031 static ssize_t modalias_show(struct device *dev, struct device_attribute *a, 2032 char *buf) 2033 { 2034 struct hid_device *hdev = container_of(dev, struct hid_device, dev); 2035 2036 return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n", 2037 hdev->bus, hdev->group, hdev->vendor, hdev->product); 2038 } 2039 static DEVICE_ATTR_RO(modalias); 2040 2041 static struct attribute *hid_dev_attrs[] = { 2042 &dev_attr_modalias.attr, 2043 NULL, 2044 }; 2045 static struct bin_attribute *hid_dev_bin_attrs[] = { 2046 &dev_bin_attr_report_desc, 2047 NULL 2048 }; 2049 static const struct attribute_group hid_dev_group = { 2050 .attrs = hid_dev_attrs, 2051 .bin_attrs = hid_dev_bin_attrs, 2052 }; 2053 __ATTRIBUTE_GROUPS(hid_dev); 2054 2055 static int hid_uevent(struct device *dev, struct kobj_uevent_env *env) 2056 { 2057 struct hid_device *hdev = to_hid_device(dev); 2058 2059 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X", 2060 hdev->bus, hdev->vendor, hdev->product)) 2061 return -ENOMEM; 2062 2063 if (add_uevent_var(env, "HID_NAME=%s", hdev->name)) 2064 return -ENOMEM; 2065 2066 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys)) 2067 return -ENOMEM; 2068 2069 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq)) 2070 return -ENOMEM; 2071 2072 if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X", 2073 hdev->bus, hdev->group, hdev->vendor, hdev->product)) 2074 return -ENOMEM; 2075 2076 return 0; 2077 } 2078 2079 struct bus_type hid_bus_type = { 2080 .name = "hid", 2081 .dev_groups = hid_dev_groups, 2082 .drv_groups = hid_drv_groups, 2083 .match = hid_bus_match, 2084 .probe = hid_device_probe, 2085 .remove = hid_device_remove, 2086 .uevent = hid_uevent, 2087 }; 2088 EXPORT_SYMBOL(hid_bus_type); 2089 2090 int hid_add_device(struct hid_device *hdev) 2091 { 2092 static atomic_t id = ATOMIC_INIT(0); 2093 int ret; 2094 2095 if (WARN_ON(hdev->status & HID_STAT_ADDED)) 2096 return -EBUSY; 2097 2098 hdev->quirks = hid_lookup_quirk(hdev); 2099 2100 /* we need to kill them here, otherwise they will stay allocated to 2101 * wait for coming driver */ 2102 if (hid_ignore(hdev)) 2103 return -ENODEV; 2104 2105 /* 2106 * Check for the mandatory transport channel. 2107 */ 2108 if (!hdev->ll_driver->raw_request) { 2109 hid_err(hdev, "transport driver missing .raw_request()\n"); 2110 return -EINVAL; 2111 } 2112 2113 /* 2114 * Read the device report descriptor once and use as template 2115 * for the driver-specific modifications. 2116 */ 2117 ret = hdev->ll_driver->parse(hdev); 2118 if (ret) 2119 return ret; 2120 if (!hdev->dev_rdesc) 2121 return -ENODEV; 2122 2123 /* 2124 * Scan generic devices for group information 2125 */ 2126 if (hid_ignore_special_drivers) { 2127 hdev->group = HID_GROUP_GENERIC; 2128 } else if (!hdev->group && 2129 !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) { 2130 ret = hid_scan_report(hdev); 2131 if (ret) 2132 hid_warn(hdev, "bad device descriptor (%d)\n", ret); 2133 } 2134 2135 /* XXX hack, any other cleaner solution after the driver core 2136 * is converted to allow more than 20 bytes as the device name? */ 2137 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus, 2138 hdev->vendor, hdev->product, atomic_inc_return(&id)); 2139 2140 hid_debug_register(hdev, dev_name(&hdev->dev)); 2141 ret = device_add(&hdev->dev); 2142 if (!ret) 2143 hdev->status |= HID_STAT_ADDED; 2144 else 2145 hid_debug_unregister(hdev); 2146 2147 return ret; 2148 } 2149 EXPORT_SYMBOL_GPL(hid_add_device); 2150 2151 /** 2152 * hid_allocate_device - allocate new hid device descriptor 2153 * 2154 * Allocate and initialize hid device, so that hid_destroy_device might be 2155 * used to free it. 2156 * 2157 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded 2158 * error value. 2159 */ 2160 struct hid_device *hid_allocate_device(void) 2161 { 2162 struct hid_device *hdev; 2163 int ret = -ENOMEM; 2164 2165 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL); 2166 if (hdev == NULL) 2167 return ERR_PTR(ret); 2168 2169 device_initialize(&hdev->dev); 2170 hdev->dev.release = hid_device_release; 2171 hdev->dev.bus = &hid_bus_type; 2172 device_enable_async_suspend(&hdev->dev); 2173 2174 hid_close_report(hdev); 2175 2176 init_waitqueue_head(&hdev->debug_wait); 2177 INIT_LIST_HEAD(&hdev->debug_list); 2178 spin_lock_init(&hdev->debug_list_lock); 2179 sema_init(&hdev->driver_input_lock, 1); 2180 mutex_init(&hdev->ll_open_lock); 2181 2182 return hdev; 2183 } 2184 EXPORT_SYMBOL_GPL(hid_allocate_device); 2185 2186 static void hid_remove_device(struct hid_device *hdev) 2187 { 2188 if (hdev->status & HID_STAT_ADDED) { 2189 device_del(&hdev->dev); 2190 hid_debug_unregister(hdev); 2191 hdev->status &= ~HID_STAT_ADDED; 2192 } 2193 kfree(hdev->dev_rdesc); 2194 hdev->dev_rdesc = NULL; 2195 hdev->dev_rsize = 0; 2196 } 2197 2198 /** 2199 * hid_destroy_device - free previously allocated device 2200 * 2201 * @hdev: hid device 2202 * 2203 * If you allocate hid_device through hid_allocate_device, you should ever 2204 * free by this function. 2205 */ 2206 void hid_destroy_device(struct hid_device *hdev) 2207 { 2208 hid_remove_device(hdev); 2209 put_device(&hdev->dev); 2210 } 2211 EXPORT_SYMBOL_GPL(hid_destroy_device); 2212 2213 2214 static int __hid_bus_reprobe_drivers(struct device *dev, void *data) 2215 { 2216 struct hid_driver *hdrv = data; 2217 struct hid_device *hdev = to_hid_device(dev); 2218 2219 if (hdev->driver == hdrv && 2220 !hdrv->match(hdev, hid_ignore_special_drivers) && 2221 !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status)) 2222 return device_reprobe(dev); 2223 2224 return 0; 2225 } 2226 2227 static int __hid_bus_driver_added(struct device_driver *drv, void *data) 2228 { 2229 struct hid_driver *hdrv = to_hid_driver(drv); 2230 2231 if (hdrv->match) { 2232 bus_for_each_dev(&hid_bus_type, NULL, hdrv, 2233 __hid_bus_reprobe_drivers); 2234 } 2235 2236 return 0; 2237 } 2238 2239 static int __bus_removed_driver(struct device_driver *drv, void *data) 2240 { 2241 return bus_rescan_devices(&hid_bus_type); 2242 } 2243 2244 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner, 2245 const char *mod_name) 2246 { 2247 int ret; 2248 2249 hdrv->driver.name = hdrv->name; 2250 hdrv->driver.bus = &hid_bus_type; 2251 hdrv->driver.owner = owner; 2252 hdrv->driver.mod_name = mod_name; 2253 2254 INIT_LIST_HEAD(&hdrv->dyn_list); 2255 spin_lock_init(&hdrv->dyn_lock); 2256 2257 ret = driver_register(&hdrv->driver); 2258 2259 if (ret == 0) 2260 bus_for_each_drv(&hid_bus_type, NULL, NULL, 2261 __hid_bus_driver_added); 2262 2263 return ret; 2264 } 2265 EXPORT_SYMBOL_GPL(__hid_register_driver); 2266 2267 void hid_unregister_driver(struct hid_driver *hdrv) 2268 { 2269 driver_unregister(&hdrv->driver); 2270 hid_free_dynids(hdrv); 2271 2272 bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver); 2273 } 2274 EXPORT_SYMBOL_GPL(hid_unregister_driver); 2275 2276 int hid_check_keys_pressed(struct hid_device *hid) 2277 { 2278 struct hid_input *hidinput; 2279 int i; 2280 2281 if (!(hid->claimed & HID_CLAIMED_INPUT)) 2282 return 0; 2283 2284 list_for_each_entry(hidinput, &hid->inputs, list) { 2285 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++) 2286 if (hidinput->input->key[i]) 2287 return 1; 2288 } 2289 2290 return 0; 2291 } 2292 2293 EXPORT_SYMBOL_GPL(hid_check_keys_pressed); 2294 2295 static int __init hid_init(void) 2296 { 2297 int ret; 2298 2299 if (hid_debug) 2300 pr_warn("hid_debug is now used solely for parser and driver debugging.\n" 2301 "debugfs is now used for inspecting the device (report descriptor, reports)\n"); 2302 2303 ret = bus_register(&hid_bus_type); 2304 if (ret) { 2305 pr_err("can't register hid bus\n"); 2306 goto err; 2307 } 2308 2309 ret = hidraw_init(); 2310 if (ret) 2311 goto err_bus; 2312 2313 hid_debug_init(); 2314 2315 return 0; 2316 err_bus: 2317 bus_unregister(&hid_bus_type); 2318 err: 2319 return ret; 2320 } 2321 2322 static void __exit hid_exit(void) 2323 { 2324 hid_debug_exit(); 2325 hidraw_exit(); 2326 bus_unregister(&hid_bus_type); 2327 hid_quirks_exit(HID_BUS_ANY); 2328 } 2329 2330 module_init(hid_init); 2331 module_exit(hid_exit); 2332 2333 MODULE_AUTHOR("Andreas Gal"); 2334 MODULE_AUTHOR("Vojtech Pavlik"); 2335 MODULE_AUTHOR("Jiri Kosina"); 2336 MODULE_LICENSE("GPL"); 2337