xref: /openbmc/linux/drivers/hid/hid-core.c (revision 04c71976)
1 /*
2  *  HID support for Linux
3  *
4  *  Copyright (c) 1999 Andreas Gal
5  *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
6  *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
7  *  Copyright (c) 2006-2007 Jiri Kosina
8  */
9 
10 /*
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the Free
13  * Software Foundation; either version 2 of the License, or (at your option)
14  * any later version.
15  */
16 
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/list.h>
22 #include <linux/mm.h>
23 #include <linux/spinlock.h>
24 #include <asm/unaligned.h>
25 #include <asm/byteorder.h>
26 #include <linux/input.h>
27 #include <linux/wait.h>
28 #include <linux/vmalloc.h>
29 
30 #include <linux/hid.h>
31 #include <linux/hiddev.h>
32 #include <linux/hid-debug.h>
33 #include <linux/hidraw.h>
34 
35 /*
36  * Version Information
37  */
38 
39 #define DRIVER_VERSION "v2.6"
40 #define DRIVER_AUTHOR "Andreas Gal, Vojtech Pavlik, Jiri Kosina"
41 #define DRIVER_DESC "HID core driver"
42 #define DRIVER_LICENSE "GPL"
43 
44 #ifdef CONFIG_HID_DEBUG
45 int hid_debug = 0;
46 module_param_named(debug, hid_debug, bool, 0600);
47 MODULE_PARM_DESC(debug, "Turn HID debugging mode on and off");
48 EXPORT_SYMBOL_GPL(hid_debug);
49 #endif
50 
51 /*
52  * Register a new report for a device.
53  */
54 
55 static struct hid_report *hid_register_report(struct hid_device *device, unsigned type, unsigned id)
56 {
57 	struct hid_report_enum *report_enum = device->report_enum + type;
58 	struct hid_report *report;
59 
60 	if (report_enum->report_id_hash[id])
61 		return report_enum->report_id_hash[id];
62 
63 	if (!(report = kzalloc(sizeof(struct hid_report), GFP_KERNEL)))
64 		return NULL;
65 
66 	if (id != 0)
67 		report_enum->numbered = 1;
68 
69 	report->id = id;
70 	report->type = type;
71 	report->size = 0;
72 	report->device = device;
73 	report_enum->report_id_hash[id] = report;
74 
75 	list_add_tail(&report->list, &report_enum->report_list);
76 
77 	return report;
78 }
79 
80 /*
81  * Register a new field for this report.
82  */
83 
84 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
85 {
86 	struct hid_field *field;
87 
88 	if (report->maxfield == HID_MAX_FIELDS) {
89 		dbg_hid("too many fields in report\n");
90 		return NULL;
91 	}
92 
93 	if (!(field = kzalloc(sizeof(struct hid_field) + usages * sizeof(struct hid_usage)
94 		+ values * sizeof(unsigned), GFP_KERNEL))) return NULL;
95 
96 	field->index = report->maxfield++;
97 	report->field[field->index] = field;
98 	field->usage = (struct hid_usage *)(field + 1);
99 	field->value = (unsigned *)(field->usage + usages);
100 	field->report = report;
101 
102 	return field;
103 }
104 
105 /*
106  * Open a collection. The type/usage is pushed on the stack.
107  */
108 
109 static int open_collection(struct hid_parser *parser, unsigned type)
110 {
111 	struct hid_collection *collection;
112 	unsigned usage;
113 
114 	usage = parser->local.usage[0];
115 
116 	if (parser->collection_stack_ptr == HID_COLLECTION_STACK_SIZE) {
117 		dbg_hid("collection stack overflow\n");
118 		return -1;
119 	}
120 
121 	if (parser->device->maxcollection == parser->device->collection_size) {
122 		collection = kmalloc(sizeof(struct hid_collection) *
123 				parser->device->collection_size * 2, GFP_KERNEL);
124 		if (collection == NULL) {
125 			dbg_hid("failed to reallocate collection array\n");
126 			return -1;
127 		}
128 		memcpy(collection, parser->device->collection,
129 			sizeof(struct hid_collection) *
130 			parser->device->collection_size);
131 		memset(collection + parser->device->collection_size, 0,
132 			sizeof(struct hid_collection) *
133 			parser->device->collection_size);
134 		kfree(parser->device->collection);
135 		parser->device->collection = collection;
136 		parser->device->collection_size *= 2;
137 	}
138 
139 	parser->collection_stack[parser->collection_stack_ptr++] =
140 		parser->device->maxcollection;
141 
142 	collection = parser->device->collection +
143 		parser->device->maxcollection++;
144 	collection->type = type;
145 	collection->usage = usage;
146 	collection->level = parser->collection_stack_ptr - 1;
147 
148 	if (type == HID_COLLECTION_APPLICATION)
149 		parser->device->maxapplication++;
150 
151 	return 0;
152 }
153 
154 /*
155  * Close a collection.
156  */
157 
158 static int close_collection(struct hid_parser *parser)
159 {
160 	if (!parser->collection_stack_ptr) {
161 		dbg_hid("collection stack underflow\n");
162 		return -1;
163 	}
164 	parser->collection_stack_ptr--;
165 	return 0;
166 }
167 
168 /*
169  * Climb up the stack, search for the specified collection type
170  * and return the usage.
171  */
172 
173 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
174 {
175 	int n;
176 	for (n = parser->collection_stack_ptr - 1; n >= 0; n--)
177 		if (parser->device->collection[parser->collection_stack[n]].type == type)
178 			return parser->device->collection[parser->collection_stack[n]].usage;
179 	return 0; /* we know nothing about this usage type */
180 }
181 
182 /*
183  * Add a usage to the temporary parser table.
184  */
185 
186 static int hid_add_usage(struct hid_parser *parser, unsigned usage)
187 {
188 	if (parser->local.usage_index >= HID_MAX_USAGES) {
189 		dbg_hid("usage index exceeded\n");
190 		return -1;
191 	}
192 	parser->local.usage[parser->local.usage_index] = usage;
193 	parser->local.collection_index[parser->local.usage_index] =
194 		parser->collection_stack_ptr ?
195 		parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
196 	parser->local.usage_index++;
197 	return 0;
198 }
199 
200 /*
201  * Register a new field for this report.
202  */
203 
204 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
205 {
206 	struct hid_report *report;
207 	struct hid_field *field;
208 	int usages;
209 	unsigned offset;
210 	int i;
211 
212 	if (!(report = hid_register_report(parser->device, report_type, parser->global.report_id))) {
213 		dbg_hid("hid_register_report failed\n");
214 		return -1;
215 	}
216 
217 	if (parser->global.logical_maximum < parser->global.logical_minimum) {
218 		dbg_hid("logical range invalid %d %d\n", parser->global.logical_minimum, parser->global.logical_maximum);
219 		return -1;
220 	}
221 
222 	offset = report->size;
223 	report->size += parser->global.report_size * parser->global.report_count;
224 
225 	if (!parser->local.usage_index) /* Ignore padding fields */
226 		return 0;
227 
228 	usages = max_t(int, parser->local.usage_index, parser->global.report_count);
229 
230 	if ((field = hid_register_field(report, usages, parser->global.report_count)) == NULL)
231 		return 0;
232 
233 	field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
234 	field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
235 	field->application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
236 
237 	for (i = 0; i < usages; i++) {
238 		int j = i;
239 		/* Duplicate the last usage we parsed if we have excess values */
240 		if (i >= parser->local.usage_index)
241 			j = parser->local.usage_index - 1;
242 		field->usage[i].hid = parser->local.usage[j];
243 		field->usage[i].collection_index =
244 			parser->local.collection_index[j];
245 	}
246 
247 	field->maxusage = usages;
248 	field->flags = flags;
249 	field->report_offset = offset;
250 	field->report_type = report_type;
251 	field->report_size = parser->global.report_size;
252 	field->report_count = parser->global.report_count;
253 	field->logical_minimum = parser->global.logical_minimum;
254 	field->logical_maximum = parser->global.logical_maximum;
255 	field->physical_minimum = parser->global.physical_minimum;
256 	field->physical_maximum = parser->global.physical_maximum;
257 	field->unit_exponent = parser->global.unit_exponent;
258 	field->unit = parser->global.unit;
259 
260 	return 0;
261 }
262 
263 /*
264  * Read data value from item.
265  */
266 
267 static u32 item_udata(struct hid_item *item)
268 {
269 	switch (item->size) {
270 		case 1: return item->data.u8;
271 		case 2: return item->data.u16;
272 		case 4: return item->data.u32;
273 	}
274 	return 0;
275 }
276 
277 static s32 item_sdata(struct hid_item *item)
278 {
279 	switch (item->size) {
280 		case 1: return item->data.s8;
281 		case 2: return item->data.s16;
282 		case 4: return item->data.s32;
283 	}
284 	return 0;
285 }
286 
287 /*
288  * Process a global item.
289  */
290 
291 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
292 {
293 	switch (item->tag) {
294 
295 		case HID_GLOBAL_ITEM_TAG_PUSH:
296 
297 			if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
298 				dbg_hid("global enviroment stack overflow\n");
299 				return -1;
300 			}
301 
302 			memcpy(parser->global_stack + parser->global_stack_ptr++,
303 				&parser->global, sizeof(struct hid_global));
304 			return 0;
305 
306 		case HID_GLOBAL_ITEM_TAG_POP:
307 
308 			if (!parser->global_stack_ptr) {
309 				dbg_hid("global enviroment stack underflow\n");
310 				return -1;
311 			}
312 
313 			memcpy(&parser->global, parser->global_stack + --parser->global_stack_ptr,
314 				sizeof(struct hid_global));
315 			return 0;
316 
317 		case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
318 			parser->global.usage_page = item_udata(item);
319 			return 0;
320 
321 		case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
322 			parser->global.logical_minimum = item_sdata(item);
323 			return 0;
324 
325 		case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
326 			if (parser->global.logical_minimum < 0)
327 				parser->global.logical_maximum = item_sdata(item);
328 			else
329 				parser->global.logical_maximum = item_udata(item);
330 			return 0;
331 
332 		case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
333 			parser->global.physical_minimum = item_sdata(item);
334 			return 0;
335 
336 		case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
337 			if (parser->global.physical_minimum < 0)
338 				parser->global.physical_maximum = item_sdata(item);
339 			else
340 				parser->global.physical_maximum = item_udata(item);
341 			return 0;
342 
343 		case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
344 			parser->global.unit_exponent = item_sdata(item);
345 			return 0;
346 
347 		case HID_GLOBAL_ITEM_TAG_UNIT:
348 			parser->global.unit = item_udata(item);
349 			return 0;
350 
351 		case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
352 			if ((parser->global.report_size = item_udata(item)) > 32) {
353 				dbg_hid("invalid report_size %d\n", parser->global.report_size);
354 				return -1;
355 			}
356 			return 0;
357 
358 		case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
359 			if ((parser->global.report_count = item_udata(item)) > HID_MAX_USAGES) {
360 				dbg_hid("invalid report_count %d\n", parser->global.report_count);
361 				return -1;
362 			}
363 			return 0;
364 
365 		case HID_GLOBAL_ITEM_TAG_REPORT_ID:
366 			if ((parser->global.report_id = item_udata(item)) == 0) {
367 				dbg_hid("report_id 0 is invalid\n");
368 				return -1;
369 			}
370 			return 0;
371 
372 		default:
373 			dbg_hid("unknown global tag 0x%x\n", item->tag);
374 			return -1;
375 	}
376 }
377 
378 /*
379  * Process a local item.
380  */
381 
382 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
383 {
384 	__u32 data;
385 	unsigned n;
386 
387 	if (item->size == 0) {
388 		dbg_hid("item data expected for local item\n");
389 		return -1;
390 	}
391 
392 	data = item_udata(item);
393 
394 	switch (item->tag) {
395 
396 		case HID_LOCAL_ITEM_TAG_DELIMITER:
397 
398 			if (data) {
399 				/*
400 				 * We treat items before the first delimiter
401 				 * as global to all usage sets (branch 0).
402 				 * In the moment we process only these global
403 				 * items and the first delimiter set.
404 				 */
405 				if (parser->local.delimiter_depth != 0) {
406 					dbg_hid("nested delimiters\n");
407 					return -1;
408 				}
409 				parser->local.delimiter_depth++;
410 				parser->local.delimiter_branch++;
411 			} else {
412 				if (parser->local.delimiter_depth < 1) {
413 					dbg_hid("bogus close delimiter\n");
414 					return -1;
415 				}
416 				parser->local.delimiter_depth--;
417 			}
418 			return 1;
419 
420 		case HID_LOCAL_ITEM_TAG_USAGE:
421 
422 			if (parser->local.delimiter_branch > 1) {
423 				dbg_hid("alternative usage ignored\n");
424 				return 0;
425 			}
426 
427 			if (item->size <= 2)
428 				data = (parser->global.usage_page << 16) + data;
429 
430 			return hid_add_usage(parser, data);
431 
432 		case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
433 
434 			if (parser->local.delimiter_branch > 1) {
435 				dbg_hid("alternative usage ignored\n");
436 				return 0;
437 			}
438 
439 			if (item->size <= 2)
440 				data = (parser->global.usage_page << 16) + data;
441 
442 			parser->local.usage_minimum = data;
443 			return 0;
444 
445 		case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
446 
447 			if (parser->local.delimiter_branch > 1) {
448 				dbg_hid("alternative usage ignored\n");
449 				return 0;
450 			}
451 
452 			if (item->size <= 2)
453 				data = (parser->global.usage_page << 16) + data;
454 
455 			for (n = parser->local.usage_minimum; n <= data; n++)
456 				if (hid_add_usage(parser, n)) {
457 					dbg_hid("hid_add_usage failed\n");
458 					return -1;
459 				}
460 			return 0;
461 
462 		default:
463 
464 			dbg_hid("unknown local item tag 0x%x\n", item->tag);
465 			return 0;
466 	}
467 	return 0;
468 }
469 
470 /*
471  * Process a main item.
472  */
473 
474 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
475 {
476 	__u32 data;
477 	int ret;
478 
479 	data = item_udata(item);
480 
481 	switch (item->tag) {
482 		case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
483 			ret = open_collection(parser, data & 0xff);
484 			break;
485 		case HID_MAIN_ITEM_TAG_END_COLLECTION:
486 			ret = close_collection(parser);
487 			break;
488 		case HID_MAIN_ITEM_TAG_INPUT:
489 			ret = hid_add_field(parser, HID_INPUT_REPORT, data);
490 			break;
491 		case HID_MAIN_ITEM_TAG_OUTPUT:
492 			ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
493 			break;
494 		case HID_MAIN_ITEM_TAG_FEATURE:
495 			ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
496 			break;
497 		default:
498 			dbg_hid("unknown main item tag 0x%x\n", item->tag);
499 			ret = 0;
500 	}
501 
502 	memset(&parser->local, 0, sizeof(parser->local));	/* Reset the local parser environment */
503 
504 	return ret;
505 }
506 
507 /*
508  * Process a reserved item.
509  */
510 
511 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
512 {
513 	dbg_hid("reserved item type, tag 0x%x\n", item->tag);
514 	return 0;
515 }
516 
517 /*
518  * Free a report and all registered fields. The field->usage and
519  * field->value table's are allocated behind the field, so we need
520  * only to free(field) itself.
521  */
522 
523 static void hid_free_report(struct hid_report *report)
524 {
525 	unsigned n;
526 
527 	for (n = 0; n < report->maxfield; n++)
528 		kfree(report->field[n]);
529 	kfree(report);
530 }
531 
532 /*
533  * Free a device structure, all reports, and all fields.
534  */
535 
536 void hid_free_device(struct hid_device *device)
537 {
538 	unsigned i,j;
539 
540 	for (i = 0; i < HID_REPORT_TYPES; i++) {
541 		struct hid_report_enum *report_enum = device->report_enum + i;
542 
543 		for (j = 0; j < 256; j++) {
544 			struct hid_report *report = report_enum->report_id_hash[j];
545 			if (report)
546 				hid_free_report(report);
547 		}
548 	}
549 
550 	kfree(device->rdesc);
551 	kfree(device->collection);
552 	kfree(device);
553 }
554 EXPORT_SYMBOL_GPL(hid_free_device);
555 
556 /*
557  * Fetch a report description item from the data stream. We support long
558  * items, though they are not used yet.
559  */
560 
561 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
562 {
563 	u8 b;
564 
565 	if ((end - start) <= 0)
566 		return NULL;
567 
568 	b = *start++;
569 
570 	item->type = (b >> 2) & 3;
571 	item->tag  = (b >> 4) & 15;
572 
573 	if (item->tag == HID_ITEM_TAG_LONG) {
574 
575 		item->format = HID_ITEM_FORMAT_LONG;
576 
577 		if ((end - start) < 2)
578 			return NULL;
579 
580 		item->size = *start++;
581 		item->tag  = *start++;
582 
583 		if ((end - start) < item->size)
584 			return NULL;
585 
586 		item->data.longdata = start;
587 		start += item->size;
588 		return start;
589 	}
590 
591 	item->format = HID_ITEM_FORMAT_SHORT;
592 	item->size = b & 3;
593 
594 	switch (item->size) {
595 
596 		case 0:
597 			return start;
598 
599 		case 1:
600 			if ((end - start) < 1)
601 				return NULL;
602 			item->data.u8 = *start++;
603 			return start;
604 
605 		case 2:
606 			if ((end - start) < 2)
607 				return NULL;
608 			item->data.u16 = le16_to_cpu(get_unaligned((__le16*)start));
609 			start = (__u8 *)((__le16 *)start + 1);
610 			return start;
611 
612 		case 3:
613 			item->size++;
614 			if ((end - start) < 4)
615 				return NULL;
616 			item->data.u32 = le32_to_cpu(get_unaligned((__le32*)start));
617 			start = (__u8 *)((__le32 *)start + 1);
618 			return start;
619 	}
620 
621 	return NULL;
622 }
623 
624 /*
625  * Parse a report description into a hid_device structure. Reports are
626  * enumerated, fields are attached to these reports.
627  */
628 
629 struct hid_device *hid_parse_report(__u8 *start, unsigned size)
630 {
631 	struct hid_device *device;
632 	struct hid_parser *parser;
633 	struct hid_item item;
634 	__u8 *end;
635 	unsigned i;
636 	static int (*dispatch_type[])(struct hid_parser *parser,
637 				      struct hid_item *item) = {
638 		hid_parser_main,
639 		hid_parser_global,
640 		hid_parser_local,
641 		hid_parser_reserved
642 	};
643 
644 	if (!(device = kzalloc(sizeof(struct hid_device), GFP_KERNEL)))
645 		return NULL;
646 
647 	if (!(device->collection = kzalloc(sizeof(struct hid_collection) *
648 				   HID_DEFAULT_NUM_COLLECTIONS, GFP_KERNEL))) {
649 		kfree(device);
650 		return NULL;
651 	}
652 	device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
653 
654 	for (i = 0; i < HID_REPORT_TYPES; i++)
655 		INIT_LIST_HEAD(&device->report_enum[i].report_list);
656 
657 	if (!(device->rdesc = kmalloc(size, GFP_KERNEL))) {
658 		kfree(device->collection);
659 		kfree(device);
660 		return NULL;
661 	}
662 	memcpy(device->rdesc, start, size);
663 	device->rsize = size;
664 
665 	if (!(parser = vmalloc(sizeof(struct hid_parser)))) {
666 		kfree(device->rdesc);
667 		kfree(device->collection);
668 		kfree(device);
669 		return NULL;
670 	}
671 	memset(parser, 0, sizeof(struct hid_parser));
672 	parser->device = device;
673 
674 	end = start + size;
675 	while ((start = fetch_item(start, end, &item)) != NULL) {
676 
677 		if (item.format != HID_ITEM_FORMAT_SHORT) {
678 			dbg_hid("unexpected long global item\n");
679 			hid_free_device(device);
680 			vfree(parser);
681 			return NULL;
682 		}
683 
684 		if (dispatch_type[item.type](parser, &item)) {
685 			dbg_hid("item %u %u %u %u parsing failed\n",
686 				item.format, (unsigned)item.size, (unsigned)item.type, (unsigned)item.tag);
687 			hid_free_device(device);
688 			vfree(parser);
689 			return NULL;
690 		}
691 
692 		if (start == end) {
693 			if (parser->collection_stack_ptr) {
694 				dbg_hid("unbalanced collection at end of report description\n");
695 				hid_free_device(device);
696 				vfree(parser);
697 				return NULL;
698 			}
699 			if (parser->local.delimiter_depth) {
700 				dbg_hid("unbalanced delimiter at end of report description\n");
701 				hid_free_device(device);
702 				vfree(parser);
703 				return NULL;
704 			}
705 			vfree(parser);
706 			return device;
707 		}
708 	}
709 
710 	dbg_hid("item fetching failed at offset %d\n", (int)(end - start));
711 	hid_free_device(device);
712 	vfree(parser);
713 	return NULL;
714 }
715 EXPORT_SYMBOL_GPL(hid_parse_report);
716 
717 /*
718  * Convert a signed n-bit integer to signed 32-bit integer. Common
719  * cases are done through the compiler, the screwed things has to be
720  * done by hand.
721  */
722 
723 static s32 snto32(__u32 value, unsigned n)
724 {
725 	switch (n) {
726 		case 8:  return ((__s8)value);
727 		case 16: return ((__s16)value);
728 		case 32: return ((__s32)value);
729 	}
730 	return value & (1 << (n - 1)) ? value | (-1 << n) : value;
731 }
732 
733 /*
734  * Convert a signed 32-bit integer to a signed n-bit integer.
735  */
736 
737 static u32 s32ton(__s32 value, unsigned n)
738 {
739 	s32 a = value >> (n - 1);
740 	if (a && a != -1)
741 		return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
742 	return value & ((1 << n) - 1);
743 }
744 
745 /*
746  * Extract/implement a data field from/to a little endian report (bit array).
747  *
748  * Code sort-of follows HID spec:
749  *     http://www.usb.org/developers/devclass_docs/HID1_11.pdf
750  *
751  * While the USB HID spec allows unlimited length bit fields in "report
752  * descriptors", most devices never use more than 16 bits.
753  * One model of UPS is claimed to report "LINEV" as a 32-bit field.
754  * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
755  */
756 
757 static __inline__ __u32 extract(__u8 *report, unsigned offset, unsigned n)
758 {
759 	u64 x;
760 
761 	WARN_ON(n > 32);
762 
763 	report += offset >> 3;  /* adjust byte index */
764 	offset &= 7;            /* now only need bit offset into one byte */
765 	x = le64_to_cpu(get_unaligned((__le64 *) report));
766 	x = (x >> offset) & ((1ULL << n) - 1);  /* extract bit field */
767 	return (u32) x;
768 }
769 
770 /*
771  * "implement" : set bits in a little endian bit stream.
772  * Same concepts as "extract" (see comments above).
773  * The data mangled in the bit stream remains in little endian
774  * order the whole time. It make more sense to talk about
775  * endianness of register values by considering a register
776  * a "cached" copy of the little endiad bit stream.
777  */
778 static __inline__ void implement(__u8 *report, unsigned offset, unsigned n, __u32 value)
779 {
780 	__le64 x;
781 	u64 m = (1ULL << n) - 1;
782 
783 	WARN_ON(n > 32);
784 
785 	WARN_ON(value > m);
786 	value &= m;
787 
788 	report += offset >> 3;
789 	offset &= 7;
790 
791 	x = get_unaligned((__le64 *)report);
792 	x &= cpu_to_le64(~(m << offset));
793 	x |= cpu_to_le64(((u64) value) << offset);
794 	put_unaligned(x, (__le64 *) report);
795 }
796 
797 /*
798  * Search an array for a value.
799  */
800 
801 static __inline__ int search(__s32 *array, __s32 value, unsigned n)
802 {
803 	while (n--) {
804 		if (*array++ == value)
805 			return 0;
806 	}
807 	return -1;
808 }
809 
810 static void hid_process_event(struct hid_device *hid, struct hid_field *field, struct hid_usage *usage, __s32 value, int interrupt)
811 {
812 	hid_dump_input(usage, value);
813 	if (hid->claimed & HID_CLAIMED_INPUT)
814 		hidinput_hid_event(hid, field, usage, value);
815 	if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
816 		hid->hiddev_hid_event(hid, field, usage, value);
817 }
818 
819 /*
820  * Analyse a received field, and fetch the data from it. The field
821  * content is stored for next report processing (we do differential
822  * reporting to the layer).
823  */
824 
825 void hid_input_field(struct hid_device *hid, struct hid_field *field, __u8 *data, int interrupt)
826 {
827 	unsigned n;
828 	unsigned count = field->report_count;
829 	unsigned offset = field->report_offset;
830 	unsigned size = field->report_size;
831 	__s32 min = field->logical_minimum;
832 	__s32 max = field->logical_maximum;
833 	__s32 *value;
834 
835 	if (!(value = kmalloc(sizeof(__s32) * count, GFP_ATOMIC)))
836 		return;
837 
838 	for (n = 0; n < count; n++) {
839 
840 			value[n] = min < 0 ? snto32(extract(data, offset + n * size, size), size) :
841 						    extract(data, offset + n * size, size);
842 
843 			if (!(field->flags & HID_MAIN_ITEM_VARIABLE) /* Ignore report if ErrorRollOver */
844 			    && value[n] >= min && value[n] <= max
845 			    && field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
846 				goto exit;
847 	}
848 
849 	for (n = 0; n < count; n++) {
850 
851 		if (HID_MAIN_ITEM_VARIABLE & field->flags) {
852 			hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
853 			continue;
854 		}
855 
856 		if (field->value[n] >= min && field->value[n] <= max
857 			&& field->usage[field->value[n] - min].hid
858 			&& search(value, field->value[n], count))
859 				hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
860 
861 		if (value[n] >= min && value[n] <= max
862 			&& field->usage[value[n] - min].hid
863 			&& search(field->value, value[n], count))
864 				hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
865 	}
866 
867 	memcpy(field->value, value, count * sizeof(__s32));
868 exit:
869 	kfree(value);
870 }
871 EXPORT_SYMBOL_GPL(hid_input_field);
872 
873 /*
874  * Output the field into the report.
875  */
876 
877 static void hid_output_field(struct hid_field *field, __u8 *data)
878 {
879 	unsigned count = field->report_count;
880 	unsigned offset = field->report_offset;
881 	unsigned size = field->report_size;
882 	unsigned bitsused = offset + count * size;
883 	unsigned n;
884 
885 	/* make sure the unused bits in the last byte are zeros */
886 	if (count > 0 && size > 0 && (bitsused % 8) != 0)
887 		data[(bitsused-1)/8] &= (1 << (bitsused % 8)) - 1;
888 
889 	for (n = 0; n < count; n++) {
890 		if (field->logical_minimum < 0)	/* signed values */
891 			implement(data, offset + n * size, size, s32ton(field->value[n], size));
892 		else				/* unsigned values */
893 			implement(data, offset + n * size, size, field->value[n]);
894 	}
895 }
896 
897 /*
898  * Create a report.
899  */
900 
901 void hid_output_report(struct hid_report *report, __u8 *data)
902 {
903 	unsigned n;
904 
905 	if (report->id > 0)
906 		*data++ = report->id;
907 
908 	for (n = 0; n < report->maxfield; n++)
909 		hid_output_field(report->field[n], data);
910 }
911 EXPORT_SYMBOL_GPL(hid_output_report);
912 
913 /*
914  * Set a field value. The report this field belongs to has to be
915  * created and transferred to the device, to set this value in the
916  * device.
917  */
918 
919 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
920 {
921 	unsigned size = field->report_size;
922 
923 	hid_dump_input(field->usage + offset, value);
924 
925 	if (offset >= field->report_count) {
926 		dbg_hid("offset (%d) exceeds report_count (%d)\n", offset, field->report_count);
927 		hid_dump_field(field, 8);
928 		return -1;
929 	}
930 	if (field->logical_minimum < 0) {
931 		if (value != snto32(s32ton(value, size), size)) {
932 			dbg_hid("value %d is out of range\n", value);
933 			return -1;
934 		}
935 	}
936 	field->value[offset] = value;
937 	return 0;
938 }
939 EXPORT_SYMBOL_GPL(hid_set_field);
940 
941 int hid_input_report(struct hid_device *hid, int type, u8 *data, int size, int interrupt)
942 {
943 	struct hid_report_enum *report_enum = hid->report_enum + type;
944 	struct hid_report *report;
945 	int n, rsize, i;
946 
947 	if (!hid)
948 		return -ENODEV;
949 
950 	if (!size) {
951 		dbg_hid("empty report\n");
952 		return -1;
953 	}
954 
955 	dbg_hid("report (size %u) (%snumbered)\n", size, report_enum->numbered ? "" : "un");
956 
957 	n = 0;                          /* Normally report number is 0 */
958 	if (report_enum->numbered) {    /* Device uses numbered reports, data[0] is report number */
959 		n = *data++;
960 		size--;
961 	}
962 
963 	/* dump the report descriptor */
964 	dbg_hid("report %d (size %u) = ", n, size);
965 	for (i = 0; i < size; i++)
966 		dbg_hid_line(" %02x", data[i]);
967 	dbg_hid_line("\n");
968 
969 	if (!(report = report_enum->report_id_hash[n])) {
970 		dbg_hid("undefined report_id %d received\n", n);
971 		return -1;
972 	}
973 
974 	rsize = ((report->size - 1) >> 3) + 1;
975 
976 	if (size < rsize) {
977 		dbg_hid("report %d is too short, (%d < %d)\n", report->id, size, rsize);
978 		memset(data + size, 0, rsize - size);
979 	}
980 
981 	if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
982 		hid->hiddev_report_event(hid, report);
983 	if (hid->claimed & HID_CLAIMED_HIDRAW)
984 		hidraw_report_event(hid, data, size);
985 
986 	for (n = 0; n < report->maxfield; n++)
987 		hid_input_field(hid, report->field[n], data, interrupt);
988 
989 	if (hid->claimed & HID_CLAIMED_INPUT)
990 		hidinput_report_event(hid, report);
991 
992 	return 0;
993 }
994 EXPORT_SYMBOL_GPL(hid_input_report);
995 
996 static int __init hid_init(void)
997 {
998 	return hidraw_init();
999 }
1000 
1001 static void __exit hid_exit(void)
1002 {
1003 	hidraw_exit();
1004 }
1005 
1006 module_init(hid_init);
1007 module_exit(hid_exit);
1008 
1009 MODULE_LICENSE(DRIVER_LICENSE);
1010 
1011