1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2012-2016 Mentor Graphics Inc. 4 * 5 * Queued image conversion support, with tiling and rotation. 6 */ 7 8 #include <linux/interrupt.h> 9 #include <linux/dma-mapping.h> 10 #include <video/imx-ipu-image-convert.h> 11 #include "ipu-prv.h" 12 13 /* 14 * The IC Resizer has a restriction that the output frame from the 15 * resizer must be 1024 or less in both width (pixels) and height 16 * (lines). 17 * 18 * The image converter attempts to split up a conversion when 19 * the desired output (converted) frame resolution exceeds the 20 * IC resizer limit of 1024 in either dimension. 21 * 22 * If either dimension of the output frame exceeds the limit, the 23 * dimension is split into 1, 2, or 4 equal stripes, for a maximum 24 * of 4*4 or 16 tiles. A conversion is then carried out for each 25 * tile (but taking care to pass the full frame stride length to 26 * the DMA channel's parameter memory!). IDMA double-buffering is used 27 * to convert each tile back-to-back when possible (see note below 28 * when double_buffering boolean is set). 29 * 30 * Note that the input frame must be split up into the same number 31 * of tiles as the output frame: 32 * 33 * +---------+-----+ 34 * +-----+---+ | A | B | 35 * | A | B | | | | 36 * +-----+---+ --> +---------+-----+ 37 * | C | D | | C | D | 38 * +-----+---+ | | | 39 * +---------+-----+ 40 * 41 * Clockwise 90° rotations are handled by first rescaling into a 42 * reusable temporary tile buffer and then rotating with the 8x8 43 * block rotator, writing to the correct destination: 44 * 45 * +-----+-----+ 46 * | | | 47 * +-----+---+ +---------+ | C | A | 48 * | A | B | | A,B, | | | | | 49 * +-----+---+ --> | C,D | | --> | | | 50 * | C | D | +---------+ +-----+-----+ 51 * +-----+---+ | D | B | 52 * | | | 53 * +-----+-----+ 54 * 55 * If the 8x8 block rotator is used, horizontal or vertical flipping 56 * is done during the rotation step, otherwise flipping is done 57 * during the scaling step. 58 * With rotation or flipping, tile order changes between input and 59 * output image. Tiles are numbered row major from top left to bottom 60 * right for both input and output image. 61 */ 62 63 #define MAX_STRIPES_W 4 64 #define MAX_STRIPES_H 4 65 #define MAX_TILES (MAX_STRIPES_W * MAX_STRIPES_H) 66 67 #define MIN_W 16 68 #define MIN_H 8 69 #define MAX_W 4096 70 #define MAX_H 4096 71 72 enum ipu_image_convert_type { 73 IMAGE_CONVERT_IN = 0, 74 IMAGE_CONVERT_OUT, 75 }; 76 77 struct ipu_image_convert_dma_buf { 78 void *virt; 79 dma_addr_t phys; 80 unsigned long len; 81 }; 82 83 struct ipu_image_convert_dma_chan { 84 int in; 85 int out; 86 int rot_in; 87 int rot_out; 88 int vdi_in_p; 89 int vdi_in; 90 int vdi_in_n; 91 }; 92 93 /* dimensions of one tile */ 94 struct ipu_image_tile { 95 u32 width; 96 u32 height; 97 u32 left; 98 u32 top; 99 /* size and strides are in bytes */ 100 u32 size; 101 u32 stride; 102 u32 rot_stride; 103 /* start Y or packed offset of this tile */ 104 u32 offset; 105 /* offset from start to tile in U plane, for planar formats */ 106 u32 u_off; 107 /* offset from start to tile in V plane, for planar formats */ 108 u32 v_off; 109 }; 110 111 struct ipu_image_convert_image { 112 struct ipu_image base; 113 enum ipu_image_convert_type type; 114 115 const struct ipu_image_pixfmt *fmt; 116 unsigned int stride; 117 118 /* # of rows (horizontal stripes) if dest height is > 1024 */ 119 unsigned int num_rows; 120 /* # of columns (vertical stripes) if dest width is > 1024 */ 121 unsigned int num_cols; 122 123 struct ipu_image_tile tile[MAX_TILES]; 124 }; 125 126 struct ipu_image_pixfmt { 127 u32 fourcc; /* V4L2 fourcc */ 128 int bpp; /* total bpp */ 129 int uv_width_dec; /* decimation in width for U/V planes */ 130 int uv_height_dec; /* decimation in height for U/V planes */ 131 bool planar; /* planar format */ 132 bool uv_swapped; /* U and V planes are swapped */ 133 bool uv_packed; /* partial planar (U and V in same plane) */ 134 }; 135 136 struct ipu_image_convert_ctx; 137 struct ipu_image_convert_chan; 138 struct ipu_image_convert_priv; 139 140 struct ipu_image_convert_ctx { 141 struct ipu_image_convert_chan *chan; 142 143 ipu_image_convert_cb_t complete; 144 void *complete_context; 145 146 /* Source/destination image data and rotation mode */ 147 struct ipu_image_convert_image in; 148 struct ipu_image_convert_image out; 149 struct ipu_ic_csc csc; 150 enum ipu_rotate_mode rot_mode; 151 u32 downsize_coeff_h; 152 u32 downsize_coeff_v; 153 u32 image_resize_coeff_h; 154 u32 image_resize_coeff_v; 155 u32 resize_coeffs_h[MAX_STRIPES_W]; 156 u32 resize_coeffs_v[MAX_STRIPES_H]; 157 158 /* intermediate buffer for rotation */ 159 struct ipu_image_convert_dma_buf rot_intermediate[2]; 160 161 /* current buffer number for double buffering */ 162 int cur_buf_num; 163 164 bool aborting; 165 struct completion aborted; 166 167 /* can we use double-buffering for this conversion operation? */ 168 bool double_buffering; 169 /* num_rows * num_cols */ 170 unsigned int num_tiles; 171 /* next tile to process */ 172 unsigned int next_tile; 173 /* where to place converted tile in dest image */ 174 unsigned int out_tile_map[MAX_TILES]; 175 176 struct list_head list; 177 }; 178 179 struct ipu_image_convert_chan { 180 struct ipu_image_convert_priv *priv; 181 182 enum ipu_ic_task ic_task; 183 const struct ipu_image_convert_dma_chan *dma_ch; 184 185 struct ipu_ic *ic; 186 struct ipuv3_channel *in_chan; 187 struct ipuv3_channel *out_chan; 188 struct ipuv3_channel *rotation_in_chan; 189 struct ipuv3_channel *rotation_out_chan; 190 191 /* the IPU end-of-frame irqs */ 192 int out_eof_irq; 193 int rot_out_eof_irq; 194 195 spinlock_t irqlock; 196 197 /* list of convert contexts */ 198 struct list_head ctx_list; 199 /* queue of conversion runs */ 200 struct list_head pending_q; 201 /* queue of completed runs */ 202 struct list_head done_q; 203 204 /* the current conversion run */ 205 struct ipu_image_convert_run *current_run; 206 }; 207 208 struct ipu_image_convert_priv { 209 struct ipu_image_convert_chan chan[IC_NUM_TASKS]; 210 struct ipu_soc *ipu; 211 }; 212 213 static const struct ipu_image_convert_dma_chan 214 image_convert_dma_chan[IC_NUM_TASKS] = { 215 [IC_TASK_VIEWFINDER] = { 216 .in = IPUV3_CHANNEL_MEM_IC_PRP_VF, 217 .out = IPUV3_CHANNEL_IC_PRP_VF_MEM, 218 .rot_in = IPUV3_CHANNEL_MEM_ROT_VF, 219 .rot_out = IPUV3_CHANNEL_ROT_VF_MEM, 220 .vdi_in_p = IPUV3_CHANNEL_MEM_VDI_PREV, 221 .vdi_in = IPUV3_CHANNEL_MEM_VDI_CUR, 222 .vdi_in_n = IPUV3_CHANNEL_MEM_VDI_NEXT, 223 }, 224 [IC_TASK_POST_PROCESSOR] = { 225 .in = IPUV3_CHANNEL_MEM_IC_PP, 226 .out = IPUV3_CHANNEL_IC_PP_MEM, 227 .rot_in = IPUV3_CHANNEL_MEM_ROT_PP, 228 .rot_out = IPUV3_CHANNEL_ROT_PP_MEM, 229 }, 230 }; 231 232 static const struct ipu_image_pixfmt image_convert_formats[] = { 233 { 234 .fourcc = V4L2_PIX_FMT_RGB565, 235 .bpp = 16, 236 }, { 237 .fourcc = V4L2_PIX_FMT_RGB24, 238 .bpp = 24, 239 }, { 240 .fourcc = V4L2_PIX_FMT_BGR24, 241 .bpp = 24, 242 }, { 243 .fourcc = V4L2_PIX_FMT_RGB32, 244 .bpp = 32, 245 }, { 246 .fourcc = V4L2_PIX_FMT_BGR32, 247 .bpp = 32, 248 }, { 249 .fourcc = V4L2_PIX_FMT_XRGB32, 250 .bpp = 32, 251 }, { 252 .fourcc = V4L2_PIX_FMT_XBGR32, 253 .bpp = 32, 254 }, { 255 .fourcc = V4L2_PIX_FMT_BGRX32, 256 .bpp = 32, 257 }, { 258 .fourcc = V4L2_PIX_FMT_RGBX32, 259 .bpp = 32, 260 }, { 261 .fourcc = V4L2_PIX_FMT_YUYV, 262 .bpp = 16, 263 .uv_width_dec = 2, 264 .uv_height_dec = 1, 265 }, { 266 .fourcc = V4L2_PIX_FMT_UYVY, 267 .bpp = 16, 268 .uv_width_dec = 2, 269 .uv_height_dec = 1, 270 }, { 271 .fourcc = V4L2_PIX_FMT_YUV420, 272 .bpp = 12, 273 .planar = true, 274 .uv_width_dec = 2, 275 .uv_height_dec = 2, 276 }, { 277 .fourcc = V4L2_PIX_FMT_YVU420, 278 .bpp = 12, 279 .planar = true, 280 .uv_width_dec = 2, 281 .uv_height_dec = 2, 282 .uv_swapped = true, 283 }, { 284 .fourcc = V4L2_PIX_FMT_NV12, 285 .bpp = 12, 286 .planar = true, 287 .uv_width_dec = 2, 288 .uv_height_dec = 2, 289 .uv_packed = true, 290 }, { 291 .fourcc = V4L2_PIX_FMT_YUV422P, 292 .bpp = 16, 293 .planar = true, 294 .uv_width_dec = 2, 295 .uv_height_dec = 1, 296 }, { 297 .fourcc = V4L2_PIX_FMT_NV16, 298 .bpp = 16, 299 .planar = true, 300 .uv_width_dec = 2, 301 .uv_height_dec = 1, 302 .uv_packed = true, 303 }, 304 }; 305 306 static const struct ipu_image_pixfmt *get_format(u32 fourcc) 307 { 308 const struct ipu_image_pixfmt *ret = NULL; 309 unsigned int i; 310 311 for (i = 0; i < ARRAY_SIZE(image_convert_formats); i++) { 312 if (image_convert_formats[i].fourcc == fourcc) { 313 ret = &image_convert_formats[i]; 314 break; 315 } 316 } 317 318 return ret; 319 } 320 321 static void dump_format(struct ipu_image_convert_ctx *ctx, 322 struct ipu_image_convert_image *ic_image) 323 { 324 struct ipu_image_convert_chan *chan = ctx->chan; 325 struct ipu_image_convert_priv *priv = chan->priv; 326 327 dev_dbg(priv->ipu->dev, 328 "task %u: ctx %p: %s format: %dx%d (%dx%d tiles), %c%c%c%c\n", 329 chan->ic_task, ctx, 330 ic_image->type == IMAGE_CONVERT_OUT ? "Output" : "Input", 331 ic_image->base.pix.width, ic_image->base.pix.height, 332 ic_image->num_cols, ic_image->num_rows, 333 ic_image->fmt->fourcc & 0xff, 334 (ic_image->fmt->fourcc >> 8) & 0xff, 335 (ic_image->fmt->fourcc >> 16) & 0xff, 336 (ic_image->fmt->fourcc >> 24) & 0xff); 337 } 338 339 int ipu_image_convert_enum_format(int index, u32 *fourcc) 340 { 341 const struct ipu_image_pixfmt *fmt; 342 343 if (index >= (int)ARRAY_SIZE(image_convert_formats)) 344 return -EINVAL; 345 346 /* Format found */ 347 fmt = &image_convert_formats[index]; 348 *fourcc = fmt->fourcc; 349 return 0; 350 } 351 EXPORT_SYMBOL_GPL(ipu_image_convert_enum_format); 352 353 static void free_dma_buf(struct ipu_image_convert_priv *priv, 354 struct ipu_image_convert_dma_buf *buf) 355 { 356 if (buf->virt) 357 dma_free_coherent(priv->ipu->dev, 358 buf->len, buf->virt, buf->phys); 359 buf->virt = NULL; 360 buf->phys = 0; 361 } 362 363 static int alloc_dma_buf(struct ipu_image_convert_priv *priv, 364 struct ipu_image_convert_dma_buf *buf, 365 int size) 366 { 367 buf->len = PAGE_ALIGN(size); 368 buf->virt = dma_alloc_coherent(priv->ipu->dev, buf->len, &buf->phys, 369 GFP_DMA | GFP_KERNEL); 370 if (!buf->virt) { 371 dev_err(priv->ipu->dev, "failed to alloc dma buffer\n"); 372 return -ENOMEM; 373 } 374 375 return 0; 376 } 377 378 static inline int num_stripes(int dim) 379 { 380 return (dim - 1) / 1024 + 1; 381 } 382 383 /* 384 * Calculate downsizing coefficients, which are the same for all tiles, 385 * and initial bilinear resizing coefficients, which are used to find the 386 * best seam positions. 387 * Also determine the number of tiles necessary to guarantee that no tile 388 * is larger than 1024 pixels in either dimension at the output and between 389 * IC downsizing and main processing sections. 390 */ 391 static int calc_image_resize_coefficients(struct ipu_image_convert_ctx *ctx, 392 struct ipu_image *in, 393 struct ipu_image *out) 394 { 395 u32 downsized_width = in->rect.width; 396 u32 downsized_height = in->rect.height; 397 u32 downsize_coeff_v = 0; 398 u32 downsize_coeff_h = 0; 399 u32 resized_width = out->rect.width; 400 u32 resized_height = out->rect.height; 401 u32 resize_coeff_h; 402 u32 resize_coeff_v; 403 u32 cols; 404 u32 rows; 405 406 if (ipu_rot_mode_is_irt(ctx->rot_mode)) { 407 resized_width = out->rect.height; 408 resized_height = out->rect.width; 409 } 410 411 /* Do not let invalid input lead to an endless loop below */ 412 if (WARN_ON(resized_width == 0 || resized_height == 0)) 413 return -EINVAL; 414 415 while (downsized_width >= resized_width * 2) { 416 downsized_width >>= 1; 417 downsize_coeff_h++; 418 } 419 420 while (downsized_height >= resized_height * 2) { 421 downsized_height >>= 1; 422 downsize_coeff_v++; 423 } 424 425 /* 426 * Calculate the bilinear resizing coefficients that could be used if 427 * we were converting with a single tile. The bottom right output pixel 428 * should sample as close as possible to the bottom right input pixel 429 * out of the decimator, but not overshoot it: 430 */ 431 resize_coeff_h = 8192 * (downsized_width - 1) / (resized_width - 1); 432 resize_coeff_v = 8192 * (downsized_height - 1) / (resized_height - 1); 433 434 /* 435 * Both the output of the IC downsizing section before being passed to 436 * the IC main processing section and the final output of the IC main 437 * processing section must be <= 1024 pixels in both dimensions. 438 */ 439 cols = num_stripes(max_t(u32, downsized_width, resized_width)); 440 rows = num_stripes(max_t(u32, downsized_height, resized_height)); 441 442 dev_dbg(ctx->chan->priv->ipu->dev, 443 "%s: hscale: >>%u, *8192/%u vscale: >>%u, *8192/%u, %ux%u tiles\n", 444 __func__, downsize_coeff_h, resize_coeff_h, downsize_coeff_v, 445 resize_coeff_v, cols, rows); 446 447 if (downsize_coeff_h > 2 || downsize_coeff_v > 2 || 448 resize_coeff_h > 0x3fff || resize_coeff_v > 0x3fff) 449 return -EINVAL; 450 451 ctx->downsize_coeff_h = downsize_coeff_h; 452 ctx->downsize_coeff_v = downsize_coeff_v; 453 ctx->image_resize_coeff_h = resize_coeff_h; 454 ctx->image_resize_coeff_v = resize_coeff_v; 455 ctx->in.num_cols = cols; 456 ctx->in.num_rows = rows; 457 458 return 0; 459 } 460 461 #define round_closest(x, y) round_down((x) + (y)/2, (y)) 462 463 /* 464 * Find the best aligned seam position for the given column / row index. 465 * Rotation and image offsets are out of scope. 466 * 467 * @index: column / row index, used to calculate valid interval 468 * @in_edge: input right / bottom edge 469 * @out_edge: output right / bottom edge 470 * @in_align: input alignment, either horizontal 8-byte line start address 471 * alignment, or pixel alignment due to image format 472 * @out_align: output alignment, either horizontal 8-byte line start address 473 * alignment, or pixel alignment due to image format or rotator 474 * block size 475 * @in_burst: horizontal input burst size in case of horizontal flip 476 * @out_burst: horizontal output burst size or rotator block size 477 * @downsize_coeff: downsizing section coefficient 478 * @resize_coeff: main processing section resizing coefficient 479 * @_in_seam: aligned input seam position return value 480 * @_out_seam: aligned output seam position return value 481 */ 482 static void find_best_seam(struct ipu_image_convert_ctx *ctx, 483 unsigned int index, 484 unsigned int in_edge, 485 unsigned int out_edge, 486 unsigned int in_align, 487 unsigned int out_align, 488 unsigned int in_burst, 489 unsigned int out_burst, 490 unsigned int downsize_coeff, 491 unsigned int resize_coeff, 492 u32 *_in_seam, 493 u32 *_out_seam) 494 { 495 struct device *dev = ctx->chan->priv->ipu->dev; 496 unsigned int out_pos; 497 /* Input / output seam position candidates */ 498 unsigned int out_seam = 0; 499 unsigned int in_seam = 0; 500 unsigned int min_diff = UINT_MAX; 501 unsigned int out_start; 502 unsigned int out_end; 503 unsigned int in_start; 504 unsigned int in_end; 505 506 /* Start within 1024 pixels of the right / bottom edge */ 507 out_start = max_t(int, index * out_align, out_edge - 1024); 508 /* End before having to add more columns to the left / rows above */ 509 out_end = min_t(unsigned int, out_edge, index * 1024 + 1); 510 511 /* 512 * Limit input seam position to make sure that the downsized input tile 513 * to the right or bottom does not exceed 1024 pixels. 514 */ 515 in_start = max_t(int, index * in_align, 516 in_edge - (1024 << downsize_coeff)); 517 in_end = min_t(unsigned int, in_edge, 518 index * (1024 << downsize_coeff) + 1); 519 520 /* 521 * Output tiles must start at a multiple of 8 bytes horizontally and 522 * possibly at an even line horizontally depending on the pixel format. 523 * Only consider output aligned positions for the seam. 524 */ 525 out_start = round_up(out_start, out_align); 526 for (out_pos = out_start; out_pos < out_end; out_pos += out_align) { 527 unsigned int in_pos; 528 unsigned int in_pos_aligned; 529 unsigned int in_pos_rounded; 530 unsigned int abs_diff; 531 532 /* 533 * Tiles in the right row / bottom column may not be allowed to 534 * overshoot horizontally / vertically. out_burst may be the 535 * actual DMA burst size, or the rotator block size. 536 */ 537 if ((out_burst > 1) && (out_edge - out_pos) % out_burst) 538 continue; 539 540 /* 541 * Input sample position, corresponding to out_pos, 19.13 fixed 542 * point. 543 */ 544 in_pos = (out_pos * resize_coeff) << downsize_coeff; 545 /* 546 * The closest input sample position that we could actually 547 * start the input tile at, 19.13 fixed point. 548 */ 549 in_pos_aligned = round_closest(in_pos, 8192U * in_align); 550 /* Convert 19.13 fixed point to integer */ 551 in_pos_rounded = in_pos_aligned / 8192U; 552 553 if (in_pos_rounded < in_start) 554 continue; 555 if (in_pos_rounded >= in_end) 556 break; 557 558 if ((in_burst > 1) && 559 (in_edge - in_pos_rounded) % in_burst) 560 continue; 561 562 if (in_pos < in_pos_aligned) 563 abs_diff = in_pos_aligned - in_pos; 564 else 565 abs_diff = in_pos - in_pos_aligned; 566 567 if (abs_diff < min_diff) { 568 in_seam = in_pos_rounded; 569 out_seam = out_pos; 570 min_diff = abs_diff; 571 } 572 } 573 574 *_out_seam = out_seam; 575 *_in_seam = in_seam; 576 577 dev_dbg(dev, "%s: out_seam %u(%u) in [%u, %u], in_seam %u(%u) in [%u, %u] diff %u.%03u\n", 578 __func__, out_seam, out_align, out_start, out_end, 579 in_seam, in_align, in_start, in_end, min_diff / 8192, 580 DIV_ROUND_CLOSEST(min_diff % 8192 * 1000, 8192)); 581 } 582 583 /* 584 * Tile left edges are required to be aligned to multiples of 8 bytes 585 * by the IDMAC. 586 */ 587 static inline u32 tile_left_align(const struct ipu_image_pixfmt *fmt) 588 { 589 if (fmt->planar) 590 return fmt->uv_packed ? 8 : 8 * fmt->uv_width_dec; 591 else 592 return fmt->bpp == 32 ? 2 : fmt->bpp == 16 ? 4 : 8; 593 } 594 595 /* 596 * Tile top edge alignment is only limited by chroma subsampling. 597 */ 598 static inline u32 tile_top_align(const struct ipu_image_pixfmt *fmt) 599 { 600 return fmt->uv_height_dec > 1 ? 2 : 1; 601 } 602 603 static inline u32 tile_width_align(enum ipu_image_convert_type type, 604 const struct ipu_image_pixfmt *fmt, 605 enum ipu_rotate_mode rot_mode) 606 { 607 if (type == IMAGE_CONVERT_IN) { 608 /* 609 * The IC burst reads 8 pixels at a time. Reading beyond the 610 * end of the line is usually acceptable. Those pixels are 611 * ignored, unless the IC has to write the scaled line in 612 * reverse. 613 */ 614 return (!ipu_rot_mode_is_irt(rot_mode) && 615 (rot_mode & IPU_ROT_BIT_HFLIP)) ? 8 : 2; 616 } 617 618 /* 619 * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled 620 * formats to guarantee 8-byte aligned line start addresses in the 621 * chroma planes when IRT is used. Align to 8x8 pixel IRT block size 622 * for all other formats. 623 */ 624 return (ipu_rot_mode_is_irt(rot_mode) && 625 fmt->planar && !fmt->uv_packed) ? 626 8 * fmt->uv_width_dec : 8; 627 } 628 629 static inline u32 tile_height_align(enum ipu_image_convert_type type, 630 const struct ipu_image_pixfmt *fmt, 631 enum ipu_rotate_mode rot_mode) 632 { 633 if (type == IMAGE_CONVERT_IN || !ipu_rot_mode_is_irt(rot_mode)) 634 return 2; 635 636 /* 637 * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled 638 * formats to guarantee 8-byte aligned line start addresses in the 639 * chroma planes when IRT is used. Align to 8x8 pixel IRT block size 640 * for all other formats. 641 */ 642 return (fmt->planar && !fmt->uv_packed) ? 8 * fmt->uv_width_dec : 8; 643 } 644 645 /* 646 * Fill in left position and width and for all tiles in an input column, and 647 * for all corresponding output tiles. If the 90° rotator is used, the output 648 * tiles are in a row, and output tile top position and height are set. 649 */ 650 static void fill_tile_column(struct ipu_image_convert_ctx *ctx, 651 unsigned int col, 652 struct ipu_image_convert_image *in, 653 unsigned int in_left, unsigned int in_width, 654 struct ipu_image_convert_image *out, 655 unsigned int out_left, unsigned int out_width) 656 { 657 unsigned int row, tile_idx; 658 struct ipu_image_tile *in_tile, *out_tile; 659 660 for (row = 0; row < in->num_rows; row++) { 661 tile_idx = in->num_cols * row + col; 662 in_tile = &in->tile[tile_idx]; 663 out_tile = &out->tile[ctx->out_tile_map[tile_idx]]; 664 665 in_tile->left = in_left; 666 in_tile->width = in_width; 667 668 if (ipu_rot_mode_is_irt(ctx->rot_mode)) { 669 out_tile->top = out_left; 670 out_tile->height = out_width; 671 } else { 672 out_tile->left = out_left; 673 out_tile->width = out_width; 674 } 675 } 676 } 677 678 /* 679 * Fill in top position and height and for all tiles in an input row, and 680 * for all corresponding output tiles. If the 90° rotator is used, the output 681 * tiles are in a column, and output tile left position and width are set. 682 */ 683 static void fill_tile_row(struct ipu_image_convert_ctx *ctx, unsigned int row, 684 struct ipu_image_convert_image *in, 685 unsigned int in_top, unsigned int in_height, 686 struct ipu_image_convert_image *out, 687 unsigned int out_top, unsigned int out_height) 688 { 689 unsigned int col, tile_idx; 690 struct ipu_image_tile *in_tile, *out_tile; 691 692 for (col = 0; col < in->num_cols; col++) { 693 tile_idx = in->num_cols * row + col; 694 in_tile = &in->tile[tile_idx]; 695 out_tile = &out->tile[ctx->out_tile_map[tile_idx]]; 696 697 in_tile->top = in_top; 698 in_tile->height = in_height; 699 700 if (ipu_rot_mode_is_irt(ctx->rot_mode)) { 701 out_tile->left = out_top; 702 out_tile->width = out_height; 703 } else { 704 out_tile->top = out_top; 705 out_tile->height = out_height; 706 } 707 } 708 } 709 710 /* 711 * Find the best horizontal and vertical seam positions to split into tiles. 712 * Minimize the fractional part of the input sampling position for the 713 * top / left pixels of each tile. 714 */ 715 static void find_seams(struct ipu_image_convert_ctx *ctx, 716 struct ipu_image_convert_image *in, 717 struct ipu_image_convert_image *out) 718 { 719 struct device *dev = ctx->chan->priv->ipu->dev; 720 unsigned int resized_width = out->base.rect.width; 721 unsigned int resized_height = out->base.rect.height; 722 unsigned int col; 723 unsigned int row; 724 unsigned int in_left_align = tile_left_align(in->fmt); 725 unsigned int in_top_align = tile_top_align(in->fmt); 726 unsigned int out_left_align = tile_left_align(out->fmt); 727 unsigned int out_top_align = tile_top_align(out->fmt); 728 unsigned int out_width_align = tile_width_align(out->type, out->fmt, 729 ctx->rot_mode); 730 unsigned int out_height_align = tile_height_align(out->type, out->fmt, 731 ctx->rot_mode); 732 unsigned int in_right = in->base.rect.width; 733 unsigned int in_bottom = in->base.rect.height; 734 unsigned int out_right = out->base.rect.width; 735 unsigned int out_bottom = out->base.rect.height; 736 unsigned int flipped_out_left; 737 unsigned int flipped_out_top; 738 739 if (ipu_rot_mode_is_irt(ctx->rot_mode)) { 740 /* Switch width/height and align top left to IRT block size */ 741 resized_width = out->base.rect.height; 742 resized_height = out->base.rect.width; 743 out_left_align = out_height_align; 744 out_top_align = out_width_align; 745 out_width_align = out_left_align; 746 out_height_align = out_top_align; 747 out_right = out->base.rect.height; 748 out_bottom = out->base.rect.width; 749 } 750 751 for (col = in->num_cols - 1; col > 0; col--) { 752 bool allow_in_overshoot = ipu_rot_mode_is_irt(ctx->rot_mode) || 753 !(ctx->rot_mode & IPU_ROT_BIT_HFLIP); 754 bool allow_out_overshoot = (col < in->num_cols - 1) && 755 !(ctx->rot_mode & IPU_ROT_BIT_HFLIP); 756 unsigned int in_left; 757 unsigned int out_left; 758 759 /* 760 * Align input width to burst length if the scaling step flips 761 * horizontally. 762 */ 763 764 find_best_seam(ctx, col, 765 in_right, out_right, 766 in_left_align, out_left_align, 767 allow_in_overshoot ? 1 : 8 /* burst length */, 768 allow_out_overshoot ? 1 : out_width_align, 769 ctx->downsize_coeff_h, ctx->image_resize_coeff_h, 770 &in_left, &out_left); 771 772 if (ctx->rot_mode & IPU_ROT_BIT_HFLIP) 773 flipped_out_left = resized_width - out_right; 774 else 775 flipped_out_left = out_left; 776 777 fill_tile_column(ctx, col, in, in_left, in_right - in_left, 778 out, flipped_out_left, out_right - out_left); 779 780 dev_dbg(dev, "%s: col %u: %u, %u -> %u, %u\n", __func__, col, 781 in_left, in_right - in_left, 782 flipped_out_left, out_right - out_left); 783 784 in_right = in_left; 785 out_right = out_left; 786 } 787 788 flipped_out_left = (ctx->rot_mode & IPU_ROT_BIT_HFLIP) ? 789 resized_width - out_right : 0; 790 791 fill_tile_column(ctx, 0, in, 0, in_right, 792 out, flipped_out_left, out_right); 793 794 dev_dbg(dev, "%s: col 0: 0, %u -> %u, %u\n", __func__, 795 in_right, flipped_out_left, out_right); 796 797 for (row = in->num_rows - 1; row > 0; row--) { 798 bool allow_overshoot = row < in->num_rows - 1; 799 unsigned int in_top; 800 unsigned int out_top; 801 802 find_best_seam(ctx, row, 803 in_bottom, out_bottom, 804 in_top_align, out_top_align, 805 1, allow_overshoot ? 1 : out_height_align, 806 ctx->downsize_coeff_v, ctx->image_resize_coeff_v, 807 &in_top, &out_top); 808 809 if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^ 810 ipu_rot_mode_is_irt(ctx->rot_mode)) 811 flipped_out_top = resized_height - out_bottom; 812 else 813 flipped_out_top = out_top; 814 815 fill_tile_row(ctx, row, in, in_top, in_bottom - in_top, 816 out, flipped_out_top, out_bottom - out_top); 817 818 dev_dbg(dev, "%s: row %u: %u, %u -> %u, %u\n", __func__, row, 819 in_top, in_bottom - in_top, 820 flipped_out_top, out_bottom - out_top); 821 822 in_bottom = in_top; 823 out_bottom = out_top; 824 } 825 826 if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^ 827 ipu_rot_mode_is_irt(ctx->rot_mode)) 828 flipped_out_top = resized_height - out_bottom; 829 else 830 flipped_out_top = 0; 831 832 fill_tile_row(ctx, 0, in, 0, in_bottom, 833 out, flipped_out_top, out_bottom); 834 835 dev_dbg(dev, "%s: row 0: 0, %u -> %u, %u\n", __func__, 836 in_bottom, flipped_out_top, out_bottom); 837 } 838 839 static int calc_tile_dimensions(struct ipu_image_convert_ctx *ctx, 840 struct ipu_image_convert_image *image) 841 { 842 struct ipu_image_convert_chan *chan = ctx->chan; 843 struct ipu_image_convert_priv *priv = chan->priv; 844 unsigned int max_width = 1024; 845 unsigned int max_height = 1024; 846 unsigned int i; 847 848 if (image->type == IMAGE_CONVERT_IN) { 849 /* Up to 4096x4096 input tile size */ 850 max_width <<= ctx->downsize_coeff_h; 851 max_height <<= ctx->downsize_coeff_v; 852 } 853 854 for (i = 0; i < ctx->num_tiles; i++) { 855 struct ipu_image_tile *tile; 856 const unsigned int row = i / image->num_cols; 857 const unsigned int col = i % image->num_cols; 858 859 if (image->type == IMAGE_CONVERT_OUT) 860 tile = &image->tile[ctx->out_tile_map[i]]; 861 else 862 tile = &image->tile[i]; 863 864 tile->size = ((tile->height * image->fmt->bpp) >> 3) * 865 tile->width; 866 867 if (image->fmt->planar) { 868 tile->stride = tile->width; 869 tile->rot_stride = tile->height; 870 } else { 871 tile->stride = 872 (image->fmt->bpp * tile->width) >> 3; 873 tile->rot_stride = 874 (image->fmt->bpp * tile->height) >> 3; 875 } 876 877 dev_dbg(priv->ipu->dev, 878 "task %u: ctx %p: %s@[%u,%u]: %ux%u@%u,%u\n", 879 chan->ic_task, ctx, 880 image->type == IMAGE_CONVERT_IN ? "Input" : "Output", 881 row, col, 882 tile->width, tile->height, tile->left, tile->top); 883 884 if (!tile->width || tile->width > max_width || 885 !tile->height || tile->height > max_height) { 886 dev_err(priv->ipu->dev, "invalid %s tile size: %ux%u\n", 887 image->type == IMAGE_CONVERT_IN ? "input" : 888 "output", tile->width, tile->height); 889 return -EINVAL; 890 } 891 } 892 893 return 0; 894 } 895 896 /* 897 * Use the rotation transformation to find the tile coordinates 898 * (row, col) of a tile in the destination frame that corresponds 899 * to the given tile coordinates of a source frame. The destination 900 * coordinate is then converted to a tile index. 901 */ 902 static int transform_tile_index(struct ipu_image_convert_ctx *ctx, 903 int src_row, int src_col) 904 { 905 struct ipu_image_convert_chan *chan = ctx->chan; 906 struct ipu_image_convert_priv *priv = chan->priv; 907 struct ipu_image_convert_image *s_image = &ctx->in; 908 struct ipu_image_convert_image *d_image = &ctx->out; 909 int dst_row, dst_col; 910 911 /* with no rotation it's a 1:1 mapping */ 912 if (ctx->rot_mode == IPU_ROTATE_NONE) 913 return src_row * s_image->num_cols + src_col; 914 915 /* 916 * before doing the transform, first we have to translate 917 * source row,col for an origin in the center of s_image 918 */ 919 src_row = src_row * 2 - (s_image->num_rows - 1); 920 src_col = src_col * 2 - (s_image->num_cols - 1); 921 922 /* do the rotation transform */ 923 if (ctx->rot_mode & IPU_ROT_BIT_90) { 924 dst_col = -src_row; 925 dst_row = src_col; 926 } else { 927 dst_col = src_col; 928 dst_row = src_row; 929 } 930 931 /* apply flip */ 932 if (ctx->rot_mode & IPU_ROT_BIT_HFLIP) 933 dst_col = -dst_col; 934 if (ctx->rot_mode & IPU_ROT_BIT_VFLIP) 935 dst_row = -dst_row; 936 937 dev_dbg(priv->ipu->dev, "task %u: ctx %p: [%d,%d] --> [%d,%d]\n", 938 chan->ic_task, ctx, src_col, src_row, dst_col, dst_row); 939 940 /* 941 * finally translate dest row,col using an origin in upper 942 * left of d_image 943 */ 944 dst_row += d_image->num_rows - 1; 945 dst_col += d_image->num_cols - 1; 946 dst_row /= 2; 947 dst_col /= 2; 948 949 return dst_row * d_image->num_cols + dst_col; 950 } 951 952 /* 953 * Fill the out_tile_map[] with transformed destination tile indeces. 954 */ 955 static void calc_out_tile_map(struct ipu_image_convert_ctx *ctx) 956 { 957 struct ipu_image_convert_image *s_image = &ctx->in; 958 unsigned int row, col, tile = 0; 959 960 for (row = 0; row < s_image->num_rows; row++) { 961 for (col = 0; col < s_image->num_cols; col++) { 962 ctx->out_tile_map[tile] = 963 transform_tile_index(ctx, row, col); 964 tile++; 965 } 966 } 967 } 968 969 static int calc_tile_offsets_planar(struct ipu_image_convert_ctx *ctx, 970 struct ipu_image_convert_image *image) 971 { 972 struct ipu_image_convert_chan *chan = ctx->chan; 973 struct ipu_image_convert_priv *priv = chan->priv; 974 const struct ipu_image_pixfmt *fmt = image->fmt; 975 unsigned int row, col, tile = 0; 976 u32 H, top, y_stride, uv_stride; 977 u32 uv_row_off, uv_col_off, uv_off, u_off, v_off, tmp; 978 u32 y_row_off, y_col_off, y_off; 979 u32 y_size, uv_size; 980 981 /* setup some convenience vars */ 982 H = image->base.pix.height; 983 984 y_stride = image->stride; 985 uv_stride = y_stride / fmt->uv_width_dec; 986 if (fmt->uv_packed) 987 uv_stride *= 2; 988 989 y_size = H * y_stride; 990 uv_size = y_size / (fmt->uv_width_dec * fmt->uv_height_dec); 991 992 for (row = 0; row < image->num_rows; row++) { 993 top = image->tile[tile].top; 994 y_row_off = top * y_stride; 995 uv_row_off = (top * uv_stride) / fmt->uv_height_dec; 996 997 for (col = 0; col < image->num_cols; col++) { 998 y_col_off = image->tile[tile].left; 999 uv_col_off = y_col_off / fmt->uv_width_dec; 1000 if (fmt->uv_packed) 1001 uv_col_off *= 2; 1002 1003 y_off = y_row_off + y_col_off; 1004 uv_off = uv_row_off + uv_col_off; 1005 1006 u_off = y_size - y_off + uv_off; 1007 v_off = (fmt->uv_packed) ? 0 : u_off + uv_size; 1008 if (fmt->uv_swapped) { 1009 tmp = u_off; 1010 u_off = v_off; 1011 v_off = tmp; 1012 } 1013 1014 image->tile[tile].offset = y_off; 1015 image->tile[tile].u_off = u_off; 1016 image->tile[tile++].v_off = v_off; 1017 1018 if ((y_off & 0x7) || (u_off & 0x7) || (v_off & 0x7)) { 1019 dev_err(priv->ipu->dev, 1020 "task %u: ctx %p: %s@[%d,%d]: " 1021 "y_off %08x, u_off %08x, v_off %08x\n", 1022 chan->ic_task, ctx, 1023 image->type == IMAGE_CONVERT_IN ? 1024 "Input" : "Output", row, col, 1025 y_off, u_off, v_off); 1026 return -EINVAL; 1027 } 1028 } 1029 } 1030 1031 return 0; 1032 } 1033 1034 static int calc_tile_offsets_packed(struct ipu_image_convert_ctx *ctx, 1035 struct ipu_image_convert_image *image) 1036 { 1037 struct ipu_image_convert_chan *chan = ctx->chan; 1038 struct ipu_image_convert_priv *priv = chan->priv; 1039 const struct ipu_image_pixfmt *fmt = image->fmt; 1040 unsigned int row, col, tile = 0; 1041 u32 bpp, stride, offset; 1042 u32 row_off, col_off; 1043 1044 /* setup some convenience vars */ 1045 stride = image->stride; 1046 bpp = fmt->bpp; 1047 1048 for (row = 0; row < image->num_rows; row++) { 1049 row_off = image->tile[tile].top * stride; 1050 1051 for (col = 0; col < image->num_cols; col++) { 1052 col_off = (image->tile[tile].left * bpp) >> 3; 1053 1054 offset = row_off + col_off; 1055 1056 image->tile[tile].offset = offset; 1057 image->tile[tile].u_off = 0; 1058 image->tile[tile++].v_off = 0; 1059 1060 if (offset & 0x7) { 1061 dev_err(priv->ipu->dev, 1062 "task %u: ctx %p: %s@[%d,%d]: " 1063 "phys %08x\n", 1064 chan->ic_task, ctx, 1065 image->type == IMAGE_CONVERT_IN ? 1066 "Input" : "Output", row, col, 1067 row_off + col_off); 1068 return -EINVAL; 1069 } 1070 } 1071 } 1072 1073 return 0; 1074 } 1075 1076 static int calc_tile_offsets(struct ipu_image_convert_ctx *ctx, 1077 struct ipu_image_convert_image *image) 1078 { 1079 if (image->fmt->planar) 1080 return calc_tile_offsets_planar(ctx, image); 1081 1082 return calc_tile_offsets_packed(ctx, image); 1083 } 1084 1085 /* 1086 * Calculate the resizing ratio for the IC main processing section given input 1087 * size, fixed downsizing coefficient, and output size. 1088 * Either round to closest for the next tile's first pixel to minimize seams 1089 * and distortion (for all but right column / bottom row), or round down to 1090 * avoid sampling beyond the edges of the input image for this tile's last 1091 * pixel. 1092 * Returns the resizing coefficient, resizing ratio is 8192.0 / resize_coeff. 1093 */ 1094 static u32 calc_resize_coeff(u32 input_size, u32 downsize_coeff, 1095 u32 output_size, bool allow_overshoot) 1096 { 1097 u32 downsized = input_size >> downsize_coeff; 1098 1099 if (allow_overshoot) 1100 return DIV_ROUND_CLOSEST(8192 * downsized, output_size); 1101 else 1102 return 8192 * (downsized - 1) / (output_size - 1); 1103 } 1104 1105 /* 1106 * Slightly modify resize coefficients per tile to hide the bilinear 1107 * interpolator reset at tile borders, shifting the right / bottom edge 1108 * by up to a half input pixel. This removes noticeable seams between 1109 * tiles at higher upscaling factors. 1110 */ 1111 static void calc_tile_resize_coefficients(struct ipu_image_convert_ctx *ctx) 1112 { 1113 struct ipu_image_convert_chan *chan = ctx->chan; 1114 struct ipu_image_convert_priv *priv = chan->priv; 1115 struct ipu_image_tile *in_tile, *out_tile; 1116 unsigned int col, row, tile_idx; 1117 unsigned int last_output; 1118 1119 for (col = 0; col < ctx->in.num_cols; col++) { 1120 bool closest = (col < ctx->in.num_cols - 1) && 1121 !(ctx->rot_mode & IPU_ROT_BIT_HFLIP); 1122 u32 resized_width; 1123 u32 resize_coeff_h; 1124 u32 in_width; 1125 1126 tile_idx = col; 1127 in_tile = &ctx->in.tile[tile_idx]; 1128 out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]]; 1129 1130 if (ipu_rot_mode_is_irt(ctx->rot_mode)) 1131 resized_width = out_tile->height; 1132 else 1133 resized_width = out_tile->width; 1134 1135 resize_coeff_h = calc_resize_coeff(in_tile->width, 1136 ctx->downsize_coeff_h, 1137 resized_width, closest); 1138 1139 dev_dbg(priv->ipu->dev, "%s: column %u hscale: *8192/%u\n", 1140 __func__, col, resize_coeff_h); 1141 1142 /* 1143 * With the horizontal scaling factor known, round up resized 1144 * width (output width or height) to burst size. 1145 */ 1146 resized_width = round_up(resized_width, 8); 1147 1148 /* 1149 * Calculate input width from the last accessed input pixel 1150 * given resized width and scaling coefficients. Round up to 1151 * burst size. 1152 */ 1153 last_output = resized_width - 1; 1154 if (closest && ((last_output * resize_coeff_h) % 8192)) 1155 last_output++; 1156 in_width = round_up( 1157 (DIV_ROUND_UP(last_output * resize_coeff_h, 8192) + 1) 1158 << ctx->downsize_coeff_h, 8); 1159 1160 for (row = 0; row < ctx->in.num_rows; row++) { 1161 tile_idx = row * ctx->in.num_cols + col; 1162 in_tile = &ctx->in.tile[tile_idx]; 1163 out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]]; 1164 1165 if (ipu_rot_mode_is_irt(ctx->rot_mode)) 1166 out_tile->height = resized_width; 1167 else 1168 out_tile->width = resized_width; 1169 1170 in_tile->width = in_width; 1171 } 1172 1173 ctx->resize_coeffs_h[col] = resize_coeff_h; 1174 } 1175 1176 for (row = 0; row < ctx->in.num_rows; row++) { 1177 bool closest = (row < ctx->in.num_rows - 1) && 1178 !(ctx->rot_mode & IPU_ROT_BIT_VFLIP); 1179 u32 resized_height; 1180 u32 resize_coeff_v; 1181 u32 in_height; 1182 1183 tile_idx = row * ctx->in.num_cols; 1184 in_tile = &ctx->in.tile[tile_idx]; 1185 out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]]; 1186 1187 if (ipu_rot_mode_is_irt(ctx->rot_mode)) 1188 resized_height = out_tile->width; 1189 else 1190 resized_height = out_tile->height; 1191 1192 resize_coeff_v = calc_resize_coeff(in_tile->height, 1193 ctx->downsize_coeff_v, 1194 resized_height, closest); 1195 1196 dev_dbg(priv->ipu->dev, "%s: row %u vscale: *8192/%u\n", 1197 __func__, row, resize_coeff_v); 1198 1199 /* 1200 * With the vertical scaling factor known, round up resized 1201 * height (output width or height) to IDMAC limitations. 1202 */ 1203 resized_height = round_up(resized_height, 2); 1204 1205 /* 1206 * Calculate input width from the last accessed input pixel 1207 * given resized height and scaling coefficients. Align to 1208 * IDMAC restrictions. 1209 */ 1210 last_output = resized_height - 1; 1211 if (closest && ((last_output * resize_coeff_v) % 8192)) 1212 last_output++; 1213 in_height = round_up( 1214 (DIV_ROUND_UP(last_output * resize_coeff_v, 8192) + 1) 1215 << ctx->downsize_coeff_v, 2); 1216 1217 for (col = 0; col < ctx->in.num_cols; col++) { 1218 tile_idx = row * ctx->in.num_cols + col; 1219 in_tile = &ctx->in.tile[tile_idx]; 1220 out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]]; 1221 1222 if (ipu_rot_mode_is_irt(ctx->rot_mode)) 1223 out_tile->width = resized_height; 1224 else 1225 out_tile->height = resized_height; 1226 1227 in_tile->height = in_height; 1228 } 1229 1230 ctx->resize_coeffs_v[row] = resize_coeff_v; 1231 } 1232 } 1233 1234 /* 1235 * return the number of runs in given queue (pending_q or done_q) 1236 * for this context. hold irqlock when calling. 1237 */ 1238 static int get_run_count(struct ipu_image_convert_ctx *ctx, 1239 struct list_head *q) 1240 { 1241 struct ipu_image_convert_run *run; 1242 int count = 0; 1243 1244 lockdep_assert_held(&ctx->chan->irqlock); 1245 1246 list_for_each_entry(run, q, list) { 1247 if (run->ctx == ctx) 1248 count++; 1249 } 1250 1251 return count; 1252 } 1253 1254 static void convert_stop(struct ipu_image_convert_run *run) 1255 { 1256 struct ipu_image_convert_ctx *ctx = run->ctx; 1257 struct ipu_image_convert_chan *chan = ctx->chan; 1258 struct ipu_image_convert_priv *priv = chan->priv; 1259 1260 dev_dbg(priv->ipu->dev, "%s: task %u: stopping ctx %p run %p\n", 1261 __func__, chan->ic_task, ctx, run); 1262 1263 /* disable IC tasks and the channels */ 1264 ipu_ic_task_disable(chan->ic); 1265 ipu_idmac_disable_channel(chan->in_chan); 1266 ipu_idmac_disable_channel(chan->out_chan); 1267 1268 if (ipu_rot_mode_is_irt(ctx->rot_mode)) { 1269 ipu_idmac_disable_channel(chan->rotation_in_chan); 1270 ipu_idmac_disable_channel(chan->rotation_out_chan); 1271 ipu_idmac_unlink(chan->out_chan, chan->rotation_in_chan); 1272 } 1273 1274 ipu_ic_disable(chan->ic); 1275 } 1276 1277 static void init_idmac_channel(struct ipu_image_convert_ctx *ctx, 1278 struct ipuv3_channel *channel, 1279 struct ipu_image_convert_image *image, 1280 enum ipu_rotate_mode rot_mode, 1281 bool rot_swap_width_height, 1282 unsigned int tile) 1283 { 1284 struct ipu_image_convert_chan *chan = ctx->chan; 1285 unsigned int burst_size; 1286 u32 width, height, stride; 1287 dma_addr_t addr0, addr1 = 0; 1288 struct ipu_image tile_image; 1289 unsigned int tile_idx[2]; 1290 1291 if (image->type == IMAGE_CONVERT_OUT) { 1292 tile_idx[0] = ctx->out_tile_map[tile]; 1293 tile_idx[1] = ctx->out_tile_map[1]; 1294 } else { 1295 tile_idx[0] = tile; 1296 tile_idx[1] = 1; 1297 } 1298 1299 if (rot_swap_width_height) { 1300 width = image->tile[tile_idx[0]].height; 1301 height = image->tile[tile_idx[0]].width; 1302 stride = image->tile[tile_idx[0]].rot_stride; 1303 addr0 = ctx->rot_intermediate[0].phys; 1304 if (ctx->double_buffering) 1305 addr1 = ctx->rot_intermediate[1].phys; 1306 } else { 1307 width = image->tile[tile_idx[0]].width; 1308 height = image->tile[tile_idx[0]].height; 1309 stride = image->stride; 1310 addr0 = image->base.phys0 + 1311 image->tile[tile_idx[0]].offset; 1312 if (ctx->double_buffering) 1313 addr1 = image->base.phys0 + 1314 image->tile[tile_idx[1]].offset; 1315 } 1316 1317 ipu_cpmem_zero(channel); 1318 1319 memset(&tile_image, 0, sizeof(tile_image)); 1320 tile_image.pix.width = tile_image.rect.width = width; 1321 tile_image.pix.height = tile_image.rect.height = height; 1322 tile_image.pix.bytesperline = stride; 1323 tile_image.pix.pixelformat = image->fmt->fourcc; 1324 tile_image.phys0 = addr0; 1325 tile_image.phys1 = addr1; 1326 if (image->fmt->planar && !rot_swap_width_height) { 1327 tile_image.u_offset = image->tile[tile_idx[0]].u_off; 1328 tile_image.v_offset = image->tile[tile_idx[0]].v_off; 1329 } 1330 1331 ipu_cpmem_set_image(channel, &tile_image); 1332 1333 if (rot_mode) 1334 ipu_cpmem_set_rotation(channel, rot_mode); 1335 1336 /* 1337 * Skip writing U and V components to odd rows in the output 1338 * channels for planar 4:2:0. 1339 */ 1340 if ((channel == chan->out_chan || 1341 channel == chan->rotation_out_chan) && 1342 image->fmt->planar && image->fmt->uv_height_dec == 2) 1343 ipu_cpmem_skip_odd_chroma_rows(channel); 1344 1345 if (channel == chan->rotation_in_chan || 1346 channel == chan->rotation_out_chan) { 1347 burst_size = 8; 1348 ipu_cpmem_set_block_mode(channel); 1349 } else 1350 burst_size = (width % 16) ? 8 : 16; 1351 1352 ipu_cpmem_set_burstsize(channel, burst_size); 1353 1354 ipu_ic_task_idma_init(chan->ic, channel, width, height, 1355 burst_size, rot_mode); 1356 1357 /* 1358 * Setting a non-zero AXI ID collides with the PRG AXI snooping, so 1359 * only do this when there is no PRG present. 1360 */ 1361 if (!channel->ipu->prg_priv) 1362 ipu_cpmem_set_axi_id(channel, 1); 1363 1364 ipu_idmac_set_double_buffer(channel, ctx->double_buffering); 1365 } 1366 1367 static int convert_start(struct ipu_image_convert_run *run, unsigned int tile) 1368 { 1369 struct ipu_image_convert_ctx *ctx = run->ctx; 1370 struct ipu_image_convert_chan *chan = ctx->chan; 1371 struct ipu_image_convert_priv *priv = chan->priv; 1372 struct ipu_image_convert_image *s_image = &ctx->in; 1373 struct ipu_image_convert_image *d_image = &ctx->out; 1374 unsigned int dst_tile = ctx->out_tile_map[tile]; 1375 unsigned int dest_width, dest_height; 1376 unsigned int col, row; 1377 u32 rsc; 1378 int ret; 1379 1380 dev_dbg(priv->ipu->dev, "%s: task %u: starting ctx %p run %p tile %u -> %u\n", 1381 __func__, chan->ic_task, ctx, run, tile, dst_tile); 1382 1383 if (ipu_rot_mode_is_irt(ctx->rot_mode)) { 1384 /* swap width/height for resizer */ 1385 dest_width = d_image->tile[dst_tile].height; 1386 dest_height = d_image->tile[dst_tile].width; 1387 } else { 1388 dest_width = d_image->tile[dst_tile].width; 1389 dest_height = d_image->tile[dst_tile].height; 1390 } 1391 1392 row = tile / s_image->num_cols; 1393 col = tile % s_image->num_cols; 1394 1395 rsc = (ctx->downsize_coeff_v << 30) | 1396 (ctx->resize_coeffs_v[row] << 16) | 1397 (ctx->downsize_coeff_h << 14) | 1398 (ctx->resize_coeffs_h[col]); 1399 1400 dev_dbg(priv->ipu->dev, "%s: %ux%u -> %ux%u (rsc = 0x%x)\n", 1401 __func__, s_image->tile[tile].width, 1402 s_image->tile[tile].height, dest_width, dest_height, rsc); 1403 1404 /* setup the IC resizer and CSC */ 1405 ret = ipu_ic_task_init_rsc(chan->ic, &ctx->csc, 1406 s_image->tile[tile].width, 1407 s_image->tile[tile].height, 1408 dest_width, 1409 dest_height, 1410 rsc); 1411 if (ret) { 1412 dev_err(priv->ipu->dev, "ipu_ic_task_init failed, %d\n", ret); 1413 return ret; 1414 } 1415 1416 /* init the source MEM-->IC PP IDMAC channel */ 1417 init_idmac_channel(ctx, chan->in_chan, s_image, 1418 IPU_ROTATE_NONE, false, tile); 1419 1420 if (ipu_rot_mode_is_irt(ctx->rot_mode)) { 1421 /* init the IC PP-->MEM IDMAC channel */ 1422 init_idmac_channel(ctx, chan->out_chan, d_image, 1423 IPU_ROTATE_NONE, true, tile); 1424 1425 /* init the MEM-->IC PP ROT IDMAC channel */ 1426 init_idmac_channel(ctx, chan->rotation_in_chan, d_image, 1427 ctx->rot_mode, true, tile); 1428 1429 /* init the destination IC PP ROT-->MEM IDMAC channel */ 1430 init_idmac_channel(ctx, chan->rotation_out_chan, d_image, 1431 IPU_ROTATE_NONE, false, tile); 1432 1433 /* now link IC PP-->MEM to MEM-->IC PP ROT */ 1434 ipu_idmac_link(chan->out_chan, chan->rotation_in_chan); 1435 } else { 1436 /* init the destination IC PP-->MEM IDMAC channel */ 1437 init_idmac_channel(ctx, chan->out_chan, d_image, 1438 ctx->rot_mode, false, tile); 1439 } 1440 1441 /* enable the IC */ 1442 ipu_ic_enable(chan->ic); 1443 1444 /* set buffers ready */ 1445 ipu_idmac_select_buffer(chan->in_chan, 0); 1446 ipu_idmac_select_buffer(chan->out_chan, 0); 1447 if (ipu_rot_mode_is_irt(ctx->rot_mode)) 1448 ipu_idmac_select_buffer(chan->rotation_out_chan, 0); 1449 if (ctx->double_buffering) { 1450 ipu_idmac_select_buffer(chan->in_chan, 1); 1451 ipu_idmac_select_buffer(chan->out_chan, 1); 1452 if (ipu_rot_mode_is_irt(ctx->rot_mode)) 1453 ipu_idmac_select_buffer(chan->rotation_out_chan, 1); 1454 } 1455 1456 /* enable the channels! */ 1457 ipu_idmac_enable_channel(chan->in_chan); 1458 ipu_idmac_enable_channel(chan->out_chan); 1459 if (ipu_rot_mode_is_irt(ctx->rot_mode)) { 1460 ipu_idmac_enable_channel(chan->rotation_in_chan); 1461 ipu_idmac_enable_channel(chan->rotation_out_chan); 1462 } 1463 1464 ipu_ic_task_enable(chan->ic); 1465 1466 ipu_cpmem_dump(chan->in_chan); 1467 ipu_cpmem_dump(chan->out_chan); 1468 if (ipu_rot_mode_is_irt(ctx->rot_mode)) { 1469 ipu_cpmem_dump(chan->rotation_in_chan); 1470 ipu_cpmem_dump(chan->rotation_out_chan); 1471 } 1472 1473 ipu_dump(priv->ipu); 1474 1475 return 0; 1476 } 1477 1478 /* hold irqlock when calling */ 1479 static int do_run(struct ipu_image_convert_run *run) 1480 { 1481 struct ipu_image_convert_ctx *ctx = run->ctx; 1482 struct ipu_image_convert_chan *chan = ctx->chan; 1483 1484 lockdep_assert_held(&chan->irqlock); 1485 1486 ctx->in.base.phys0 = run->in_phys; 1487 ctx->out.base.phys0 = run->out_phys; 1488 1489 ctx->cur_buf_num = 0; 1490 ctx->next_tile = 1; 1491 1492 /* remove run from pending_q and set as current */ 1493 list_del(&run->list); 1494 chan->current_run = run; 1495 1496 return convert_start(run, 0); 1497 } 1498 1499 /* hold irqlock when calling */ 1500 static void run_next(struct ipu_image_convert_chan *chan) 1501 { 1502 struct ipu_image_convert_priv *priv = chan->priv; 1503 struct ipu_image_convert_run *run, *tmp; 1504 int ret; 1505 1506 lockdep_assert_held(&chan->irqlock); 1507 1508 list_for_each_entry_safe(run, tmp, &chan->pending_q, list) { 1509 /* skip contexts that are aborting */ 1510 if (run->ctx->aborting) { 1511 dev_dbg(priv->ipu->dev, 1512 "%s: task %u: skipping aborting ctx %p run %p\n", 1513 __func__, chan->ic_task, run->ctx, run); 1514 continue; 1515 } 1516 1517 ret = do_run(run); 1518 if (!ret) 1519 break; 1520 1521 /* 1522 * something went wrong with start, add the run 1523 * to done q and continue to the next run in the 1524 * pending q. 1525 */ 1526 run->status = ret; 1527 list_add_tail(&run->list, &chan->done_q); 1528 chan->current_run = NULL; 1529 } 1530 } 1531 1532 static void empty_done_q(struct ipu_image_convert_chan *chan) 1533 { 1534 struct ipu_image_convert_priv *priv = chan->priv; 1535 struct ipu_image_convert_run *run; 1536 unsigned long flags; 1537 1538 spin_lock_irqsave(&chan->irqlock, flags); 1539 1540 while (!list_empty(&chan->done_q)) { 1541 run = list_entry(chan->done_q.next, 1542 struct ipu_image_convert_run, 1543 list); 1544 1545 list_del(&run->list); 1546 1547 dev_dbg(priv->ipu->dev, 1548 "%s: task %u: completing ctx %p run %p with %d\n", 1549 __func__, chan->ic_task, run->ctx, run, run->status); 1550 1551 /* call the completion callback and free the run */ 1552 spin_unlock_irqrestore(&chan->irqlock, flags); 1553 run->ctx->complete(run, run->ctx->complete_context); 1554 spin_lock_irqsave(&chan->irqlock, flags); 1555 } 1556 1557 spin_unlock_irqrestore(&chan->irqlock, flags); 1558 } 1559 1560 /* 1561 * the bottom half thread clears out the done_q, calling the 1562 * completion handler for each. 1563 */ 1564 static irqreturn_t do_bh(int irq, void *dev_id) 1565 { 1566 struct ipu_image_convert_chan *chan = dev_id; 1567 struct ipu_image_convert_priv *priv = chan->priv; 1568 struct ipu_image_convert_ctx *ctx; 1569 unsigned long flags; 1570 1571 dev_dbg(priv->ipu->dev, "%s: task %u: enter\n", __func__, 1572 chan->ic_task); 1573 1574 empty_done_q(chan); 1575 1576 spin_lock_irqsave(&chan->irqlock, flags); 1577 1578 /* 1579 * the done_q is cleared out, signal any contexts 1580 * that are aborting that abort can complete. 1581 */ 1582 list_for_each_entry(ctx, &chan->ctx_list, list) { 1583 if (ctx->aborting) { 1584 dev_dbg(priv->ipu->dev, 1585 "%s: task %u: signaling abort for ctx %p\n", 1586 __func__, chan->ic_task, ctx); 1587 complete_all(&ctx->aborted); 1588 } 1589 } 1590 1591 spin_unlock_irqrestore(&chan->irqlock, flags); 1592 1593 dev_dbg(priv->ipu->dev, "%s: task %u: exit\n", __func__, 1594 chan->ic_task); 1595 1596 return IRQ_HANDLED; 1597 } 1598 1599 static bool ic_settings_changed(struct ipu_image_convert_ctx *ctx) 1600 { 1601 unsigned int cur_tile = ctx->next_tile - 1; 1602 unsigned int next_tile = ctx->next_tile; 1603 1604 if (ctx->resize_coeffs_h[cur_tile % ctx->in.num_cols] != 1605 ctx->resize_coeffs_h[next_tile % ctx->in.num_cols] || 1606 ctx->resize_coeffs_v[cur_tile / ctx->in.num_cols] != 1607 ctx->resize_coeffs_v[next_tile / ctx->in.num_cols] || 1608 ctx->in.tile[cur_tile].width != ctx->in.tile[next_tile].width || 1609 ctx->in.tile[cur_tile].height != ctx->in.tile[next_tile].height || 1610 ctx->out.tile[cur_tile].width != ctx->out.tile[next_tile].width || 1611 ctx->out.tile[cur_tile].height != ctx->out.tile[next_tile].height) 1612 return true; 1613 1614 return false; 1615 } 1616 1617 /* hold irqlock when calling */ 1618 static irqreturn_t do_irq(struct ipu_image_convert_run *run) 1619 { 1620 struct ipu_image_convert_ctx *ctx = run->ctx; 1621 struct ipu_image_convert_chan *chan = ctx->chan; 1622 struct ipu_image_tile *src_tile, *dst_tile; 1623 struct ipu_image_convert_image *s_image = &ctx->in; 1624 struct ipu_image_convert_image *d_image = &ctx->out; 1625 struct ipuv3_channel *outch; 1626 unsigned int dst_idx; 1627 1628 lockdep_assert_held(&chan->irqlock); 1629 1630 outch = ipu_rot_mode_is_irt(ctx->rot_mode) ? 1631 chan->rotation_out_chan : chan->out_chan; 1632 1633 /* 1634 * It is difficult to stop the channel DMA before the channels 1635 * enter the paused state. Without double-buffering the channels 1636 * are always in a paused state when the EOF irq occurs, so it 1637 * is safe to stop the channels now. For double-buffering we 1638 * just ignore the abort until the operation completes, when it 1639 * is safe to shut down. 1640 */ 1641 if (ctx->aborting && !ctx->double_buffering) { 1642 convert_stop(run); 1643 run->status = -EIO; 1644 goto done; 1645 } 1646 1647 if (ctx->next_tile == ctx->num_tiles) { 1648 /* 1649 * the conversion is complete 1650 */ 1651 convert_stop(run); 1652 run->status = 0; 1653 goto done; 1654 } 1655 1656 /* 1657 * not done, place the next tile buffers. 1658 */ 1659 if (!ctx->double_buffering) { 1660 if (ic_settings_changed(ctx)) { 1661 convert_stop(run); 1662 convert_start(run, ctx->next_tile); 1663 } else { 1664 src_tile = &s_image->tile[ctx->next_tile]; 1665 dst_idx = ctx->out_tile_map[ctx->next_tile]; 1666 dst_tile = &d_image->tile[dst_idx]; 1667 1668 ipu_cpmem_set_buffer(chan->in_chan, 0, 1669 s_image->base.phys0 + 1670 src_tile->offset); 1671 ipu_cpmem_set_buffer(outch, 0, 1672 d_image->base.phys0 + 1673 dst_tile->offset); 1674 if (s_image->fmt->planar) 1675 ipu_cpmem_set_uv_offset(chan->in_chan, 1676 src_tile->u_off, 1677 src_tile->v_off); 1678 if (d_image->fmt->planar) 1679 ipu_cpmem_set_uv_offset(outch, 1680 dst_tile->u_off, 1681 dst_tile->v_off); 1682 1683 ipu_idmac_select_buffer(chan->in_chan, 0); 1684 ipu_idmac_select_buffer(outch, 0); 1685 } 1686 } else if (ctx->next_tile < ctx->num_tiles - 1) { 1687 1688 src_tile = &s_image->tile[ctx->next_tile + 1]; 1689 dst_idx = ctx->out_tile_map[ctx->next_tile + 1]; 1690 dst_tile = &d_image->tile[dst_idx]; 1691 1692 ipu_cpmem_set_buffer(chan->in_chan, ctx->cur_buf_num, 1693 s_image->base.phys0 + src_tile->offset); 1694 ipu_cpmem_set_buffer(outch, ctx->cur_buf_num, 1695 d_image->base.phys0 + dst_tile->offset); 1696 1697 ipu_idmac_select_buffer(chan->in_chan, ctx->cur_buf_num); 1698 ipu_idmac_select_buffer(outch, ctx->cur_buf_num); 1699 1700 ctx->cur_buf_num ^= 1; 1701 } 1702 1703 ctx->next_tile++; 1704 return IRQ_HANDLED; 1705 done: 1706 list_add_tail(&run->list, &chan->done_q); 1707 chan->current_run = NULL; 1708 run_next(chan); 1709 return IRQ_WAKE_THREAD; 1710 } 1711 1712 static irqreturn_t norotate_irq(int irq, void *data) 1713 { 1714 struct ipu_image_convert_chan *chan = data; 1715 struct ipu_image_convert_ctx *ctx; 1716 struct ipu_image_convert_run *run; 1717 unsigned long flags; 1718 irqreturn_t ret; 1719 1720 spin_lock_irqsave(&chan->irqlock, flags); 1721 1722 /* get current run and its context */ 1723 run = chan->current_run; 1724 if (!run) { 1725 ret = IRQ_NONE; 1726 goto out; 1727 } 1728 1729 ctx = run->ctx; 1730 1731 if (ipu_rot_mode_is_irt(ctx->rot_mode)) { 1732 /* this is a rotation operation, just ignore */ 1733 spin_unlock_irqrestore(&chan->irqlock, flags); 1734 return IRQ_HANDLED; 1735 } 1736 1737 ret = do_irq(run); 1738 out: 1739 spin_unlock_irqrestore(&chan->irqlock, flags); 1740 return ret; 1741 } 1742 1743 static irqreturn_t rotate_irq(int irq, void *data) 1744 { 1745 struct ipu_image_convert_chan *chan = data; 1746 struct ipu_image_convert_priv *priv = chan->priv; 1747 struct ipu_image_convert_ctx *ctx; 1748 struct ipu_image_convert_run *run; 1749 unsigned long flags; 1750 irqreturn_t ret; 1751 1752 spin_lock_irqsave(&chan->irqlock, flags); 1753 1754 /* get current run and its context */ 1755 run = chan->current_run; 1756 if (!run) { 1757 ret = IRQ_NONE; 1758 goto out; 1759 } 1760 1761 ctx = run->ctx; 1762 1763 if (!ipu_rot_mode_is_irt(ctx->rot_mode)) { 1764 /* this was NOT a rotation operation, shouldn't happen */ 1765 dev_err(priv->ipu->dev, "Unexpected rotation interrupt\n"); 1766 spin_unlock_irqrestore(&chan->irqlock, flags); 1767 return IRQ_HANDLED; 1768 } 1769 1770 ret = do_irq(run); 1771 out: 1772 spin_unlock_irqrestore(&chan->irqlock, flags); 1773 return ret; 1774 } 1775 1776 /* 1777 * try to force the completion of runs for this ctx. Called when 1778 * abort wait times out in ipu_image_convert_abort(). 1779 */ 1780 static void force_abort(struct ipu_image_convert_ctx *ctx) 1781 { 1782 struct ipu_image_convert_chan *chan = ctx->chan; 1783 struct ipu_image_convert_run *run; 1784 unsigned long flags; 1785 1786 spin_lock_irqsave(&chan->irqlock, flags); 1787 1788 run = chan->current_run; 1789 if (run && run->ctx == ctx) { 1790 convert_stop(run); 1791 run->status = -EIO; 1792 list_add_tail(&run->list, &chan->done_q); 1793 chan->current_run = NULL; 1794 run_next(chan); 1795 } 1796 1797 spin_unlock_irqrestore(&chan->irqlock, flags); 1798 1799 empty_done_q(chan); 1800 } 1801 1802 static void release_ipu_resources(struct ipu_image_convert_chan *chan) 1803 { 1804 if (chan->out_eof_irq >= 0) 1805 free_irq(chan->out_eof_irq, chan); 1806 if (chan->rot_out_eof_irq >= 0) 1807 free_irq(chan->rot_out_eof_irq, chan); 1808 1809 if (!IS_ERR_OR_NULL(chan->in_chan)) 1810 ipu_idmac_put(chan->in_chan); 1811 if (!IS_ERR_OR_NULL(chan->out_chan)) 1812 ipu_idmac_put(chan->out_chan); 1813 if (!IS_ERR_OR_NULL(chan->rotation_in_chan)) 1814 ipu_idmac_put(chan->rotation_in_chan); 1815 if (!IS_ERR_OR_NULL(chan->rotation_out_chan)) 1816 ipu_idmac_put(chan->rotation_out_chan); 1817 if (!IS_ERR_OR_NULL(chan->ic)) 1818 ipu_ic_put(chan->ic); 1819 1820 chan->in_chan = chan->out_chan = chan->rotation_in_chan = 1821 chan->rotation_out_chan = NULL; 1822 chan->out_eof_irq = chan->rot_out_eof_irq = -1; 1823 } 1824 1825 static int get_ipu_resources(struct ipu_image_convert_chan *chan) 1826 { 1827 const struct ipu_image_convert_dma_chan *dma = chan->dma_ch; 1828 struct ipu_image_convert_priv *priv = chan->priv; 1829 int ret; 1830 1831 /* get IC */ 1832 chan->ic = ipu_ic_get(priv->ipu, chan->ic_task); 1833 if (IS_ERR(chan->ic)) { 1834 dev_err(priv->ipu->dev, "could not acquire IC\n"); 1835 ret = PTR_ERR(chan->ic); 1836 goto err; 1837 } 1838 1839 /* get IDMAC channels */ 1840 chan->in_chan = ipu_idmac_get(priv->ipu, dma->in); 1841 chan->out_chan = ipu_idmac_get(priv->ipu, dma->out); 1842 if (IS_ERR(chan->in_chan) || IS_ERR(chan->out_chan)) { 1843 dev_err(priv->ipu->dev, "could not acquire idmac channels\n"); 1844 ret = -EBUSY; 1845 goto err; 1846 } 1847 1848 chan->rotation_in_chan = ipu_idmac_get(priv->ipu, dma->rot_in); 1849 chan->rotation_out_chan = ipu_idmac_get(priv->ipu, dma->rot_out); 1850 if (IS_ERR(chan->rotation_in_chan) || IS_ERR(chan->rotation_out_chan)) { 1851 dev_err(priv->ipu->dev, 1852 "could not acquire idmac rotation channels\n"); 1853 ret = -EBUSY; 1854 goto err; 1855 } 1856 1857 /* acquire the EOF interrupts */ 1858 chan->out_eof_irq = ipu_idmac_channel_irq(priv->ipu, 1859 chan->out_chan, 1860 IPU_IRQ_EOF); 1861 1862 ret = request_threaded_irq(chan->out_eof_irq, norotate_irq, do_bh, 1863 0, "ipu-ic", chan); 1864 if (ret < 0) { 1865 dev_err(priv->ipu->dev, "could not acquire irq %d\n", 1866 chan->out_eof_irq); 1867 chan->out_eof_irq = -1; 1868 goto err; 1869 } 1870 1871 chan->rot_out_eof_irq = ipu_idmac_channel_irq(priv->ipu, 1872 chan->rotation_out_chan, 1873 IPU_IRQ_EOF); 1874 1875 ret = request_threaded_irq(chan->rot_out_eof_irq, rotate_irq, do_bh, 1876 0, "ipu-ic", chan); 1877 if (ret < 0) { 1878 dev_err(priv->ipu->dev, "could not acquire irq %d\n", 1879 chan->rot_out_eof_irq); 1880 chan->rot_out_eof_irq = -1; 1881 goto err; 1882 } 1883 1884 return 0; 1885 err: 1886 release_ipu_resources(chan); 1887 return ret; 1888 } 1889 1890 static int fill_image(struct ipu_image_convert_ctx *ctx, 1891 struct ipu_image_convert_image *ic_image, 1892 struct ipu_image *image, 1893 enum ipu_image_convert_type type) 1894 { 1895 struct ipu_image_convert_priv *priv = ctx->chan->priv; 1896 1897 ic_image->base = *image; 1898 ic_image->type = type; 1899 1900 ic_image->fmt = get_format(image->pix.pixelformat); 1901 if (!ic_image->fmt) { 1902 dev_err(priv->ipu->dev, "pixelformat not supported for %s\n", 1903 type == IMAGE_CONVERT_OUT ? "Output" : "Input"); 1904 return -EINVAL; 1905 } 1906 1907 if (ic_image->fmt->planar) 1908 ic_image->stride = ic_image->base.pix.width; 1909 else 1910 ic_image->stride = ic_image->base.pix.bytesperline; 1911 1912 return 0; 1913 } 1914 1915 /* borrowed from drivers/media/v4l2-core/v4l2-common.c */ 1916 static unsigned int clamp_align(unsigned int x, unsigned int min, 1917 unsigned int max, unsigned int align) 1918 { 1919 /* Bits that must be zero to be aligned */ 1920 unsigned int mask = ~((1 << align) - 1); 1921 1922 /* Clamp to aligned min and max */ 1923 x = clamp(x, (min + ~mask) & mask, max & mask); 1924 1925 /* Round to nearest aligned value */ 1926 if (align) 1927 x = (x + (1 << (align - 1))) & mask; 1928 1929 return x; 1930 } 1931 1932 /* Adjusts input/output images to IPU restrictions */ 1933 void ipu_image_convert_adjust(struct ipu_image *in, struct ipu_image *out, 1934 enum ipu_rotate_mode rot_mode) 1935 { 1936 const struct ipu_image_pixfmt *infmt, *outfmt; 1937 u32 w_align_out, h_align_out; 1938 u32 w_align_in, h_align_in; 1939 1940 infmt = get_format(in->pix.pixelformat); 1941 outfmt = get_format(out->pix.pixelformat); 1942 1943 /* set some default pixel formats if needed */ 1944 if (!infmt) { 1945 in->pix.pixelformat = V4L2_PIX_FMT_RGB24; 1946 infmt = get_format(V4L2_PIX_FMT_RGB24); 1947 } 1948 if (!outfmt) { 1949 out->pix.pixelformat = V4L2_PIX_FMT_RGB24; 1950 outfmt = get_format(V4L2_PIX_FMT_RGB24); 1951 } 1952 1953 /* image converter does not handle fields */ 1954 in->pix.field = out->pix.field = V4L2_FIELD_NONE; 1955 1956 /* resizer cannot downsize more than 4:1 */ 1957 if (ipu_rot_mode_is_irt(rot_mode)) { 1958 out->pix.height = max_t(__u32, out->pix.height, 1959 in->pix.width / 4); 1960 out->pix.width = max_t(__u32, out->pix.width, 1961 in->pix.height / 4); 1962 } else { 1963 out->pix.width = max_t(__u32, out->pix.width, 1964 in->pix.width / 4); 1965 out->pix.height = max_t(__u32, out->pix.height, 1966 in->pix.height / 4); 1967 } 1968 1969 /* align input width/height */ 1970 w_align_in = ilog2(tile_width_align(IMAGE_CONVERT_IN, infmt, 1971 rot_mode)); 1972 h_align_in = ilog2(tile_height_align(IMAGE_CONVERT_IN, infmt, 1973 rot_mode)); 1974 in->pix.width = clamp_align(in->pix.width, MIN_W, MAX_W, 1975 w_align_in); 1976 in->pix.height = clamp_align(in->pix.height, MIN_H, MAX_H, 1977 h_align_in); 1978 1979 /* align output width/height */ 1980 w_align_out = ilog2(tile_width_align(IMAGE_CONVERT_OUT, outfmt, 1981 rot_mode)); 1982 h_align_out = ilog2(tile_height_align(IMAGE_CONVERT_OUT, outfmt, 1983 rot_mode)); 1984 out->pix.width = clamp_align(out->pix.width, MIN_W, MAX_W, 1985 w_align_out); 1986 out->pix.height = clamp_align(out->pix.height, MIN_H, MAX_H, 1987 h_align_out); 1988 1989 /* set input/output strides and image sizes */ 1990 in->pix.bytesperline = infmt->planar ? 1991 clamp_align(in->pix.width, 2 << w_align_in, MAX_W, 1992 w_align_in) : 1993 clamp_align((in->pix.width * infmt->bpp) >> 3, 1994 ((2 << w_align_in) * infmt->bpp) >> 3, 1995 (MAX_W * infmt->bpp) >> 3, 1996 w_align_in); 1997 in->pix.sizeimage = infmt->planar ? 1998 (in->pix.height * in->pix.bytesperline * infmt->bpp) >> 3 : 1999 in->pix.height * in->pix.bytesperline; 2000 out->pix.bytesperline = outfmt->planar ? out->pix.width : 2001 (out->pix.width * outfmt->bpp) >> 3; 2002 out->pix.sizeimage = outfmt->planar ? 2003 (out->pix.height * out->pix.bytesperline * outfmt->bpp) >> 3 : 2004 out->pix.height * out->pix.bytesperline; 2005 } 2006 EXPORT_SYMBOL_GPL(ipu_image_convert_adjust); 2007 2008 /* 2009 * this is used by ipu_image_convert_prepare() to verify set input and 2010 * output images are valid before starting the conversion. Clients can 2011 * also call it before calling ipu_image_convert_prepare(). 2012 */ 2013 int ipu_image_convert_verify(struct ipu_image *in, struct ipu_image *out, 2014 enum ipu_rotate_mode rot_mode) 2015 { 2016 struct ipu_image testin, testout; 2017 2018 testin = *in; 2019 testout = *out; 2020 2021 ipu_image_convert_adjust(&testin, &testout, rot_mode); 2022 2023 if (testin.pix.width != in->pix.width || 2024 testin.pix.height != in->pix.height || 2025 testout.pix.width != out->pix.width || 2026 testout.pix.height != out->pix.height) 2027 return -EINVAL; 2028 2029 return 0; 2030 } 2031 EXPORT_SYMBOL_GPL(ipu_image_convert_verify); 2032 2033 /* 2034 * Call ipu_image_convert_prepare() to prepare for the conversion of 2035 * given images and rotation mode. Returns a new conversion context. 2036 */ 2037 struct ipu_image_convert_ctx * 2038 ipu_image_convert_prepare(struct ipu_soc *ipu, enum ipu_ic_task ic_task, 2039 struct ipu_image *in, struct ipu_image *out, 2040 enum ipu_rotate_mode rot_mode, 2041 ipu_image_convert_cb_t complete, 2042 void *complete_context) 2043 { 2044 struct ipu_image_convert_priv *priv = ipu->image_convert_priv; 2045 struct ipu_image_convert_image *s_image, *d_image; 2046 struct ipu_image_convert_chan *chan; 2047 struct ipu_image_convert_ctx *ctx; 2048 unsigned long flags; 2049 unsigned int i; 2050 bool get_res; 2051 int ret; 2052 2053 if (!in || !out || !complete || 2054 (ic_task != IC_TASK_VIEWFINDER && 2055 ic_task != IC_TASK_POST_PROCESSOR)) 2056 return ERR_PTR(-EINVAL); 2057 2058 /* verify the in/out images before continuing */ 2059 ret = ipu_image_convert_verify(in, out, rot_mode); 2060 if (ret) { 2061 dev_err(priv->ipu->dev, "%s: in/out formats invalid\n", 2062 __func__); 2063 return ERR_PTR(ret); 2064 } 2065 2066 chan = &priv->chan[ic_task]; 2067 2068 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 2069 if (!ctx) 2070 return ERR_PTR(-ENOMEM); 2071 2072 dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p\n", __func__, 2073 chan->ic_task, ctx); 2074 2075 ctx->chan = chan; 2076 init_completion(&ctx->aborted); 2077 2078 ctx->rot_mode = rot_mode; 2079 2080 /* Sets ctx->in.num_rows/cols as well */ 2081 ret = calc_image_resize_coefficients(ctx, in, out); 2082 if (ret) 2083 goto out_free; 2084 2085 s_image = &ctx->in; 2086 d_image = &ctx->out; 2087 2088 /* set tiling and rotation */ 2089 if (ipu_rot_mode_is_irt(rot_mode)) { 2090 d_image->num_rows = s_image->num_cols; 2091 d_image->num_cols = s_image->num_rows; 2092 } else { 2093 d_image->num_rows = s_image->num_rows; 2094 d_image->num_cols = s_image->num_cols; 2095 } 2096 2097 ctx->num_tiles = d_image->num_cols * d_image->num_rows; 2098 2099 ret = fill_image(ctx, s_image, in, IMAGE_CONVERT_IN); 2100 if (ret) 2101 goto out_free; 2102 ret = fill_image(ctx, d_image, out, IMAGE_CONVERT_OUT); 2103 if (ret) 2104 goto out_free; 2105 2106 calc_out_tile_map(ctx); 2107 2108 find_seams(ctx, s_image, d_image); 2109 2110 ret = calc_tile_dimensions(ctx, s_image); 2111 if (ret) 2112 goto out_free; 2113 2114 ret = calc_tile_offsets(ctx, s_image); 2115 if (ret) 2116 goto out_free; 2117 2118 calc_tile_dimensions(ctx, d_image); 2119 ret = calc_tile_offsets(ctx, d_image); 2120 if (ret) 2121 goto out_free; 2122 2123 calc_tile_resize_coefficients(ctx); 2124 2125 ret = ipu_ic_calc_csc(&ctx->csc, 2126 s_image->base.pix.ycbcr_enc, 2127 s_image->base.pix.quantization, 2128 ipu_pixelformat_to_colorspace(s_image->fmt->fourcc), 2129 d_image->base.pix.ycbcr_enc, 2130 d_image->base.pix.quantization, 2131 ipu_pixelformat_to_colorspace(d_image->fmt->fourcc)); 2132 if (ret) 2133 goto out_free; 2134 2135 dump_format(ctx, s_image); 2136 dump_format(ctx, d_image); 2137 2138 ctx->complete = complete; 2139 ctx->complete_context = complete_context; 2140 2141 /* 2142 * Can we use double-buffering for this operation? If there is 2143 * only one tile (the whole image can be converted in a single 2144 * operation) there's no point in using double-buffering. Also, 2145 * the IPU's IDMAC channels allow only a single U and V plane 2146 * offset shared between both buffers, but these offsets change 2147 * for every tile, and therefore would have to be updated for 2148 * each buffer which is not possible. So double-buffering is 2149 * impossible when either the source or destination images are 2150 * a planar format (YUV420, YUV422P, etc.). Further, differently 2151 * sized tiles or different resizing coefficients per tile 2152 * prevent double-buffering as well. 2153 */ 2154 ctx->double_buffering = (ctx->num_tiles > 1 && 2155 !s_image->fmt->planar && 2156 !d_image->fmt->planar); 2157 for (i = 1; i < ctx->num_tiles; i++) { 2158 if (ctx->in.tile[i].width != ctx->in.tile[0].width || 2159 ctx->in.tile[i].height != ctx->in.tile[0].height || 2160 ctx->out.tile[i].width != ctx->out.tile[0].width || 2161 ctx->out.tile[i].height != ctx->out.tile[0].height) { 2162 ctx->double_buffering = false; 2163 break; 2164 } 2165 } 2166 for (i = 1; i < ctx->in.num_cols; i++) { 2167 if (ctx->resize_coeffs_h[i] != ctx->resize_coeffs_h[0]) { 2168 ctx->double_buffering = false; 2169 break; 2170 } 2171 } 2172 for (i = 1; i < ctx->in.num_rows; i++) { 2173 if (ctx->resize_coeffs_v[i] != ctx->resize_coeffs_v[0]) { 2174 ctx->double_buffering = false; 2175 break; 2176 } 2177 } 2178 2179 if (ipu_rot_mode_is_irt(ctx->rot_mode)) { 2180 unsigned long intermediate_size = d_image->tile[0].size; 2181 2182 for (i = 1; i < ctx->num_tiles; i++) { 2183 if (d_image->tile[i].size > intermediate_size) 2184 intermediate_size = d_image->tile[i].size; 2185 } 2186 2187 ret = alloc_dma_buf(priv, &ctx->rot_intermediate[0], 2188 intermediate_size); 2189 if (ret) 2190 goto out_free; 2191 if (ctx->double_buffering) { 2192 ret = alloc_dma_buf(priv, 2193 &ctx->rot_intermediate[1], 2194 intermediate_size); 2195 if (ret) 2196 goto out_free_dmabuf0; 2197 } 2198 } 2199 2200 spin_lock_irqsave(&chan->irqlock, flags); 2201 2202 get_res = list_empty(&chan->ctx_list); 2203 2204 list_add_tail(&ctx->list, &chan->ctx_list); 2205 2206 spin_unlock_irqrestore(&chan->irqlock, flags); 2207 2208 if (get_res) { 2209 ret = get_ipu_resources(chan); 2210 if (ret) 2211 goto out_free_dmabuf1; 2212 } 2213 2214 return ctx; 2215 2216 out_free_dmabuf1: 2217 free_dma_buf(priv, &ctx->rot_intermediate[1]); 2218 spin_lock_irqsave(&chan->irqlock, flags); 2219 list_del(&ctx->list); 2220 spin_unlock_irqrestore(&chan->irqlock, flags); 2221 out_free_dmabuf0: 2222 free_dma_buf(priv, &ctx->rot_intermediate[0]); 2223 out_free: 2224 kfree(ctx); 2225 return ERR_PTR(ret); 2226 } 2227 EXPORT_SYMBOL_GPL(ipu_image_convert_prepare); 2228 2229 /* 2230 * Carry out a single image conversion run. Only the physaddr's of the input 2231 * and output image buffers are needed. The conversion context must have 2232 * been created previously with ipu_image_convert_prepare(). 2233 */ 2234 int ipu_image_convert_queue(struct ipu_image_convert_run *run) 2235 { 2236 struct ipu_image_convert_chan *chan; 2237 struct ipu_image_convert_priv *priv; 2238 struct ipu_image_convert_ctx *ctx; 2239 unsigned long flags; 2240 int ret = 0; 2241 2242 if (!run || !run->ctx || !run->in_phys || !run->out_phys) 2243 return -EINVAL; 2244 2245 ctx = run->ctx; 2246 chan = ctx->chan; 2247 priv = chan->priv; 2248 2249 dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p run %p\n", __func__, 2250 chan->ic_task, ctx, run); 2251 2252 INIT_LIST_HEAD(&run->list); 2253 2254 spin_lock_irqsave(&chan->irqlock, flags); 2255 2256 if (ctx->aborting) { 2257 ret = -EIO; 2258 goto unlock; 2259 } 2260 2261 list_add_tail(&run->list, &chan->pending_q); 2262 2263 if (!chan->current_run) { 2264 ret = do_run(run); 2265 if (ret) 2266 chan->current_run = NULL; 2267 } 2268 unlock: 2269 spin_unlock_irqrestore(&chan->irqlock, flags); 2270 return ret; 2271 } 2272 EXPORT_SYMBOL_GPL(ipu_image_convert_queue); 2273 2274 /* Abort any active or pending conversions for this context */ 2275 static void __ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx) 2276 { 2277 struct ipu_image_convert_chan *chan = ctx->chan; 2278 struct ipu_image_convert_priv *priv = chan->priv; 2279 struct ipu_image_convert_run *run, *active_run, *tmp; 2280 unsigned long flags; 2281 int run_count, ret; 2282 2283 spin_lock_irqsave(&chan->irqlock, flags); 2284 2285 /* move all remaining pending runs in this context to done_q */ 2286 list_for_each_entry_safe(run, tmp, &chan->pending_q, list) { 2287 if (run->ctx != ctx) 2288 continue; 2289 run->status = -EIO; 2290 list_move_tail(&run->list, &chan->done_q); 2291 } 2292 2293 run_count = get_run_count(ctx, &chan->done_q); 2294 active_run = (chan->current_run && chan->current_run->ctx == ctx) ? 2295 chan->current_run : NULL; 2296 2297 if (active_run) 2298 reinit_completion(&ctx->aborted); 2299 2300 ctx->aborting = true; 2301 2302 spin_unlock_irqrestore(&chan->irqlock, flags); 2303 2304 if (!run_count && !active_run) { 2305 dev_dbg(priv->ipu->dev, 2306 "%s: task %u: no abort needed for ctx %p\n", 2307 __func__, chan->ic_task, ctx); 2308 return; 2309 } 2310 2311 if (!active_run) { 2312 empty_done_q(chan); 2313 return; 2314 } 2315 2316 dev_dbg(priv->ipu->dev, 2317 "%s: task %u: wait for completion: %d runs\n", 2318 __func__, chan->ic_task, run_count); 2319 2320 ret = wait_for_completion_timeout(&ctx->aborted, 2321 msecs_to_jiffies(10000)); 2322 if (ret == 0) { 2323 dev_warn(priv->ipu->dev, "%s: timeout\n", __func__); 2324 force_abort(ctx); 2325 } 2326 } 2327 2328 void ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx) 2329 { 2330 __ipu_image_convert_abort(ctx); 2331 ctx->aborting = false; 2332 } 2333 EXPORT_SYMBOL_GPL(ipu_image_convert_abort); 2334 2335 /* Unprepare image conversion context */ 2336 void ipu_image_convert_unprepare(struct ipu_image_convert_ctx *ctx) 2337 { 2338 struct ipu_image_convert_chan *chan = ctx->chan; 2339 struct ipu_image_convert_priv *priv = chan->priv; 2340 unsigned long flags; 2341 bool put_res; 2342 2343 /* make sure no runs are hanging around */ 2344 __ipu_image_convert_abort(ctx); 2345 2346 dev_dbg(priv->ipu->dev, "%s: task %u: removing ctx %p\n", __func__, 2347 chan->ic_task, ctx); 2348 2349 spin_lock_irqsave(&chan->irqlock, flags); 2350 2351 list_del(&ctx->list); 2352 2353 put_res = list_empty(&chan->ctx_list); 2354 2355 spin_unlock_irqrestore(&chan->irqlock, flags); 2356 2357 if (put_res) 2358 release_ipu_resources(chan); 2359 2360 free_dma_buf(priv, &ctx->rot_intermediate[1]); 2361 free_dma_buf(priv, &ctx->rot_intermediate[0]); 2362 2363 kfree(ctx); 2364 } 2365 EXPORT_SYMBOL_GPL(ipu_image_convert_unprepare); 2366 2367 /* 2368 * "Canned" asynchronous single image conversion. Allocates and returns 2369 * a new conversion run. On successful return the caller must free the 2370 * run and call ipu_image_convert_unprepare() after conversion completes. 2371 */ 2372 struct ipu_image_convert_run * 2373 ipu_image_convert(struct ipu_soc *ipu, enum ipu_ic_task ic_task, 2374 struct ipu_image *in, struct ipu_image *out, 2375 enum ipu_rotate_mode rot_mode, 2376 ipu_image_convert_cb_t complete, 2377 void *complete_context) 2378 { 2379 struct ipu_image_convert_ctx *ctx; 2380 struct ipu_image_convert_run *run; 2381 int ret; 2382 2383 ctx = ipu_image_convert_prepare(ipu, ic_task, in, out, rot_mode, 2384 complete, complete_context); 2385 if (IS_ERR(ctx)) 2386 return ERR_CAST(ctx); 2387 2388 run = kzalloc(sizeof(*run), GFP_KERNEL); 2389 if (!run) { 2390 ipu_image_convert_unprepare(ctx); 2391 return ERR_PTR(-ENOMEM); 2392 } 2393 2394 run->ctx = ctx; 2395 run->in_phys = in->phys0; 2396 run->out_phys = out->phys0; 2397 2398 ret = ipu_image_convert_queue(run); 2399 if (ret) { 2400 ipu_image_convert_unprepare(ctx); 2401 kfree(run); 2402 return ERR_PTR(ret); 2403 } 2404 2405 return run; 2406 } 2407 EXPORT_SYMBOL_GPL(ipu_image_convert); 2408 2409 /* "Canned" synchronous single image conversion */ 2410 static void image_convert_sync_complete(struct ipu_image_convert_run *run, 2411 void *data) 2412 { 2413 struct completion *comp = data; 2414 2415 complete(comp); 2416 } 2417 2418 int ipu_image_convert_sync(struct ipu_soc *ipu, enum ipu_ic_task ic_task, 2419 struct ipu_image *in, struct ipu_image *out, 2420 enum ipu_rotate_mode rot_mode) 2421 { 2422 struct ipu_image_convert_run *run; 2423 struct completion comp; 2424 int ret; 2425 2426 init_completion(&comp); 2427 2428 run = ipu_image_convert(ipu, ic_task, in, out, rot_mode, 2429 image_convert_sync_complete, &comp); 2430 if (IS_ERR(run)) 2431 return PTR_ERR(run); 2432 2433 ret = wait_for_completion_timeout(&comp, msecs_to_jiffies(10000)); 2434 ret = (ret == 0) ? -ETIMEDOUT : 0; 2435 2436 ipu_image_convert_unprepare(run->ctx); 2437 kfree(run); 2438 2439 return ret; 2440 } 2441 EXPORT_SYMBOL_GPL(ipu_image_convert_sync); 2442 2443 int ipu_image_convert_init(struct ipu_soc *ipu, struct device *dev) 2444 { 2445 struct ipu_image_convert_priv *priv; 2446 int i; 2447 2448 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); 2449 if (!priv) 2450 return -ENOMEM; 2451 2452 ipu->image_convert_priv = priv; 2453 priv->ipu = ipu; 2454 2455 for (i = 0; i < IC_NUM_TASKS; i++) { 2456 struct ipu_image_convert_chan *chan = &priv->chan[i]; 2457 2458 chan->ic_task = i; 2459 chan->priv = priv; 2460 chan->dma_ch = &image_convert_dma_chan[i]; 2461 chan->out_eof_irq = -1; 2462 chan->rot_out_eof_irq = -1; 2463 2464 spin_lock_init(&chan->irqlock); 2465 INIT_LIST_HEAD(&chan->ctx_list); 2466 INIT_LIST_HEAD(&chan->pending_q); 2467 INIT_LIST_HEAD(&chan->done_q); 2468 } 2469 2470 return 0; 2471 } 2472 2473 void ipu_image_convert_exit(struct ipu_soc *ipu) 2474 { 2475 } 2476