1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2012-2016 Mentor Graphics Inc.
4  *
5  * Queued image conversion support, with tiling and rotation.
6  */
7 
8 #include <linux/interrupt.h>
9 #include <linux/dma-mapping.h>
10 #include <video/imx-ipu-image-convert.h>
11 #include "ipu-prv.h"
12 
13 /*
14  * The IC Resizer has a restriction that the output frame from the
15  * resizer must be 1024 or less in both width (pixels) and height
16  * (lines).
17  *
18  * The image converter attempts to split up a conversion when
19  * the desired output (converted) frame resolution exceeds the
20  * IC resizer limit of 1024 in either dimension.
21  *
22  * If either dimension of the output frame exceeds the limit, the
23  * dimension is split into 1, 2, or 4 equal stripes, for a maximum
24  * of 4*4 or 16 tiles. A conversion is then carried out for each
25  * tile (but taking care to pass the full frame stride length to
26  * the DMA channel's parameter memory!). IDMA double-buffering is used
27  * to convert each tile back-to-back when possible (see note below
28  * when double_buffering boolean is set).
29  *
30  * Note that the input frame must be split up into the same number
31  * of tiles as the output frame:
32  *
33  *                       +---------+-----+
34  *   +-----+---+         |  A      | B   |
35  *   | A   | B |         |         |     |
36  *   +-----+---+   -->   +---------+-----+
37  *   | C   | D |         |  C      | D   |
38  *   +-----+---+         |         |     |
39  *                       +---------+-----+
40  *
41  * Clockwise 90° rotations are handled by first rescaling into a
42  * reusable temporary tile buffer and then rotating with the 8x8
43  * block rotator, writing to the correct destination:
44  *
45  *                                         +-----+-----+
46  *                                         |     |     |
47  *   +-----+---+         +---------+       | C   | A   |
48  *   | A   | B |         | A,B, |  |       |     |     |
49  *   +-----+---+   -->   | C,D  |  |  -->  |     |     |
50  *   | C   | D |         +---------+       +-----+-----+
51  *   +-----+---+                           | D   | B   |
52  *                                         |     |     |
53  *                                         +-----+-----+
54  *
55  * If the 8x8 block rotator is used, horizontal or vertical flipping
56  * is done during the rotation step, otherwise flipping is done
57  * during the scaling step.
58  * With rotation or flipping, tile order changes between input and
59  * output image. Tiles are numbered row major from top left to bottom
60  * right for both input and output image.
61  */
62 
63 #define MAX_STRIPES_W    4
64 #define MAX_STRIPES_H    4
65 #define MAX_TILES (MAX_STRIPES_W * MAX_STRIPES_H)
66 
67 #define MIN_W     16
68 #define MIN_H     8
69 #define MAX_W     4096
70 #define MAX_H     4096
71 
72 enum ipu_image_convert_type {
73 	IMAGE_CONVERT_IN = 0,
74 	IMAGE_CONVERT_OUT,
75 };
76 
77 struct ipu_image_convert_dma_buf {
78 	void          *virt;
79 	dma_addr_t    phys;
80 	unsigned long len;
81 };
82 
83 struct ipu_image_convert_dma_chan {
84 	int in;
85 	int out;
86 	int rot_in;
87 	int rot_out;
88 	int vdi_in_p;
89 	int vdi_in;
90 	int vdi_in_n;
91 };
92 
93 /* dimensions of one tile */
94 struct ipu_image_tile {
95 	u32 width;
96 	u32 height;
97 	u32 left;
98 	u32 top;
99 	/* size and strides are in bytes */
100 	u32 size;
101 	u32 stride;
102 	u32 rot_stride;
103 	/* start Y or packed offset of this tile */
104 	u32 offset;
105 	/* offset from start to tile in U plane, for planar formats */
106 	u32 u_off;
107 	/* offset from start to tile in V plane, for planar formats */
108 	u32 v_off;
109 };
110 
111 struct ipu_image_convert_image {
112 	struct ipu_image base;
113 	enum ipu_image_convert_type type;
114 
115 	const struct ipu_image_pixfmt *fmt;
116 	unsigned int stride;
117 
118 	/* # of rows (horizontal stripes) if dest height is > 1024 */
119 	unsigned int num_rows;
120 	/* # of columns (vertical stripes) if dest width is > 1024 */
121 	unsigned int num_cols;
122 
123 	struct ipu_image_tile tile[MAX_TILES];
124 };
125 
126 struct ipu_image_pixfmt {
127 	u32	fourcc;        /* V4L2 fourcc */
128 	int     bpp;           /* total bpp */
129 	int     uv_width_dec;  /* decimation in width for U/V planes */
130 	int     uv_height_dec; /* decimation in height for U/V planes */
131 	bool    planar;        /* planar format */
132 	bool    uv_swapped;    /* U and V planes are swapped */
133 	bool    uv_packed;     /* partial planar (U and V in same plane) */
134 };
135 
136 struct ipu_image_convert_ctx;
137 struct ipu_image_convert_chan;
138 struct ipu_image_convert_priv;
139 
140 struct ipu_image_convert_ctx {
141 	struct ipu_image_convert_chan *chan;
142 
143 	ipu_image_convert_cb_t complete;
144 	void *complete_context;
145 
146 	/* Source/destination image data and rotation mode */
147 	struct ipu_image_convert_image in;
148 	struct ipu_image_convert_image out;
149 	struct ipu_ic_csc csc;
150 	enum ipu_rotate_mode rot_mode;
151 	u32 downsize_coeff_h;
152 	u32 downsize_coeff_v;
153 	u32 image_resize_coeff_h;
154 	u32 image_resize_coeff_v;
155 	u32 resize_coeffs_h[MAX_STRIPES_W];
156 	u32 resize_coeffs_v[MAX_STRIPES_H];
157 
158 	/* intermediate buffer for rotation */
159 	struct ipu_image_convert_dma_buf rot_intermediate[2];
160 
161 	/* current buffer number for double buffering */
162 	int cur_buf_num;
163 
164 	bool aborting;
165 	struct completion aborted;
166 
167 	/* can we use double-buffering for this conversion operation? */
168 	bool double_buffering;
169 	/* num_rows * num_cols */
170 	unsigned int num_tiles;
171 	/* next tile to process */
172 	unsigned int next_tile;
173 	/* where to place converted tile in dest image */
174 	unsigned int out_tile_map[MAX_TILES];
175 
176 	struct list_head list;
177 };
178 
179 struct ipu_image_convert_chan {
180 	struct ipu_image_convert_priv *priv;
181 
182 	enum ipu_ic_task ic_task;
183 	const struct ipu_image_convert_dma_chan *dma_ch;
184 
185 	struct ipu_ic *ic;
186 	struct ipuv3_channel *in_chan;
187 	struct ipuv3_channel *out_chan;
188 	struct ipuv3_channel *rotation_in_chan;
189 	struct ipuv3_channel *rotation_out_chan;
190 
191 	/* the IPU end-of-frame irqs */
192 	int out_eof_irq;
193 	int rot_out_eof_irq;
194 
195 	spinlock_t irqlock;
196 
197 	/* list of convert contexts */
198 	struct list_head ctx_list;
199 	/* queue of conversion runs */
200 	struct list_head pending_q;
201 	/* queue of completed runs */
202 	struct list_head done_q;
203 
204 	/* the current conversion run */
205 	struct ipu_image_convert_run *current_run;
206 };
207 
208 struct ipu_image_convert_priv {
209 	struct ipu_image_convert_chan chan[IC_NUM_TASKS];
210 	struct ipu_soc *ipu;
211 };
212 
213 static const struct ipu_image_convert_dma_chan
214 image_convert_dma_chan[IC_NUM_TASKS] = {
215 	[IC_TASK_VIEWFINDER] = {
216 		.in = IPUV3_CHANNEL_MEM_IC_PRP_VF,
217 		.out = IPUV3_CHANNEL_IC_PRP_VF_MEM,
218 		.rot_in = IPUV3_CHANNEL_MEM_ROT_VF,
219 		.rot_out = IPUV3_CHANNEL_ROT_VF_MEM,
220 		.vdi_in_p = IPUV3_CHANNEL_MEM_VDI_PREV,
221 		.vdi_in = IPUV3_CHANNEL_MEM_VDI_CUR,
222 		.vdi_in_n = IPUV3_CHANNEL_MEM_VDI_NEXT,
223 	},
224 	[IC_TASK_POST_PROCESSOR] = {
225 		.in = IPUV3_CHANNEL_MEM_IC_PP,
226 		.out = IPUV3_CHANNEL_IC_PP_MEM,
227 		.rot_in = IPUV3_CHANNEL_MEM_ROT_PP,
228 		.rot_out = IPUV3_CHANNEL_ROT_PP_MEM,
229 	},
230 };
231 
232 static const struct ipu_image_pixfmt image_convert_formats[] = {
233 	{
234 		.fourcc	= V4L2_PIX_FMT_RGB565,
235 		.bpp    = 16,
236 	}, {
237 		.fourcc	= V4L2_PIX_FMT_RGB24,
238 		.bpp    = 24,
239 	}, {
240 		.fourcc	= V4L2_PIX_FMT_BGR24,
241 		.bpp    = 24,
242 	}, {
243 		.fourcc	= V4L2_PIX_FMT_RGB32,
244 		.bpp    = 32,
245 	}, {
246 		.fourcc	= V4L2_PIX_FMT_BGR32,
247 		.bpp    = 32,
248 	}, {
249 		.fourcc	= V4L2_PIX_FMT_XRGB32,
250 		.bpp    = 32,
251 	}, {
252 		.fourcc	= V4L2_PIX_FMT_XBGR32,
253 		.bpp    = 32,
254 	}, {
255 		.fourcc	= V4L2_PIX_FMT_BGRX32,
256 		.bpp    = 32,
257 	}, {
258 		.fourcc	= V4L2_PIX_FMT_RGBX32,
259 		.bpp    = 32,
260 	}, {
261 		.fourcc	= V4L2_PIX_FMT_YUYV,
262 		.bpp    = 16,
263 		.uv_width_dec = 2,
264 		.uv_height_dec = 1,
265 	}, {
266 		.fourcc	= V4L2_PIX_FMT_UYVY,
267 		.bpp    = 16,
268 		.uv_width_dec = 2,
269 		.uv_height_dec = 1,
270 	}, {
271 		.fourcc	= V4L2_PIX_FMT_YUV420,
272 		.bpp    = 12,
273 		.planar = true,
274 		.uv_width_dec = 2,
275 		.uv_height_dec = 2,
276 	}, {
277 		.fourcc	= V4L2_PIX_FMT_YVU420,
278 		.bpp    = 12,
279 		.planar = true,
280 		.uv_width_dec = 2,
281 		.uv_height_dec = 2,
282 		.uv_swapped = true,
283 	}, {
284 		.fourcc = V4L2_PIX_FMT_NV12,
285 		.bpp    = 12,
286 		.planar = true,
287 		.uv_width_dec = 2,
288 		.uv_height_dec = 2,
289 		.uv_packed = true,
290 	}, {
291 		.fourcc = V4L2_PIX_FMT_YUV422P,
292 		.bpp    = 16,
293 		.planar = true,
294 		.uv_width_dec = 2,
295 		.uv_height_dec = 1,
296 	}, {
297 		.fourcc = V4L2_PIX_FMT_NV16,
298 		.bpp    = 16,
299 		.planar = true,
300 		.uv_width_dec = 2,
301 		.uv_height_dec = 1,
302 		.uv_packed = true,
303 	},
304 };
305 
306 static const struct ipu_image_pixfmt *get_format(u32 fourcc)
307 {
308 	const struct ipu_image_pixfmt *ret = NULL;
309 	unsigned int i;
310 
311 	for (i = 0; i < ARRAY_SIZE(image_convert_formats); i++) {
312 		if (image_convert_formats[i].fourcc == fourcc) {
313 			ret = &image_convert_formats[i];
314 			break;
315 		}
316 	}
317 
318 	return ret;
319 }
320 
321 static void dump_format(struct ipu_image_convert_ctx *ctx,
322 			struct ipu_image_convert_image *ic_image)
323 {
324 	struct ipu_image_convert_chan *chan = ctx->chan;
325 	struct ipu_image_convert_priv *priv = chan->priv;
326 
327 	dev_dbg(priv->ipu->dev,
328 		"task %u: ctx %p: %s format: %dx%d (%dx%d tiles), %c%c%c%c\n",
329 		chan->ic_task, ctx,
330 		ic_image->type == IMAGE_CONVERT_OUT ? "Output" : "Input",
331 		ic_image->base.pix.width, ic_image->base.pix.height,
332 		ic_image->num_cols, ic_image->num_rows,
333 		ic_image->fmt->fourcc & 0xff,
334 		(ic_image->fmt->fourcc >> 8) & 0xff,
335 		(ic_image->fmt->fourcc >> 16) & 0xff,
336 		(ic_image->fmt->fourcc >> 24) & 0xff);
337 }
338 
339 int ipu_image_convert_enum_format(int index, u32 *fourcc)
340 {
341 	const struct ipu_image_pixfmt *fmt;
342 
343 	if (index >= (int)ARRAY_SIZE(image_convert_formats))
344 		return -EINVAL;
345 
346 	/* Format found */
347 	fmt = &image_convert_formats[index];
348 	*fourcc = fmt->fourcc;
349 	return 0;
350 }
351 EXPORT_SYMBOL_GPL(ipu_image_convert_enum_format);
352 
353 static void free_dma_buf(struct ipu_image_convert_priv *priv,
354 			 struct ipu_image_convert_dma_buf *buf)
355 {
356 	if (buf->virt)
357 		dma_free_coherent(priv->ipu->dev,
358 				  buf->len, buf->virt, buf->phys);
359 	buf->virt = NULL;
360 	buf->phys = 0;
361 }
362 
363 static int alloc_dma_buf(struct ipu_image_convert_priv *priv,
364 			 struct ipu_image_convert_dma_buf *buf,
365 			 int size)
366 {
367 	buf->len = PAGE_ALIGN(size);
368 	buf->virt = dma_alloc_coherent(priv->ipu->dev, buf->len, &buf->phys,
369 				       GFP_DMA | GFP_KERNEL);
370 	if (!buf->virt) {
371 		dev_err(priv->ipu->dev, "failed to alloc dma buffer\n");
372 		return -ENOMEM;
373 	}
374 
375 	return 0;
376 }
377 
378 static inline int num_stripes(int dim)
379 {
380 	return (dim - 1) / 1024 + 1;
381 }
382 
383 /*
384  * Calculate downsizing coefficients, which are the same for all tiles,
385  * and initial bilinear resizing coefficients, which are used to find the
386  * best seam positions.
387  * Also determine the number of tiles necessary to guarantee that no tile
388  * is larger than 1024 pixels in either dimension at the output and between
389  * IC downsizing and main processing sections.
390  */
391 static int calc_image_resize_coefficients(struct ipu_image_convert_ctx *ctx,
392 					  struct ipu_image *in,
393 					  struct ipu_image *out)
394 {
395 	u32 downsized_width = in->rect.width;
396 	u32 downsized_height = in->rect.height;
397 	u32 downsize_coeff_v = 0;
398 	u32 downsize_coeff_h = 0;
399 	u32 resized_width = out->rect.width;
400 	u32 resized_height = out->rect.height;
401 	u32 resize_coeff_h;
402 	u32 resize_coeff_v;
403 	u32 cols;
404 	u32 rows;
405 
406 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
407 		resized_width = out->rect.height;
408 		resized_height = out->rect.width;
409 	}
410 
411 	/* Do not let invalid input lead to an endless loop below */
412 	if (WARN_ON(resized_width == 0 || resized_height == 0))
413 		return -EINVAL;
414 
415 	while (downsized_width >= resized_width * 2) {
416 		downsized_width >>= 1;
417 		downsize_coeff_h++;
418 	}
419 
420 	while (downsized_height >= resized_height * 2) {
421 		downsized_height >>= 1;
422 		downsize_coeff_v++;
423 	}
424 
425 	/*
426 	 * Calculate the bilinear resizing coefficients that could be used if
427 	 * we were converting with a single tile. The bottom right output pixel
428 	 * should sample as close as possible to the bottom right input pixel
429 	 * out of the decimator, but not overshoot it:
430 	 */
431 	resize_coeff_h = 8192 * (downsized_width - 1) / (resized_width - 1);
432 	resize_coeff_v = 8192 * (downsized_height - 1) / (resized_height - 1);
433 
434 	/*
435 	 * Both the output of the IC downsizing section before being passed to
436 	 * the IC main processing section and the final output of the IC main
437 	 * processing section must be <= 1024 pixels in both dimensions.
438 	 */
439 	cols = num_stripes(max_t(u32, downsized_width, resized_width));
440 	rows = num_stripes(max_t(u32, downsized_height, resized_height));
441 
442 	dev_dbg(ctx->chan->priv->ipu->dev,
443 		"%s: hscale: >>%u, *8192/%u vscale: >>%u, *8192/%u, %ux%u tiles\n",
444 		__func__, downsize_coeff_h, resize_coeff_h, downsize_coeff_v,
445 		resize_coeff_v, cols, rows);
446 
447 	if (downsize_coeff_h > 2 || downsize_coeff_v  > 2 ||
448 	    resize_coeff_h > 0x3fff || resize_coeff_v > 0x3fff)
449 		return -EINVAL;
450 
451 	ctx->downsize_coeff_h = downsize_coeff_h;
452 	ctx->downsize_coeff_v = downsize_coeff_v;
453 	ctx->image_resize_coeff_h = resize_coeff_h;
454 	ctx->image_resize_coeff_v = resize_coeff_v;
455 	ctx->in.num_cols = cols;
456 	ctx->in.num_rows = rows;
457 
458 	return 0;
459 }
460 
461 #define round_closest(x, y) round_down((x) + (y)/2, (y))
462 
463 /*
464  * Find the best aligned seam position for the given column / row index.
465  * Rotation and image offsets are out of scope.
466  *
467  * @index: column / row index, used to calculate valid interval
468  * @in_edge: input right / bottom edge
469  * @out_edge: output right / bottom edge
470  * @in_align: input alignment, either horizontal 8-byte line start address
471  *            alignment, or pixel alignment due to image format
472  * @out_align: output alignment, either horizontal 8-byte line start address
473  *             alignment, or pixel alignment due to image format or rotator
474  *             block size
475  * @in_burst: horizontal input burst size in case of horizontal flip
476  * @out_burst: horizontal output burst size or rotator block size
477  * @downsize_coeff: downsizing section coefficient
478  * @resize_coeff: main processing section resizing coefficient
479  * @_in_seam: aligned input seam position return value
480  * @_out_seam: aligned output seam position return value
481  */
482 static void find_best_seam(struct ipu_image_convert_ctx *ctx,
483 			   unsigned int index,
484 			   unsigned int in_edge,
485 			   unsigned int out_edge,
486 			   unsigned int in_align,
487 			   unsigned int out_align,
488 			   unsigned int in_burst,
489 			   unsigned int out_burst,
490 			   unsigned int downsize_coeff,
491 			   unsigned int resize_coeff,
492 			   u32 *_in_seam,
493 			   u32 *_out_seam)
494 {
495 	struct device *dev = ctx->chan->priv->ipu->dev;
496 	unsigned int out_pos;
497 	/* Input / output seam position candidates */
498 	unsigned int out_seam = 0;
499 	unsigned int in_seam = 0;
500 	unsigned int min_diff = UINT_MAX;
501 	unsigned int out_start;
502 	unsigned int out_end;
503 	unsigned int in_start;
504 	unsigned int in_end;
505 
506 	/* Start within 1024 pixels of the right / bottom edge */
507 	out_start = max_t(int, index * out_align, out_edge - 1024);
508 	/* End before having to add more columns to the left / rows above */
509 	out_end = min_t(unsigned int, out_edge, index * 1024 + 1);
510 
511 	/*
512 	 * Limit input seam position to make sure that the downsized input tile
513 	 * to the right or bottom does not exceed 1024 pixels.
514 	 */
515 	in_start = max_t(int, index * in_align,
516 			 in_edge - (1024 << downsize_coeff));
517 	in_end = min_t(unsigned int, in_edge,
518 		       index * (1024 << downsize_coeff) + 1);
519 
520 	/*
521 	 * Output tiles must start at a multiple of 8 bytes horizontally and
522 	 * possibly at an even line horizontally depending on the pixel format.
523 	 * Only consider output aligned positions for the seam.
524 	 */
525 	out_start = round_up(out_start, out_align);
526 	for (out_pos = out_start; out_pos < out_end; out_pos += out_align) {
527 		unsigned int in_pos;
528 		unsigned int in_pos_aligned;
529 		unsigned int in_pos_rounded;
530 		unsigned int abs_diff;
531 
532 		/*
533 		 * Tiles in the right row / bottom column may not be allowed to
534 		 * overshoot horizontally / vertically. out_burst may be the
535 		 * actual DMA burst size, or the rotator block size.
536 		 */
537 		if ((out_burst > 1) && (out_edge - out_pos) % out_burst)
538 			continue;
539 
540 		/*
541 		 * Input sample position, corresponding to out_pos, 19.13 fixed
542 		 * point.
543 		 */
544 		in_pos = (out_pos * resize_coeff) << downsize_coeff;
545 		/*
546 		 * The closest input sample position that we could actually
547 		 * start the input tile at, 19.13 fixed point.
548 		 */
549 		in_pos_aligned = round_closest(in_pos, 8192U * in_align);
550 		/* Convert 19.13 fixed point to integer */
551 		in_pos_rounded = in_pos_aligned / 8192U;
552 
553 		if (in_pos_rounded < in_start)
554 			continue;
555 		if (in_pos_rounded >= in_end)
556 			break;
557 
558 		if ((in_burst > 1) &&
559 		    (in_edge - in_pos_rounded) % in_burst)
560 			continue;
561 
562 		if (in_pos < in_pos_aligned)
563 			abs_diff = in_pos_aligned - in_pos;
564 		else
565 			abs_diff = in_pos - in_pos_aligned;
566 
567 		if (abs_diff < min_diff) {
568 			in_seam = in_pos_rounded;
569 			out_seam = out_pos;
570 			min_diff = abs_diff;
571 		}
572 	}
573 
574 	*_out_seam = out_seam;
575 	*_in_seam = in_seam;
576 
577 	dev_dbg(dev, "%s: out_seam %u(%u) in [%u, %u], in_seam %u(%u) in [%u, %u] diff %u.%03u\n",
578 		__func__, out_seam, out_align, out_start, out_end,
579 		in_seam, in_align, in_start, in_end, min_diff / 8192,
580 		DIV_ROUND_CLOSEST(min_diff % 8192 * 1000, 8192));
581 }
582 
583 /*
584  * Tile left edges are required to be aligned to multiples of 8 bytes
585  * by the IDMAC.
586  */
587 static inline u32 tile_left_align(const struct ipu_image_pixfmt *fmt)
588 {
589 	if (fmt->planar)
590 		return fmt->uv_packed ? 8 : 8 * fmt->uv_width_dec;
591 	else
592 		return fmt->bpp == 32 ? 2 : fmt->bpp == 16 ? 4 : 8;
593 }
594 
595 /*
596  * Tile top edge alignment is only limited by chroma subsampling.
597  */
598 static inline u32 tile_top_align(const struct ipu_image_pixfmt *fmt)
599 {
600 	return fmt->uv_height_dec > 1 ? 2 : 1;
601 }
602 
603 static inline u32 tile_width_align(enum ipu_image_convert_type type,
604 				   const struct ipu_image_pixfmt *fmt,
605 				   enum ipu_rotate_mode rot_mode)
606 {
607 	if (type == IMAGE_CONVERT_IN) {
608 		/*
609 		 * The IC burst reads 8 pixels at a time. Reading beyond the
610 		 * end of the line is usually acceptable. Those pixels are
611 		 * ignored, unless the IC has to write the scaled line in
612 		 * reverse.
613 		 */
614 		return (!ipu_rot_mode_is_irt(rot_mode) &&
615 			(rot_mode & IPU_ROT_BIT_HFLIP)) ? 8 : 2;
616 	}
617 
618 	/*
619 	 * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
620 	 * formats to guarantee 8-byte aligned line start addresses in the
621 	 * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
622 	 * for all other formats.
623 	 */
624 	return (ipu_rot_mode_is_irt(rot_mode) &&
625 		fmt->planar && !fmt->uv_packed) ?
626 		8 * fmt->uv_width_dec : 8;
627 }
628 
629 static inline u32 tile_height_align(enum ipu_image_convert_type type,
630 				    const struct ipu_image_pixfmt *fmt,
631 				    enum ipu_rotate_mode rot_mode)
632 {
633 	if (type == IMAGE_CONVERT_IN || !ipu_rot_mode_is_irt(rot_mode))
634 		return 2;
635 
636 	/*
637 	 * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
638 	 * formats to guarantee 8-byte aligned line start addresses in the
639 	 * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
640 	 * for all other formats.
641 	 */
642 	return (fmt->planar && !fmt->uv_packed) ? 8 * fmt->uv_width_dec : 8;
643 }
644 
645 /*
646  * Fill in left position and width and for all tiles in an input column, and
647  * for all corresponding output tiles. If the 90° rotator is used, the output
648  * tiles are in a row, and output tile top position and height are set.
649  */
650 static void fill_tile_column(struct ipu_image_convert_ctx *ctx,
651 			     unsigned int col,
652 			     struct ipu_image_convert_image *in,
653 			     unsigned int in_left, unsigned int in_width,
654 			     struct ipu_image_convert_image *out,
655 			     unsigned int out_left, unsigned int out_width)
656 {
657 	unsigned int row, tile_idx;
658 	struct ipu_image_tile *in_tile, *out_tile;
659 
660 	for (row = 0; row < in->num_rows; row++) {
661 		tile_idx = in->num_cols * row + col;
662 		in_tile = &in->tile[tile_idx];
663 		out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
664 
665 		in_tile->left = in_left;
666 		in_tile->width = in_width;
667 
668 		if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
669 			out_tile->top = out_left;
670 			out_tile->height = out_width;
671 		} else {
672 			out_tile->left = out_left;
673 			out_tile->width = out_width;
674 		}
675 	}
676 }
677 
678 /*
679  * Fill in top position and height and for all tiles in an input row, and
680  * for all corresponding output tiles. If the 90° rotator is used, the output
681  * tiles are in a column, and output tile left position and width are set.
682  */
683 static void fill_tile_row(struct ipu_image_convert_ctx *ctx, unsigned int row,
684 			  struct ipu_image_convert_image *in,
685 			  unsigned int in_top, unsigned int in_height,
686 			  struct ipu_image_convert_image *out,
687 			  unsigned int out_top, unsigned int out_height)
688 {
689 	unsigned int col, tile_idx;
690 	struct ipu_image_tile *in_tile, *out_tile;
691 
692 	for (col = 0; col < in->num_cols; col++) {
693 		tile_idx = in->num_cols * row + col;
694 		in_tile = &in->tile[tile_idx];
695 		out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
696 
697 		in_tile->top = in_top;
698 		in_tile->height = in_height;
699 
700 		if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
701 			out_tile->left = out_top;
702 			out_tile->width = out_height;
703 		} else {
704 			out_tile->top = out_top;
705 			out_tile->height = out_height;
706 		}
707 	}
708 }
709 
710 /*
711  * Find the best horizontal and vertical seam positions to split into tiles.
712  * Minimize the fractional part of the input sampling position for the
713  * top / left pixels of each tile.
714  */
715 static void find_seams(struct ipu_image_convert_ctx *ctx,
716 		       struct ipu_image_convert_image *in,
717 		       struct ipu_image_convert_image *out)
718 {
719 	struct device *dev = ctx->chan->priv->ipu->dev;
720 	unsigned int resized_width = out->base.rect.width;
721 	unsigned int resized_height = out->base.rect.height;
722 	unsigned int col;
723 	unsigned int row;
724 	unsigned int in_left_align = tile_left_align(in->fmt);
725 	unsigned int in_top_align = tile_top_align(in->fmt);
726 	unsigned int out_left_align = tile_left_align(out->fmt);
727 	unsigned int out_top_align = tile_top_align(out->fmt);
728 	unsigned int out_width_align = tile_width_align(out->type, out->fmt,
729 							ctx->rot_mode);
730 	unsigned int out_height_align = tile_height_align(out->type, out->fmt,
731 							  ctx->rot_mode);
732 	unsigned int in_right = in->base.rect.width;
733 	unsigned int in_bottom = in->base.rect.height;
734 	unsigned int out_right = out->base.rect.width;
735 	unsigned int out_bottom = out->base.rect.height;
736 	unsigned int flipped_out_left;
737 	unsigned int flipped_out_top;
738 
739 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
740 		/* Switch width/height and align top left to IRT block size */
741 		resized_width = out->base.rect.height;
742 		resized_height = out->base.rect.width;
743 		out_left_align = out_height_align;
744 		out_top_align = out_width_align;
745 		out_width_align = out_left_align;
746 		out_height_align = out_top_align;
747 		out_right = out->base.rect.height;
748 		out_bottom = out->base.rect.width;
749 	}
750 
751 	for (col = in->num_cols - 1; col > 0; col--) {
752 		bool allow_in_overshoot = ipu_rot_mode_is_irt(ctx->rot_mode) ||
753 					  !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
754 		bool allow_out_overshoot = (col < in->num_cols - 1) &&
755 					   !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
756 		unsigned int in_left;
757 		unsigned int out_left;
758 
759 		/*
760 		 * Align input width to burst length if the scaling step flips
761 		 * horizontally.
762 		 */
763 
764 		find_best_seam(ctx, col,
765 			       in_right, out_right,
766 			       in_left_align, out_left_align,
767 			       allow_in_overshoot ? 1 : 8 /* burst length */,
768 			       allow_out_overshoot ? 1 : out_width_align,
769 			       ctx->downsize_coeff_h, ctx->image_resize_coeff_h,
770 			       &in_left, &out_left);
771 
772 		if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
773 			flipped_out_left = resized_width - out_right;
774 		else
775 			flipped_out_left = out_left;
776 
777 		fill_tile_column(ctx, col, in, in_left, in_right - in_left,
778 				 out, flipped_out_left, out_right - out_left);
779 
780 		dev_dbg(dev, "%s: col %u: %u, %u -> %u, %u\n", __func__, col,
781 			in_left, in_right - in_left,
782 			flipped_out_left, out_right - out_left);
783 
784 		in_right = in_left;
785 		out_right = out_left;
786 	}
787 
788 	flipped_out_left = (ctx->rot_mode & IPU_ROT_BIT_HFLIP) ?
789 			   resized_width - out_right : 0;
790 
791 	fill_tile_column(ctx, 0, in, 0, in_right,
792 			 out, flipped_out_left, out_right);
793 
794 	dev_dbg(dev, "%s: col 0: 0, %u -> %u, %u\n", __func__,
795 		in_right, flipped_out_left, out_right);
796 
797 	for (row = in->num_rows - 1; row > 0; row--) {
798 		bool allow_overshoot = row < in->num_rows - 1;
799 		unsigned int in_top;
800 		unsigned int out_top;
801 
802 		find_best_seam(ctx, row,
803 			       in_bottom, out_bottom,
804 			       in_top_align, out_top_align,
805 			       1, allow_overshoot ? 1 : out_height_align,
806 			       ctx->downsize_coeff_v, ctx->image_resize_coeff_v,
807 			       &in_top, &out_top);
808 
809 		if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
810 		    ipu_rot_mode_is_irt(ctx->rot_mode))
811 			flipped_out_top = resized_height - out_bottom;
812 		else
813 			flipped_out_top = out_top;
814 
815 		fill_tile_row(ctx, row, in, in_top, in_bottom - in_top,
816 			      out, flipped_out_top, out_bottom - out_top);
817 
818 		dev_dbg(dev, "%s: row %u: %u, %u -> %u, %u\n", __func__, row,
819 			in_top, in_bottom - in_top,
820 			flipped_out_top, out_bottom - out_top);
821 
822 		in_bottom = in_top;
823 		out_bottom = out_top;
824 	}
825 
826 	if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
827 	    ipu_rot_mode_is_irt(ctx->rot_mode))
828 		flipped_out_top = resized_height - out_bottom;
829 	else
830 		flipped_out_top = 0;
831 
832 	fill_tile_row(ctx, 0, in, 0, in_bottom,
833 		      out, flipped_out_top, out_bottom);
834 
835 	dev_dbg(dev, "%s: row 0: 0, %u -> %u, %u\n", __func__,
836 		in_bottom, flipped_out_top, out_bottom);
837 }
838 
839 static int calc_tile_dimensions(struct ipu_image_convert_ctx *ctx,
840 				struct ipu_image_convert_image *image)
841 {
842 	struct ipu_image_convert_chan *chan = ctx->chan;
843 	struct ipu_image_convert_priv *priv = chan->priv;
844 	unsigned int max_width = 1024;
845 	unsigned int max_height = 1024;
846 	unsigned int i;
847 
848 	if (image->type == IMAGE_CONVERT_IN) {
849 		/* Up to 4096x4096 input tile size */
850 		max_width <<= ctx->downsize_coeff_h;
851 		max_height <<= ctx->downsize_coeff_v;
852 	}
853 
854 	for (i = 0; i < ctx->num_tiles; i++) {
855 		struct ipu_image_tile *tile;
856 		const unsigned int row = i / image->num_cols;
857 		const unsigned int col = i % image->num_cols;
858 
859 		if (image->type == IMAGE_CONVERT_OUT)
860 			tile = &image->tile[ctx->out_tile_map[i]];
861 		else
862 			tile = &image->tile[i];
863 
864 		tile->size = ((tile->height * image->fmt->bpp) >> 3) *
865 			tile->width;
866 
867 		if (image->fmt->planar) {
868 			tile->stride = tile->width;
869 			tile->rot_stride = tile->height;
870 		} else {
871 			tile->stride =
872 				(image->fmt->bpp * tile->width) >> 3;
873 			tile->rot_stride =
874 				(image->fmt->bpp * tile->height) >> 3;
875 		}
876 
877 		dev_dbg(priv->ipu->dev,
878 			"task %u: ctx %p: %s@[%u,%u]: %ux%u@%u,%u\n",
879 			chan->ic_task, ctx,
880 			image->type == IMAGE_CONVERT_IN ? "Input" : "Output",
881 			row, col,
882 			tile->width, tile->height, tile->left, tile->top);
883 
884 		if (!tile->width || tile->width > max_width ||
885 		    !tile->height || tile->height > max_height) {
886 			dev_err(priv->ipu->dev, "invalid %s tile size: %ux%u\n",
887 				image->type == IMAGE_CONVERT_IN ? "input" :
888 				"output", tile->width, tile->height);
889 			return -EINVAL;
890 		}
891 	}
892 
893 	return 0;
894 }
895 
896 /*
897  * Use the rotation transformation to find the tile coordinates
898  * (row, col) of a tile in the destination frame that corresponds
899  * to the given tile coordinates of a source frame. The destination
900  * coordinate is then converted to a tile index.
901  */
902 static int transform_tile_index(struct ipu_image_convert_ctx *ctx,
903 				int src_row, int src_col)
904 {
905 	struct ipu_image_convert_chan *chan = ctx->chan;
906 	struct ipu_image_convert_priv *priv = chan->priv;
907 	struct ipu_image_convert_image *s_image = &ctx->in;
908 	struct ipu_image_convert_image *d_image = &ctx->out;
909 	int dst_row, dst_col;
910 
911 	/* with no rotation it's a 1:1 mapping */
912 	if (ctx->rot_mode == IPU_ROTATE_NONE)
913 		return src_row * s_image->num_cols + src_col;
914 
915 	/*
916 	 * before doing the transform, first we have to translate
917 	 * source row,col for an origin in the center of s_image
918 	 */
919 	src_row = src_row * 2 - (s_image->num_rows - 1);
920 	src_col = src_col * 2 - (s_image->num_cols - 1);
921 
922 	/* do the rotation transform */
923 	if (ctx->rot_mode & IPU_ROT_BIT_90) {
924 		dst_col = -src_row;
925 		dst_row = src_col;
926 	} else {
927 		dst_col = src_col;
928 		dst_row = src_row;
929 	}
930 
931 	/* apply flip */
932 	if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
933 		dst_col = -dst_col;
934 	if (ctx->rot_mode & IPU_ROT_BIT_VFLIP)
935 		dst_row = -dst_row;
936 
937 	dev_dbg(priv->ipu->dev, "task %u: ctx %p: [%d,%d] --> [%d,%d]\n",
938 		chan->ic_task, ctx, src_col, src_row, dst_col, dst_row);
939 
940 	/*
941 	 * finally translate dest row,col using an origin in upper
942 	 * left of d_image
943 	 */
944 	dst_row += d_image->num_rows - 1;
945 	dst_col += d_image->num_cols - 1;
946 	dst_row /= 2;
947 	dst_col /= 2;
948 
949 	return dst_row * d_image->num_cols + dst_col;
950 }
951 
952 /*
953  * Fill the out_tile_map[] with transformed destination tile indeces.
954  */
955 static void calc_out_tile_map(struct ipu_image_convert_ctx *ctx)
956 {
957 	struct ipu_image_convert_image *s_image = &ctx->in;
958 	unsigned int row, col, tile = 0;
959 
960 	for (row = 0; row < s_image->num_rows; row++) {
961 		for (col = 0; col < s_image->num_cols; col++) {
962 			ctx->out_tile_map[tile] =
963 				transform_tile_index(ctx, row, col);
964 			tile++;
965 		}
966 	}
967 }
968 
969 static int calc_tile_offsets_planar(struct ipu_image_convert_ctx *ctx,
970 				    struct ipu_image_convert_image *image)
971 {
972 	struct ipu_image_convert_chan *chan = ctx->chan;
973 	struct ipu_image_convert_priv *priv = chan->priv;
974 	const struct ipu_image_pixfmt *fmt = image->fmt;
975 	unsigned int row, col, tile = 0;
976 	u32 H, top, y_stride, uv_stride;
977 	u32 uv_row_off, uv_col_off, uv_off, u_off, v_off, tmp;
978 	u32 y_row_off, y_col_off, y_off;
979 	u32 y_size, uv_size;
980 
981 	/* setup some convenience vars */
982 	H = image->base.pix.height;
983 
984 	y_stride = image->stride;
985 	uv_stride = y_stride / fmt->uv_width_dec;
986 	if (fmt->uv_packed)
987 		uv_stride *= 2;
988 
989 	y_size = H * y_stride;
990 	uv_size = y_size / (fmt->uv_width_dec * fmt->uv_height_dec);
991 
992 	for (row = 0; row < image->num_rows; row++) {
993 		top = image->tile[tile].top;
994 		y_row_off = top * y_stride;
995 		uv_row_off = (top * uv_stride) / fmt->uv_height_dec;
996 
997 		for (col = 0; col < image->num_cols; col++) {
998 			y_col_off = image->tile[tile].left;
999 			uv_col_off = y_col_off / fmt->uv_width_dec;
1000 			if (fmt->uv_packed)
1001 				uv_col_off *= 2;
1002 
1003 			y_off = y_row_off + y_col_off;
1004 			uv_off = uv_row_off + uv_col_off;
1005 
1006 			u_off = y_size - y_off + uv_off;
1007 			v_off = (fmt->uv_packed) ? 0 : u_off + uv_size;
1008 			if (fmt->uv_swapped) {
1009 				tmp = u_off;
1010 				u_off = v_off;
1011 				v_off = tmp;
1012 			}
1013 
1014 			image->tile[tile].offset = y_off;
1015 			image->tile[tile].u_off = u_off;
1016 			image->tile[tile++].v_off = v_off;
1017 
1018 			if ((y_off & 0x7) || (u_off & 0x7) || (v_off & 0x7)) {
1019 				dev_err(priv->ipu->dev,
1020 					"task %u: ctx %p: %s@[%d,%d]: "
1021 					"y_off %08x, u_off %08x, v_off %08x\n",
1022 					chan->ic_task, ctx,
1023 					image->type == IMAGE_CONVERT_IN ?
1024 					"Input" : "Output", row, col,
1025 					y_off, u_off, v_off);
1026 				return -EINVAL;
1027 			}
1028 		}
1029 	}
1030 
1031 	return 0;
1032 }
1033 
1034 static int calc_tile_offsets_packed(struct ipu_image_convert_ctx *ctx,
1035 				    struct ipu_image_convert_image *image)
1036 {
1037 	struct ipu_image_convert_chan *chan = ctx->chan;
1038 	struct ipu_image_convert_priv *priv = chan->priv;
1039 	const struct ipu_image_pixfmt *fmt = image->fmt;
1040 	unsigned int row, col, tile = 0;
1041 	u32 bpp, stride, offset;
1042 	u32 row_off, col_off;
1043 
1044 	/* setup some convenience vars */
1045 	stride = image->stride;
1046 	bpp = fmt->bpp;
1047 
1048 	for (row = 0; row < image->num_rows; row++) {
1049 		row_off = image->tile[tile].top * stride;
1050 
1051 		for (col = 0; col < image->num_cols; col++) {
1052 			col_off = (image->tile[tile].left * bpp) >> 3;
1053 
1054 			offset = row_off + col_off;
1055 
1056 			image->tile[tile].offset = offset;
1057 			image->tile[tile].u_off = 0;
1058 			image->tile[tile++].v_off = 0;
1059 
1060 			if (offset & 0x7) {
1061 				dev_err(priv->ipu->dev,
1062 					"task %u: ctx %p: %s@[%d,%d]: "
1063 					"phys %08x\n",
1064 					chan->ic_task, ctx,
1065 					image->type == IMAGE_CONVERT_IN ?
1066 					"Input" : "Output", row, col,
1067 					row_off + col_off);
1068 				return -EINVAL;
1069 			}
1070 		}
1071 	}
1072 
1073 	return 0;
1074 }
1075 
1076 static int calc_tile_offsets(struct ipu_image_convert_ctx *ctx,
1077 			      struct ipu_image_convert_image *image)
1078 {
1079 	if (image->fmt->planar)
1080 		return calc_tile_offsets_planar(ctx, image);
1081 
1082 	return calc_tile_offsets_packed(ctx, image);
1083 }
1084 
1085 /*
1086  * Calculate the resizing ratio for the IC main processing section given input
1087  * size, fixed downsizing coefficient, and output size.
1088  * Either round to closest for the next tile's first pixel to minimize seams
1089  * and distortion (for all but right column / bottom row), or round down to
1090  * avoid sampling beyond the edges of the input image for this tile's last
1091  * pixel.
1092  * Returns the resizing coefficient, resizing ratio is 8192.0 / resize_coeff.
1093  */
1094 static u32 calc_resize_coeff(u32 input_size, u32 downsize_coeff,
1095 			     u32 output_size, bool allow_overshoot)
1096 {
1097 	u32 downsized = input_size >> downsize_coeff;
1098 
1099 	if (allow_overshoot)
1100 		return DIV_ROUND_CLOSEST(8192 * downsized, output_size);
1101 	else
1102 		return 8192 * (downsized - 1) / (output_size - 1);
1103 }
1104 
1105 /*
1106  * Slightly modify resize coefficients per tile to hide the bilinear
1107  * interpolator reset at tile borders, shifting the right / bottom edge
1108  * by up to a half input pixel. This removes noticeable seams between
1109  * tiles at higher upscaling factors.
1110  */
1111 static void calc_tile_resize_coefficients(struct ipu_image_convert_ctx *ctx)
1112 {
1113 	struct ipu_image_convert_chan *chan = ctx->chan;
1114 	struct ipu_image_convert_priv *priv = chan->priv;
1115 	struct ipu_image_tile *in_tile, *out_tile;
1116 	unsigned int col, row, tile_idx;
1117 	unsigned int last_output;
1118 
1119 	for (col = 0; col < ctx->in.num_cols; col++) {
1120 		bool closest = (col < ctx->in.num_cols - 1) &&
1121 			       !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
1122 		u32 resized_width;
1123 		u32 resize_coeff_h;
1124 		u32 in_width;
1125 
1126 		tile_idx = col;
1127 		in_tile = &ctx->in.tile[tile_idx];
1128 		out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1129 
1130 		if (ipu_rot_mode_is_irt(ctx->rot_mode))
1131 			resized_width = out_tile->height;
1132 		else
1133 			resized_width = out_tile->width;
1134 
1135 		resize_coeff_h = calc_resize_coeff(in_tile->width,
1136 						   ctx->downsize_coeff_h,
1137 						   resized_width, closest);
1138 
1139 		dev_dbg(priv->ipu->dev, "%s: column %u hscale: *8192/%u\n",
1140 			__func__, col, resize_coeff_h);
1141 
1142 		/*
1143 		 * With the horizontal scaling factor known, round up resized
1144 		 * width (output width or height) to burst size.
1145 		 */
1146 		resized_width = round_up(resized_width, 8);
1147 
1148 		/*
1149 		 * Calculate input width from the last accessed input pixel
1150 		 * given resized width and scaling coefficients. Round up to
1151 		 * burst size.
1152 		 */
1153 		last_output = resized_width - 1;
1154 		if (closest && ((last_output * resize_coeff_h) % 8192))
1155 			last_output++;
1156 		in_width = round_up(
1157 			(DIV_ROUND_UP(last_output * resize_coeff_h, 8192) + 1)
1158 			<< ctx->downsize_coeff_h, 8);
1159 
1160 		for (row = 0; row < ctx->in.num_rows; row++) {
1161 			tile_idx = row * ctx->in.num_cols + col;
1162 			in_tile = &ctx->in.tile[tile_idx];
1163 			out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1164 
1165 			if (ipu_rot_mode_is_irt(ctx->rot_mode))
1166 				out_tile->height = resized_width;
1167 			else
1168 				out_tile->width = resized_width;
1169 
1170 			in_tile->width = in_width;
1171 		}
1172 
1173 		ctx->resize_coeffs_h[col] = resize_coeff_h;
1174 	}
1175 
1176 	for (row = 0; row < ctx->in.num_rows; row++) {
1177 		bool closest = (row < ctx->in.num_rows - 1) &&
1178 			       !(ctx->rot_mode & IPU_ROT_BIT_VFLIP);
1179 		u32 resized_height;
1180 		u32 resize_coeff_v;
1181 		u32 in_height;
1182 
1183 		tile_idx = row * ctx->in.num_cols;
1184 		in_tile = &ctx->in.tile[tile_idx];
1185 		out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1186 
1187 		if (ipu_rot_mode_is_irt(ctx->rot_mode))
1188 			resized_height = out_tile->width;
1189 		else
1190 			resized_height = out_tile->height;
1191 
1192 		resize_coeff_v = calc_resize_coeff(in_tile->height,
1193 						   ctx->downsize_coeff_v,
1194 						   resized_height, closest);
1195 
1196 		dev_dbg(priv->ipu->dev, "%s: row %u vscale: *8192/%u\n",
1197 			__func__, row, resize_coeff_v);
1198 
1199 		/*
1200 		 * With the vertical scaling factor known, round up resized
1201 		 * height (output width or height) to IDMAC limitations.
1202 		 */
1203 		resized_height = round_up(resized_height, 2);
1204 
1205 		/*
1206 		 * Calculate input width from the last accessed input pixel
1207 		 * given resized height and scaling coefficients. Align to
1208 		 * IDMAC restrictions.
1209 		 */
1210 		last_output = resized_height - 1;
1211 		if (closest && ((last_output * resize_coeff_v) % 8192))
1212 			last_output++;
1213 		in_height = round_up(
1214 			(DIV_ROUND_UP(last_output * resize_coeff_v, 8192) + 1)
1215 			<< ctx->downsize_coeff_v, 2);
1216 
1217 		for (col = 0; col < ctx->in.num_cols; col++) {
1218 			tile_idx = row * ctx->in.num_cols + col;
1219 			in_tile = &ctx->in.tile[tile_idx];
1220 			out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1221 
1222 			if (ipu_rot_mode_is_irt(ctx->rot_mode))
1223 				out_tile->width = resized_height;
1224 			else
1225 				out_tile->height = resized_height;
1226 
1227 			in_tile->height = in_height;
1228 		}
1229 
1230 		ctx->resize_coeffs_v[row] = resize_coeff_v;
1231 	}
1232 }
1233 
1234 /*
1235  * return the number of runs in given queue (pending_q or done_q)
1236  * for this context. hold irqlock when calling.
1237  */
1238 static int get_run_count(struct ipu_image_convert_ctx *ctx,
1239 			 struct list_head *q)
1240 {
1241 	struct ipu_image_convert_run *run;
1242 	int count = 0;
1243 
1244 	lockdep_assert_held(&ctx->chan->irqlock);
1245 
1246 	list_for_each_entry(run, q, list) {
1247 		if (run->ctx == ctx)
1248 			count++;
1249 	}
1250 
1251 	return count;
1252 }
1253 
1254 static void convert_stop(struct ipu_image_convert_run *run)
1255 {
1256 	struct ipu_image_convert_ctx *ctx = run->ctx;
1257 	struct ipu_image_convert_chan *chan = ctx->chan;
1258 	struct ipu_image_convert_priv *priv = chan->priv;
1259 
1260 	dev_dbg(priv->ipu->dev, "%s: task %u: stopping ctx %p run %p\n",
1261 		__func__, chan->ic_task, ctx, run);
1262 
1263 	/* disable IC tasks and the channels */
1264 	ipu_ic_task_disable(chan->ic);
1265 	ipu_idmac_disable_channel(chan->in_chan);
1266 	ipu_idmac_disable_channel(chan->out_chan);
1267 
1268 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1269 		ipu_idmac_disable_channel(chan->rotation_in_chan);
1270 		ipu_idmac_disable_channel(chan->rotation_out_chan);
1271 		ipu_idmac_unlink(chan->out_chan, chan->rotation_in_chan);
1272 	}
1273 
1274 	ipu_ic_disable(chan->ic);
1275 }
1276 
1277 static void init_idmac_channel(struct ipu_image_convert_ctx *ctx,
1278 			       struct ipuv3_channel *channel,
1279 			       struct ipu_image_convert_image *image,
1280 			       enum ipu_rotate_mode rot_mode,
1281 			       bool rot_swap_width_height,
1282 			       unsigned int tile)
1283 {
1284 	struct ipu_image_convert_chan *chan = ctx->chan;
1285 	unsigned int burst_size;
1286 	u32 width, height, stride;
1287 	dma_addr_t addr0, addr1 = 0;
1288 	struct ipu_image tile_image;
1289 	unsigned int tile_idx[2];
1290 
1291 	if (image->type == IMAGE_CONVERT_OUT) {
1292 		tile_idx[0] = ctx->out_tile_map[tile];
1293 		tile_idx[1] = ctx->out_tile_map[1];
1294 	} else {
1295 		tile_idx[0] = tile;
1296 		tile_idx[1] = 1;
1297 	}
1298 
1299 	if (rot_swap_width_height) {
1300 		width = image->tile[tile_idx[0]].height;
1301 		height = image->tile[tile_idx[0]].width;
1302 		stride = image->tile[tile_idx[0]].rot_stride;
1303 		addr0 = ctx->rot_intermediate[0].phys;
1304 		if (ctx->double_buffering)
1305 			addr1 = ctx->rot_intermediate[1].phys;
1306 	} else {
1307 		width = image->tile[tile_idx[0]].width;
1308 		height = image->tile[tile_idx[0]].height;
1309 		stride = image->stride;
1310 		addr0 = image->base.phys0 +
1311 			image->tile[tile_idx[0]].offset;
1312 		if (ctx->double_buffering)
1313 			addr1 = image->base.phys0 +
1314 				image->tile[tile_idx[1]].offset;
1315 	}
1316 
1317 	ipu_cpmem_zero(channel);
1318 
1319 	memset(&tile_image, 0, sizeof(tile_image));
1320 	tile_image.pix.width = tile_image.rect.width = width;
1321 	tile_image.pix.height = tile_image.rect.height = height;
1322 	tile_image.pix.bytesperline = stride;
1323 	tile_image.pix.pixelformat =  image->fmt->fourcc;
1324 	tile_image.phys0 = addr0;
1325 	tile_image.phys1 = addr1;
1326 	if (image->fmt->planar && !rot_swap_width_height) {
1327 		tile_image.u_offset = image->tile[tile_idx[0]].u_off;
1328 		tile_image.v_offset = image->tile[tile_idx[0]].v_off;
1329 	}
1330 
1331 	ipu_cpmem_set_image(channel, &tile_image);
1332 
1333 	if (rot_mode)
1334 		ipu_cpmem_set_rotation(channel, rot_mode);
1335 
1336 	/*
1337 	 * Skip writing U and V components to odd rows in the output
1338 	 * channels for planar 4:2:0.
1339 	 */
1340 	if ((channel == chan->out_chan ||
1341 	     channel == chan->rotation_out_chan) &&
1342 	    image->fmt->planar && image->fmt->uv_height_dec == 2)
1343 		ipu_cpmem_skip_odd_chroma_rows(channel);
1344 
1345 	if (channel == chan->rotation_in_chan ||
1346 	    channel == chan->rotation_out_chan) {
1347 		burst_size = 8;
1348 		ipu_cpmem_set_block_mode(channel);
1349 	} else
1350 		burst_size = (width % 16) ? 8 : 16;
1351 
1352 	ipu_cpmem_set_burstsize(channel, burst_size);
1353 
1354 	ipu_ic_task_idma_init(chan->ic, channel, width, height,
1355 			      burst_size, rot_mode);
1356 
1357 	/*
1358 	 * Setting a non-zero AXI ID collides with the PRG AXI snooping, so
1359 	 * only do this when there is no PRG present.
1360 	 */
1361 	if (!channel->ipu->prg_priv)
1362 		ipu_cpmem_set_axi_id(channel, 1);
1363 
1364 	ipu_idmac_set_double_buffer(channel, ctx->double_buffering);
1365 }
1366 
1367 static int convert_start(struct ipu_image_convert_run *run, unsigned int tile)
1368 {
1369 	struct ipu_image_convert_ctx *ctx = run->ctx;
1370 	struct ipu_image_convert_chan *chan = ctx->chan;
1371 	struct ipu_image_convert_priv *priv = chan->priv;
1372 	struct ipu_image_convert_image *s_image = &ctx->in;
1373 	struct ipu_image_convert_image *d_image = &ctx->out;
1374 	unsigned int dst_tile = ctx->out_tile_map[tile];
1375 	unsigned int dest_width, dest_height;
1376 	unsigned int col, row;
1377 	u32 rsc;
1378 	int ret;
1379 
1380 	dev_dbg(priv->ipu->dev, "%s: task %u: starting ctx %p run %p tile %u -> %u\n",
1381 		__func__, chan->ic_task, ctx, run, tile, dst_tile);
1382 
1383 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1384 		/* swap width/height for resizer */
1385 		dest_width = d_image->tile[dst_tile].height;
1386 		dest_height = d_image->tile[dst_tile].width;
1387 	} else {
1388 		dest_width = d_image->tile[dst_tile].width;
1389 		dest_height = d_image->tile[dst_tile].height;
1390 	}
1391 
1392 	row = tile / s_image->num_cols;
1393 	col = tile % s_image->num_cols;
1394 
1395 	rsc =  (ctx->downsize_coeff_v << 30) |
1396 	       (ctx->resize_coeffs_v[row] << 16) |
1397 	       (ctx->downsize_coeff_h << 14) |
1398 	       (ctx->resize_coeffs_h[col]);
1399 
1400 	dev_dbg(priv->ipu->dev, "%s: %ux%u -> %ux%u (rsc = 0x%x)\n",
1401 		__func__, s_image->tile[tile].width,
1402 		s_image->tile[tile].height, dest_width, dest_height, rsc);
1403 
1404 	/* setup the IC resizer and CSC */
1405 	ret = ipu_ic_task_init_rsc(chan->ic, &ctx->csc,
1406 				   s_image->tile[tile].width,
1407 				   s_image->tile[tile].height,
1408 				   dest_width,
1409 				   dest_height,
1410 				   rsc);
1411 	if (ret) {
1412 		dev_err(priv->ipu->dev, "ipu_ic_task_init failed, %d\n", ret);
1413 		return ret;
1414 	}
1415 
1416 	/* init the source MEM-->IC PP IDMAC channel */
1417 	init_idmac_channel(ctx, chan->in_chan, s_image,
1418 			   IPU_ROTATE_NONE, false, tile);
1419 
1420 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1421 		/* init the IC PP-->MEM IDMAC channel */
1422 		init_idmac_channel(ctx, chan->out_chan, d_image,
1423 				   IPU_ROTATE_NONE, true, tile);
1424 
1425 		/* init the MEM-->IC PP ROT IDMAC channel */
1426 		init_idmac_channel(ctx, chan->rotation_in_chan, d_image,
1427 				   ctx->rot_mode, true, tile);
1428 
1429 		/* init the destination IC PP ROT-->MEM IDMAC channel */
1430 		init_idmac_channel(ctx, chan->rotation_out_chan, d_image,
1431 				   IPU_ROTATE_NONE, false, tile);
1432 
1433 		/* now link IC PP-->MEM to MEM-->IC PP ROT */
1434 		ipu_idmac_link(chan->out_chan, chan->rotation_in_chan);
1435 	} else {
1436 		/* init the destination IC PP-->MEM IDMAC channel */
1437 		init_idmac_channel(ctx, chan->out_chan, d_image,
1438 				   ctx->rot_mode, false, tile);
1439 	}
1440 
1441 	/* enable the IC */
1442 	ipu_ic_enable(chan->ic);
1443 
1444 	/* set buffers ready */
1445 	ipu_idmac_select_buffer(chan->in_chan, 0);
1446 	ipu_idmac_select_buffer(chan->out_chan, 0);
1447 	if (ipu_rot_mode_is_irt(ctx->rot_mode))
1448 		ipu_idmac_select_buffer(chan->rotation_out_chan, 0);
1449 	if (ctx->double_buffering) {
1450 		ipu_idmac_select_buffer(chan->in_chan, 1);
1451 		ipu_idmac_select_buffer(chan->out_chan, 1);
1452 		if (ipu_rot_mode_is_irt(ctx->rot_mode))
1453 			ipu_idmac_select_buffer(chan->rotation_out_chan, 1);
1454 	}
1455 
1456 	/* enable the channels! */
1457 	ipu_idmac_enable_channel(chan->in_chan);
1458 	ipu_idmac_enable_channel(chan->out_chan);
1459 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1460 		ipu_idmac_enable_channel(chan->rotation_in_chan);
1461 		ipu_idmac_enable_channel(chan->rotation_out_chan);
1462 	}
1463 
1464 	ipu_ic_task_enable(chan->ic);
1465 
1466 	ipu_cpmem_dump(chan->in_chan);
1467 	ipu_cpmem_dump(chan->out_chan);
1468 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1469 		ipu_cpmem_dump(chan->rotation_in_chan);
1470 		ipu_cpmem_dump(chan->rotation_out_chan);
1471 	}
1472 
1473 	ipu_dump(priv->ipu);
1474 
1475 	return 0;
1476 }
1477 
1478 /* hold irqlock when calling */
1479 static int do_run(struct ipu_image_convert_run *run)
1480 {
1481 	struct ipu_image_convert_ctx *ctx = run->ctx;
1482 	struct ipu_image_convert_chan *chan = ctx->chan;
1483 
1484 	lockdep_assert_held(&chan->irqlock);
1485 
1486 	ctx->in.base.phys0 = run->in_phys;
1487 	ctx->out.base.phys0 = run->out_phys;
1488 
1489 	ctx->cur_buf_num = 0;
1490 	ctx->next_tile = 1;
1491 
1492 	/* remove run from pending_q and set as current */
1493 	list_del(&run->list);
1494 	chan->current_run = run;
1495 
1496 	return convert_start(run, 0);
1497 }
1498 
1499 /* hold irqlock when calling */
1500 static void run_next(struct ipu_image_convert_chan *chan)
1501 {
1502 	struct ipu_image_convert_priv *priv = chan->priv;
1503 	struct ipu_image_convert_run *run, *tmp;
1504 	int ret;
1505 
1506 	lockdep_assert_held(&chan->irqlock);
1507 
1508 	list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
1509 		/* skip contexts that are aborting */
1510 		if (run->ctx->aborting) {
1511 			dev_dbg(priv->ipu->dev,
1512 				"%s: task %u: skipping aborting ctx %p run %p\n",
1513 				__func__, chan->ic_task, run->ctx, run);
1514 			continue;
1515 		}
1516 
1517 		ret = do_run(run);
1518 		if (!ret)
1519 			break;
1520 
1521 		/*
1522 		 * something went wrong with start, add the run
1523 		 * to done q and continue to the next run in the
1524 		 * pending q.
1525 		 */
1526 		run->status = ret;
1527 		list_add_tail(&run->list, &chan->done_q);
1528 		chan->current_run = NULL;
1529 	}
1530 }
1531 
1532 static void empty_done_q(struct ipu_image_convert_chan *chan)
1533 {
1534 	struct ipu_image_convert_priv *priv = chan->priv;
1535 	struct ipu_image_convert_run *run;
1536 	unsigned long flags;
1537 
1538 	spin_lock_irqsave(&chan->irqlock, flags);
1539 
1540 	while (!list_empty(&chan->done_q)) {
1541 		run = list_entry(chan->done_q.next,
1542 				 struct ipu_image_convert_run,
1543 				 list);
1544 
1545 		list_del(&run->list);
1546 
1547 		dev_dbg(priv->ipu->dev,
1548 			"%s: task %u: completing ctx %p run %p with %d\n",
1549 			__func__, chan->ic_task, run->ctx, run, run->status);
1550 
1551 		/* call the completion callback and free the run */
1552 		spin_unlock_irqrestore(&chan->irqlock, flags);
1553 		run->ctx->complete(run, run->ctx->complete_context);
1554 		spin_lock_irqsave(&chan->irqlock, flags);
1555 	}
1556 
1557 	spin_unlock_irqrestore(&chan->irqlock, flags);
1558 }
1559 
1560 /*
1561  * the bottom half thread clears out the done_q, calling the
1562  * completion handler for each.
1563  */
1564 static irqreturn_t do_bh(int irq, void *dev_id)
1565 {
1566 	struct ipu_image_convert_chan *chan = dev_id;
1567 	struct ipu_image_convert_priv *priv = chan->priv;
1568 	struct ipu_image_convert_ctx *ctx;
1569 	unsigned long flags;
1570 
1571 	dev_dbg(priv->ipu->dev, "%s: task %u: enter\n", __func__,
1572 		chan->ic_task);
1573 
1574 	empty_done_q(chan);
1575 
1576 	spin_lock_irqsave(&chan->irqlock, flags);
1577 
1578 	/*
1579 	 * the done_q is cleared out, signal any contexts
1580 	 * that are aborting that abort can complete.
1581 	 */
1582 	list_for_each_entry(ctx, &chan->ctx_list, list) {
1583 		if (ctx->aborting) {
1584 			dev_dbg(priv->ipu->dev,
1585 				"%s: task %u: signaling abort for ctx %p\n",
1586 				__func__, chan->ic_task, ctx);
1587 			complete_all(&ctx->aborted);
1588 		}
1589 	}
1590 
1591 	spin_unlock_irqrestore(&chan->irqlock, flags);
1592 
1593 	dev_dbg(priv->ipu->dev, "%s: task %u: exit\n", __func__,
1594 		chan->ic_task);
1595 
1596 	return IRQ_HANDLED;
1597 }
1598 
1599 static bool ic_settings_changed(struct ipu_image_convert_ctx *ctx)
1600 {
1601 	unsigned int cur_tile = ctx->next_tile - 1;
1602 	unsigned int next_tile = ctx->next_tile;
1603 
1604 	if (ctx->resize_coeffs_h[cur_tile % ctx->in.num_cols] !=
1605 	    ctx->resize_coeffs_h[next_tile % ctx->in.num_cols] ||
1606 	    ctx->resize_coeffs_v[cur_tile / ctx->in.num_cols] !=
1607 	    ctx->resize_coeffs_v[next_tile / ctx->in.num_cols] ||
1608 	    ctx->in.tile[cur_tile].width != ctx->in.tile[next_tile].width ||
1609 	    ctx->in.tile[cur_tile].height != ctx->in.tile[next_tile].height ||
1610 	    ctx->out.tile[cur_tile].width != ctx->out.tile[next_tile].width ||
1611 	    ctx->out.tile[cur_tile].height != ctx->out.tile[next_tile].height)
1612 		return true;
1613 
1614 	return false;
1615 }
1616 
1617 /* hold irqlock when calling */
1618 static irqreturn_t do_irq(struct ipu_image_convert_run *run)
1619 {
1620 	struct ipu_image_convert_ctx *ctx = run->ctx;
1621 	struct ipu_image_convert_chan *chan = ctx->chan;
1622 	struct ipu_image_tile *src_tile, *dst_tile;
1623 	struct ipu_image_convert_image *s_image = &ctx->in;
1624 	struct ipu_image_convert_image *d_image = &ctx->out;
1625 	struct ipuv3_channel *outch;
1626 	unsigned int dst_idx;
1627 
1628 	lockdep_assert_held(&chan->irqlock);
1629 
1630 	outch = ipu_rot_mode_is_irt(ctx->rot_mode) ?
1631 		chan->rotation_out_chan : chan->out_chan;
1632 
1633 	/*
1634 	 * It is difficult to stop the channel DMA before the channels
1635 	 * enter the paused state. Without double-buffering the channels
1636 	 * are always in a paused state when the EOF irq occurs, so it
1637 	 * is safe to stop the channels now. For double-buffering we
1638 	 * just ignore the abort until the operation completes, when it
1639 	 * is safe to shut down.
1640 	 */
1641 	if (ctx->aborting && !ctx->double_buffering) {
1642 		convert_stop(run);
1643 		run->status = -EIO;
1644 		goto done;
1645 	}
1646 
1647 	if (ctx->next_tile == ctx->num_tiles) {
1648 		/*
1649 		 * the conversion is complete
1650 		 */
1651 		convert_stop(run);
1652 		run->status = 0;
1653 		goto done;
1654 	}
1655 
1656 	/*
1657 	 * not done, place the next tile buffers.
1658 	 */
1659 	if (!ctx->double_buffering) {
1660 		if (ic_settings_changed(ctx)) {
1661 			convert_stop(run);
1662 			convert_start(run, ctx->next_tile);
1663 		} else {
1664 			src_tile = &s_image->tile[ctx->next_tile];
1665 			dst_idx = ctx->out_tile_map[ctx->next_tile];
1666 			dst_tile = &d_image->tile[dst_idx];
1667 
1668 			ipu_cpmem_set_buffer(chan->in_chan, 0,
1669 					     s_image->base.phys0 +
1670 					     src_tile->offset);
1671 			ipu_cpmem_set_buffer(outch, 0,
1672 					     d_image->base.phys0 +
1673 					     dst_tile->offset);
1674 			if (s_image->fmt->planar)
1675 				ipu_cpmem_set_uv_offset(chan->in_chan,
1676 							src_tile->u_off,
1677 							src_tile->v_off);
1678 			if (d_image->fmt->planar)
1679 				ipu_cpmem_set_uv_offset(outch,
1680 							dst_tile->u_off,
1681 							dst_tile->v_off);
1682 
1683 			ipu_idmac_select_buffer(chan->in_chan, 0);
1684 			ipu_idmac_select_buffer(outch, 0);
1685 		}
1686 	} else if (ctx->next_tile < ctx->num_tiles - 1) {
1687 
1688 		src_tile = &s_image->tile[ctx->next_tile + 1];
1689 		dst_idx = ctx->out_tile_map[ctx->next_tile + 1];
1690 		dst_tile = &d_image->tile[dst_idx];
1691 
1692 		ipu_cpmem_set_buffer(chan->in_chan, ctx->cur_buf_num,
1693 				     s_image->base.phys0 + src_tile->offset);
1694 		ipu_cpmem_set_buffer(outch, ctx->cur_buf_num,
1695 				     d_image->base.phys0 + dst_tile->offset);
1696 
1697 		ipu_idmac_select_buffer(chan->in_chan, ctx->cur_buf_num);
1698 		ipu_idmac_select_buffer(outch, ctx->cur_buf_num);
1699 
1700 		ctx->cur_buf_num ^= 1;
1701 	}
1702 
1703 	ctx->next_tile++;
1704 	return IRQ_HANDLED;
1705 done:
1706 	list_add_tail(&run->list, &chan->done_q);
1707 	chan->current_run = NULL;
1708 	run_next(chan);
1709 	return IRQ_WAKE_THREAD;
1710 }
1711 
1712 static irqreturn_t norotate_irq(int irq, void *data)
1713 {
1714 	struct ipu_image_convert_chan *chan = data;
1715 	struct ipu_image_convert_ctx *ctx;
1716 	struct ipu_image_convert_run *run;
1717 	unsigned long flags;
1718 	irqreturn_t ret;
1719 
1720 	spin_lock_irqsave(&chan->irqlock, flags);
1721 
1722 	/* get current run and its context */
1723 	run = chan->current_run;
1724 	if (!run) {
1725 		ret = IRQ_NONE;
1726 		goto out;
1727 	}
1728 
1729 	ctx = run->ctx;
1730 
1731 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1732 		/* this is a rotation operation, just ignore */
1733 		spin_unlock_irqrestore(&chan->irqlock, flags);
1734 		return IRQ_HANDLED;
1735 	}
1736 
1737 	ret = do_irq(run);
1738 out:
1739 	spin_unlock_irqrestore(&chan->irqlock, flags);
1740 	return ret;
1741 }
1742 
1743 static irqreturn_t rotate_irq(int irq, void *data)
1744 {
1745 	struct ipu_image_convert_chan *chan = data;
1746 	struct ipu_image_convert_priv *priv = chan->priv;
1747 	struct ipu_image_convert_ctx *ctx;
1748 	struct ipu_image_convert_run *run;
1749 	unsigned long flags;
1750 	irqreturn_t ret;
1751 
1752 	spin_lock_irqsave(&chan->irqlock, flags);
1753 
1754 	/* get current run and its context */
1755 	run = chan->current_run;
1756 	if (!run) {
1757 		ret = IRQ_NONE;
1758 		goto out;
1759 	}
1760 
1761 	ctx = run->ctx;
1762 
1763 	if (!ipu_rot_mode_is_irt(ctx->rot_mode)) {
1764 		/* this was NOT a rotation operation, shouldn't happen */
1765 		dev_err(priv->ipu->dev, "Unexpected rotation interrupt\n");
1766 		spin_unlock_irqrestore(&chan->irqlock, flags);
1767 		return IRQ_HANDLED;
1768 	}
1769 
1770 	ret = do_irq(run);
1771 out:
1772 	spin_unlock_irqrestore(&chan->irqlock, flags);
1773 	return ret;
1774 }
1775 
1776 /*
1777  * try to force the completion of runs for this ctx. Called when
1778  * abort wait times out in ipu_image_convert_abort().
1779  */
1780 static void force_abort(struct ipu_image_convert_ctx *ctx)
1781 {
1782 	struct ipu_image_convert_chan *chan = ctx->chan;
1783 	struct ipu_image_convert_run *run;
1784 	unsigned long flags;
1785 
1786 	spin_lock_irqsave(&chan->irqlock, flags);
1787 
1788 	run = chan->current_run;
1789 	if (run && run->ctx == ctx) {
1790 		convert_stop(run);
1791 		run->status = -EIO;
1792 		list_add_tail(&run->list, &chan->done_q);
1793 		chan->current_run = NULL;
1794 		run_next(chan);
1795 	}
1796 
1797 	spin_unlock_irqrestore(&chan->irqlock, flags);
1798 
1799 	empty_done_q(chan);
1800 }
1801 
1802 static void release_ipu_resources(struct ipu_image_convert_chan *chan)
1803 {
1804 	if (chan->out_eof_irq >= 0)
1805 		free_irq(chan->out_eof_irq, chan);
1806 	if (chan->rot_out_eof_irq >= 0)
1807 		free_irq(chan->rot_out_eof_irq, chan);
1808 
1809 	if (!IS_ERR_OR_NULL(chan->in_chan))
1810 		ipu_idmac_put(chan->in_chan);
1811 	if (!IS_ERR_OR_NULL(chan->out_chan))
1812 		ipu_idmac_put(chan->out_chan);
1813 	if (!IS_ERR_OR_NULL(chan->rotation_in_chan))
1814 		ipu_idmac_put(chan->rotation_in_chan);
1815 	if (!IS_ERR_OR_NULL(chan->rotation_out_chan))
1816 		ipu_idmac_put(chan->rotation_out_chan);
1817 	if (!IS_ERR_OR_NULL(chan->ic))
1818 		ipu_ic_put(chan->ic);
1819 
1820 	chan->in_chan = chan->out_chan = chan->rotation_in_chan =
1821 		chan->rotation_out_chan = NULL;
1822 	chan->out_eof_irq = chan->rot_out_eof_irq = -1;
1823 }
1824 
1825 static int get_ipu_resources(struct ipu_image_convert_chan *chan)
1826 {
1827 	const struct ipu_image_convert_dma_chan *dma = chan->dma_ch;
1828 	struct ipu_image_convert_priv *priv = chan->priv;
1829 	int ret;
1830 
1831 	/* get IC */
1832 	chan->ic = ipu_ic_get(priv->ipu, chan->ic_task);
1833 	if (IS_ERR(chan->ic)) {
1834 		dev_err(priv->ipu->dev, "could not acquire IC\n");
1835 		ret = PTR_ERR(chan->ic);
1836 		goto err;
1837 	}
1838 
1839 	/* get IDMAC channels */
1840 	chan->in_chan = ipu_idmac_get(priv->ipu, dma->in);
1841 	chan->out_chan = ipu_idmac_get(priv->ipu, dma->out);
1842 	if (IS_ERR(chan->in_chan) || IS_ERR(chan->out_chan)) {
1843 		dev_err(priv->ipu->dev, "could not acquire idmac channels\n");
1844 		ret = -EBUSY;
1845 		goto err;
1846 	}
1847 
1848 	chan->rotation_in_chan = ipu_idmac_get(priv->ipu, dma->rot_in);
1849 	chan->rotation_out_chan = ipu_idmac_get(priv->ipu, dma->rot_out);
1850 	if (IS_ERR(chan->rotation_in_chan) || IS_ERR(chan->rotation_out_chan)) {
1851 		dev_err(priv->ipu->dev,
1852 			"could not acquire idmac rotation channels\n");
1853 		ret = -EBUSY;
1854 		goto err;
1855 	}
1856 
1857 	/* acquire the EOF interrupts */
1858 	chan->out_eof_irq = ipu_idmac_channel_irq(priv->ipu,
1859 						  chan->out_chan,
1860 						  IPU_IRQ_EOF);
1861 
1862 	ret = request_threaded_irq(chan->out_eof_irq, norotate_irq, do_bh,
1863 				   0, "ipu-ic", chan);
1864 	if (ret < 0) {
1865 		dev_err(priv->ipu->dev, "could not acquire irq %d\n",
1866 			 chan->out_eof_irq);
1867 		chan->out_eof_irq = -1;
1868 		goto err;
1869 	}
1870 
1871 	chan->rot_out_eof_irq = ipu_idmac_channel_irq(priv->ipu,
1872 						     chan->rotation_out_chan,
1873 						     IPU_IRQ_EOF);
1874 
1875 	ret = request_threaded_irq(chan->rot_out_eof_irq, rotate_irq, do_bh,
1876 				   0, "ipu-ic", chan);
1877 	if (ret < 0) {
1878 		dev_err(priv->ipu->dev, "could not acquire irq %d\n",
1879 			chan->rot_out_eof_irq);
1880 		chan->rot_out_eof_irq = -1;
1881 		goto err;
1882 	}
1883 
1884 	return 0;
1885 err:
1886 	release_ipu_resources(chan);
1887 	return ret;
1888 }
1889 
1890 static int fill_image(struct ipu_image_convert_ctx *ctx,
1891 		      struct ipu_image_convert_image *ic_image,
1892 		      struct ipu_image *image,
1893 		      enum ipu_image_convert_type type)
1894 {
1895 	struct ipu_image_convert_priv *priv = ctx->chan->priv;
1896 
1897 	ic_image->base = *image;
1898 	ic_image->type = type;
1899 
1900 	ic_image->fmt = get_format(image->pix.pixelformat);
1901 	if (!ic_image->fmt) {
1902 		dev_err(priv->ipu->dev, "pixelformat not supported for %s\n",
1903 			type == IMAGE_CONVERT_OUT ? "Output" : "Input");
1904 		return -EINVAL;
1905 	}
1906 
1907 	if (ic_image->fmt->planar)
1908 		ic_image->stride = ic_image->base.pix.width;
1909 	else
1910 		ic_image->stride  = ic_image->base.pix.bytesperline;
1911 
1912 	return 0;
1913 }
1914 
1915 /* borrowed from drivers/media/v4l2-core/v4l2-common.c */
1916 static unsigned int clamp_align(unsigned int x, unsigned int min,
1917 				unsigned int max, unsigned int align)
1918 {
1919 	/* Bits that must be zero to be aligned */
1920 	unsigned int mask = ~((1 << align) - 1);
1921 
1922 	/* Clamp to aligned min and max */
1923 	x = clamp(x, (min + ~mask) & mask, max & mask);
1924 
1925 	/* Round to nearest aligned value */
1926 	if (align)
1927 		x = (x + (1 << (align - 1))) & mask;
1928 
1929 	return x;
1930 }
1931 
1932 /* Adjusts input/output images to IPU restrictions */
1933 void ipu_image_convert_adjust(struct ipu_image *in, struct ipu_image *out,
1934 			      enum ipu_rotate_mode rot_mode)
1935 {
1936 	const struct ipu_image_pixfmt *infmt, *outfmt;
1937 	u32 w_align_out, h_align_out;
1938 	u32 w_align_in, h_align_in;
1939 
1940 	infmt = get_format(in->pix.pixelformat);
1941 	outfmt = get_format(out->pix.pixelformat);
1942 
1943 	/* set some default pixel formats if needed */
1944 	if (!infmt) {
1945 		in->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1946 		infmt = get_format(V4L2_PIX_FMT_RGB24);
1947 	}
1948 	if (!outfmt) {
1949 		out->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1950 		outfmt = get_format(V4L2_PIX_FMT_RGB24);
1951 	}
1952 
1953 	/* image converter does not handle fields */
1954 	in->pix.field = out->pix.field = V4L2_FIELD_NONE;
1955 
1956 	/* resizer cannot downsize more than 4:1 */
1957 	if (ipu_rot_mode_is_irt(rot_mode)) {
1958 		out->pix.height = max_t(__u32, out->pix.height,
1959 					in->pix.width / 4);
1960 		out->pix.width = max_t(__u32, out->pix.width,
1961 				       in->pix.height / 4);
1962 	} else {
1963 		out->pix.width = max_t(__u32, out->pix.width,
1964 				       in->pix.width / 4);
1965 		out->pix.height = max_t(__u32, out->pix.height,
1966 					in->pix.height / 4);
1967 	}
1968 
1969 	/* align input width/height */
1970 	w_align_in = ilog2(tile_width_align(IMAGE_CONVERT_IN, infmt,
1971 					    rot_mode));
1972 	h_align_in = ilog2(tile_height_align(IMAGE_CONVERT_IN, infmt,
1973 					     rot_mode));
1974 	in->pix.width = clamp_align(in->pix.width, MIN_W, MAX_W,
1975 				    w_align_in);
1976 	in->pix.height = clamp_align(in->pix.height, MIN_H, MAX_H,
1977 				     h_align_in);
1978 
1979 	/* align output width/height */
1980 	w_align_out = ilog2(tile_width_align(IMAGE_CONVERT_OUT, outfmt,
1981 					     rot_mode));
1982 	h_align_out = ilog2(tile_height_align(IMAGE_CONVERT_OUT, outfmt,
1983 					      rot_mode));
1984 	out->pix.width = clamp_align(out->pix.width, MIN_W, MAX_W,
1985 				     w_align_out);
1986 	out->pix.height = clamp_align(out->pix.height, MIN_H, MAX_H,
1987 				      h_align_out);
1988 
1989 	/* set input/output strides and image sizes */
1990 	in->pix.bytesperline = infmt->planar ?
1991 		clamp_align(in->pix.width, 2 << w_align_in, MAX_W,
1992 			    w_align_in) :
1993 		clamp_align((in->pix.width * infmt->bpp) >> 3,
1994 			    ((2 << w_align_in) * infmt->bpp) >> 3,
1995 			    (MAX_W * infmt->bpp) >> 3,
1996 			    w_align_in);
1997 	in->pix.sizeimage = infmt->planar ?
1998 		(in->pix.height * in->pix.bytesperline * infmt->bpp) >> 3 :
1999 		in->pix.height * in->pix.bytesperline;
2000 	out->pix.bytesperline = outfmt->planar ? out->pix.width :
2001 		(out->pix.width * outfmt->bpp) >> 3;
2002 	out->pix.sizeimage = outfmt->planar ?
2003 		(out->pix.height * out->pix.bytesperline * outfmt->bpp) >> 3 :
2004 		out->pix.height * out->pix.bytesperline;
2005 }
2006 EXPORT_SYMBOL_GPL(ipu_image_convert_adjust);
2007 
2008 /*
2009  * this is used by ipu_image_convert_prepare() to verify set input and
2010  * output images are valid before starting the conversion. Clients can
2011  * also call it before calling ipu_image_convert_prepare().
2012  */
2013 int ipu_image_convert_verify(struct ipu_image *in, struct ipu_image *out,
2014 			     enum ipu_rotate_mode rot_mode)
2015 {
2016 	struct ipu_image testin, testout;
2017 
2018 	testin = *in;
2019 	testout = *out;
2020 
2021 	ipu_image_convert_adjust(&testin, &testout, rot_mode);
2022 
2023 	if (testin.pix.width != in->pix.width ||
2024 	    testin.pix.height != in->pix.height ||
2025 	    testout.pix.width != out->pix.width ||
2026 	    testout.pix.height != out->pix.height)
2027 		return -EINVAL;
2028 
2029 	return 0;
2030 }
2031 EXPORT_SYMBOL_GPL(ipu_image_convert_verify);
2032 
2033 /*
2034  * Call ipu_image_convert_prepare() to prepare for the conversion of
2035  * given images and rotation mode. Returns a new conversion context.
2036  */
2037 struct ipu_image_convert_ctx *
2038 ipu_image_convert_prepare(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2039 			  struct ipu_image *in, struct ipu_image *out,
2040 			  enum ipu_rotate_mode rot_mode,
2041 			  ipu_image_convert_cb_t complete,
2042 			  void *complete_context)
2043 {
2044 	struct ipu_image_convert_priv *priv = ipu->image_convert_priv;
2045 	struct ipu_image_convert_image *s_image, *d_image;
2046 	struct ipu_image_convert_chan *chan;
2047 	struct ipu_image_convert_ctx *ctx;
2048 	unsigned long flags;
2049 	unsigned int i;
2050 	bool get_res;
2051 	int ret;
2052 
2053 	if (!in || !out || !complete ||
2054 	    (ic_task != IC_TASK_VIEWFINDER &&
2055 	     ic_task != IC_TASK_POST_PROCESSOR))
2056 		return ERR_PTR(-EINVAL);
2057 
2058 	/* verify the in/out images before continuing */
2059 	ret = ipu_image_convert_verify(in, out, rot_mode);
2060 	if (ret) {
2061 		dev_err(priv->ipu->dev, "%s: in/out formats invalid\n",
2062 			__func__);
2063 		return ERR_PTR(ret);
2064 	}
2065 
2066 	chan = &priv->chan[ic_task];
2067 
2068 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2069 	if (!ctx)
2070 		return ERR_PTR(-ENOMEM);
2071 
2072 	dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p\n", __func__,
2073 		chan->ic_task, ctx);
2074 
2075 	ctx->chan = chan;
2076 	init_completion(&ctx->aborted);
2077 
2078 	ctx->rot_mode = rot_mode;
2079 
2080 	/* Sets ctx->in.num_rows/cols as well */
2081 	ret = calc_image_resize_coefficients(ctx, in, out);
2082 	if (ret)
2083 		goto out_free;
2084 
2085 	s_image = &ctx->in;
2086 	d_image = &ctx->out;
2087 
2088 	/* set tiling and rotation */
2089 	if (ipu_rot_mode_is_irt(rot_mode)) {
2090 		d_image->num_rows = s_image->num_cols;
2091 		d_image->num_cols = s_image->num_rows;
2092 	} else {
2093 		d_image->num_rows = s_image->num_rows;
2094 		d_image->num_cols = s_image->num_cols;
2095 	}
2096 
2097 	ctx->num_tiles = d_image->num_cols * d_image->num_rows;
2098 
2099 	ret = fill_image(ctx, s_image, in, IMAGE_CONVERT_IN);
2100 	if (ret)
2101 		goto out_free;
2102 	ret = fill_image(ctx, d_image, out, IMAGE_CONVERT_OUT);
2103 	if (ret)
2104 		goto out_free;
2105 
2106 	calc_out_tile_map(ctx);
2107 
2108 	find_seams(ctx, s_image, d_image);
2109 
2110 	ret = calc_tile_dimensions(ctx, s_image);
2111 	if (ret)
2112 		goto out_free;
2113 
2114 	ret = calc_tile_offsets(ctx, s_image);
2115 	if (ret)
2116 		goto out_free;
2117 
2118 	calc_tile_dimensions(ctx, d_image);
2119 	ret = calc_tile_offsets(ctx, d_image);
2120 	if (ret)
2121 		goto out_free;
2122 
2123 	calc_tile_resize_coefficients(ctx);
2124 
2125 	ret = ipu_ic_calc_csc(&ctx->csc,
2126 			s_image->base.pix.ycbcr_enc,
2127 			s_image->base.pix.quantization,
2128 			ipu_pixelformat_to_colorspace(s_image->fmt->fourcc),
2129 			d_image->base.pix.ycbcr_enc,
2130 			d_image->base.pix.quantization,
2131 			ipu_pixelformat_to_colorspace(d_image->fmt->fourcc));
2132 	if (ret)
2133 		goto out_free;
2134 
2135 	dump_format(ctx, s_image);
2136 	dump_format(ctx, d_image);
2137 
2138 	ctx->complete = complete;
2139 	ctx->complete_context = complete_context;
2140 
2141 	/*
2142 	 * Can we use double-buffering for this operation? If there is
2143 	 * only one tile (the whole image can be converted in a single
2144 	 * operation) there's no point in using double-buffering. Also,
2145 	 * the IPU's IDMAC channels allow only a single U and V plane
2146 	 * offset shared between both buffers, but these offsets change
2147 	 * for every tile, and therefore would have to be updated for
2148 	 * each buffer which is not possible. So double-buffering is
2149 	 * impossible when either the source or destination images are
2150 	 * a planar format (YUV420, YUV422P, etc.). Further, differently
2151 	 * sized tiles or different resizing coefficients per tile
2152 	 * prevent double-buffering as well.
2153 	 */
2154 	ctx->double_buffering = (ctx->num_tiles > 1 &&
2155 				 !s_image->fmt->planar &&
2156 				 !d_image->fmt->planar);
2157 	for (i = 1; i < ctx->num_tiles; i++) {
2158 		if (ctx->in.tile[i].width != ctx->in.tile[0].width ||
2159 		    ctx->in.tile[i].height != ctx->in.tile[0].height ||
2160 		    ctx->out.tile[i].width != ctx->out.tile[0].width ||
2161 		    ctx->out.tile[i].height != ctx->out.tile[0].height) {
2162 			ctx->double_buffering = false;
2163 			break;
2164 		}
2165 	}
2166 	for (i = 1; i < ctx->in.num_cols; i++) {
2167 		if (ctx->resize_coeffs_h[i] != ctx->resize_coeffs_h[0]) {
2168 			ctx->double_buffering = false;
2169 			break;
2170 		}
2171 	}
2172 	for (i = 1; i < ctx->in.num_rows; i++) {
2173 		if (ctx->resize_coeffs_v[i] != ctx->resize_coeffs_v[0]) {
2174 			ctx->double_buffering = false;
2175 			break;
2176 		}
2177 	}
2178 
2179 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
2180 		unsigned long intermediate_size = d_image->tile[0].size;
2181 
2182 		for (i = 1; i < ctx->num_tiles; i++) {
2183 			if (d_image->tile[i].size > intermediate_size)
2184 				intermediate_size = d_image->tile[i].size;
2185 		}
2186 
2187 		ret = alloc_dma_buf(priv, &ctx->rot_intermediate[0],
2188 				    intermediate_size);
2189 		if (ret)
2190 			goto out_free;
2191 		if (ctx->double_buffering) {
2192 			ret = alloc_dma_buf(priv,
2193 					    &ctx->rot_intermediate[1],
2194 					    intermediate_size);
2195 			if (ret)
2196 				goto out_free_dmabuf0;
2197 		}
2198 	}
2199 
2200 	spin_lock_irqsave(&chan->irqlock, flags);
2201 
2202 	get_res = list_empty(&chan->ctx_list);
2203 
2204 	list_add_tail(&ctx->list, &chan->ctx_list);
2205 
2206 	spin_unlock_irqrestore(&chan->irqlock, flags);
2207 
2208 	if (get_res) {
2209 		ret = get_ipu_resources(chan);
2210 		if (ret)
2211 			goto out_free_dmabuf1;
2212 	}
2213 
2214 	return ctx;
2215 
2216 out_free_dmabuf1:
2217 	free_dma_buf(priv, &ctx->rot_intermediate[1]);
2218 	spin_lock_irqsave(&chan->irqlock, flags);
2219 	list_del(&ctx->list);
2220 	spin_unlock_irqrestore(&chan->irqlock, flags);
2221 out_free_dmabuf0:
2222 	free_dma_buf(priv, &ctx->rot_intermediate[0]);
2223 out_free:
2224 	kfree(ctx);
2225 	return ERR_PTR(ret);
2226 }
2227 EXPORT_SYMBOL_GPL(ipu_image_convert_prepare);
2228 
2229 /*
2230  * Carry out a single image conversion run. Only the physaddr's of the input
2231  * and output image buffers are needed. The conversion context must have
2232  * been created previously with ipu_image_convert_prepare().
2233  */
2234 int ipu_image_convert_queue(struct ipu_image_convert_run *run)
2235 {
2236 	struct ipu_image_convert_chan *chan;
2237 	struct ipu_image_convert_priv *priv;
2238 	struct ipu_image_convert_ctx *ctx;
2239 	unsigned long flags;
2240 	int ret = 0;
2241 
2242 	if (!run || !run->ctx || !run->in_phys || !run->out_phys)
2243 		return -EINVAL;
2244 
2245 	ctx = run->ctx;
2246 	chan = ctx->chan;
2247 	priv = chan->priv;
2248 
2249 	dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p run %p\n", __func__,
2250 		chan->ic_task, ctx, run);
2251 
2252 	INIT_LIST_HEAD(&run->list);
2253 
2254 	spin_lock_irqsave(&chan->irqlock, flags);
2255 
2256 	if (ctx->aborting) {
2257 		ret = -EIO;
2258 		goto unlock;
2259 	}
2260 
2261 	list_add_tail(&run->list, &chan->pending_q);
2262 
2263 	if (!chan->current_run) {
2264 		ret = do_run(run);
2265 		if (ret)
2266 			chan->current_run = NULL;
2267 	}
2268 unlock:
2269 	spin_unlock_irqrestore(&chan->irqlock, flags);
2270 	return ret;
2271 }
2272 EXPORT_SYMBOL_GPL(ipu_image_convert_queue);
2273 
2274 /* Abort any active or pending conversions for this context */
2275 static void __ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2276 {
2277 	struct ipu_image_convert_chan *chan = ctx->chan;
2278 	struct ipu_image_convert_priv *priv = chan->priv;
2279 	struct ipu_image_convert_run *run, *active_run, *tmp;
2280 	unsigned long flags;
2281 	int run_count, ret;
2282 
2283 	spin_lock_irqsave(&chan->irqlock, flags);
2284 
2285 	/* move all remaining pending runs in this context to done_q */
2286 	list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
2287 		if (run->ctx != ctx)
2288 			continue;
2289 		run->status = -EIO;
2290 		list_move_tail(&run->list, &chan->done_q);
2291 	}
2292 
2293 	run_count = get_run_count(ctx, &chan->done_q);
2294 	active_run = (chan->current_run && chan->current_run->ctx == ctx) ?
2295 		chan->current_run : NULL;
2296 
2297 	if (active_run)
2298 		reinit_completion(&ctx->aborted);
2299 
2300 	ctx->aborting = true;
2301 
2302 	spin_unlock_irqrestore(&chan->irqlock, flags);
2303 
2304 	if (!run_count && !active_run) {
2305 		dev_dbg(priv->ipu->dev,
2306 			"%s: task %u: no abort needed for ctx %p\n",
2307 			__func__, chan->ic_task, ctx);
2308 		return;
2309 	}
2310 
2311 	if (!active_run) {
2312 		empty_done_q(chan);
2313 		return;
2314 	}
2315 
2316 	dev_dbg(priv->ipu->dev,
2317 		"%s: task %u: wait for completion: %d runs\n",
2318 		__func__, chan->ic_task, run_count);
2319 
2320 	ret = wait_for_completion_timeout(&ctx->aborted,
2321 					  msecs_to_jiffies(10000));
2322 	if (ret == 0) {
2323 		dev_warn(priv->ipu->dev, "%s: timeout\n", __func__);
2324 		force_abort(ctx);
2325 	}
2326 }
2327 
2328 void ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2329 {
2330 	__ipu_image_convert_abort(ctx);
2331 	ctx->aborting = false;
2332 }
2333 EXPORT_SYMBOL_GPL(ipu_image_convert_abort);
2334 
2335 /* Unprepare image conversion context */
2336 void ipu_image_convert_unprepare(struct ipu_image_convert_ctx *ctx)
2337 {
2338 	struct ipu_image_convert_chan *chan = ctx->chan;
2339 	struct ipu_image_convert_priv *priv = chan->priv;
2340 	unsigned long flags;
2341 	bool put_res;
2342 
2343 	/* make sure no runs are hanging around */
2344 	__ipu_image_convert_abort(ctx);
2345 
2346 	dev_dbg(priv->ipu->dev, "%s: task %u: removing ctx %p\n", __func__,
2347 		chan->ic_task, ctx);
2348 
2349 	spin_lock_irqsave(&chan->irqlock, flags);
2350 
2351 	list_del(&ctx->list);
2352 
2353 	put_res = list_empty(&chan->ctx_list);
2354 
2355 	spin_unlock_irqrestore(&chan->irqlock, flags);
2356 
2357 	if (put_res)
2358 		release_ipu_resources(chan);
2359 
2360 	free_dma_buf(priv, &ctx->rot_intermediate[1]);
2361 	free_dma_buf(priv, &ctx->rot_intermediate[0]);
2362 
2363 	kfree(ctx);
2364 }
2365 EXPORT_SYMBOL_GPL(ipu_image_convert_unprepare);
2366 
2367 /*
2368  * "Canned" asynchronous single image conversion. Allocates and returns
2369  * a new conversion run.  On successful return the caller must free the
2370  * run and call ipu_image_convert_unprepare() after conversion completes.
2371  */
2372 struct ipu_image_convert_run *
2373 ipu_image_convert(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2374 		  struct ipu_image *in, struct ipu_image *out,
2375 		  enum ipu_rotate_mode rot_mode,
2376 		  ipu_image_convert_cb_t complete,
2377 		  void *complete_context)
2378 {
2379 	struct ipu_image_convert_ctx *ctx;
2380 	struct ipu_image_convert_run *run;
2381 	int ret;
2382 
2383 	ctx = ipu_image_convert_prepare(ipu, ic_task, in, out, rot_mode,
2384 					complete, complete_context);
2385 	if (IS_ERR(ctx))
2386 		return ERR_CAST(ctx);
2387 
2388 	run = kzalloc(sizeof(*run), GFP_KERNEL);
2389 	if (!run) {
2390 		ipu_image_convert_unprepare(ctx);
2391 		return ERR_PTR(-ENOMEM);
2392 	}
2393 
2394 	run->ctx = ctx;
2395 	run->in_phys = in->phys0;
2396 	run->out_phys = out->phys0;
2397 
2398 	ret = ipu_image_convert_queue(run);
2399 	if (ret) {
2400 		ipu_image_convert_unprepare(ctx);
2401 		kfree(run);
2402 		return ERR_PTR(ret);
2403 	}
2404 
2405 	return run;
2406 }
2407 EXPORT_SYMBOL_GPL(ipu_image_convert);
2408 
2409 /* "Canned" synchronous single image conversion */
2410 static void image_convert_sync_complete(struct ipu_image_convert_run *run,
2411 					void *data)
2412 {
2413 	struct completion *comp = data;
2414 
2415 	complete(comp);
2416 }
2417 
2418 int ipu_image_convert_sync(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2419 			   struct ipu_image *in, struct ipu_image *out,
2420 			   enum ipu_rotate_mode rot_mode)
2421 {
2422 	struct ipu_image_convert_run *run;
2423 	struct completion comp;
2424 	int ret;
2425 
2426 	init_completion(&comp);
2427 
2428 	run = ipu_image_convert(ipu, ic_task, in, out, rot_mode,
2429 				image_convert_sync_complete, &comp);
2430 	if (IS_ERR(run))
2431 		return PTR_ERR(run);
2432 
2433 	ret = wait_for_completion_timeout(&comp, msecs_to_jiffies(10000));
2434 	ret = (ret == 0) ? -ETIMEDOUT : 0;
2435 
2436 	ipu_image_convert_unprepare(run->ctx);
2437 	kfree(run);
2438 
2439 	return ret;
2440 }
2441 EXPORT_SYMBOL_GPL(ipu_image_convert_sync);
2442 
2443 int ipu_image_convert_init(struct ipu_soc *ipu, struct device *dev)
2444 {
2445 	struct ipu_image_convert_priv *priv;
2446 	int i;
2447 
2448 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
2449 	if (!priv)
2450 		return -ENOMEM;
2451 
2452 	ipu->image_convert_priv = priv;
2453 	priv->ipu = ipu;
2454 
2455 	for (i = 0; i < IC_NUM_TASKS; i++) {
2456 		struct ipu_image_convert_chan *chan = &priv->chan[i];
2457 
2458 		chan->ic_task = i;
2459 		chan->priv = priv;
2460 		chan->dma_ch = &image_convert_dma_chan[i];
2461 		chan->out_eof_irq = -1;
2462 		chan->rot_out_eof_irq = -1;
2463 
2464 		spin_lock_init(&chan->irqlock);
2465 		INIT_LIST_HEAD(&chan->ctx_list);
2466 		INIT_LIST_HEAD(&chan->pending_q);
2467 		INIT_LIST_HEAD(&chan->done_q);
2468 	}
2469 
2470 	return 0;
2471 }
2472 
2473 void ipu_image_convert_exit(struct ipu_soc *ipu)
2474 {
2475 }
2476