1 /*
2  * Copyright (C) 2012-2016 Mentor Graphics Inc.
3  *
4  * Queued image conversion support, with tiling and rotation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the
8  * Free Software Foundation; either version 2 of the License, or (at your
9  * option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful, but
12  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * for more details.
15  */
16 
17 #include <linux/interrupt.h>
18 #include <linux/dma-mapping.h>
19 #include <video/imx-ipu-image-convert.h>
20 #include "ipu-prv.h"
21 
22 /*
23  * The IC Resizer has a restriction that the output frame from the
24  * resizer must be 1024 or less in both width (pixels) and height
25  * (lines).
26  *
27  * The image converter attempts to split up a conversion when
28  * the desired output (converted) frame resolution exceeds the
29  * IC resizer limit of 1024 in either dimension.
30  *
31  * If either dimension of the output frame exceeds the limit, the
32  * dimension is split into 1, 2, or 4 equal stripes, for a maximum
33  * of 4*4 or 16 tiles. A conversion is then carried out for each
34  * tile (but taking care to pass the full frame stride length to
35  * the DMA channel's parameter memory!). IDMA double-buffering is used
36  * to convert each tile back-to-back when possible (see note below
37  * when double_buffering boolean is set).
38  *
39  * Note that the input frame must be split up into the same number
40  * of tiles as the output frame.
41  *
42  * FIXME: at this point there is no attempt to deal with visible seams
43  * at the tile boundaries when upscaling. The seams are caused by a reset
44  * of the bilinear upscale interpolation when starting a new tile. The
45  * seams are barely visible for small upscale factors, but become
46  * increasingly visible as the upscale factor gets larger, since more
47  * interpolated pixels get thrown out at the tile boundaries. A possilble
48  * fix might be to overlap tiles of different sizes, but this must be done
49  * while also maintaining the IDMAC dma buffer address alignment and 8x8 IRT
50  * alignment restrictions of each tile.
51  */
52 
53 #define MAX_STRIPES_W    4
54 #define MAX_STRIPES_H    4
55 #define MAX_TILES (MAX_STRIPES_W * MAX_STRIPES_H)
56 
57 #define MIN_W     16
58 #define MIN_H     8
59 #define MAX_W     4096
60 #define MAX_H     4096
61 
62 enum ipu_image_convert_type {
63 	IMAGE_CONVERT_IN = 0,
64 	IMAGE_CONVERT_OUT,
65 };
66 
67 struct ipu_image_convert_dma_buf {
68 	void          *virt;
69 	dma_addr_t    phys;
70 	unsigned long len;
71 };
72 
73 struct ipu_image_convert_dma_chan {
74 	int in;
75 	int out;
76 	int rot_in;
77 	int rot_out;
78 	int vdi_in_p;
79 	int vdi_in;
80 	int vdi_in_n;
81 };
82 
83 /* dimensions of one tile */
84 struct ipu_image_tile {
85 	u32 width;
86 	u32 height;
87 	u32 left;
88 	u32 top;
89 	/* size and strides are in bytes */
90 	u32 size;
91 	u32 stride;
92 	u32 rot_stride;
93 	/* start Y or packed offset of this tile */
94 	u32 offset;
95 	/* offset from start to tile in U plane, for planar formats */
96 	u32 u_off;
97 	/* offset from start to tile in V plane, for planar formats */
98 	u32 v_off;
99 };
100 
101 struct ipu_image_convert_image {
102 	struct ipu_image base;
103 	enum ipu_image_convert_type type;
104 
105 	const struct ipu_image_pixfmt *fmt;
106 	unsigned int stride;
107 
108 	/* # of rows (horizontal stripes) if dest height is > 1024 */
109 	unsigned int num_rows;
110 	/* # of columns (vertical stripes) if dest width is > 1024 */
111 	unsigned int num_cols;
112 
113 	struct ipu_image_tile tile[MAX_TILES];
114 };
115 
116 struct ipu_image_pixfmt {
117 	u32	fourcc;        /* V4L2 fourcc */
118 	int     bpp;           /* total bpp */
119 	int     uv_width_dec;  /* decimation in width for U/V planes */
120 	int     uv_height_dec; /* decimation in height for U/V planes */
121 	bool    planar;        /* planar format */
122 	bool    uv_swapped;    /* U and V planes are swapped */
123 	bool    uv_packed;     /* partial planar (U and V in same plane) */
124 };
125 
126 struct ipu_image_convert_ctx;
127 struct ipu_image_convert_chan;
128 struct ipu_image_convert_priv;
129 
130 struct ipu_image_convert_ctx {
131 	struct ipu_image_convert_chan *chan;
132 
133 	ipu_image_convert_cb_t complete;
134 	void *complete_context;
135 
136 	/* Source/destination image data and rotation mode */
137 	struct ipu_image_convert_image in;
138 	struct ipu_image_convert_image out;
139 	enum ipu_rotate_mode rot_mode;
140 	u32 downsize_coeff_h;
141 	u32 downsize_coeff_v;
142 	u32 image_resize_coeff_h;
143 	u32 image_resize_coeff_v;
144 	u32 resize_coeffs_h[MAX_STRIPES_W];
145 	u32 resize_coeffs_v[MAX_STRIPES_H];
146 
147 	/* intermediate buffer for rotation */
148 	struct ipu_image_convert_dma_buf rot_intermediate[2];
149 
150 	/* current buffer number for double buffering */
151 	int cur_buf_num;
152 
153 	bool aborting;
154 	struct completion aborted;
155 
156 	/* can we use double-buffering for this conversion operation? */
157 	bool double_buffering;
158 	/* num_rows * num_cols */
159 	unsigned int num_tiles;
160 	/* next tile to process */
161 	unsigned int next_tile;
162 	/* where to place converted tile in dest image */
163 	unsigned int out_tile_map[MAX_TILES];
164 
165 	struct list_head list;
166 };
167 
168 struct ipu_image_convert_chan {
169 	struct ipu_image_convert_priv *priv;
170 
171 	enum ipu_ic_task ic_task;
172 	const struct ipu_image_convert_dma_chan *dma_ch;
173 
174 	struct ipu_ic *ic;
175 	struct ipuv3_channel *in_chan;
176 	struct ipuv3_channel *out_chan;
177 	struct ipuv3_channel *rotation_in_chan;
178 	struct ipuv3_channel *rotation_out_chan;
179 
180 	/* the IPU end-of-frame irqs */
181 	int out_eof_irq;
182 	int rot_out_eof_irq;
183 
184 	spinlock_t irqlock;
185 
186 	/* list of convert contexts */
187 	struct list_head ctx_list;
188 	/* queue of conversion runs */
189 	struct list_head pending_q;
190 	/* queue of completed runs */
191 	struct list_head done_q;
192 
193 	/* the current conversion run */
194 	struct ipu_image_convert_run *current_run;
195 };
196 
197 struct ipu_image_convert_priv {
198 	struct ipu_image_convert_chan chan[IC_NUM_TASKS];
199 	struct ipu_soc *ipu;
200 };
201 
202 static const struct ipu_image_convert_dma_chan
203 image_convert_dma_chan[IC_NUM_TASKS] = {
204 	[IC_TASK_VIEWFINDER] = {
205 		.in = IPUV3_CHANNEL_MEM_IC_PRP_VF,
206 		.out = IPUV3_CHANNEL_IC_PRP_VF_MEM,
207 		.rot_in = IPUV3_CHANNEL_MEM_ROT_VF,
208 		.rot_out = IPUV3_CHANNEL_ROT_VF_MEM,
209 		.vdi_in_p = IPUV3_CHANNEL_MEM_VDI_PREV,
210 		.vdi_in = IPUV3_CHANNEL_MEM_VDI_CUR,
211 		.vdi_in_n = IPUV3_CHANNEL_MEM_VDI_NEXT,
212 	},
213 	[IC_TASK_POST_PROCESSOR] = {
214 		.in = IPUV3_CHANNEL_MEM_IC_PP,
215 		.out = IPUV3_CHANNEL_IC_PP_MEM,
216 		.rot_in = IPUV3_CHANNEL_MEM_ROT_PP,
217 		.rot_out = IPUV3_CHANNEL_ROT_PP_MEM,
218 	},
219 };
220 
221 static const struct ipu_image_pixfmt image_convert_formats[] = {
222 	{
223 		.fourcc	= V4L2_PIX_FMT_RGB565,
224 		.bpp    = 16,
225 	}, {
226 		.fourcc	= V4L2_PIX_FMT_RGB24,
227 		.bpp    = 24,
228 	}, {
229 		.fourcc	= V4L2_PIX_FMT_BGR24,
230 		.bpp    = 24,
231 	}, {
232 		.fourcc	= V4L2_PIX_FMT_RGB32,
233 		.bpp    = 32,
234 	}, {
235 		.fourcc	= V4L2_PIX_FMT_BGR32,
236 		.bpp    = 32,
237 	}, {
238 		.fourcc	= V4L2_PIX_FMT_XRGB32,
239 		.bpp    = 32,
240 	}, {
241 		.fourcc	= V4L2_PIX_FMT_XBGR32,
242 		.bpp    = 32,
243 	}, {
244 		.fourcc	= V4L2_PIX_FMT_YUYV,
245 		.bpp    = 16,
246 		.uv_width_dec = 2,
247 		.uv_height_dec = 1,
248 	}, {
249 		.fourcc	= V4L2_PIX_FMT_UYVY,
250 		.bpp    = 16,
251 		.uv_width_dec = 2,
252 		.uv_height_dec = 1,
253 	}, {
254 		.fourcc	= V4L2_PIX_FMT_YUV420,
255 		.bpp    = 12,
256 		.planar = true,
257 		.uv_width_dec = 2,
258 		.uv_height_dec = 2,
259 	}, {
260 		.fourcc	= V4L2_PIX_FMT_YVU420,
261 		.bpp    = 12,
262 		.planar = true,
263 		.uv_width_dec = 2,
264 		.uv_height_dec = 2,
265 		.uv_swapped = true,
266 	}, {
267 		.fourcc = V4L2_PIX_FMT_NV12,
268 		.bpp    = 12,
269 		.planar = true,
270 		.uv_width_dec = 2,
271 		.uv_height_dec = 2,
272 		.uv_packed = true,
273 	}, {
274 		.fourcc = V4L2_PIX_FMT_YUV422P,
275 		.bpp    = 16,
276 		.planar = true,
277 		.uv_width_dec = 2,
278 		.uv_height_dec = 1,
279 	}, {
280 		.fourcc = V4L2_PIX_FMT_NV16,
281 		.bpp    = 16,
282 		.planar = true,
283 		.uv_width_dec = 2,
284 		.uv_height_dec = 1,
285 		.uv_packed = true,
286 	},
287 };
288 
289 static const struct ipu_image_pixfmt *get_format(u32 fourcc)
290 {
291 	const struct ipu_image_pixfmt *ret = NULL;
292 	unsigned int i;
293 
294 	for (i = 0; i < ARRAY_SIZE(image_convert_formats); i++) {
295 		if (image_convert_formats[i].fourcc == fourcc) {
296 			ret = &image_convert_formats[i];
297 			break;
298 		}
299 	}
300 
301 	return ret;
302 }
303 
304 static void dump_format(struct ipu_image_convert_ctx *ctx,
305 			struct ipu_image_convert_image *ic_image)
306 {
307 	struct ipu_image_convert_chan *chan = ctx->chan;
308 	struct ipu_image_convert_priv *priv = chan->priv;
309 
310 	dev_dbg(priv->ipu->dev,
311 		"task %u: ctx %p: %s format: %dx%d (%dx%d tiles), %c%c%c%c\n",
312 		chan->ic_task, ctx,
313 		ic_image->type == IMAGE_CONVERT_OUT ? "Output" : "Input",
314 		ic_image->base.pix.width, ic_image->base.pix.height,
315 		ic_image->num_cols, ic_image->num_rows,
316 		ic_image->fmt->fourcc & 0xff,
317 		(ic_image->fmt->fourcc >> 8) & 0xff,
318 		(ic_image->fmt->fourcc >> 16) & 0xff,
319 		(ic_image->fmt->fourcc >> 24) & 0xff);
320 }
321 
322 int ipu_image_convert_enum_format(int index, u32 *fourcc)
323 {
324 	const struct ipu_image_pixfmt *fmt;
325 
326 	if (index >= (int)ARRAY_SIZE(image_convert_formats))
327 		return -EINVAL;
328 
329 	/* Format found */
330 	fmt = &image_convert_formats[index];
331 	*fourcc = fmt->fourcc;
332 	return 0;
333 }
334 EXPORT_SYMBOL_GPL(ipu_image_convert_enum_format);
335 
336 static void free_dma_buf(struct ipu_image_convert_priv *priv,
337 			 struct ipu_image_convert_dma_buf *buf)
338 {
339 	if (buf->virt)
340 		dma_free_coherent(priv->ipu->dev,
341 				  buf->len, buf->virt, buf->phys);
342 	buf->virt = NULL;
343 	buf->phys = 0;
344 }
345 
346 static int alloc_dma_buf(struct ipu_image_convert_priv *priv,
347 			 struct ipu_image_convert_dma_buf *buf,
348 			 int size)
349 {
350 	buf->len = PAGE_ALIGN(size);
351 	buf->virt = dma_alloc_coherent(priv->ipu->dev, buf->len, &buf->phys,
352 				       GFP_DMA | GFP_KERNEL);
353 	if (!buf->virt) {
354 		dev_err(priv->ipu->dev, "failed to alloc dma buffer\n");
355 		return -ENOMEM;
356 	}
357 
358 	return 0;
359 }
360 
361 static inline int num_stripes(int dim)
362 {
363 	if (dim <= 1024)
364 		return 1;
365 	else if (dim <= 2048)
366 		return 2;
367 	else
368 		return 4;
369 }
370 
371 /*
372  * Calculate downsizing coefficients, which are the same for all tiles,
373  * and bilinear resizing coefficients, which are used to find the best
374  * seam positions.
375  */
376 static int calc_image_resize_coefficients(struct ipu_image_convert_ctx *ctx,
377 					  struct ipu_image *in,
378 					  struct ipu_image *out)
379 {
380 	u32 downsized_width = in->rect.width;
381 	u32 downsized_height = in->rect.height;
382 	u32 downsize_coeff_v = 0;
383 	u32 downsize_coeff_h = 0;
384 	u32 resized_width = out->rect.width;
385 	u32 resized_height = out->rect.height;
386 	u32 resize_coeff_h;
387 	u32 resize_coeff_v;
388 
389 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
390 		resized_width = out->rect.height;
391 		resized_height = out->rect.width;
392 	}
393 
394 	/* Do not let invalid input lead to an endless loop below */
395 	if (WARN_ON(resized_width == 0 || resized_height == 0))
396 		return -EINVAL;
397 
398 	while (downsized_width >= resized_width * 2) {
399 		downsized_width >>= 1;
400 		downsize_coeff_h++;
401 	}
402 
403 	while (downsized_height >= resized_height * 2) {
404 		downsized_height >>= 1;
405 		downsize_coeff_v++;
406 	}
407 
408 	/*
409 	 * Calculate the bilinear resizing coefficients that could be used if
410 	 * we were converting with a single tile. The bottom right output pixel
411 	 * should sample as close as possible to the bottom right input pixel
412 	 * out of the decimator, but not overshoot it:
413 	 */
414 	resize_coeff_h = 8192 * (downsized_width - 1) / (resized_width - 1);
415 	resize_coeff_v = 8192 * (downsized_height - 1) / (resized_height - 1);
416 
417 	dev_dbg(ctx->chan->priv->ipu->dev,
418 		"%s: hscale: >>%u, *8192/%u vscale: >>%u, *8192/%u, %ux%u tiles\n",
419 		__func__, downsize_coeff_h, resize_coeff_h, downsize_coeff_v,
420 		resize_coeff_v, ctx->in.num_cols, ctx->in.num_rows);
421 
422 	if (downsize_coeff_h > 2 || downsize_coeff_v  > 2 ||
423 	    resize_coeff_h > 0x3fff || resize_coeff_v > 0x3fff)
424 		return -EINVAL;
425 
426 	ctx->downsize_coeff_h = downsize_coeff_h;
427 	ctx->downsize_coeff_v = downsize_coeff_v;
428 	ctx->image_resize_coeff_h = resize_coeff_h;
429 	ctx->image_resize_coeff_v = resize_coeff_v;
430 
431 	return 0;
432 }
433 
434 #define round_closest(x, y) round_down((x) + (y)/2, (y))
435 
436 /*
437  * Find the best aligned seam position in the inverval [out_start, out_end].
438  * Rotation and image offsets are out of scope.
439  *
440  * @out_start: start of inverval, must be within 1024 pixels / lines
441  *             of out_end
442  * @out_end: end of interval, smaller than or equal to out_edge
443  * @in_edge: input right / bottom edge
444  * @out_edge: output right / bottom edge
445  * @in_align: input alignment, either horizontal 8-byte line start address
446  *            alignment, or pixel alignment due to image format
447  * @out_align: output alignment, either horizontal 8-byte line start address
448  *             alignment, or pixel alignment due to image format or rotator
449  *             block size
450  * @in_burst: horizontal input burst size in case of horizontal flip
451  * @out_burst: horizontal output burst size or rotator block size
452  * @downsize_coeff: downsizing section coefficient
453  * @resize_coeff: main processing section resizing coefficient
454  * @_in_seam: aligned input seam position return value
455  * @_out_seam: aligned output seam position return value
456  */
457 static void find_best_seam(struct ipu_image_convert_ctx *ctx,
458 			   unsigned int out_start,
459 			   unsigned int out_end,
460 			   unsigned int in_edge,
461 			   unsigned int out_edge,
462 			   unsigned int in_align,
463 			   unsigned int out_align,
464 			   unsigned int in_burst,
465 			   unsigned int out_burst,
466 			   unsigned int downsize_coeff,
467 			   unsigned int resize_coeff,
468 			   u32 *_in_seam,
469 			   u32 *_out_seam)
470 {
471 	struct device *dev = ctx->chan->priv->ipu->dev;
472 	unsigned int out_pos;
473 	/* Input / output seam position candidates */
474 	unsigned int out_seam = 0;
475 	unsigned int in_seam = 0;
476 	unsigned int min_diff = UINT_MAX;
477 
478 	/*
479 	 * Output tiles must start at a multiple of 8 bytes horizontally and
480 	 * possibly at an even line horizontally depending on the pixel format.
481 	 * Only consider output aligned positions for the seam.
482 	 */
483 	out_start = round_up(out_start, out_align);
484 	for (out_pos = out_start; out_pos < out_end; out_pos += out_align) {
485 		unsigned int in_pos;
486 		unsigned int in_pos_aligned;
487 		unsigned int abs_diff;
488 
489 		/*
490 		 * Tiles in the right row / bottom column may not be allowed to
491 		 * overshoot horizontally / vertically. out_burst may be the
492 		 * actual DMA burst size, or the rotator block size.
493 		 */
494 		if ((out_burst > 1) && (out_edge - out_pos) % out_burst)
495 			continue;
496 
497 		/*
498 		 * Input sample position, corresponding to out_pos, 19.13 fixed
499 		 * point.
500 		 */
501 		in_pos = (out_pos * resize_coeff) << downsize_coeff;
502 		/*
503 		 * The closest input sample position that we could actually
504 		 * start the input tile at, 19.13 fixed point.
505 		 */
506 		in_pos_aligned = round_closest(in_pos, 8192U * in_align);
507 
508 		if ((in_burst > 1) &&
509 		    (in_edge - in_pos_aligned / 8192U) % in_burst)
510 			continue;
511 
512 		if (in_pos < in_pos_aligned)
513 			abs_diff = in_pos_aligned - in_pos;
514 		else
515 			abs_diff = in_pos - in_pos_aligned;
516 
517 		if (abs_diff < min_diff) {
518 			in_seam = in_pos_aligned;
519 			out_seam = out_pos;
520 			min_diff = abs_diff;
521 		}
522 	}
523 
524 	*_out_seam = out_seam;
525 	/* Convert 19.13 fixed point to integer seam position */
526 	*_in_seam = DIV_ROUND_CLOSEST(in_seam, 8192U);
527 
528 	dev_dbg(dev, "%s: out_seam %u(%u) in [%u, %u], in_seam %u(%u) diff %u.%03u\n",
529 		__func__, out_seam, out_align, out_start, out_end,
530 		*_in_seam, in_align, min_diff / 8192,
531 		DIV_ROUND_CLOSEST(min_diff % 8192 * 1000, 8192));
532 }
533 
534 /*
535  * Tile left edges are required to be aligned to multiples of 8 bytes
536  * by the IDMAC.
537  */
538 static inline u32 tile_left_align(const struct ipu_image_pixfmt *fmt)
539 {
540 	if (fmt->planar)
541 		return fmt->uv_packed ? 8 : 8 * fmt->uv_width_dec;
542 	else
543 		return fmt->bpp == 32 ? 2 : fmt->bpp == 16 ? 4 : 8;
544 }
545 
546 /*
547  * Tile top edge alignment is only limited by chroma subsampling.
548  */
549 static inline u32 tile_top_align(const struct ipu_image_pixfmt *fmt)
550 {
551 	return fmt->uv_height_dec > 1 ? 2 : 1;
552 }
553 
554 static inline u32 tile_width_align(enum ipu_image_convert_type type,
555 				   const struct ipu_image_pixfmt *fmt,
556 				   enum ipu_rotate_mode rot_mode)
557 {
558 	if (type == IMAGE_CONVERT_IN) {
559 		/*
560 		 * The IC burst reads 8 pixels at a time. Reading beyond the
561 		 * end of the line is usually acceptable. Those pixels are
562 		 * ignored, unless the IC has to write the scaled line in
563 		 * reverse.
564 		 */
565 		return (!ipu_rot_mode_is_irt(rot_mode) &&
566 			(rot_mode & IPU_ROT_BIT_HFLIP)) ? 8 : 2;
567 	}
568 
569 	/*
570 	 * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
571 	 * formats to guarantee 8-byte aligned line start addresses in the
572 	 * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
573 	 * for all other formats.
574 	 */
575 	return (ipu_rot_mode_is_irt(rot_mode) &&
576 		fmt->planar && !fmt->uv_packed) ?
577 		8 * fmt->uv_width_dec : 8;
578 }
579 
580 static inline u32 tile_height_align(enum ipu_image_convert_type type,
581 				    const struct ipu_image_pixfmt *fmt,
582 				    enum ipu_rotate_mode rot_mode)
583 {
584 	if (type == IMAGE_CONVERT_IN || !ipu_rot_mode_is_irt(rot_mode))
585 		return 2;
586 
587 	/*
588 	 * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
589 	 * formats to guarantee 8-byte aligned line start addresses in the
590 	 * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
591 	 * for all other formats.
592 	 */
593 	return (fmt->planar && !fmt->uv_packed) ? 8 * fmt->uv_width_dec : 8;
594 }
595 
596 /*
597  * Fill in left position and width and for all tiles in an input column, and
598  * for all corresponding output tiles. If the 90° rotator is used, the output
599  * tiles are in a row, and output tile top position and height are set.
600  */
601 static void fill_tile_column(struct ipu_image_convert_ctx *ctx,
602 			     unsigned int col,
603 			     struct ipu_image_convert_image *in,
604 			     unsigned int in_left, unsigned int in_width,
605 			     struct ipu_image_convert_image *out,
606 			     unsigned int out_left, unsigned int out_width)
607 {
608 	unsigned int row, tile_idx;
609 	struct ipu_image_tile *in_tile, *out_tile;
610 
611 	for (row = 0; row < in->num_rows; row++) {
612 		tile_idx = in->num_cols * row + col;
613 		in_tile = &in->tile[tile_idx];
614 		out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
615 
616 		in_tile->left = in_left;
617 		in_tile->width = in_width;
618 
619 		if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
620 			out_tile->top = out_left;
621 			out_tile->height = out_width;
622 		} else {
623 			out_tile->left = out_left;
624 			out_tile->width = out_width;
625 		}
626 	}
627 }
628 
629 /*
630  * Fill in top position and height and for all tiles in an input row, and
631  * for all corresponding output tiles. If the 90° rotator is used, the output
632  * tiles are in a column, and output tile left position and width are set.
633  */
634 static void fill_tile_row(struct ipu_image_convert_ctx *ctx, unsigned int row,
635 			  struct ipu_image_convert_image *in,
636 			  unsigned int in_top, unsigned int in_height,
637 			  struct ipu_image_convert_image *out,
638 			  unsigned int out_top, unsigned int out_height)
639 {
640 	unsigned int col, tile_idx;
641 	struct ipu_image_tile *in_tile, *out_tile;
642 
643 	for (col = 0; col < in->num_cols; col++) {
644 		tile_idx = in->num_cols * row + col;
645 		in_tile = &in->tile[tile_idx];
646 		out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
647 
648 		in_tile->top = in_top;
649 		in_tile->height = in_height;
650 
651 		if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
652 			out_tile->left = out_top;
653 			out_tile->width = out_height;
654 		} else {
655 			out_tile->top = out_top;
656 			out_tile->height = out_height;
657 		}
658 	}
659 }
660 
661 /*
662  * Find the best horizontal and vertical seam positions to split into tiles.
663  * Minimize the fractional part of the input sampling position for the
664  * top / left pixels of each tile.
665  */
666 static void find_seams(struct ipu_image_convert_ctx *ctx,
667 		       struct ipu_image_convert_image *in,
668 		       struct ipu_image_convert_image *out)
669 {
670 	struct device *dev = ctx->chan->priv->ipu->dev;
671 	unsigned int resized_width = out->base.rect.width;
672 	unsigned int resized_height = out->base.rect.height;
673 	unsigned int col;
674 	unsigned int row;
675 	unsigned int in_left_align = tile_left_align(in->fmt);
676 	unsigned int in_top_align = tile_top_align(in->fmt);
677 	unsigned int out_left_align = tile_left_align(out->fmt);
678 	unsigned int out_top_align = tile_top_align(out->fmt);
679 	unsigned int out_width_align = tile_width_align(out->type, out->fmt,
680 							ctx->rot_mode);
681 	unsigned int out_height_align = tile_height_align(out->type, out->fmt,
682 							  ctx->rot_mode);
683 	unsigned int in_right = in->base.rect.width;
684 	unsigned int in_bottom = in->base.rect.height;
685 	unsigned int out_right = out->base.rect.width;
686 	unsigned int out_bottom = out->base.rect.height;
687 	unsigned int flipped_out_left;
688 	unsigned int flipped_out_top;
689 
690 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
691 		/* Switch width/height and align top left to IRT block size */
692 		resized_width = out->base.rect.height;
693 		resized_height = out->base.rect.width;
694 		out_left_align = out_height_align;
695 		out_top_align = out_width_align;
696 		out_width_align = out_left_align;
697 		out_height_align = out_top_align;
698 		out_right = out->base.rect.height;
699 		out_bottom = out->base.rect.width;
700 	}
701 
702 	for (col = in->num_cols - 1; col > 0; col--) {
703 		bool allow_in_overshoot = ipu_rot_mode_is_irt(ctx->rot_mode) ||
704 					  !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
705 		bool allow_out_overshoot = (col < in->num_cols - 1) &&
706 					   !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
707 		unsigned int out_start;
708 		unsigned int out_end;
709 		unsigned int in_left;
710 		unsigned int out_left;
711 
712 		/*
713 		 * Align input width to burst length if the scaling step flips
714 		 * horizontally.
715 		 */
716 
717 		/* Start within 1024 pixels of the right edge */
718 		out_start = max_t(int, 0, out_right - 1024);
719 		/* End before having to add more columns to the left */
720 		out_end = min_t(unsigned int, out_right, col * 1024);
721 
722 		find_best_seam(ctx, out_start, out_end,
723 			       in_right, out_right,
724 			       in_left_align, out_left_align,
725 			       allow_in_overshoot ? 1 : 8 /* burst length */,
726 			       allow_out_overshoot ? 1 : out_width_align,
727 			       ctx->downsize_coeff_h, ctx->image_resize_coeff_h,
728 			       &in_left, &out_left);
729 
730 		if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
731 			flipped_out_left = resized_width - out_right;
732 		else
733 			flipped_out_left = out_left;
734 
735 		fill_tile_column(ctx, col, in, in_left, in_right - in_left,
736 				 out, flipped_out_left, out_right - out_left);
737 
738 		dev_dbg(dev, "%s: col %u: %u, %u -> %u, %u\n", __func__, col,
739 			in_left, in_right - in_left,
740 			flipped_out_left, out_right - out_left);
741 
742 		in_right = in_left;
743 		out_right = out_left;
744 	}
745 
746 	flipped_out_left = (ctx->rot_mode & IPU_ROT_BIT_HFLIP) ?
747 			   resized_width - out_right : 0;
748 
749 	fill_tile_column(ctx, 0, in, 0, in_right,
750 			 out, flipped_out_left, out_right);
751 
752 	dev_dbg(dev, "%s: col 0: 0, %u -> %u, %u\n", __func__,
753 		in_right, flipped_out_left, out_right);
754 
755 	for (row = in->num_rows - 1; row > 0; row--) {
756 		bool allow_overshoot = row < in->num_rows - 1;
757 		unsigned int out_start;
758 		unsigned int out_end;
759 		unsigned int in_top;
760 		unsigned int out_top;
761 
762 		/* Start within 1024 lines of the bottom edge */
763 		out_start = max_t(int, 0, out_bottom - 1024);
764 		/* End before having to add more rows above */
765 		out_end = min_t(unsigned int, out_bottom, row * 1024);
766 
767 		find_best_seam(ctx, out_start, out_end,
768 			       in_bottom, out_bottom,
769 			       in_top_align, out_top_align,
770 			       1, allow_overshoot ? 1 : out_height_align,
771 			       ctx->downsize_coeff_v, ctx->image_resize_coeff_v,
772 			       &in_top, &out_top);
773 
774 		if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
775 		    ipu_rot_mode_is_irt(ctx->rot_mode))
776 			flipped_out_top = resized_height - out_bottom;
777 		else
778 			flipped_out_top = out_top;
779 
780 		fill_tile_row(ctx, row, in, in_top, in_bottom - in_top,
781 			      out, flipped_out_top, out_bottom - out_top);
782 
783 		dev_dbg(dev, "%s: row %u: %u, %u -> %u, %u\n", __func__, row,
784 			in_top, in_bottom - in_top,
785 			flipped_out_top, out_bottom - out_top);
786 
787 		in_bottom = in_top;
788 		out_bottom = out_top;
789 	}
790 
791 	if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
792 	    ipu_rot_mode_is_irt(ctx->rot_mode))
793 		flipped_out_top = resized_height - out_bottom;
794 	else
795 		flipped_out_top = 0;
796 
797 	fill_tile_row(ctx, 0, in, 0, in_bottom,
798 		      out, flipped_out_top, out_bottom);
799 
800 	dev_dbg(dev, "%s: row 0: 0, %u -> %u, %u\n", __func__,
801 		in_bottom, flipped_out_top, out_bottom);
802 }
803 
804 static void calc_tile_dimensions(struct ipu_image_convert_ctx *ctx,
805 				 struct ipu_image_convert_image *image)
806 {
807 	struct ipu_image_convert_chan *chan = ctx->chan;
808 	struct ipu_image_convert_priv *priv = chan->priv;
809 	unsigned int i;
810 
811 	for (i = 0; i < ctx->num_tiles; i++) {
812 		struct ipu_image_tile *tile;
813 		const unsigned int row = i / image->num_cols;
814 		const unsigned int col = i % image->num_cols;
815 
816 		if (image->type == IMAGE_CONVERT_OUT)
817 			tile = &image->tile[ctx->out_tile_map[i]];
818 		else
819 			tile = &image->tile[i];
820 
821 		tile->size = ((tile->height * image->fmt->bpp) >> 3) *
822 			tile->width;
823 
824 		if (image->fmt->planar) {
825 			tile->stride = tile->width;
826 			tile->rot_stride = tile->height;
827 		} else {
828 			tile->stride =
829 				(image->fmt->bpp * tile->width) >> 3;
830 			tile->rot_stride =
831 				(image->fmt->bpp * tile->height) >> 3;
832 		}
833 
834 		dev_dbg(priv->ipu->dev,
835 			"task %u: ctx %p: %s@[%u,%u]: %ux%u@%u,%u\n",
836 			chan->ic_task, ctx,
837 			image->type == IMAGE_CONVERT_IN ? "Input" : "Output",
838 			row, col,
839 			tile->width, tile->height, tile->left, tile->top);
840 	}
841 }
842 
843 /*
844  * Use the rotation transformation to find the tile coordinates
845  * (row, col) of a tile in the destination frame that corresponds
846  * to the given tile coordinates of a source frame. The destination
847  * coordinate is then converted to a tile index.
848  */
849 static int transform_tile_index(struct ipu_image_convert_ctx *ctx,
850 				int src_row, int src_col)
851 {
852 	struct ipu_image_convert_chan *chan = ctx->chan;
853 	struct ipu_image_convert_priv *priv = chan->priv;
854 	struct ipu_image_convert_image *s_image = &ctx->in;
855 	struct ipu_image_convert_image *d_image = &ctx->out;
856 	int dst_row, dst_col;
857 
858 	/* with no rotation it's a 1:1 mapping */
859 	if (ctx->rot_mode == IPU_ROTATE_NONE)
860 		return src_row * s_image->num_cols + src_col;
861 
862 	/*
863 	 * before doing the transform, first we have to translate
864 	 * source row,col for an origin in the center of s_image
865 	 */
866 	src_row = src_row * 2 - (s_image->num_rows - 1);
867 	src_col = src_col * 2 - (s_image->num_cols - 1);
868 
869 	/* do the rotation transform */
870 	if (ctx->rot_mode & IPU_ROT_BIT_90) {
871 		dst_col = -src_row;
872 		dst_row = src_col;
873 	} else {
874 		dst_col = src_col;
875 		dst_row = src_row;
876 	}
877 
878 	/* apply flip */
879 	if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
880 		dst_col = -dst_col;
881 	if (ctx->rot_mode & IPU_ROT_BIT_VFLIP)
882 		dst_row = -dst_row;
883 
884 	dev_dbg(priv->ipu->dev, "task %u: ctx %p: [%d,%d] --> [%d,%d]\n",
885 		chan->ic_task, ctx, src_col, src_row, dst_col, dst_row);
886 
887 	/*
888 	 * finally translate dest row,col using an origin in upper
889 	 * left of d_image
890 	 */
891 	dst_row += d_image->num_rows - 1;
892 	dst_col += d_image->num_cols - 1;
893 	dst_row /= 2;
894 	dst_col /= 2;
895 
896 	return dst_row * d_image->num_cols + dst_col;
897 }
898 
899 /*
900  * Fill the out_tile_map[] with transformed destination tile indeces.
901  */
902 static void calc_out_tile_map(struct ipu_image_convert_ctx *ctx)
903 {
904 	struct ipu_image_convert_image *s_image = &ctx->in;
905 	unsigned int row, col, tile = 0;
906 
907 	for (row = 0; row < s_image->num_rows; row++) {
908 		for (col = 0; col < s_image->num_cols; col++) {
909 			ctx->out_tile_map[tile] =
910 				transform_tile_index(ctx, row, col);
911 			tile++;
912 		}
913 	}
914 }
915 
916 static int calc_tile_offsets_planar(struct ipu_image_convert_ctx *ctx,
917 				    struct ipu_image_convert_image *image)
918 {
919 	struct ipu_image_convert_chan *chan = ctx->chan;
920 	struct ipu_image_convert_priv *priv = chan->priv;
921 	const struct ipu_image_pixfmt *fmt = image->fmt;
922 	unsigned int row, col, tile = 0;
923 	u32 H, top, y_stride, uv_stride;
924 	u32 uv_row_off, uv_col_off, uv_off, u_off, v_off, tmp;
925 	u32 y_row_off, y_col_off, y_off;
926 	u32 y_size, uv_size;
927 
928 	/* setup some convenience vars */
929 	H = image->base.pix.height;
930 
931 	y_stride = image->stride;
932 	uv_stride = y_stride / fmt->uv_width_dec;
933 	if (fmt->uv_packed)
934 		uv_stride *= 2;
935 
936 	y_size = H * y_stride;
937 	uv_size = y_size / (fmt->uv_width_dec * fmt->uv_height_dec);
938 
939 	for (row = 0; row < image->num_rows; row++) {
940 		top = image->tile[tile].top;
941 		y_row_off = top * y_stride;
942 		uv_row_off = (top * uv_stride) / fmt->uv_height_dec;
943 
944 		for (col = 0; col < image->num_cols; col++) {
945 			y_col_off = image->tile[tile].left;
946 			uv_col_off = y_col_off / fmt->uv_width_dec;
947 			if (fmt->uv_packed)
948 				uv_col_off *= 2;
949 
950 			y_off = y_row_off + y_col_off;
951 			uv_off = uv_row_off + uv_col_off;
952 
953 			u_off = y_size - y_off + uv_off;
954 			v_off = (fmt->uv_packed) ? 0 : u_off + uv_size;
955 			if (fmt->uv_swapped) {
956 				tmp = u_off;
957 				u_off = v_off;
958 				v_off = tmp;
959 			}
960 
961 			image->tile[tile].offset = y_off;
962 			image->tile[tile].u_off = u_off;
963 			image->tile[tile++].v_off = v_off;
964 
965 			if ((y_off & 0x7) || (u_off & 0x7) || (v_off & 0x7)) {
966 				dev_err(priv->ipu->dev,
967 					"task %u: ctx %p: %s@[%d,%d]: "
968 					"y_off %08x, u_off %08x, v_off %08x\n",
969 					chan->ic_task, ctx,
970 					image->type == IMAGE_CONVERT_IN ?
971 					"Input" : "Output", row, col,
972 					y_off, u_off, v_off);
973 				return -EINVAL;
974 			}
975 		}
976 	}
977 
978 	return 0;
979 }
980 
981 static int calc_tile_offsets_packed(struct ipu_image_convert_ctx *ctx,
982 				    struct ipu_image_convert_image *image)
983 {
984 	struct ipu_image_convert_chan *chan = ctx->chan;
985 	struct ipu_image_convert_priv *priv = chan->priv;
986 	const struct ipu_image_pixfmt *fmt = image->fmt;
987 	unsigned int row, col, tile = 0;
988 	u32 bpp, stride, offset;
989 	u32 row_off, col_off;
990 
991 	/* setup some convenience vars */
992 	stride = image->stride;
993 	bpp = fmt->bpp;
994 
995 	for (row = 0; row < image->num_rows; row++) {
996 		row_off = image->tile[tile].top * stride;
997 
998 		for (col = 0; col < image->num_cols; col++) {
999 			col_off = (image->tile[tile].left * bpp) >> 3;
1000 
1001 			offset = row_off + col_off;
1002 
1003 			image->tile[tile].offset = offset;
1004 			image->tile[tile].u_off = 0;
1005 			image->tile[tile++].v_off = 0;
1006 
1007 			if (offset & 0x7) {
1008 				dev_err(priv->ipu->dev,
1009 					"task %u: ctx %p: %s@[%d,%d]: "
1010 					"phys %08x\n",
1011 					chan->ic_task, ctx,
1012 					image->type == IMAGE_CONVERT_IN ?
1013 					"Input" : "Output", row, col,
1014 					row_off + col_off);
1015 				return -EINVAL;
1016 			}
1017 		}
1018 	}
1019 
1020 	return 0;
1021 }
1022 
1023 static int calc_tile_offsets(struct ipu_image_convert_ctx *ctx,
1024 			      struct ipu_image_convert_image *image)
1025 {
1026 	if (image->fmt->planar)
1027 		return calc_tile_offsets_planar(ctx, image);
1028 
1029 	return calc_tile_offsets_packed(ctx, image);
1030 }
1031 
1032 /*
1033  * Calculate the resizing ratio for the IC main processing section given input
1034  * size, fixed downsizing coefficient, and output size.
1035  * Either round to closest for the next tile's first pixel to minimize seams
1036  * and distortion (for all but right column / bottom row), or round down to
1037  * avoid sampling beyond the edges of the input image for this tile's last
1038  * pixel.
1039  * Returns the resizing coefficient, resizing ratio is 8192.0 / resize_coeff.
1040  */
1041 static u32 calc_resize_coeff(u32 input_size, u32 downsize_coeff,
1042 			     u32 output_size, bool allow_overshoot)
1043 {
1044 	u32 downsized = input_size >> downsize_coeff;
1045 
1046 	if (allow_overshoot)
1047 		return DIV_ROUND_CLOSEST(8192 * downsized, output_size);
1048 	else
1049 		return 8192 * (downsized - 1) / (output_size - 1);
1050 }
1051 
1052 /*
1053  * Slightly modify resize coefficients per tile to hide the bilinear
1054  * interpolator reset at tile borders, shifting the right / bottom edge
1055  * by up to a half input pixel. This removes noticeable seams between
1056  * tiles at higher upscaling factors.
1057  */
1058 static void calc_tile_resize_coefficients(struct ipu_image_convert_ctx *ctx)
1059 {
1060 	struct ipu_image_convert_chan *chan = ctx->chan;
1061 	struct ipu_image_convert_priv *priv = chan->priv;
1062 	struct ipu_image_tile *in_tile, *out_tile;
1063 	unsigned int col, row, tile_idx;
1064 	unsigned int last_output;
1065 
1066 	for (col = 0; col < ctx->in.num_cols; col++) {
1067 		bool closest = (col < ctx->in.num_cols - 1) &&
1068 			       !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
1069 		u32 resized_width;
1070 		u32 resize_coeff_h;
1071 
1072 		tile_idx = col;
1073 		in_tile = &ctx->in.tile[tile_idx];
1074 		out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1075 
1076 		if (ipu_rot_mode_is_irt(ctx->rot_mode))
1077 			resized_width = out_tile->height;
1078 		else
1079 			resized_width = out_tile->width;
1080 
1081 		resize_coeff_h = calc_resize_coeff(in_tile->width,
1082 						   ctx->downsize_coeff_h,
1083 						   resized_width, closest);
1084 
1085 		dev_dbg(priv->ipu->dev, "%s: column %u hscale: *8192/%u\n",
1086 			__func__, col, resize_coeff_h);
1087 
1088 
1089 		for (row = 0; row < ctx->in.num_rows; row++) {
1090 			tile_idx = row * ctx->in.num_cols + col;
1091 			in_tile = &ctx->in.tile[tile_idx];
1092 			out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1093 
1094 			/*
1095 			 * With the horizontal scaling factor known, round up
1096 			 * resized width (output width or height) to burst size.
1097 			 */
1098 			if (ipu_rot_mode_is_irt(ctx->rot_mode))
1099 				out_tile->height = round_up(resized_width, 8);
1100 			else
1101 				out_tile->width = round_up(resized_width, 8);
1102 
1103 			/*
1104 			 * Calculate input width from the last accessed input
1105 			 * pixel given resized width and scaling coefficients.
1106 			 * Round up to burst size.
1107 			 */
1108 			last_output = round_up(resized_width, 8) - 1;
1109 			if (closest)
1110 				last_output++;
1111 			in_tile->width = round_up(
1112 				(DIV_ROUND_UP(last_output * resize_coeff_h,
1113 					      8192) + 1)
1114 				<< ctx->downsize_coeff_h, 8);
1115 		}
1116 
1117 		ctx->resize_coeffs_h[col] = resize_coeff_h;
1118 	}
1119 
1120 	for (row = 0; row < ctx->in.num_rows; row++) {
1121 		bool closest = (row < ctx->in.num_rows - 1) &&
1122 			       !(ctx->rot_mode & IPU_ROT_BIT_VFLIP);
1123 		u32 resized_height;
1124 		u32 resize_coeff_v;
1125 
1126 		tile_idx = row * ctx->in.num_cols;
1127 		in_tile = &ctx->in.tile[tile_idx];
1128 		out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1129 
1130 		if (ipu_rot_mode_is_irt(ctx->rot_mode))
1131 			resized_height = out_tile->width;
1132 		else
1133 			resized_height = out_tile->height;
1134 
1135 		resize_coeff_v = calc_resize_coeff(in_tile->height,
1136 						   ctx->downsize_coeff_v,
1137 						   resized_height, closest);
1138 
1139 		dev_dbg(priv->ipu->dev, "%s: row %u vscale: *8192/%u\n",
1140 			__func__, row, resize_coeff_v);
1141 
1142 		for (col = 0; col < ctx->in.num_cols; col++) {
1143 			tile_idx = row * ctx->in.num_cols + col;
1144 			in_tile = &ctx->in.tile[tile_idx];
1145 			out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1146 
1147 			/*
1148 			 * With the vertical scaling factor known, round up
1149 			 * resized height (output width or height) to IDMAC
1150 			 * limitations.
1151 			 */
1152 			if (ipu_rot_mode_is_irt(ctx->rot_mode))
1153 				out_tile->width = round_up(resized_height, 2);
1154 			else
1155 				out_tile->height = round_up(resized_height, 2);
1156 
1157 			/*
1158 			 * Calculate input width from the last accessed input
1159 			 * pixel given resized height and scaling coefficients.
1160 			 * Align to IDMAC restrictions.
1161 			 */
1162 			last_output = round_up(resized_height, 2) - 1;
1163 			if (closest)
1164 				last_output++;
1165 			in_tile->height = round_up(
1166 				(DIV_ROUND_UP(last_output * resize_coeff_v,
1167 					      8192) + 1)
1168 				<< ctx->downsize_coeff_v, 2);
1169 		}
1170 
1171 		ctx->resize_coeffs_v[row] = resize_coeff_v;
1172 	}
1173 }
1174 
1175 /*
1176  * return the number of runs in given queue (pending_q or done_q)
1177  * for this context. hold irqlock when calling.
1178  */
1179 static int get_run_count(struct ipu_image_convert_ctx *ctx,
1180 			 struct list_head *q)
1181 {
1182 	struct ipu_image_convert_run *run;
1183 	int count = 0;
1184 
1185 	lockdep_assert_held(&ctx->chan->irqlock);
1186 
1187 	list_for_each_entry(run, q, list) {
1188 		if (run->ctx == ctx)
1189 			count++;
1190 	}
1191 
1192 	return count;
1193 }
1194 
1195 static void convert_stop(struct ipu_image_convert_run *run)
1196 {
1197 	struct ipu_image_convert_ctx *ctx = run->ctx;
1198 	struct ipu_image_convert_chan *chan = ctx->chan;
1199 	struct ipu_image_convert_priv *priv = chan->priv;
1200 
1201 	dev_dbg(priv->ipu->dev, "%s: task %u: stopping ctx %p run %p\n",
1202 		__func__, chan->ic_task, ctx, run);
1203 
1204 	/* disable IC tasks and the channels */
1205 	ipu_ic_task_disable(chan->ic);
1206 	ipu_idmac_disable_channel(chan->in_chan);
1207 	ipu_idmac_disable_channel(chan->out_chan);
1208 
1209 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1210 		ipu_idmac_disable_channel(chan->rotation_in_chan);
1211 		ipu_idmac_disable_channel(chan->rotation_out_chan);
1212 		ipu_idmac_unlink(chan->out_chan, chan->rotation_in_chan);
1213 	}
1214 
1215 	ipu_ic_disable(chan->ic);
1216 }
1217 
1218 static void init_idmac_channel(struct ipu_image_convert_ctx *ctx,
1219 			       struct ipuv3_channel *channel,
1220 			       struct ipu_image_convert_image *image,
1221 			       enum ipu_rotate_mode rot_mode,
1222 			       bool rot_swap_width_height,
1223 			       unsigned int tile)
1224 {
1225 	struct ipu_image_convert_chan *chan = ctx->chan;
1226 	unsigned int burst_size;
1227 	u32 width, height, stride;
1228 	dma_addr_t addr0, addr1 = 0;
1229 	struct ipu_image tile_image;
1230 	unsigned int tile_idx[2];
1231 
1232 	if (image->type == IMAGE_CONVERT_OUT) {
1233 		tile_idx[0] = ctx->out_tile_map[tile];
1234 		tile_idx[1] = ctx->out_tile_map[1];
1235 	} else {
1236 		tile_idx[0] = tile;
1237 		tile_idx[1] = 1;
1238 	}
1239 
1240 	if (rot_swap_width_height) {
1241 		width = image->tile[tile_idx[0]].height;
1242 		height = image->tile[tile_idx[0]].width;
1243 		stride = image->tile[tile_idx[0]].rot_stride;
1244 		addr0 = ctx->rot_intermediate[0].phys;
1245 		if (ctx->double_buffering)
1246 			addr1 = ctx->rot_intermediate[1].phys;
1247 	} else {
1248 		width = image->tile[tile_idx[0]].width;
1249 		height = image->tile[tile_idx[0]].height;
1250 		stride = image->stride;
1251 		addr0 = image->base.phys0 +
1252 			image->tile[tile_idx[0]].offset;
1253 		if (ctx->double_buffering)
1254 			addr1 = image->base.phys0 +
1255 				image->tile[tile_idx[1]].offset;
1256 	}
1257 
1258 	ipu_cpmem_zero(channel);
1259 
1260 	memset(&tile_image, 0, sizeof(tile_image));
1261 	tile_image.pix.width = tile_image.rect.width = width;
1262 	tile_image.pix.height = tile_image.rect.height = height;
1263 	tile_image.pix.bytesperline = stride;
1264 	tile_image.pix.pixelformat =  image->fmt->fourcc;
1265 	tile_image.phys0 = addr0;
1266 	tile_image.phys1 = addr1;
1267 	if (image->fmt->planar && !rot_swap_width_height) {
1268 		tile_image.u_offset = image->tile[tile_idx[0]].u_off;
1269 		tile_image.v_offset = image->tile[tile_idx[0]].v_off;
1270 	}
1271 
1272 	ipu_cpmem_set_image(channel, &tile_image);
1273 
1274 	if (rot_mode)
1275 		ipu_cpmem_set_rotation(channel, rot_mode);
1276 
1277 	if (channel == chan->rotation_in_chan ||
1278 	    channel == chan->rotation_out_chan) {
1279 		burst_size = 8;
1280 		ipu_cpmem_set_block_mode(channel);
1281 	} else
1282 		burst_size = (width % 16) ? 8 : 16;
1283 
1284 	ipu_cpmem_set_burstsize(channel, burst_size);
1285 
1286 	ipu_ic_task_idma_init(chan->ic, channel, width, height,
1287 			      burst_size, rot_mode);
1288 
1289 	/*
1290 	 * Setting a non-zero AXI ID collides with the PRG AXI snooping, so
1291 	 * only do this when there is no PRG present.
1292 	 */
1293 	if (!channel->ipu->prg_priv)
1294 		ipu_cpmem_set_axi_id(channel, 1);
1295 
1296 	ipu_idmac_set_double_buffer(channel, ctx->double_buffering);
1297 }
1298 
1299 static int convert_start(struct ipu_image_convert_run *run, unsigned int tile)
1300 {
1301 	struct ipu_image_convert_ctx *ctx = run->ctx;
1302 	struct ipu_image_convert_chan *chan = ctx->chan;
1303 	struct ipu_image_convert_priv *priv = chan->priv;
1304 	struct ipu_image_convert_image *s_image = &ctx->in;
1305 	struct ipu_image_convert_image *d_image = &ctx->out;
1306 	enum ipu_color_space src_cs, dest_cs;
1307 	unsigned int dst_tile = ctx->out_tile_map[tile];
1308 	unsigned int dest_width, dest_height;
1309 	unsigned int col, row;
1310 	u32 rsc;
1311 	int ret;
1312 
1313 	dev_dbg(priv->ipu->dev, "%s: task %u: starting ctx %p run %p tile %u -> %u\n",
1314 		__func__, chan->ic_task, ctx, run, tile, dst_tile);
1315 
1316 	src_cs = ipu_pixelformat_to_colorspace(s_image->fmt->fourcc);
1317 	dest_cs = ipu_pixelformat_to_colorspace(d_image->fmt->fourcc);
1318 
1319 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1320 		/* swap width/height for resizer */
1321 		dest_width = d_image->tile[dst_tile].height;
1322 		dest_height = d_image->tile[dst_tile].width;
1323 	} else {
1324 		dest_width = d_image->tile[dst_tile].width;
1325 		dest_height = d_image->tile[dst_tile].height;
1326 	}
1327 
1328 	row = tile / s_image->num_cols;
1329 	col = tile % s_image->num_cols;
1330 
1331 	rsc =  (ctx->downsize_coeff_v << 30) |
1332 	       (ctx->resize_coeffs_v[row] << 16) |
1333 	       (ctx->downsize_coeff_h << 14) |
1334 	       (ctx->resize_coeffs_h[col]);
1335 
1336 	dev_dbg(priv->ipu->dev, "%s: %ux%u -> %ux%u (rsc = 0x%x)\n",
1337 		__func__, s_image->tile[tile].width,
1338 		s_image->tile[tile].height, dest_width, dest_height, rsc);
1339 
1340 	/* setup the IC resizer and CSC */
1341 	ret = ipu_ic_task_init_rsc(chan->ic,
1342 			       s_image->tile[tile].width,
1343 			       s_image->tile[tile].height,
1344 			       dest_width,
1345 			       dest_height,
1346 			       src_cs, dest_cs,
1347 			       rsc);
1348 	if (ret) {
1349 		dev_err(priv->ipu->dev, "ipu_ic_task_init failed, %d\n", ret);
1350 		return ret;
1351 	}
1352 
1353 	/* init the source MEM-->IC PP IDMAC channel */
1354 	init_idmac_channel(ctx, chan->in_chan, s_image,
1355 			   IPU_ROTATE_NONE, false, tile);
1356 
1357 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1358 		/* init the IC PP-->MEM IDMAC channel */
1359 		init_idmac_channel(ctx, chan->out_chan, d_image,
1360 				   IPU_ROTATE_NONE, true, tile);
1361 
1362 		/* init the MEM-->IC PP ROT IDMAC channel */
1363 		init_idmac_channel(ctx, chan->rotation_in_chan, d_image,
1364 				   ctx->rot_mode, true, tile);
1365 
1366 		/* init the destination IC PP ROT-->MEM IDMAC channel */
1367 		init_idmac_channel(ctx, chan->rotation_out_chan, d_image,
1368 				   IPU_ROTATE_NONE, false, tile);
1369 
1370 		/* now link IC PP-->MEM to MEM-->IC PP ROT */
1371 		ipu_idmac_link(chan->out_chan, chan->rotation_in_chan);
1372 	} else {
1373 		/* init the destination IC PP-->MEM IDMAC channel */
1374 		init_idmac_channel(ctx, chan->out_chan, d_image,
1375 				   ctx->rot_mode, false, tile);
1376 	}
1377 
1378 	/* enable the IC */
1379 	ipu_ic_enable(chan->ic);
1380 
1381 	/* set buffers ready */
1382 	ipu_idmac_select_buffer(chan->in_chan, 0);
1383 	ipu_idmac_select_buffer(chan->out_chan, 0);
1384 	if (ipu_rot_mode_is_irt(ctx->rot_mode))
1385 		ipu_idmac_select_buffer(chan->rotation_out_chan, 0);
1386 	if (ctx->double_buffering) {
1387 		ipu_idmac_select_buffer(chan->in_chan, 1);
1388 		ipu_idmac_select_buffer(chan->out_chan, 1);
1389 		if (ipu_rot_mode_is_irt(ctx->rot_mode))
1390 			ipu_idmac_select_buffer(chan->rotation_out_chan, 1);
1391 	}
1392 
1393 	/* enable the channels! */
1394 	ipu_idmac_enable_channel(chan->in_chan);
1395 	ipu_idmac_enable_channel(chan->out_chan);
1396 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1397 		ipu_idmac_enable_channel(chan->rotation_in_chan);
1398 		ipu_idmac_enable_channel(chan->rotation_out_chan);
1399 	}
1400 
1401 	ipu_ic_task_enable(chan->ic);
1402 
1403 	ipu_cpmem_dump(chan->in_chan);
1404 	ipu_cpmem_dump(chan->out_chan);
1405 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1406 		ipu_cpmem_dump(chan->rotation_in_chan);
1407 		ipu_cpmem_dump(chan->rotation_out_chan);
1408 	}
1409 
1410 	ipu_dump(priv->ipu);
1411 
1412 	return 0;
1413 }
1414 
1415 /* hold irqlock when calling */
1416 static int do_run(struct ipu_image_convert_run *run)
1417 {
1418 	struct ipu_image_convert_ctx *ctx = run->ctx;
1419 	struct ipu_image_convert_chan *chan = ctx->chan;
1420 
1421 	lockdep_assert_held(&chan->irqlock);
1422 
1423 	ctx->in.base.phys0 = run->in_phys;
1424 	ctx->out.base.phys0 = run->out_phys;
1425 
1426 	ctx->cur_buf_num = 0;
1427 	ctx->next_tile = 1;
1428 
1429 	/* remove run from pending_q and set as current */
1430 	list_del(&run->list);
1431 	chan->current_run = run;
1432 
1433 	return convert_start(run, 0);
1434 }
1435 
1436 /* hold irqlock when calling */
1437 static void run_next(struct ipu_image_convert_chan *chan)
1438 {
1439 	struct ipu_image_convert_priv *priv = chan->priv;
1440 	struct ipu_image_convert_run *run, *tmp;
1441 	int ret;
1442 
1443 	lockdep_assert_held(&chan->irqlock);
1444 
1445 	list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
1446 		/* skip contexts that are aborting */
1447 		if (run->ctx->aborting) {
1448 			dev_dbg(priv->ipu->dev,
1449 				"%s: task %u: skipping aborting ctx %p run %p\n",
1450 				__func__, chan->ic_task, run->ctx, run);
1451 			continue;
1452 		}
1453 
1454 		ret = do_run(run);
1455 		if (!ret)
1456 			break;
1457 
1458 		/*
1459 		 * something went wrong with start, add the run
1460 		 * to done q and continue to the next run in the
1461 		 * pending q.
1462 		 */
1463 		run->status = ret;
1464 		list_add_tail(&run->list, &chan->done_q);
1465 		chan->current_run = NULL;
1466 	}
1467 }
1468 
1469 static void empty_done_q(struct ipu_image_convert_chan *chan)
1470 {
1471 	struct ipu_image_convert_priv *priv = chan->priv;
1472 	struct ipu_image_convert_run *run;
1473 	unsigned long flags;
1474 
1475 	spin_lock_irqsave(&chan->irqlock, flags);
1476 
1477 	while (!list_empty(&chan->done_q)) {
1478 		run = list_entry(chan->done_q.next,
1479 				 struct ipu_image_convert_run,
1480 				 list);
1481 
1482 		list_del(&run->list);
1483 
1484 		dev_dbg(priv->ipu->dev,
1485 			"%s: task %u: completing ctx %p run %p with %d\n",
1486 			__func__, chan->ic_task, run->ctx, run, run->status);
1487 
1488 		/* call the completion callback and free the run */
1489 		spin_unlock_irqrestore(&chan->irqlock, flags);
1490 		run->ctx->complete(run, run->ctx->complete_context);
1491 		spin_lock_irqsave(&chan->irqlock, flags);
1492 	}
1493 
1494 	spin_unlock_irqrestore(&chan->irqlock, flags);
1495 }
1496 
1497 /*
1498  * the bottom half thread clears out the done_q, calling the
1499  * completion handler for each.
1500  */
1501 static irqreturn_t do_bh(int irq, void *dev_id)
1502 {
1503 	struct ipu_image_convert_chan *chan = dev_id;
1504 	struct ipu_image_convert_priv *priv = chan->priv;
1505 	struct ipu_image_convert_ctx *ctx;
1506 	unsigned long flags;
1507 
1508 	dev_dbg(priv->ipu->dev, "%s: task %u: enter\n", __func__,
1509 		chan->ic_task);
1510 
1511 	empty_done_q(chan);
1512 
1513 	spin_lock_irqsave(&chan->irqlock, flags);
1514 
1515 	/*
1516 	 * the done_q is cleared out, signal any contexts
1517 	 * that are aborting that abort can complete.
1518 	 */
1519 	list_for_each_entry(ctx, &chan->ctx_list, list) {
1520 		if (ctx->aborting) {
1521 			dev_dbg(priv->ipu->dev,
1522 				"%s: task %u: signaling abort for ctx %p\n",
1523 				__func__, chan->ic_task, ctx);
1524 			complete_all(&ctx->aborted);
1525 		}
1526 	}
1527 
1528 	spin_unlock_irqrestore(&chan->irqlock, flags);
1529 
1530 	dev_dbg(priv->ipu->dev, "%s: task %u: exit\n", __func__,
1531 		chan->ic_task);
1532 
1533 	return IRQ_HANDLED;
1534 }
1535 
1536 static bool ic_settings_changed(struct ipu_image_convert_ctx *ctx)
1537 {
1538 	unsigned int cur_tile = ctx->next_tile - 1;
1539 	unsigned int next_tile = ctx->next_tile;
1540 
1541 	if (ctx->resize_coeffs_h[cur_tile % ctx->in.num_cols] !=
1542 	    ctx->resize_coeffs_h[next_tile % ctx->in.num_cols] ||
1543 	    ctx->resize_coeffs_v[cur_tile / ctx->in.num_cols] !=
1544 	    ctx->resize_coeffs_v[next_tile / ctx->in.num_cols] ||
1545 	    ctx->in.tile[cur_tile].width != ctx->in.tile[next_tile].width ||
1546 	    ctx->in.tile[cur_tile].height != ctx->in.tile[next_tile].height ||
1547 	    ctx->out.tile[cur_tile].width != ctx->out.tile[next_tile].width ||
1548 	    ctx->out.tile[cur_tile].height != ctx->out.tile[next_tile].height)
1549 		return true;
1550 
1551 	return false;
1552 }
1553 
1554 /* hold irqlock when calling */
1555 static irqreturn_t do_irq(struct ipu_image_convert_run *run)
1556 {
1557 	struct ipu_image_convert_ctx *ctx = run->ctx;
1558 	struct ipu_image_convert_chan *chan = ctx->chan;
1559 	struct ipu_image_tile *src_tile, *dst_tile;
1560 	struct ipu_image_convert_image *s_image = &ctx->in;
1561 	struct ipu_image_convert_image *d_image = &ctx->out;
1562 	struct ipuv3_channel *outch;
1563 	unsigned int dst_idx;
1564 
1565 	lockdep_assert_held(&chan->irqlock);
1566 
1567 	outch = ipu_rot_mode_is_irt(ctx->rot_mode) ?
1568 		chan->rotation_out_chan : chan->out_chan;
1569 
1570 	/*
1571 	 * It is difficult to stop the channel DMA before the channels
1572 	 * enter the paused state. Without double-buffering the channels
1573 	 * are always in a paused state when the EOF irq occurs, so it
1574 	 * is safe to stop the channels now. For double-buffering we
1575 	 * just ignore the abort until the operation completes, when it
1576 	 * is safe to shut down.
1577 	 */
1578 	if (ctx->aborting && !ctx->double_buffering) {
1579 		convert_stop(run);
1580 		run->status = -EIO;
1581 		goto done;
1582 	}
1583 
1584 	if (ctx->next_tile == ctx->num_tiles) {
1585 		/*
1586 		 * the conversion is complete
1587 		 */
1588 		convert_stop(run);
1589 		run->status = 0;
1590 		goto done;
1591 	}
1592 
1593 	/*
1594 	 * not done, place the next tile buffers.
1595 	 */
1596 	if (!ctx->double_buffering) {
1597 		if (ic_settings_changed(ctx)) {
1598 			convert_stop(run);
1599 			convert_start(run, ctx->next_tile);
1600 		} else {
1601 			src_tile = &s_image->tile[ctx->next_tile];
1602 			dst_idx = ctx->out_tile_map[ctx->next_tile];
1603 			dst_tile = &d_image->tile[dst_idx];
1604 
1605 			ipu_cpmem_set_buffer(chan->in_chan, 0,
1606 					     s_image->base.phys0 +
1607 					     src_tile->offset);
1608 			ipu_cpmem_set_buffer(outch, 0,
1609 					     d_image->base.phys0 +
1610 					     dst_tile->offset);
1611 			if (s_image->fmt->planar)
1612 				ipu_cpmem_set_uv_offset(chan->in_chan,
1613 							src_tile->u_off,
1614 							src_tile->v_off);
1615 			if (d_image->fmt->planar)
1616 				ipu_cpmem_set_uv_offset(outch,
1617 							dst_tile->u_off,
1618 							dst_tile->v_off);
1619 
1620 			ipu_idmac_select_buffer(chan->in_chan, 0);
1621 			ipu_idmac_select_buffer(outch, 0);
1622 		}
1623 	} else if (ctx->next_tile < ctx->num_tiles - 1) {
1624 
1625 		src_tile = &s_image->tile[ctx->next_tile + 1];
1626 		dst_idx = ctx->out_tile_map[ctx->next_tile + 1];
1627 		dst_tile = &d_image->tile[dst_idx];
1628 
1629 		ipu_cpmem_set_buffer(chan->in_chan, ctx->cur_buf_num,
1630 				     s_image->base.phys0 + src_tile->offset);
1631 		ipu_cpmem_set_buffer(outch, ctx->cur_buf_num,
1632 				     d_image->base.phys0 + dst_tile->offset);
1633 
1634 		ipu_idmac_select_buffer(chan->in_chan, ctx->cur_buf_num);
1635 		ipu_idmac_select_buffer(outch, ctx->cur_buf_num);
1636 
1637 		ctx->cur_buf_num ^= 1;
1638 	}
1639 
1640 	ctx->next_tile++;
1641 	return IRQ_HANDLED;
1642 done:
1643 	list_add_tail(&run->list, &chan->done_q);
1644 	chan->current_run = NULL;
1645 	run_next(chan);
1646 	return IRQ_WAKE_THREAD;
1647 }
1648 
1649 static irqreturn_t norotate_irq(int irq, void *data)
1650 {
1651 	struct ipu_image_convert_chan *chan = data;
1652 	struct ipu_image_convert_ctx *ctx;
1653 	struct ipu_image_convert_run *run;
1654 	unsigned long flags;
1655 	irqreturn_t ret;
1656 
1657 	spin_lock_irqsave(&chan->irqlock, flags);
1658 
1659 	/* get current run and its context */
1660 	run = chan->current_run;
1661 	if (!run) {
1662 		ret = IRQ_NONE;
1663 		goto out;
1664 	}
1665 
1666 	ctx = run->ctx;
1667 
1668 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1669 		/* this is a rotation operation, just ignore */
1670 		spin_unlock_irqrestore(&chan->irqlock, flags);
1671 		return IRQ_HANDLED;
1672 	}
1673 
1674 	ret = do_irq(run);
1675 out:
1676 	spin_unlock_irqrestore(&chan->irqlock, flags);
1677 	return ret;
1678 }
1679 
1680 static irqreturn_t rotate_irq(int irq, void *data)
1681 {
1682 	struct ipu_image_convert_chan *chan = data;
1683 	struct ipu_image_convert_priv *priv = chan->priv;
1684 	struct ipu_image_convert_ctx *ctx;
1685 	struct ipu_image_convert_run *run;
1686 	unsigned long flags;
1687 	irqreturn_t ret;
1688 
1689 	spin_lock_irqsave(&chan->irqlock, flags);
1690 
1691 	/* get current run and its context */
1692 	run = chan->current_run;
1693 	if (!run) {
1694 		ret = IRQ_NONE;
1695 		goto out;
1696 	}
1697 
1698 	ctx = run->ctx;
1699 
1700 	if (!ipu_rot_mode_is_irt(ctx->rot_mode)) {
1701 		/* this was NOT a rotation operation, shouldn't happen */
1702 		dev_err(priv->ipu->dev, "Unexpected rotation interrupt\n");
1703 		spin_unlock_irqrestore(&chan->irqlock, flags);
1704 		return IRQ_HANDLED;
1705 	}
1706 
1707 	ret = do_irq(run);
1708 out:
1709 	spin_unlock_irqrestore(&chan->irqlock, flags);
1710 	return ret;
1711 }
1712 
1713 /*
1714  * try to force the completion of runs for this ctx. Called when
1715  * abort wait times out in ipu_image_convert_abort().
1716  */
1717 static void force_abort(struct ipu_image_convert_ctx *ctx)
1718 {
1719 	struct ipu_image_convert_chan *chan = ctx->chan;
1720 	struct ipu_image_convert_run *run;
1721 	unsigned long flags;
1722 
1723 	spin_lock_irqsave(&chan->irqlock, flags);
1724 
1725 	run = chan->current_run;
1726 	if (run && run->ctx == ctx) {
1727 		convert_stop(run);
1728 		run->status = -EIO;
1729 		list_add_tail(&run->list, &chan->done_q);
1730 		chan->current_run = NULL;
1731 		run_next(chan);
1732 	}
1733 
1734 	spin_unlock_irqrestore(&chan->irqlock, flags);
1735 
1736 	empty_done_q(chan);
1737 }
1738 
1739 static void release_ipu_resources(struct ipu_image_convert_chan *chan)
1740 {
1741 	if (chan->out_eof_irq >= 0)
1742 		free_irq(chan->out_eof_irq, chan);
1743 	if (chan->rot_out_eof_irq >= 0)
1744 		free_irq(chan->rot_out_eof_irq, chan);
1745 
1746 	if (!IS_ERR_OR_NULL(chan->in_chan))
1747 		ipu_idmac_put(chan->in_chan);
1748 	if (!IS_ERR_OR_NULL(chan->out_chan))
1749 		ipu_idmac_put(chan->out_chan);
1750 	if (!IS_ERR_OR_NULL(chan->rotation_in_chan))
1751 		ipu_idmac_put(chan->rotation_in_chan);
1752 	if (!IS_ERR_OR_NULL(chan->rotation_out_chan))
1753 		ipu_idmac_put(chan->rotation_out_chan);
1754 	if (!IS_ERR_OR_NULL(chan->ic))
1755 		ipu_ic_put(chan->ic);
1756 
1757 	chan->in_chan = chan->out_chan = chan->rotation_in_chan =
1758 		chan->rotation_out_chan = NULL;
1759 	chan->out_eof_irq = chan->rot_out_eof_irq = -1;
1760 }
1761 
1762 static int get_ipu_resources(struct ipu_image_convert_chan *chan)
1763 {
1764 	const struct ipu_image_convert_dma_chan *dma = chan->dma_ch;
1765 	struct ipu_image_convert_priv *priv = chan->priv;
1766 	int ret;
1767 
1768 	/* get IC */
1769 	chan->ic = ipu_ic_get(priv->ipu, chan->ic_task);
1770 	if (IS_ERR(chan->ic)) {
1771 		dev_err(priv->ipu->dev, "could not acquire IC\n");
1772 		ret = PTR_ERR(chan->ic);
1773 		goto err;
1774 	}
1775 
1776 	/* get IDMAC channels */
1777 	chan->in_chan = ipu_idmac_get(priv->ipu, dma->in);
1778 	chan->out_chan = ipu_idmac_get(priv->ipu, dma->out);
1779 	if (IS_ERR(chan->in_chan) || IS_ERR(chan->out_chan)) {
1780 		dev_err(priv->ipu->dev, "could not acquire idmac channels\n");
1781 		ret = -EBUSY;
1782 		goto err;
1783 	}
1784 
1785 	chan->rotation_in_chan = ipu_idmac_get(priv->ipu, dma->rot_in);
1786 	chan->rotation_out_chan = ipu_idmac_get(priv->ipu, dma->rot_out);
1787 	if (IS_ERR(chan->rotation_in_chan) || IS_ERR(chan->rotation_out_chan)) {
1788 		dev_err(priv->ipu->dev,
1789 			"could not acquire idmac rotation channels\n");
1790 		ret = -EBUSY;
1791 		goto err;
1792 	}
1793 
1794 	/* acquire the EOF interrupts */
1795 	chan->out_eof_irq = ipu_idmac_channel_irq(priv->ipu,
1796 						  chan->out_chan,
1797 						  IPU_IRQ_EOF);
1798 
1799 	ret = request_threaded_irq(chan->out_eof_irq, norotate_irq, do_bh,
1800 				   0, "ipu-ic", chan);
1801 	if (ret < 0) {
1802 		dev_err(priv->ipu->dev, "could not acquire irq %d\n",
1803 			 chan->out_eof_irq);
1804 		chan->out_eof_irq = -1;
1805 		goto err;
1806 	}
1807 
1808 	chan->rot_out_eof_irq = ipu_idmac_channel_irq(priv->ipu,
1809 						     chan->rotation_out_chan,
1810 						     IPU_IRQ_EOF);
1811 
1812 	ret = request_threaded_irq(chan->rot_out_eof_irq, rotate_irq, do_bh,
1813 				   0, "ipu-ic", chan);
1814 	if (ret < 0) {
1815 		dev_err(priv->ipu->dev, "could not acquire irq %d\n",
1816 			chan->rot_out_eof_irq);
1817 		chan->rot_out_eof_irq = -1;
1818 		goto err;
1819 	}
1820 
1821 	return 0;
1822 err:
1823 	release_ipu_resources(chan);
1824 	return ret;
1825 }
1826 
1827 static int fill_image(struct ipu_image_convert_ctx *ctx,
1828 		      struct ipu_image_convert_image *ic_image,
1829 		      struct ipu_image *image,
1830 		      enum ipu_image_convert_type type)
1831 {
1832 	struct ipu_image_convert_priv *priv = ctx->chan->priv;
1833 
1834 	ic_image->base = *image;
1835 	ic_image->type = type;
1836 
1837 	ic_image->fmt = get_format(image->pix.pixelformat);
1838 	if (!ic_image->fmt) {
1839 		dev_err(priv->ipu->dev, "pixelformat not supported for %s\n",
1840 			type == IMAGE_CONVERT_OUT ? "Output" : "Input");
1841 		return -EINVAL;
1842 	}
1843 
1844 	if (ic_image->fmt->planar)
1845 		ic_image->stride = ic_image->base.pix.width;
1846 	else
1847 		ic_image->stride  = ic_image->base.pix.bytesperline;
1848 
1849 	return 0;
1850 }
1851 
1852 /* borrowed from drivers/media/v4l2-core/v4l2-common.c */
1853 static unsigned int clamp_align(unsigned int x, unsigned int min,
1854 				unsigned int max, unsigned int align)
1855 {
1856 	/* Bits that must be zero to be aligned */
1857 	unsigned int mask = ~((1 << align) - 1);
1858 
1859 	/* Clamp to aligned min and max */
1860 	x = clamp(x, (min + ~mask) & mask, max & mask);
1861 
1862 	/* Round to nearest aligned value */
1863 	if (align)
1864 		x = (x + (1 << (align - 1))) & mask;
1865 
1866 	return x;
1867 }
1868 
1869 /* Adjusts input/output images to IPU restrictions */
1870 void ipu_image_convert_adjust(struct ipu_image *in, struct ipu_image *out,
1871 			      enum ipu_rotate_mode rot_mode)
1872 {
1873 	const struct ipu_image_pixfmt *infmt, *outfmt;
1874 	u32 w_align, h_align;
1875 
1876 	infmt = get_format(in->pix.pixelformat);
1877 	outfmt = get_format(out->pix.pixelformat);
1878 
1879 	/* set some default pixel formats if needed */
1880 	if (!infmt) {
1881 		in->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1882 		infmt = get_format(V4L2_PIX_FMT_RGB24);
1883 	}
1884 	if (!outfmt) {
1885 		out->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1886 		outfmt = get_format(V4L2_PIX_FMT_RGB24);
1887 	}
1888 
1889 	/* image converter does not handle fields */
1890 	in->pix.field = out->pix.field = V4L2_FIELD_NONE;
1891 
1892 	/* resizer cannot downsize more than 4:1 */
1893 	if (ipu_rot_mode_is_irt(rot_mode)) {
1894 		out->pix.height = max_t(__u32, out->pix.height,
1895 					in->pix.width / 4);
1896 		out->pix.width = max_t(__u32, out->pix.width,
1897 				       in->pix.height / 4);
1898 	} else {
1899 		out->pix.width = max_t(__u32, out->pix.width,
1900 				       in->pix.width / 4);
1901 		out->pix.height = max_t(__u32, out->pix.height,
1902 					in->pix.height / 4);
1903 	}
1904 
1905 	/* align input width/height */
1906 	w_align = ilog2(tile_width_align(IMAGE_CONVERT_IN, infmt, rot_mode));
1907 	h_align = ilog2(tile_height_align(IMAGE_CONVERT_IN, infmt, rot_mode));
1908 	in->pix.width = clamp_align(in->pix.width, MIN_W, MAX_W, w_align);
1909 	in->pix.height = clamp_align(in->pix.height, MIN_H, MAX_H, h_align);
1910 
1911 	/* align output width/height */
1912 	w_align = ilog2(tile_width_align(IMAGE_CONVERT_OUT, outfmt, rot_mode));
1913 	h_align = ilog2(tile_height_align(IMAGE_CONVERT_OUT, outfmt, rot_mode));
1914 	out->pix.width = clamp_align(out->pix.width, MIN_W, MAX_W, w_align);
1915 	out->pix.height = clamp_align(out->pix.height, MIN_H, MAX_H, h_align);
1916 
1917 	/* set input/output strides and image sizes */
1918 	in->pix.bytesperline = infmt->planar ?
1919 		clamp_align(in->pix.width, 2 << w_align, MAX_W, w_align) :
1920 		clamp_align((in->pix.width * infmt->bpp) >> 3,
1921 			    2 << w_align, MAX_W, w_align);
1922 	in->pix.sizeimage = infmt->planar ?
1923 		(in->pix.height * in->pix.bytesperline * infmt->bpp) >> 3 :
1924 		in->pix.height * in->pix.bytesperline;
1925 	out->pix.bytesperline = outfmt->planar ? out->pix.width :
1926 		(out->pix.width * outfmt->bpp) >> 3;
1927 	out->pix.sizeimage = outfmt->planar ?
1928 		(out->pix.height * out->pix.bytesperline * outfmt->bpp) >> 3 :
1929 		out->pix.height * out->pix.bytesperline;
1930 }
1931 EXPORT_SYMBOL_GPL(ipu_image_convert_adjust);
1932 
1933 /*
1934  * this is used by ipu_image_convert_prepare() to verify set input and
1935  * output images are valid before starting the conversion. Clients can
1936  * also call it before calling ipu_image_convert_prepare().
1937  */
1938 int ipu_image_convert_verify(struct ipu_image *in, struct ipu_image *out,
1939 			     enum ipu_rotate_mode rot_mode)
1940 {
1941 	struct ipu_image testin, testout;
1942 
1943 	testin = *in;
1944 	testout = *out;
1945 
1946 	ipu_image_convert_adjust(&testin, &testout, rot_mode);
1947 
1948 	if (testin.pix.width != in->pix.width ||
1949 	    testin.pix.height != in->pix.height ||
1950 	    testout.pix.width != out->pix.width ||
1951 	    testout.pix.height != out->pix.height)
1952 		return -EINVAL;
1953 
1954 	return 0;
1955 }
1956 EXPORT_SYMBOL_GPL(ipu_image_convert_verify);
1957 
1958 /*
1959  * Call ipu_image_convert_prepare() to prepare for the conversion of
1960  * given images and rotation mode. Returns a new conversion context.
1961  */
1962 struct ipu_image_convert_ctx *
1963 ipu_image_convert_prepare(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
1964 			  struct ipu_image *in, struct ipu_image *out,
1965 			  enum ipu_rotate_mode rot_mode,
1966 			  ipu_image_convert_cb_t complete,
1967 			  void *complete_context)
1968 {
1969 	struct ipu_image_convert_priv *priv = ipu->image_convert_priv;
1970 	struct ipu_image_convert_image *s_image, *d_image;
1971 	struct ipu_image_convert_chan *chan;
1972 	struct ipu_image_convert_ctx *ctx;
1973 	unsigned long flags;
1974 	bool get_res;
1975 	int ret;
1976 
1977 	if (!in || !out || !complete ||
1978 	    (ic_task != IC_TASK_VIEWFINDER &&
1979 	     ic_task != IC_TASK_POST_PROCESSOR))
1980 		return ERR_PTR(-EINVAL);
1981 
1982 	/* verify the in/out images before continuing */
1983 	ret = ipu_image_convert_verify(in, out, rot_mode);
1984 	if (ret) {
1985 		dev_err(priv->ipu->dev, "%s: in/out formats invalid\n",
1986 			__func__);
1987 		return ERR_PTR(ret);
1988 	}
1989 
1990 	chan = &priv->chan[ic_task];
1991 
1992 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1993 	if (!ctx)
1994 		return ERR_PTR(-ENOMEM);
1995 
1996 	dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p\n", __func__,
1997 		chan->ic_task, ctx);
1998 
1999 	ctx->chan = chan;
2000 	init_completion(&ctx->aborted);
2001 
2002 	s_image = &ctx->in;
2003 	d_image = &ctx->out;
2004 
2005 	/* set tiling and rotation */
2006 	d_image->num_rows = num_stripes(out->pix.height);
2007 	d_image->num_cols = num_stripes(out->pix.width);
2008 	if (ipu_rot_mode_is_irt(rot_mode)) {
2009 		s_image->num_rows = d_image->num_cols;
2010 		s_image->num_cols = d_image->num_rows;
2011 	} else {
2012 		s_image->num_rows = d_image->num_rows;
2013 		s_image->num_cols = d_image->num_cols;
2014 	}
2015 
2016 	ctx->num_tiles = d_image->num_cols * d_image->num_rows;
2017 	ctx->rot_mode = rot_mode;
2018 
2019 	ret = fill_image(ctx, s_image, in, IMAGE_CONVERT_IN);
2020 	if (ret)
2021 		goto out_free;
2022 	ret = fill_image(ctx, d_image, out, IMAGE_CONVERT_OUT);
2023 	if (ret)
2024 		goto out_free;
2025 
2026 	ret = calc_image_resize_coefficients(ctx, in, out);
2027 	if (ret)
2028 		goto out_free;
2029 
2030 	calc_out_tile_map(ctx);
2031 
2032 	find_seams(ctx, s_image, d_image);
2033 
2034 	calc_tile_dimensions(ctx, s_image);
2035 	ret = calc_tile_offsets(ctx, s_image);
2036 	if (ret)
2037 		goto out_free;
2038 
2039 	calc_tile_dimensions(ctx, d_image);
2040 	ret = calc_tile_offsets(ctx, d_image);
2041 	if (ret)
2042 		goto out_free;
2043 
2044 	calc_tile_resize_coefficients(ctx);
2045 
2046 	dump_format(ctx, s_image);
2047 	dump_format(ctx, d_image);
2048 
2049 	ctx->complete = complete;
2050 	ctx->complete_context = complete_context;
2051 
2052 	/*
2053 	 * Can we use double-buffering for this operation? If there is
2054 	 * only one tile (the whole image can be converted in a single
2055 	 * operation) there's no point in using double-buffering. Also,
2056 	 * the IPU's IDMAC channels allow only a single U and V plane
2057 	 * offset shared between both buffers, but these offsets change
2058 	 * for every tile, and therefore would have to be updated for
2059 	 * each buffer which is not possible. So double-buffering is
2060 	 * impossible when either the source or destination images are
2061 	 * a planar format (YUV420, YUV422P, etc.).
2062 	 */
2063 	ctx->double_buffering = (ctx->num_tiles > 1 &&
2064 				 !s_image->fmt->planar &&
2065 				 !d_image->fmt->planar);
2066 
2067 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
2068 		unsigned long intermediate_size = d_image->tile[0].size;
2069 		unsigned int i;
2070 
2071 		for (i = 1; i < ctx->num_tiles; i++) {
2072 			if (d_image->tile[i].size > intermediate_size)
2073 				intermediate_size = d_image->tile[i].size;
2074 		}
2075 
2076 		ret = alloc_dma_buf(priv, &ctx->rot_intermediate[0],
2077 				    intermediate_size);
2078 		if (ret)
2079 			goto out_free;
2080 		if (ctx->double_buffering) {
2081 			ret = alloc_dma_buf(priv,
2082 					    &ctx->rot_intermediate[1],
2083 					    intermediate_size);
2084 			if (ret)
2085 				goto out_free_dmabuf0;
2086 		}
2087 	}
2088 
2089 	spin_lock_irqsave(&chan->irqlock, flags);
2090 
2091 	get_res = list_empty(&chan->ctx_list);
2092 
2093 	list_add_tail(&ctx->list, &chan->ctx_list);
2094 
2095 	spin_unlock_irqrestore(&chan->irqlock, flags);
2096 
2097 	if (get_res) {
2098 		ret = get_ipu_resources(chan);
2099 		if (ret)
2100 			goto out_free_dmabuf1;
2101 	}
2102 
2103 	return ctx;
2104 
2105 out_free_dmabuf1:
2106 	free_dma_buf(priv, &ctx->rot_intermediate[1]);
2107 	spin_lock_irqsave(&chan->irqlock, flags);
2108 	list_del(&ctx->list);
2109 	spin_unlock_irqrestore(&chan->irqlock, flags);
2110 out_free_dmabuf0:
2111 	free_dma_buf(priv, &ctx->rot_intermediate[0]);
2112 out_free:
2113 	kfree(ctx);
2114 	return ERR_PTR(ret);
2115 }
2116 EXPORT_SYMBOL_GPL(ipu_image_convert_prepare);
2117 
2118 /*
2119  * Carry out a single image conversion run. Only the physaddr's of the input
2120  * and output image buffers are needed. The conversion context must have
2121  * been created previously with ipu_image_convert_prepare().
2122  */
2123 int ipu_image_convert_queue(struct ipu_image_convert_run *run)
2124 {
2125 	struct ipu_image_convert_chan *chan;
2126 	struct ipu_image_convert_priv *priv;
2127 	struct ipu_image_convert_ctx *ctx;
2128 	unsigned long flags;
2129 	int ret = 0;
2130 
2131 	if (!run || !run->ctx || !run->in_phys || !run->out_phys)
2132 		return -EINVAL;
2133 
2134 	ctx = run->ctx;
2135 	chan = ctx->chan;
2136 	priv = chan->priv;
2137 
2138 	dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p run %p\n", __func__,
2139 		chan->ic_task, ctx, run);
2140 
2141 	INIT_LIST_HEAD(&run->list);
2142 
2143 	spin_lock_irqsave(&chan->irqlock, flags);
2144 
2145 	if (ctx->aborting) {
2146 		ret = -EIO;
2147 		goto unlock;
2148 	}
2149 
2150 	list_add_tail(&run->list, &chan->pending_q);
2151 
2152 	if (!chan->current_run) {
2153 		ret = do_run(run);
2154 		if (ret)
2155 			chan->current_run = NULL;
2156 	}
2157 unlock:
2158 	spin_unlock_irqrestore(&chan->irqlock, flags);
2159 	return ret;
2160 }
2161 EXPORT_SYMBOL_GPL(ipu_image_convert_queue);
2162 
2163 /* Abort any active or pending conversions for this context */
2164 static void __ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2165 {
2166 	struct ipu_image_convert_chan *chan = ctx->chan;
2167 	struct ipu_image_convert_priv *priv = chan->priv;
2168 	struct ipu_image_convert_run *run, *active_run, *tmp;
2169 	unsigned long flags;
2170 	int run_count, ret;
2171 
2172 	spin_lock_irqsave(&chan->irqlock, flags);
2173 
2174 	/* move all remaining pending runs in this context to done_q */
2175 	list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
2176 		if (run->ctx != ctx)
2177 			continue;
2178 		run->status = -EIO;
2179 		list_move_tail(&run->list, &chan->done_q);
2180 	}
2181 
2182 	run_count = get_run_count(ctx, &chan->done_q);
2183 	active_run = (chan->current_run && chan->current_run->ctx == ctx) ?
2184 		chan->current_run : NULL;
2185 
2186 	if (active_run)
2187 		reinit_completion(&ctx->aborted);
2188 
2189 	ctx->aborting = true;
2190 
2191 	spin_unlock_irqrestore(&chan->irqlock, flags);
2192 
2193 	if (!run_count && !active_run) {
2194 		dev_dbg(priv->ipu->dev,
2195 			"%s: task %u: no abort needed for ctx %p\n",
2196 			__func__, chan->ic_task, ctx);
2197 		return;
2198 	}
2199 
2200 	if (!active_run) {
2201 		empty_done_q(chan);
2202 		return;
2203 	}
2204 
2205 	dev_dbg(priv->ipu->dev,
2206 		"%s: task %u: wait for completion: %d runs\n",
2207 		__func__, chan->ic_task, run_count);
2208 
2209 	ret = wait_for_completion_timeout(&ctx->aborted,
2210 					  msecs_to_jiffies(10000));
2211 	if (ret == 0) {
2212 		dev_warn(priv->ipu->dev, "%s: timeout\n", __func__);
2213 		force_abort(ctx);
2214 	}
2215 }
2216 
2217 void ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2218 {
2219 	__ipu_image_convert_abort(ctx);
2220 	ctx->aborting = false;
2221 }
2222 EXPORT_SYMBOL_GPL(ipu_image_convert_abort);
2223 
2224 /* Unprepare image conversion context */
2225 void ipu_image_convert_unprepare(struct ipu_image_convert_ctx *ctx)
2226 {
2227 	struct ipu_image_convert_chan *chan = ctx->chan;
2228 	struct ipu_image_convert_priv *priv = chan->priv;
2229 	unsigned long flags;
2230 	bool put_res;
2231 
2232 	/* make sure no runs are hanging around */
2233 	__ipu_image_convert_abort(ctx);
2234 
2235 	dev_dbg(priv->ipu->dev, "%s: task %u: removing ctx %p\n", __func__,
2236 		chan->ic_task, ctx);
2237 
2238 	spin_lock_irqsave(&chan->irqlock, flags);
2239 
2240 	list_del(&ctx->list);
2241 
2242 	put_res = list_empty(&chan->ctx_list);
2243 
2244 	spin_unlock_irqrestore(&chan->irqlock, flags);
2245 
2246 	if (put_res)
2247 		release_ipu_resources(chan);
2248 
2249 	free_dma_buf(priv, &ctx->rot_intermediate[1]);
2250 	free_dma_buf(priv, &ctx->rot_intermediate[0]);
2251 
2252 	kfree(ctx);
2253 }
2254 EXPORT_SYMBOL_GPL(ipu_image_convert_unprepare);
2255 
2256 /*
2257  * "Canned" asynchronous single image conversion. Allocates and returns
2258  * a new conversion run.  On successful return the caller must free the
2259  * run and call ipu_image_convert_unprepare() after conversion completes.
2260  */
2261 struct ipu_image_convert_run *
2262 ipu_image_convert(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2263 		  struct ipu_image *in, struct ipu_image *out,
2264 		  enum ipu_rotate_mode rot_mode,
2265 		  ipu_image_convert_cb_t complete,
2266 		  void *complete_context)
2267 {
2268 	struct ipu_image_convert_ctx *ctx;
2269 	struct ipu_image_convert_run *run;
2270 	int ret;
2271 
2272 	ctx = ipu_image_convert_prepare(ipu, ic_task, in, out, rot_mode,
2273 					complete, complete_context);
2274 	if (IS_ERR(ctx))
2275 		return ERR_CAST(ctx);
2276 
2277 	run = kzalloc(sizeof(*run), GFP_KERNEL);
2278 	if (!run) {
2279 		ipu_image_convert_unprepare(ctx);
2280 		return ERR_PTR(-ENOMEM);
2281 	}
2282 
2283 	run->ctx = ctx;
2284 	run->in_phys = in->phys0;
2285 	run->out_phys = out->phys0;
2286 
2287 	ret = ipu_image_convert_queue(run);
2288 	if (ret) {
2289 		ipu_image_convert_unprepare(ctx);
2290 		kfree(run);
2291 		return ERR_PTR(ret);
2292 	}
2293 
2294 	return run;
2295 }
2296 EXPORT_SYMBOL_GPL(ipu_image_convert);
2297 
2298 /* "Canned" synchronous single image conversion */
2299 static void image_convert_sync_complete(struct ipu_image_convert_run *run,
2300 					void *data)
2301 {
2302 	struct completion *comp = data;
2303 
2304 	complete(comp);
2305 }
2306 
2307 int ipu_image_convert_sync(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2308 			   struct ipu_image *in, struct ipu_image *out,
2309 			   enum ipu_rotate_mode rot_mode)
2310 {
2311 	struct ipu_image_convert_run *run;
2312 	struct completion comp;
2313 	int ret;
2314 
2315 	init_completion(&comp);
2316 
2317 	run = ipu_image_convert(ipu, ic_task, in, out, rot_mode,
2318 				image_convert_sync_complete, &comp);
2319 	if (IS_ERR(run))
2320 		return PTR_ERR(run);
2321 
2322 	ret = wait_for_completion_timeout(&comp, msecs_to_jiffies(10000));
2323 	ret = (ret == 0) ? -ETIMEDOUT : 0;
2324 
2325 	ipu_image_convert_unprepare(run->ctx);
2326 	kfree(run);
2327 
2328 	return ret;
2329 }
2330 EXPORT_SYMBOL_GPL(ipu_image_convert_sync);
2331 
2332 int ipu_image_convert_init(struct ipu_soc *ipu, struct device *dev)
2333 {
2334 	struct ipu_image_convert_priv *priv;
2335 	int i;
2336 
2337 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
2338 	if (!priv)
2339 		return -ENOMEM;
2340 
2341 	ipu->image_convert_priv = priv;
2342 	priv->ipu = ipu;
2343 
2344 	for (i = 0; i < IC_NUM_TASKS; i++) {
2345 		struct ipu_image_convert_chan *chan = &priv->chan[i];
2346 
2347 		chan->ic_task = i;
2348 		chan->priv = priv;
2349 		chan->dma_ch = &image_convert_dma_chan[i];
2350 		chan->out_eof_irq = -1;
2351 		chan->rot_out_eof_irq = -1;
2352 
2353 		spin_lock_init(&chan->irqlock);
2354 		INIT_LIST_HEAD(&chan->ctx_list);
2355 		INIT_LIST_HEAD(&chan->pending_q);
2356 		INIT_LIST_HEAD(&chan->done_q);
2357 	}
2358 
2359 	return 0;
2360 }
2361 
2362 void ipu_image_convert_exit(struct ipu_soc *ipu)
2363 {
2364 }
2365