1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2012-2016 Mentor Graphics Inc.
4  *
5  * Queued image conversion support, with tiling and rotation.
6  */
7 
8 #include <linux/interrupt.h>
9 #include <linux/dma-mapping.h>
10 #include <video/imx-ipu-image-convert.h>
11 #include "ipu-prv.h"
12 
13 /*
14  * The IC Resizer has a restriction that the output frame from the
15  * resizer must be 1024 or less in both width (pixels) and height
16  * (lines).
17  *
18  * The image converter attempts to split up a conversion when
19  * the desired output (converted) frame resolution exceeds the
20  * IC resizer limit of 1024 in either dimension.
21  *
22  * If either dimension of the output frame exceeds the limit, the
23  * dimension is split into 1, 2, or 4 equal stripes, for a maximum
24  * of 4*4 or 16 tiles. A conversion is then carried out for each
25  * tile (but taking care to pass the full frame stride length to
26  * the DMA channel's parameter memory!). IDMA double-buffering is used
27  * to convert each tile back-to-back when possible (see note below
28  * when double_buffering boolean is set).
29  *
30  * Note that the input frame must be split up into the same number
31  * of tiles as the output frame:
32  *
33  *                       +---------+-----+
34  *   +-----+---+         |  A      | B   |
35  *   | A   | B |         |         |     |
36  *   +-----+---+   -->   +---------+-----+
37  *   | C   | D |         |  C      | D   |
38  *   +-----+---+         |         |     |
39  *                       +---------+-----+
40  *
41  * Clockwise 90° rotations are handled by first rescaling into a
42  * reusable temporary tile buffer and then rotating with the 8x8
43  * block rotator, writing to the correct destination:
44  *
45  *                                         +-----+-----+
46  *                                         |     |     |
47  *   +-----+---+         +---------+       | C   | A   |
48  *   | A   | B |         | A,B, |  |       |     |     |
49  *   +-----+---+   -->   | C,D  |  |  -->  |     |     |
50  *   | C   | D |         +---------+       +-----+-----+
51  *   +-----+---+                           | D   | B   |
52  *                                         |     |     |
53  *                                         +-----+-----+
54  *
55  * If the 8x8 block rotator is used, horizontal or vertical flipping
56  * is done during the rotation step, otherwise flipping is done
57  * during the scaling step.
58  * With rotation or flipping, tile order changes between input and
59  * output image. Tiles are numbered row major from top left to bottom
60  * right for both input and output image.
61  */
62 
63 #define MAX_STRIPES_W    4
64 #define MAX_STRIPES_H    4
65 #define MAX_TILES (MAX_STRIPES_W * MAX_STRIPES_H)
66 
67 #define MIN_W     16
68 #define MIN_H     8
69 #define MAX_W     4096
70 #define MAX_H     4096
71 
72 enum ipu_image_convert_type {
73 	IMAGE_CONVERT_IN = 0,
74 	IMAGE_CONVERT_OUT,
75 };
76 
77 struct ipu_image_convert_dma_buf {
78 	void          *virt;
79 	dma_addr_t    phys;
80 	unsigned long len;
81 };
82 
83 struct ipu_image_convert_dma_chan {
84 	int in;
85 	int out;
86 	int rot_in;
87 	int rot_out;
88 	int vdi_in_p;
89 	int vdi_in;
90 	int vdi_in_n;
91 };
92 
93 /* dimensions of one tile */
94 struct ipu_image_tile {
95 	u32 width;
96 	u32 height;
97 	u32 left;
98 	u32 top;
99 	/* size and strides are in bytes */
100 	u32 size;
101 	u32 stride;
102 	u32 rot_stride;
103 	/* start Y or packed offset of this tile */
104 	u32 offset;
105 	/* offset from start to tile in U plane, for planar formats */
106 	u32 u_off;
107 	/* offset from start to tile in V plane, for planar formats */
108 	u32 v_off;
109 };
110 
111 struct ipu_image_convert_image {
112 	struct ipu_image base;
113 	enum ipu_image_convert_type type;
114 
115 	const struct ipu_image_pixfmt *fmt;
116 	unsigned int stride;
117 
118 	/* # of rows (horizontal stripes) if dest height is > 1024 */
119 	unsigned int num_rows;
120 	/* # of columns (vertical stripes) if dest width is > 1024 */
121 	unsigned int num_cols;
122 
123 	struct ipu_image_tile tile[MAX_TILES];
124 };
125 
126 struct ipu_image_pixfmt {
127 	u32	fourcc;        /* V4L2 fourcc */
128 	int     bpp;           /* total bpp */
129 	int     uv_width_dec;  /* decimation in width for U/V planes */
130 	int     uv_height_dec; /* decimation in height for U/V planes */
131 	bool    planar;        /* planar format */
132 	bool    uv_swapped;    /* U and V planes are swapped */
133 	bool    uv_packed;     /* partial planar (U and V in same plane) */
134 };
135 
136 struct ipu_image_convert_ctx;
137 struct ipu_image_convert_chan;
138 struct ipu_image_convert_priv;
139 
140 struct ipu_image_convert_ctx {
141 	struct ipu_image_convert_chan *chan;
142 
143 	ipu_image_convert_cb_t complete;
144 	void *complete_context;
145 
146 	/* Source/destination image data and rotation mode */
147 	struct ipu_image_convert_image in;
148 	struct ipu_image_convert_image out;
149 	struct ipu_ic_csc csc;
150 	enum ipu_rotate_mode rot_mode;
151 	u32 downsize_coeff_h;
152 	u32 downsize_coeff_v;
153 	u32 image_resize_coeff_h;
154 	u32 image_resize_coeff_v;
155 	u32 resize_coeffs_h[MAX_STRIPES_W];
156 	u32 resize_coeffs_v[MAX_STRIPES_H];
157 
158 	/* intermediate buffer for rotation */
159 	struct ipu_image_convert_dma_buf rot_intermediate[2];
160 
161 	/* current buffer number for double buffering */
162 	int cur_buf_num;
163 
164 	bool aborting;
165 	struct completion aborted;
166 
167 	/* can we use double-buffering for this conversion operation? */
168 	bool double_buffering;
169 	/* num_rows * num_cols */
170 	unsigned int num_tiles;
171 	/* next tile to process */
172 	unsigned int next_tile;
173 	/* where to place converted tile in dest image */
174 	unsigned int out_tile_map[MAX_TILES];
175 
176 	struct list_head list;
177 };
178 
179 struct ipu_image_convert_chan {
180 	struct ipu_image_convert_priv *priv;
181 
182 	enum ipu_ic_task ic_task;
183 	const struct ipu_image_convert_dma_chan *dma_ch;
184 
185 	struct ipu_ic *ic;
186 	struct ipuv3_channel *in_chan;
187 	struct ipuv3_channel *out_chan;
188 	struct ipuv3_channel *rotation_in_chan;
189 	struct ipuv3_channel *rotation_out_chan;
190 
191 	/* the IPU end-of-frame irqs */
192 	int out_eof_irq;
193 	int rot_out_eof_irq;
194 
195 	spinlock_t irqlock;
196 
197 	/* list of convert contexts */
198 	struct list_head ctx_list;
199 	/* queue of conversion runs */
200 	struct list_head pending_q;
201 	/* queue of completed runs */
202 	struct list_head done_q;
203 
204 	/* the current conversion run */
205 	struct ipu_image_convert_run *current_run;
206 };
207 
208 struct ipu_image_convert_priv {
209 	struct ipu_image_convert_chan chan[IC_NUM_TASKS];
210 	struct ipu_soc *ipu;
211 };
212 
213 static const struct ipu_image_convert_dma_chan
214 image_convert_dma_chan[IC_NUM_TASKS] = {
215 	[IC_TASK_VIEWFINDER] = {
216 		.in = IPUV3_CHANNEL_MEM_IC_PRP_VF,
217 		.out = IPUV3_CHANNEL_IC_PRP_VF_MEM,
218 		.rot_in = IPUV3_CHANNEL_MEM_ROT_VF,
219 		.rot_out = IPUV3_CHANNEL_ROT_VF_MEM,
220 		.vdi_in_p = IPUV3_CHANNEL_MEM_VDI_PREV,
221 		.vdi_in = IPUV3_CHANNEL_MEM_VDI_CUR,
222 		.vdi_in_n = IPUV3_CHANNEL_MEM_VDI_NEXT,
223 	},
224 	[IC_TASK_POST_PROCESSOR] = {
225 		.in = IPUV3_CHANNEL_MEM_IC_PP,
226 		.out = IPUV3_CHANNEL_IC_PP_MEM,
227 		.rot_in = IPUV3_CHANNEL_MEM_ROT_PP,
228 		.rot_out = IPUV3_CHANNEL_ROT_PP_MEM,
229 	},
230 };
231 
232 static const struct ipu_image_pixfmt image_convert_formats[] = {
233 	{
234 		.fourcc	= V4L2_PIX_FMT_RGB565,
235 		.bpp    = 16,
236 	}, {
237 		.fourcc	= V4L2_PIX_FMT_RGB24,
238 		.bpp    = 24,
239 	}, {
240 		.fourcc	= V4L2_PIX_FMT_BGR24,
241 		.bpp    = 24,
242 	}, {
243 		.fourcc	= V4L2_PIX_FMT_RGB32,
244 		.bpp    = 32,
245 	}, {
246 		.fourcc	= V4L2_PIX_FMT_BGR32,
247 		.bpp    = 32,
248 	}, {
249 		.fourcc	= V4L2_PIX_FMT_XRGB32,
250 		.bpp    = 32,
251 	}, {
252 		.fourcc	= V4L2_PIX_FMT_XBGR32,
253 		.bpp    = 32,
254 	}, {
255 		.fourcc	= V4L2_PIX_FMT_YUYV,
256 		.bpp    = 16,
257 		.uv_width_dec = 2,
258 		.uv_height_dec = 1,
259 	}, {
260 		.fourcc	= V4L2_PIX_FMT_UYVY,
261 		.bpp    = 16,
262 		.uv_width_dec = 2,
263 		.uv_height_dec = 1,
264 	}, {
265 		.fourcc	= V4L2_PIX_FMT_YUV420,
266 		.bpp    = 12,
267 		.planar = true,
268 		.uv_width_dec = 2,
269 		.uv_height_dec = 2,
270 	}, {
271 		.fourcc	= V4L2_PIX_FMT_YVU420,
272 		.bpp    = 12,
273 		.planar = true,
274 		.uv_width_dec = 2,
275 		.uv_height_dec = 2,
276 		.uv_swapped = true,
277 	}, {
278 		.fourcc = V4L2_PIX_FMT_NV12,
279 		.bpp    = 12,
280 		.planar = true,
281 		.uv_width_dec = 2,
282 		.uv_height_dec = 2,
283 		.uv_packed = true,
284 	}, {
285 		.fourcc = V4L2_PIX_FMT_YUV422P,
286 		.bpp    = 16,
287 		.planar = true,
288 		.uv_width_dec = 2,
289 		.uv_height_dec = 1,
290 	}, {
291 		.fourcc = V4L2_PIX_FMT_NV16,
292 		.bpp    = 16,
293 		.planar = true,
294 		.uv_width_dec = 2,
295 		.uv_height_dec = 1,
296 		.uv_packed = true,
297 	},
298 };
299 
300 static const struct ipu_image_pixfmt *get_format(u32 fourcc)
301 {
302 	const struct ipu_image_pixfmt *ret = NULL;
303 	unsigned int i;
304 
305 	for (i = 0; i < ARRAY_SIZE(image_convert_formats); i++) {
306 		if (image_convert_formats[i].fourcc == fourcc) {
307 			ret = &image_convert_formats[i];
308 			break;
309 		}
310 	}
311 
312 	return ret;
313 }
314 
315 static void dump_format(struct ipu_image_convert_ctx *ctx,
316 			struct ipu_image_convert_image *ic_image)
317 {
318 	struct ipu_image_convert_chan *chan = ctx->chan;
319 	struct ipu_image_convert_priv *priv = chan->priv;
320 
321 	dev_dbg(priv->ipu->dev,
322 		"task %u: ctx %p: %s format: %dx%d (%dx%d tiles), %c%c%c%c\n",
323 		chan->ic_task, ctx,
324 		ic_image->type == IMAGE_CONVERT_OUT ? "Output" : "Input",
325 		ic_image->base.pix.width, ic_image->base.pix.height,
326 		ic_image->num_cols, ic_image->num_rows,
327 		ic_image->fmt->fourcc & 0xff,
328 		(ic_image->fmt->fourcc >> 8) & 0xff,
329 		(ic_image->fmt->fourcc >> 16) & 0xff,
330 		(ic_image->fmt->fourcc >> 24) & 0xff);
331 }
332 
333 int ipu_image_convert_enum_format(int index, u32 *fourcc)
334 {
335 	const struct ipu_image_pixfmt *fmt;
336 
337 	if (index >= (int)ARRAY_SIZE(image_convert_formats))
338 		return -EINVAL;
339 
340 	/* Format found */
341 	fmt = &image_convert_formats[index];
342 	*fourcc = fmt->fourcc;
343 	return 0;
344 }
345 EXPORT_SYMBOL_GPL(ipu_image_convert_enum_format);
346 
347 static void free_dma_buf(struct ipu_image_convert_priv *priv,
348 			 struct ipu_image_convert_dma_buf *buf)
349 {
350 	if (buf->virt)
351 		dma_free_coherent(priv->ipu->dev,
352 				  buf->len, buf->virt, buf->phys);
353 	buf->virt = NULL;
354 	buf->phys = 0;
355 }
356 
357 static int alloc_dma_buf(struct ipu_image_convert_priv *priv,
358 			 struct ipu_image_convert_dma_buf *buf,
359 			 int size)
360 {
361 	buf->len = PAGE_ALIGN(size);
362 	buf->virt = dma_alloc_coherent(priv->ipu->dev, buf->len, &buf->phys,
363 				       GFP_DMA | GFP_KERNEL);
364 	if (!buf->virt) {
365 		dev_err(priv->ipu->dev, "failed to alloc dma buffer\n");
366 		return -ENOMEM;
367 	}
368 
369 	return 0;
370 }
371 
372 static inline int num_stripes(int dim)
373 {
374 	return (dim - 1) / 1024 + 1;
375 }
376 
377 /*
378  * Calculate downsizing coefficients, which are the same for all tiles,
379  * and bilinear resizing coefficients, which are used to find the best
380  * seam positions.
381  */
382 static int calc_image_resize_coefficients(struct ipu_image_convert_ctx *ctx,
383 					  struct ipu_image *in,
384 					  struct ipu_image *out)
385 {
386 	u32 downsized_width = in->rect.width;
387 	u32 downsized_height = in->rect.height;
388 	u32 downsize_coeff_v = 0;
389 	u32 downsize_coeff_h = 0;
390 	u32 resized_width = out->rect.width;
391 	u32 resized_height = out->rect.height;
392 	u32 resize_coeff_h;
393 	u32 resize_coeff_v;
394 
395 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
396 		resized_width = out->rect.height;
397 		resized_height = out->rect.width;
398 	}
399 
400 	/* Do not let invalid input lead to an endless loop below */
401 	if (WARN_ON(resized_width == 0 || resized_height == 0))
402 		return -EINVAL;
403 
404 	while (downsized_width > 1024 ||
405 	       downsized_width >= resized_width * 2) {
406 		downsized_width >>= 1;
407 		downsize_coeff_h++;
408 	}
409 
410 	while (downsized_height > 1024 ||
411 	       downsized_height >= resized_height * 2) {
412 		downsized_height >>= 1;
413 		downsize_coeff_v++;
414 	}
415 
416 	/*
417 	 * Calculate the bilinear resizing coefficients that could be used if
418 	 * we were converting with a single tile. The bottom right output pixel
419 	 * should sample as close as possible to the bottom right input pixel
420 	 * out of the decimator, but not overshoot it:
421 	 */
422 	resize_coeff_h = 8192 * (downsized_width - 1) / (resized_width - 1);
423 	resize_coeff_v = 8192 * (downsized_height - 1) / (resized_height - 1);
424 
425 	dev_dbg(ctx->chan->priv->ipu->dev,
426 		"%s: hscale: >>%u, *8192/%u vscale: >>%u, *8192/%u, %ux%u tiles\n",
427 		__func__, downsize_coeff_h, resize_coeff_h, downsize_coeff_v,
428 		resize_coeff_v, ctx->in.num_cols, ctx->in.num_rows);
429 
430 	if (downsize_coeff_h > 2 || downsize_coeff_v  > 2 ||
431 	    resize_coeff_h > 0x3fff || resize_coeff_v > 0x3fff)
432 		return -EINVAL;
433 
434 	ctx->downsize_coeff_h = downsize_coeff_h;
435 	ctx->downsize_coeff_v = downsize_coeff_v;
436 	ctx->image_resize_coeff_h = resize_coeff_h;
437 	ctx->image_resize_coeff_v = resize_coeff_v;
438 
439 	return 0;
440 }
441 
442 #define round_closest(x, y) round_down((x) + (y)/2, (y))
443 
444 /*
445  * Find the best aligned seam position in the inverval [out_start, out_end].
446  * Rotation and image offsets are out of scope.
447  *
448  * @out_start: start of inverval, must be within 1024 pixels / lines
449  *             of out_end
450  * @out_end: end of interval, smaller than or equal to out_edge
451  * @in_edge: input right / bottom edge
452  * @out_edge: output right / bottom edge
453  * @in_align: input alignment, either horizontal 8-byte line start address
454  *            alignment, or pixel alignment due to image format
455  * @out_align: output alignment, either horizontal 8-byte line start address
456  *             alignment, or pixel alignment due to image format or rotator
457  *             block size
458  * @in_burst: horizontal input burst size in case of horizontal flip
459  * @out_burst: horizontal output burst size or rotator block size
460  * @downsize_coeff: downsizing section coefficient
461  * @resize_coeff: main processing section resizing coefficient
462  * @_in_seam: aligned input seam position return value
463  * @_out_seam: aligned output seam position return value
464  */
465 static void find_best_seam(struct ipu_image_convert_ctx *ctx,
466 			   unsigned int out_start,
467 			   unsigned int out_end,
468 			   unsigned int in_edge,
469 			   unsigned int out_edge,
470 			   unsigned int in_align,
471 			   unsigned int out_align,
472 			   unsigned int in_burst,
473 			   unsigned int out_burst,
474 			   unsigned int downsize_coeff,
475 			   unsigned int resize_coeff,
476 			   u32 *_in_seam,
477 			   u32 *_out_seam)
478 {
479 	struct device *dev = ctx->chan->priv->ipu->dev;
480 	unsigned int out_pos;
481 	/* Input / output seam position candidates */
482 	unsigned int out_seam = 0;
483 	unsigned int in_seam = 0;
484 	unsigned int min_diff = UINT_MAX;
485 
486 	/*
487 	 * Output tiles must start at a multiple of 8 bytes horizontally and
488 	 * possibly at an even line horizontally depending on the pixel format.
489 	 * Only consider output aligned positions for the seam.
490 	 */
491 	out_start = round_up(out_start, out_align);
492 	for (out_pos = out_start; out_pos < out_end; out_pos += out_align) {
493 		unsigned int in_pos;
494 		unsigned int in_pos_aligned;
495 		unsigned int abs_diff;
496 
497 		/*
498 		 * Tiles in the right row / bottom column may not be allowed to
499 		 * overshoot horizontally / vertically. out_burst may be the
500 		 * actual DMA burst size, or the rotator block size.
501 		 */
502 		if ((out_burst > 1) && (out_edge - out_pos) % out_burst)
503 			continue;
504 
505 		/*
506 		 * Input sample position, corresponding to out_pos, 19.13 fixed
507 		 * point.
508 		 */
509 		in_pos = (out_pos * resize_coeff) << downsize_coeff;
510 		/*
511 		 * The closest input sample position that we could actually
512 		 * start the input tile at, 19.13 fixed point.
513 		 */
514 		in_pos_aligned = round_closest(in_pos, 8192U * in_align);
515 
516 		if ((in_burst > 1) &&
517 		    (in_edge - in_pos_aligned / 8192U) % in_burst)
518 			continue;
519 
520 		if (in_pos < in_pos_aligned)
521 			abs_diff = in_pos_aligned - in_pos;
522 		else
523 			abs_diff = in_pos - in_pos_aligned;
524 
525 		if (abs_diff < min_diff) {
526 			in_seam = in_pos_aligned;
527 			out_seam = out_pos;
528 			min_diff = abs_diff;
529 		}
530 	}
531 
532 	*_out_seam = out_seam;
533 	/* Convert 19.13 fixed point to integer seam position */
534 	*_in_seam = DIV_ROUND_CLOSEST(in_seam, 8192U);
535 
536 	dev_dbg(dev, "%s: out_seam %u(%u) in [%u, %u], in_seam %u(%u) diff %u.%03u\n",
537 		__func__, out_seam, out_align, out_start, out_end,
538 		*_in_seam, in_align, min_diff / 8192,
539 		DIV_ROUND_CLOSEST(min_diff % 8192 * 1000, 8192));
540 }
541 
542 /*
543  * Tile left edges are required to be aligned to multiples of 8 bytes
544  * by the IDMAC.
545  */
546 static inline u32 tile_left_align(const struct ipu_image_pixfmt *fmt)
547 {
548 	if (fmt->planar)
549 		return fmt->uv_packed ? 8 : 8 * fmt->uv_width_dec;
550 	else
551 		return fmt->bpp == 32 ? 2 : fmt->bpp == 16 ? 4 : 8;
552 }
553 
554 /*
555  * Tile top edge alignment is only limited by chroma subsampling.
556  */
557 static inline u32 tile_top_align(const struct ipu_image_pixfmt *fmt)
558 {
559 	return fmt->uv_height_dec > 1 ? 2 : 1;
560 }
561 
562 static inline u32 tile_width_align(enum ipu_image_convert_type type,
563 				   const struct ipu_image_pixfmt *fmt,
564 				   enum ipu_rotate_mode rot_mode)
565 {
566 	if (type == IMAGE_CONVERT_IN) {
567 		/*
568 		 * The IC burst reads 8 pixels at a time. Reading beyond the
569 		 * end of the line is usually acceptable. Those pixels are
570 		 * ignored, unless the IC has to write the scaled line in
571 		 * reverse.
572 		 */
573 		return (!ipu_rot_mode_is_irt(rot_mode) &&
574 			(rot_mode & IPU_ROT_BIT_HFLIP)) ? 8 : 2;
575 	}
576 
577 	/*
578 	 * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
579 	 * formats to guarantee 8-byte aligned line start addresses in the
580 	 * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
581 	 * for all other formats.
582 	 */
583 	return (ipu_rot_mode_is_irt(rot_mode) &&
584 		fmt->planar && !fmt->uv_packed) ?
585 		8 * fmt->uv_width_dec : 8;
586 }
587 
588 static inline u32 tile_height_align(enum ipu_image_convert_type type,
589 				    const struct ipu_image_pixfmt *fmt,
590 				    enum ipu_rotate_mode rot_mode)
591 {
592 	if (type == IMAGE_CONVERT_IN || !ipu_rot_mode_is_irt(rot_mode))
593 		return 2;
594 
595 	/*
596 	 * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
597 	 * formats to guarantee 8-byte aligned line start addresses in the
598 	 * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
599 	 * for all other formats.
600 	 */
601 	return (fmt->planar && !fmt->uv_packed) ? 8 * fmt->uv_width_dec : 8;
602 }
603 
604 /*
605  * Fill in left position and width and for all tiles in an input column, and
606  * for all corresponding output tiles. If the 90° rotator is used, the output
607  * tiles are in a row, and output tile top position and height are set.
608  */
609 static void fill_tile_column(struct ipu_image_convert_ctx *ctx,
610 			     unsigned int col,
611 			     struct ipu_image_convert_image *in,
612 			     unsigned int in_left, unsigned int in_width,
613 			     struct ipu_image_convert_image *out,
614 			     unsigned int out_left, unsigned int out_width)
615 {
616 	unsigned int row, tile_idx;
617 	struct ipu_image_tile *in_tile, *out_tile;
618 
619 	for (row = 0; row < in->num_rows; row++) {
620 		tile_idx = in->num_cols * row + col;
621 		in_tile = &in->tile[tile_idx];
622 		out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
623 
624 		in_tile->left = in_left;
625 		in_tile->width = in_width;
626 
627 		if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
628 			out_tile->top = out_left;
629 			out_tile->height = out_width;
630 		} else {
631 			out_tile->left = out_left;
632 			out_tile->width = out_width;
633 		}
634 	}
635 }
636 
637 /*
638  * Fill in top position and height and for all tiles in an input row, and
639  * for all corresponding output tiles. If the 90° rotator is used, the output
640  * tiles are in a column, and output tile left position and width are set.
641  */
642 static void fill_tile_row(struct ipu_image_convert_ctx *ctx, unsigned int row,
643 			  struct ipu_image_convert_image *in,
644 			  unsigned int in_top, unsigned int in_height,
645 			  struct ipu_image_convert_image *out,
646 			  unsigned int out_top, unsigned int out_height)
647 {
648 	unsigned int col, tile_idx;
649 	struct ipu_image_tile *in_tile, *out_tile;
650 
651 	for (col = 0; col < in->num_cols; col++) {
652 		tile_idx = in->num_cols * row + col;
653 		in_tile = &in->tile[tile_idx];
654 		out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
655 
656 		in_tile->top = in_top;
657 		in_tile->height = in_height;
658 
659 		if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
660 			out_tile->left = out_top;
661 			out_tile->width = out_height;
662 		} else {
663 			out_tile->top = out_top;
664 			out_tile->height = out_height;
665 		}
666 	}
667 }
668 
669 /*
670  * Find the best horizontal and vertical seam positions to split into tiles.
671  * Minimize the fractional part of the input sampling position for the
672  * top / left pixels of each tile.
673  */
674 static void find_seams(struct ipu_image_convert_ctx *ctx,
675 		       struct ipu_image_convert_image *in,
676 		       struct ipu_image_convert_image *out)
677 {
678 	struct device *dev = ctx->chan->priv->ipu->dev;
679 	unsigned int resized_width = out->base.rect.width;
680 	unsigned int resized_height = out->base.rect.height;
681 	unsigned int col;
682 	unsigned int row;
683 	unsigned int in_left_align = tile_left_align(in->fmt);
684 	unsigned int in_top_align = tile_top_align(in->fmt);
685 	unsigned int out_left_align = tile_left_align(out->fmt);
686 	unsigned int out_top_align = tile_top_align(out->fmt);
687 	unsigned int out_width_align = tile_width_align(out->type, out->fmt,
688 							ctx->rot_mode);
689 	unsigned int out_height_align = tile_height_align(out->type, out->fmt,
690 							  ctx->rot_mode);
691 	unsigned int in_right = in->base.rect.width;
692 	unsigned int in_bottom = in->base.rect.height;
693 	unsigned int out_right = out->base.rect.width;
694 	unsigned int out_bottom = out->base.rect.height;
695 	unsigned int flipped_out_left;
696 	unsigned int flipped_out_top;
697 
698 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
699 		/* Switch width/height and align top left to IRT block size */
700 		resized_width = out->base.rect.height;
701 		resized_height = out->base.rect.width;
702 		out_left_align = out_height_align;
703 		out_top_align = out_width_align;
704 		out_width_align = out_left_align;
705 		out_height_align = out_top_align;
706 		out_right = out->base.rect.height;
707 		out_bottom = out->base.rect.width;
708 	}
709 
710 	for (col = in->num_cols - 1; col > 0; col--) {
711 		bool allow_in_overshoot = ipu_rot_mode_is_irt(ctx->rot_mode) ||
712 					  !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
713 		bool allow_out_overshoot = (col < in->num_cols - 1) &&
714 					   !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
715 		unsigned int out_start;
716 		unsigned int out_end;
717 		unsigned int in_left;
718 		unsigned int out_left;
719 
720 		/*
721 		 * Align input width to burst length if the scaling step flips
722 		 * horizontally.
723 		 */
724 
725 		/* Start within 1024 pixels of the right edge */
726 		out_start = max_t(int, 0, out_right - 1024);
727 		/* End before having to add more columns to the left */
728 		out_end = min_t(unsigned int, out_right, col * 1024);
729 
730 		find_best_seam(ctx, out_start, out_end,
731 			       in_right, out_right,
732 			       in_left_align, out_left_align,
733 			       allow_in_overshoot ? 1 : 8 /* burst length */,
734 			       allow_out_overshoot ? 1 : out_width_align,
735 			       ctx->downsize_coeff_h, ctx->image_resize_coeff_h,
736 			       &in_left, &out_left);
737 
738 		if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
739 			flipped_out_left = resized_width - out_right;
740 		else
741 			flipped_out_left = out_left;
742 
743 		fill_tile_column(ctx, col, in, in_left, in_right - in_left,
744 				 out, flipped_out_left, out_right - out_left);
745 
746 		dev_dbg(dev, "%s: col %u: %u, %u -> %u, %u\n", __func__, col,
747 			in_left, in_right - in_left,
748 			flipped_out_left, out_right - out_left);
749 
750 		in_right = in_left;
751 		out_right = out_left;
752 	}
753 
754 	flipped_out_left = (ctx->rot_mode & IPU_ROT_BIT_HFLIP) ?
755 			   resized_width - out_right : 0;
756 
757 	fill_tile_column(ctx, 0, in, 0, in_right,
758 			 out, flipped_out_left, out_right);
759 
760 	dev_dbg(dev, "%s: col 0: 0, %u -> %u, %u\n", __func__,
761 		in_right, flipped_out_left, out_right);
762 
763 	for (row = in->num_rows - 1; row > 0; row--) {
764 		bool allow_overshoot = row < in->num_rows - 1;
765 		unsigned int out_start;
766 		unsigned int out_end;
767 		unsigned int in_top;
768 		unsigned int out_top;
769 
770 		/* Start within 1024 lines of the bottom edge */
771 		out_start = max_t(int, 0, out_bottom - 1024);
772 		/* End before having to add more rows above */
773 		out_end = min_t(unsigned int, out_bottom, row * 1024);
774 
775 		find_best_seam(ctx, out_start, out_end,
776 			       in_bottom, out_bottom,
777 			       in_top_align, out_top_align,
778 			       1, allow_overshoot ? 1 : out_height_align,
779 			       ctx->downsize_coeff_v, ctx->image_resize_coeff_v,
780 			       &in_top, &out_top);
781 
782 		if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
783 		    ipu_rot_mode_is_irt(ctx->rot_mode))
784 			flipped_out_top = resized_height - out_bottom;
785 		else
786 			flipped_out_top = out_top;
787 
788 		fill_tile_row(ctx, row, in, in_top, in_bottom - in_top,
789 			      out, flipped_out_top, out_bottom - out_top);
790 
791 		dev_dbg(dev, "%s: row %u: %u, %u -> %u, %u\n", __func__, row,
792 			in_top, in_bottom - in_top,
793 			flipped_out_top, out_bottom - out_top);
794 
795 		in_bottom = in_top;
796 		out_bottom = out_top;
797 	}
798 
799 	if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
800 	    ipu_rot_mode_is_irt(ctx->rot_mode))
801 		flipped_out_top = resized_height - out_bottom;
802 	else
803 		flipped_out_top = 0;
804 
805 	fill_tile_row(ctx, 0, in, 0, in_bottom,
806 		      out, flipped_out_top, out_bottom);
807 
808 	dev_dbg(dev, "%s: row 0: 0, %u -> %u, %u\n", __func__,
809 		in_bottom, flipped_out_top, out_bottom);
810 }
811 
812 static void calc_tile_dimensions(struct ipu_image_convert_ctx *ctx,
813 				 struct ipu_image_convert_image *image)
814 {
815 	struct ipu_image_convert_chan *chan = ctx->chan;
816 	struct ipu_image_convert_priv *priv = chan->priv;
817 	unsigned int i;
818 
819 	for (i = 0; i < ctx->num_tiles; i++) {
820 		struct ipu_image_tile *tile;
821 		const unsigned int row = i / image->num_cols;
822 		const unsigned int col = i % image->num_cols;
823 
824 		if (image->type == IMAGE_CONVERT_OUT)
825 			tile = &image->tile[ctx->out_tile_map[i]];
826 		else
827 			tile = &image->tile[i];
828 
829 		tile->size = ((tile->height * image->fmt->bpp) >> 3) *
830 			tile->width;
831 
832 		if (image->fmt->planar) {
833 			tile->stride = tile->width;
834 			tile->rot_stride = tile->height;
835 		} else {
836 			tile->stride =
837 				(image->fmt->bpp * tile->width) >> 3;
838 			tile->rot_stride =
839 				(image->fmt->bpp * tile->height) >> 3;
840 		}
841 
842 		dev_dbg(priv->ipu->dev,
843 			"task %u: ctx %p: %s@[%u,%u]: %ux%u@%u,%u\n",
844 			chan->ic_task, ctx,
845 			image->type == IMAGE_CONVERT_IN ? "Input" : "Output",
846 			row, col,
847 			tile->width, tile->height, tile->left, tile->top);
848 	}
849 }
850 
851 /*
852  * Use the rotation transformation to find the tile coordinates
853  * (row, col) of a tile in the destination frame that corresponds
854  * to the given tile coordinates of a source frame. The destination
855  * coordinate is then converted to a tile index.
856  */
857 static int transform_tile_index(struct ipu_image_convert_ctx *ctx,
858 				int src_row, int src_col)
859 {
860 	struct ipu_image_convert_chan *chan = ctx->chan;
861 	struct ipu_image_convert_priv *priv = chan->priv;
862 	struct ipu_image_convert_image *s_image = &ctx->in;
863 	struct ipu_image_convert_image *d_image = &ctx->out;
864 	int dst_row, dst_col;
865 
866 	/* with no rotation it's a 1:1 mapping */
867 	if (ctx->rot_mode == IPU_ROTATE_NONE)
868 		return src_row * s_image->num_cols + src_col;
869 
870 	/*
871 	 * before doing the transform, first we have to translate
872 	 * source row,col for an origin in the center of s_image
873 	 */
874 	src_row = src_row * 2 - (s_image->num_rows - 1);
875 	src_col = src_col * 2 - (s_image->num_cols - 1);
876 
877 	/* do the rotation transform */
878 	if (ctx->rot_mode & IPU_ROT_BIT_90) {
879 		dst_col = -src_row;
880 		dst_row = src_col;
881 	} else {
882 		dst_col = src_col;
883 		dst_row = src_row;
884 	}
885 
886 	/* apply flip */
887 	if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
888 		dst_col = -dst_col;
889 	if (ctx->rot_mode & IPU_ROT_BIT_VFLIP)
890 		dst_row = -dst_row;
891 
892 	dev_dbg(priv->ipu->dev, "task %u: ctx %p: [%d,%d] --> [%d,%d]\n",
893 		chan->ic_task, ctx, src_col, src_row, dst_col, dst_row);
894 
895 	/*
896 	 * finally translate dest row,col using an origin in upper
897 	 * left of d_image
898 	 */
899 	dst_row += d_image->num_rows - 1;
900 	dst_col += d_image->num_cols - 1;
901 	dst_row /= 2;
902 	dst_col /= 2;
903 
904 	return dst_row * d_image->num_cols + dst_col;
905 }
906 
907 /*
908  * Fill the out_tile_map[] with transformed destination tile indeces.
909  */
910 static void calc_out_tile_map(struct ipu_image_convert_ctx *ctx)
911 {
912 	struct ipu_image_convert_image *s_image = &ctx->in;
913 	unsigned int row, col, tile = 0;
914 
915 	for (row = 0; row < s_image->num_rows; row++) {
916 		for (col = 0; col < s_image->num_cols; col++) {
917 			ctx->out_tile_map[tile] =
918 				transform_tile_index(ctx, row, col);
919 			tile++;
920 		}
921 	}
922 }
923 
924 static int calc_tile_offsets_planar(struct ipu_image_convert_ctx *ctx,
925 				    struct ipu_image_convert_image *image)
926 {
927 	struct ipu_image_convert_chan *chan = ctx->chan;
928 	struct ipu_image_convert_priv *priv = chan->priv;
929 	const struct ipu_image_pixfmt *fmt = image->fmt;
930 	unsigned int row, col, tile = 0;
931 	u32 H, top, y_stride, uv_stride;
932 	u32 uv_row_off, uv_col_off, uv_off, u_off, v_off, tmp;
933 	u32 y_row_off, y_col_off, y_off;
934 	u32 y_size, uv_size;
935 
936 	/* setup some convenience vars */
937 	H = image->base.pix.height;
938 
939 	y_stride = image->stride;
940 	uv_stride = y_stride / fmt->uv_width_dec;
941 	if (fmt->uv_packed)
942 		uv_stride *= 2;
943 
944 	y_size = H * y_stride;
945 	uv_size = y_size / (fmt->uv_width_dec * fmt->uv_height_dec);
946 
947 	for (row = 0; row < image->num_rows; row++) {
948 		top = image->tile[tile].top;
949 		y_row_off = top * y_stride;
950 		uv_row_off = (top * uv_stride) / fmt->uv_height_dec;
951 
952 		for (col = 0; col < image->num_cols; col++) {
953 			y_col_off = image->tile[tile].left;
954 			uv_col_off = y_col_off / fmt->uv_width_dec;
955 			if (fmt->uv_packed)
956 				uv_col_off *= 2;
957 
958 			y_off = y_row_off + y_col_off;
959 			uv_off = uv_row_off + uv_col_off;
960 
961 			u_off = y_size - y_off + uv_off;
962 			v_off = (fmt->uv_packed) ? 0 : u_off + uv_size;
963 			if (fmt->uv_swapped) {
964 				tmp = u_off;
965 				u_off = v_off;
966 				v_off = tmp;
967 			}
968 
969 			image->tile[tile].offset = y_off;
970 			image->tile[tile].u_off = u_off;
971 			image->tile[tile++].v_off = v_off;
972 
973 			if ((y_off & 0x7) || (u_off & 0x7) || (v_off & 0x7)) {
974 				dev_err(priv->ipu->dev,
975 					"task %u: ctx %p: %s@[%d,%d]: "
976 					"y_off %08x, u_off %08x, v_off %08x\n",
977 					chan->ic_task, ctx,
978 					image->type == IMAGE_CONVERT_IN ?
979 					"Input" : "Output", row, col,
980 					y_off, u_off, v_off);
981 				return -EINVAL;
982 			}
983 		}
984 	}
985 
986 	return 0;
987 }
988 
989 static int calc_tile_offsets_packed(struct ipu_image_convert_ctx *ctx,
990 				    struct ipu_image_convert_image *image)
991 {
992 	struct ipu_image_convert_chan *chan = ctx->chan;
993 	struct ipu_image_convert_priv *priv = chan->priv;
994 	const struct ipu_image_pixfmt *fmt = image->fmt;
995 	unsigned int row, col, tile = 0;
996 	u32 bpp, stride, offset;
997 	u32 row_off, col_off;
998 
999 	/* setup some convenience vars */
1000 	stride = image->stride;
1001 	bpp = fmt->bpp;
1002 
1003 	for (row = 0; row < image->num_rows; row++) {
1004 		row_off = image->tile[tile].top * stride;
1005 
1006 		for (col = 0; col < image->num_cols; col++) {
1007 			col_off = (image->tile[tile].left * bpp) >> 3;
1008 
1009 			offset = row_off + col_off;
1010 
1011 			image->tile[tile].offset = offset;
1012 			image->tile[tile].u_off = 0;
1013 			image->tile[tile++].v_off = 0;
1014 
1015 			if (offset & 0x7) {
1016 				dev_err(priv->ipu->dev,
1017 					"task %u: ctx %p: %s@[%d,%d]: "
1018 					"phys %08x\n",
1019 					chan->ic_task, ctx,
1020 					image->type == IMAGE_CONVERT_IN ?
1021 					"Input" : "Output", row, col,
1022 					row_off + col_off);
1023 				return -EINVAL;
1024 			}
1025 		}
1026 	}
1027 
1028 	return 0;
1029 }
1030 
1031 static int calc_tile_offsets(struct ipu_image_convert_ctx *ctx,
1032 			      struct ipu_image_convert_image *image)
1033 {
1034 	if (image->fmt->planar)
1035 		return calc_tile_offsets_planar(ctx, image);
1036 
1037 	return calc_tile_offsets_packed(ctx, image);
1038 }
1039 
1040 /*
1041  * Calculate the resizing ratio for the IC main processing section given input
1042  * size, fixed downsizing coefficient, and output size.
1043  * Either round to closest for the next tile's first pixel to minimize seams
1044  * and distortion (for all but right column / bottom row), or round down to
1045  * avoid sampling beyond the edges of the input image for this tile's last
1046  * pixel.
1047  * Returns the resizing coefficient, resizing ratio is 8192.0 / resize_coeff.
1048  */
1049 static u32 calc_resize_coeff(u32 input_size, u32 downsize_coeff,
1050 			     u32 output_size, bool allow_overshoot)
1051 {
1052 	u32 downsized = input_size >> downsize_coeff;
1053 
1054 	if (allow_overshoot)
1055 		return DIV_ROUND_CLOSEST(8192 * downsized, output_size);
1056 	else
1057 		return 8192 * (downsized - 1) / (output_size - 1);
1058 }
1059 
1060 /*
1061  * Slightly modify resize coefficients per tile to hide the bilinear
1062  * interpolator reset at tile borders, shifting the right / bottom edge
1063  * by up to a half input pixel. This removes noticeable seams between
1064  * tiles at higher upscaling factors.
1065  */
1066 static void calc_tile_resize_coefficients(struct ipu_image_convert_ctx *ctx)
1067 {
1068 	struct ipu_image_convert_chan *chan = ctx->chan;
1069 	struct ipu_image_convert_priv *priv = chan->priv;
1070 	struct ipu_image_tile *in_tile, *out_tile;
1071 	unsigned int col, row, tile_idx;
1072 	unsigned int last_output;
1073 
1074 	for (col = 0; col < ctx->in.num_cols; col++) {
1075 		bool closest = (col < ctx->in.num_cols - 1) &&
1076 			       !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
1077 		u32 resized_width;
1078 		u32 resize_coeff_h;
1079 
1080 		tile_idx = col;
1081 		in_tile = &ctx->in.tile[tile_idx];
1082 		out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1083 
1084 		if (ipu_rot_mode_is_irt(ctx->rot_mode))
1085 			resized_width = out_tile->height;
1086 		else
1087 			resized_width = out_tile->width;
1088 
1089 		resize_coeff_h = calc_resize_coeff(in_tile->width,
1090 						   ctx->downsize_coeff_h,
1091 						   resized_width, closest);
1092 
1093 		dev_dbg(priv->ipu->dev, "%s: column %u hscale: *8192/%u\n",
1094 			__func__, col, resize_coeff_h);
1095 
1096 
1097 		for (row = 0; row < ctx->in.num_rows; row++) {
1098 			tile_idx = row * ctx->in.num_cols + col;
1099 			in_tile = &ctx->in.tile[tile_idx];
1100 			out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1101 
1102 			/*
1103 			 * With the horizontal scaling factor known, round up
1104 			 * resized width (output width or height) to burst size.
1105 			 */
1106 			if (ipu_rot_mode_is_irt(ctx->rot_mode))
1107 				out_tile->height = round_up(resized_width, 8);
1108 			else
1109 				out_tile->width = round_up(resized_width, 8);
1110 
1111 			/*
1112 			 * Calculate input width from the last accessed input
1113 			 * pixel given resized width and scaling coefficients.
1114 			 * Round up to burst size.
1115 			 */
1116 			last_output = round_up(resized_width, 8) - 1;
1117 			if (closest)
1118 				last_output++;
1119 			in_tile->width = round_up(
1120 				(DIV_ROUND_UP(last_output * resize_coeff_h,
1121 					      8192) + 1)
1122 				<< ctx->downsize_coeff_h, 8);
1123 		}
1124 
1125 		ctx->resize_coeffs_h[col] = resize_coeff_h;
1126 	}
1127 
1128 	for (row = 0; row < ctx->in.num_rows; row++) {
1129 		bool closest = (row < ctx->in.num_rows - 1) &&
1130 			       !(ctx->rot_mode & IPU_ROT_BIT_VFLIP);
1131 		u32 resized_height;
1132 		u32 resize_coeff_v;
1133 
1134 		tile_idx = row * ctx->in.num_cols;
1135 		in_tile = &ctx->in.tile[tile_idx];
1136 		out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1137 
1138 		if (ipu_rot_mode_is_irt(ctx->rot_mode))
1139 			resized_height = out_tile->width;
1140 		else
1141 			resized_height = out_tile->height;
1142 
1143 		resize_coeff_v = calc_resize_coeff(in_tile->height,
1144 						   ctx->downsize_coeff_v,
1145 						   resized_height, closest);
1146 
1147 		dev_dbg(priv->ipu->dev, "%s: row %u vscale: *8192/%u\n",
1148 			__func__, row, resize_coeff_v);
1149 
1150 		for (col = 0; col < ctx->in.num_cols; col++) {
1151 			tile_idx = row * ctx->in.num_cols + col;
1152 			in_tile = &ctx->in.tile[tile_idx];
1153 			out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1154 
1155 			/*
1156 			 * With the vertical scaling factor known, round up
1157 			 * resized height (output width or height) to IDMAC
1158 			 * limitations.
1159 			 */
1160 			if (ipu_rot_mode_is_irt(ctx->rot_mode))
1161 				out_tile->width = round_up(resized_height, 2);
1162 			else
1163 				out_tile->height = round_up(resized_height, 2);
1164 
1165 			/*
1166 			 * Calculate input width from the last accessed input
1167 			 * pixel given resized height and scaling coefficients.
1168 			 * Align to IDMAC restrictions.
1169 			 */
1170 			last_output = round_up(resized_height, 2) - 1;
1171 			if (closest)
1172 				last_output++;
1173 			in_tile->height = round_up(
1174 				(DIV_ROUND_UP(last_output * resize_coeff_v,
1175 					      8192) + 1)
1176 				<< ctx->downsize_coeff_v, 2);
1177 		}
1178 
1179 		ctx->resize_coeffs_v[row] = resize_coeff_v;
1180 	}
1181 }
1182 
1183 /*
1184  * return the number of runs in given queue (pending_q or done_q)
1185  * for this context. hold irqlock when calling.
1186  */
1187 static int get_run_count(struct ipu_image_convert_ctx *ctx,
1188 			 struct list_head *q)
1189 {
1190 	struct ipu_image_convert_run *run;
1191 	int count = 0;
1192 
1193 	lockdep_assert_held(&ctx->chan->irqlock);
1194 
1195 	list_for_each_entry(run, q, list) {
1196 		if (run->ctx == ctx)
1197 			count++;
1198 	}
1199 
1200 	return count;
1201 }
1202 
1203 static void convert_stop(struct ipu_image_convert_run *run)
1204 {
1205 	struct ipu_image_convert_ctx *ctx = run->ctx;
1206 	struct ipu_image_convert_chan *chan = ctx->chan;
1207 	struct ipu_image_convert_priv *priv = chan->priv;
1208 
1209 	dev_dbg(priv->ipu->dev, "%s: task %u: stopping ctx %p run %p\n",
1210 		__func__, chan->ic_task, ctx, run);
1211 
1212 	/* disable IC tasks and the channels */
1213 	ipu_ic_task_disable(chan->ic);
1214 	ipu_idmac_disable_channel(chan->in_chan);
1215 	ipu_idmac_disable_channel(chan->out_chan);
1216 
1217 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1218 		ipu_idmac_disable_channel(chan->rotation_in_chan);
1219 		ipu_idmac_disable_channel(chan->rotation_out_chan);
1220 		ipu_idmac_unlink(chan->out_chan, chan->rotation_in_chan);
1221 	}
1222 
1223 	ipu_ic_disable(chan->ic);
1224 }
1225 
1226 static void init_idmac_channel(struct ipu_image_convert_ctx *ctx,
1227 			       struct ipuv3_channel *channel,
1228 			       struct ipu_image_convert_image *image,
1229 			       enum ipu_rotate_mode rot_mode,
1230 			       bool rot_swap_width_height,
1231 			       unsigned int tile)
1232 {
1233 	struct ipu_image_convert_chan *chan = ctx->chan;
1234 	unsigned int burst_size;
1235 	u32 width, height, stride;
1236 	dma_addr_t addr0, addr1 = 0;
1237 	struct ipu_image tile_image;
1238 	unsigned int tile_idx[2];
1239 
1240 	if (image->type == IMAGE_CONVERT_OUT) {
1241 		tile_idx[0] = ctx->out_tile_map[tile];
1242 		tile_idx[1] = ctx->out_tile_map[1];
1243 	} else {
1244 		tile_idx[0] = tile;
1245 		tile_idx[1] = 1;
1246 	}
1247 
1248 	if (rot_swap_width_height) {
1249 		width = image->tile[tile_idx[0]].height;
1250 		height = image->tile[tile_idx[0]].width;
1251 		stride = image->tile[tile_idx[0]].rot_stride;
1252 		addr0 = ctx->rot_intermediate[0].phys;
1253 		if (ctx->double_buffering)
1254 			addr1 = ctx->rot_intermediate[1].phys;
1255 	} else {
1256 		width = image->tile[tile_idx[0]].width;
1257 		height = image->tile[tile_idx[0]].height;
1258 		stride = image->stride;
1259 		addr0 = image->base.phys0 +
1260 			image->tile[tile_idx[0]].offset;
1261 		if (ctx->double_buffering)
1262 			addr1 = image->base.phys0 +
1263 				image->tile[tile_idx[1]].offset;
1264 	}
1265 
1266 	ipu_cpmem_zero(channel);
1267 
1268 	memset(&tile_image, 0, sizeof(tile_image));
1269 	tile_image.pix.width = tile_image.rect.width = width;
1270 	tile_image.pix.height = tile_image.rect.height = height;
1271 	tile_image.pix.bytesperline = stride;
1272 	tile_image.pix.pixelformat =  image->fmt->fourcc;
1273 	tile_image.phys0 = addr0;
1274 	tile_image.phys1 = addr1;
1275 	if (image->fmt->planar && !rot_swap_width_height) {
1276 		tile_image.u_offset = image->tile[tile_idx[0]].u_off;
1277 		tile_image.v_offset = image->tile[tile_idx[0]].v_off;
1278 	}
1279 
1280 	ipu_cpmem_set_image(channel, &tile_image);
1281 
1282 	if (rot_mode)
1283 		ipu_cpmem_set_rotation(channel, rot_mode);
1284 
1285 	/*
1286 	 * Skip writing U and V components to odd rows in the output
1287 	 * channels for planar 4:2:0.
1288 	 */
1289 	if ((channel == chan->out_chan ||
1290 	     channel == chan->rotation_out_chan) &&
1291 	    image->fmt->planar && image->fmt->uv_height_dec == 2)
1292 		ipu_cpmem_skip_odd_chroma_rows(channel);
1293 
1294 	if (channel == chan->rotation_in_chan ||
1295 	    channel == chan->rotation_out_chan) {
1296 		burst_size = 8;
1297 		ipu_cpmem_set_block_mode(channel);
1298 	} else
1299 		burst_size = (width % 16) ? 8 : 16;
1300 
1301 	ipu_cpmem_set_burstsize(channel, burst_size);
1302 
1303 	ipu_ic_task_idma_init(chan->ic, channel, width, height,
1304 			      burst_size, rot_mode);
1305 
1306 	/*
1307 	 * Setting a non-zero AXI ID collides with the PRG AXI snooping, so
1308 	 * only do this when there is no PRG present.
1309 	 */
1310 	if (!channel->ipu->prg_priv)
1311 		ipu_cpmem_set_axi_id(channel, 1);
1312 
1313 	ipu_idmac_set_double_buffer(channel, ctx->double_buffering);
1314 }
1315 
1316 static int convert_start(struct ipu_image_convert_run *run, unsigned int tile)
1317 {
1318 	struct ipu_image_convert_ctx *ctx = run->ctx;
1319 	struct ipu_image_convert_chan *chan = ctx->chan;
1320 	struct ipu_image_convert_priv *priv = chan->priv;
1321 	struct ipu_image_convert_image *s_image = &ctx->in;
1322 	struct ipu_image_convert_image *d_image = &ctx->out;
1323 	unsigned int dst_tile = ctx->out_tile_map[tile];
1324 	unsigned int dest_width, dest_height;
1325 	unsigned int col, row;
1326 	u32 rsc;
1327 	int ret;
1328 
1329 	dev_dbg(priv->ipu->dev, "%s: task %u: starting ctx %p run %p tile %u -> %u\n",
1330 		__func__, chan->ic_task, ctx, run, tile, dst_tile);
1331 
1332 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1333 		/* swap width/height for resizer */
1334 		dest_width = d_image->tile[dst_tile].height;
1335 		dest_height = d_image->tile[dst_tile].width;
1336 	} else {
1337 		dest_width = d_image->tile[dst_tile].width;
1338 		dest_height = d_image->tile[dst_tile].height;
1339 	}
1340 
1341 	row = tile / s_image->num_cols;
1342 	col = tile % s_image->num_cols;
1343 
1344 	rsc =  (ctx->downsize_coeff_v << 30) |
1345 	       (ctx->resize_coeffs_v[row] << 16) |
1346 	       (ctx->downsize_coeff_h << 14) |
1347 	       (ctx->resize_coeffs_h[col]);
1348 
1349 	dev_dbg(priv->ipu->dev, "%s: %ux%u -> %ux%u (rsc = 0x%x)\n",
1350 		__func__, s_image->tile[tile].width,
1351 		s_image->tile[tile].height, dest_width, dest_height, rsc);
1352 
1353 	/* setup the IC resizer and CSC */
1354 	ret = ipu_ic_task_init_rsc(chan->ic, &ctx->csc,
1355 				   s_image->tile[tile].width,
1356 				   s_image->tile[tile].height,
1357 				   dest_width,
1358 				   dest_height,
1359 				   rsc);
1360 	if (ret) {
1361 		dev_err(priv->ipu->dev, "ipu_ic_task_init failed, %d\n", ret);
1362 		return ret;
1363 	}
1364 
1365 	/* init the source MEM-->IC PP IDMAC channel */
1366 	init_idmac_channel(ctx, chan->in_chan, s_image,
1367 			   IPU_ROTATE_NONE, false, tile);
1368 
1369 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1370 		/* init the IC PP-->MEM IDMAC channel */
1371 		init_idmac_channel(ctx, chan->out_chan, d_image,
1372 				   IPU_ROTATE_NONE, true, tile);
1373 
1374 		/* init the MEM-->IC PP ROT IDMAC channel */
1375 		init_idmac_channel(ctx, chan->rotation_in_chan, d_image,
1376 				   ctx->rot_mode, true, tile);
1377 
1378 		/* init the destination IC PP ROT-->MEM IDMAC channel */
1379 		init_idmac_channel(ctx, chan->rotation_out_chan, d_image,
1380 				   IPU_ROTATE_NONE, false, tile);
1381 
1382 		/* now link IC PP-->MEM to MEM-->IC PP ROT */
1383 		ipu_idmac_link(chan->out_chan, chan->rotation_in_chan);
1384 	} else {
1385 		/* init the destination IC PP-->MEM IDMAC channel */
1386 		init_idmac_channel(ctx, chan->out_chan, d_image,
1387 				   ctx->rot_mode, false, tile);
1388 	}
1389 
1390 	/* enable the IC */
1391 	ipu_ic_enable(chan->ic);
1392 
1393 	/* set buffers ready */
1394 	ipu_idmac_select_buffer(chan->in_chan, 0);
1395 	ipu_idmac_select_buffer(chan->out_chan, 0);
1396 	if (ipu_rot_mode_is_irt(ctx->rot_mode))
1397 		ipu_idmac_select_buffer(chan->rotation_out_chan, 0);
1398 	if (ctx->double_buffering) {
1399 		ipu_idmac_select_buffer(chan->in_chan, 1);
1400 		ipu_idmac_select_buffer(chan->out_chan, 1);
1401 		if (ipu_rot_mode_is_irt(ctx->rot_mode))
1402 			ipu_idmac_select_buffer(chan->rotation_out_chan, 1);
1403 	}
1404 
1405 	/* enable the channels! */
1406 	ipu_idmac_enable_channel(chan->in_chan);
1407 	ipu_idmac_enable_channel(chan->out_chan);
1408 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1409 		ipu_idmac_enable_channel(chan->rotation_in_chan);
1410 		ipu_idmac_enable_channel(chan->rotation_out_chan);
1411 	}
1412 
1413 	ipu_ic_task_enable(chan->ic);
1414 
1415 	ipu_cpmem_dump(chan->in_chan);
1416 	ipu_cpmem_dump(chan->out_chan);
1417 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1418 		ipu_cpmem_dump(chan->rotation_in_chan);
1419 		ipu_cpmem_dump(chan->rotation_out_chan);
1420 	}
1421 
1422 	ipu_dump(priv->ipu);
1423 
1424 	return 0;
1425 }
1426 
1427 /* hold irqlock when calling */
1428 static int do_run(struct ipu_image_convert_run *run)
1429 {
1430 	struct ipu_image_convert_ctx *ctx = run->ctx;
1431 	struct ipu_image_convert_chan *chan = ctx->chan;
1432 
1433 	lockdep_assert_held(&chan->irqlock);
1434 
1435 	ctx->in.base.phys0 = run->in_phys;
1436 	ctx->out.base.phys0 = run->out_phys;
1437 
1438 	ctx->cur_buf_num = 0;
1439 	ctx->next_tile = 1;
1440 
1441 	/* remove run from pending_q and set as current */
1442 	list_del(&run->list);
1443 	chan->current_run = run;
1444 
1445 	return convert_start(run, 0);
1446 }
1447 
1448 /* hold irqlock when calling */
1449 static void run_next(struct ipu_image_convert_chan *chan)
1450 {
1451 	struct ipu_image_convert_priv *priv = chan->priv;
1452 	struct ipu_image_convert_run *run, *tmp;
1453 	int ret;
1454 
1455 	lockdep_assert_held(&chan->irqlock);
1456 
1457 	list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
1458 		/* skip contexts that are aborting */
1459 		if (run->ctx->aborting) {
1460 			dev_dbg(priv->ipu->dev,
1461 				"%s: task %u: skipping aborting ctx %p run %p\n",
1462 				__func__, chan->ic_task, run->ctx, run);
1463 			continue;
1464 		}
1465 
1466 		ret = do_run(run);
1467 		if (!ret)
1468 			break;
1469 
1470 		/*
1471 		 * something went wrong with start, add the run
1472 		 * to done q and continue to the next run in the
1473 		 * pending q.
1474 		 */
1475 		run->status = ret;
1476 		list_add_tail(&run->list, &chan->done_q);
1477 		chan->current_run = NULL;
1478 	}
1479 }
1480 
1481 static void empty_done_q(struct ipu_image_convert_chan *chan)
1482 {
1483 	struct ipu_image_convert_priv *priv = chan->priv;
1484 	struct ipu_image_convert_run *run;
1485 	unsigned long flags;
1486 
1487 	spin_lock_irqsave(&chan->irqlock, flags);
1488 
1489 	while (!list_empty(&chan->done_q)) {
1490 		run = list_entry(chan->done_q.next,
1491 				 struct ipu_image_convert_run,
1492 				 list);
1493 
1494 		list_del(&run->list);
1495 
1496 		dev_dbg(priv->ipu->dev,
1497 			"%s: task %u: completing ctx %p run %p with %d\n",
1498 			__func__, chan->ic_task, run->ctx, run, run->status);
1499 
1500 		/* call the completion callback and free the run */
1501 		spin_unlock_irqrestore(&chan->irqlock, flags);
1502 		run->ctx->complete(run, run->ctx->complete_context);
1503 		spin_lock_irqsave(&chan->irqlock, flags);
1504 	}
1505 
1506 	spin_unlock_irqrestore(&chan->irqlock, flags);
1507 }
1508 
1509 /*
1510  * the bottom half thread clears out the done_q, calling the
1511  * completion handler for each.
1512  */
1513 static irqreturn_t do_bh(int irq, void *dev_id)
1514 {
1515 	struct ipu_image_convert_chan *chan = dev_id;
1516 	struct ipu_image_convert_priv *priv = chan->priv;
1517 	struct ipu_image_convert_ctx *ctx;
1518 	unsigned long flags;
1519 
1520 	dev_dbg(priv->ipu->dev, "%s: task %u: enter\n", __func__,
1521 		chan->ic_task);
1522 
1523 	empty_done_q(chan);
1524 
1525 	spin_lock_irqsave(&chan->irqlock, flags);
1526 
1527 	/*
1528 	 * the done_q is cleared out, signal any contexts
1529 	 * that are aborting that abort can complete.
1530 	 */
1531 	list_for_each_entry(ctx, &chan->ctx_list, list) {
1532 		if (ctx->aborting) {
1533 			dev_dbg(priv->ipu->dev,
1534 				"%s: task %u: signaling abort for ctx %p\n",
1535 				__func__, chan->ic_task, ctx);
1536 			complete_all(&ctx->aborted);
1537 		}
1538 	}
1539 
1540 	spin_unlock_irqrestore(&chan->irqlock, flags);
1541 
1542 	dev_dbg(priv->ipu->dev, "%s: task %u: exit\n", __func__,
1543 		chan->ic_task);
1544 
1545 	return IRQ_HANDLED;
1546 }
1547 
1548 static bool ic_settings_changed(struct ipu_image_convert_ctx *ctx)
1549 {
1550 	unsigned int cur_tile = ctx->next_tile - 1;
1551 	unsigned int next_tile = ctx->next_tile;
1552 
1553 	if (ctx->resize_coeffs_h[cur_tile % ctx->in.num_cols] !=
1554 	    ctx->resize_coeffs_h[next_tile % ctx->in.num_cols] ||
1555 	    ctx->resize_coeffs_v[cur_tile / ctx->in.num_cols] !=
1556 	    ctx->resize_coeffs_v[next_tile / ctx->in.num_cols] ||
1557 	    ctx->in.tile[cur_tile].width != ctx->in.tile[next_tile].width ||
1558 	    ctx->in.tile[cur_tile].height != ctx->in.tile[next_tile].height ||
1559 	    ctx->out.tile[cur_tile].width != ctx->out.tile[next_tile].width ||
1560 	    ctx->out.tile[cur_tile].height != ctx->out.tile[next_tile].height)
1561 		return true;
1562 
1563 	return false;
1564 }
1565 
1566 /* hold irqlock when calling */
1567 static irqreturn_t do_irq(struct ipu_image_convert_run *run)
1568 {
1569 	struct ipu_image_convert_ctx *ctx = run->ctx;
1570 	struct ipu_image_convert_chan *chan = ctx->chan;
1571 	struct ipu_image_tile *src_tile, *dst_tile;
1572 	struct ipu_image_convert_image *s_image = &ctx->in;
1573 	struct ipu_image_convert_image *d_image = &ctx->out;
1574 	struct ipuv3_channel *outch;
1575 	unsigned int dst_idx;
1576 
1577 	lockdep_assert_held(&chan->irqlock);
1578 
1579 	outch = ipu_rot_mode_is_irt(ctx->rot_mode) ?
1580 		chan->rotation_out_chan : chan->out_chan;
1581 
1582 	/*
1583 	 * It is difficult to stop the channel DMA before the channels
1584 	 * enter the paused state. Without double-buffering the channels
1585 	 * are always in a paused state when the EOF irq occurs, so it
1586 	 * is safe to stop the channels now. For double-buffering we
1587 	 * just ignore the abort until the operation completes, when it
1588 	 * is safe to shut down.
1589 	 */
1590 	if (ctx->aborting && !ctx->double_buffering) {
1591 		convert_stop(run);
1592 		run->status = -EIO;
1593 		goto done;
1594 	}
1595 
1596 	if (ctx->next_tile == ctx->num_tiles) {
1597 		/*
1598 		 * the conversion is complete
1599 		 */
1600 		convert_stop(run);
1601 		run->status = 0;
1602 		goto done;
1603 	}
1604 
1605 	/*
1606 	 * not done, place the next tile buffers.
1607 	 */
1608 	if (!ctx->double_buffering) {
1609 		if (ic_settings_changed(ctx)) {
1610 			convert_stop(run);
1611 			convert_start(run, ctx->next_tile);
1612 		} else {
1613 			src_tile = &s_image->tile[ctx->next_tile];
1614 			dst_idx = ctx->out_tile_map[ctx->next_tile];
1615 			dst_tile = &d_image->tile[dst_idx];
1616 
1617 			ipu_cpmem_set_buffer(chan->in_chan, 0,
1618 					     s_image->base.phys0 +
1619 					     src_tile->offset);
1620 			ipu_cpmem_set_buffer(outch, 0,
1621 					     d_image->base.phys0 +
1622 					     dst_tile->offset);
1623 			if (s_image->fmt->planar)
1624 				ipu_cpmem_set_uv_offset(chan->in_chan,
1625 							src_tile->u_off,
1626 							src_tile->v_off);
1627 			if (d_image->fmt->planar)
1628 				ipu_cpmem_set_uv_offset(outch,
1629 							dst_tile->u_off,
1630 							dst_tile->v_off);
1631 
1632 			ipu_idmac_select_buffer(chan->in_chan, 0);
1633 			ipu_idmac_select_buffer(outch, 0);
1634 		}
1635 	} else if (ctx->next_tile < ctx->num_tiles - 1) {
1636 
1637 		src_tile = &s_image->tile[ctx->next_tile + 1];
1638 		dst_idx = ctx->out_tile_map[ctx->next_tile + 1];
1639 		dst_tile = &d_image->tile[dst_idx];
1640 
1641 		ipu_cpmem_set_buffer(chan->in_chan, ctx->cur_buf_num,
1642 				     s_image->base.phys0 + src_tile->offset);
1643 		ipu_cpmem_set_buffer(outch, ctx->cur_buf_num,
1644 				     d_image->base.phys0 + dst_tile->offset);
1645 
1646 		ipu_idmac_select_buffer(chan->in_chan, ctx->cur_buf_num);
1647 		ipu_idmac_select_buffer(outch, ctx->cur_buf_num);
1648 
1649 		ctx->cur_buf_num ^= 1;
1650 	}
1651 
1652 	ctx->next_tile++;
1653 	return IRQ_HANDLED;
1654 done:
1655 	list_add_tail(&run->list, &chan->done_q);
1656 	chan->current_run = NULL;
1657 	run_next(chan);
1658 	return IRQ_WAKE_THREAD;
1659 }
1660 
1661 static irqreturn_t norotate_irq(int irq, void *data)
1662 {
1663 	struct ipu_image_convert_chan *chan = data;
1664 	struct ipu_image_convert_ctx *ctx;
1665 	struct ipu_image_convert_run *run;
1666 	unsigned long flags;
1667 	irqreturn_t ret;
1668 
1669 	spin_lock_irqsave(&chan->irqlock, flags);
1670 
1671 	/* get current run and its context */
1672 	run = chan->current_run;
1673 	if (!run) {
1674 		ret = IRQ_NONE;
1675 		goto out;
1676 	}
1677 
1678 	ctx = run->ctx;
1679 
1680 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1681 		/* this is a rotation operation, just ignore */
1682 		spin_unlock_irqrestore(&chan->irqlock, flags);
1683 		return IRQ_HANDLED;
1684 	}
1685 
1686 	ret = do_irq(run);
1687 out:
1688 	spin_unlock_irqrestore(&chan->irqlock, flags);
1689 	return ret;
1690 }
1691 
1692 static irqreturn_t rotate_irq(int irq, void *data)
1693 {
1694 	struct ipu_image_convert_chan *chan = data;
1695 	struct ipu_image_convert_priv *priv = chan->priv;
1696 	struct ipu_image_convert_ctx *ctx;
1697 	struct ipu_image_convert_run *run;
1698 	unsigned long flags;
1699 	irqreturn_t ret;
1700 
1701 	spin_lock_irqsave(&chan->irqlock, flags);
1702 
1703 	/* get current run and its context */
1704 	run = chan->current_run;
1705 	if (!run) {
1706 		ret = IRQ_NONE;
1707 		goto out;
1708 	}
1709 
1710 	ctx = run->ctx;
1711 
1712 	if (!ipu_rot_mode_is_irt(ctx->rot_mode)) {
1713 		/* this was NOT a rotation operation, shouldn't happen */
1714 		dev_err(priv->ipu->dev, "Unexpected rotation interrupt\n");
1715 		spin_unlock_irqrestore(&chan->irqlock, flags);
1716 		return IRQ_HANDLED;
1717 	}
1718 
1719 	ret = do_irq(run);
1720 out:
1721 	spin_unlock_irqrestore(&chan->irqlock, flags);
1722 	return ret;
1723 }
1724 
1725 /*
1726  * try to force the completion of runs for this ctx. Called when
1727  * abort wait times out in ipu_image_convert_abort().
1728  */
1729 static void force_abort(struct ipu_image_convert_ctx *ctx)
1730 {
1731 	struct ipu_image_convert_chan *chan = ctx->chan;
1732 	struct ipu_image_convert_run *run;
1733 	unsigned long flags;
1734 
1735 	spin_lock_irqsave(&chan->irqlock, flags);
1736 
1737 	run = chan->current_run;
1738 	if (run && run->ctx == ctx) {
1739 		convert_stop(run);
1740 		run->status = -EIO;
1741 		list_add_tail(&run->list, &chan->done_q);
1742 		chan->current_run = NULL;
1743 		run_next(chan);
1744 	}
1745 
1746 	spin_unlock_irqrestore(&chan->irqlock, flags);
1747 
1748 	empty_done_q(chan);
1749 }
1750 
1751 static void release_ipu_resources(struct ipu_image_convert_chan *chan)
1752 {
1753 	if (chan->out_eof_irq >= 0)
1754 		free_irq(chan->out_eof_irq, chan);
1755 	if (chan->rot_out_eof_irq >= 0)
1756 		free_irq(chan->rot_out_eof_irq, chan);
1757 
1758 	if (!IS_ERR_OR_NULL(chan->in_chan))
1759 		ipu_idmac_put(chan->in_chan);
1760 	if (!IS_ERR_OR_NULL(chan->out_chan))
1761 		ipu_idmac_put(chan->out_chan);
1762 	if (!IS_ERR_OR_NULL(chan->rotation_in_chan))
1763 		ipu_idmac_put(chan->rotation_in_chan);
1764 	if (!IS_ERR_OR_NULL(chan->rotation_out_chan))
1765 		ipu_idmac_put(chan->rotation_out_chan);
1766 	if (!IS_ERR_OR_NULL(chan->ic))
1767 		ipu_ic_put(chan->ic);
1768 
1769 	chan->in_chan = chan->out_chan = chan->rotation_in_chan =
1770 		chan->rotation_out_chan = NULL;
1771 	chan->out_eof_irq = chan->rot_out_eof_irq = -1;
1772 }
1773 
1774 static int get_ipu_resources(struct ipu_image_convert_chan *chan)
1775 {
1776 	const struct ipu_image_convert_dma_chan *dma = chan->dma_ch;
1777 	struct ipu_image_convert_priv *priv = chan->priv;
1778 	int ret;
1779 
1780 	/* get IC */
1781 	chan->ic = ipu_ic_get(priv->ipu, chan->ic_task);
1782 	if (IS_ERR(chan->ic)) {
1783 		dev_err(priv->ipu->dev, "could not acquire IC\n");
1784 		ret = PTR_ERR(chan->ic);
1785 		goto err;
1786 	}
1787 
1788 	/* get IDMAC channels */
1789 	chan->in_chan = ipu_idmac_get(priv->ipu, dma->in);
1790 	chan->out_chan = ipu_idmac_get(priv->ipu, dma->out);
1791 	if (IS_ERR(chan->in_chan) || IS_ERR(chan->out_chan)) {
1792 		dev_err(priv->ipu->dev, "could not acquire idmac channels\n");
1793 		ret = -EBUSY;
1794 		goto err;
1795 	}
1796 
1797 	chan->rotation_in_chan = ipu_idmac_get(priv->ipu, dma->rot_in);
1798 	chan->rotation_out_chan = ipu_idmac_get(priv->ipu, dma->rot_out);
1799 	if (IS_ERR(chan->rotation_in_chan) || IS_ERR(chan->rotation_out_chan)) {
1800 		dev_err(priv->ipu->dev,
1801 			"could not acquire idmac rotation channels\n");
1802 		ret = -EBUSY;
1803 		goto err;
1804 	}
1805 
1806 	/* acquire the EOF interrupts */
1807 	chan->out_eof_irq = ipu_idmac_channel_irq(priv->ipu,
1808 						  chan->out_chan,
1809 						  IPU_IRQ_EOF);
1810 
1811 	ret = request_threaded_irq(chan->out_eof_irq, norotate_irq, do_bh,
1812 				   0, "ipu-ic", chan);
1813 	if (ret < 0) {
1814 		dev_err(priv->ipu->dev, "could not acquire irq %d\n",
1815 			 chan->out_eof_irq);
1816 		chan->out_eof_irq = -1;
1817 		goto err;
1818 	}
1819 
1820 	chan->rot_out_eof_irq = ipu_idmac_channel_irq(priv->ipu,
1821 						     chan->rotation_out_chan,
1822 						     IPU_IRQ_EOF);
1823 
1824 	ret = request_threaded_irq(chan->rot_out_eof_irq, rotate_irq, do_bh,
1825 				   0, "ipu-ic", chan);
1826 	if (ret < 0) {
1827 		dev_err(priv->ipu->dev, "could not acquire irq %d\n",
1828 			chan->rot_out_eof_irq);
1829 		chan->rot_out_eof_irq = -1;
1830 		goto err;
1831 	}
1832 
1833 	return 0;
1834 err:
1835 	release_ipu_resources(chan);
1836 	return ret;
1837 }
1838 
1839 static int fill_image(struct ipu_image_convert_ctx *ctx,
1840 		      struct ipu_image_convert_image *ic_image,
1841 		      struct ipu_image *image,
1842 		      enum ipu_image_convert_type type)
1843 {
1844 	struct ipu_image_convert_priv *priv = ctx->chan->priv;
1845 
1846 	ic_image->base = *image;
1847 	ic_image->type = type;
1848 
1849 	ic_image->fmt = get_format(image->pix.pixelformat);
1850 	if (!ic_image->fmt) {
1851 		dev_err(priv->ipu->dev, "pixelformat not supported for %s\n",
1852 			type == IMAGE_CONVERT_OUT ? "Output" : "Input");
1853 		return -EINVAL;
1854 	}
1855 
1856 	if (ic_image->fmt->planar)
1857 		ic_image->stride = ic_image->base.pix.width;
1858 	else
1859 		ic_image->stride  = ic_image->base.pix.bytesperline;
1860 
1861 	return 0;
1862 }
1863 
1864 /* borrowed from drivers/media/v4l2-core/v4l2-common.c */
1865 static unsigned int clamp_align(unsigned int x, unsigned int min,
1866 				unsigned int max, unsigned int align)
1867 {
1868 	/* Bits that must be zero to be aligned */
1869 	unsigned int mask = ~((1 << align) - 1);
1870 
1871 	/* Clamp to aligned min and max */
1872 	x = clamp(x, (min + ~mask) & mask, max & mask);
1873 
1874 	/* Round to nearest aligned value */
1875 	if (align)
1876 		x = (x + (1 << (align - 1))) & mask;
1877 
1878 	return x;
1879 }
1880 
1881 /* Adjusts input/output images to IPU restrictions */
1882 void ipu_image_convert_adjust(struct ipu_image *in, struct ipu_image *out,
1883 			      enum ipu_rotate_mode rot_mode)
1884 {
1885 	const struct ipu_image_pixfmt *infmt, *outfmt;
1886 	u32 w_align_out, h_align_out;
1887 	u32 w_align_in, h_align_in;
1888 
1889 	infmt = get_format(in->pix.pixelformat);
1890 	outfmt = get_format(out->pix.pixelformat);
1891 
1892 	/* set some default pixel formats if needed */
1893 	if (!infmt) {
1894 		in->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1895 		infmt = get_format(V4L2_PIX_FMT_RGB24);
1896 	}
1897 	if (!outfmt) {
1898 		out->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1899 		outfmt = get_format(V4L2_PIX_FMT_RGB24);
1900 	}
1901 
1902 	/* image converter does not handle fields */
1903 	in->pix.field = out->pix.field = V4L2_FIELD_NONE;
1904 
1905 	/* resizer cannot downsize more than 4:1 */
1906 	if (ipu_rot_mode_is_irt(rot_mode)) {
1907 		out->pix.height = max_t(__u32, out->pix.height,
1908 					in->pix.width / 4);
1909 		out->pix.width = max_t(__u32, out->pix.width,
1910 				       in->pix.height / 4);
1911 	} else {
1912 		out->pix.width = max_t(__u32, out->pix.width,
1913 				       in->pix.width / 4);
1914 		out->pix.height = max_t(__u32, out->pix.height,
1915 					in->pix.height / 4);
1916 	}
1917 
1918 	/* align input width/height */
1919 	w_align_in = ilog2(tile_width_align(IMAGE_CONVERT_IN, infmt,
1920 					    rot_mode));
1921 	h_align_in = ilog2(tile_height_align(IMAGE_CONVERT_IN, infmt,
1922 					     rot_mode));
1923 	in->pix.width = clamp_align(in->pix.width, MIN_W, MAX_W,
1924 				    w_align_in);
1925 	in->pix.height = clamp_align(in->pix.height, MIN_H, MAX_H,
1926 				     h_align_in);
1927 
1928 	/* align output width/height */
1929 	w_align_out = ilog2(tile_width_align(IMAGE_CONVERT_OUT, outfmt,
1930 					     rot_mode));
1931 	h_align_out = ilog2(tile_height_align(IMAGE_CONVERT_OUT, outfmt,
1932 					      rot_mode));
1933 	out->pix.width = clamp_align(out->pix.width, MIN_W, MAX_W,
1934 				     w_align_out);
1935 	out->pix.height = clamp_align(out->pix.height, MIN_H, MAX_H,
1936 				      h_align_out);
1937 
1938 	/* set input/output strides and image sizes */
1939 	in->pix.bytesperline = infmt->planar ?
1940 		clamp_align(in->pix.width, 2 << w_align_in, MAX_W,
1941 			    w_align_in) :
1942 		clamp_align((in->pix.width * infmt->bpp) >> 3,
1943 			    ((2 << w_align_in) * infmt->bpp) >> 3,
1944 			    (MAX_W * infmt->bpp) >> 3,
1945 			    w_align_in);
1946 	in->pix.sizeimage = infmt->planar ?
1947 		(in->pix.height * in->pix.bytesperline * infmt->bpp) >> 3 :
1948 		in->pix.height * in->pix.bytesperline;
1949 	out->pix.bytesperline = outfmt->planar ? out->pix.width :
1950 		(out->pix.width * outfmt->bpp) >> 3;
1951 	out->pix.sizeimage = outfmt->planar ?
1952 		(out->pix.height * out->pix.bytesperline * outfmt->bpp) >> 3 :
1953 		out->pix.height * out->pix.bytesperline;
1954 }
1955 EXPORT_SYMBOL_GPL(ipu_image_convert_adjust);
1956 
1957 /*
1958  * this is used by ipu_image_convert_prepare() to verify set input and
1959  * output images are valid before starting the conversion. Clients can
1960  * also call it before calling ipu_image_convert_prepare().
1961  */
1962 int ipu_image_convert_verify(struct ipu_image *in, struct ipu_image *out,
1963 			     enum ipu_rotate_mode rot_mode)
1964 {
1965 	struct ipu_image testin, testout;
1966 
1967 	testin = *in;
1968 	testout = *out;
1969 
1970 	ipu_image_convert_adjust(&testin, &testout, rot_mode);
1971 
1972 	if (testin.pix.width != in->pix.width ||
1973 	    testin.pix.height != in->pix.height ||
1974 	    testout.pix.width != out->pix.width ||
1975 	    testout.pix.height != out->pix.height)
1976 		return -EINVAL;
1977 
1978 	return 0;
1979 }
1980 EXPORT_SYMBOL_GPL(ipu_image_convert_verify);
1981 
1982 /*
1983  * Call ipu_image_convert_prepare() to prepare for the conversion of
1984  * given images and rotation mode. Returns a new conversion context.
1985  */
1986 struct ipu_image_convert_ctx *
1987 ipu_image_convert_prepare(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
1988 			  struct ipu_image *in, struct ipu_image *out,
1989 			  enum ipu_rotate_mode rot_mode,
1990 			  ipu_image_convert_cb_t complete,
1991 			  void *complete_context)
1992 {
1993 	struct ipu_image_convert_priv *priv = ipu->image_convert_priv;
1994 	struct ipu_image_convert_image *s_image, *d_image;
1995 	struct ipu_image_convert_chan *chan;
1996 	struct ipu_image_convert_ctx *ctx;
1997 	unsigned long flags;
1998 	unsigned int i;
1999 	bool get_res;
2000 	int ret;
2001 
2002 	if (!in || !out || !complete ||
2003 	    (ic_task != IC_TASK_VIEWFINDER &&
2004 	     ic_task != IC_TASK_POST_PROCESSOR))
2005 		return ERR_PTR(-EINVAL);
2006 
2007 	/* verify the in/out images before continuing */
2008 	ret = ipu_image_convert_verify(in, out, rot_mode);
2009 	if (ret) {
2010 		dev_err(priv->ipu->dev, "%s: in/out formats invalid\n",
2011 			__func__);
2012 		return ERR_PTR(ret);
2013 	}
2014 
2015 	chan = &priv->chan[ic_task];
2016 
2017 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2018 	if (!ctx)
2019 		return ERR_PTR(-ENOMEM);
2020 
2021 	dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p\n", __func__,
2022 		chan->ic_task, ctx);
2023 
2024 	ctx->chan = chan;
2025 	init_completion(&ctx->aborted);
2026 
2027 	s_image = &ctx->in;
2028 	d_image = &ctx->out;
2029 
2030 	/* set tiling and rotation */
2031 	d_image->num_rows = num_stripes(out->pix.height);
2032 	d_image->num_cols = num_stripes(out->pix.width);
2033 	if (ipu_rot_mode_is_irt(rot_mode)) {
2034 		s_image->num_rows = d_image->num_cols;
2035 		s_image->num_cols = d_image->num_rows;
2036 	} else {
2037 		s_image->num_rows = d_image->num_rows;
2038 		s_image->num_cols = d_image->num_cols;
2039 	}
2040 
2041 	ctx->num_tiles = d_image->num_cols * d_image->num_rows;
2042 	ctx->rot_mode = rot_mode;
2043 
2044 	ret = fill_image(ctx, s_image, in, IMAGE_CONVERT_IN);
2045 	if (ret)
2046 		goto out_free;
2047 	ret = fill_image(ctx, d_image, out, IMAGE_CONVERT_OUT);
2048 	if (ret)
2049 		goto out_free;
2050 
2051 	ret = calc_image_resize_coefficients(ctx, in, out);
2052 	if (ret)
2053 		goto out_free;
2054 
2055 	calc_out_tile_map(ctx);
2056 
2057 	find_seams(ctx, s_image, d_image);
2058 
2059 	calc_tile_dimensions(ctx, s_image);
2060 	ret = calc_tile_offsets(ctx, s_image);
2061 	if (ret)
2062 		goto out_free;
2063 
2064 	calc_tile_dimensions(ctx, d_image);
2065 	ret = calc_tile_offsets(ctx, d_image);
2066 	if (ret)
2067 		goto out_free;
2068 
2069 	calc_tile_resize_coefficients(ctx);
2070 
2071 	ret = ipu_ic_calc_csc(&ctx->csc,
2072 			s_image->base.pix.ycbcr_enc,
2073 			s_image->base.pix.quantization,
2074 			ipu_pixelformat_to_colorspace(s_image->fmt->fourcc),
2075 			d_image->base.pix.ycbcr_enc,
2076 			d_image->base.pix.quantization,
2077 			ipu_pixelformat_to_colorspace(d_image->fmt->fourcc));
2078 	if (ret)
2079 		goto out_free;
2080 
2081 	dump_format(ctx, s_image);
2082 	dump_format(ctx, d_image);
2083 
2084 	ctx->complete = complete;
2085 	ctx->complete_context = complete_context;
2086 
2087 	/*
2088 	 * Can we use double-buffering for this operation? If there is
2089 	 * only one tile (the whole image can be converted in a single
2090 	 * operation) there's no point in using double-buffering. Also,
2091 	 * the IPU's IDMAC channels allow only a single U and V plane
2092 	 * offset shared between both buffers, but these offsets change
2093 	 * for every tile, and therefore would have to be updated for
2094 	 * each buffer which is not possible. So double-buffering is
2095 	 * impossible when either the source or destination images are
2096 	 * a planar format (YUV420, YUV422P, etc.). Further, differently
2097 	 * sized tiles or different resizing coefficients per tile
2098 	 * prevent double-buffering as well.
2099 	 */
2100 	ctx->double_buffering = (ctx->num_tiles > 1 &&
2101 				 !s_image->fmt->planar &&
2102 				 !d_image->fmt->planar);
2103 	for (i = 1; i < ctx->num_tiles; i++) {
2104 		if (ctx->in.tile[i].width != ctx->in.tile[0].width ||
2105 		    ctx->in.tile[i].height != ctx->in.tile[0].height ||
2106 		    ctx->out.tile[i].width != ctx->out.tile[0].width ||
2107 		    ctx->out.tile[i].height != ctx->out.tile[0].height) {
2108 			ctx->double_buffering = false;
2109 			break;
2110 		}
2111 	}
2112 	for (i = 1; i < ctx->in.num_cols; i++) {
2113 		if (ctx->resize_coeffs_h[i] != ctx->resize_coeffs_h[0]) {
2114 			ctx->double_buffering = false;
2115 			break;
2116 		}
2117 	}
2118 	for (i = 1; i < ctx->in.num_rows; i++) {
2119 		if (ctx->resize_coeffs_v[i] != ctx->resize_coeffs_v[0]) {
2120 			ctx->double_buffering = false;
2121 			break;
2122 		}
2123 	}
2124 
2125 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
2126 		unsigned long intermediate_size = d_image->tile[0].size;
2127 
2128 		for (i = 1; i < ctx->num_tiles; i++) {
2129 			if (d_image->tile[i].size > intermediate_size)
2130 				intermediate_size = d_image->tile[i].size;
2131 		}
2132 
2133 		ret = alloc_dma_buf(priv, &ctx->rot_intermediate[0],
2134 				    intermediate_size);
2135 		if (ret)
2136 			goto out_free;
2137 		if (ctx->double_buffering) {
2138 			ret = alloc_dma_buf(priv,
2139 					    &ctx->rot_intermediate[1],
2140 					    intermediate_size);
2141 			if (ret)
2142 				goto out_free_dmabuf0;
2143 		}
2144 	}
2145 
2146 	spin_lock_irqsave(&chan->irqlock, flags);
2147 
2148 	get_res = list_empty(&chan->ctx_list);
2149 
2150 	list_add_tail(&ctx->list, &chan->ctx_list);
2151 
2152 	spin_unlock_irqrestore(&chan->irqlock, flags);
2153 
2154 	if (get_res) {
2155 		ret = get_ipu_resources(chan);
2156 		if (ret)
2157 			goto out_free_dmabuf1;
2158 	}
2159 
2160 	return ctx;
2161 
2162 out_free_dmabuf1:
2163 	free_dma_buf(priv, &ctx->rot_intermediate[1]);
2164 	spin_lock_irqsave(&chan->irqlock, flags);
2165 	list_del(&ctx->list);
2166 	spin_unlock_irqrestore(&chan->irqlock, flags);
2167 out_free_dmabuf0:
2168 	free_dma_buf(priv, &ctx->rot_intermediate[0]);
2169 out_free:
2170 	kfree(ctx);
2171 	return ERR_PTR(ret);
2172 }
2173 EXPORT_SYMBOL_GPL(ipu_image_convert_prepare);
2174 
2175 /*
2176  * Carry out a single image conversion run. Only the physaddr's of the input
2177  * and output image buffers are needed. The conversion context must have
2178  * been created previously with ipu_image_convert_prepare().
2179  */
2180 int ipu_image_convert_queue(struct ipu_image_convert_run *run)
2181 {
2182 	struct ipu_image_convert_chan *chan;
2183 	struct ipu_image_convert_priv *priv;
2184 	struct ipu_image_convert_ctx *ctx;
2185 	unsigned long flags;
2186 	int ret = 0;
2187 
2188 	if (!run || !run->ctx || !run->in_phys || !run->out_phys)
2189 		return -EINVAL;
2190 
2191 	ctx = run->ctx;
2192 	chan = ctx->chan;
2193 	priv = chan->priv;
2194 
2195 	dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p run %p\n", __func__,
2196 		chan->ic_task, ctx, run);
2197 
2198 	INIT_LIST_HEAD(&run->list);
2199 
2200 	spin_lock_irqsave(&chan->irqlock, flags);
2201 
2202 	if (ctx->aborting) {
2203 		ret = -EIO;
2204 		goto unlock;
2205 	}
2206 
2207 	list_add_tail(&run->list, &chan->pending_q);
2208 
2209 	if (!chan->current_run) {
2210 		ret = do_run(run);
2211 		if (ret)
2212 			chan->current_run = NULL;
2213 	}
2214 unlock:
2215 	spin_unlock_irqrestore(&chan->irqlock, flags);
2216 	return ret;
2217 }
2218 EXPORT_SYMBOL_GPL(ipu_image_convert_queue);
2219 
2220 /* Abort any active or pending conversions for this context */
2221 static void __ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2222 {
2223 	struct ipu_image_convert_chan *chan = ctx->chan;
2224 	struct ipu_image_convert_priv *priv = chan->priv;
2225 	struct ipu_image_convert_run *run, *active_run, *tmp;
2226 	unsigned long flags;
2227 	int run_count, ret;
2228 
2229 	spin_lock_irqsave(&chan->irqlock, flags);
2230 
2231 	/* move all remaining pending runs in this context to done_q */
2232 	list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
2233 		if (run->ctx != ctx)
2234 			continue;
2235 		run->status = -EIO;
2236 		list_move_tail(&run->list, &chan->done_q);
2237 	}
2238 
2239 	run_count = get_run_count(ctx, &chan->done_q);
2240 	active_run = (chan->current_run && chan->current_run->ctx == ctx) ?
2241 		chan->current_run : NULL;
2242 
2243 	if (active_run)
2244 		reinit_completion(&ctx->aborted);
2245 
2246 	ctx->aborting = true;
2247 
2248 	spin_unlock_irqrestore(&chan->irqlock, flags);
2249 
2250 	if (!run_count && !active_run) {
2251 		dev_dbg(priv->ipu->dev,
2252 			"%s: task %u: no abort needed for ctx %p\n",
2253 			__func__, chan->ic_task, ctx);
2254 		return;
2255 	}
2256 
2257 	if (!active_run) {
2258 		empty_done_q(chan);
2259 		return;
2260 	}
2261 
2262 	dev_dbg(priv->ipu->dev,
2263 		"%s: task %u: wait for completion: %d runs\n",
2264 		__func__, chan->ic_task, run_count);
2265 
2266 	ret = wait_for_completion_timeout(&ctx->aborted,
2267 					  msecs_to_jiffies(10000));
2268 	if (ret == 0) {
2269 		dev_warn(priv->ipu->dev, "%s: timeout\n", __func__);
2270 		force_abort(ctx);
2271 	}
2272 }
2273 
2274 void ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2275 {
2276 	__ipu_image_convert_abort(ctx);
2277 	ctx->aborting = false;
2278 }
2279 EXPORT_SYMBOL_GPL(ipu_image_convert_abort);
2280 
2281 /* Unprepare image conversion context */
2282 void ipu_image_convert_unprepare(struct ipu_image_convert_ctx *ctx)
2283 {
2284 	struct ipu_image_convert_chan *chan = ctx->chan;
2285 	struct ipu_image_convert_priv *priv = chan->priv;
2286 	unsigned long flags;
2287 	bool put_res;
2288 
2289 	/* make sure no runs are hanging around */
2290 	__ipu_image_convert_abort(ctx);
2291 
2292 	dev_dbg(priv->ipu->dev, "%s: task %u: removing ctx %p\n", __func__,
2293 		chan->ic_task, ctx);
2294 
2295 	spin_lock_irqsave(&chan->irqlock, flags);
2296 
2297 	list_del(&ctx->list);
2298 
2299 	put_res = list_empty(&chan->ctx_list);
2300 
2301 	spin_unlock_irqrestore(&chan->irqlock, flags);
2302 
2303 	if (put_res)
2304 		release_ipu_resources(chan);
2305 
2306 	free_dma_buf(priv, &ctx->rot_intermediate[1]);
2307 	free_dma_buf(priv, &ctx->rot_intermediate[0]);
2308 
2309 	kfree(ctx);
2310 }
2311 EXPORT_SYMBOL_GPL(ipu_image_convert_unprepare);
2312 
2313 /*
2314  * "Canned" asynchronous single image conversion. Allocates and returns
2315  * a new conversion run.  On successful return the caller must free the
2316  * run and call ipu_image_convert_unprepare() after conversion completes.
2317  */
2318 struct ipu_image_convert_run *
2319 ipu_image_convert(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2320 		  struct ipu_image *in, struct ipu_image *out,
2321 		  enum ipu_rotate_mode rot_mode,
2322 		  ipu_image_convert_cb_t complete,
2323 		  void *complete_context)
2324 {
2325 	struct ipu_image_convert_ctx *ctx;
2326 	struct ipu_image_convert_run *run;
2327 	int ret;
2328 
2329 	ctx = ipu_image_convert_prepare(ipu, ic_task, in, out, rot_mode,
2330 					complete, complete_context);
2331 	if (IS_ERR(ctx))
2332 		return ERR_CAST(ctx);
2333 
2334 	run = kzalloc(sizeof(*run), GFP_KERNEL);
2335 	if (!run) {
2336 		ipu_image_convert_unprepare(ctx);
2337 		return ERR_PTR(-ENOMEM);
2338 	}
2339 
2340 	run->ctx = ctx;
2341 	run->in_phys = in->phys0;
2342 	run->out_phys = out->phys0;
2343 
2344 	ret = ipu_image_convert_queue(run);
2345 	if (ret) {
2346 		ipu_image_convert_unprepare(ctx);
2347 		kfree(run);
2348 		return ERR_PTR(ret);
2349 	}
2350 
2351 	return run;
2352 }
2353 EXPORT_SYMBOL_GPL(ipu_image_convert);
2354 
2355 /* "Canned" synchronous single image conversion */
2356 static void image_convert_sync_complete(struct ipu_image_convert_run *run,
2357 					void *data)
2358 {
2359 	struct completion *comp = data;
2360 
2361 	complete(comp);
2362 }
2363 
2364 int ipu_image_convert_sync(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2365 			   struct ipu_image *in, struct ipu_image *out,
2366 			   enum ipu_rotate_mode rot_mode)
2367 {
2368 	struct ipu_image_convert_run *run;
2369 	struct completion comp;
2370 	int ret;
2371 
2372 	init_completion(&comp);
2373 
2374 	run = ipu_image_convert(ipu, ic_task, in, out, rot_mode,
2375 				image_convert_sync_complete, &comp);
2376 	if (IS_ERR(run))
2377 		return PTR_ERR(run);
2378 
2379 	ret = wait_for_completion_timeout(&comp, msecs_to_jiffies(10000));
2380 	ret = (ret == 0) ? -ETIMEDOUT : 0;
2381 
2382 	ipu_image_convert_unprepare(run->ctx);
2383 	kfree(run);
2384 
2385 	return ret;
2386 }
2387 EXPORT_SYMBOL_GPL(ipu_image_convert_sync);
2388 
2389 int ipu_image_convert_init(struct ipu_soc *ipu, struct device *dev)
2390 {
2391 	struct ipu_image_convert_priv *priv;
2392 	int i;
2393 
2394 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
2395 	if (!priv)
2396 		return -ENOMEM;
2397 
2398 	ipu->image_convert_priv = priv;
2399 	priv->ipu = ipu;
2400 
2401 	for (i = 0; i < IC_NUM_TASKS; i++) {
2402 		struct ipu_image_convert_chan *chan = &priv->chan[i];
2403 
2404 		chan->ic_task = i;
2405 		chan->priv = priv;
2406 		chan->dma_ch = &image_convert_dma_chan[i];
2407 		chan->out_eof_irq = -1;
2408 		chan->rot_out_eof_irq = -1;
2409 
2410 		spin_lock_init(&chan->irqlock);
2411 		INIT_LIST_HEAD(&chan->ctx_list);
2412 		INIT_LIST_HEAD(&chan->pending_q);
2413 		INIT_LIST_HEAD(&chan->done_q);
2414 	}
2415 
2416 	return 0;
2417 }
2418 
2419 void ipu_image_convert_exit(struct ipu_soc *ipu)
2420 {
2421 }
2422