1 /*
2  * Copyright (C) 2012-2016 Mentor Graphics Inc.
3  *
4  * Queued image conversion support, with tiling and rotation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the
8  * Free Software Foundation; either version 2 of the License, or (at your
9  * option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful, but
12  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * for more details.
15  */
16 
17 #include <linux/interrupt.h>
18 #include <linux/dma-mapping.h>
19 #include <video/imx-ipu-image-convert.h>
20 #include "ipu-prv.h"
21 
22 /*
23  * The IC Resizer has a restriction that the output frame from the
24  * resizer must be 1024 or less in both width (pixels) and height
25  * (lines).
26  *
27  * The image converter attempts to split up a conversion when
28  * the desired output (converted) frame resolution exceeds the
29  * IC resizer limit of 1024 in either dimension.
30  *
31  * If either dimension of the output frame exceeds the limit, the
32  * dimension is split into 1, 2, or 4 equal stripes, for a maximum
33  * of 4*4 or 16 tiles. A conversion is then carried out for each
34  * tile (but taking care to pass the full frame stride length to
35  * the DMA channel's parameter memory!). IDMA double-buffering is used
36  * to convert each tile back-to-back when possible (see note below
37  * when double_buffering boolean is set).
38  *
39  * Note that the input frame must be split up into the same number
40  * of tiles as the output frame.
41  *
42  * FIXME: at this point there is no attempt to deal with visible seams
43  * at the tile boundaries when upscaling. The seams are caused by a reset
44  * of the bilinear upscale interpolation when starting a new tile. The
45  * seams are barely visible for small upscale factors, but become
46  * increasingly visible as the upscale factor gets larger, since more
47  * interpolated pixels get thrown out at the tile boundaries. A possilble
48  * fix might be to overlap tiles of different sizes, but this must be done
49  * while also maintaining the IDMAC dma buffer address alignment and 8x8 IRT
50  * alignment restrictions of each tile.
51  */
52 
53 #define MAX_STRIPES_W    4
54 #define MAX_STRIPES_H    4
55 #define MAX_TILES (MAX_STRIPES_W * MAX_STRIPES_H)
56 
57 #define MIN_W     16
58 #define MIN_H     8
59 #define MAX_W     4096
60 #define MAX_H     4096
61 
62 enum ipu_image_convert_type {
63 	IMAGE_CONVERT_IN = 0,
64 	IMAGE_CONVERT_OUT,
65 };
66 
67 struct ipu_image_convert_dma_buf {
68 	void          *virt;
69 	dma_addr_t    phys;
70 	unsigned long len;
71 };
72 
73 struct ipu_image_convert_dma_chan {
74 	int in;
75 	int out;
76 	int rot_in;
77 	int rot_out;
78 	int vdi_in_p;
79 	int vdi_in;
80 	int vdi_in_n;
81 };
82 
83 /* dimensions of one tile */
84 struct ipu_image_tile {
85 	u32 width;
86 	u32 height;
87 	u32 left;
88 	u32 top;
89 	/* size and strides are in bytes */
90 	u32 size;
91 	u32 stride;
92 	u32 rot_stride;
93 	/* start Y or packed offset of this tile */
94 	u32 offset;
95 	/* offset from start to tile in U plane, for planar formats */
96 	u32 u_off;
97 	/* offset from start to tile in V plane, for planar formats */
98 	u32 v_off;
99 };
100 
101 struct ipu_image_convert_image {
102 	struct ipu_image base;
103 	enum ipu_image_convert_type type;
104 
105 	const struct ipu_image_pixfmt *fmt;
106 	unsigned int stride;
107 
108 	/* # of rows (horizontal stripes) if dest height is > 1024 */
109 	unsigned int num_rows;
110 	/* # of columns (vertical stripes) if dest width is > 1024 */
111 	unsigned int num_cols;
112 
113 	struct ipu_image_tile tile[MAX_TILES];
114 };
115 
116 struct ipu_image_pixfmt {
117 	u32	fourcc;        /* V4L2 fourcc */
118 	int     bpp;           /* total bpp */
119 	int     uv_width_dec;  /* decimation in width for U/V planes */
120 	int     uv_height_dec; /* decimation in height for U/V planes */
121 	bool    planar;        /* planar format */
122 	bool    uv_swapped;    /* U and V planes are swapped */
123 	bool    uv_packed;     /* partial planar (U and V in same plane) */
124 };
125 
126 struct ipu_image_convert_ctx;
127 struct ipu_image_convert_chan;
128 struct ipu_image_convert_priv;
129 
130 struct ipu_image_convert_ctx {
131 	struct ipu_image_convert_chan *chan;
132 
133 	ipu_image_convert_cb_t complete;
134 	void *complete_context;
135 
136 	/* Source/destination image data and rotation mode */
137 	struct ipu_image_convert_image in;
138 	struct ipu_image_convert_image out;
139 	enum ipu_rotate_mode rot_mode;
140 	u32 downsize_coeff_h;
141 	u32 downsize_coeff_v;
142 	u32 image_resize_coeff_h;
143 	u32 image_resize_coeff_v;
144 	u32 resize_coeffs_h[MAX_STRIPES_W];
145 	u32 resize_coeffs_v[MAX_STRIPES_H];
146 
147 	/* intermediate buffer for rotation */
148 	struct ipu_image_convert_dma_buf rot_intermediate[2];
149 
150 	/* current buffer number for double buffering */
151 	int cur_buf_num;
152 
153 	bool aborting;
154 	struct completion aborted;
155 
156 	/* can we use double-buffering for this conversion operation? */
157 	bool double_buffering;
158 	/* num_rows * num_cols */
159 	unsigned int num_tiles;
160 	/* next tile to process */
161 	unsigned int next_tile;
162 	/* where to place converted tile in dest image */
163 	unsigned int out_tile_map[MAX_TILES];
164 
165 	struct list_head list;
166 };
167 
168 struct ipu_image_convert_chan {
169 	struct ipu_image_convert_priv *priv;
170 
171 	enum ipu_ic_task ic_task;
172 	const struct ipu_image_convert_dma_chan *dma_ch;
173 
174 	struct ipu_ic *ic;
175 	struct ipuv3_channel *in_chan;
176 	struct ipuv3_channel *out_chan;
177 	struct ipuv3_channel *rotation_in_chan;
178 	struct ipuv3_channel *rotation_out_chan;
179 
180 	/* the IPU end-of-frame irqs */
181 	int out_eof_irq;
182 	int rot_out_eof_irq;
183 
184 	spinlock_t irqlock;
185 
186 	/* list of convert contexts */
187 	struct list_head ctx_list;
188 	/* queue of conversion runs */
189 	struct list_head pending_q;
190 	/* queue of completed runs */
191 	struct list_head done_q;
192 
193 	/* the current conversion run */
194 	struct ipu_image_convert_run *current_run;
195 };
196 
197 struct ipu_image_convert_priv {
198 	struct ipu_image_convert_chan chan[IC_NUM_TASKS];
199 	struct ipu_soc *ipu;
200 };
201 
202 static const struct ipu_image_convert_dma_chan
203 image_convert_dma_chan[IC_NUM_TASKS] = {
204 	[IC_TASK_VIEWFINDER] = {
205 		.in = IPUV3_CHANNEL_MEM_IC_PRP_VF,
206 		.out = IPUV3_CHANNEL_IC_PRP_VF_MEM,
207 		.rot_in = IPUV3_CHANNEL_MEM_ROT_VF,
208 		.rot_out = IPUV3_CHANNEL_ROT_VF_MEM,
209 		.vdi_in_p = IPUV3_CHANNEL_MEM_VDI_PREV,
210 		.vdi_in = IPUV3_CHANNEL_MEM_VDI_CUR,
211 		.vdi_in_n = IPUV3_CHANNEL_MEM_VDI_NEXT,
212 	},
213 	[IC_TASK_POST_PROCESSOR] = {
214 		.in = IPUV3_CHANNEL_MEM_IC_PP,
215 		.out = IPUV3_CHANNEL_IC_PP_MEM,
216 		.rot_in = IPUV3_CHANNEL_MEM_ROT_PP,
217 		.rot_out = IPUV3_CHANNEL_ROT_PP_MEM,
218 	},
219 };
220 
221 static const struct ipu_image_pixfmt image_convert_formats[] = {
222 	{
223 		.fourcc	= V4L2_PIX_FMT_RGB565,
224 		.bpp    = 16,
225 	}, {
226 		.fourcc	= V4L2_PIX_FMT_RGB24,
227 		.bpp    = 24,
228 	}, {
229 		.fourcc	= V4L2_PIX_FMT_BGR24,
230 		.bpp    = 24,
231 	}, {
232 		.fourcc	= V4L2_PIX_FMT_RGB32,
233 		.bpp    = 32,
234 	}, {
235 		.fourcc	= V4L2_PIX_FMT_BGR32,
236 		.bpp    = 32,
237 	}, {
238 		.fourcc	= V4L2_PIX_FMT_XRGB32,
239 		.bpp    = 32,
240 	}, {
241 		.fourcc	= V4L2_PIX_FMT_XBGR32,
242 		.bpp    = 32,
243 	}, {
244 		.fourcc	= V4L2_PIX_FMT_YUYV,
245 		.bpp    = 16,
246 		.uv_width_dec = 2,
247 		.uv_height_dec = 1,
248 	}, {
249 		.fourcc	= V4L2_PIX_FMT_UYVY,
250 		.bpp    = 16,
251 		.uv_width_dec = 2,
252 		.uv_height_dec = 1,
253 	}, {
254 		.fourcc	= V4L2_PIX_FMT_YUV420,
255 		.bpp    = 12,
256 		.planar = true,
257 		.uv_width_dec = 2,
258 		.uv_height_dec = 2,
259 	}, {
260 		.fourcc	= V4L2_PIX_FMT_YVU420,
261 		.bpp    = 12,
262 		.planar = true,
263 		.uv_width_dec = 2,
264 		.uv_height_dec = 2,
265 		.uv_swapped = true,
266 	}, {
267 		.fourcc = V4L2_PIX_FMT_NV12,
268 		.bpp    = 12,
269 		.planar = true,
270 		.uv_width_dec = 2,
271 		.uv_height_dec = 2,
272 		.uv_packed = true,
273 	}, {
274 		.fourcc = V4L2_PIX_FMT_YUV422P,
275 		.bpp    = 16,
276 		.planar = true,
277 		.uv_width_dec = 2,
278 		.uv_height_dec = 1,
279 	}, {
280 		.fourcc = V4L2_PIX_FMT_NV16,
281 		.bpp    = 16,
282 		.planar = true,
283 		.uv_width_dec = 2,
284 		.uv_height_dec = 1,
285 		.uv_packed = true,
286 	},
287 };
288 
289 static const struct ipu_image_pixfmt *get_format(u32 fourcc)
290 {
291 	const struct ipu_image_pixfmt *ret = NULL;
292 	unsigned int i;
293 
294 	for (i = 0; i < ARRAY_SIZE(image_convert_formats); i++) {
295 		if (image_convert_formats[i].fourcc == fourcc) {
296 			ret = &image_convert_formats[i];
297 			break;
298 		}
299 	}
300 
301 	return ret;
302 }
303 
304 static void dump_format(struct ipu_image_convert_ctx *ctx,
305 			struct ipu_image_convert_image *ic_image)
306 {
307 	struct ipu_image_convert_chan *chan = ctx->chan;
308 	struct ipu_image_convert_priv *priv = chan->priv;
309 
310 	dev_dbg(priv->ipu->dev,
311 		"task %u: ctx %p: %s format: %dx%d (%dx%d tiles), %c%c%c%c\n",
312 		chan->ic_task, ctx,
313 		ic_image->type == IMAGE_CONVERT_OUT ? "Output" : "Input",
314 		ic_image->base.pix.width, ic_image->base.pix.height,
315 		ic_image->num_cols, ic_image->num_rows,
316 		ic_image->fmt->fourcc & 0xff,
317 		(ic_image->fmt->fourcc >> 8) & 0xff,
318 		(ic_image->fmt->fourcc >> 16) & 0xff,
319 		(ic_image->fmt->fourcc >> 24) & 0xff);
320 }
321 
322 int ipu_image_convert_enum_format(int index, u32 *fourcc)
323 {
324 	const struct ipu_image_pixfmt *fmt;
325 
326 	if (index >= (int)ARRAY_SIZE(image_convert_formats))
327 		return -EINVAL;
328 
329 	/* Format found */
330 	fmt = &image_convert_formats[index];
331 	*fourcc = fmt->fourcc;
332 	return 0;
333 }
334 EXPORT_SYMBOL_GPL(ipu_image_convert_enum_format);
335 
336 static void free_dma_buf(struct ipu_image_convert_priv *priv,
337 			 struct ipu_image_convert_dma_buf *buf)
338 {
339 	if (buf->virt)
340 		dma_free_coherent(priv->ipu->dev,
341 				  buf->len, buf->virt, buf->phys);
342 	buf->virt = NULL;
343 	buf->phys = 0;
344 }
345 
346 static int alloc_dma_buf(struct ipu_image_convert_priv *priv,
347 			 struct ipu_image_convert_dma_buf *buf,
348 			 int size)
349 {
350 	buf->len = PAGE_ALIGN(size);
351 	buf->virt = dma_alloc_coherent(priv->ipu->dev, buf->len, &buf->phys,
352 				       GFP_DMA | GFP_KERNEL);
353 	if (!buf->virt) {
354 		dev_err(priv->ipu->dev, "failed to alloc dma buffer\n");
355 		return -ENOMEM;
356 	}
357 
358 	return 0;
359 }
360 
361 static inline int num_stripes(int dim)
362 {
363 	if (dim <= 1024)
364 		return 1;
365 	else if (dim <= 2048)
366 		return 2;
367 	else
368 		return 4;
369 }
370 
371 /*
372  * Calculate downsizing coefficients, which are the same for all tiles,
373  * and bilinear resizing coefficients, which are used to find the best
374  * seam positions.
375  */
376 static int calc_image_resize_coefficients(struct ipu_image_convert_ctx *ctx,
377 					  struct ipu_image *in,
378 					  struct ipu_image *out)
379 {
380 	u32 downsized_width = in->rect.width;
381 	u32 downsized_height = in->rect.height;
382 	u32 downsize_coeff_v = 0;
383 	u32 downsize_coeff_h = 0;
384 	u32 resized_width = out->rect.width;
385 	u32 resized_height = out->rect.height;
386 	u32 resize_coeff_h;
387 	u32 resize_coeff_v;
388 
389 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
390 		resized_width = out->rect.height;
391 		resized_height = out->rect.width;
392 	}
393 
394 	/* Do not let invalid input lead to an endless loop below */
395 	if (WARN_ON(resized_width == 0 || resized_height == 0))
396 		return -EINVAL;
397 
398 	while (downsized_width >= resized_width * 2) {
399 		downsized_width >>= 1;
400 		downsize_coeff_h++;
401 	}
402 
403 	while (downsized_height >= resized_height * 2) {
404 		downsized_height >>= 1;
405 		downsize_coeff_v++;
406 	}
407 
408 	/*
409 	 * Calculate the bilinear resizing coefficients that could be used if
410 	 * we were converting with a single tile. The bottom right output pixel
411 	 * should sample as close as possible to the bottom right input pixel
412 	 * out of the decimator, but not overshoot it:
413 	 */
414 	resize_coeff_h = 8192 * (downsized_width - 1) / (resized_width - 1);
415 	resize_coeff_v = 8192 * (downsized_height - 1) / (resized_height - 1);
416 
417 	dev_dbg(ctx->chan->priv->ipu->dev,
418 		"%s: hscale: >>%u, *8192/%u vscale: >>%u, *8192/%u, %ux%u tiles\n",
419 		__func__, downsize_coeff_h, resize_coeff_h, downsize_coeff_v,
420 		resize_coeff_v, ctx->in.num_cols, ctx->in.num_rows);
421 
422 	if (downsize_coeff_h > 2 || downsize_coeff_v  > 2 ||
423 	    resize_coeff_h > 0x3fff || resize_coeff_v > 0x3fff)
424 		return -EINVAL;
425 
426 	ctx->downsize_coeff_h = downsize_coeff_h;
427 	ctx->downsize_coeff_v = downsize_coeff_v;
428 	ctx->image_resize_coeff_h = resize_coeff_h;
429 	ctx->image_resize_coeff_v = resize_coeff_v;
430 
431 	return 0;
432 }
433 
434 #define round_closest(x, y) round_down((x) + (y)/2, (y))
435 
436 /*
437  * Find the best aligned seam position in the inverval [out_start, out_end].
438  * Rotation and image offsets are out of scope.
439  *
440  * @out_start: start of inverval, must be within 1024 pixels / lines
441  *             of out_end
442  * @out_end: end of interval, smaller than or equal to out_edge
443  * @in_edge: input right / bottom edge
444  * @out_edge: output right / bottom edge
445  * @in_align: input alignment, either horizontal 8-byte line start address
446  *            alignment, or pixel alignment due to image format
447  * @out_align: output alignment, either horizontal 8-byte line start address
448  *             alignment, or pixel alignment due to image format or rotator
449  *             block size
450  * @in_burst: horizontal input burst size in case of horizontal flip
451  * @out_burst: horizontal output burst size or rotator block size
452  * @downsize_coeff: downsizing section coefficient
453  * @resize_coeff: main processing section resizing coefficient
454  * @_in_seam: aligned input seam position return value
455  * @_out_seam: aligned output seam position return value
456  */
457 static void find_best_seam(struct ipu_image_convert_ctx *ctx,
458 			   unsigned int out_start,
459 			   unsigned int out_end,
460 			   unsigned int in_edge,
461 			   unsigned int out_edge,
462 			   unsigned int in_align,
463 			   unsigned int out_align,
464 			   unsigned int in_burst,
465 			   unsigned int out_burst,
466 			   unsigned int downsize_coeff,
467 			   unsigned int resize_coeff,
468 			   u32 *_in_seam,
469 			   u32 *_out_seam)
470 {
471 	struct device *dev = ctx->chan->priv->ipu->dev;
472 	unsigned int out_pos;
473 	/* Input / output seam position candidates */
474 	unsigned int out_seam = 0;
475 	unsigned int in_seam = 0;
476 	unsigned int min_diff = UINT_MAX;
477 
478 	/*
479 	 * Output tiles must start at a multiple of 8 bytes horizontally and
480 	 * possibly at an even line horizontally depending on the pixel format.
481 	 * Only consider output aligned positions for the seam.
482 	 */
483 	out_start = round_up(out_start, out_align);
484 	for (out_pos = out_start; out_pos < out_end; out_pos += out_align) {
485 		unsigned int in_pos;
486 		unsigned int in_pos_aligned;
487 		unsigned int abs_diff;
488 
489 		/*
490 		 * Tiles in the right row / bottom column may not be allowed to
491 		 * overshoot horizontally / vertically. out_burst may be the
492 		 * actual DMA burst size, or the rotator block size.
493 		 */
494 		if ((out_burst > 1) && (out_edge - out_pos) % out_burst)
495 			continue;
496 
497 		/*
498 		 * Input sample position, corresponding to out_pos, 19.13 fixed
499 		 * point.
500 		 */
501 		in_pos = (out_pos * resize_coeff) << downsize_coeff;
502 		/*
503 		 * The closest input sample position that we could actually
504 		 * start the input tile at, 19.13 fixed point.
505 		 */
506 		in_pos_aligned = round_closest(in_pos, 8192U * in_align);
507 
508 		if ((in_burst > 1) &&
509 		    (in_edge - in_pos_aligned / 8192U) % in_burst)
510 			continue;
511 
512 		if (in_pos < in_pos_aligned)
513 			abs_diff = in_pos_aligned - in_pos;
514 		else
515 			abs_diff = in_pos - in_pos_aligned;
516 
517 		if (abs_diff < min_diff) {
518 			in_seam = in_pos_aligned;
519 			out_seam = out_pos;
520 			min_diff = abs_diff;
521 		}
522 	}
523 
524 	*_out_seam = out_seam;
525 	/* Convert 19.13 fixed point to integer seam position */
526 	*_in_seam = DIV_ROUND_CLOSEST(in_seam, 8192U);
527 
528 	dev_dbg(dev, "%s: out_seam %u(%u) in [%u, %u], in_seam %u(%u) diff %u.%03u\n",
529 		__func__, out_seam, out_align, out_start, out_end,
530 		*_in_seam, in_align, min_diff / 8192,
531 		DIV_ROUND_CLOSEST(min_diff % 8192 * 1000, 8192));
532 }
533 
534 /*
535  * Tile left edges are required to be aligned to multiples of 8 bytes
536  * by the IDMAC.
537  */
538 static inline u32 tile_left_align(const struct ipu_image_pixfmt *fmt)
539 {
540 	if (fmt->planar)
541 		return fmt->uv_packed ? 8 : 8 * fmt->uv_width_dec;
542 	else
543 		return fmt->bpp == 32 ? 2 : fmt->bpp == 16 ? 4 : 8;
544 }
545 
546 /*
547  * Tile top edge alignment is only limited by chroma subsampling.
548  */
549 static inline u32 tile_top_align(const struct ipu_image_pixfmt *fmt)
550 {
551 	return fmt->uv_height_dec > 1 ? 2 : 1;
552 }
553 
554 /*
555  * We have to adjust the tile width such that the tile physaddrs and
556  * U and V plane offsets are multiples of 8 bytes as required by
557  * the IPU DMA Controller. For the planar formats, this corresponds
558  * to a pixel alignment of 16 (but use a more formal equation since
559  * the variables are available). For all the packed formats, 8 is
560  * good enough.
561  */
562 static inline u32 tile_width_align(const struct ipu_image_pixfmt *fmt)
563 {
564 	return fmt->planar ? 8 * fmt->uv_width_dec : 8;
565 }
566 
567 /*
568  * For tile height alignment, we have to ensure that the output tile
569  * heights are multiples of 8 lines if the IRT is required by the
570  * given rotation mode (the IRT performs rotations on 8x8 blocks
571  * at a time). If the IRT is not used, or for input image tiles,
572  * 2 lines are good enough.
573  */
574 static inline u32 tile_height_align(enum ipu_image_convert_type type,
575 				    enum ipu_rotate_mode rot_mode)
576 {
577 	return (type == IMAGE_CONVERT_OUT &&
578 		ipu_rot_mode_is_irt(rot_mode)) ? 8 : 2;
579 }
580 
581 /*
582  * Fill in left position and width and for all tiles in an input column, and
583  * for all corresponding output tiles. If the 90° rotator is used, the output
584  * tiles are in a row, and output tile top position and height are set.
585  */
586 static void fill_tile_column(struct ipu_image_convert_ctx *ctx,
587 			     unsigned int col,
588 			     struct ipu_image_convert_image *in,
589 			     unsigned int in_left, unsigned int in_width,
590 			     struct ipu_image_convert_image *out,
591 			     unsigned int out_left, unsigned int out_width)
592 {
593 	unsigned int row, tile_idx;
594 	struct ipu_image_tile *in_tile, *out_tile;
595 
596 	for (row = 0; row < in->num_rows; row++) {
597 		tile_idx = in->num_cols * row + col;
598 		in_tile = &in->tile[tile_idx];
599 		out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
600 
601 		in_tile->left = in_left;
602 		in_tile->width = in_width;
603 
604 		if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
605 			out_tile->top = out_left;
606 			out_tile->height = out_width;
607 		} else {
608 			out_tile->left = out_left;
609 			out_tile->width = out_width;
610 		}
611 	}
612 }
613 
614 /*
615  * Fill in top position and height and for all tiles in an input row, and
616  * for all corresponding output tiles. If the 90° rotator is used, the output
617  * tiles are in a column, and output tile left position and width are set.
618  */
619 static void fill_tile_row(struct ipu_image_convert_ctx *ctx, unsigned int row,
620 			  struct ipu_image_convert_image *in,
621 			  unsigned int in_top, unsigned int in_height,
622 			  struct ipu_image_convert_image *out,
623 			  unsigned int out_top, unsigned int out_height)
624 {
625 	unsigned int col, tile_idx;
626 	struct ipu_image_tile *in_tile, *out_tile;
627 
628 	for (col = 0; col < in->num_cols; col++) {
629 		tile_idx = in->num_cols * row + col;
630 		in_tile = &in->tile[tile_idx];
631 		out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
632 
633 		in_tile->top = in_top;
634 		in_tile->height = in_height;
635 
636 		if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
637 			out_tile->left = out_top;
638 			out_tile->width = out_height;
639 		} else {
640 			out_tile->top = out_top;
641 			out_tile->height = out_height;
642 		}
643 	}
644 }
645 
646 /*
647  * Find the best horizontal and vertical seam positions to split into tiles.
648  * Minimize the fractional part of the input sampling position for the
649  * top / left pixels of each tile.
650  */
651 static void find_seams(struct ipu_image_convert_ctx *ctx,
652 		       struct ipu_image_convert_image *in,
653 		       struct ipu_image_convert_image *out)
654 {
655 	struct device *dev = ctx->chan->priv->ipu->dev;
656 	unsigned int resized_width = out->base.rect.width;
657 	unsigned int resized_height = out->base.rect.height;
658 	unsigned int col;
659 	unsigned int row;
660 	unsigned int in_left_align = tile_left_align(in->fmt);
661 	unsigned int in_top_align = tile_top_align(in->fmt);
662 	unsigned int out_left_align = tile_left_align(out->fmt);
663 	unsigned int out_top_align = tile_top_align(out->fmt);
664 	unsigned int out_width_align = tile_width_align(out->fmt);
665 	unsigned int out_height_align = tile_height_align(out->type,
666 							  ctx->rot_mode);
667 	unsigned int in_right = in->base.rect.width;
668 	unsigned int in_bottom = in->base.rect.height;
669 	unsigned int out_right = out->base.rect.width;
670 	unsigned int out_bottom = out->base.rect.height;
671 	unsigned int flipped_out_left;
672 	unsigned int flipped_out_top;
673 
674 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
675 		/* Switch width/height and align top left to IRT block size */
676 		resized_width = out->base.rect.height;
677 		resized_height = out->base.rect.width;
678 		out_left_align = out_height_align;
679 		out_top_align = out_width_align;
680 		out_width_align = out_left_align;
681 		out_height_align = out_top_align;
682 		out_right = out->base.rect.height;
683 		out_bottom = out->base.rect.width;
684 	}
685 
686 	for (col = in->num_cols - 1; col > 0; col--) {
687 		bool allow_in_overshoot = ipu_rot_mode_is_irt(ctx->rot_mode) ||
688 					  !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
689 		bool allow_out_overshoot = (col < in->num_cols - 1) &&
690 					   !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
691 		unsigned int out_start;
692 		unsigned int out_end;
693 		unsigned int in_left;
694 		unsigned int out_left;
695 
696 		/*
697 		 * Align input width to burst length if the scaling step flips
698 		 * horizontally.
699 		 */
700 
701 		/* Start within 1024 pixels of the right edge */
702 		out_start = max_t(int, 0, out_right - 1024);
703 		/* End before having to add more columns to the left */
704 		out_end = min_t(unsigned int, out_right, col * 1024);
705 
706 		find_best_seam(ctx, out_start, out_end,
707 			       in_right, out_right,
708 			       in_left_align, out_left_align,
709 			       allow_in_overshoot ? 1 : 8 /* burst length */,
710 			       allow_out_overshoot ? 1 : out_width_align,
711 			       ctx->downsize_coeff_h, ctx->image_resize_coeff_h,
712 			       &in_left, &out_left);
713 
714 		if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
715 			flipped_out_left = resized_width - out_right;
716 		else
717 			flipped_out_left = out_left;
718 
719 		fill_tile_column(ctx, col, in, in_left, in_right - in_left,
720 				 out, flipped_out_left, out_right - out_left);
721 
722 		dev_dbg(dev, "%s: col %u: %u, %u -> %u, %u\n", __func__, col,
723 			in_left, in_right - in_left,
724 			flipped_out_left, out_right - out_left);
725 
726 		in_right = in_left;
727 		out_right = out_left;
728 	}
729 
730 	flipped_out_left = (ctx->rot_mode & IPU_ROT_BIT_HFLIP) ?
731 			   resized_width - out_right : 0;
732 
733 	fill_tile_column(ctx, 0, in, 0, in_right,
734 			 out, flipped_out_left, out_right);
735 
736 	dev_dbg(dev, "%s: col 0: 0, %u -> %u, %u\n", __func__,
737 		in_right, flipped_out_left, out_right);
738 
739 	for (row = in->num_rows - 1; row > 0; row--) {
740 		bool allow_overshoot = row < in->num_rows - 1;
741 		unsigned int out_start;
742 		unsigned int out_end;
743 		unsigned int in_top;
744 		unsigned int out_top;
745 
746 		/* Start within 1024 lines of the bottom edge */
747 		out_start = max_t(int, 0, out_bottom - 1024);
748 		/* End before having to add more rows above */
749 		out_end = min_t(unsigned int, out_bottom, row * 1024);
750 
751 		find_best_seam(ctx, out_start, out_end,
752 			       in_bottom, out_bottom,
753 			       in_top_align, out_top_align,
754 			       1, allow_overshoot ? 1 : out_height_align,
755 			       ctx->downsize_coeff_v, ctx->image_resize_coeff_v,
756 			       &in_top, &out_top);
757 
758 		if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
759 		    ipu_rot_mode_is_irt(ctx->rot_mode))
760 			flipped_out_top = resized_height - out_bottom;
761 		else
762 			flipped_out_top = out_top;
763 
764 		fill_tile_row(ctx, row, in, in_top, in_bottom - in_top,
765 			      out, flipped_out_top, out_bottom - out_top);
766 
767 		dev_dbg(dev, "%s: row %u: %u, %u -> %u, %u\n", __func__, row,
768 			in_top, in_bottom - in_top,
769 			flipped_out_top, out_bottom - out_top);
770 
771 		in_bottom = in_top;
772 		out_bottom = out_top;
773 	}
774 
775 	if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
776 	    ipu_rot_mode_is_irt(ctx->rot_mode))
777 		flipped_out_top = resized_height - out_bottom;
778 	else
779 		flipped_out_top = 0;
780 
781 	fill_tile_row(ctx, 0, in, 0, in_bottom,
782 		      out, flipped_out_top, out_bottom);
783 
784 	dev_dbg(dev, "%s: row 0: 0, %u -> %u, %u\n", __func__,
785 		in_bottom, flipped_out_top, out_bottom);
786 }
787 
788 static void calc_tile_dimensions(struct ipu_image_convert_ctx *ctx,
789 				 struct ipu_image_convert_image *image)
790 {
791 	struct ipu_image_convert_chan *chan = ctx->chan;
792 	struct ipu_image_convert_priv *priv = chan->priv;
793 	unsigned int i;
794 
795 	for (i = 0; i < ctx->num_tiles; i++) {
796 		struct ipu_image_tile *tile;
797 		const unsigned int row = i / image->num_cols;
798 		const unsigned int col = i % image->num_cols;
799 
800 		if (image->type == IMAGE_CONVERT_OUT)
801 			tile = &image->tile[ctx->out_tile_map[i]];
802 		else
803 			tile = &image->tile[i];
804 
805 		tile->size = ((tile->height * image->fmt->bpp) >> 3) *
806 			tile->width;
807 
808 		if (image->fmt->planar) {
809 			tile->stride = tile->width;
810 			tile->rot_stride = tile->height;
811 		} else {
812 			tile->stride =
813 				(image->fmt->bpp * tile->width) >> 3;
814 			tile->rot_stride =
815 				(image->fmt->bpp * tile->height) >> 3;
816 		}
817 
818 		dev_dbg(priv->ipu->dev,
819 			"task %u: ctx %p: %s@[%u,%u]: %ux%u@%u,%u\n",
820 			chan->ic_task, ctx,
821 			image->type == IMAGE_CONVERT_IN ? "Input" : "Output",
822 			row, col,
823 			tile->width, tile->height, tile->left, tile->top);
824 	}
825 }
826 
827 /*
828  * Use the rotation transformation to find the tile coordinates
829  * (row, col) of a tile in the destination frame that corresponds
830  * to the given tile coordinates of a source frame. The destination
831  * coordinate is then converted to a tile index.
832  */
833 static int transform_tile_index(struct ipu_image_convert_ctx *ctx,
834 				int src_row, int src_col)
835 {
836 	struct ipu_image_convert_chan *chan = ctx->chan;
837 	struct ipu_image_convert_priv *priv = chan->priv;
838 	struct ipu_image_convert_image *s_image = &ctx->in;
839 	struct ipu_image_convert_image *d_image = &ctx->out;
840 	int dst_row, dst_col;
841 
842 	/* with no rotation it's a 1:1 mapping */
843 	if (ctx->rot_mode == IPU_ROTATE_NONE)
844 		return src_row * s_image->num_cols + src_col;
845 
846 	/*
847 	 * before doing the transform, first we have to translate
848 	 * source row,col for an origin in the center of s_image
849 	 */
850 	src_row = src_row * 2 - (s_image->num_rows - 1);
851 	src_col = src_col * 2 - (s_image->num_cols - 1);
852 
853 	/* do the rotation transform */
854 	if (ctx->rot_mode & IPU_ROT_BIT_90) {
855 		dst_col = -src_row;
856 		dst_row = src_col;
857 	} else {
858 		dst_col = src_col;
859 		dst_row = src_row;
860 	}
861 
862 	/* apply flip */
863 	if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
864 		dst_col = -dst_col;
865 	if (ctx->rot_mode & IPU_ROT_BIT_VFLIP)
866 		dst_row = -dst_row;
867 
868 	dev_dbg(priv->ipu->dev, "task %u: ctx %p: [%d,%d] --> [%d,%d]\n",
869 		chan->ic_task, ctx, src_col, src_row, dst_col, dst_row);
870 
871 	/*
872 	 * finally translate dest row,col using an origin in upper
873 	 * left of d_image
874 	 */
875 	dst_row += d_image->num_rows - 1;
876 	dst_col += d_image->num_cols - 1;
877 	dst_row /= 2;
878 	dst_col /= 2;
879 
880 	return dst_row * d_image->num_cols + dst_col;
881 }
882 
883 /*
884  * Fill the out_tile_map[] with transformed destination tile indeces.
885  */
886 static void calc_out_tile_map(struct ipu_image_convert_ctx *ctx)
887 {
888 	struct ipu_image_convert_image *s_image = &ctx->in;
889 	unsigned int row, col, tile = 0;
890 
891 	for (row = 0; row < s_image->num_rows; row++) {
892 		for (col = 0; col < s_image->num_cols; col++) {
893 			ctx->out_tile_map[tile] =
894 				transform_tile_index(ctx, row, col);
895 			tile++;
896 		}
897 	}
898 }
899 
900 static int calc_tile_offsets_planar(struct ipu_image_convert_ctx *ctx,
901 				    struct ipu_image_convert_image *image)
902 {
903 	struct ipu_image_convert_chan *chan = ctx->chan;
904 	struct ipu_image_convert_priv *priv = chan->priv;
905 	const struct ipu_image_pixfmt *fmt = image->fmt;
906 	unsigned int row, col, tile = 0;
907 	u32 H, top, y_stride, uv_stride;
908 	u32 uv_row_off, uv_col_off, uv_off, u_off, v_off, tmp;
909 	u32 y_row_off, y_col_off, y_off;
910 	u32 y_size, uv_size;
911 
912 	/* setup some convenience vars */
913 	H = image->base.pix.height;
914 
915 	y_stride = image->stride;
916 	uv_stride = y_stride / fmt->uv_width_dec;
917 	if (fmt->uv_packed)
918 		uv_stride *= 2;
919 
920 	y_size = H * y_stride;
921 	uv_size = y_size / (fmt->uv_width_dec * fmt->uv_height_dec);
922 
923 	for (row = 0; row < image->num_rows; row++) {
924 		top = image->tile[tile].top;
925 		y_row_off = top * y_stride;
926 		uv_row_off = (top * uv_stride) / fmt->uv_height_dec;
927 
928 		for (col = 0; col < image->num_cols; col++) {
929 			y_col_off = image->tile[tile].left;
930 			uv_col_off = y_col_off / fmt->uv_width_dec;
931 			if (fmt->uv_packed)
932 				uv_col_off *= 2;
933 
934 			y_off = y_row_off + y_col_off;
935 			uv_off = uv_row_off + uv_col_off;
936 
937 			u_off = y_size - y_off + uv_off;
938 			v_off = (fmt->uv_packed) ? 0 : u_off + uv_size;
939 			if (fmt->uv_swapped) {
940 				tmp = u_off;
941 				u_off = v_off;
942 				v_off = tmp;
943 			}
944 
945 			image->tile[tile].offset = y_off;
946 			image->tile[tile].u_off = u_off;
947 			image->tile[tile++].v_off = v_off;
948 
949 			if ((y_off & 0x7) || (u_off & 0x7) || (v_off & 0x7)) {
950 				dev_err(priv->ipu->dev,
951 					"task %u: ctx %p: %s@[%d,%d]: "
952 					"y_off %08x, u_off %08x, v_off %08x\n",
953 					chan->ic_task, ctx,
954 					image->type == IMAGE_CONVERT_IN ?
955 					"Input" : "Output", row, col,
956 					y_off, u_off, v_off);
957 				return -EINVAL;
958 			}
959 		}
960 	}
961 
962 	return 0;
963 }
964 
965 static int calc_tile_offsets_packed(struct ipu_image_convert_ctx *ctx,
966 				    struct ipu_image_convert_image *image)
967 {
968 	struct ipu_image_convert_chan *chan = ctx->chan;
969 	struct ipu_image_convert_priv *priv = chan->priv;
970 	const struct ipu_image_pixfmt *fmt = image->fmt;
971 	unsigned int row, col, tile = 0;
972 	u32 bpp, stride, offset;
973 	u32 row_off, col_off;
974 
975 	/* setup some convenience vars */
976 	stride = image->stride;
977 	bpp = fmt->bpp;
978 
979 	for (row = 0; row < image->num_rows; row++) {
980 		row_off = image->tile[tile].top * stride;
981 
982 		for (col = 0; col < image->num_cols; col++) {
983 			col_off = (image->tile[tile].left * bpp) >> 3;
984 
985 			offset = row_off + col_off;
986 
987 			image->tile[tile].offset = offset;
988 			image->tile[tile].u_off = 0;
989 			image->tile[tile++].v_off = 0;
990 
991 			if (offset & 0x7) {
992 				dev_err(priv->ipu->dev,
993 					"task %u: ctx %p: %s@[%d,%d]: "
994 					"phys %08x\n",
995 					chan->ic_task, ctx,
996 					image->type == IMAGE_CONVERT_IN ?
997 					"Input" : "Output", row, col,
998 					row_off + col_off);
999 				return -EINVAL;
1000 			}
1001 		}
1002 	}
1003 
1004 	return 0;
1005 }
1006 
1007 static int calc_tile_offsets(struct ipu_image_convert_ctx *ctx,
1008 			      struct ipu_image_convert_image *image)
1009 {
1010 	if (image->fmt->planar)
1011 		return calc_tile_offsets_planar(ctx, image);
1012 
1013 	return calc_tile_offsets_packed(ctx, image);
1014 }
1015 
1016 /*
1017  * Calculate the resizing ratio for the IC main processing section given input
1018  * size, fixed downsizing coefficient, and output size.
1019  * Either round to closest for the next tile's first pixel to minimize seams
1020  * and distortion (for all but right column / bottom row), or round down to
1021  * avoid sampling beyond the edges of the input image for this tile's last
1022  * pixel.
1023  * Returns the resizing coefficient, resizing ratio is 8192.0 / resize_coeff.
1024  */
1025 static u32 calc_resize_coeff(u32 input_size, u32 downsize_coeff,
1026 			     u32 output_size, bool allow_overshoot)
1027 {
1028 	u32 downsized = input_size >> downsize_coeff;
1029 
1030 	if (allow_overshoot)
1031 		return DIV_ROUND_CLOSEST(8192 * downsized, output_size);
1032 	else
1033 		return 8192 * (downsized - 1) / (output_size - 1);
1034 }
1035 
1036 /*
1037  * Slightly modify resize coefficients per tile to hide the bilinear
1038  * interpolator reset at tile borders, shifting the right / bottom edge
1039  * by up to a half input pixel. This removes noticeable seams between
1040  * tiles at higher upscaling factors.
1041  */
1042 static void calc_tile_resize_coefficients(struct ipu_image_convert_ctx *ctx)
1043 {
1044 	struct ipu_image_convert_chan *chan = ctx->chan;
1045 	struct ipu_image_convert_priv *priv = chan->priv;
1046 	struct ipu_image_tile *in_tile, *out_tile;
1047 	unsigned int col, row, tile_idx;
1048 	unsigned int last_output;
1049 
1050 	for (col = 0; col < ctx->in.num_cols; col++) {
1051 		bool closest = (col < ctx->in.num_cols - 1) &&
1052 			       !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
1053 		u32 resized_width;
1054 		u32 resize_coeff_h;
1055 
1056 		tile_idx = col;
1057 		in_tile = &ctx->in.tile[tile_idx];
1058 		out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1059 
1060 		if (ipu_rot_mode_is_irt(ctx->rot_mode))
1061 			resized_width = out_tile->height;
1062 		else
1063 			resized_width = out_tile->width;
1064 
1065 		resize_coeff_h = calc_resize_coeff(in_tile->width,
1066 						   ctx->downsize_coeff_h,
1067 						   resized_width, closest);
1068 
1069 		dev_dbg(priv->ipu->dev, "%s: column %u hscale: *8192/%u\n",
1070 			__func__, col, resize_coeff_h);
1071 
1072 
1073 		for (row = 0; row < ctx->in.num_rows; row++) {
1074 			tile_idx = row * ctx->in.num_cols + col;
1075 			in_tile = &ctx->in.tile[tile_idx];
1076 			out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1077 
1078 			/*
1079 			 * With the horizontal scaling factor known, round up
1080 			 * resized width (output width or height) to burst size.
1081 			 */
1082 			if (ipu_rot_mode_is_irt(ctx->rot_mode))
1083 				out_tile->height = round_up(resized_width, 8);
1084 			else
1085 				out_tile->width = round_up(resized_width, 8);
1086 
1087 			/*
1088 			 * Calculate input width from the last accessed input
1089 			 * pixel given resized width and scaling coefficients.
1090 			 * Round up to burst size.
1091 			 */
1092 			last_output = round_up(resized_width, 8) - 1;
1093 			if (closest)
1094 				last_output++;
1095 			in_tile->width = round_up(
1096 				(DIV_ROUND_UP(last_output * resize_coeff_h,
1097 					      8192) + 1)
1098 				<< ctx->downsize_coeff_h, 8);
1099 		}
1100 
1101 		ctx->resize_coeffs_h[col] = resize_coeff_h;
1102 	}
1103 
1104 	for (row = 0; row < ctx->in.num_rows; row++) {
1105 		bool closest = (row < ctx->in.num_rows - 1) &&
1106 			       !(ctx->rot_mode & IPU_ROT_BIT_VFLIP);
1107 		u32 resized_height;
1108 		u32 resize_coeff_v;
1109 
1110 		tile_idx = row * ctx->in.num_cols;
1111 		in_tile = &ctx->in.tile[tile_idx];
1112 		out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1113 
1114 		if (ipu_rot_mode_is_irt(ctx->rot_mode))
1115 			resized_height = out_tile->width;
1116 		else
1117 			resized_height = out_tile->height;
1118 
1119 		resize_coeff_v = calc_resize_coeff(in_tile->height,
1120 						   ctx->downsize_coeff_v,
1121 						   resized_height, closest);
1122 
1123 		dev_dbg(priv->ipu->dev, "%s: row %u vscale: *8192/%u\n",
1124 			__func__, row, resize_coeff_v);
1125 
1126 		for (col = 0; col < ctx->in.num_cols; col++) {
1127 			tile_idx = row * ctx->in.num_cols + col;
1128 			in_tile = &ctx->in.tile[tile_idx];
1129 			out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1130 
1131 			/*
1132 			 * With the vertical scaling factor known, round up
1133 			 * resized height (output width or height) to IDMAC
1134 			 * limitations.
1135 			 */
1136 			if (ipu_rot_mode_is_irt(ctx->rot_mode))
1137 				out_tile->width = round_up(resized_height, 2);
1138 			else
1139 				out_tile->height = round_up(resized_height, 2);
1140 
1141 			/*
1142 			 * Calculate input width from the last accessed input
1143 			 * pixel given resized height and scaling coefficients.
1144 			 * Align to IDMAC restrictions.
1145 			 */
1146 			last_output = round_up(resized_height, 2) - 1;
1147 			if (closest)
1148 				last_output++;
1149 			in_tile->height = round_up(
1150 				(DIV_ROUND_UP(last_output * resize_coeff_v,
1151 					      8192) + 1)
1152 				<< ctx->downsize_coeff_v, 2);
1153 		}
1154 
1155 		ctx->resize_coeffs_v[row] = resize_coeff_v;
1156 	}
1157 }
1158 
1159 /*
1160  * return the number of runs in given queue (pending_q or done_q)
1161  * for this context. hold irqlock when calling.
1162  */
1163 static int get_run_count(struct ipu_image_convert_ctx *ctx,
1164 			 struct list_head *q)
1165 {
1166 	struct ipu_image_convert_run *run;
1167 	int count = 0;
1168 
1169 	lockdep_assert_held(&ctx->chan->irqlock);
1170 
1171 	list_for_each_entry(run, q, list) {
1172 		if (run->ctx == ctx)
1173 			count++;
1174 	}
1175 
1176 	return count;
1177 }
1178 
1179 static void convert_stop(struct ipu_image_convert_run *run)
1180 {
1181 	struct ipu_image_convert_ctx *ctx = run->ctx;
1182 	struct ipu_image_convert_chan *chan = ctx->chan;
1183 	struct ipu_image_convert_priv *priv = chan->priv;
1184 
1185 	dev_dbg(priv->ipu->dev, "%s: task %u: stopping ctx %p run %p\n",
1186 		__func__, chan->ic_task, ctx, run);
1187 
1188 	/* disable IC tasks and the channels */
1189 	ipu_ic_task_disable(chan->ic);
1190 	ipu_idmac_disable_channel(chan->in_chan);
1191 	ipu_idmac_disable_channel(chan->out_chan);
1192 
1193 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1194 		ipu_idmac_disable_channel(chan->rotation_in_chan);
1195 		ipu_idmac_disable_channel(chan->rotation_out_chan);
1196 		ipu_idmac_unlink(chan->out_chan, chan->rotation_in_chan);
1197 	}
1198 
1199 	ipu_ic_disable(chan->ic);
1200 }
1201 
1202 static void init_idmac_channel(struct ipu_image_convert_ctx *ctx,
1203 			       struct ipuv3_channel *channel,
1204 			       struct ipu_image_convert_image *image,
1205 			       enum ipu_rotate_mode rot_mode,
1206 			       bool rot_swap_width_height,
1207 			       unsigned int tile)
1208 {
1209 	struct ipu_image_convert_chan *chan = ctx->chan;
1210 	unsigned int burst_size;
1211 	u32 width, height, stride;
1212 	dma_addr_t addr0, addr1 = 0;
1213 	struct ipu_image tile_image;
1214 	unsigned int tile_idx[2];
1215 
1216 	if (image->type == IMAGE_CONVERT_OUT) {
1217 		tile_idx[0] = ctx->out_tile_map[tile];
1218 		tile_idx[1] = ctx->out_tile_map[1];
1219 	} else {
1220 		tile_idx[0] = tile;
1221 		tile_idx[1] = 1;
1222 	}
1223 
1224 	if (rot_swap_width_height) {
1225 		width = image->tile[tile_idx[0]].height;
1226 		height = image->tile[tile_idx[0]].width;
1227 		stride = image->tile[tile_idx[0]].rot_stride;
1228 		addr0 = ctx->rot_intermediate[0].phys;
1229 		if (ctx->double_buffering)
1230 			addr1 = ctx->rot_intermediate[1].phys;
1231 	} else {
1232 		width = image->tile[tile_idx[0]].width;
1233 		height = image->tile[tile_idx[0]].height;
1234 		stride = image->stride;
1235 		addr0 = image->base.phys0 +
1236 			image->tile[tile_idx[0]].offset;
1237 		if (ctx->double_buffering)
1238 			addr1 = image->base.phys0 +
1239 				image->tile[tile_idx[1]].offset;
1240 	}
1241 
1242 	ipu_cpmem_zero(channel);
1243 
1244 	memset(&tile_image, 0, sizeof(tile_image));
1245 	tile_image.pix.width = tile_image.rect.width = width;
1246 	tile_image.pix.height = tile_image.rect.height = height;
1247 	tile_image.pix.bytesperline = stride;
1248 	tile_image.pix.pixelformat =  image->fmt->fourcc;
1249 	tile_image.phys0 = addr0;
1250 	tile_image.phys1 = addr1;
1251 	if (image->fmt->planar && !rot_swap_width_height) {
1252 		tile_image.u_offset = image->tile[tile_idx[0]].u_off;
1253 		tile_image.v_offset = image->tile[tile_idx[0]].v_off;
1254 	}
1255 
1256 	ipu_cpmem_set_image(channel, &tile_image);
1257 
1258 	if (rot_mode)
1259 		ipu_cpmem_set_rotation(channel, rot_mode);
1260 
1261 	if (channel == chan->rotation_in_chan ||
1262 	    channel == chan->rotation_out_chan) {
1263 		burst_size = 8;
1264 		ipu_cpmem_set_block_mode(channel);
1265 	} else
1266 		burst_size = (width % 16) ? 8 : 16;
1267 
1268 	ipu_cpmem_set_burstsize(channel, burst_size);
1269 
1270 	ipu_ic_task_idma_init(chan->ic, channel, width, height,
1271 			      burst_size, rot_mode);
1272 
1273 	/*
1274 	 * Setting a non-zero AXI ID collides with the PRG AXI snooping, so
1275 	 * only do this when there is no PRG present.
1276 	 */
1277 	if (!channel->ipu->prg_priv)
1278 		ipu_cpmem_set_axi_id(channel, 1);
1279 
1280 	ipu_idmac_set_double_buffer(channel, ctx->double_buffering);
1281 }
1282 
1283 static int convert_start(struct ipu_image_convert_run *run, unsigned int tile)
1284 {
1285 	struct ipu_image_convert_ctx *ctx = run->ctx;
1286 	struct ipu_image_convert_chan *chan = ctx->chan;
1287 	struct ipu_image_convert_priv *priv = chan->priv;
1288 	struct ipu_image_convert_image *s_image = &ctx->in;
1289 	struct ipu_image_convert_image *d_image = &ctx->out;
1290 	enum ipu_color_space src_cs, dest_cs;
1291 	unsigned int dst_tile = ctx->out_tile_map[tile];
1292 	unsigned int dest_width, dest_height;
1293 	unsigned int col, row;
1294 	u32 rsc;
1295 	int ret;
1296 
1297 	dev_dbg(priv->ipu->dev, "%s: task %u: starting ctx %p run %p tile %u -> %u\n",
1298 		__func__, chan->ic_task, ctx, run, tile, dst_tile);
1299 
1300 	src_cs = ipu_pixelformat_to_colorspace(s_image->fmt->fourcc);
1301 	dest_cs = ipu_pixelformat_to_colorspace(d_image->fmt->fourcc);
1302 
1303 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1304 		/* swap width/height for resizer */
1305 		dest_width = d_image->tile[dst_tile].height;
1306 		dest_height = d_image->tile[dst_tile].width;
1307 	} else {
1308 		dest_width = d_image->tile[dst_tile].width;
1309 		dest_height = d_image->tile[dst_tile].height;
1310 	}
1311 
1312 	row = tile / s_image->num_cols;
1313 	col = tile % s_image->num_cols;
1314 
1315 	rsc =  (ctx->downsize_coeff_v << 30) |
1316 	       (ctx->resize_coeffs_v[row] << 16) |
1317 	       (ctx->downsize_coeff_h << 14) |
1318 	       (ctx->resize_coeffs_h[col]);
1319 
1320 	dev_dbg(priv->ipu->dev, "%s: %ux%u -> %ux%u (rsc = 0x%x)\n",
1321 		__func__, s_image->tile[tile].width,
1322 		s_image->tile[tile].height, dest_width, dest_height, rsc);
1323 
1324 	/* setup the IC resizer and CSC */
1325 	ret = ipu_ic_task_init_rsc(chan->ic,
1326 			       s_image->tile[tile].width,
1327 			       s_image->tile[tile].height,
1328 			       dest_width,
1329 			       dest_height,
1330 			       src_cs, dest_cs,
1331 			       rsc);
1332 	if (ret) {
1333 		dev_err(priv->ipu->dev, "ipu_ic_task_init failed, %d\n", ret);
1334 		return ret;
1335 	}
1336 
1337 	/* init the source MEM-->IC PP IDMAC channel */
1338 	init_idmac_channel(ctx, chan->in_chan, s_image,
1339 			   IPU_ROTATE_NONE, false, tile);
1340 
1341 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1342 		/* init the IC PP-->MEM IDMAC channel */
1343 		init_idmac_channel(ctx, chan->out_chan, d_image,
1344 				   IPU_ROTATE_NONE, true, tile);
1345 
1346 		/* init the MEM-->IC PP ROT IDMAC channel */
1347 		init_idmac_channel(ctx, chan->rotation_in_chan, d_image,
1348 				   ctx->rot_mode, true, tile);
1349 
1350 		/* init the destination IC PP ROT-->MEM IDMAC channel */
1351 		init_idmac_channel(ctx, chan->rotation_out_chan, d_image,
1352 				   IPU_ROTATE_NONE, false, tile);
1353 
1354 		/* now link IC PP-->MEM to MEM-->IC PP ROT */
1355 		ipu_idmac_link(chan->out_chan, chan->rotation_in_chan);
1356 	} else {
1357 		/* init the destination IC PP-->MEM IDMAC channel */
1358 		init_idmac_channel(ctx, chan->out_chan, d_image,
1359 				   ctx->rot_mode, false, tile);
1360 	}
1361 
1362 	/* enable the IC */
1363 	ipu_ic_enable(chan->ic);
1364 
1365 	/* set buffers ready */
1366 	ipu_idmac_select_buffer(chan->in_chan, 0);
1367 	ipu_idmac_select_buffer(chan->out_chan, 0);
1368 	if (ipu_rot_mode_is_irt(ctx->rot_mode))
1369 		ipu_idmac_select_buffer(chan->rotation_out_chan, 0);
1370 	if (ctx->double_buffering) {
1371 		ipu_idmac_select_buffer(chan->in_chan, 1);
1372 		ipu_idmac_select_buffer(chan->out_chan, 1);
1373 		if (ipu_rot_mode_is_irt(ctx->rot_mode))
1374 			ipu_idmac_select_buffer(chan->rotation_out_chan, 1);
1375 	}
1376 
1377 	/* enable the channels! */
1378 	ipu_idmac_enable_channel(chan->in_chan);
1379 	ipu_idmac_enable_channel(chan->out_chan);
1380 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1381 		ipu_idmac_enable_channel(chan->rotation_in_chan);
1382 		ipu_idmac_enable_channel(chan->rotation_out_chan);
1383 	}
1384 
1385 	ipu_ic_task_enable(chan->ic);
1386 
1387 	ipu_cpmem_dump(chan->in_chan);
1388 	ipu_cpmem_dump(chan->out_chan);
1389 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1390 		ipu_cpmem_dump(chan->rotation_in_chan);
1391 		ipu_cpmem_dump(chan->rotation_out_chan);
1392 	}
1393 
1394 	ipu_dump(priv->ipu);
1395 
1396 	return 0;
1397 }
1398 
1399 /* hold irqlock when calling */
1400 static int do_run(struct ipu_image_convert_run *run)
1401 {
1402 	struct ipu_image_convert_ctx *ctx = run->ctx;
1403 	struct ipu_image_convert_chan *chan = ctx->chan;
1404 
1405 	lockdep_assert_held(&chan->irqlock);
1406 
1407 	ctx->in.base.phys0 = run->in_phys;
1408 	ctx->out.base.phys0 = run->out_phys;
1409 
1410 	ctx->cur_buf_num = 0;
1411 	ctx->next_tile = 1;
1412 
1413 	/* remove run from pending_q and set as current */
1414 	list_del(&run->list);
1415 	chan->current_run = run;
1416 
1417 	return convert_start(run, 0);
1418 }
1419 
1420 /* hold irqlock when calling */
1421 static void run_next(struct ipu_image_convert_chan *chan)
1422 {
1423 	struct ipu_image_convert_priv *priv = chan->priv;
1424 	struct ipu_image_convert_run *run, *tmp;
1425 	int ret;
1426 
1427 	lockdep_assert_held(&chan->irqlock);
1428 
1429 	list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
1430 		/* skip contexts that are aborting */
1431 		if (run->ctx->aborting) {
1432 			dev_dbg(priv->ipu->dev,
1433 				"%s: task %u: skipping aborting ctx %p run %p\n",
1434 				__func__, chan->ic_task, run->ctx, run);
1435 			continue;
1436 		}
1437 
1438 		ret = do_run(run);
1439 		if (!ret)
1440 			break;
1441 
1442 		/*
1443 		 * something went wrong with start, add the run
1444 		 * to done q and continue to the next run in the
1445 		 * pending q.
1446 		 */
1447 		run->status = ret;
1448 		list_add_tail(&run->list, &chan->done_q);
1449 		chan->current_run = NULL;
1450 	}
1451 }
1452 
1453 static void empty_done_q(struct ipu_image_convert_chan *chan)
1454 {
1455 	struct ipu_image_convert_priv *priv = chan->priv;
1456 	struct ipu_image_convert_run *run;
1457 	unsigned long flags;
1458 
1459 	spin_lock_irqsave(&chan->irqlock, flags);
1460 
1461 	while (!list_empty(&chan->done_q)) {
1462 		run = list_entry(chan->done_q.next,
1463 				 struct ipu_image_convert_run,
1464 				 list);
1465 
1466 		list_del(&run->list);
1467 
1468 		dev_dbg(priv->ipu->dev,
1469 			"%s: task %u: completing ctx %p run %p with %d\n",
1470 			__func__, chan->ic_task, run->ctx, run, run->status);
1471 
1472 		/* call the completion callback and free the run */
1473 		spin_unlock_irqrestore(&chan->irqlock, flags);
1474 		run->ctx->complete(run, run->ctx->complete_context);
1475 		spin_lock_irqsave(&chan->irqlock, flags);
1476 	}
1477 
1478 	spin_unlock_irqrestore(&chan->irqlock, flags);
1479 }
1480 
1481 /*
1482  * the bottom half thread clears out the done_q, calling the
1483  * completion handler for each.
1484  */
1485 static irqreturn_t do_bh(int irq, void *dev_id)
1486 {
1487 	struct ipu_image_convert_chan *chan = dev_id;
1488 	struct ipu_image_convert_priv *priv = chan->priv;
1489 	struct ipu_image_convert_ctx *ctx;
1490 	unsigned long flags;
1491 
1492 	dev_dbg(priv->ipu->dev, "%s: task %u: enter\n", __func__,
1493 		chan->ic_task);
1494 
1495 	empty_done_q(chan);
1496 
1497 	spin_lock_irqsave(&chan->irqlock, flags);
1498 
1499 	/*
1500 	 * the done_q is cleared out, signal any contexts
1501 	 * that are aborting that abort can complete.
1502 	 */
1503 	list_for_each_entry(ctx, &chan->ctx_list, list) {
1504 		if (ctx->aborting) {
1505 			dev_dbg(priv->ipu->dev,
1506 				"%s: task %u: signaling abort for ctx %p\n",
1507 				__func__, chan->ic_task, ctx);
1508 			complete_all(&ctx->aborted);
1509 		}
1510 	}
1511 
1512 	spin_unlock_irqrestore(&chan->irqlock, flags);
1513 
1514 	dev_dbg(priv->ipu->dev, "%s: task %u: exit\n", __func__,
1515 		chan->ic_task);
1516 
1517 	return IRQ_HANDLED;
1518 }
1519 
1520 static bool ic_settings_changed(struct ipu_image_convert_ctx *ctx)
1521 {
1522 	unsigned int cur_tile = ctx->next_tile - 1;
1523 	unsigned int next_tile = ctx->next_tile;
1524 
1525 	if (ctx->resize_coeffs_h[cur_tile % ctx->in.num_cols] !=
1526 	    ctx->resize_coeffs_h[next_tile % ctx->in.num_cols] ||
1527 	    ctx->resize_coeffs_v[cur_tile / ctx->in.num_cols] !=
1528 	    ctx->resize_coeffs_v[next_tile / ctx->in.num_cols] ||
1529 	    ctx->in.tile[cur_tile].width != ctx->in.tile[next_tile].width ||
1530 	    ctx->in.tile[cur_tile].height != ctx->in.tile[next_tile].height ||
1531 	    ctx->out.tile[cur_tile].width != ctx->out.tile[next_tile].width ||
1532 	    ctx->out.tile[cur_tile].height != ctx->out.tile[next_tile].height)
1533 		return true;
1534 
1535 	return false;
1536 }
1537 
1538 /* hold irqlock when calling */
1539 static irqreturn_t do_irq(struct ipu_image_convert_run *run)
1540 {
1541 	struct ipu_image_convert_ctx *ctx = run->ctx;
1542 	struct ipu_image_convert_chan *chan = ctx->chan;
1543 	struct ipu_image_tile *src_tile, *dst_tile;
1544 	struct ipu_image_convert_image *s_image = &ctx->in;
1545 	struct ipu_image_convert_image *d_image = &ctx->out;
1546 	struct ipuv3_channel *outch;
1547 	unsigned int dst_idx;
1548 
1549 	lockdep_assert_held(&chan->irqlock);
1550 
1551 	outch = ipu_rot_mode_is_irt(ctx->rot_mode) ?
1552 		chan->rotation_out_chan : chan->out_chan;
1553 
1554 	/*
1555 	 * It is difficult to stop the channel DMA before the channels
1556 	 * enter the paused state. Without double-buffering the channels
1557 	 * are always in a paused state when the EOF irq occurs, so it
1558 	 * is safe to stop the channels now. For double-buffering we
1559 	 * just ignore the abort until the operation completes, when it
1560 	 * is safe to shut down.
1561 	 */
1562 	if (ctx->aborting && !ctx->double_buffering) {
1563 		convert_stop(run);
1564 		run->status = -EIO;
1565 		goto done;
1566 	}
1567 
1568 	if (ctx->next_tile == ctx->num_tiles) {
1569 		/*
1570 		 * the conversion is complete
1571 		 */
1572 		convert_stop(run);
1573 		run->status = 0;
1574 		goto done;
1575 	}
1576 
1577 	/*
1578 	 * not done, place the next tile buffers.
1579 	 */
1580 	if (!ctx->double_buffering) {
1581 		if (ic_settings_changed(ctx)) {
1582 			convert_stop(run);
1583 			convert_start(run, ctx->next_tile);
1584 		} else {
1585 			src_tile = &s_image->tile[ctx->next_tile];
1586 			dst_idx = ctx->out_tile_map[ctx->next_tile];
1587 			dst_tile = &d_image->tile[dst_idx];
1588 
1589 			ipu_cpmem_set_buffer(chan->in_chan, 0,
1590 					     s_image->base.phys0 +
1591 					     src_tile->offset);
1592 			ipu_cpmem_set_buffer(outch, 0,
1593 					     d_image->base.phys0 +
1594 					     dst_tile->offset);
1595 			if (s_image->fmt->planar)
1596 				ipu_cpmem_set_uv_offset(chan->in_chan,
1597 							src_tile->u_off,
1598 							src_tile->v_off);
1599 			if (d_image->fmt->planar)
1600 				ipu_cpmem_set_uv_offset(outch,
1601 							dst_tile->u_off,
1602 							dst_tile->v_off);
1603 
1604 			ipu_idmac_select_buffer(chan->in_chan, 0);
1605 			ipu_idmac_select_buffer(outch, 0);
1606 		}
1607 	} else if (ctx->next_tile < ctx->num_tiles - 1) {
1608 
1609 		src_tile = &s_image->tile[ctx->next_tile + 1];
1610 		dst_idx = ctx->out_tile_map[ctx->next_tile + 1];
1611 		dst_tile = &d_image->tile[dst_idx];
1612 
1613 		ipu_cpmem_set_buffer(chan->in_chan, ctx->cur_buf_num,
1614 				     s_image->base.phys0 + src_tile->offset);
1615 		ipu_cpmem_set_buffer(outch, ctx->cur_buf_num,
1616 				     d_image->base.phys0 + dst_tile->offset);
1617 
1618 		ipu_idmac_select_buffer(chan->in_chan, ctx->cur_buf_num);
1619 		ipu_idmac_select_buffer(outch, ctx->cur_buf_num);
1620 
1621 		ctx->cur_buf_num ^= 1;
1622 	}
1623 
1624 	ctx->next_tile++;
1625 	return IRQ_HANDLED;
1626 done:
1627 	list_add_tail(&run->list, &chan->done_q);
1628 	chan->current_run = NULL;
1629 	run_next(chan);
1630 	return IRQ_WAKE_THREAD;
1631 }
1632 
1633 static irqreturn_t norotate_irq(int irq, void *data)
1634 {
1635 	struct ipu_image_convert_chan *chan = data;
1636 	struct ipu_image_convert_ctx *ctx;
1637 	struct ipu_image_convert_run *run;
1638 	unsigned long flags;
1639 	irqreturn_t ret;
1640 
1641 	spin_lock_irqsave(&chan->irqlock, flags);
1642 
1643 	/* get current run and its context */
1644 	run = chan->current_run;
1645 	if (!run) {
1646 		ret = IRQ_NONE;
1647 		goto out;
1648 	}
1649 
1650 	ctx = run->ctx;
1651 
1652 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1653 		/* this is a rotation operation, just ignore */
1654 		spin_unlock_irqrestore(&chan->irqlock, flags);
1655 		return IRQ_HANDLED;
1656 	}
1657 
1658 	ret = do_irq(run);
1659 out:
1660 	spin_unlock_irqrestore(&chan->irqlock, flags);
1661 	return ret;
1662 }
1663 
1664 static irqreturn_t rotate_irq(int irq, void *data)
1665 {
1666 	struct ipu_image_convert_chan *chan = data;
1667 	struct ipu_image_convert_priv *priv = chan->priv;
1668 	struct ipu_image_convert_ctx *ctx;
1669 	struct ipu_image_convert_run *run;
1670 	unsigned long flags;
1671 	irqreturn_t ret;
1672 
1673 	spin_lock_irqsave(&chan->irqlock, flags);
1674 
1675 	/* get current run and its context */
1676 	run = chan->current_run;
1677 	if (!run) {
1678 		ret = IRQ_NONE;
1679 		goto out;
1680 	}
1681 
1682 	ctx = run->ctx;
1683 
1684 	if (!ipu_rot_mode_is_irt(ctx->rot_mode)) {
1685 		/* this was NOT a rotation operation, shouldn't happen */
1686 		dev_err(priv->ipu->dev, "Unexpected rotation interrupt\n");
1687 		spin_unlock_irqrestore(&chan->irqlock, flags);
1688 		return IRQ_HANDLED;
1689 	}
1690 
1691 	ret = do_irq(run);
1692 out:
1693 	spin_unlock_irqrestore(&chan->irqlock, flags);
1694 	return ret;
1695 }
1696 
1697 /*
1698  * try to force the completion of runs for this ctx. Called when
1699  * abort wait times out in ipu_image_convert_abort().
1700  */
1701 static void force_abort(struct ipu_image_convert_ctx *ctx)
1702 {
1703 	struct ipu_image_convert_chan *chan = ctx->chan;
1704 	struct ipu_image_convert_run *run;
1705 	unsigned long flags;
1706 
1707 	spin_lock_irqsave(&chan->irqlock, flags);
1708 
1709 	run = chan->current_run;
1710 	if (run && run->ctx == ctx) {
1711 		convert_stop(run);
1712 		run->status = -EIO;
1713 		list_add_tail(&run->list, &chan->done_q);
1714 		chan->current_run = NULL;
1715 		run_next(chan);
1716 	}
1717 
1718 	spin_unlock_irqrestore(&chan->irqlock, flags);
1719 
1720 	empty_done_q(chan);
1721 }
1722 
1723 static void release_ipu_resources(struct ipu_image_convert_chan *chan)
1724 {
1725 	if (chan->out_eof_irq >= 0)
1726 		free_irq(chan->out_eof_irq, chan);
1727 	if (chan->rot_out_eof_irq >= 0)
1728 		free_irq(chan->rot_out_eof_irq, chan);
1729 
1730 	if (!IS_ERR_OR_NULL(chan->in_chan))
1731 		ipu_idmac_put(chan->in_chan);
1732 	if (!IS_ERR_OR_NULL(chan->out_chan))
1733 		ipu_idmac_put(chan->out_chan);
1734 	if (!IS_ERR_OR_NULL(chan->rotation_in_chan))
1735 		ipu_idmac_put(chan->rotation_in_chan);
1736 	if (!IS_ERR_OR_NULL(chan->rotation_out_chan))
1737 		ipu_idmac_put(chan->rotation_out_chan);
1738 	if (!IS_ERR_OR_NULL(chan->ic))
1739 		ipu_ic_put(chan->ic);
1740 
1741 	chan->in_chan = chan->out_chan = chan->rotation_in_chan =
1742 		chan->rotation_out_chan = NULL;
1743 	chan->out_eof_irq = chan->rot_out_eof_irq = -1;
1744 }
1745 
1746 static int get_ipu_resources(struct ipu_image_convert_chan *chan)
1747 {
1748 	const struct ipu_image_convert_dma_chan *dma = chan->dma_ch;
1749 	struct ipu_image_convert_priv *priv = chan->priv;
1750 	int ret;
1751 
1752 	/* get IC */
1753 	chan->ic = ipu_ic_get(priv->ipu, chan->ic_task);
1754 	if (IS_ERR(chan->ic)) {
1755 		dev_err(priv->ipu->dev, "could not acquire IC\n");
1756 		ret = PTR_ERR(chan->ic);
1757 		goto err;
1758 	}
1759 
1760 	/* get IDMAC channels */
1761 	chan->in_chan = ipu_idmac_get(priv->ipu, dma->in);
1762 	chan->out_chan = ipu_idmac_get(priv->ipu, dma->out);
1763 	if (IS_ERR(chan->in_chan) || IS_ERR(chan->out_chan)) {
1764 		dev_err(priv->ipu->dev, "could not acquire idmac channels\n");
1765 		ret = -EBUSY;
1766 		goto err;
1767 	}
1768 
1769 	chan->rotation_in_chan = ipu_idmac_get(priv->ipu, dma->rot_in);
1770 	chan->rotation_out_chan = ipu_idmac_get(priv->ipu, dma->rot_out);
1771 	if (IS_ERR(chan->rotation_in_chan) || IS_ERR(chan->rotation_out_chan)) {
1772 		dev_err(priv->ipu->dev,
1773 			"could not acquire idmac rotation channels\n");
1774 		ret = -EBUSY;
1775 		goto err;
1776 	}
1777 
1778 	/* acquire the EOF interrupts */
1779 	chan->out_eof_irq = ipu_idmac_channel_irq(priv->ipu,
1780 						  chan->out_chan,
1781 						  IPU_IRQ_EOF);
1782 
1783 	ret = request_threaded_irq(chan->out_eof_irq, norotate_irq, do_bh,
1784 				   0, "ipu-ic", chan);
1785 	if (ret < 0) {
1786 		dev_err(priv->ipu->dev, "could not acquire irq %d\n",
1787 			 chan->out_eof_irq);
1788 		chan->out_eof_irq = -1;
1789 		goto err;
1790 	}
1791 
1792 	chan->rot_out_eof_irq = ipu_idmac_channel_irq(priv->ipu,
1793 						     chan->rotation_out_chan,
1794 						     IPU_IRQ_EOF);
1795 
1796 	ret = request_threaded_irq(chan->rot_out_eof_irq, rotate_irq, do_bh,
1797 				   0, "ipu-ic", chan);
1798 	if (ret < 0) {
1799 		dev_err(priv->ipu->dev, "could not acquire irq %d\n",
1800 			chan->rot_out_eof_irq);
1801 		chan->rot_out_eof_irq = -1;
1802 		goto err;
1803 	}
1804 
1805 	return 0;
1806 err:
1807 	release_ipu_resources(chan);
1808 	return ret;
1809 }
1810 
1811 static int fill_image(struct ipu_image_convert_ctx *ctx,
1812 		      struct ipu_image_convert_image *ic_image,
1813 		      struct ipu_image *image,
1814 		      enum ipu_image_convert_type type)
1815 {
1816 	struct ipu_image_convert_priv *priv = ctx->chan->priv;
1817 
1818 	ic_image->base = *image;
1819 	ic_image->type = type;
1820 
1821 	ic_image->fmt = get_format(image->pix.pixelformat);
1822 	if (!ic_image->fmt) {
1823 		dev_err(priv->ipu->dev, "pixelformat not supported for %s\n",
1824 			type == IMAGE_CONVERT_OUT ? "Output" : "Input");
1825 		return -EINVAL;
1826 	}
1827 
1828 	if (ic_image->fmt->planar)
1829 		ic_image->stride = ic_image->base.pix.width;
1830 	else
1831 		ic_image->stride  = ic_image->base.pix.bytesperline;
1832 
1833 	return 0;
1834 }
1835 
1836 /* borrowed from drivers/media/v4l2-core/v4l2-common.c */
1837 static unsigned int clamp_align(unsigned int x, unsigned int min,
1838 				unsigned int max, unsigned int align)
1839 {
1840 	/* Bits that must be zero to be aligned */
1841 	unsigned int mask = ~((1 << align) - 1);
1842 
1843 	/* Clamp to aligned min and max */
1844 	x = clamp(x, (min + ~mask) & mask, max & mask);
1845 
1846 	/* Round to nearest aligned value */
1847 	if (align)
1848 		x = (x + (1 << (align - 1))) & mask;
1849 
1850 	return x;
1851 }
1852 
1853 /* Adjusts input/output images to IPU restrictions */
1854 void ipu_image_convert_adjust(struct ipu_image *in, struct ipu_image *out,
1855 			      enum ipu_rotate_mode rot_mode)
1856 {
1857 	const struct ipu_image_pixfmt *infmt, *outfmt;
1858 	unsigned int num_in_rows, num_in_cols;
1859 	unsigned int num_out_rows, num_out_cols;
1860 	u32 w_align, h_align;
1861 
1862 	infmt = get_format(in->pix.pixelformat);
1863 	outfmt = get_format(out->pix.pixelformat);
1864 
1865 	/* set some default pixel formats if needed */
1866 	if (!infmt) {
1867 		in->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1868 		infmt = get_format(V4L2_PIX_FMT_RGB24);
1869 	}
1870 	if (!outfmt) {
1871 		out->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1872 		outfmt = get_format(V4L2_PIX_FMT_RGB24);
1873 	}
1874 
1875 	/* image converter does not handle fields */
1876 	in->pix.field = out->pix.field = V4L2_FIELD_NONE;
1877 
1878 	/* resizer cannot downsize more than 4:1 */
1879 	if (ipu_rot_mode_is_irt(rot_mode)) {
1880 		out->pix.height = max_t(__u32, out->pix.height,
1881 					in->pix.width / 4);
1882 		out->pix.width = max_t(__u32, out->pix.width,
1883 				       in->pix.height / 4);
1884 	} else {
1885 		out->pix.width = max_t(__u32, out->pix.width,
1886 				       in->pix.width / 4);
1887 		out->pix.height = max_t(__u32, out->pix.height,
1888 					in->pix.height / 4);
1889 	}
1890 
1891 	/* get tiling rows/cols from output format */
1892 	num_out_rows = num_stripes(out->pix.height);
1893 	num_out_cols = num_stripes(out->pix.width);
1894 	if (ipu_rot_mode_is_irt(rot_mode)) {
1895 		num_in_rows = num_out_cols;
1896 		num_in_cols = num_out_rows;
1897 	} else {
1898 		num_in_rows = num_out_rows;
1899 		num_in_cols = num_out_cols;
1900 	}
1901 
1902 	/* align input width/height */
1903 	w_align = ilog2(tile_width_align(infmt) * num_in_cols);
1904 	h_align = ilog2(tile_height_align(IMAGE_CONVERT_IN, rot_mode) *
1905 			num_in_rows);
1906 	in->pix.width = clamp_align(in->pix.width, MIN_W, MAX_W, w_align);
1907 	in->pix.height = clamp_align(in->pix.height, MIN_H, MAX_H, h_align);
1908 
1909 	/* align output width/height */
1910 	w_align = ilog2(tile_width_align(outfmt) * num_out_cols);
1911 	h_align = ilog2(tile_height_align(IMAGE_CONVERT_OUT, rot_mode) *
1912 			num_out_rows);
1913 	out->pix.width = clamp_align(out->pix.width, MIN_W, MAX_W, w_align);
1914 	out->pix.height = clamp_align(out->pix.height, MIN_H, MAX_H, h_align);
1915 
1916 	/* set input/output strides and image sizes */
1917 	in->pix.bytesperline = (in->pix.width * infmt->bpp) >> 3;
1918 	in->pix.sizeimage = in->pix.height * in->pix.bytesperline;
1919 	out->pix.bytesperline = (out->pix.width * outfmt->bpp) >> 3;
1920 	out->pix.sizeimage = out->pix.height * out->pix.bytesperline;
1921 }
1922 EXPORT_SYMBOL_GPL(ipu_image_convert_adjust);
1923 
1924 /*
1925  * this is used by ipu_image_convert_prepare() to verify set input and
1926  * output images are valid before starting the conversion. Clients can
1927  * also call it before calling ipu_image_convert_prepare().
1928  */
1929 int ipu_image_convert_verify(struct ipu_image *in, struct ipu_image *out,
1930 			     enum ipu_rotate_mode rot_mode)
1931 {
1932 	struct ipu_image testin, testout;
1933 
1934 	testin = *in;
1935 	testout = *out;
1936 
1937 	ipu_image_convert_adjust(&testin, &testout, rot_mode);
1938 
1939 	if (testin.pix.width != in->pix.width ||
1940 	    testin.pix.height != in->pix.height ||
1941 	    testout.pix.width != out->pix.width ||
1942 	    testout.pix.height != out->pix.height)
1943 		return -EINVAL;
1944 
1945 	return 0;
1946 }
1947 EXPORT_SYMBOL_GPL(ipu_image_convert_verify);
1948 
1949 /*
1950  * Call ipu_image_convert_prepare() to prepare for the conversion of
1951  * given images and rotation mode. Returns a new conversion context.
1952  */
1953 struct ipu_image_convert_ctx *
1954 ipu_image_convert_prepare(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
1955 			  struct ipu_image *in, struct ipu_image *out,
1956 			  enum ipu_rotate_mode rot_mode,
1957 			  ipu_image_convert_cb_t complete,
1958 			  void *complete_context)
1959 {
1960 	struct ipu_image_convert_priv *priv = ipu->image_convert_priv;
1961 	struct ipu_image_convert_image *s_image, *d_image;
1962 	struct ipu_image_convert_chan *chan;
1963 	struct ipu_image_convert_ctx *ctx;
1964 	unsigned long flags;
1965 	bool get_res;
1966 	int ret;
1967 
1968 	if (!in || !out || !complete ||
1969 	    (ic_task != IC_TASK_VIEWFINDER &&
1970 	     ic_task != IC_TASK_POST_PROCESSOR))
1971 		return ERR_PTR(-EINVAL);
1972 
1973 	/* verify the in/out images before continuing */
1974 	ret = ipu_image_convert_verify(in, out, rot_mode);
1975 	if (ret) {
1976 		dev_err(priv->ipu->dev, "%s: in/out formats invalid\n",
1977 			__func__);
1978 		return ERR_PTR(ret);
1979 	}
1980 
1981 	chan = &priv->chan[ic_task];
1982 
1983 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1984 	if (!ctx)
1985 		return ERR_PTR(-ENOMEM);
1986 
1987 	dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p\n", __func__,
1988 		chan->ic_task, ctx);
1989 
1990 	ctx->chan = chan;
1991 	init_completion(&ctx->aborted);
1992 
1993 	s_image = &ctx->in;
1994 	d_image = &ctx->out;
1995 
1996 	/* set tiling and rotation */
1997 	d_image->num_rows = num_stripes(out->pix.height);
1998 	d_image->num_cols = num_stripes(out->pix.width);
1999 	if (ipu_rot_mode_is_irt(rot_mode)) {
2000 		s_image->num_rows = d_image->num_cols;
2001 		s_image->num_cols = d_image->num_rows;
2002 	} else {
2003 		s_image->num_rows = d_image->num_rows;
2004 		s_image->num_cols = d_image->num_cols;
2005 	}
2006 
2007 	ctx->num_tiles = d_image->num_cols * d_image->num_rows;
2008 	ctx->rot_mode = rot_mode;
2009 
2010 	ret = fill_image(ctx, s_image, in, IMAGE_CONVERT_IN);
2011 	if (ret)
2012 		goto out_free;
2013 	ret = fill_image(ctx, d_image, out, IMAGE_CONVERT_OUT);
2014 	if (ret)
2015 		goto out_free;
2016 
2017 	ret = calc_image_resize_coefficients(ctx, in, out);
2018 	if (ret)
2019 		goto out_free;
2020 
2021 	calc_out_tile_map(ctx);
2022 
2023 	find_seams(ctx, s_image, d_image);
2024 
2025 	calc_tile_dimensions(ctx, s_image);
2026 	ret = calc_tile_offsets(ctx, s_image);
2027 	if (ret)
2028 		goto out_free;
2029 
2030 	calc_tile_dimensions(ctx, d_image);
2031 	ret = calc_tile_offsets(ctx, d_image);
2032 	if (ret)
2033 		goto out_free;
2034 
2035 	calc_tile_resize_coefficients(ctx);
2036 
2037 	dump_format(ctx, s_image);
2038 	dump_format(ctx, d_image);
2039 
2040 	ctx->complete = complete;
2041 	ctx->complete_context = complete_context;
2042 
2043 	/*
2044 	 * Can we use double-buffering for this operation? If there is
2045 	 * only one tile (the whole image can be converted in a single
2046 	 * operation) there's no point in using double-buffering. Also,
2047 	 * the IPU's IDMAC channels allow only a single U and V plane
2048 	 * offset shared between both buffers, but these offsets change
2049 	 * for every tile, and therefore would have to be updated for
2050 	 * each buffer which is not possible. So double-buffering is
2051 	 * impossible when either the source or destination images are
2052 	 * a planar format (YUV420, YUV422P, etc.).
2053 	 */
2054 	ctx->double_buffering = (ctx->num_tiles > 1 &&
2055 				 !s_image->fmt->planar &&
2056 				 !d_image->fmt->planar);
2057 
2058 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
2059 		unsigned long intermediate_size = d_image->tile[0].size;
2060 		unsigned int i;
2061 
2062 		for (i = 1; i < ctx->num_tiles; i++) {
2063 			if (d_image->tile[i].size > intermediate_size)
2064 				intermediate_size = d_image->tile[i].size;
2065 		}
2066 
2067 		ret = alloc_dma_buf(priv, &ctx->rot_intermediate[0],
2068 				    intermediate_size);
2069 		if (ret)
2070 			goto out_free;
2071 		if (ctx->double_buffering) {
2072 			ret = alloc_dma_buf(priv,
2073 					    &ctx->rot_intermediate[1],
2074 					    intermediate_size);
2075 			if (ret)
2076 				goto out_free_dmabuf0;
2077 		}
2078 	}
2079 
2080 	spin_lock_irqsave(&chan->irqlock, flags);
2081 
2082 	get_res = list_empty(&chan->ctx_list);
2083 
2084 	list_add_tail(&ctx->list, &chan->ctx_list);
2085 
2086 	spin_unlock_irqrestore(&chan->irqlock, flags);
2087 
2088 	if (get_res) {
2089 		ret = get_ipu_resources(chan);
2090 		if (ret)
2091 			goto out_free_dmabuf1;
2092 	}
2093 
2094 	return ctx;
2095 
2096 out_free_dmabuf1:
2097 	free_dma_buf(priv, &ctx->rot_intermediate[1]);
2098 	spin_lock_irqsave(&chan->irqlock, flags);
2099 	list_del(&ctx->list);
2100 	spin_unlock_irqrestore(&chan->irqlock, flags);
2101 out_free_dmabuf0:
2102 	free_dma_buf(priv, &ctx->rot_intermediate[0]);
2103 out_free:
2104 	kfree(ctx);
2105 	return ERR_PTR(ret);
2106 }
2107 EXPORT_SYMBOL_GPL(ipu_image_convert_prepare);
2108 
2109 /*
2110  * Carry out a single image conversion run. Only the physaddr's of the input
2111  * and output image buffers are needed. The conversion context must have
2112  * been created previously with ipu_image_convert_prepare().
2113  */
2114 int ipu_image_convert_queue(struct ipu_image_convert_run *run)
2115 {
2116 	struct ipu_image_convert_chan *chan;
2117 	struct ipu_image_convert_priv *priv;
2118 	struct ipu_image_convert_ctx *ctx;
2119 	unsigned long flags;
2120 	int ret = 0;
2121 
2122 	if (!run || !run->ctx || !run->in_phys || !run->out_phys)
2123 		return -EINVAL;
2124 
2125 	ctx = run->ctx;
2126 	chan = ctx->chan;
2127 	priv = chan->priv;
2128 
2129 	dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p run %p\n", __func__,
2130 		chan->ic_task, ctx, run);
2131 
2132 	INIT_LIST_HEAD(&run->list);
2133 
2134 	spin_lock_irqsave(&chan->irqlock, flags);
2135 
2136 	if (ctx->aborting) {
2137 		ret = -EIO;
2138 		goto unlock;
2139 	}
2140 
2141 	list_add_tail(&run->list, &chan->pending_q);
2142 
2143 	if (!chan->current_run) {
2144 		ret = do_run(run);
2145 		if (ret)
2146 			chan->current_run = NULL;
2147 	}
2148 unlock:
2149 	spin_unlock_irqrestore(&chan->irqlock, flags);
2150 	return ret;
2151 }
2152 EXPORT_SYMBOL_GPL(ipu_image_convert_queue);
2153 
2154 /* Abort any active or pending conversions for this context */
2155 static void __ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2156 {
2157 	struct ipu_image_convert_chan *chan = ctx->chan;
2158 	struct ipu_image_convert_priv *priv = chan->priv;
2159 	struct ipu_image_convert_run *run, *active_run, *tmp;
2160 	unsigned long flags;
2161 	int run_count, ret;
2162 
2163 	spin_lock_irqsave(&chan->irqlock, flags);
2164 
2165 	/* move all remaining pending runs in this context to done_q */
2166 	list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
2167 		if (run->ctx != ctx)
2168 			continue;
2169 		run->status = -EIO;
2170 		list_move_tail(&run->list, &chan->done_q);
2171 	}
2172 
2173 	run_count = get_run_count(ctx, &chan->done_q);
2174 	active_run = (chan->current_run && chan->current_run->ctx == ctx) ?
2175 		chan->current_run : NULL;
2176 
2177 	if (active_run)
2178 		reinit_completion(&ctx->aborted);
2179 
2180 	ctx->aborting = true;
2181 
2182 	spin_unlock_irqrestore(&chan->irqlock, flags);
2183 
2184 	if (!run_count && !active_run) {
2185 		dev_dbg(priv->ipu->dev,
2186 			"%s: task %u: no abort needed for ctx %p\n",
2187 			__func__, chan->ic_task, ctx);
2188 		return;
2189 	}
2190 
2191 	if (!active_run) {
2192 		empty_done_q(chan);
2193 		return;
2194 	}
2195 
2196 	dev_dbg(priv->ipu->dev,
2197 		"%s: task %u: wait for completion: %d runs\n",
2198 		__func__, chan->ic_task, run_count);
2199 
2200 	ret = wait_for_completion_timeout(&ctx->aborted,
2201 					  msecs_to_jiffies(10000));
2202 	if (ret == 0) {
2203 		dev_warn(priv->ipu->dev, "%s: timeout\n", __func__);
2204 		force_abort(ctx);
2205 	}
2206 }
2207 
2208 void ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2209 {
2210 	__ipu_image_convert_abort(ctx);
2211 	ctx->aborting = false;
2212 }
2213 EXPORT_SYMBOL_GPL(ipu_image_convert_abort);
2214 
2215 /* Unprepare image conversion context */
2216 void ipu_image_convert_unprepare(struct ipu_image_convert_ctx *ctx)
2217 {
2218 	struct ipu_image_convert_chan *chan = ctx->chan;
2219 	struct ipu_image_convert_priv *priv = chan->priv;
2220 	unsigned long flags;
2221 	bool put_res;
2222 
2223 	/* make sure no runs are hanging around */
2224 	__ipu_image_convert_abort(ctx);
2225 
2226 	dev_dbg(priv->ipu->dev, "%s: task %u: removing ctx %p\n", __func__,
2227 		chan->ic_task, ctx);
2228 
2229 	spin_lock_irqsave(&chan->irqlock, flags);
2230 
2231 	list_del(&ctx->list);
2232 
2233 	put_res = list_empty(&chan->ctx_list);
2234 
2235 	spin_unlock_irqrestore(&chan->irqlock, flags);
2236 
2237 	if (put_res)
2238 		release_ipu_resources(chan);
2239 
2240 	free_dma_buf(priv, &ctx->rot_intermediate[1]);
2241 	free_dma_buf(priv, &ctx->rot_intermediate[0]);
2242 
2243 	kfree(ctx);
2244 }
2245 EXPORT_SYMBOL_GPL(ipu_image_convert_unprepare);
2246 
2247 /*
2248  * "Canned" asynchronous single image conversion. Allocates and returns
2249  * a new conversion run.  On successful return the caller must free the
2250  * run and call ipu_image_convert_unprepare() after conversion completes.
2251  */
2252 struct ipu_image_convert_run *
2253 ipu_image_convert(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2254 		  struct ipu_image *in, struct ipu_image *out,
2255 		  enum ipu_rotate_mode rot_mode,
2256 		  ipu_image_convert_cb_t complete,
2257 		  void *complete_context)
2258 {
2259 	struct ipu_image_convert_ctx *ctx;
2260 	struct ipu_image_convert_run *run;
2261 	int ret;
2262 
2263 	ctx = ipu_image_convert_prepare(ipu, ic_task, in, out, rot_mode,
2264 					complete, complete_context);
2265 	if (IS_ERR(ctx))
2266 		return ERR_CAST(ctx);
2267 
2268 	run = kzalloc(sizeof(*run), GFP_KERNEL);
2269 	if (!run) {
2270 		ipu_image_convert_unprepare(ctx);
2271 		return ERR_PTR(-ENOMEM);
2272 	}
2273 
2274 	run->ctx = ctx;
2275 	run->in_phys = in->phys0;
2276 	run->out_phys = out->phys0;
2277 
2278 	ret = ipu_image_convert_queue(run);
2279 	if (ret) {
2280 		ipu_image_convert_unprepare(ctx);
2281 		kfree(run);
2282 		return ERR_PTR(ret);
2283 	}
2284 
2285 	return run;
2286 }
2287 EXPORT_SYMBOL_GPL(ipu_image_convert);
2288 
2289 /* "Canned" synchronous single image conversion */
2290 static void image_convert_sync_complete(struct ipu_image_convert_run *run,
2291 					void *data)
2292 {
2293 	struct completion *comp = data;
2294 
2295 	complete(comp);
2296 }
2297 
2298 int ipu_image_convert_sync(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2299 			   struct ipu_image *in, struct ipu_image *out,
2300 			   enum ipu_rotate_mode rot_mode)
2301 {
2302 	struct ipu_image_convert_run *run;
2303 	struct completion comp;
2304 	int ret;
2305 
2306 	init_completion(&comp);
2307 
2308 	run = ipu_image_convert(ipu, ic_task, in, out, rot_mode,
2309 				image_convert_sync_complete, &comp);
2310 	if (IS_ERR(run))
2311 		return PTR_ERR(run);
2312 
2313 	ret = wait_for_completion_timeout(&comp, msecs_to_jiffies(10000));
2314 	ret = (ret == 0) ? -ETIMEDOUT : 0;
2315 
2316 	ipu_image_convert_unprepare(run->ctx);
2317 	kfree(run);
2318 
2319 	return ret;
2320 }
2321 EXPORT_SYMBOL_GPL(ipu_image_convert_sync);
2322 
2323 int ipu_image_convert_init(struct ipu_soc *ipu, struct device *dev)
2324 {
2325 	struct ipu_image_convert_priv *priv;
2326 	int i;
2327 
2328 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
2329 	if (!priv)
2330 		return -ENOMEM;
2331 
2332 	ipu->image_convert_priv = priv;
2333 	priv->ipu = ipu;
2334 
2335 	for (i = 0; i < IC_NUM_TASKS; i++) {
2336 		struct ipu_image_convert_chan *chan = &priv->chan[i];
2337 
2338 		chan->ic_task = i;
2339 		chan->priv = priv;
2340 		chan->dma_ch = &image_convert_dma_chan[i];
2341 		chan->out_eof_irq = -1;
2342 		chan->rot_out_eof_irq = -1;
2343 
2344 		spin_lock_init(&chan->irqlock);
2345 		INIT_LIST_HEAD(&chan->ctx_list);
2346 		INIT_LIST_HEAD(&chan->pending_q);
2347 		INIT_LIST_HEAD(&chan->done_q);
2348 	}
2349 
2350 	return 0;
2351 }
2352 
2353 void ipu_image_convert_exit(struct ipu_soc *ipu)
2354 {
2355 }
2356