1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2012-2016 Mentor Graphics Inc.
4  *
5  * Queued image conversion support, with tiling and rotation.
6  */
7 
8 #include <linux/interrupt.h>
9 #include <linux/dma-mapping.h>
10 #include <video/imx-ipu-image-convert.h>
11 #include "ipu-prv.h"
12 
13 /*
14  * The IC Resizer has a restriction that the output frame from the
15  * resizer must be 1024 or less in both width (pixels) and height
16  * (lines).
17  *
18  * The image converter attempts to split up a conversion when
19  * the desired output (converted) frame resolution exceeds the
20  * IC resizer limit of 1024 in either dimension.
21  *
22  * If either dimension of the output frame exceeds the limit, the
23  * dimension is split into 1, 2, or 4 equal stripes, for a maximum
24  * of 4*4 or 16 tiles. A conversion is then carried out for each
25  * tile (but taking care to pass the full frame stride length to
26  * the DMA channel's parameter memory!). IDMA double-buffering is used
27  * to convert each tile back-to-back when possible (see note below
28  * when double_buffering boolean is set).
29  *
30  * Note that the input frame must be split up into the same number
31  * of tiles as the output frame:
32  *
33  *                       +---------+-----+
34  *   +-----+---+         |  A      | B   |
35  *   | A   | B |         |         |     |
36  *   +-----+---+   -->   +---------+-----+
37  *   | C   | D |         |  C      | D   |
38  *   +-----+---+         |         |     |
39  *                       +---------+-----+
40  *
41  * Clockwise 90° rotations are handled by first rescaling into a
42  * reusable temporary tile buffer and then rotating with the 8x8
43  * block rotator, writing to the correct destination:
44  *
45  *                                         +-----+-----+
46  *                                         |     |     |
47  *   +-----+---+         +---------+       | C   | A   |
48  *   | A   | B |         | A,B, |  |       |     |     |
49  *   +-----+---+   -->   | C,D  |  |  -->  |     |     |
50  *   | C   | D |         +---------+       +-----+-----+
51  *   +-----+---+                           | D   | B   |
52  *                                         |     |     |
53  *                                         +-----+-----+
54  *
55  * If the 8x8 block rotator is used, horizontal or vertical flipping
56  * is done during the rotation step, otherwise flipping is done
57  * during the scaling step.
58  * With rotation or flipping, tile order changes between input and
59  * output image. Tiles are numbered row major from top left to bottom
60  * right for both input and output image.
61  */
62 
63 #define MAX_STRIPES_W    4
64 #define MAX_STRIPES_H    4
65 #define MAX_TILES (MAX_STRIPES_W * MAX_STRIPES_H)
66 
67 #define MIN_W     16
68 #define MIN_H     8
69 #define MAX_W     4096
70 #define MAX_H     4096
71 
72 enum ipu_image_convert_type {
73 	IMAGE_CONVERT_IN = 0,
74 	IMAGE_CONVERT_OUT,
75 };
76 
77 struct ipu_image_convert_dma_buf {
78 	void          *virt;
79 	dma_addr_t    phys;
80 	unsigned long len;
81 };
82 
83 struct ipu_image_convert_dma_chan {
84 	int in;
85 	int out;
86 	int rot_in;
87 	int rot_out;
88 	int vdi_in_p;
89 	int vdi_in;
90 	int vdi_in_n;
91 };
92 
93 /* dimensions of one tile */
94 struct ipu_image_tile {
95 	u32 width;
96 	u32 height;
97 	u32 left;
98 	u32 top;
99 	/* size and strides are in bytes */
100 	u32 size;
101 	u32 stride;
102 	u32 rot_stride;
103 	/* start Y or packed offset of this tile */
104 	u32 offset;
105 	/* offset from start to tile in U plane, for planar formats */
106 	u32 u_off;
107 	/* offset from start to tile in V plane, for planar formats */
108 	u32 v_off;
109 };
110 
111 struct ipu_image_convert_image {
112 	struct ipu_image base;
113 	enum ipu_image_convert_type type;
114 
115 	const struct ipu_image_pixfmt *fmt;
116 	unsigned int stride;
117 
118 	/* # of rows (horizontal stripes) if dest height is > 1024 */
119 	unsigned int num_rows;
120 	/* # of columns (vertical stripes) if dest width is > 1024 */
121 	unsigned int num_cols;
122 
123 	struct ipu_image_tile tile[MAX_TILES];
124 };
125 
126 struct ipu_image_pixfmt {
127 	u32	fourcc;        /* V4L2 fourcc */
128 	int     bpp;           /* total bpp */
129 	int     uv_width_dec;  /* decimation in width for U/V planes */
130 	int     uv_height_dec; /* decimation in height for U/V planes */
131 	bool    planar;        /* planar format */
132 	bool    uv_swapped;    /* U and V planes are swapped */
133 	bool    uv_packed;     /* partial planar (U and V in same plane) */
134 };
135 
136 struct ipu_image_convert_ctx;
137 struct ipu_image_convert_chan;
138 struct ipu_image_convert_priv;
139 
140 struct ipu_image_convert_ctx {
141 	struct ipu_image_convert_chan *chan;
142 
143 	ipu_image_convert_cb_t complete;
144 	void *complete_context;
145 
146 	/* Source/destination image data and rotation mode */
147 	struct ipu_image_convert_image in;
148 	struct ipu_image_convert_image out;
149 	enum ipu_rotate_mode rot_mode;
150 	u32 downsize_coeff_h;
151 	u32 downsize_coeff_v;
152 	u32 image_resize_coeff_h;
153 	u32 image_resize_coeff_v;
154 	u32 resize_coeffs_h[MAX_STRIPES_W];
155 	u32 resize_coeffs_v[MAX_STRIPES_H];
156 
157 	/* intermediate buffer for rotation */
158 	struct ipu_image_convert_dma_buf rot_intermediate[2];
159 
160 	/* current buffer number for double buffering */
161 	int cur_buf_num;
162 
163 	bool aborting;
164 	struct completion aborted;
165 
166 	/* can we use double-buffering for this conversion operation? */
167 	bool double_buffering;
168 	/* num_rows * num_cols */
169 	unsigned int num_tiles;
170 	/* next tile to process */
171 	unsigned int next_tile;
172 	/* where to place converted tile in dest image */
173 	unsigned int out_tile_map[MAX_TILES];
174 
175 	struct list_head list;
176 };
177 
178 struct ipu_image_convert_chan {
179 	struct ipu_image_convert_priv *priv;
180 
181 	enum ipu_ic_task ic_task;
182 	const struct ipu_image_convert_dma_chan *dma_ch;
183 
184 	struct ipu_ic *ic;
185 	struct ipuv3_channel *in_chan;
186 	struct ipuv3_channel *out_chan;
187 	struct ipuv3_channel *rotation_in_chan;
188 	struct ipuv3_channel *rotation_out_chan;
189 
190 	/* the IPU end-of-frame irqs */
191 	int out_eof_irq;
192 	int rot_out_eof_irq;
193 
194 	spinlock_t irqlock;
195 
196 	/* list of convert contexts */
197 	struct list_head ctx_list;
198 	/* queue of conversion runs */
199 	struct list_head pending_q;
200 	/* queue of completed runs */
201 	struct list_head done_q;
202 
203 	/* the current conversion run */
204 	struct ipu_image_convert_run *current_run;
205 };
206 
207 struct ipu_image_convert_priv {
208 	struct ipu_image_convert_chan chan[IC_NUM_TASKS];
209 	struct ipu_soc *ipu;
210 };
211 
212 static const struct ipu_image_convert_dma_chan
213 image_convert_dma_chan[IC_NUM_TASKS] = {
214 	[IC_TASK_VIEWFINDER] = {
215 		.in = IPUV3_CHANNEL_MEM_IC_PRP_VF,
216 		.out = IPUV3_CHANNEL_IC_PRP_VF_MEM,
217 		.rot_in = IPUV3_CHANNEL_MEM_ROT_VF,
218 		.rot_out = IPUV3_CHANNEL_ROT_VF_MEM,
219 		.vdi_in_p = IPUV3_CHANNEL_MEM_VDI_PREV,
220 		.vdi_in = IPUV3_CHANNEL_MEM_VDI_CUR,
221 		.vdi_in_n = IPUV3_CHANNEL_MEM_VDI_NEXT,
222 	},
223 	[IC_TASK_POST_PROCESSOR] = {
224 		.in = IPUV3_CHANNEL_MEM_IC_PP,
225 		.out = IPUV3_CHANNEL_IC_PP_MEM,
226 		.rot_in = IPUV3_CHANNEL_MEM_ROT_PP,
227 		.rot_out = IPUV3_CHANNEL_ROT_PP_MEM,
228 	},
229 };
230 
231 static const struct ipu_image_pixfmt image_convert_formats[] = {
232 	{
233 		.fourcc	= V4L2_PIX_FMT_RGB565,
234 		.bpp    = 16,
235 	}, {
236 		.fourcc	= V4L2_PIX_FMT_RGB24,
237 		.bpp    = 24,
238 	}, {
239 		.fourcc	= V4L2_PIX_FMT_BGR24,
240 		.bpp    = 24,
241 	}, {
242 		.fourcc	= V4L2_PIX_FMT_RGB32,
243 		.bpp    = 32,
244 	}, {
245 		.fourcc	= V4L2_PIX_FMT_BGR32,
246 		.bpp    = 32,
247 	}, {
248 		.fourcc	= V4L2_PIX_FMT_XRGB32,
249 		.bpp    = 32,
250 	}, {
251 		.fourcc	= V4L2_PIX_FMT_XBGR32,
252 		.bpp    = 32,
253 	}, {
254 		.fourcc	= V4L2_PIX_FMT_YUYV,
255 		.bpp    = 16,
256 		.uv_width_dec = 2,
257 		.uv_height_dec = 1,
258 	}, {
259 		.fourcc	= V4L2_PIX_FMT_UYVY,
260 		.bpp    = 16,
261 		.uv_width_dec = 2,
262 		.uv_height_dec = 1,
263 	}, {
264 		.fourcc	= V4L2_PIX_FMT_YUV420,
265 		.bpp    = 12,
266 		.planar = true,
267 		.uv_width_dec = 2,
268 		.uv_height_dec = 2,
269 	}, {
270 		.fourcc	= V4L2_PIX_FMT_YVU420,
271 		.bpp    = 12,
272 		.planar = true,
273 		.uv_width_dec = 2,
274 		.uv_height_dec = 2,
275 		.uv_swapped = true,
276 	}, {
277 		.fourcc = V4L2_PIX_FMT_NV12,
278 		.bpp    = 12,
279 		.planar = true,
280 		.uv_width_dec = 2,
281 		.uv_height_dec = 2,
282 		.uv_packed = true,
283 	}, {
284 		.fourcc = V4L2_PIX_FMT_YUV422P,
285 		.bpp    = 16,
286 		.planar = true,
287 		.uv_width_dec = 2,
288 		.uv_height_dec = 1,
289 	}, {
290 		.fourcc = V4L2_PIX_FMT_NV16,
291 		.bpp    = 16,
292 		.planar = true,
293 		.uv_width_dec = 2,
294 		.uv_height_dec = 1,
295 		.uv_packed = true,
296 	},
297 };
298 
299 static const struct ipu_image_pixfmt *get_format(u32 fourcc)
300 {
301 	const struct ipu_image_pixfmt *ret = NULL;
302 	unsigned int i;
303 
304 	for (i = 0; i < ARRAY_SIZE(image_convert_formats); i++) {
305 		if (image_convert_formats[i].fourcc == fourcc) {
306 			ret = &image_convert_formats[i];
307 			break;
308 		}
309 	}
310 
311 	return ret;
312 }
313 
314 static void dump_format(struct ipu_image_convert_ctx *ctx,
315 			struct ipu_image_convert_image *ic_image)
316 {
317 	struct ipu_image_convert_chan *chan = ctx->chan;
318 	struct ipu_image_convert_priv *priv = chan->priv;
319 
320 	dev_dbg(priv->ipu->dev,
321 		"task %u: ctx %p: %s format: %dx%d (%dx%d tiles), %c%c%c%c\n",
322 		chan->ic_task, ctx,
323 		ic_image->type == IMAGE_CONVERT_OUT ? "Output" : "Input",
324 		ic_image->base.pix.width, ic_image->base.pix.height,
325 		ic_image->num_cols, ic_image->num_rows,
326 		ic_image->fmt->fourcc & 0xff,
327 		(ic_image->fmt->fourcc >> 8) & 0xff,
328 		(ic_image->fmt->fourcc >> 16) & 0xff,
329 		(ic_image->fmt->fourcc >> 24) & 0xff);
330 }
331 
332 int ipu_image_convert_enum_format(int index, u32 *fourcc)
333 {
334 	const struct ipu_image_pixfmt *fmt;
335 
336 	if (index >= (int)ARRAY_SIZE(image_convert_formats))
337 		return -EINVAL;
338 
339 	/* Format found */
340 	fmt = &image_convert_formats[index];
341 	*fourcc = fmt->fourcc;
342 	return 0;
343 }
344 EXPORT_SYMBOL_GPL(ipu_image_convert_enum_format);
345 
346 static void free_dma_buf(struct ipu_image_convert_priv *priv,
347 			 struct ipu_image_convert_dma_buf *buf)
348 {
349 	if (buf->virt)
350 		dma_free_coherent(priv->ipu->dev,
351 				  buf->len, buf->virt, buf->phys);
352 	buf->virt = NULL;
353 	buf->phys = 0;
354 }
355 
356 static int alloc_dma_buf(struct ipu_image_convert_priv *priv,
357 			 struct ipu_image_convert_dma_buf *buf,
358 			 int size)
359 {
360 	buf->len = PAGE_ALIGN(size);
361 	buf->virt = dma_alloc_coherent(priv->ipu->dev, buf->len, &buf->phys,
362 				       GFP_DMA | GFP_KERNEL);
363 	if (!buf->virt) {
364 		dev_err(priv->ipu->dev, "failed to alloc dma buffer\n");
365 		return -ENOMEM;
366 	}
367 
368 	return 0;
369 }
370 
371 static inline int num_stripes(int dim)
372 {
373 	return (dim - 1) / 1024 + 1;
374 }
375 
376 /*
377  * Calculate downsizing coefficients, which are the same for all tiles,
378  * and bilinear resizing coefficients, which are used to find the best
379  * seam positions.
380  */
381 static int calc_image_resize_coefficients(struct ipu_image_convert_ctx *ctx,
382 					  struct ipu_image *in,
383 					  struct ipu_image *out)
384 {
385 	u32 downsized_width = in->rect.width;
386 	u32 downsized_height = in->rect.height;
387 	u32 downsize_coeff_v = 0;
388 	u32 downsize_coeff_h = 0;
389 	u32 resized_width = out->rect.width;
390 	u32 resized_height = out->rect.height;
391 	u32 resize_coeff_h;
392 	u32 resize_coeff_v;
393 
394 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
395 		resized_width = out->rect.height;
396 		resized_height = out->rect.width;
397 	}
398 
399 	/* Do not let invalid input lead to an endless loop below */
400 	if (WARN_ON(resized_width == 0 || resized_height == 0))
401 		return -EINVAL;
402 
403 	while (downsized_width > 1024 ||
404 	       downsized_width >= resized_width * 2) {
405 		downsized_width >>= 1;
406 		downsize_coeff_h++;
407 	}
408 
409 	while (downsized_height > 1024 ||
410 	       downsized_height >= resized_height * 2) {
411 		downsized_height >>= 1;
412 		downsize_coeff_v++;
413 	}
414 
415 	/*
416 	 * Calculate the bilinear resizing coefficients that could be used if
417 	 * we were converting with a single tile. The bottom right output pixel
418 	 * should sample as close as possible to the bottom right input pixel
419 	 * out of the decimator, but not overshoot it:
420 	 */
421 	resize_coeff_h = 8192 * (downsized_width - 1) / (resized_width - 1);
422 	resize_coeff_v = 8192 * (downsized_height - 1) / (resized_height - 1);
423 
424 	dev_dbg(ctx->chan->priv->ipu->dev,
425 		"%s: hscale: >>%u, *8192/%u vscale: >>%u, *8192/%u, %ux%u tiles\n",
426 		__func__, downsize_coeff_h, resize_coeff_h, downsize_coeff_v,
427 		resize_coeff_v, ctx->in.num_cols, ctx->in.num_rows);
428 
429 	if (downsize_coeff_h > 2 || downsize_coeff_v  > 2 ||
430 	    resize_coeff_h > 0x3fff || resize_coeff_v > 0x3fff)
431 		return -EINVAL;
432 
433 	ctx->downsize_coeff_h = downsize_coeff_h;
434 	ctx->downsize_coeff_v = downsize_coeff_v;
435 	ctx->image_resize_coeff_h = resize_coeff_h;
436 	ctx->image_resize_coeff_v = resize_coeff_v;
437 
438 	return 0;
439 }
440 
441 #define round_closest(x, y) round_down((x) + (y)/2, (y))
442 
443 /*
444  * Find the best aligned seam position in the inverval [out_start, out_end].
445  * Rotation and image offsets are out of scope.
446  *
447  * @out_start: start of inverval, must be within 1024 pixels / lines
448  *             of out_end
449  * @out_end: end of interval, smaller than or equal to out_edge
450  * @in_edge: input right / bottom edge
451  * @out_edge: output right / bottom edge
452  * @in_align: input alignment, either horizontal 8-byte line start address
453  *            alignment, or pixel alignment due to image format
454  * @out_align: output alignment, either horizontal 8-byte line start address
455  *             alignment, or pixel alignment due to image format or rotator
456  *             block size
457  * @in_burst: horizontal input burst size in case of horizontal flip
458  * @out_burst: horizontal output burst size or rotator block size
459  * @downsize_coeff: downsizing section coefficient
460  * @resize_coeff: main processing section resizing coefficient
461  * @_in_seam: aligned input seam position return value
462  * @_out_seam: aligned output seam position return value
463  */
464 static void find_best_seam(struct ipu_image_convert_ctx *ctx,
465 			   unsigned int out_start,
466 			   unsigned int out_end,
467 			   unsigned int in_edge,
468 			   unsigned int out_edge,
469 			   unsigned int in_align,
470 			   unsigned int out_align,
471 			   unsigned int in_burst,
472 			   unsigned int out_burst,
473 			   unsigned int downsize_coeff,
474 			   unsigned int resize_coeff,
475 			   u32 *_in_seam,
476 			   u32 *_out_seam)
477 {
478 	struct device *dev = ctx->chan->priv->ipu->dev;
479 	unsigned int out_pos;
480 	/* Input / output seam position candidates */
481 	unsigned int out_seam = 0;
482 	unsigned int in_seam = 0;
483 	unsigned int min_diff = UINT_MAX;
484 
485 	/*
486 	 * Output tiles must start at a multiple of 8 bytes horizontally and
487 	 * possibly at an even line horizontally depending on the pixel format.
488 	 * Only consider output aligned positions for the seam.
489 	 */
490 	out_start = round_up(out_start, out_align);
491 	for (out_pos = out_start; out_pos < out_end; out_pos += out_align) {
492 		unsigned int in_pos;
493 		unsigned int in_pos_aligned;
494 		unsigned int abs_diff;
495 
496 		/*
497 		 * Tiles in the right row / bottom column may not be allowed to
498 		 * overshoot horizontally / vertically. out_burst may be the
499 		 * actual DMA burst size, or the rotator block size.
500 		 */
501 		if ((out_burst > 1) && (out_edge - out_pos) % out_burst)
502 			continue;
503 
504 		/*
505 		 * Input sample position, corresponding to out_pos, 19.13 fixed
506 		 * point.
507 		 */
508 		in_pos = (out_pos * resize_coeff) << downsize_coeff;
509 		/*
510 		 * The closest input sample position that we could actually
511 		 * start the input tile at, 19.13 fixed point.
512 		 */
513 		in_pos_aligned = round_closest(in_pos, 8192U * in_align);
514 
515 		if ((in_burst > 1) &&
516 		    (in_edge - in_pos_aligned / 8192U) % in_burst)
517 			continue;
518 
519 		if (in_pos < in_pos_aligned)
520 			abs_diff = in_pos_aligned - in_pos;
521 		else
522 			abs_diff = in_pos - in_pos_aligned;
523 
524 		if (abs_diff < min_diff) {
525 			in_seam = in_pos_aligned;
526 			out_seam = out_pos;
527 			min_diff = abs_diff;
528 		}
529 	}
530 
531 	*_out_seam = out_seam;
532 	/* Convert 19.13 fixed point to integer seam position */
533 	*_in_seam = DIV_ROUND_CLOSEST(in_seam, 8192U);
534 
535 	dev_dbg(dev, "%s: out_seam %u(%u) in [%u, %u], in_seam %u(%u) diff %u.%03u\n",
536 		__func__, out_seam, out_align, out_start, out_end,
537 		*_in_seam, in_align, min_diff / 8192,
538 		DIV_ROUND_CLOSEST(min_diff % 8192 * 1000, 8192));
539 }
540 
541 /*
542  * Tile left edges are required to be aligned to multiples of 8 bytes
543  * by the IDMAC.
544  */
545 static inline u32 tile_left_align(const struct ipu_image_pixfmt *fmt)
546 {
547 	if (fmt->planar)
548 		return fmt->uv_packed ? 8 : 8 * fmt->uv_width_dec;
549 	else
550 		return fmt->bpp == 32 ? 2 : fmt->bpp == 16 ? 4 : 8;
551 }
552 
553 /*
554  * Tile top edge alignment is only limited by chroma subsampling.
555  */
556 static inline u32 tile_top_align(const struct ipu_image_pixfmt *fmt)
557 {
558 	return fmt->uv_height_dec > 1 ? 2 : 1;
559 }
560 
561 static inline u32 tile_width_align(enum ipu_image_convert_type type,
562 				   const struct ipu_image_pixfmt *fmt,
563 				   enum ipu_rotate_mode rot_mode)
564 {
565 	if (type == IMAGE_CONVERT_IN) {
566 		/*
567 		 * The IC burst reads 8 pixels at a time. Reading beyond the
568 		 * end of the line is usually acceptable. Those pixels are
569 		 * ignored, unless the IC has to write the scaled line in
570 		 * reverse.
571 		 */
572 		return (!ipu_rot_mode_is_irt(rot_mode) &&
573 			(rot_mode & IPU_ROT_BIT_HFLIP)) ? 8 : 2;
574 	}
575 
576 	/*
577 	 * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
578 	 * formats to guarantee 8-byte aligned line start addresses in the
579 	 * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
580 	 * for all other formats.
581 	 */
582 	return (ipu_rot_mode_is_irt(rot_mode) &&
583 		fmt->planar && !fmt->uv_packed) ?
584 		8 * fmt->uv_width_dec : 8;
585 }
586 
587 static inline u32 tile_height_align(enum ipu_image_convert_type type,
588 				    const struct ipu_image_pixfmt *fmt,
589 				    enum ipu_rotate_mode rot_mode)
590 {
591 	if (type == IMAGE_CONVERT_IN || !ipu_rot_mode_is_irt(rot_mode))
592 		return 2;
593 
594 	/*
595 	 * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
596 	 * formats to guarantee 8-byte aligned line start addresses in the
597 	 * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
598 	 * for all other formats.
599 	 */
600 	return (fmt->planar && !fmt->uv_packed) ? 8 * fmt->uv_width_dec : 8;
601 }
602 
603 /*
604  * Fill in left position and width and for all tiles in an input column, and
605  * for all corresponding output tiles. If the 90° rotator is used, the output
606  * tiles are in a row, and output tile top position and height are set.
607  */
608 static void fill_tile_column(struct ipu_image_convert_ctx *ctx,
609 			     unsigned int col,
610 			     struct ipu_image_convert_image *in,
611 			     unsigned int in_left, unsigned int in_width,
612 			     struct ipu_image_convert_image *out,
613 			     unsigned int out_left, unsigned int out_width)
614 {
615 	unsigned int row, tile_idx;
616 	struct ipu_image_tile *in_tile, *out_tile;
617 
618 	for (row = 0; row < in->num_rows; row++) {
619 		tile_idx = in->num_cols * row + col;
620 		in_tile = &in->tile[tile_idx];
621 		out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
622 
623 		in_tile->left = in_left;
624 		in_tile->width = in_width;
625 
626 		if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
627 			out_tile->top = out_left;
628 			out_tile->height = out_width;
629 		} else {
630 			out_tile->left = out_left;
631 			out_tile->width = out_width;
632 		}
633 	}
634 }
635 
636 /*
637  * Fill in top position and height and for all tiles in an input row, and
638  * for all corresponding output tiles. If the 90° rotator is used, the output
639  * tiles are in a column, and output tile left position and width are set.
640  */
641 static void fill_tile_row(struct ipu_image_convert_ctx *ctx, unsigned int row,
642 			  struct ipu_image_convert_image *in,
643 			  unsigned int in_top, unsigned int in_height,
644 			  struct ipu_image_convert_image *out,
645 			  unsigned int out_top, unsigned int out_height)
646 {
647 	unsigned int col, tile_idx;
648 	struct ipu_image_tile *in_tile, *out_tile;
649 
650 	for (col = 0; col < in->num_cols; col++) {
651 		tile_idx = in->num_cols * row + col;
652 		in_tile = &in->tile[tile_idx];
653 		out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
654 
655 		in_tile->top = in_top;
656 		in_tile->height = in_height;
657 
658 		if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
659 			out_tile->left = out_top;
660 			out_tile->width = out_height;
661 		} else {
662 			out_tile->top = out_top;
663 			out_tile->height = out_height;
664 		}
665 	}
666 }
667 
668 /*
669  * Find the best horizontal and vertical seam positions to split into tiles.
670  * Minimize the fractional part of the input sampling position for the
671  * top / left pixels of each tile.
672  */
673 static void find_seams(struct ipu_image_convert_ctx *ctx,
674 		       struct ipu_image_convert_image *in,
675 		       struct ipu_image_convert_image *out)
676 {
677 	struct device *dev = ctx->chan->priv->ipu->dev;
678 	unsigned int resized_width = out->base.rect.width;
679 	unsigned int resized_height = out->base.rect.height;
680 	unsigned int col;
681 	unsigned int row;
682 	unsigned int in_left_align = tile_left_align(in->fmt);
683 	unsigned int in_top_align = tile_top_align(in->fmt);
684 	unsigned int out_left_align = tile_left_align(out->fmt);
685 	unsigned int out_top_align = tile_top_align(out->fmt);
686 	unsigned int out_width_align = tile_width_align(out->type, out->fmt,
687 							ctx->rot_mode);
688 	unsigned int out_height_align = tile_height_align(out->type, out->fmt,
689 							  ctx->rot_mode);
690 	unsigned int in_right = in->base.rect.width;
691 	unsigned int in_bottom = in->base.rect.height;
692 	unsigned int out_right = out->base.rect.width;
693 	unsigned int out_bottom = out->base.rect.height;
694 	unsigned int flipped_out_left;
695 	unsigned int flipped_out_top;
696 
697 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
698 		/* Switch width/height and align top left to IRT block size */
699 		resized_width = out->base.rect.height;
700 		resized_height = out->base.rect.width;
701 		out_left_align = out_height_align;
702 		out_top_align = out_width_align;
703 		out_width_align = out_left_align;
704 		out_height_align = out_top_align;
705 		out_right = out->base.rect.height;
706 		out_bottom = out->base.rect.width;
707 	}
708 
709 	for (col = in->num_cols - 1; col > 0; col--) {
710 		bool allow_in_overshoot = ipu_rot_mode_is_irt(ctx->rot_mode) ||
711 					  !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
712 		bool allow_out_overshoot = (col < in->num_cols - 1) &&
713 					   !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
714 		unsigned int out_start;
715 		unsigned int out_end;
716 		unsigned int in_left;
717 		unsigned int out_left;
718 
719 		/*
720 		 * Align input width to burst length if the scaling step flips
721 		 * horizontally.
722 		 */
723 
724 		/* Start within 1024 pixels of the right edge */
725 		out_start = max_t(int, 0, out_right - 1024);
726 		/* End before having to add more columns to the left */
727 		out_end = min_t(unsigned int, out_right, col * 1024);
728 
729 		find_best_seam(ctx, out_start, out_end,
730 			       in_right, out_right,
731 			       in_left_align, out_left_align,
732 			       allow_in_overshoot ? 1 : 8 /* burst length */,
733 			       allow_out_overshoot ? 1 : out_width_align,
734 			       ctx->downsize_coeff_h, ctx->image_resize_coeff_h,
735 			       &in_left, &out_left);
736 
737 		if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
738 			flipped_out_left = resized_width - out_right;
739 		else
740 			flipped_out_left = out_left;
741 
742 		fill_tile_column(ctx, col, in, in_left, in_right - in_left,
743 				 out, flipped_out_left, out_right - out_left);
744 
745 		dev_dbg(dev, "%s: col %u: %u, %u -> %u, %u\n", __func__, col,
746 			in_left, in_right - in_left,
747 			flipped_out_left, out_right - out_left);
748 
749 		in_right = in_left;
750 		out_right = out_left;
751 	}
752 
753 	flipped_out_left = (ctx->rot_mode & IPU_ROT_BIT_HFLIP) ?
754 			   resized_width - out_right : 0;
755 
756 	fill_tile_column(ctx, 0, in, 0, in_right,
757 			 out, flipped_out_left, out_right);
758 
759 	dev_dbg(dev, "%s: col 0: 0, %u -> %u, %u\n", __func__,
760 		in_right, flipped_out_left, out_right);
761 
762 	for (row = in->num_rows - 1; row > 0; row--) {
763 		bool allow_overshoot = row < in->num_rows - 1;
764 		unsigned int out_start;
765 		unsigned int out_end;
766 		unsigned int in_top;
767 		unsigned int out_top;
768 
769 		/* Start within 1024 lines of the bottom edge */
770 		out_start = max_t(int, 0, out_bottom - 1024);
771 		/* End before having to add more rows above */
772 		out_end = min_t(unsigned int, out_bottom, row * 1024);
773 
774 		find_best_seam(ctx, out_start, out_end,
775 			       in_bottom, out_bottom,
776 			       in_top_align, out_top_align,
777 			       1, allow_overshoot ? 1 : out_height_align,
778 			       ctx->downsize_coeff_v, ctx->image_resize_coeff_v,
779 			       &in_top, &out_top);
780 
781 		if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
782 		    ipu_rot_mode_is_irt(ctx->rot_mode))
783 			flipped_out_top = resized_height - out_bottom;
784 		else
785 			flipped_out_top = out_top;
786 
787 		fill_tile_row(ctx, row, in, in_top, in_bottom - in_top,
788 			      out, flipped_out_top, out_bottom - out_top);
789 
790 		dev_dbg(dev, "%s: row %u: %u, %u -> %u, %u\n", __func__, row,
791 			in_top, in_bottom - in_top,
792 			flipped_out_top, out_bottom - out_top);
793 
794 		in_bottom = in_top;
795 		out_bottom = out_top;
796 	}
797 
798 	if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
799 	    ipu_rot_mode_is_irt(ctx->rot_mode))
800 		flipped_out_top = resized_height - out_bottom;
801 	else
802 		flipped_out_top = 0;
803 
804 	fill_tile_row(ctx, 0, in, 0, in_bottom,
805 		      out, flipped_out_top, out_bottom);
806 
807 	dev_dbg(dev, "%s: row 0: 0, %u -> %u, %u\n", __func__,
808 		in_bottom, flipped_out_top, out_bottom);
809 }
810 
811 static void calc_tile_dimensions(struct ipu_image_convert_ctx *ctx,
812 				 struct ipu_image_convert_image *image)
813 {
814 	struct ipu_image_convert_chan *chan = ctx->chan;
815 	struct ipu_image_convert_priv *priv = chan->priv;
816 	unsigned int i;
817 
818 	for (i = 0; i < ctx->num_tiles; i++) {
819 		struct ipu_image_tile *tile;
820 		const unsigned int row = i / image->num_cols;
821 		const unsigned int col = i % image->num_cols;
822 
823 		if (image->type == IMAGE_CONVERT_OUT)
824 			tile = &image->tile[ctx->out_tile_map[i]];
825 		else
826 			tile = &image->tile[i];
827 
828 		tile->size = ((tile->height * image->fmt->bpp) >> 3) *
829 			tile->width;
830 
831 		if (image->fmt->planar) {
832 			tile->stride = tile->width;
833 			tile->rot_stride = tile->height;
834 		} else {
835 			tile->stride =
836 				(image->fmt->bpp * tile->width) >> 3;
837 			tile->rot_stride =
838 				(image->fmt->bpp * tile->height) >> 3;
839 		}
840 
841 		dev_dbg(priv->ipu->dev,
842 			"task %u: ctx %p: %s@[%u,%u]: %ux%u@%u,%u\n",
843 			chan->ic_task, ctx,
844 			image->type == IMAGE_CONVERT_IN ? "Input" : "Output",
845 			row, col,
846 			tile->width, tile->height, tile->left, tile->top);
847 	}
848 }
849 
850 /*
851  * Use the rotation transformation to find the tile coordinates
852  * (row, col) of a tile in the destination frame that corresponds
853  * to the given tile coordinates of a source frame. The destination
854  * coordinate is then converted to a tile index.
855  */
856 static int transform_tile_index(struct ipu_image_convert_ctx *ctx,
857 				int src_row, int src_col)
858 {
859 	struct ipu_image_convert_chan *chan = ctx->chan;
860 	struct ipu_image_convert_priv *priv = chan->priv;
861 	struct ipu_image_convert_image *s_image = &ctx->in;
862 	struct ipu_image_convert_image *d_image = &ctx->out;
863 	int dst_row, dst_col;
864 
865 	/* with no rotation it's a 1:1 mapping */
866 	if (ctx->rot_mode == IPU_ROTATE_NONE)
867 		return src_row * s_image->num_cols + src_col;
868 
869 	/*
870 	 * before doing the transform, first we have to translate
871 	 * source row,col for an origin in the center of s_image
872 	 */
873 	src_row = src_row * 2 - (s_image->num_rows - 1);
874 	src_col = src_col * 2 - (s_image->num_cols - 1);
875 
876 	/* do the rotation transform */
877 	if (ctx->rot_mode & IPU_ROT_BIT_90) {
878 		dst_col = -src_row;
879 		dst_row = src_col;
880 	} else {
881 		dst_col = src_col;
882 		dst_row = src_row;
883 	}
884 
885 	/* apply flip */
886 	if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
887 		dst_col = -dst_col;
888 	if (ctx->rot_mode & IPU_ROT_BIT_VFLIP)
889 		dst_row = -dst_row;
890 
891 	dev_dbg(priv->ipu->dev, "task %u: ctx %p: [%d,%d] --> [%d,%d]\n",
892 		chan->ic_task, ctx, src_col, src_row, dst_col, dst_row);
893 
894 	/*
895 	 * finally translate dest row,col using an origin in upper
896 	 * left of d_image
897 	 */
898 	dst_row += d_image->num_rows - 1;
899 	dst_col += d_image->num_cols - 1;
900 	dst_row /= 2;
901 	dst_col /= 2;
902 
903 	return dst_row * d_image->num_cols + dst_col;
904 }
905 
906 /*
907  * Fill the out_tile_map[] with transformed destination tile indeces.
908  */
909 static void calc_out_tile_map(struct ipu_image_convert_ctx *ctx)
910 {
911 	struct ipu_image_convert_image *s_image = &ctx->in;
912 	unsigned int row, col, tile = 0;
913 
914 	for (row = 0; row < s_image->num_rows; row++) {
915 		for (col = 0; col < s_image->num_cols; col++) {
916 			ctx->out_tile_map[tile] =
917 				transform_tile_index(ctx, row, col);
918 			tile++;
919 		}
920 	}
921 }
922 
923 static int calc_tile_offsets_planar(struct ipu_image_convert_ctx *ctx,
924 				    struct ipu_image_convert_image *image)
925 {
926 	struct ipu_image_convert_chan *chan = ctx->chan;
927 	struct ipu_image_convert_priv *priv = chan->priv;
928 	const struct ipu_image_pixfmt *fmt = image->fmt;
929 	unsigned int row, col, tile = 0;
930 	u32 H, top, y_stride, uv_stride;
931 	u32 uv_row_off, uv_col_off, uv_off, u_off, v_off, tmp;
932 	u32 y_row_off, y_col_off, y_off;
933 	u32 y_size, uv_size;
934 
935 	/* setup some convenience vars */
936 	H = image->base.pix.height;
937 
938 	y_stride = image->stride;
939 	uv_stride = y_stride / fmt->uv_width_dec;
940 	if (fmt->uv_packed)
941 		uv_stride *= 2;
942 
943 	y_size = H * y_stride;
944 	uv_size = y_size / (fmt->uv_width_dec * fmt->uv_height_dec);
945 
946 	for (row = 0; row < image->num_rows; row++) {
947 		top = image->tile[tile].top;
948 		y_row_off = top * y_stride;
949 		uv_row_off = (top * uv_stride) / fmt->uv_height_dec;
950 
951 		for (col = 0; col < image->num_cols; col++) {
952 			y_col_off = image->tile[tile].left;
953 			uv_col_off = y_col_off / fmt->uv_width_dec;
954 			if (fmt->uv_packed)
955 				uv_col_off *= 2;
956 
957 			y_off = y_row_off + y_col_off;
958 			uv_off = uv_row_off + uv_col_off;
959 
960 			u_off = y_size - y_off + uv_off;
961 			v_off = (fmt->uv_packed) ? 0 : u_off + uv_size;
962 			if (fmt->uv_swapped) {
963 				tmp = u_off;
964 				u_off = v_off;
965 				v_off = tmp;
966 			}
967 
968 			image->tile[tile].offset = y_off;
969 			image->tile[tile].u_off = u_off;
970 			image->tile[tile++].v_off = v_off;
971 
972 			if ((y_off & 0x7) || (u_off & 0x7) || (v_off & 0x7)) {
973 				dev_err(priv->ipu->dev,
974 					"task %u: ctx %p: %s@[%d,%d]: "
975 					"y_off %08x, u_off %08x, v_off %08x\n",
976 					chan->ic_task, ctx,
977 					image->type == IMAGE_CONVERT_IN ?
978 					"Input" : "Output", row, col,
979 					y_off, u_off, v_off);
980 				return -EINVAL;
981 			}
982 		}
983 	}
984 
985 	return 0;
986 }
987 
988 static int calc_tile_offsets_packed(struct ipu_image_convert_ctx *ctx,
989 				    struct ipu_image_convert_image *image)
990 {
991 	struct ipu_image_convert_chan *chan = ctx->chan;
992 	struct ipu_image_convert_priv *priv = chan->priv;
993 	const struct ipu_image_pixfmt *fmt = image->fmt;
994 	unsigned int row, col, tile = 0;
995 	u32 bpp, stride, offset;
996 	u32 row_off, col_off;
997 
998 	/* setup some convenience vars */
999 	stride = image->stride;
1000 	bpp = fmt->bpp;
1001 
1002 	for (row = 0; row < image->num_rows; row++) {
1003 		row_off = image->tile[tile].top * stride;
1004 
1005 		for (col = 0; col < image->num_cols; col++) {
1006 			col_off = (image->tile[tile].left * bpp) >> 3;
1007 
1008 			offset = row_off + col_off;
1009 
1010 			image->tile[tile].offset = offset;
1011 			image->tile[tile].u_off = 0;
1012 			image->tile[tile++].v_off = 0;
1013 
1014 			if (offset & 0x7) {
1015 				dev_err(priv->ipu->dev,
1016 					"task %u: ctx %p: %s@[%d,%d]: "
1017 					"phys %08x\n",
1018 					chan->ic_task, ctx,
1019 					image->type == IMAGE_CONVERT_IN ?
1020 					"Input" : "Output", row, col,
1021 					row_off + col_off);
1022 				return -EINVAL;
1023 			}
1024 		}
1025 	}
1026 
1027 	return 0;
1028 }
1029 
1030 static int calc_tile_offsets(struct ipu_image_convert_ctx *ctx,
1031 			      struct ipu_image_convert_image *image)
1032 {
1033 	if (image->fmt->planar)
1034 		return calc_tile_offsets_planar(ctx, image);
1035 
1036 	return calc_tile_offsets_packed(ctx, image);
1037 }
1038 
1039 /*
1040  * Calculate the resizing ratio for the IC main processing section given input
1041  * size, fixed downsizing coefficient, and output size.
1042  * Either round to closest for the next tile's first pixel to minimize seams
1043  * and distortion (for all but right column / bottom row), or round down to
1044  * avoid sampling beyond the edges of the input image for this tile's last
1045  * pixel.
1046  * Returns the resizing coefficient, resizing ratio is 8192.0 / resize_coeff.
1047  */
1048 static u32 calc_resize_coeff(u32 input_size, u32 downsize_coeff,
1049 			     u32 output_size, bool allow_overshoot)
1050 {
1051 	u32 downsized = input_size >> downsize_coeff;
1052 
1053 	if (allow_overshoot)
1054 		return DIV_ROUND_CLOSEST(8192 * downsized, output_size);
1055 	else
1056 		return 8192 * (downsized - 1) / (output_size - 1);
1057 }
1058 
1059 /*
1060  * Slightly modify resize coefficients per tile to hide the bilinear
1061  * interpolator reset at tile borders, shifting the right / bottom edge
1062  * by up to a half input pixel. This removes noticeable seams between
1063  * tiles at higher upscaling factors.
1064  */
1065 static void calc_tile_resize_coefficients(struct ipu_image_convert_ctx *ctx)
1066 {
1067 	struct ipu_image_convert_chan *chan = ctx->chan;
1068 	struct ipu_image_convert_priv *priv = chan->priv;
1069 	struct ipu_image_tile *in_tile, *out_tile;
1070 	unsigned int col, row, tile_idx;
1071 	unsigned int last_output;
1072 
1073 	for (col = 0; col < ctx->in.num_cols; col++) {
1074 		bool closest = (col < ctx->in.num_cols - 1) &&
1075 			       !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
1076 		u32 resized_width;
1077 		u32 resize_coeff_h;
1078 
1079 		tile_idx = col;
1080 		in_tile = &ctx->in.tile[tile_idx];
1081 		out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1082 
1083 		if (ipu_rot_mode_is_irt(ctx->rot_mode))
1084 			resized_width = out_tile->height;
1085 		else
1086 			resized_width = out_tile->width;
1087 
1088 		resize_coeff_h = calc_resize_coeff(in_tile->width,
1089 						   ctx->downsize_coeff_h,
1090 						   resized_width, closest);
1091 
1092 		dev_dbg(priv->ipu->dev, "%s: column %u hscale: *8192/%u\n",
1093 			__func__, col, resize_coeff_h);
1094 
1095 
1096 		for (row = 0; row < ctx->in.num_rows; row++) {
1097 			tile_idx = row * ctx->in.num_cols + col;
1098 			in_tile = &ctx->in.tile[tile_idx];
1099 			out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1100 
1101 			/*
1102 			 * With the horizontal scaling factor known, round up
1103 			 * resized width (output width or height) to burst size.
1104 			 */
1105 			if (ipu_rot_mode_is_irt(ctx->rot_mode))
1106 				out_tile->height = round_up(resized_width, 8);
1107 			else
1108 				out_tile->width = round_up(resized_width, 8);
1109 
1110 			/*
1111 			 * Calculate input width from the last accessed input
1112 			 * pixel given resized width and scaling coefficients.
1113 			 * Round up to burst size.
1114 			 */
1115 			last_output = round_up(resized_width, 8) - 1;
1116 			if (closest)
1117 				last_output++;
1118 			in_tile->width = round_up(
1119 				(DIV_ROUND_UP(last_output * resize_coeff_h,
1120 					      8192) + 1)
1121 				<< ctx->downsize_coeff_h, 8);
1122 		}
1123 
1124 		ctx->resize_coeffs_h[col] = resize_coeff_h;
1125 	}
1126 
1127 	for (row = 0; row < ctx->in.num_rows; row++) {
1128 		bool closest = (row < ctx->in.num_rows - 1) &&
1129 			       !(ctx->rot_mode & IPU_ROT_BIT_VFLIP);
1130 		u32 resized_height;
1131 		u32 resize_coeff_v;
1132 
1133 		tile_idx = row * ctx->in.num_cols;
1134 		in_tile = &ctx->in.tile[tile_idx];
1135 		out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1136 
1137 		if (ipu_rot_mode_is_irt(ctx->rot_mode))
1138 			resized_height = out_tile->width;
1139 		else
1140 			resized_height = out_tile->height;
1141 
1142 		resize_coeff_v = calc_resize_coeff(in_tile->height,
1143 						   ctx->downsize_coeff_v,
1144 						   resized_height, closest);
1145 
1146 		dev_dbg(priv->ipu->dev, "%s: row %u vscale: *8192/%u\n",
1147 			__func__, row, resize_coeff_v);
1148 
1149 		for (col = 0; col < ctx->in.num_cols; col++) {
1150 			tile_idx = row * ctx->in.num_cols + col;
1151 			in_tile = &ctx->in.tile[tile_idx];
1152 			out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1153 
1154 			/*
1155 			 * With the vertical scaling factor known, round up
1156 			 * resized height (output width or height) to IDMAC
1157 			 * limitations.
1158 			 */
1159 			if (ipu_rot_mode_is_irt(ctx->rot_mode))
1160 				out_tile->width = round_up(resized_height, 2);
1161 			else
1162 				out_tile->height = round_up(resized_height, 2);
1163 
1164 			/*
1165 			 * Calculate input width from the last accessed input
1166 			 * pixel given resized height and scaling coefficients.
1167 			 * Align to IDMAC restrictions.
1168 			 */
1169 			last_output = round_up(resized_height, 2) - 1;
1170 			if (closest)
1171 				last_output++;
1172 			in_tile->height = round_up(
1173 				(DIV_ROUND_UP(last_output * resize_coeff_v,
1174 					      8192) + 1)
1175 				<< ctx->downsize_coeff_v, 2);
1176 		}
1177 
1178 		ctx->resize_coeffs_v[row] = resize_coeff_v;
1179 	}
1180 }
1181 
1182 /*
1183  * return the number of runs in given queue (pending_q or done_q)
1184  * for this context. hold irqlock when calling.
1185  */
1186 static int get_run_count(struct ipu_image_convert_ctx *ctx,
1187 			 struct list_head *q)
1188 {
1189 	struct ipu_image_convert_run *run;
1190 	int count = 0;
1191 
1192 	lockdep_assert_held(&ctx->chan->irqlock);
1193 
1194 	list_for_each_entry(run, q, list) {
1195 		if (run->ctx == ctx)
1196 			count++;
1197 	}
1198 
1199 	return count;
1200 }
1201 
1202 static void convert_stop(struct ipu_image_convert_run *run)
1203 {
1204 	struct ipu_image_convert_ctx *ctx = run->ctx;
1205 	struct ipu_image_convert_chan *chan = ctx->chan;
1206 	struct ipu_image_convert_priv *priv = chan->priv;
1207 
1208 	dev_dbg(priv->ipu->dev, "%s: task %u: stopping ctx %p run %p\n",
1209 		__func__, chan->ic_task, ctx, run);
1210 
1211 	/* disable IC tasks and the channels */
1212 	ipu_ic_task_disable(chan->ic);
1213 	ipu_idmac_disable_channel(chan->in_chan);
1214 	ipu_idmac_disable_channel(chan->out_chan);
1215 
1216 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1217 		ipu_idmac_disable_channel(chan->rotation_in_chan);
1218 		ipu_idmac_disable_channel(chan->rotation_out_chan);
1219 		ipu_idmac_unlink(chan->out_chan, chan->rotation_in_chan);
1220 	}
1221 
1222 	ipu_ic_disable(chan->ic);
1223 }
1224 
1225 static void init_idmac_channel(struct ipu_image_convert_ctx *ctx,
1226 			       struct ipuv3_channel *channel,
1227 			       struct ipu_image_convert_image *image,
1228 			       enum ipu_rotate_mode rot_mode,
1229 			       bool rot_swap_width_height,
1230 			       unsigned int tile)
1231 {
1232 	struct ipu_image_convert_chan *chan = ctx->chan;
1233 	unsigned int burst_size;
1234 	u32 width, height, stride;
1235 	dma_addr_t addr0, addr1 = 0;
1236 	struct ipu_image tile_image;
1237 	unsigned int tile_idx[2];
1238 
1239 	if (image->type == IMAGE_CONVERT_OUT) {
1240 		tile_idx[0] = ctx->out_tile_map[tile];
1241 		tile_idx[1] = ctx->out_tile_map[1];
1242 	} else {
1243 		tile_idx[0] = tile;
1244 		tile_idx[1] = 1;
1245 	}
1246 
1247 	if (rot_swap_width_height) {
1248 		width = image->tile[tile_idx[0]].height;
1249 		height = image->tile[tile_idx[0]].width;
1250 		stride = image->tile[tile_idx[0]].rot_stride;
1251 		addr0 = ctx->rot_intermediate[0].phys;
1252 		if (ctx->double_buffering)
1253 			addr1 = ctx->rot_intermediate[1].phys;
1254 	} else {
1255 		width = image->tile[tile_idx[0]].width;
1256 		height = image->tile[tile_idx[0]].height;
1257 		stride = image->stride;
1258 		addr0 = image->base.phys0 +
1259 			image->tile[tile_idx[0]].offset;
1260 		if (ctx->double_buffering)
1261 			addr1 = image->base.phys0 +
1262 				image->tile[tile_idx[1]].offset;
1263 	}
1264 
1265 	ipu_cpmem_zero(channel);
1266 
1267 	memset(&tile_image, 0, sizeof(tile_image));
1268 	tile_image.pix.width = tile_image.rect.width = width;
1269 	tile_image.pix.height = tile_image.rect.height = height;
1270 	tile_image.pix.bytesperline = stride;
1271 	tile_image.pix.pixelformat =  image->fmt->fourcc;
1272 	tile_image.phys0 = addr0;
1273 	tile_image.phys1 = addr1;
1274 	if (image->fmt->planar && !rot_swap_width_height) {
1275 		tile_image.u_offset = image->tile[tile_idx[0]].u_off;
1276 		tile_image.v_offset = image->tile[tile_idx[0]].v_off;
1277 	}
1278 
1279 	ipu_cpmem_set_image(channel, &tile_image);
1280 
1281 	if (rot_mode)
1282 		ipu_cpmem_set_rotation(channel, rot_mode);
1283 
1284 	if (channel == chan->rotation_in_chan ||
1285 	    channel == chan->rotation_out_chan) {
1286 		burst_size = 8;
1287 		ipu_cpmem_set_block_mode(channel);
1288 	} else
1289 		burst_size = (width % 16) ? 8 : 16;
1290 
1291 	ipu_cpmem_set_burstsize(channel, burst_size);
1292 
1293 	ipu_ic_task_idma_init(chan->ic, channel, width, height,
1294 			      burst_size, rot_mode);
1295 
1296 	/*
1297 	 * Setting a non-zero AXI ID collides with the PRG AXI snooping, so
1298 	 * only do this when there is no PRG present.
1299 	 */
1300 	if (!channel->ipu->prg_priv)
1301 		ipu_cpmem_set_axi_id(channel, 1);
1302 
1303 	ipu_idmac_set_double_buffer(channel, ctx->double_buffering);
1304 }
1305 
1306 static int convert_start(struct ipu_image_convert_run *run, unsigned int tile)
1307 {
1308 	struct ipu_image_convert_ctx *ctx = run->ctx;
1309 	struct ipu_image_convert_chan *chan = ctx->chan;
1310 	struct ipu_image_convert_priv *priv = chan->priv;
1311 	struct ipu_image_convert_image *s_image = &ctx->in;
1312 	struct ipu_image_convert_image *d_image = &ctx->out;
1313 	enum ipu_color_space src_cs, dest_cs;
1314 	unsigned int dst_tile = ctx->out_tile_map[tile];
1315 	unsigned int dest_width, dest_height;
1316 	unsigned int col, row;
1317 	u32 rsc;
1318 	int ret;
1319 
1320 	dev_dbg(priv->ipu->dev, "%s: task %u: starting ctx %p run %p tile %u -> %u\n",
1321 		__func__, chan->ic_task, ctx, run, tile, dst_tile);
1322 
1323 	src_cs = ipu_pixelformat_to_colorspace(s_image->fmt->fourcc);
1324 	dest_cs = ipu_pixelformat_to_colorspace(d_image->fmt->fourcc);
1325 
1326 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1327 		/* swap width/height for resizer */
1328 		dest_width = d_image->tile[dst_tile].height;
1329 		dest_height = d_image->tile[dst_tile].width;
1330 	} else {
1331 		dest_width = d_image->tile[dst_tile].width;
1332 		dest_height = d_image->tile[dst_tile].height;
1333 	}
1334 
1335 	row = tile / s_image->num_cols;
1336 	col = tile % s_image->num_cols;
1337 
1338 	rsc =  (ctx->downsize_coeff_v << 30) |
1339 	       (ctx->resize_coeffs_v[row] << 16) |
1340 	       (ctx->downsize_coeff_h << 14) |
1341 	       (ctx->resize_coeffs_h[col]);
1342 
1343 	dev_dbg(priv->ipu->dev, "%s: %ux%u -> %ux%u (rsc = 0x%x)\n",
1344 		__func__, s_image->tile[tile].width,
1345 		s_image->tile[tile].height, dest_width, dest_height, rsc);
1346 
1347 	/* setup the IC resizer and CSC */
1348 	ret = ipu_ic_task_init_rsc(chan->ic,
1349 			       s_image->tile[tile].width,
1350 			       s_image->tile[tile].height,
1351 			       dest_width,
1352 			       dest_height,
1353 			       src_cs, dest_cs,
1354 			       rsc);
1355 	if (ret) {
1356 		dev_err(priv->ipu->dev, "ipu_ic_task_init failed, %d\n", ret);
1357 		return ret;
1358 	}
1359 
1360 	/* init the source MEM-->IC PP IDMAC channel */
1361 	init_idmac_channel(ctx, chan->in_chan, s_image,
1362 			   IPU_ROTATE_NONE, false, tile);
1363 
1364 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1365 		/* init the IC PP-->MEM IDMAC channel */
1366 		init_idmac_channel(ctx, chan->out_chan, d_image,
1367 				   IPU_ROTATE_NONE, true, tile);
1368 
1369 		/* init the MEM-->IC PP ROT IDMAC channel */
1370 		init_idmac_channel(ctx, chan->rotation_in_chan, d_image,
1371 				   ctx->rot_mode, true, tile);
1372 
1373 		/* init the destination IC PP ROT-->MEM IDMAC channel */
1374 		init_idmac_channel(ctx, chan->rotation_out_chan, d_image,
1375 				   IPU_ROTATE_NONE, false, tile);
1376 
1377 		/* now link IC PP-->MEM to MEM-->IC PP ROT */
1378 		ipu_idmac_link(chan->out_chan, chan->rotation_in_chan);
1379 	} else {
1380 		/* init the destination IC PP-->MEM IDMAC channel */
1381 		init_idmac_channel(ctx, chan->out_chan, d_image,
1382 				   ctx->rot_mode, false, tile);
1383 	}
1384 
1385 	/* enable the IC */
1386 	ipu_ic_enable(chan->ic);
1387 
1388 	/* set buffers ready */
1389 	ipu_idmac_select_buffer(chan->in_chan, 0);
1390 	ipu_idmac_select_buffer(chan->out_chan, 0);
1391 	if (ipu_rot_mode_is_irt(ctx->rot_mode))
1392 		ipu_idmac_select_buffer(chan->rotation_out_chan, 0);
1393 	if (ctx->double_buffering) {
1394 		ipu_idmac_select_buffer(chan->in_chan, 1);
1395 		ipu_idmac_select_buffer(chan->out_chan, 1);
1396 		if (ipu_rot_mode_is_irt(ctx->rot_mode))
1397 			ipu_idmac_select_buffer(chan->rotation_out_chan, 1);
1398 	}
1399 
1400 	/* enable the channels! */
1401 	ipu_idmac_enable_channel(chan->in_chan);
1402 	ipu_idmac_enable_channel(chan->out_chan);
1403 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1404 		ipu_idmac_enable_channel(chan->rotation_in_chan);
1405 		ipu_idmac_enable_channel(chan->rotation_out_chan);
1406 	}
1407 
1408 	ipu_ic_task_enable(chan->ic);
1409 
1410 	ipu_cpmem_dump(chan->in_chan);
1411 	ipu_cpmem_dump(chan->out_chan);
1412 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1413 		ipu_cpmem_dump(chan->rotation_in_chan);
1414 		ipu_cpmem_dump(chan->rotation_out_chan);
1415 	}
1416 
1417 	ipu_dump(priv->ipu);
1418 
1419 	return 0;
1420 }
1421 
1422 /* hold irqlock when calling */
1423 static int do_run(struct ipu_image_convert_run *run)
1424 {
1425 	struct ipu_image_convert_ctx *ctx = run->ctx;
1426 	struct ipu_image_convert_chan *chan = ctx->chan;
1427 
1428 	lockdep_assert_held(&chan->irqlock);
1429 
1430 	ctx->in.base.phys0 = run->in_phys;
1431 	ctx->out.base.phys0 = run->out_phys;
1432 
1433 	ctx->cur_buf_num = 0;
1434 	ctx->next_tile = 1;
1435 
1436 	/* remove run from pending_q and set as current */
1437 	list_del(&run->list);
1438 	chan->current_run = run;
1439 
1440 	return convert_start(run, 0);
1441 }
1442 
1443 /* hold irqlock when calling */
1444 static void run_next(struct ipu_image_convert_chan *chan)
1445 {
1446 	struct ipu_image_convert_priv *priv = chan->priv;
1447 	struct ipu_image_convert_run *run, *tmp;
1448 	int ret;
1449 
1450 	lockdep_assert_held(&chan->irqlock);
1451 
1452 	list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
1453 		/* skip contexts that are aborting */
1454 		if (run->ctx->aborting) {
1455 			dev_dbg(priv->ipu->dev,
1456 				"%s: task %u: skipping aborting ctx %p run %p\n",
1457 				__func__, chan->ic_task, run->ctx, run);
1458 			continue;
1459 		}
1460 
1461 		ret = do_run(run);
1462 		if (!ret)
1463 			break;
1464 
1465 		/*
1466 		 * something went wrong with start, add the run
1467 		 * to done q and continue to the next run in the
1468 		 * pending q.
1469 		 */
1470 		run->status = ret;
1471 		list_add_tail(&run->list, &chan->done_q);
1472 		chan->current_run = NULL;
1473 	}
1474 }
1475 
1476 static void empty_done_q(struct ipu_image_convert_chan *chan)
1477 {
1478 	struct ipu_image_convert_priv *priv = chan->priv;
1479 	struct ipu_image_convert_run *run;
1480 	unsigned long flags;
1481 
1482 	spin_lock_irqsave(&chan->irqlock, flags);
1483 
1484 	while (!list_empty(&chan->done_q)) {
1485 		run = list_entry(chan->done_q.next,
1486 				 struct ipu_image_convert_run,
1487 				 list);
1488 
1489 		list_del(&run->list);
1490 
1491 		dev_dbg(priv->ipu->dev,
1492 			"%s: task %u: completing ctx %p run %p with %d\n",
1493 			__func__, chan->ic_task, run->ctx, run, run->status);
1494 
1495 		/* call the completion callback and free the run */
1496 		spin_unlock_irqrestore(&chan->irqlock, flags);
1497 		run->ctx->complete(run, run->ctx->complete_context);
1498 		spin_lock_irqsave(&chan->irqlock, flags);
1499 	}
1500 
1501 	spin_unlock_irqrestore(&chan->irqlock, flags);
1502 }
1503 
1504 /*
1505  * the bottom half thread clears out the done_q, calling the
1506  * completion handler for each.
1507  */
1508 static irqreturn_t do_bh(int irq, void *dev_id)
1509 {
1510 	struct ipu_image_convert_chan *chan = dev_id;
1511 	struct ipu_image_convert_priv *priv = chan->priv;
1512 	struct ipu_image_convert_ctx *ctx;
1513 	unsigned long flags;
1514 
1515 	dev_dbg(priv->ipu->dev, "%s: task %u: enter\n", __func__,
1516 		chan->ic_task);
1517 
1518 	empty_done_q(chan);
1519 
1520 	spin_lock_irqsave(&chan->irqlock, flags);
1521 
1522 	/*
1523 	 * the done_q is cleared out, signal any contexts
1524 	 * that are aborting that abort can complete.
1525 	 */
1526 	list_for_each_entry(ctx, &chan->ctx_list, list) {
1527 		if (ctx->aborting) {
1528 			dev_dbg(priv->ipu->dev,
1529 				"%s: task %u: signaling abort for ctx %p\n",
1530 				__func__, chan->ic_task, ctx);
1531 			complete_all(&ctx->aborted);
1532 		}
1533 	}
1534 
1535 	spin_unlock_irqrestore(&chan->irqlock, flags);
1536 
1537 	dev_dbg(priv->ipu->dev, "%s: task %u: exit\n", __func__,
1538 		chan->ic_task);
1539 
1540 	return IRQ_HANDLED;
1541 }
1542 
1543 static bool ic_settings_changed(struct ipu_image_convert_ctx *ctx)
1544 {
1545 	unsigned int cur_tile = ctx->next_tile - 1;
1546 	unsigned int next_tile = ctx->next_tile;
1547 
1548 	if (ctx->resize_coeffs_h[cur_tile % ctx->in.num_cols] !=
1549 	    ctx->resize_coeffs_h[next_tile % ctx->in.num_cols] ||
1550 	    ctx->resize_coeffs_v[cur_tile / ctx->in.num_cols] !=
1551 	    ctx->resize_coeffs_v[next_tile / ctx->in.num_cols] ||
1552 	    ctx->in.tile[cur_tile].width != ctx->in.tile[next_tile].width ||
1553 	    ctx->in.tile[cur_tile].height != ctx->in.tile[next_tile].height ||
1554 	    ctx->out.tile[cur_tile].width != ctx->out.tile[next_tile].width ||
1555 	    ctx->out.tile[cur_tile].height != ctx->out.tile[next_tile].height)
1556 		return true;
1557 
1558 	return false;
1559 }
1560 
1561 /* hold irqlock when calling */
1562 static irqreturn_t do_irq(struct ipu_image_convert_run *run)
1563 {
1564 	struct ipu_image_convert_ctx *ctx = run->ctx;
1565 	struct ipu_image_convert_chan *chan = ctx->chan;
1566 	struct ipu_image_tile *src_tile, *dst_tile;
1567 	struct ipu_image_convert_image *s_image = &ctx->in;
1568 	struct ipu_image_convert_image *d_image = &ctx->out;
1569 	struct ipuv3_channel *outch;
1570 	unsigned int dst_idx;
1571 
1572 	lockdep_assert_held(&chan->irqlock);
1573 
1574 	outch = ipu_rot_mode_is_irt(ctx->rot_mode) ?
1575 		chan->rotation_out_chan : chan->out_chan;
1576 
1577 	/*
1578 	 * It is difficult to stop the channel DMA before the channels
1579 	 * enter the paused state. Without double-buffering the channels
1580 	 * are always in a paused state when the EOF irq occurs, so it
1581 	 * is safe to stop the channels now. For double-buffering we
1582 	 * just ignore the abort until the operation completes, when it
1583 	 * is safe to shut down.
1584 	 */
1585 	if (ctx->aborting && !ctx->double_buffering) {
1586 		convert_stop(run);
1587 		run->status = -EIO;
1588 		goto done;
1589 	}
1590 
1591 	if (ctx->next_tile == ctx->num_tiles) {
1592 		/*
1593 		 * the conversion is complete
1594 		 */
1595 		convert_stop(run);
1596 		run->status = 0;
1597 		goto done;
1598 	}
1599 
1600 	/*
1601 	 * not done, place the next tile buffers.
1602 	 */
1603 	if (!ctx->double_buffering) {
1604 		if (ic_settings_changed(ctx)) {
1605 			convert_stop(run);
1606 			convert_start(run, ctx->next_tile);
1607 		} else {
1608 			src_tile = &s_image->tile[ctx->next_tile];
1609 			dst_idx = ctx->out_tile_map[ctx->next_tile];
1610 			dst_tile = &d_image->tile[dst_idx];
1611 
1612 			ipu_cpmem_set_buffer(chan->in_chan, 0,
1613 					     s_image->base.phys0 +
1614 					     src_tile->offset);
1615 			ipu_cpmem_set_buffer(outch, 0,
1616 					     d_image->base.phys0 +
1617 					     dst_tile->offset);
1618 			if (s_image->fmt->planar)
1619 				ipu_cpmem_set_uv_offset(chan->in_chan,
1620 							src_tile->u_off,
1621 							src_tile->v_off);
1622 			if (d_image->fmt->planar)
1623 				ipu_cpmem_set_uv_offset(outch,
1624 							dst_tile->u_off,
1625 							dst_tile->v_off);
1626 
1627 			ipu_idmac_select_buffer(chan->in_chan, 0);
1628 			ipu_idmac_select_buffer(outch, 0);
1629 		}
1630 	} else if (ctx->next_tile < ctx->num_tiles - 1) {
1631 
1632 		src_tile = &s_image->tile[ctx->next_tile + 1];
1633 		dst_idx = ctx->out_tile_map[ctx->next_tile + 1];
1634 		dst_tile = &d_image->tile[dst_idx];
1635 
1636 		ipu_cpmem_set_buffer(chan->in_chan, ctx->cur_buf_num,
1637 				     s_image->base.phys0 + src_tile->offset);
1638 		ipu_cpmem_set_buffer(outch, ctx->cur_buf_num,
1639 				     d_image->base.phys0 + dst_tile->offset);
1640 
1641 		ipu_idmac_select_buffer(chan->in_chan, ctx->cur_buf_num);
1642 		ipu_idmac_select_buffer(outch, ctx->cur_buf_num);
1643 
1644 		ctx->cur_buf_num ^= 1;
1645 	}
1646 
1647 	ctx->next_tile++;
1648 	return IRQ_HANDLED;
1649 done:
1650 	list_add_tail(&run->list, &chan->done_q);
1651 	chan->current_run = NULL;
1652 	run_next(chan);
1653 	return IRQ_WAKE_THREAD;
1654 }
1655 
1656 static irqreturn_t norotate_irq(int irq, void *data)
1657 {
1658 	struct ipu_image_convert_chan *chan = data;
1659 	struct ipu_image_convert_ctx *ctx;
1660 	struct ipu_image_convert_run *run;
1661 	unsigned long flags;
1662 	irqreturn_t ret;
1663 
1664 	spin_lock_irqsave(&chan->irqlock, flags);
1665 
1666 	/* get current run and its context */
1667 	run = chan->current_run;
1668 	if (!run) {
1669 		ret = IRQ_NONE;
1670 		goto out;
1671 	}
1672 
1673 	ctx = run->ctx;
1674 
1675 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1676 		/* this is a rotation operation, just ignore */
1677 		spin_unlock_irqrestore(&chan->irqlock, flags);
1678 		return IRQ_HANDLED;
1679 	}
1680 
1681 	ret = do_irq(run);
1682 out:
1683 	spin_unlock_irqrestore(&chan->irqlock, flags);
1684 	return ret;
1685 }
1686 
1687 static irqreturn_t rotate_irq(int irq, void *data)
1688 {
1689 	struct ipu_image_convert_chan *chan = data;
1690 	struct ipu_image_convert_priv *priv = chan->priv;
1691 	struct ipu_image_convert_ctx *ctx;
1692 	struct ipu_image_convert_run *run;
1693 	unsigned long flags;
1694 	irqreturn_t ret;
1695 
1696 	spin_lock_irqsave(&chan->irqlock, flags);
1697 
1698 	/* get current run and its context */
1699 	run = chan->current_run;
1700 	if (!run) {
1701 		ret = IRQ_NONE;
1702 		goto out;
1703 	}
1704 
1705 	ctx = run->ctx;
1706 
1707 	if (!ipu_rot_mode_is_irt(ctx->rot_mode)) {
1708 		/* this was NOT a rotation operation, shouldn't happen */
1709 		dev_err(priv->ipu->dev, "Unexpected rotation interrupt\n");
1710 		spin_unlock_irqrestore(&chan->irqlock, flags);
1711 		return IRQ_HANDLED;
1712 	}
1713 
1714 	ret = do_irq(run);
1715 out:
1716 	spin_unlock_irqrestore(&chan->irqlock, flags);
1717 	return ret;
1718 }
1719 
1720 /*
1721  * try to force the completion of runs for this ctx. Called when
1722  * abort wait times out in ipu_image_convert_abort().
1723  */
1724 static void force_abort(struct ipu_image_convert_ctx *ctx)
1725 {
1726 	struct ipu_image_convert_chan *chan = ctx->chan;
1727 	struct ipu_image_convert_run *run;
1728 	unsigned long flags;
1729 
1730 	spin_lock_irqsave(&chan->irqlock, flags);
1731 
1732 	run = chan->current_run;
1733 	if (run && run->ctx == ctx) {
1734 		convert_stop(run);
1735 		run->status = -EIO;
1736 		list_add_tail(&run->list, &chan->done_q);
1737 		chan->current_run = NULL;
1738 		run_next(chan);
1739 	}
1740 
1741 	spin_unlock_irqrestore(&chan->irqlock, flags);
1742 
1743 	empty_done_q(chan);
1744 }
1745 
1746 static void release_ipu_resources(struct ipu_image_convert_chan *chan)
1747 {
1748 	if (chan->out_eof_irq >= 0)
1749 		free_irq(chan->out_eof_irq, chan);
1750 	if (chan->rot_out_eof_irq >= 0)
1751 		free_irq(chan->rot_out_eof_irq, chan);
1752 
1753 	if (!IS_ERR_OR_NULL(chan->in_chan))
1754 		ipu_idmac_put(chan->in_chan);
1755 	if (!IS_ERR_OR_NULL(chan->out_chan))
1756 		ipu_idmac_put(chan->out_chan);
1757 	if (!IS_ERR_OR_NULL(chan->rotation_in_chan))
1758 		ipu_idmac_put(chan->rotation_in_chan);
1759 	if (!IS_ERR_OR_NULL(chan->rotation_out_chan))
1760 		ipu_idmac_put(chan->rotation_out_chan);
1761 	if (!IS_ERR_OR_NULL(chan->ic))
1762 		ipu_ic_put(chan->ic);
1763 
1764 	chan->in_chan = chan->out_chan = chan->rotation_in_chan =
1765 		chan->rotation_out_chan = NULL;
1766 	chan->out_eof_irq = chan->rot_out_eof_irq = -1;
1767 }
1768 
1769 static int get_ipu_resources(struct ipu_image_convert_chan *chan)
1770 {
1771 	const struct ipu_image_convert_dma_chan *dma = chan->dma_ch;
1772 	struct ipu_image_convert_priv *priv = chan->priv;
1773 	int ret;
1774 
1775 	/* get IC */
1776 	chan->ic = ipu_ic_get(priv->ipu, chan->ic_task);
1777 	if (IS_ERR(chan->ic)) {
1778 		dev_err(priv->ipu->dev, "could not acquire IC\n");
1779 		ret = PTR_ERR(chan->ic);
1780 		goto err;
1781 	}
1782 
1783 	/* get IDMAC channels */
1784 	chan->in_chan = ipu_idmac_get(priv->ipu, dma->in);
1785 	chan->out_chan = ipu_idmac_get(priv->ipu, dma->out);
1786 	if (IS_ERR(chan->in_chan) || IS_ERR(chan->out_chan)) {
1787 		dev_err(priv->ipu->dev, "could not acquire idmac channels\n");
1788 		ret = -EBUSY;
1789 		goto err;
1790 	}
1791 
1792 	chan->rotation_in_chan = ipu_idmac_get(priv->ipu, dma->rot_in);
1793 	chan->rotation_out_chan = ipu_idmac_get(priv->ipu, dma->rot_out);
1794 	if (IS_ERR(chan->rotation_in_chan) || IS_ERR(chan->rotation_out_chan)) {
1795 		dev_err(priv->ipu->dev,
1796 			"could not acquire idmac rotation channels\n");
1797 		ret = -EBUSY;
1798 		goto err;
1799 	}
1800 
1801 	/* acquire the EOF interrupts */
1802 	chan->out_eof_irq = ipu_idmac_channel_irq(priv->ipu,
1803 						  chan->out_chan,
1804 						  IPU_IRQ_EOF);
1805 
1806 	ret = request_threaded_irq(chan->out_eof_irq, norotate_irq, do_bh,
1807 				   0, "ipu-ic", chan);
1808 	if (ret < 0) {
1809 		dev_err(priv->ipu->dev, "could not acquire irq %d\n",
1810 			 chan->out_eof_irq);
1811 		chan->out_eof_irq = -1;
1812 		goto err;
1813 	}
1814 
1815 	chan->rot_out_eof_irq = ipu_idmac_channel_irq(priv->ipu,
1816 						     chan->rotation_out_chan,
1817 						     IPU_IRQ_EOF);
1818 
1819 	ret = request_threaded_irq(chan->rot_out_eof_irq, rotate_irq, do_bh,
1820 				   0, "ipu-ic", chan);
1821 	if (ret < 0) {
1822 		dev_err(priv->ipu->dev, "could not acquire irq %d\n",
1823 			chan->rot_out_eof_irq);
1824 		chan->rot_out_eof_irq = -1;
1825 		goto err;
1826 	}
1827 
1828 	return 0;
1829 err:
1830 	release_ipu_resources(chan);
1831 	return ret;
1832 }
1833 
1834 static int fill_image(struct ipu_image_convert_ctx *ctx,
1835 		      struct ipu_image_convert_image *ic_image,
1836 		      struct ipu_image *image,
1837 		      enum ipu_image_convert_type type)
1838 {
1839 	struct ipu_image_convert_priv *priv = ctx->chan->priv;
1840 
1841 	ic_image->base = *image;
1842 	ic_image->type = type;
1843 
1844 	ic_image->fmt = get_format(image->pix.pixelformat);
1845 	if (!ic_image->fmt) {
1846 		dev_err(priv->ipu->dev, "pixelformat not supported for %s\n",
1847 			type == IMAGE_CONVERT_OUT ? "Output" : "Input");
1848 		return -EINVAL;
1849 	}
1850 
1851 	if (ic_image->fmt->planar)
1852 		ic_image->stride = ic_image->base.pix.width;
1853 	else
1854 		ic_image->stride  = ic_image->base.pix.bytesperline;
1855 
1856 	return 0;
1857 }
1858 
1859 /* borrowed from drivers/media/v4l2-core/v4l2-common.c */
1860 static unsigned int clamp_align(unsigned int x, unsigned int min,
1861 				unsigned int max, unsigned int align)
1862 {
1863 	/* Bits that must be zero to be aligned */
1864 	unsigned int mask = ~((1 << align) - 1);
1865 
1866 	/* Clamp to aligned min and max */
1867 	x = clamp(x, (min + ~mask) & mask, max & mask);
1868 
1869 	/* Round to nearest aligned value */
1870 	if (align)
1871 		x = (x + (1 << (align - 1))) & mask;
1872 
1873 	return x;
1874 }
1875 
1876 /* Adjusts input/output images to IPU restrictions */
1877 void ipu_image_convert_adjust(struct ipu_image *in, struct ipu_image *out,
1878 			      enum ipu_rotate_mode rot_mode)
1879 {
1880 	const struct ipu_image_pixfmt *infmt, *outfmt;
1881 	u32 w_align_out, h_align_out;
1882 	u32 w_align_in, h_align_in;
1883 
1884 	infmt = get_format(in->pix.pixelformat);
1885 	outfmt = get_format(out->pix.pixelformat);
1886 
1887 	/* set some default pixel formats if needed */
1888 	if (!infmt) {
1889 		in->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1890 		infmt = get_format(V4L2_PIX_FMT_RGB24);
1891 	}
1892 	if (!outfmt) {
1893 		out->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1894 		outfmt = get_format(V4L2_PIX_FMT_RGB24);
1895 	}
1896 
1897 	/* image converter does not handle fields */
1898 	in->pix.field = out->pix.field = V4L2_FIELD_NONE;
1899 
1900 	/* resizer cannot downsize more than 4:1 */
1901 	if (ipu_rot_mode_is_irt(rot_mode)) {
1902 		out->pix.height = max_t(__u32, out->pix.height,
1903 					in->pix.width / 4);
1904 		out->pix.width = max_t(__u32, out->pix.width,
1905 				       in->pix.height / 4);
1906 	} else {
1907 		out->pix.width = max_t(__u32, out->pix.width,
1908 				       in->pix.width / 4);
1909 		out->pix.height = max_t(__u32, out->pix.height,
1910 					in->pix.height / 4);
1911 	}
1912 
1913 	/* align input width/height */
1914 	w_align_in = ilog2(tile_width_align(IMAGE_CONVERT_IN, infmt,
1915 					    rot_mode));
1916 	h_align_in = ilog2(tile_height_align(IMAGE_CONVERT_IN, infmt,
1917 					     rot_mode));
1918 	in->pix.width = clamp_align(in->pix.width, MIN_W, MAX_W,
1919 				    w_align_in);
1920 	in->pix.height = clamp_align(in->pix.height, MIN_H, MAX_H,
1921 				     h_align_in);
1922 
1923 	/* align output width/height */
1924 	w_align_out = ilog2(tile_width_align(IMAGE_CONVERT_OUT, outfmt,
1925 					     rot_mode));
1926 	h_align_out = ilog2(tile_height_align(IMAGE_CONVERT_OUT, outfmt,
1927 					      rot_mode));
1928 	out->pix.width = clamp_align(out->pix.width, MIN_W, MAX_W,
1929 				     w_align_out);
1930 	out->pix.height = clamp_align(out->pix.height, MIN_H, MAX_H,
1931 				      h_align_out);
1932 
1933 	/* set input/output strides and image sizes */
1934 	in->pix.bytesperline = infmt->planar ?
1935 		clamp_align(in->pix.width, 2 << w_align_in, MAX_W,
1936 			    w_align_in) :
1937 		clamp_align((in->pix.width * infmt->bpp) >> 3,
1938 			    ((2 << w_align_in) * infmt->bpp) >> 3,
1939 			    (MAX_W * infmt->bpp) >> 3,
1940 			    w_align_in);
1941 	in->pix.sizeimage = infmt->planar ?
1942 		(in->pix.height * in->pix.bytesperline * infmt->bpp) >> 3 :
1943 		in->pix.height * in->pix.bytesperline;
1944 	out->pix.bytesperline = outfmt->planar ? out->pix.width :
1945 		(out->pix.width * outfmt->bpp) >> 3;
1946 	out->pix.sizeimage = outfmt->planar ?
1947 		(out->pix.height * out->pix.bytesperline * outfmt->bpp) >> 3 :
1948 		out->pix.height * out->pix.bytesperline;
1949 }
1950 EXPORT_SYMBOL_GPL(ipu_image_convert_adjust);
1951 
1952 /*
1953  * this is used by ipu_image_convert_prepare() to verify set input and
1954  * output images are valid before starting the conversion. Clients can
1955  * also call it before calling ipu_image_convert_prepare().
1956  */
1957 int ipu_image_convert_verify(struct ipu_image *in, struct ipu_image *out,
1958 			     enum ipu_rotate_mode rot_mode)
1959 {
1960 	struct ipu_image testin, testout;
1961 
1962 	testin = *in;
1963 	testout = *out;
1964 
1965 	ipu_image_convert_adjust(&testin, &testout, rot_mode);
1966 
1967 	if (testin.pix.width != in->pix.width ||
1968 	    testin.pix.height != in->pix.height ||
1969 	    testout.pix.width != out->pix.width ||
1970 	    testout.pix.height != out->pix.height)
1971 		return -EINVAL;
1972 
1973 	return 0;
1974 }
1975 EXPORT_SYMBOL_GPL(ipu_image_convert_verify);
1976 
1977 /*
1978  * Call ipu_image_convert_prepare() to prepare for the conversion of
1979  * given images and rotation mode. Returns a new conversion context.
1980  */
1981 struct ipu_image_convert_ctx *
1982 ipu_image_convert_prepare(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
1983 			  struct ipu_image *in, struct ipu_image *out,
1984 			  enum ipu_rotate_mode rot_mode,
1985 			  ipu_image_convert_cb_t complete,
1986 			  void *complete_context)
1987 {
1988 	struct ipu_image_convert_priv *priv = ipu->image_convert_priv;
1989 	struct ipu_image_convert_image *s_image, *d_image;
1990 	struct ipu_image_convert_chan *chan;
1991 	struct ipu_image_convert_ctx *ctx;
1992 	unsigned long flags;
1993 	unsigned int i;
1994 	bool get_res;
1995 	int ret;
1996 
1997 	if (!in || !out || !complete ||
1998 	    (ic_task != IC_TASK_VIEWFINDER &&
1999 	     ic_task != IC_TASK_POST_PROCESSOR))
2000 		return ERR_PTR(-EINVAL);
2001 
2002 	/* verify the in/out images before continuing */
2003 	ret = ipu_image_convert_verify(in, out, rot_mode);
2004 	if (ret) {
2005 		dev_err(priv->ipu->dev, "%s: in/out formats invalid\n",
2006 			__func__);
2007 		return ERR_PTR(ret);
2008 	}
2009 
2010 	chan = &priv->chan[ic_task];
2011 
2012 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2013 	if (!ctx)
2014 		return ERR_PTR(-ENOMEM);
2015 
2016 	dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p\n", __func__,
2017 		chan->ic_task, ctx);
2018 
2019 	ctx->chan = chan;
2020 	init_completion(&ctx->aborted);
2021 
2022 	s_image = &ctx->in;
2023 	d_image = &ctx->out;
2024 
2025 	/* set tiling and rotation */
2026 	d_image->num_rows = num_stripes(out->pix.height);
2027 	d_image->num_cols = num_stripes(out->pix.width);
2028 	if (ipu_rot_mode_is_irt(rot_mode)) {
2029 		s_image->num_rows = d_image->num_cols;
2030 		s_image->num_cols = d_image->num_rows;
2031 	} else {
2032 		s_image->num_rows = d_image->num_rows;
2033 		s_image->num_cols = d_image->num_cols;
2034 	}
2035 
2036 	ctx->num_tiles = d_image->num_cols * d_image->num_rows;
2037 	ctx->rot_mode = rot_mode;
2038 
2039 	ret = fill_image(ctx, s_image, in, IMAGE_CONVERT_IN);
2040 	if (ret)
2041 		goto out_free;
2042 	ret = fill_image(ctx, d_image, out, IMAGE_CONVERT_OUT);
2043 	if (ret)
2044 		goto out_free;
2045 
2046 	ret = calc_image_resize_coefficients(ctx, in, out);
2047 	if (ret)
2048 		goto out_free;
2049 
2050 	calc_out_tile_map(ctx);
2051 
2052 	find_seams(ctx, s_image, d_image);
2053 
2054 	calc_tile_dimensions(ctx, s_image);
2055 	ret = calc_tile_offsets(ctx, s_image);
2056 	if (ret)
2057 		goto out_free;
2058 
2059 	calc_tile_dimensions(ctx, d_image);
2060 	ret = calc_tile_offsets(ctx, d_image);
2061 	if (ret)
2062 		goto out_free;
2063 
2064 	calc_tile_resize_coefficients(ctx);
2065 
2066 	dump_format(ctx, s_image);
2067 	dump_format(ctx, d_image);
2068 
2069 	ctx->complete = complete;
2070 	ctx->complete_context = complete_context;
2071 
2072 	/*
2073 	 * Can we use double-buffering for this operation? If there is
2074 	 * only one tile (the whole image can be converted in a single
2075 	 * operation) there's no point in using double-buffering. Also,
2076 	 * the IPU's IDMAC channels allow only a single U and V plane
2077 	 * offset shared between both buffers, but these offsets change
2078 	 * for every tile, and therefore would have to be updated for
2079 	 * each buffer which is not possible. So double-buffering is
2080 	 * impossible when either the source or destination images are
2081 	 * a planar format (YUV420, YUV422P, etc.). Further, differently
2082 	 * sized tiles or different resizing coefficients per tile
2083 	 * prevent double-buffering as well.
2084 	 */
2085 	ctx->double_buffering = (ctx->num_tiles > 1 &&
2086 				 !s_image->fmt->planar &&
2087 				 !d_image->fmt->planar);
2088 	for (i = 1; i < ctx->num_tiles; i++) {
2089 		if (ctx->in.tile[i].width != ctx->in.tile[0].width ||
2090 		    ctx->in.tile[i].height != ctx->in.tile[0].height ||
2091 		    ctx->out.tile[i].width != ctx->out.tile[0].width ||
2092 		    ctx->out.tile[i].height != ctx->out.tile[0].height) {
2093 			ctx->double_buffering = false;
2094 			break;
2095 		}
2096 	}
2097 	for (i = 1; i < ctx->in.num_cols; i++) {
2098 		if (ctx->resize_coeffs_h[i] != ctx->resize_coeffs_h[0]) {
2099 			ctx->double_buffering = false;
2100 			break;
2101 		}
2102 	}
2103 	for (i = 1; i < ctx->in.num_rows; i++) {
2104 		if (ctx->resize_coeffs_v[i] != ctx->resize_coeffs_v[0]) {
2105 			ctx->double_buffering = false;
2106 			break;
2107 		}
2108 	}
2109 
2110 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
2111 		unsigned long intermediate_size = d_image->tile[0].size;
2112 
2113 		for (i = 1; i < ctx->num_tiles; i++) {
2114 			if (d_image->tile[i].size > intermediate_size)
2115 				intermediate_size = d_image->tile[i].size;
2116 		}
2117 
2118 		ret = alloc_dma_buf(priv, &ctx->rot_intermediate[0],
2119 				    intermediate_size);
2120 		if (ret)
2121 			goto out_free;
2122 		if (ctx->double_buffering) {
2123 			ret = alloc_dma_buf(priv,
2124 					    &ctx->rot_intermediate[1],
2125 					    intermediate_size);
2126 			if (ret)
2127 				goto out_free_dmabuf0;
2128 		}
2129 	}
2130 
2131 	spin_lock_irqsave(&chan->irqlock, flags);
2132 
2133 	get_res = list_empty(&chan->ctx_list);
2134 
2135 	list_add_tail(&ctx->list, &chan->ctx_list);
2136 
2137 	spin_unlock_irqrestore(&chan->irqlock, flags);
2138 
2139 	if (get_res) {
2140 		ret = get_ipu_resources(chan);
2141 		if (ret)
2142 			goto out_free_dmabuf1;
2143 	}
2144 
2145 	return ctx;
2146 
2147 out_free_dmabuf1:
2148 	free_dma_buf(priv, &ctx->rot_intermediate[1]);
2149 	spin_lock_irqsave(&chan->irqlock, flags);
2150 	list_del(&ctx->list);
2151 	spin_unlock_irqrestore(&chan->irqlock, flags);
2152 out_free_dmabuf0:
2153 	free_dma_buf(priv, &ctx->rot_intermediate[0]);
2154 out_free:
2155 	kfree(ctx);
2156 	return ERR_PTR(ret);
2157 }
2158 EXPORT_SYMBOL_GPL(ipu_image_convert_prepare);
2159 
2160 /*
2161  * Carry out a single image conversion run. Only the physaddr's of the input
2162  * and output image buffers are needed. The conversion context must have
2163  * been created previously with ipu_image_convert_prepare().
2164  */
2165 int ipu_image_convert_queue(struct ipu_image_convert_run *run)
2166 {
2167 	struct ipu_image_convert_chan *chan;
2168 	struct ipu_image_convert_priv *priv;
2169 	struct ipu_image_convert_ctx *ctx;
2170 	unsigned long flags;
2171 	int ret = 0;
2172 
2173 	if (!run || !run->ctx || !run->in_phys || !run->out_phys)
2174 		return -EINVAL;
2175 
2176 	ctx = run->ctx;
2177 	chan = ctx->chan;
2178 	priv = chan->priv;
2179 
2180 	dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p run %p\n", __func__,
2181 		chan->ic_task, ctx, run);
2182 
2183 	INIT_LIST_HEAD(&run->list);
2184 
2185 	spin_lock_irqsave(&chan->irqlock, flags);
2186 
2187 	if (ctx->aborting) {
2188 		ret = -EIO;
2189 		goto unlock;
2190 	}
2191 
2192 	list_add_tail(&run->list, &chan->pending_q);
2193 
2194 	if (!chan->current_run) {
2195 		ret = do_run(run);
2196 		if (ret)
2197 			chan->current_run = NULL;
2198 	}
2199 unlock:
2200 	spin_unlock_irqrestore(&chan->irqlock, flags);
2201 	return ret;
2202 }
2203 EXPORT_SYMBOL_GPL(ipu_image_convert_queue);
2204 
2205 /* Abort any active or pending conversions for this context */
2206 static void __ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2207 {
2208 	struct ipu_image_convert_chan *chan = ctx->chan;
2209 	struct ipu_image_convert_priv *priv = chan->priv;
2210 	struct ipu_image_convert_run *run, *active_run, *tmp;
2211 	unsigned long flags;
2212 	int run_count, ret;
2213 
2214 	spin_lock_irqsave(&chan->irqlock, flags);
2215 
2216 	/* move all remaining pending runs in this context to done_q */
2217 	list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
2218 		if (run->ctx != ctx)
2219 			continue;
2220 		run->status = -EIO;
2221 		list_move_tail(&run->list, &chan->done_q);
2222 	}
2223 
2224 	run_count = get_run_count(ctx, &chan->done_q);
2225 	active_run = (chan->current_run && chan->current_run->ctx == ctx) ?
2226 		chan->current_run : NULL;
2227 
2228 	if (active_run)
2229 		reinit_completion(&ctx->aborted);
2230 
2231 	ctx->aborting = true;
2232 
2233 	spin_unlock_irqrestore(&chan->irqlock, flags);
2234 
2235 	if (!run_count && !active_run) {
2236 		dev_dbg(priv->ipu->dev,
2237 			"%s: task %u: no abort needed for ctx %p\n",
2238 			__func__, chan->ic_task, ctx);
2239 		return;
2240 	}
2241 
2242 	if (!active_run) {
2243 		empty_done_q(chan);
2244 		return;
2245 	}
2246 
2247 	dev_dbg(priv->ipu->dev,
2248 		"%s: task %u: wait for completion: %d runs\n",
2249 		__func__, chan->ic_task, run_count);
2250 
2251 	ret = wait_for_completion_timeout(&ctx->aborted,
2252 					  msecs_to_jiffies(10000));
2253 	if (ret == 0) {
2254 		dev_warn(priv->ipu->dev, "%s: timeout\n", __func__);
2255 		force_abort(ctx);
2256 	}
2257 }
2258 
2259 void ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2260 {
2261 	__ipu_image_convert_abort(ctx);
2262 	ctx->aborting = false;
2263 }
2264 EXPORT_SYMBOL_GPL(ipu_image_convert_abort);
2265 
2266 /* Unprepare image conversion context */
2267 void ipu_image_convert_unprepare(struct ipu_image_convert_ctx *ctx)
2268 {
2269 	struct ipu_image_convert_chan *chan = ctx->chan;
2270 	struct ipu_image_convert_priv *priv = chan->priv;
2271 	unsigned long flags;
2272 	bool put_res;
2273 
2274 	/* make sure no runs are hanging around */
2275 	__ipu_image_convert_abort(ctx);
2276 
2277 	dev_dbg(priv->ipu->dev, "%s: task %u: removing ctx %p\n", __func__,
2278 		chan->ic_task, ctx);
2279 
2280 	spin_lock_irqsave(&chan->irqlock, flags);
2281 
2282 	list_del(&ctx->list);
2283 
2284 	put_res = list_empty(&chan->ctx_list);
2285 
2286 	spin_unlock_irqrestore(&chan->irqlock, flags);
2287 
2288 	if (put_res)
2289 		release_ipu_resources(chan);
2290 
2291 	free_dma_buf(priv, &ctx->rot_intermediate[1]);
2292 	free_dma_buf(priv, &ctx->rot_intermediate[0]);
2293 
2294 	kfree(ctx);
2295 }
2296 EXPORT_SYMBOL_GPL(ipu_image_convert_unprepare);
2297 
2298 /*
2299  * "Canned" asynchronous single image conversion. Allocates and returns
2300  * a new conversion run.  On successful return the caller must free the
2301  * run and call ipu_image_convert_unprepare() after conversion completes.
2302  */
2303 struct ipu_image_convert_run *
2304 ipu_image_convert(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2305 		  struct ipu_image *in, struct ipu_image *out,
2306 		  enum ipu_rotate_mode rot_mode,
2307 		  ipu_image_convert_cb_t complete,
2308 		  void *complete_context)
2309 {
2310 	struct ipu_image_convert_ctx *ctx;
2311 	struct ipu_image_convert_run *run;
2312 	int ret;
2313 
2314 	ctx = ipu_image_convert_prepare(ipu, ic_task, in, out, rot_mode,
2315 					complete, complete_context);
2316 	if (IS_ERR(ctx))
2317 		return ERR_CAST(ctx);
2318 
2319 	run = kzalloc(sizeof(*run), GFP_KERNEL);
2320 	if (!run) {
2321 		ipu_image_convert_unprepare(ctx);
2322 		return ERR_PTR(-ENOMEM);
2323 	}
2324 
2325 	run->ctx = ctx;
2326 	run->in_phys = in->phys0;
2327 	run->out_phys = out->phys0;
2328 
2329 	ret = ipu_image_convert_queue(run);
2330 	if (ret) {
2331 		ipu_image_convert_unprepare(ctx);
2332 		kfree(run);
2333 		return ERR_PTR(ret);
2334 	}
2335 
2336 	return run;
2337 }
2338 EXPORT_SYMBOL_GPL(ipu_image_convert);
2339 
2340 /* "Canned" synchronous single image conversion */
2341 static void image_convert_sync_complete(struct ipu_image_convert_run *run,
2342 					void *data)
2343 {
2344 	struct completion *comp = data;
2345 
2346 	complete(comp);
2347 }
2348 
2349 int ipu_image_convert_sync(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2350 			   struct ipu_image *in, struct ipu_image *out,
2351 			   enum ipu_rotate_mode rot_mode)
2352 {
2353 	struct ipu_image_convert_run *run;
2354 	struct completion comp;
2355 	int ret;
2356 
2357 	init_completion(&comp);
2358 
2359 	run = ipu_image_convert(ipu, ic_task, in, out, rot_mode,
2360 				image_convert_sync_complete, &comp);
2361 	if (IS_ERR(run))
2362 		return PTR_ERR(run);
2363 
2364 	ret = wait_for_completion_timeout(&comp, msecs_to_jiffies(10000));
2365 	ret = (ret == 0) ? -ETIMEDOUT : 0;
2366 
2367 	ipu_image_convert_unprepare(run->ctx);
2368 	kfree(run);
2369 
2370 	return ret;
2371 }
2372 EXPORT_SYMBOL_GPL(ipu_image_convert_sync);
2373 
2374 int ipu_image_convert_init(struct ipu_soc *ipu, struct device *dev)
2375 {
2376 	struct ipu_image_convert_priv *priv;
2377 	int i;
2378 
2379 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
2380 	if (!priv)
2381 		return -ENOMEM;
2382 
2383 	ipu->image_convert_priv = priv;
2384 	priv->ipu = ipu;
2385 
2386 	for (i = 0; i < IC_NUM_TASKS; i++) {
2387 		struct ipu_image_convert_chan *chan = &priv->chan[i];
2388 
2389 		chan->ic_task = i;
2390 		chan->priv = priv;
2391 		chan->dma_ch = &image_convert_dma_chan[i];
2392 		chan->out_eof_irq = -1;
2393 		chan->rot_out_eof_irq = -1;
2394 
2395 		spin_lock_init(&chan->irqlock);
2396 		INIT_LIST_HEAD(&chan->ctx_list);
2397 		INIT_LIST_HEAD(&chan->pending_q);
2398 		INIT_LIST_HEAD(&chan->done_q);
2399 	}
2400 
2401 	return 0;
2402 }
2403 
2404 void ipu_image_convert_exit(struct ipu_soc *ipu)
2405 {
2406 }
2407