1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2012-2016 Mentor Graphics Inc.
4  *
5  * Queued image conversion support, with tiling and rotation.
6  */
7 
8 #include <linux/interrupt.h>
9 #include <linux/dma-mapping.h>
10 #include <video/imx-ipu-image-convert.h>
11 #include "ipu-prv.h"
12 
13 /*
14  * The IC Resizer has a restriction that the output frame from the
15  * resizer must be 1024 or less in both width (pixels) and height
16  * (lines).
17  *
18  * The image converter attempts to split up a conversion when
19  * the desired output (converted) frame resolution exceeds the
20  * IC resizer limit of 1024 in either dimension.
21  *
22  * If either dimension of the output frame exceeds the limit, the
23  * dimension is split into 1, 2, or 4 equal stripes, for a maximum
24  * of 4*4 or 16 tiles. A conversion is then carried out for each
25  * tile (but taking care to pass the full frame stride length to
26  * the DMA channel's parameter memory!). IDMA double-buffering is used
27  * to convert each tile back-to-back when possible (see note below
28  * when double_buffering boolean is set).
29  *
30  * Note that the input frame must be split up into the same number
31  * of tiles as the output frame:
32  *
33  *                       +---------+-----+
34  *   +-----+---+         |  A      | B   |
35  *   | A   | B |         |         |     |
36  *   +-----+---+   -->   +---------+-----+
37  *   | C   | D |         |  C      | D   |
38  *   +-----+---+         |         |     |
39  *                       +---------+-----+
40  *
41  * Clockwise 90° rotations are handled by first rescaling into a
42  * reusable temporary tile buffer and then rotating with the 8x8
43  * block rotator, writing to the correct destination:
44  *
45  *                                         +-----+-----+
46  *                                         |     |     |
47  *   +-----+---+         +---------+       | C   | A   |
48  *   | A   | B |         | A,B, |  |       |     |     |
49  *   +-----+---+   -->   | C,D  |  |  -->  |     |     |
50  *   | C   | D |         +---------+       +-----+-----+
51  *   +-----+---+                           | D   | B   |
52  *                                         |     |     |
53  *                                         +-----+-----+
54  *
55  * If the 8x8 block rotator is used, horizontal or vertical flipping
56  * is done during the rotation step, otherwise flipping is done
57  * during the scaling step.
58  * With rotation or flipping, tile order changes between input and
59  * output image. Tiles are numbered row major from top left to bottom
60  * right for both input and output image.
61  */
62 
63 #define MAX_STRIPES_W    4
64 #define MAX_STRIPES_H    4
65 #define MAX_TILES (MAX_STRIPES_W * MAX_STRIPES_H)
66 
67 #define MIN_W     16
68 #define MIN_H     8
69 #define MAX_W     4096
70 #define MAX_H     4096
71 
72 enum ipu_image_convert_type {
73 	IMAGE_CONVERT_IN = 0,
74 	IMAGE_CONVERT_OUT,
75 };
76 
77 struct ipu_image_convert_dma_buf {
78 	void          *virt;
79 	dma_addr_t    phys;
80 	unsigned long len;
81 };
82 
83 struct ipu_image_convert_dma_chan {
84 	int in;
85 	int out;
86 	int rot_in;
87 	int rot_out;
88 	int vdi_in_p;
89 	int vdi_in;
90 	int vdi_in_n;
91 };
92 
93 /* dimensions of one tile */
94 struct ipu_image_tile {
95 	u32 width;
96 	u32 height;
97 	u32 left;
98 	u32 top;
99 	/* size and strides are in bytes */
100 	u32 size;
101 	u32 stride;
102 	u32 rot_stride;
103 	/* start Y or packed offset of this tile */
104 	u32 offset;
105 	/* offset from start to tile in U plane, for planar formats */
106 	u32 u_off;
107 	/* offset from start to tile in V plane, for planar formats */
108 	u32 v_off;
109 };
110 
111 struct ipu_image_convert_image {
112 	struct ipu_image base;
113 	enum ipu_image_convert_type type;
114 
115 	const struct ipu_image_pixfmt *fmt;
116 	unsigned int stride;
117 
118 	/* # of rows (horizontal stripes) if dest height is > 1024 */
119 	unsigned int num_rows;
120 	/* # of columns (vertical stripes) if dest width is > 1024 */
121 	unsigned int num_cols;
122 
123 	struct ipu_image_tile tile[MAX_TILES];
124 };
125 
126 struct ipu_image_pixfmt {
127 	u32	fourcc;        /* V4L2 fourcc */
128 	int     bpp;           /* total bpp */
129 	int     uv_width_dec;  /* decimation in width for U/V planes */
130 	int     uv_height_dec; /* decimation in height for U/V planes */
131 	bool    planar;        /* planar format */
132 	bool    uv_swapped;    /* U and V planes are swapped */
133 	bool    uv_packed;     /* partial planar (U and V in same plane) */
134 };
135 
136 struct ipu_image_convert_ctx;
137 struct ipu_image_convert_chan;
138 struct ipu_image_convert_priv;
139 
140 struct ipu_image_convert_ctx {
141 	struct ipu_image_convert_chan *chan;
142 
143 	ipu_image_convert_cb_t complete;
144 	void *complete_context;
145 
146 	/* Source/destination image data and rotation mode */
147 	struct ipu_image_convert_image in;
148 	struct ipu_image_convert_image out;
149 	struct ipu_ic_csc csc;
150 	enum ipu_rotate_mode rot_mode;
151 	u32 downsize_coeff_h;
152 	u32 downsize_coeff_v;
153 	u32 image_resize_coeff_h;
154 	u32 image_resize_coeff_v;
155 	u32 resize_coeffs_h[MAX_STRIPES_W];
156 	u32 resize_coeffs_v[MAX_STRIPES_H];
157 
158 	/* intermediate buffer for rotation */
159 	struct ipu_image_convert_dma_buf rot_intermediate[2];
160 
161 	/* current buffer number for double buffering */
162 	int cur_buf_num;
163 
164 	bool aborting;
165 	struct completion aborted;
166 
167 	/* can we use double-buffering for this conversion operation? */
168 	bool double_buffering;
169 	/* num_rows * num_cols */
170 	unsigned int num_tiles;
171 	/* next tile to process */
172 	unsigned int next_tile;
173 	/* where to place converted tile in dest image */
174 	unsigned int out_tile_map[MAX_TILES];
175 
176 	struct list_head list;
177 };
178 
179 struct ipu_image_convert_chan {
180 	struct ipu_image_convert_priv *priv;
181 
182 	enum ipu_ic_task ic_task;
183 	const struct ipu_image_convert_dma_chan *dma_ch;
184 
185 	struct ipu_ic *ic;
186 	struct ipuv3_channel *in_chan;
187 	struct ipuv3_channel *out_chan;
188 	struct ipuv3_channel *rotation_in_chan;
189 	struct ipuv3_channel *rotation_out_chan;
190 
191 	/* the IPU end-of-frame irqs */
192 	int out_eof_irq;
193 	int rot_out_eof_irq;
194 
195 	spinlock_t irqlock;
196 
197 	/* list of convert contexts */
198 	struct list_head ctx_list;
199 	/* queue of conversion runs */
200 	struct list_head pending_q;
201 	/* queue of completed runs */
202 	struct list_head done_q;
203 
204 	/* the current conversion run */
205 	struct ipu_image_convert_run *current_run;
206 };
207 
208 struct ipu_image_convert_priv {
209 	struct ipu_image_convert_chan chan[IC_NUM_TASKS];
210 	struct ipu_soc *ipu;
211 };
212 
213 static const struct ipu_image_convert_dma_chan
214 image_convert_dma_chan[IC_NUM_TASKS] = {
215 	[IC_TASK_VIEWFINDER] = {
216 		.in = IPUV3_CHANNEL_MEM_IC_PRP_VF,
217 		.out = IPUV3_CHANNEL_IC_PRP_VF_MEM,
218 		.rot_in = IPUV3_CHANNEL_MEM_ROT_VF,
219 		.rot_out = IPUV3_CHANNEL_ROT_VF_MEM,
220 		.vdi_in_p = IPUV3_CHANNEL_MEM_VDI_PREV,
221 		.vdi_in = IPUV3_CHANNEL_MEM_VDI_CUR,
222 		.vdi_in_n = IPUV3_CHANNEL_MEM_VDI_NEXT,
223 	},
224 	[IC_TASK_POST_PROCESSOR] = {
225 		.in = IPUV3_CHANNEL_MEM_IC_PP,
226 		.out = IPUV3_CHANNEL_IC_PP_MEM,
227 		.rot_in = IPUV3_CHANNEL_MEM_ROT_PP,
228 		.rot_out = IPUV3_CHANNEL_ROT_PP_MEM,
229 	},
230 };
231 
232 static const struct ipu_image_pixfmt image_convert_formats[] = {
233 	{
234 		.fourcc	= V4L2_PIX_FMT_RGB565,
235 		.bpp    = 16,
236 	}, {
237 		.fourcc	= V4L2_PIX_FMT_RGB24,
238 		.bpp    = 24,
239 	}, {
240 		.fourcc	= V4L2_PIX_FMT_BGR24,
241 		.bpp    = 24,
242 	}, {
243 		.fourcc	= V4L2_PIX_FMT_RGB32,
244 		.bpp    = 32,
245 	}, {
246 		.fourcc	= V4L2_PIX_FMT_BGR32,
247 		.bpp    = 32,
248 	}, {
249 		.fourcc	= V4L2_PIX_FMT_XRGB32,
250 		.bpp    = 32,
251 	}, {
252 		.fourcc	= V4L2_PIX_FMT_XBGR32,
253 		.bpp    = 32,
254 	}, {
255 		.fourcc	= V4L2_PIX_FMT_BGRX32,
256 		.bpp    = 32,
257 	}, {
258 		.fourcc	= V4L2_PIX_FMT_RGBX32,
259 		.bpp    = 32,
260 	}, {
261 		.fourcc	= V4L2_PIX_FMT_YUYV,
262 		.bpp    = 16,
263 		.uv_width_dec = 2,
264 		.uv_height_dec = 1,
265 	}, {
266 		.fourcc	= V4L2_PIX_FMT_UYVY,
267 		.bpp    = 16,
268 		.uv_width_dec = 2,
269 		.uv_height_dec = 1,
270 	}, {
271 		.fourcc	= V4L2_PIX_FMT_YUV420,
272 		.bpp    = 12,
273 		.planar = true,
274 		.uv_width_dec = 2,
275 		.uv_height_dec = 2,
276 	}, {
277 		.fourcc	= V4L2_PIX_FMT_YVU420,
278 		.bpp    = 12,
279 		.planar = true,
280 		.uv_width_dec = 2,
281 		.uv_height_dec = 2,
282 		.uv_swapped = true,
283 	}, {
284 		.fourcc = V4L2_PIX_FMT_NV12,
285 		.bpp    = 12,
286 		.planar = true,
287 		.uv_width_dec = 2,
288 		.uv_height_dec = 2,
289 		.uv_packed = true,
290 	}, {
291 		.fourcc = V4L2_PIX_FMT_YUV422P,
292 		.bpp    = 16,
293 		.planar = true,
294 		.uv_width_dec = 2,
295 		.uv_height_dec = 1,
296 	}, {
297 		.fourcc = V4L2_PIX_FMT_NV16,
298 		.bpp    = 16,
299 		.planar = true,
300 		.uv_width_dec = 2,
301 		.uv_height_dec = 1,
302 		.uv_packed = true,
303 	},
304 };
305 
306 static const struct ipu_image_pixfmt *get_format(u32 fourcc)
307 {
308 	const struct ipu_image_pixfmt *ret = NULL;
309 	unsigned int i;
310 
311 	for (i = 0; i < ARRAY_SIZE(image_convert_formats); i++) {
312 		if (image_convert_formats[i].fourcc == fourcc) {
313 			ret = &image_convert_formats[i];
314 			break;
315 		}
316 	}
317 
318 	return ret;
319 }
320 
321 static void dump_format(struct ipu_image_convert_ctx *ctx,
322 			struct ipu_image_convert_image *ic_image)
323 {
324 	struct ipu_image_convert_chan *chan = ctx->chan;
325 	struct ipu_image_convert_priv *priv = chan->priv;
326 
327 	dev_dbg(priv->ipu->dev,
328 		"task %u: ctx %p: %s format: %dx%d (%dx%d tiles), %c%c%c%c\n",
329 		chan->ic_task, ctx,
330 		ic_image->type == IMAGE_CONVERT_OUT ? "Output" : "Input",
331 		ic_image->base.pix.width, ic_image->base.pix.height,
332 		ic_image->num_cols, ic_image->num_rows,
333 		ic_image->fmt->fourcc & 0xff,
334 		(ic_image->fmt->fourcc >> 8) & 0xff,
335 		(ic_image->fmt->fourcc >> 16) & 0xff,
336 		(ic_image->fmt->fourcc >> 24) & 0xff);
337 }
338 
339 int ipu_image_convert_enum_format(int index, u32 *fourcc)
340 {
341 	const struct ipu_image_pixfmt *fmt;
342 
343 	if (index >= (int)ARRAY_SIZE(image_convert_formats))
344 		return -EINVAL;
345 
346 	/* Format found */
347 	fmt = &image_convert_formats[index];
348 	*fourcc = fmt->fourcc;
349 	return 0;
350 }
351 EXPORT_SYMBOL_GPL(ipu_image_convert_enum_format);
352 
353 static void free_dma_buf(struct ipu_image_convert_priv *priv,
354 			 struct ipu_image_convert_dma_buf *buf)
355 {
356 	if (buf->virt)
357 		dma_free_coherent(priv->ipu->dev,
358 				  buf->len, buf->virt, buf->phys);
359 	buf->virt = NULL;
360 	buf->phys = 0;
361 }
362 
363 static int alloc_dma_buf(struct ipu_image_convert_priv *priv,
364 			 struct ipu_image_convert_dma_buf *buf,
365 			 int size)
366 {
367 	buf->len = PAGE_ALIGN(size);
368 	buf->virt = dma_alloc_coherent(priv->ipu->dev, buf->len, &buf->phys,
369 				       GFP_DMA | GFP_KERNEL);
370 	if (!buf->virt) {
371 		dev_err(priv->ipu->dev, "failed to alloc dma buffer\n");
372 		return -ENOMEM;
373 	}
374 
375 	return 0;
376 }
377 
378 static inline int num_stripes(int dim)
379 {
380 	return (dim - 1) / 1024 + 1;
381 }
382 
383 /*
384  * Calculate downsizing coefficients, which are the same for all tiles,
385  * and bilinear resizing coefficients, which are used to find the best
386  * seam positions.
387  */
388 static int calc_image_resize_coefficients(struct ipu_image_convert_ctx *ctx,
389 					  struct ipu_image *in,
390 					  struct ipu_image *out)
391 {
392 	u32 downsized_width = in->rect.width;
393 	u32 downsized_height = in->rect.height;
394 	u32 downsize_coeff_v = 0;
395 	u32 downsize_coeff_h = 0;
396 	u32 resized_width = out->rect.width;
397 	u32 resized_height = out->rect.height;
398 	u32 resize_coeff_h;
399 	u32 resize_coeff_v;
400 
401 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
402 		resized_width = out->rect.height;
403 		resized_height = out->rect.width;
404 	}
405 
406 	/* Do not let invalid input lead to an endless loop below */
407 	if (WARN_ON(resized_width == 0 || resized_height == 0))
408 		return -EINVAL;
409 
410 	while (downsized_width > 1024 ||
411 	       downsized_width >= resized_width * 2) {
412 		downsized_width >>= 1;
413 		downsize_coeff_h++;
414 	}
415 
416 	while (downsized_height > 1024 ||
417 	       downsized_height >= resized_height * 2) {
418 		downsized_height >>= 1;
419 		downsize_coeff_v++;
420 	}
421 
422 	/*
423 	 * Calculate the bilinear resizing coefficients that could be used if
424 	 * we were converting with a single tile. The bottom right output pixel
425 	 * should sample as close as possible to the bottom right input pixel
426 	 * out of the decimator, but not overshoot it:
427 	 */
428 	resize_coeff_h = 8192 * (downsized_width - 1) / (resized_width - 1);
429 	resize_coeff_v = 8192 * (downsized_height - 1) / (resized_height - 1);
430 
431 	dev_dbg(ctx->chan->priv->ipu->dev,
432 		"%s: hscale: >>%u, *8192/%u vscale: >>%u, *8192/%u, %ux%u tiles\n",
433 		__func__, downsize_coeff_h, resize_coeff_h, downsize_coeff_v,
434 		resize_coeff_v, ctx->in.num_cols, ctx->in.num_rows);
435 
436 	if (downsize_coeff_h > 2 || downsize_coeff_v  > 2 ||
437 	    resize_coeff_h > 0x3fff || resize_coeff_v > 0x3fff)
438 		return -EINVAL;
439 
440 	ctx->downsize_coeff_h = downsize_coeff_h;
441 	ctx->downsize_coeff_v = downsize_coeff_v;
442 	ctx->image_resize_coeff_h = resize_coeff_h;
443 	ctx->image_resize_coeff_v = resize_coeff_v;
444 
445 	return 0;
446 }
447 
448 #define round_closest(x, y) round_down((x) + (y)/2, (y))
449 
450 /*
451  * Find the best aligned seam position for the given column / row index.
452  * Rotation and image offsets are out of scope.
453  *
454  * @index: column / row index, used to calculate valid interval
455  * @in_edge: input right / bottom edge
456  * @out_edge: output right / bottom edge
457  * @in_align: input alignment, either horizontal 8-byte line start address
458  *            alignment, or pixel alignment due to image format
459  * @out_align: output alignment, either horizontal 8-byte line start address
460  *             alignment, or pixel alignment due to image format or rotator
461  *             block size
462  * @in_burst: horizontal input burst size in case of horizontal flip
463  * @out_burst: horizontal output burst size or rotator block size
464  * @downsize_coeff: downsizing section coefficient
465  * @resize_coeff: main processing section resizing coefficient
466  * @_in_seam: aligned input seam position return value
467  * @_out_seam: aligned output seam position return value
468  */
469 static void find_best_seam(struct ipu_image_convert_ctx *ctx,
470 			   unsigned int index,
471 			   unsigned int in_edge,
472 			   unsigned int out_edge,
473 			   unsigned int in_align,
474 			   unsigned int out_align,
475 			   unsigned int in_burst,
476 			   unsigned int out_burst,
477 			   unsigned int downsize_coeff,
478 			   unsigned int resize_coeff,
479 			   u32 *_in_seam,
480 			   u32 *_out_seam)
481 {
482 	struct device *dev = ctx->chan->priv->ipu->dev;
483 	unsigned int out_pos;
484 	/* Input / output seam position candidates */
485 	unsigned int out_seam = 0;
486 	unsigned int in_seam = 0;
487 	unsigned int min_diff = UINT_MAX;
488 	unsigned int out_start;
489 	unsigned int out_end;
490 
491 	/* Start within 1024 pixels of the right / bottom edge */
492 	out_start = max_t(int, index * out_align, out_edge - 1024);
493 	/* End before having to add more columns to the left / rows above */
494 	out_end = min_t(unsigned int, out_edge, index * 1024 + 1);
495 
496 	/*
497 	 * Output tiles must start at a multiple of 8 bytes horizontally and
498 	 * possibly at an even line horizontally depending on the pixel format.
499 	 * Only consider output aligned positions for the seam.
500 	 */
501 	out_start = round_up(out_start, out_align);
502 	for (out_pos = out_start; out_pos < out_end; out_pos += out_align) {
503 		unsigned int in_pos;
504 		unsigned int in_pos_aligned;
505 		unsigned int abs_diff;
506 
507 		/*
508 		 * Tiles in the right row / bottom column may not be allowed to
509 		 * overshoot horizontally / vertically. out_burst may be the
510 		 * actual DMA burst size, or the rotator block size.
511 		 */
512 		if ((out_burst > 1) && (out_edge - out_pos) % out_burst)
513 			continue;
514 
515 		/*
516 		 * Input sample position, corresponding to out_pos, 19.13 fixed
517 		 * point.
518 		 */
519 		in_pos = (out_pos * resize_coeff) << downsize_coeff;
520 		/*
521 		 * The closest input sample position that we could actually
522 		 * start the input tile at, 19.13 fixed point.
523 		 */
524 		in_pos_aligned = round_closest(in_pos, 8192U * in_align);
525 
526 		if ((in_burst > 1) &&
527 		    (in_edge - in_pos_aligned / 8192U) % in_burst)
528 			continue;
529 
530 		if (in_pos < in_pos_aligned)
531 			abs_diff = in_pos_aligned - in_pos;
532 		else
533 			abs_diff = in_pos - in_pos_aligned;
534 
535 		if (abs_diff < min_diff) {
536 			in_seam = in_pos_aligned;
537 			out_seam = out_pos;
538 			min_diff = abs_diff;
539 		}
540 	}
541 
542 	*_out_seam = out_seam;
543 	/* Convert 19.13 fixed point to integer seam position */
544 	*_in_seam = DIV_ROUND_CLOSEST(in_seam, 8192U);
545 
546 	dev_dbg(dev, "%s: out_seam %u(%u) in [%u, %u], in_seam %u(%u) diff %u.%03u\n",
547 		__func__, out_seam, out_align, out_start, out_end,
548 		*_in_seam, in_align, min_diff / 8192,
549 		DIV_ROUND_CLOSEST(min_diff % 8192 * 1000, 8192));
550 }
551 
552 /*
553  * Tile left edges are required to be aligned to multiples of 8 bytes
554  * by the IDMAC.
555  */
556 static inline u32 tile_left_align(const struct ipu_image_pixfmt *fmt)
557 {
558 	if (fmt->planar)
559 		return fmt->uv_packed ? 8 : 8 * fmt->uv_width_dec;
560 	else
561 		return fmt->bpp == 32 ? 2 : fmt->bpp == 16 ? 4 : 8;
562 }
563 
564 /*
565  * Tile top edge alignment is only limited by chroma subsampling.
566  */
567 static inline u32 tile_top_align(const struct ipu_image_pixfmt *fmt)
568 {
569 	return fmt->uv_height_dec > 1 ? 2 : 1;
570 }
571 
572 static inline u32 tile_width_align(enum ipu_image_convert_type type,
573 				   const struct ipu_image_pixfmt *fmt,
574 				   enum ipu_rotate_mode rot_mode)
575 {
576 	if (type == IMAGE_CONVERT_IN) {
577 		/*
578 		 * The IC burst reads 8 pixels at a time. Reading beyond the
579 		 * end of the line is usually acceptable. Those pixels are
580 		 * ignored, unless the IC has to write the scaled line in
581 		 * reverse.
582 		 */
583 		return (!ipu_rot_mode_is_irt(rot_mode) &&
584 			(rot_mode & IPU_ROT_BIT_HFLIP)) ? 8 : 2;
585 	}
586 
587 	/*
588 	 * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
589 	 * formats to guarantee 8-byte aligned line start addresses in the
590 	 * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
591 	 * for all other formats.
592 	 */
593 	return (ipu_rot_mode_is_irt(rot_mode) &&
594 		fmt->planar && !fmt->uv_packed) ?
595 		8 * fmt->uv_width_dec : 8;
596 }
597 
598 static inline u32 tile_height_align(enum ipu_image_convert_type type,
599 				    const struct ipu_image_pixfmt *fmt,
600 				    enum ipu_rotate_mode rot_mode)
601 {
602 	if (type == IMAGE_CONVERT_IN || !ipu_rot_mode_is_irt(rot_mode))
603 		return 2;
604 
605 	/*
606 	 * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
607 	 * formats to guarantee 8-byte aligned line start addresses in the
608 	 * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
609 	 * for all other formats.
610 	 */
611 	return (fmt->planar && !fmt->uv_packed) ? 8 * fmt->uv_width_dec : 8;
612 }
613 
614 /*
615  * Fill in left position and width and for all tiles in an input column, and
616  * for all corresponding output tiles. If the 90° rotator is used, the output
617  * tiles are in a row, and output tile top position and height are set.
618  */
619 static void fill_tile_column(struct ipu_image_convert_ctx *ctx,
620 			     unsigned int col,
621 			     struct ipu_image_convert_image *in,
622 			     unsigned int in_left, unsigned int in_width,
623 			     struct ipu_image_convert_image *out,
624 			     unsigned int out_left, unsigned int out_width)
625 {
626 	unsigned int row, tile_idx;
627 	struct ipu_image_tile *in_tile, *out_tile;
628 
629 	for (row = 0; row < in->num_rows; row++) {
630 		tile_idx = in->num_cols * row + col;
631 		in_tile = &in->tile[tile_idx];
632 		out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
633 
634 		in_tile->left = in_left;
635 		in_tile->width = in_width;
636 
637 		if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
638 			out_tile->top = out_left;
639 			out_tile->height = out_width;
640 		} else {
641 			out_tile->left = out_left;
642 			out_tile->width = out_width;
643 		}
644 	}
645 }
646 
647 /*
648  * Fill in top position and height and for all tiles in an input row, and
649  * for all corresponding output tiles. If the 90° rotator is used, the output
650  * tiles are in a column, and output tile left position and width are set.
651  */
652 static void fill_tile_row(struct ipu_image_convert_ctx *ctx, unsigned int row,
653 			  struct ipu_image_convert_image *in,
654 			  unsigned int in_top, unsigned int in_height,
655 			  struct ipu_image_convert_image *out,
656 			  unsigned int out_top, unsigned int out_height)
657 {
658 	unsigned int col, tile_idx;
659 	struct ipu_image_tile *in_tile, *out_tile;
660 
661 	for (col = 0; col < in->num_cols; col++) {
662 		tile_idx = in->num_cols * row + col;
663 		in_tile = &in->tile[tile_idx];
664 		out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
665 
666 		in_tile->top = in_top;
667 		in_tile->height = in_height;
668 
669 		if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
670 			out_tile->left = out_top;
671 			out_tile->width = out_height;
672 		} else {
673 			out_tile->top = out_top;
674 			out_tile->height = out_height;
675 		}
676 	}
677 }
678 
679 /*
680  * Find the best horizontal and vertical seam positions to split into tiles.
681  * Minimize the fractional part of the input sampling position for the
682  * top / left pixels of each tile.
683  */
684 static void find_seams(struct ipu_image_convert_ctx *ctx,
685 		       struct ipu_image_convert_image *in,
686 		       struct ipu_image_convert_image *out)
687 {
688 	struct device *dev = ctx->chan->priv->ipu->dev;
689 	unsigned int resized_width = out->base.rect.width;
690 	unsigned int resized_height = out->base.rect.height;
691 	unsigned int col;
692 	unsigned int row;
693 	unsigned int in_left_align = tile_left_align(in->fmt);
694 	unsigned int in_top_align = tile_top_align(in->fmt);
695 	unsigned int out_left_align = tile_left_align(out->fmt);
696 	unsigned int out_top_align = tile_top_align(out->fmt);
697 	unsigned int out_width_align = tile_width_align(out->type, out->fmt,
698 							ctx->rot_mode);
699 	unsigned int out_height_align = tile_height_align(out->type, out->fmt,
700 							  ctx->rot_mode);
701 	unsigned int in_right = in->base.rect.width;
702 	unsigned int in_bottom = in->base.rect.height;
703 	unsigned int out_right = out->base.rect.width;
704 	unsigned int out_bottom = out->base.rect.height;
705 	unsigned int flipped_out_left;
706 	unsigned int flipped_out_top;
707 
708 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
709 		/* Switch width/height and align top left to IRT block size */
710 		resized_width = out->base.rect.height;
711 		resized_height = out->base.rect.width;
712 		out_left_align = out_height_align;
713 		out_top_align = out_width_align;
714 		out_width_align = out_left_align;
715 		out_height_align = out_top_align;
716 		out_right = out->base.rect.height;
717 		out_bottom = out->base.rect.width;
718 	}
719 
720 	for (col = in->num_cols - 1; col > 0; col--) {
721 		bool allow_in_overshoot = ipu_rot_mode_is_irt(ctx->rot_mode) ||
722 					  !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
723 		bool allow_out_overshoot = (col < in->num_cols - 1) &&
724 					   !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
725 		unsigned int in_left;
726 		unsigned int out_left;
727 
728 		/*
729 		 * Align input width to burst length if the scaling step flips
730 		 * horizontally.
731 		 */
732 
733 		find_best_seam(ctx, col,
734 			       in_right, out_right,
735 			       in_left_align, out_left_align,
736 			       allow_in_overshoot ? 1 : 8 /* burst length */,
737 			       allow_out_overshoot ? 1 : out_width_align,
738 			       ctx->downsize_coeff_h, ctx->image_resize_coeff_h,
739 			       &in_left, &out_left);
740 
741 		if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
742 			flipped_out_left = resized_width - out_right;
743 		else
744 			flipped_out_left = out_left;
745 
746 		fill_tile_column(ctx, col, in, in_left, in_right - in_left,
747 				 out, flipped_out_left, out_right - out_left);
748 
749 		dev_dbg(dev, "%s: col %u: %u, %u -> %u, %u\n", __func__, col,
750 			in_left, in_right - in_left,
751 			flipped_out_left, out_right - out_left);
752 
753 		in_right = in_left;
754 		out_right = out_left;
755 	}
756 
757 	flipped_out_left = (ctx->rot_mode & IPU_ROT_BIT_HFLIP) ?
758 			   resized_width - out_right : 0;
759 
760 	fill_tile_column(ctx, 0, in, 0, in_right,
761 			 out, flipped_out_left, out_right);
762 
763 	dev_dbg(dev, "%s: col 0: 0, %u -> %u, %u\n", __func__,
764 		in_right, flipped_out_left, out_right);
765 
766 	for (row = in->num_rows - 1; row > 0; row--) {
767 		bool allow_overshoot = row < in->num_rows - 1;
768 		unsigned int in_top;
769 		unsigned int out_top;
770 
771 		find_best_seam(ctx, row,
772 			       in_bottom, out_bottom,
773 			       in_top_align, out_top_align,
774 			       1, allow_overshoot ? 1 : out_height_align,
775 			       ctx->downsize_coeff_v, ctx->image_resize_coeff_v,
776 			       &in_top, &out_top);
777 
778 		if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
779 		    ipu_rot_mode_is_irt(ctx->rot_mode))
780 			flipped_out_top = resized_height - out_bottom;
781 		else
782 			flipped_out_top = out_top;
783 
784 		fill_tile_row(ctx, row, in, in_top, in_bottom - in_top,
785 			      out, flipped_out_top, out_bottom - out_top);
786 
787 		dev_dbg(dev, "%s: row %u: %u, %u -> %u, %u\n", __func__, row,
788 			in_top, in_bottom - in_top,
789 			flipped_out_top, out_bottom - out_top);
790 
791 		in_bottom = in_top;
792 		out_bottom = out_top;
793 	}
794 
795 	if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
796 	    ipu_rot_mode_is_irt(ctx->rot_mode))
797 		flipped_out_top = resized_height - out_bottom;
798 	else
799 		flipped_out_top = 0;
800 
801 	fill_tile_row(ctx, 0, in, 0, in_bottom,
802 		      out, flipped_out_top, out_bottom);
803 
804 	dev_dbg(dev, "%s: row 0: 0, %u -> %u, %u\n", __func__,
805 		in_bottom, flipped_out_top, out_bottom);
806 }
807 
808 static void calc_tile_dimensions(struct ipu_image_convert_ctx *ctx,
809 				 struct ipu_image_convert_image *image)
810 {
811 	struct ipu_image_convert_chan *chan = ctx->chan;
812 	struct ipu_image_convert_priv *priv = chan->priv;
813 	unsigned int i;
814 
815 	for (i = 0; i < ctx->num_tiles; i++) {
816 		struct ipu_image_tile *tile;
817 		const unsigned int row = i / image->num_cols;
818 		const unsigned int col = i % image->num_cols;
819 
820 		if (image->type == IMAGE_CONVERT_OUT)
821 			tile = &image->tile[ctx->out_tile_map[i]];
822 		else
823 			tile = &image->tile[i];
824 
825 		tile->size = ((tile->height * image->fmt->bpp) >> 3) *
826 			tile->width;
827 
828 		if (image->fmt->planar) {
829 			tile->stride = tile->width;
830 			tile->rot_stride = tile->height;
831 		} else {
832 			tile->stride =
833 				(image->fmt->bpp * tile->width) >> 3;
834 			tile->rot_stride =
835 				(image->fmt->bpp * tile->height) >> 3;
836 		}
837 
838 		dev_dbg(priv->ipu->dev,
839 			"task %u: ctx %p: %s@[%u,%u]: %ux%u@%u,%u\n",
840 			chan->ic_task, ctx,
841 			image->type == IMAGE_CONVERT_IN ? "Input" : "Output",
842 			row, col,
843 			tile->width, tile->height, tile->left, tile->top);
844 	}
845 }
846 
847 /*
848  * Use the rotation transformation to find the tile coordinates
849  * (row, col) of a tile in the destination frame that corresponds
850  * to the given tile coordinates of a source frame. The destination
851  * coordinate is then converted to a tile index.
852  */
853 static int transform_tile_index(struct ipu_image_convert_ctx *ctx,
854 				int src_row, int src_col)
855 {
856 	struct ipu_image_convert_chan *chan = ctx->chan;
857 	struct ipu_image_convert_priv *priv = chan->priv;
858 	struct ipu_image_convert_image *s_image = &ctx->in;
859 	struct ipu_image_convert_image *d_image = &ctx->out;
860 	int dst_row, dst_col;
861 
862 	/* with no rotation it's a 1:1 mapping */
863 	if (ctx->rot_mode == IPU_ROTATE_NONE)
864 		return src_row * s_image->num_cols + src_col;
865 
866 	/*
867 	 * before doing the transform, first we have to translate
868 	 * source row,col for an origin in the center of s_image
869 	 */
870 	src_row = src_row * 2 - (s_image->num_rows - 1);
871 	src_col = src_col * 2 - (s_image->num_cols - 1);
872 
873 	/* do the rotation transform */
874 	if (ctx->rot_mode & IPU_ROT_BIT_90) {
875 		dst_col = -src_row;
876 		dst_row = src_col;
877 	} else {
878 		dst_col = src_col;
879 		dst_row = src_row;
880 	}
881 
882 	/* apply flip */
883 	if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
884 		dst_col = -dst_col;
885 	if (ctx->rot_mode & IPU_ROT_BIT_VFLIP)
886 		dst_row = -dst_row;
887 
888 	dev_dbg(priv->ipu->dev, "task %u: ctx %p: [%d,%d] --> [%d,%d]\n",
889 		chan->ic_task, ctx, src_col, src_row, dst_col, dst_row);
890 
891 	/*
892 	 * finally translate dest row,col using an origin in upper
893 	 * left of d_image
894 	 */
895 	dst_row += d_image->num_rows - 1;
896 	dst_col += d_image->num_cols - 1;
897 	dst_row /= 2;
898 	dst_col /= 2;
899 
900 	return dst_row * d_image->num_cols + dst_col;
901 }
902 
903 /*
904  * Fill the out_tile_map[] with transformed destination tile indeces.
905  */
906 static void calc_out_tile_map(struct ipu_image_convert_ctx *ctx)
907 {
908 	struct ipu_image_convert_image *s_image = &ctx->in;
909 	unsigned int row, col, tile = 0;
910 
911 	for (row = 0; row < s_image->num_rows; row++) {
912 		for (col = 0; col < s_image->num_cols; col++) {
913 			ctx->out_tile_map[tile] =
914 				transform_tile_index(ctx, row, col);
915 			tile++;
916 		}
917 	}
918 }
919 
920 static int calc_tile_offsets_planar(struct ipu_image_convert_ctx *ctx,
921 				    struct ipu_image_convert_image *image)
922 {
923 	struct ipu_image_convert_chan *chan = ctx->chan;
924 	struct ipu_image_convert_priv *priv = chan->priv;
925 	const struct ipu_image_pixfmt *fmt = image->fmt;
926 	unsigned int row, col, tile = 0;
927 	u32 H, top, y_stride, uv_stride;
928 	u32 uv_row_off, uv_col_off, uv_off, u_off, v_off, tmp;
929 	u32 y_row_off, y_col_off, y_off;
930 	u32 y_size, uv_size;
931 
932 	/* setup some convenience vars */
933 	H = image->base.pix.height;
934 
935 	y_stride = image->stride;
936 	uv_stride = y_stride / fmt->uv_width_dec;
937 	if (fmt->uv_packed)
938 		uv_stride *= 2;
939 
940 	y_size = H * y_stride;
941 	uv_size = y_size / (fmt->uv_width_dec * fmt->uv_height_dec);
942 
943 	for (row = 0; row < image->num_rows; row++) {
944 		top = image->tile[tile].top;
945 		y_row_off = top * y_stride;
946 		uv_row_off = (top * uv_stride) / fmt->uv_height_dec;
947 
948 		for (col = 0; col < image->num_cols; col++) {
949 			y_col_off = image->tile[tile].left;
950 			uv_col_off = y_col_off / fmt->uv_width_dec;
951 			if (fmt->uv_packed)
952 				uv_col_off *= 2;
953 
954 			y_off = y_row_off + y_col_off;
955 			uv_off = uv_row_off + uv_col_off;
956 
957 			u_off = y_size - y_off + uv_off;
958 			v_off = (fmt->uv_packed) ? 0 : u_off + uv_size;
959 			if (fmt->uv_swapped) {
960 				tmp = u_off;
961 				u_off = v_off;
962 				v_off = tmp;
963 			}
964 
965 			image->tile[tile].offset = y_off;
966 			image->tile[tile].u_off = u_off;
967 			image->tile[tile++].v_off = v_off;
968 
969 			if ((y_off & 0x7) || (u_off & 0x7) || (v_off & 0x7)) {
970 				dev_err(priv->ipu->dev,
971 					"task %u: ctx %p: %s@[%d,%d]: "
972 					"y_off %08x, u_off %08x, v_off %08x\n",
973 					chan->ic_task, ctx,
974 					image->type == IMAGE_CONVERT_IN ?
975 					"Input" : "Output", row, col,
976 					y_off, u_off, v_off);
977 				return -EINVAL;
978 			}
979 		}
980 	}
981 
982 	return 0;
983 }
984 
985 static int calc_tile_offsets_packed(struct ipu_image_convert_ctx *ctx,
986 				    struct ipu_image_convert_image *image)
987 {
988 	struct ipu_image_convert_chan *chan = ctx->chan;
989 	struct ipu_image_convert_priv *priv = chan->priv;
990 	const struct ipu_image_pixfmt *fmt = image->fmt;
991 	unsigned int row, col, tile = 0;
992 	u32 bpp, stride, offset;
993 	u32 row_off, col_off;
994 
995 	/* setup some convenience vars */
996 	stride = image->stride;
997 	bpp = fmt->bpp;
998 
999 	for (row = 0; row < image->num_rows; row++) {
1000 		row_off = image->tile[tile].top * stride;
1001 
1002 		for (col = 0; col < image->num_cols; col++) {
1003 			col_off = (image->tile[tile].left * bpp) >> 3;
1004 
1005 			offset = row_off + col_off;
1006 
1007 			image->tile[tile].offset = offset;
1008 			image->tile[tile].u_off = 0;
1009 			image->tile[tile++].v_off = 0;
1010 
1011 			if (offset & 0x7) {
1012 				dev_err(priv->ipu->dev,
1013 					"task %u: ctx %p: %s@[%d,%d]: "
1014 					"phys %08x\n",
1015 					chan->ic_task, ctx,
1016 					image->type == IMAGE_CONVERT_IN ?
1017 					"Input" : "Output", row, col,
1018 					row_off + col_off);
1019 				return -EINVAL;
1020 			}
1021 		}
1022 	}
1023 
1024 	return 0;
1025 }
1026 
1027 static int calc_tile_offsets(struct ipu_image_convert_ctx *ctx,
1028 			      struct ipu_image_convert_image *image)
1029 {
1030 	if (image->fmt->planar)
1031 		return calc_tile_offsets_planar(ctx, image);
1032 
1033 	return calc_tile_offsets_packed(ctx, image);
1034 }
1035 
1036 /*
1037  * Calculate the resizing ratio for the IC main processing section given input
1038  * size, fixed downsizing coefficient, and output size.
1039  * Either round to closest for the next tile's first pixel to minimize seams
1040  * and distortion (for all but right column / bottom row), or round down to
1041  * avoid sampling beyond the edges of the input image for this tile's last
1042  * pixel.
1043  * Returns the resizing coefficient, resizing ratio is 8192.0 / resize_coeff.
1044  */
1045 static u32 calc_resize_coeff(u32 input_size, u32 downsize_coeff,
1046 			     u32 output_size, bool allow_overshoot)
1047 {
1048 	u32 downsized = input_size >> downsize_coeff;
1049 
1050 	if (allow_overshoot)
1051 		return DIV_ROUND_CLOSEST(8192 * downsized, output_size);
1052 	else
1053 		return 8192 * (downsized - 1) / (output_size - 1);
1054 }
1055 
1056 /*
1057  * Slightly modify resize coefficients per tile to hide the bilinear
1058  * interpolator reset at tile borders, shifting the right / bottom edge
1059  * by up to a half input pixel. This removes noticeable seams between
1060  * tiles at higher upscaling factors.
1061  */
1062 static void calc_tile_resize_coefficients(struct ipu_image_convert_ctx *ctx)
1063 {
1064 	struct ipu_image_convert_chan *chan = ctx->chan;
1065 	struct ipu_image_convert_priv *priv = chan->priv;
1066 	struct ipu_image_tile *in_tile, *out_tile;
1067 	unsigned int col, row, tile_idx;
1068 	unsigned int last_output;
1069 
1070 	for (col = 0; col < ctx->in.num_cols; col++) {
1071 		bool closest = (col < ctx->in.num_cols - 1) &&
1072 			       !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
1073 		u32 resized_width;
1074 		u32 resize_coeff_h;
1075 
1076 		tile_idx = col;
1077 		in_tile = &ctx->in.tile[tile_idx];
1078 		out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1079 
1080 		if (ipu_rot_mode_is_irt(ctx->rot_mode))
1081 			resized_width = out_tile->height;
1082 		else
1083 			resized_width = out_tile->width;
1084 
1085 		resize_coeff_h = calc_resize_coeff(in_tile->width,
1086 						   ctx->downsize_coeff_h,
1087 						   resized_width, closest);
1088 
1089 		dev_dbg(priv->ipu->dev, "%s: column %u hscale: *8192/%u\n",
1090 			__func__, col, resize_coeff_h);
1091 
1092 
1093 		for (row = 0; row < ctx->in.num_rows; row++) {
1094 			tile_idx = row * ctx->in.num_cols + col;
1095 			in_tile = &ctx->in.tile[tile_idx];
1096 			out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1097 
1098 			/*
1099 			 * With the horizontal scaling factor known, round up
1100 			 * resized width (output width or height) to burst size.
1101 			 */
1102 			if (ipu_rot_mode_is_irt(ctx->rot_mode))
1103 				out_tile->height = round_up(resized_width, 8);
1104 			else
1105 				out_tile->width = round_up(resized_width, 8);
1106 
1107 			/*
1108 			 * Calculate input width from the last accessed input
1109 			 * pixel given resized width and scaling coefficients.
1110 			 * Round up to burst size.
1111 			 */
1112 			last_output = round_up(resized_width, 8) - 1;
1113 			if (closest)
1114 				last_output++;
1115 			in_tile->width = round_up(
1116 				(DIV_ROUND_UP(last_output * resize_coeff_h,
1117 					      8192) + 1)
1118 				<< ctx->downsize_coeff_h, 8);
1119 		}
1120 
1121 		ctx->resize_coeffs_h[col] = resize_coeff_h;
1122 	}
1123 
1124 	for (row = 0; row < ctx->in.num_rows; row++) {
1125 		bool closest = (row < ctx->in.num_rows - 1) &&
1126 			       !(ctx->rot_mode & IPU_ROT_BIT_VFLIP);
1127 		u32 resized_height;
1128 		u32 resize_coeff_v;
1129 
1130 		tile_idx = row * ctx->in.num_cols;
1131 		in_tile = &ctx->in.tile[tile_idx];
1132 		out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1133 
1134 		if (ipu_rot_mode_is_irt(ctx->rot_mode))
1135 			resized_height = out_tile->width;
1136 		else
1137 			resized_height = out_tile->height;
1138 
1139 		resize_coeff_v = calc_resize_coeff(in_tile->height,
1140 						   ctx->downsize_coeff_v,
1141 						   resized_height, closest);
1142 
1143 		dev_dbg(priv->ipu->dev, "%s: row %u vscale: *8192/%u\n",
1144 			__func__, row, resize_coeff_v);
1145 
1146 		for (col = 0; col < ctx->in.num_cols; col++) {
1147 			tile_idx = row * ctx->in.num_cols + col;
1148 			in_tile = &ctx->in.tile[tile_idx];
1149 			out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1150 
1151 			/*
1152 			 * With the vertical scaling factor known, round up
1153 			 * resized height (output width or height) to IDMAC
1154 			 * limitations.
1155 			 */
1156 			if (ipu_rot_mode_is_irt(ctx->rot_mode))
1157 				out_tile->width = round_up(resized_height, 2);
1158 			else
1159 				out_tile->height = round_up(resized_height, 2);
1160 
1161 			/*
1162 			 * Calculate input width from the last accessed input
1163 			 * pixel given resized height and scaling coefficients.
1164 			 * Align to IDMAC restrictions.
1165 			 */
1166 			last_output = round_up(resized_height, 2) - 1;
1167 			if (closest)
1168 				last_output++;
1169 			in_tile->height = round_up(
1170 				(DIV_ROUND_UP(last_output * resize_coeff_v,
1171 					      8192) + 1)
1172 				<< ctx->downsize_coeff_v, 2);
1173 		}
1174 
1175 		ctx->resize_coeffs_v[row] = resize_coeff_v;
1176 	}
1177 }
1178 
1179 /*
1180  * return the number of runs in given queue (pending_q or done_q)
1181  * for this context. hold irqlock when calling.
1182  */
1183 static int get_run_count(struct ipu_image_convert_ctx *ctx,
1184 			 struct list_head *q)
1185 {
1186 	struct ipu_image_convert_run *run;
1187 	int count = 0;
1188 
1189 	lockdep_assert_held(&ctx->chan->irqlock);
1190 
1191 	list_for_each_entry(run, q, list) {
1192 		if (run->ctx == ctx)
1193 			count++;
1194 	}
1195 
1196 	return count;
1197 }
1198 
1199 static void convert_stop(struct ipu_image_convert_run *run)
1200 {
1201 	struct ipu_image_convert_ctx *ctx = run->ctx;
1202 	struct ipu_image_convert_chan *chan = ctx->chan;
1203 	struct ipu_image_convert_priv *priv = chan->priv;
1204 
1205 	dev_dbg(priv->ipu->dev, "%s: task %u: stopping ctx %p run %p\n",
1206 		__func__, chan->ic_task, ctx, run);
1207 
1208 	/* disable IC tasks and the channels */
1209 	ipu_ic_task_disable(chan->ic);
1210 	ipu_idmac_disable_channel(chan->in_chan);
1211 	ipu_idmac_disable_channel(chan->out_chan);
1212 
1213 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1214 		ipu_idmac_disable_channel(chan->rotation_in_chan);
1215 		ipu_idmac_disable_channel(chan->rotation_out_chan);
1216 		ipu_idmac_unlink(chan->out_chan, chan->rotation_in_chan);
1217 	}
1218 
1219 	ipu_ic_disable(chan->ic);
1220 }
1221 
1222 static void init_idmac_channel(struct ipu_image_convert_ctx *ctx,
1223 			       struct ipuv3_channel *channel,
1224 			       struct ipu_image_convert_image *image,
1225 			       enum ipu_rotate_mode rot_mode,
1226 			       bool rot_swap_width_height,
1227 			       unsigned int tile)
1228 {
1229 	struct ipu_image_convert_chan *chan = ctx->chan;
1230 	unsigned int burst_size;
1231 	u32 width, height, stride;
1232 	dma_addr_t addr0, addr1 = 0;
1233 	struct ipu_image tile_image;
1234 	unsigned int tile_idx[2];
1235 
1236 	if (image->type == IMAGE_CONVERT_OUT) {
1237 		tile_idx[0] = ctx->out_tile_map[tile];
1238 		tile_idx[1] = ctx->out_tile_map[1];
1239 	} else {
1240 		tile_idx[0] = tile;
1241 		tile_idx[1] = 1;
1242 	}
1243 
1244 	if (rot_swap_width_height) {
1245 		width = image->tile[tile_idx[0]].height;
1246 		height = image->tile[tile_idx[0]].width;
1247 		stride = image->tile[tile_idx[0]].rot_stride;
1248 		addr0 = ctx->rot_intermediate[0].phys;
1249 		if (ctx->double_buffering)
1250 			addr1 = ctx->rot_intermediate[1].phys;
1251 	} else {
1252 		width = image->tile[tile_idx[0]].width;
1253 		height = image->tile[tile_idx[0]].height;
1254 		stride = image->stride;
1255 		addr0 = image->base.phys0 +
1256 			image->tile[tile_idx[0]].offset;
1257 		if (ctx->double_buffering)
1258 			addr1 = image->base.phys0 +
1259 				image->tile[tile_idx[1]].offset;
1260 	}
1261 
1262 	ipu_cpmem_zero(channel);
1263 
1264 	memset(&tile_image, 0, sizeof(tile_image));
1265 	tile_image.pix.width = tile_image.rect.width = width;
1266 	tile_image.pix.height = tile_image.rect.height = height;
1267 	tile_image.pix.bytesperline = stride;
1268 	tile_image.pix.pixelformat =  image->fmt->fourcc;
1269 	tile_image.phys0 = addr0;
1270 	tile_image.phys1 = addr1;
1271 	if (image->fmt->planar && !rot_swap_width_height) {
1272 		tile_image.u_offset = image->tile[tile_idx[0]].u_off;
1273 		tile_image.v_offset = image->tile[tile_idx[0]].v_off;
1274 	}
1275 
1276 	ipu_cpmem_set_image(channel, &tile_image);
1277 
1278 	if (rot_mode)
1279 		ipu_cpmem_set_rotation(channel, rot_mode);
1280 
1281 	/*
1282 	 * Skip writing U and V components to odd rows in the output
1283 	 * channels for planar 4:2:0.
1284 	 */
1285 	if ((channel == chan->out_chan ||
1286 	     channel == chan->rotation_out_chan) &&
1287 	    image->fmt->planar && image->fmt->uv_height_dec == 2)
1288 		ipu_cpmem_skip_odd_chroma_rows(channel);
1289 
1290 	if (channel == chan->rotation_in_chan ||
1291 	    channel == chan->rotation_out_chan) {
1292 		burst_size = 8;
1293 		ipu_cpmem_set_block_mode(channel);
1294 	} else
1295 		burst_size = (width % 16) ? 8 : 16;
1296 
1297 	ipu_cpmem_set_burstsize(channel, burst_size);
1298 
1299 	ipu_ic_task_idma_init(chan->ic, channel, width, height,
1300 			      burst_size, rot_mode);
1301 
1302 	/*
1303 	 * Setting a non-zero AXI ID collides with the PRG AXI snooping, so
1304 	 * only do this when there is no PRG present.
1305 	 */
1306 	if (!channel->ipu->prg_priv)
1307 		ipu_cpmem_set_axi_id(channel, 1);
1308 
1309 	ipu_idmac_set_double_buffer(channel, ctx->double_buffering);
1310 }
1311 
1312 static int convert_start(struct ipu_image_convert_run *run, unsigned int tile)
1313 {
1314 	struct ipu_image_convert_ctx *ctx = run->ctx;
1315 	struct ipu_image_convert_chan *chan = ctx->chan;
1316 	struct ipu_image_convert_priv *priv = chan->priv;
1317 	struct ipu_image_convert_image *s_image = &ctx->in;
1318 	struct ipu_image_convert_image *d_image = &ctx->out;
1319 	unsigned int dst_tile = ctx->out_tile_map[tile];
1320 	unsigned int dest_width, dest_height;
1321 	unsigned int col, row;
1322 	u32 rsc;
1323 	int ret;
1324 
1325 	dev_dbg(priv->ipu->dev, "%s: task %u: starting ctx %p run %p tile %u -> %u\n",
1326 		__func__, chan->ic_task, ctx, run, tile, dst_tile);
1327 
1328 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1329 		/* swap width/height for resizer */
1330 		dest_width = d_image->tile[dst_tile].height;
1331 		dest_height = d_image->tile[dst_tile].width;
1332 	} else {
1333 		dest_width = d_image->tile[dst_tile].width;
1334 		dest_height = d_image->tile[dst_tile].height;
1335 	}
1336 
1337 	row = tile / s_image->num_cols;
1338 	col = tile % s_image->num_cols;
1339 
1340 	rsc =  (ctx->downsize_coeff_v << 30) |
1341 	       (ctx->resize_coeffs_v[row] << 16) |
1342 	       (ctx->downsize_coeff_h << 14) |
1343 	       (ctx->resize_coeffs_h[col]);
1344 
1345 	dev_dbg(priv->ipu->dev, "%s: %ux%u -> %ux%u (rsc = 0x%x)\n",
1346 		__func__, s_image->tile[tile].width,
1347 		s_image->tile[tile].height, dest_width, dest_height, rsc);
1348 
1349 	/* setup the IC resizer and CSC */
1350 	ret = ipu_ic_task_init_rsc(chan->ic, &ctx->csc,
1351 				   s_image->tile[tile].width,
1352 				   s_image->tile[tile].height,
1353 				   dest_width,
1354 				   dest_height,
1355 				   rsc);
1356 	if (ret) {
1357 		dev_err(priv->ipu->dev, "ipu_ic_task_init failed, %d\n", ret);
1358 		return ret;
1359 	}
1360 
1361 	/* init the source MEM-->IC PP IDMAC channel */
1362 	init_idmac_channel(ctx, chan->in_chan, s_image,
1363 			   IPU_ROTATE_NONE, false, tile);
1364 
1365 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1366 		/* init the IC PP-->MEM IDMAC channel */
1367 		init_idmac_channel(ctx, chan->out_chan, d_image,
1368 				   IPU_ROTATE_NONE, true, tile);
1369 
1370 		/* init the MEM-->IC PP ROT IDMAC channel */
1371 		init_idmac_channel(ctx, chan->rotation_in_chan, d_image,
1372 				   ctx->rot_mode, true, tile);
1373 
1374 		/* init the destination IC PP ROT-->MEM IDMAC channel */
1375 		init_idmac_channel(ctx, chan->rotation_out_chan, d_image,
1376 				   IPU_ROTATE_NONE, false, tile);
1377 
1378 		/* now link IC PP-->MEM to MEM-->IC PP ROT */
1379 		ipu_idmac_link(chan->out_chan, chan->rotation_in_chan);
1380 	} else {
1381 		/* init the destination IC PP-->MEM IDMAC channel */
1382 		init_idmac_channel(ctx, chan->out_chan, d_image,
1383 				   ctx->rot_mode, false, tile);
1384 	}
1385 
1386 	/* enable the IC */
1387 	ipu_ic_enable(chan->ic);
1388 
1389 	/* set buffers ready */
1390 	ipu_idmac_select_buffer(chan->in_chan, 0);
1391 	ipu_idmac_select_buffer(chan->out_chan, 0);
1392 	if (ipu_rot_mode_is_irt(ctx->rot_mode))
1393 		ipu_idmac_select_buffer(chan->rotation_out_chan, 0);
1394 	if (ctx->double_buffering) {
1395 		ipu_idmac_select_buffer(chan->in_chan, 1);
1396 		ipu_idmac_select_buffer(chan->out_chan, 1);
1397 		if (ipu_rot_mode_is_irt(ctx->rot_mode))
1398 			ipu_idmac_select_buffer(chan->rotation_out_chan, 1);
1399 	}
1400 
1401 	/* enable the channels! */
1402 	ipu_idmac_enable_channel(chan->in_chan);
1403 	ipu_idmac_enable_channel(chan->out_chan);
1404 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1405 		ipu_idmac_enable_channel(chan->rotation_in_chan);
1406 		ipu_idmac_enable_channel(chan->rotation_out_chan);
1407 	}
1408 
1409 	ipu_ic_task_enable(chan->ic);
1410 
1411 	ipu_cpmem_dump(chan->in_chan);
1412 	ipu_cpmem_dump(chan->out_chan);
1413 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1414 		ipu_cpmem_dump(chan->rotation_in_chan);
1415 		ipu_cpmem_dump(chan->rotation_out_chan);
1416 	}
1417 
1418 	ipu_dump(priv->ipu);
1419 
1420 	return 0;
1421 }
1422 
1423 /* hold irqlock when calling */
1424 static int do_run(struct ipu_image_convert_run *run)
1425 {
1426 	struct ipu_image_convert_ctx *ctx = run->ctx;
1427 	struct ipu_image_convert_chan *chan = ctx->chan;
1428 
1429 	lockdep_assert_held(&chan->irqlock);
1430 
1431 	ctx->in.base.phys0 = run->in_phys;
1432 	ctx->out.base.phys0 = run->out_phys;
1433 
1434 	ctx->cur_buf_num = 0;
1435 	ctx->next_tile = 1;
1436 
1437 	/* remove run from pending_q and set as current */
1438 	list_del(&run->list);
1439 	chan->current_run = run;
1440 
1441 	return convert_start(run, 0);
1442 }
1443 
1444 /* hold irqlock when calling */
1445 static void run_next(struct ipu_image_convert_chan *chan)
1446 {
1447 	struct ipu_image_convert_priv *priv = chan->priv;
1448 	struct ipu_image_convert_run *run, *tmp;
1449 	int ret;
1450 
1451 	lockdep_assert_held(&chan->irqlock);
1452 
1453 	list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
1454 		/* skip contexts that are aborting */
1455 		if (run->ctx->aborting) {
1456 			dev_dbg(priv->ipu->dev,
1457 				"%s: task %u: skipping aborting ctx %p run %p\n",
1458 				__func__, chan->ic_task, run->ctx, run);
1459 			continue;
1460 		}
1461 
1462 		ret = do_run(run);
1463 		if (!ret)
1464 			break;
1465 
1466 		/*
1467 		 * something went wrong with start, add the run
1468 		 * to done q and continue to the next run in the
1469 		 * pending q.
1470 		 */
1471 		run->status = ret;
1472 		list_add_tail(&run->list, &chan->done_q);
1473 		chan->current_run = NULL;
1474 	}
1475 }
1476 
1477 static void empty_done_q(struct ipu_image_convert_chan *chan)
1478 {
1479 	struct ipu_image_convert_priv *priv = chan->priv;
1480 	struct ipu_image_convert_run *run;
1481 	unsigned long flags;
1482 
1483 	spin_lock_irqsave(&chan->irqlock, flags);
1484 
1485 	while (!list_empty(&chan->done_q)) {
1486 		run = list_entry(chan->done_q.next,
1487 				 struct ipu_image_convert_run,
1488 				 list);
1489 
1490 		list_del(&run->list);
1491 
1492 		dev_dbg(priv->ipu->dev,
1493 			"%s: task %u: completing ctx %p run %p with %d\n",
1494 			__func__, chan->ic_task, run->ctx, run, run->status);
1495 
1496 		/* call the completion callback and free the run */
1497 		spin_unlock_irqrestore(&chan->irqlock, flags);
1498 		run->ctx->complete(run, run->ctx->complete_context);
1499 		spin_lock_irqsave(&chan->irqlock, flags);
1500 	}
1501 
1502 	spin_unlock_irqrestore(&chan->irqlock, flags);
1503 }
1504 
1505 /*
1506  * the bottom half thread clears out the done_q, calling the
1507  * completion handler for each.
1508  */
1509 static irqreturn_t do_bh(int irq, void *dev_id)
1510 {
1511 	struct ipu_image_convert_chan *chan = dev_id;
1512 	struct ipu_image_convert_priv *priv = chan->priv;
1513 	struct ipu_image_convert_ctx *ctx;
1514 	unsigned long flags;
1515 
1516 	dev_dbg(priv->ipu->dev, "%s: task %u: enter\n", __func__,
1517 		chan->ic_task);
1518 
1519 	empty_done_q(chan);
1520 
1521 	spin_lock_irqsave(&chan->irqlock, flags);
1522 
1523 	/*
1524 	 * the done_q is cleared out, signal any contexts
1525 	 * that are aborting that abort can complete.
1526 	 */
1527 	list_for_each_entry(ctx, &chan->ctx_list, list) {
1528 		if (ctx->aborting) {
1529 			dev_dbg(priv->ipu->dev,
1530 				"%s: task %u: signaling abort for ctx %p\n",
1531 				__func__, chan->ic_task, ctx);
1532 			complete_all(&ctx->aborted);
1533 		}
1534 	}
1535 
1536 	spin_unlock_irqrestore(&chan->irqlock, flags);
1537 
1538 	dev_dbg(priv->ipu->dev, "%s: task %u: exit\n", __func__,
1539 		chan->ic_task);
1540 
1541 	return IRQ_HANDLED;
1542 }
1543 
1544 static bool ic_settings_changed(struct ipu_image_convert_ctx *ctx)
1545 {
1546 	unsigned int cur_tile = ctx->next_tile - 1;
1547 	unsigned int next_tile = ctx->next_tile;
1548 
1549 	if (ctx->resize_coeffs_h[cur_tile % ctx->in.num_cols] !=
1550 	    ctx->resize_coeffs_h[next_tile % ctx->in.num_cols] ||
1551 	    ctx->resize_coeffs_v[cur_tile / ctx->in.num_cols] !=
1552 	    ctx->resize_coeffs_v[next_tile / ctx->in.num_cols] ||
1553 	    ctx->in.tile[cur_tile].width != ctx->in.tile[next_tile].width ||
1554 	    ctx->in.tile[cur_tile].height != ctx->in.tile[next_tile].height ||
1555 	    ctx->out.tile[cur_tile].width != ctx->out.tile[next_tile].width ||
1556 	    ctx->out.tile[cur_tile].height != ctx->out.tile[next_tile].height)
1557 		return true;
1558 
1559 	return false;
1560 }
1561 
1562 /* hold irqlock when calling */
1563 static irqreturn_t do_irq(struct ipu_image_convert_run *run)
1564 {
1565 	struct ipu_image_convert_ctx *ctx = run->ctx;
1566 	struct ipu_image_convert_chan *chan = ctx->chan;
1567 	struct ipu_image_tile *src_tile, *dst_tile;
1568 	struct ipu_image_convert_image *s_image = &ctx->in;
1569 	struct ipu_image_convert_image *d_image = &ctx->out;
1570 	struct ipuv3_channel *outch;
1571 	unsigned int dst_idx;
1572 
1573 	lockdep_assert_held(&chan->irqlock);
1574 
1575 	outch = ipu_rot_mode_is_irt(ctx->rot_mode) ?
1576 		chan->rotation_out_chan : chan->out_chan;
1577 
1578 	/*
1579 	 * It is difficult to stop the channel DMA before the channels
1580 	 * enter the paused state. Without double-buffering the channels
1581 	 * are always in a paused state when the EOF irq occurs, so it
1582 	 * is safe to stop the channels now. For double-buffering we
1583 	 * just ignore the abort until the operation completes, when it
1584 	 * is safe to shut down.
1585 	 */
1586 	if (ctx->aborting && !ctx->double_buffering) {
1587 		convert_stop(run);
1588 		run->status = -EIO;
1589 		goto done;
1590 	}
1591 
1592 	if (ctx->next_tile == ctx->num_tiles) {
1593 		/*
1594 		 * the conversion is complete
1595 		 */
1596 		convert_stop(run);
1597 		run->status = 0;
1598 		goto done;
1599 	}
1600 
1601 	/*
1602 	 * not done, place the next tile buffers.
1603 	 */
1604 	if (!ctx->double_buffering) {
1605 		if (ic_settings_changed(ctx)) {
1606 			convert_stop(run);
1607 			convert_start(run, ctx->next_tile);
1608 		} else {
1609 			src_tile = &s_image->tile[ctx->next_tile];
1610 			dst_idx = ctx->out_tile_map[ctx->next_tile];
1611 			dst_tile = &d_image->tile[dst_idx];
1612 
1613 			ipu_cpmem_set_buffer(chan->in_chan, 0,
1614 					     s_image->base.phys0 +
1615 					     src_tile->offset);
1616 			ipu_cpmem_set_buffer(outch, 0,
1617 					     d_image->base.phys0 +
1618 					     dst_tile->offset);
1619 			if (s_image->fmt->planar)
1620 				ipu_cpmem_set_uv_offset(chan->in_chan,
1621 							src_tile->u_off,
1622 							src_tile->v_off);
1623 			if (d_image->fmt->planar)
1624 				ipu_cpmem_set_uv_offset(outch,
1625 							dst_tile->u_off,
1626 							dst_tile->v_off);
1627 
1628 			ipu_idmac_select_buffer(chan->in_chan, 0);
1629 			ipu_idmac_select_buffer(outch, 0);
1630 		}
1631 	} else if (ctx->next_tile < ctx->num_tiles - 1) {
1632 
1633 		src_tile = &s_image->tile[ctx->next_tile + 1];
1634 		dst_idx = ctx->out_tile_map[ctx->next_tile + 1];
1635 		dst_tile = &d_image->tile[dst_idx];
1636 
1637 		ipu_cpmem_set_buffer(chan->in_chan, ctx->cur_buf_num,
1638 				     s_image->base.phys0 + src_tile->offset);
1639 		ipu_cpmem_set_buffer(outch, ctx->cur_buf_num,
1640 				     d_image->base.phys0 + dst_tile->offset);
1641 
1642 		ipu_idmac_select_buffer(chan->in_chan, ctx->cur_buf_num);
1643 		ipu_idmac_select_buffer(outch, ctx->cur_buf_num);
1644 
1645 		ctx->cur_buf_num ^= 1;
1646 	}
1647 
1648 	ctx->next_tile++;
1649 	return IRQ_HANDLED;
1650 done:
1651 	list_add_tail(&run->list, &chan->done_q);
1652 	chan->current_run = NULL;
1653 	run_next(chan);
1654 	return IRQ_WAKE_THREAD;
1655 }
1656 
1657 static irqreturn_t norotate_irq(int irq, void *data)
1658 {
1659 	struct ipu_image_convert_chan *chan = data;
1660 	struct ipu_image_convert_ctx *ctx;
1661 	struct ipu_image_convert_run *run;
1662 	unsigned long flags;
1663 	irqreturn_t ret;
1664 
1665 	spin_lock_irqsave(&chan->irqlock, flags);
1666 
1667 	/* get current run and its context */
1668 	run = chan->current_run;
1669 	if (!run) {
1670 		ret = IRQ_NONE;
1671 		goto out;
1672 	}
1673 
1674 	ctx = run->ctx;
1675 
1676 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1677 		/* this is a rotation operation, just ignore */
1678 		spin_unlock_irqrestore(&chan->irqlock, flags);
1679 		return IRQ_HANDLED;
1680 	}
1681 
1682 	ret = do_irq(run);
1683 out:
1684 	spin_unlock_irqrestore(&chan->irqlock, flags);
1685 	return ret;
1686 }
1687 
1688 static irqreturn_t rotate_irq(int irq, void *data)
1689 {
1690 	struct ipu_image_convert_chan *chan = data;
1691 	struct ipu_image_convert_priv *priv = chan->priv;
1692 	struct ipu_image_convert_ctx *ctx;
1693 	struct ipu_image_convert_run *run;
1694 	unsigned long flags;
1695 	irqreturn_t ret;
1696 
1697 	spin_lock_irqsave(&chan->irqlock, flags);
1698 
1699 	/* get current run and its context */
1700 	run = chan->current_run;
1701 	if (!run) {
1702 		ret = IRQ_NONE;
1703 		goto out;
1704 	}
1705 
1706 	ctx = run->ctx;
1707 
1708 	if (!ipu_rot_mode_is_irt(ctx->rot_mode)) {
1709 		/* this was NOT a rotation operation, shouldn't happen */
1710 		dev_err(priv->ipu->dev, "Unexpected rotation interrupt\n");
1711 		spin_unlock_irqrestore(&chan->irqlock, flags);
1712 		return IRQ_HANDLED;
1713 	}
1714 
1715 	ret = do_irq(run);
1716 out:
1717 	spin_unlock_irqrestore(&chan->irqlock, flags);
1718 	return ret;
1719 }
1720 
1721 /*
1722  * try to force the completion of runs for this ctx. Called when
1723  * abort wait times out in ipu_image_convert_abort().
1724  */
1725 static void force_abort(struct ipu_image_convert_ctx *ctx)
1726 {
1727 	struct ipu_image_convert_chan *chan = ctx->chan;
1728 	struct ipu_image_convert_run *run;
1729 	unsigned long flags;
1730 
1731 	spin_lock_irqsave(&chan->irqlock, flags);
1732 
1733 	run = chan->current_run;
1734 	if (run && run->ctx == ctx) {
1735 		convert_stop(run);
1736 		run->status = -EIO;
1737 		list_add_tail(&run->list, &chan->done_q);
1738 		chan->current_run = NULL;
1739 		run_next(chan);
1740 	}
1741 
1742 	spin_unlock_irqrestore(&chan->irqlock, flags);
1743 
1744 	empty_done_q(chan);
1745 }
1746 
1747 static void release_ipu_resources(struct ipu_image_convert_chan *chan)
1748 {
1749 	if (chan->out_eof_irq >= 0)
1750 		free_irq(chan->out_eof_irq, chan);
1751 	if (chan->rot_out_eof_irq >= 0)
1752 		free_irq(chan->rot_out_eof_irq, chan);
1753 
1754 	if (!IS_ERR_OR_NULL(chan->in_chan))
1755 		ipu_idmac_put(chan->in_chan);
1756 	if (!IS_ERR_OR_NULL(chan->out_chan))
1757 		ipu_idmac_put(chan->out_chan);
1758 	if (!IS_ERR_OR_NULL(chan->rotation_in_chan))
1759 		ipu_idmac_put(chan->rotation_in_chan);
1760 	if (!IS_ERR_OR_NULL(chan->rotation_out_chan))
1761 		ipu_idmac_put(chan->rotation_out_chan);
1762 	if (!IS_ERR_OR_NULL(chan->ic))
1763 		ipu_ic_put(chan->ic);
1764 
1765 	chan->in_chan = chan->out_chan = chan->rotation_in_chan =
1766 		chan->rotation_out_chan = NULL;
1767 	chan->out_eof_irq = chan->rot_out_eof_irq = -1;
1768 }
1769 
1770 static int get_ipu_resources(struct ipu_image_convert_chan *chan)
1771 {
1772 	const struct ipu_image_convert_dma_chan *dma = chan->dma_ch;
1773 	struct ipu_image_convert_priv *priv = chan->priv;
1774 	int ret;
1775 
1776 	/* get IC */
1777 	chan->ic = ipu_ic_get(priv->ipu, chan->ic_task);
1778 	if (IS_ERR(chan->ic)) {
1779 		dev_err(priv->ipu->dev, "could not acquire IC\n");
1780 		ret = PTR_ERR(chan->ic);
1781 		goto err;
1782 	}
1783 
1784 	/* get IDMAC channels */
1785 	chan->in_chan = ipu_idmac_get(priv->ipu, dma->in);
1786 	chan->out_chan = ipu_idmac_get(priv->ipu, dma->out);
1787 	if (IS_ERR(chan->in_chan) || IS_ERR(chan->out_chan)) {
1788 		dev_err(priv->ipu->dev, "could not acquire idmac channels\n");
1789 		ret = -EBUSY;
1790 		goto err;
1791 	}
1792 
1793 	chan->rotation_in_chan = ipu_idmac_get(priv->ipu, dma->rot_in);
1794 	chan->rotation_out_chan = ipu_idmac_get(priv->ipu, dma->rot_out);
1795 	if (IS_ERR(chan->rotation_in_chan) || IS_ERR(chan->rotation_out_chan)) {
1796 		dev_err(priv->ipu->dev,
1797 			"could not acquire idmac rotation channels\n");
1798 		ret = -EBUSY;
1799 		goto err;
1800 	}
1801 
1802 	/* acquire the EOF interrupts */
1803 	chan->out_eof_irq = ipu_idmac_channel_irq(priv->ipu,
1804 						  chan->out_chan,
1805 						  IPU_IRQ_EOF);
1806 
1807 	ret = request_threaded_irq(chan->out_eof_irq, norotate_irq, do_bh,
1808 				   0, "ipu-ic", chan);
1809 	if (ret < 0) {
1810 		dev_err(priv->ipu->dev, "could not acquire irq %d\n",
1811 			 chan->out_eof_irq);
1812 		chan->out_eof_irq = -1;
1813 		goto err;
1814 	}
1815 
1816 	chan->rot_out_eof_irq = ipu_idmac_channel_irq(priv->ipu,
1817 						     chan->rotation_out_chan,
1818 						     IPU_IRQ_EOF);
1819 
1820 	ret = request_threaded_irq(chan->rot_out_eof_irq, rotate_irq, do_bh,
1821 				   0, "ipu-ic", chan);
1822 	if (ret < 0) {
1823 		dev_err(priv->ipu->dev, "could not acquire irq %d\n",
1824 			chan->rot_out_eof_irq);
1825 		chan->rot_out_eof_irq = -1;
1826 		goto err;
1827 	}
1828 
1829 	return 0;
1830 err:
1831 	release_ipu_resources(chan);
1832 	return ret;
1833 }
1834 
1835 static int fill_image(struct ipu_image_convert_ctx *ctx,
1836 		      struct ipu_image_convert_image *ic_image,
1837 		      struct ipu_image *image,
1838 		      enum ipu_image_convert_type type)
1839 {
1840 	struct ipu_image_convert_priv *priv = ctx->chan->priv;
1841 
1842 	ic_image->base = *image;
1843 	ic_image->type = type;
1844 
1845 	ic_image->fmt = get_format(image->pix.pixelformat);
1846 	if (!ic_image->fmt) {
1847 		dev_err(priv->ipu->dev, "pixelformat not supported for %s\n",
1848 			type == IMAGE_CONVERT_OUT ? "Output" : "Input");
1849 		return -EINVAL;
1850 	}
1851 
1852 	if (ic_image->fmt->planar)
1853 		ic_image->stride = ic_image->base.pix.width;
1854 	else
1855 		ic_image->stride  = ic_image->base.pix.bytesperline;
1856 
1857 	return 0;
1858 }
1859 
1860 /* borrowed from drivers/media/v4l2-core/v4l2-common.c */
1861 static unsigned int clamp_align(unsigned int x, unsigned int min,
1862 				unsigned int max, unsigned int align)
1863 {
1864 	/* Bits that must be zero to be aligned */
1865 	unsigned int mask = ~((1 << align) - 1);
1866 
1867 	/* Clamp to aligned min and max */
1868 	x = clamp(x, (min + ~mask) & mask, max & mask);
1869 
1870 	/* Round to nearest aligned value */
1871 	if (align)
1872 		x = (x + (1 << (align - 1))) & mask;
1873 
1874 	return x;
1875 }
1876 
1877 /* Adjusts input/output images to IPU restrictions */
1878 void ipu_image_convert_adjust(struct ipu_image *in, struct ipu_image *out,
1879 			      enum ipu_rotate_mode rot_mode)
1880 {
1881 	const struct ipu_image_pixfmt *infmt, *outfmt;
1882 	u32 w_align_out, h_align_out;
1883 	u32 w_align_in, h_align_in;
1884 
1885 	infmt = get_format(in->pix.pixelformat);
1886 	outfmt = get_format(out->pix.pixelformat);
1887 
1888 	/* set some default pixel formats if needed */
1889 	if (!infmt) {
1890 		in->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1891 		infmt = get_format(V4L2_PIX_FMT_RGB24);
1892 	}
1893 	if (!outfmt) {
1894 		out->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1895 		outfmt = get_format(V4L2_PIX_FMT_RGB24);
1896 	}
1897 
1898 	/* image converter does not handle fields */
1899 	in->pix.field = out->pix.field = V4L2_FIELD_NONE;
1900 
1901 	/* resizer cannot downsize more than 4:1 */
1902 	if (ipu_rot_mode_is_irt(rot_mode)) {
1903 		out->pix.height = max_t(__u32, out->pix.height,
1904 					in->pix.width / 4);
1905 		out->pix.width = max_t(__u32, out->pix.width,
1906 				       in->pix.height / 4);
1907 	} else {
1908 		out->pix.width = max_t(__u32, out->pix.width,
1909 				       in->pix.width / 4);
1910 		out->pix.height = max_t(__u32, out->pix.height,
1911 					in->pix.height / 4);
1912 	}
1913 
1914 	/* align input width/height */
1915 	w_align_in = ilog2(tile_width_align(IMAGE_CONVERT_IN, infmt,
1916 					    rot_mode));
1917 	h_align_in = ilog2(tile_height_align(IMAGE_CONVERT_IN, infmt,
1918 					     rot_mode));
1919 	in->pix.width = clamp_align(in->pix.width, MIN_W, MAX_W,
1920 				    w_align_in);
1921 	in->pix.height = clamp_align(in->pix.height, MIN_H, MAX_H,
1922 				     h_align_in);
1923 
1924 	/* align output width/height */
1925 	w_align_out = ilog2(tile_width_align(IMAGE_CONVERT_OUT, outfmt,
1926 					     rot_mode));
1927 	h_align_out = ilog2(tile_height_align(IMAGE_CONVERT_OUT, outfmt,
1928 					      rot_mode));
1929 	out->pix.width = clamp_align(out->pix.width, MIN_W, MAX_W,
1930 				     w_align_out);
1931 	out->pix.height = clamp_align(out->pix.height, MIN_H, MAX_H,
1932 				      h_align_out);
1933 
1934 	/* set input/output strides and image sizes */
1935 	in->pix.bytesperline = infmt->planar ?
1936 		clamp_align(in->pix.width, 2 << w_align_in, MAX_W,
1937 			    w_align_in) :
1938 		clamp_align((in->pix.width * infmt->bpp) >> 3,
1939 			    ((2 << w_align_in) * infmt->bpp) >> 3,
1940 			    (MAX_W * infmt->bpp) >> 3,
1941 			    w_align_in);
1942 	in->pix.sizeimage = infmt->planar ?
1943 		(in->pix.height * in->pix.bytesperline * infmt->bpp) >> 3 :
1944 		in->pix.height * in->pix.bytesperline;
1945 	out->pix.bytesperline = outfmt->planar ? out->pix.width :
1946 		(out->pix.width * outfmt->bpp) >> 3;
1947 	out->pix.sizeimage = outfmt->planar ?
1948 		(out->pix.height * out->pix.bytesperline * outfmt->bpp) >> 3 :
1949 		out->pix.height * out->pix.bytesperline;
1950 }
1951 EXPORT_SYMBOL_GPL(ipu_image_convert_adjust);
1952 
1953 /*
1954  * this is used by ipu_image_convert_prepare() to verify set input and
1955  * output images are valid before starting the conversion. Clients can
1956  * also call it before calling ipu_image_convert_prepare().
1957  */
1958 int ipu_image_convert_verify(struct ipu_image *in, struct ipu_image *out,
1959 			     enum ipu_rotate_mode rot_mode)
1960 {
1961 	struct ipu_image testin, testout;
1962 
1963 	testin = *in;
1964 	testout = *out;
1965 
1966 	ipu_image_convert_adjust(&testin, &testout, rot_mode);
1967 
1968 	if (testin.pix.width != in->pix.width ||
1969 	    testin.pix.height != in->pix.height ||
1970 	    testout.pix.width != out->pix.width ||
1971 	    testout.pix.height != out->pix.height)
1972 		return -EINVAL;
1973 
1974 	return 0;
1975 }
1976 EXPORT_SYMBOL_GPL(ipu_image_convert_verify);
1977 
1978 /*
1979  * Call ipu_image_convert_prepare() to prepare for the conversion of
1980  * given images and rotation mode. Returns a new conversion context.
1981  */
1982 struct ipu_image_convert_ctx *
1983 ipu_image_convert_prepare(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
1984 			  struct ipu_image *in, struct ipu_image *out,
1985 			  enum ipu_rotate_mode rot_mode,
1986 			  ipu_image_convert_cb_t complete,
1987 			  void *complete_context)
1988 {
1989 	struct ipu_image_convert_priv *priv = ipu->image_convert_priv;
1990 	struct ipu_image_convert_image *s_image, *d_image;
1991 	struct ipu_image_convert_chan *chan;
1992 	struct ipu_image_convert_ctx *ctx;
1993 	unsigned long flags;
1994 	unsigned int i;
1995 	bool get_res;
1996 	int ret;
1997 
1998 	if (!in || !out || !complete ||
1999 	    (ic_task != IC_TASK_VIEWFINDER &&
2000 	     ic_task != IC_TASK_POST_PROCESSOR))
2001 		return ERR_PTR(-EINVAL);
2002 
2003 	/* verify the in/out images before continuing */
2004 	ret = ipu_image_convert_verify(in, out, rot_mode);
2005 	if (ret) {
2006 		dev_err(priv->ipu->dev, "%s: in/out formats invalid\n",
2007 			__func__);
2008 		return ERR_PTR(ret);
2009 	}
2010 
2011 	chan = &priv->chan[ic_task];
2012 
2013 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2014 	if (!ctx)
2015 		return ERR_PTR(-ENOMEM);
2016 
2017 	dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p\n", __func__,
2018 		chan->ic_task, ctx);
2019 
2020 	ctx->chan = chan;
2021 	init_completion(&ctx->aborted);
2022 
2023 	s_image = &ctx->in;
2024 	d_image = &ctx->out;
2025 
2026 	/* set tiling and rotation */
2027 	d_image->num_rows = num_stripes(out->pix.height);
2028 	d_image->num_cols = num_stripes(out->pix.width);
2029 	if (ipu_rot_mode_is_irt(rot_mode)) {
2030 		s_image->num_rows = d_image->num_cols;
2031 		s_image->num_cols = d_image->num_rows;
2032 	} else {
2033 		s_image->num_rows = d_image->num_rows;
2034 		s_image->num_cols = d_image->num_cols;
2035 	}
2036 
2037 	ctx->num_tiles = d_image->num_cols * d_image->num_rows;
2038 	ctx->rot_mode = rot_mode;
2039 
2040 	ret = fill_image(ctx, s_image, in, IMAGE_CONVERT_IN);
2041 	if (ret)
2042 		goto out_free;
2043 	ret = fill_image(ctx, d_image, out, IMAGE_CONVERT_OUT);
2044 	if (ret)
2045 		goto out_free;
2046 
2047 	ret = calc_image_resize_coefficients(ctx, in, out);
2048 	if (ret)
2049 		goto out_free;
2050 
2051 	calc_out_tile_map(ctx);
2052 
2053 	find_seams(ctx, s_image, d_image);
2054 
2055 	calc_tile_dimensions(ctx, s_image);
2056 	ret = calc_tile_offsets(ctx, s_image);
2057 	if (ret)
2058 		goto out_free;
2059 
2060 	calc_tile_dimensions(ctx, d_image);
2061 	ret = calc_tile_offsets(ctx, d_image);
2062 	if (ret)
2063 		goto out_free;
2064 
2065 	calc_tile_resize_coefficients(ctx);
2066 
2067 	ret = ipu_ic_calc_csc(&ctx->csc,
2068 			s_image->base.pix.ycbcr_enc,
2069 			s_image->base.pix.quantization,
2070 			ipu_pixelformat_to_colorspace(s_image->fmt->fourcc),
2071 			d_image->base.pix.ycbcr_enc,
2072 			d_image->base.pix.quantization,
2073 			ipu_pixelformat_to_colorspace(d_image->fmt->fourcc));
2074 	if (ret)
2075 		goto out_free;
2076 
2077 	dump_format(ctx, s_image);
2078 	dump_format(ctx, d_image);
2079 
2080 	ctx->complete = complete;
2081 	ctx->complete_context = complete_context;
2082 
2083 	/*
2084 	 * Can we use double-buffering for this operation? If there is
2085 	 * only one tile (the whole image can be converted in a single
2086 	 * operation) there's no point in using double-buffering. Also,
2087 	 * the IPU's IDMAC channels allow only a single U and V plane
2088 	 * offset shared between both buffers, but these offsets change
2089 	 * for every tile, and therefore would have to be updated for
2090 	 * each buffer which is not possible. So double-buffering is
2091 	 * impossible when either the source or destination images are
2092 	 * a planar format (YUV420, YUV422P, etc.). Further, differently
2093 	 * sized tiles or different resizing coefficients per tile
2094 	 * prevent double-buffering as well.
2095 	 */
2096 	ctx->double_buffering = (ctx->num_tiles > 1 &&
2097 				 !s_image->fmt->planar &&
2098 				 !d_image->fmt->planar);
2099 	for (i = 1; i < ctx->num_tiles; i++) {
2100 		if (ctx->in.tile[i].width != ctx->in.tile[0].width ||
2101 		    ctx->in.tile[i].height != ctx->in.tile[0].height ||
2102 		    ctx->out.tile[i].width != ctx->out.tile[0].width ||
2103 		    ctx->out.tile[i].height != ctx->out.tile[0].height) {
2104 			ctx->double_buffering = false;
2105 			break;
2106 		}
2107 	}
2108 	for (i = 1; i < ctx->in.num_cols; i++) {
2109 		if (ctx->resize_coeffs_h[i] != ctx->resize_coeffs_h[0]) {
2110 			ctx->double_buffering = false;
2111 			break;
2112 		}
2113 	}
2114 	for (i = 1; i < ctx->in.num_rows; i++) {
2115 		if (ctx->resize_coeffs_v[i] != ctx->resize_coeffs_v[0]) {
2116 			ctx->double_buffering = false;
2117 			break;
2118 		}
2119 	}
2120 
2121 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
2122 		unsigned long intermediate_size = d_image->tile[0].size;
2123 
2124 		for (i = 1; i < ctx->num_tiles; i++) {
2125 			if (d_image->tile[i].size > intermediate_size)
2126 				intermediate_size = d_image->tile[i].size;
2127 		}
2128 
2129 		ret = alloc_dma_buf(priv, &ctx->rot_intermediate[0],
2130 				    intermediate_size);
2131 		if (ret)
2132 			goto out_free;
2133 		if (ctx->double_buffering) {
2134 			ret = alloc_dma_buf(priv,
2135 					    &ctx->rot_intermediate[1],
2136 					    intermediate_size);
2137 			if (ret)
2138 				goto out_free_dmabuf0;
2139 		}
2140 	}
2141 
2142 	spin_lock_irqsave(&chan->irqlock, flags);
2143 
2144 	get_res = list_empty(&chan->ctx_list);
2145 
2146 	list_add_tail(&ctx->list, &chan->ctx_list);
2147 
2148 	spin_unlock_irqrestore(&chan->irqlock, flags);
2149 
2150 	if (get_res) {
2151 		ret = get_ipu_resources(chan);
2152 		if (ret)
2153 			goto out_free_dmabuf1;
2154 	}
2155 
2156 	return ctx;
2157 
2158 out_free_dmabuf1:
2159 	free_dma_buf(priv, &ctx->rot_intermediate[1]);
2160 	spin_lock_irqsave(&chan->irqlock, flags);
2161 	list_del(&ctx->list);
2162 	spin_unlock_irqrestore(&chan->irqlock, flags);
2163 out_free_dmabuf0:
2164 	free_dma_buf(priv, &ctx->rot_intermediate[0]);
2165 out_free:
2166 	kfree(ctx);
2167 	return ERR_PTR(ret);
2168 }
2169 EXPORT_SYMBOL_GPL(ipu_image_convert_prepare);
2170 
2171 /*
2172  * Carry out a single image conversion run. Only the physaddr's of the input
2173  * and output image buffers are needed. The conversion context must have
2174  * been created previously with ipu_image_convert_prepare().
2175  */
2176 int ipu_image_convert_queue(struct ipu_image_convert_run *run)
2177 {
2178 	struct ipu_image_convert_chan *chan;
2179 	struct ipu_image_convert_priv *priv;
2180 	struct ipu_image_convert_ctx *ctx;
2181 	unsigned long flags;
2182 	int ret = 0;
2183 
2184 	if (!run || !run->ctx || !run->in_phys || !run->out_phys)
2185 		return -EINVAL;
2186 
2187 	ctx = run->ctx;
2188 	chan = ctx->chan;
2189 	priv = chan->priv;
2190 
2191 	dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p run %p\n", __func__,
2192 		chan->ic_task, ctx, run);
2193 
2194 	INIT_LIST_HEAD(&run->list);
2195 
2196 	spin_lock_irqsave(&chan->irqlock, flags);
2197 
2198 	if (ctx->aborting) {
2199 		ret = -EIO;
2200 		goto unlock;
2201 	}
2202 
2203 	list_add_tail(&run->list, &chan->pending_q);
2204 
2205 	if (!chan->current_run) {
2206 		ret = do_run(run);
2207 		if (ret)
2208 			chan->current_run = NULL;
2209 	}
2210 unlock:
2211 	spin_unlock_irqrestore(&chan->irqlock, flags);
2212 	return ret;
2213 }
2214 EXPORT_SYMBOL_GPL(ipu_image_convert_queue);
2215 
2216 /* Abort any active or pending conversions for this context */
2217 static void __ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2218 {
2219 	struct ipu_image_convert_chan *chan = ctx->chan;
2220 	struct ipu_image_convert_priv *priv = chan->priv;
2221 	struct ipu_image_convert_run *run, *active_run, *tmp;
2222 	unsigned long flags;
2223 	int run_count, ret;
2224 
2225 	spin_lock_irqsave(&chan->irqlock, flags);
2226 
2227 	/* move all remaining pending runs in this context to done_q */
2228 	list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
2229 		if (run->ctx != ctx)
2230 			continue;
2231 		run->status = -EIO;
2232 		list_move_tail(&run->list, &chan->done_q);
2233 	}
2234 
2235 	run_count = get_run_count(ctx, &chan->done_q);
2236 	active_run = (chan->current_run && chan->current_run->ctx == ctx) ?
2237 		chan->current_run : NULL;
2238 
2239 	if (active_run)
2240 		reinit_completion(&ctx->aborted);
2241 
2242 	ctx->aborting = true;
2243 
2244 	spin_unlock_irqrestore(&chan->irqlock, flags);
2245 
2246 	if (!run_count && !active_run) {
2247 		dev_dbg(priv->ipu->dev,
2248 			"%s: task %u: no abort needed for ctx %p\n",
2249 			__func__, chan->ic_task, ctx);
2250 		return;
2251 	}
2252 
2253 	if (!active_run) {
2254 		empty_done_q(chan);
2255 		return;
2256 	}
2257 
2258 	dev_dbg(priv->ipu->dev,
2259 		"%s: task %u: wait for completion: %d runs\n",
2260 		__func__, chan->ic_task, run_count);
2261 
2262 	ret = wait_for_completion_timeout(&ctx->aborted,
2263 					  msecs_to_jiffies(10000));
2264 	if (ret == 0) {
2265 		dev_warn(priv->ipu->dev, "%s: timeout\n", __func__);
2266 		force_abort(ctx);
2267 	}
2268 }
2269 
2270 void ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2271 {
2272 	__ipu_image_convert_abort(ctx);
2273 	ctx->aborting = false;
2274 }
2275 EXPORT_SYMBOL_GPL(ipu_image_convert_abort);
2276 
2277 /* Unprepare image conversion context */
2278 void ipu_image_convert_unprepare(struct ipu_image_convert_ctx *ctx)
2279 {
2280 	struct ipu_image_convert_chan *chan = ctx->chan;
2281 	struct ipu_image_convert_priv *priv = chan->priv;
2282 	unsigned long flags;
2283 	bool put_res;
2284 
2285 	/* make sure no runs are hanging around */
2286 	__ipu_image_convert_abort(ctx);
2287 
2288 	dev_dbg(priv->ipu->dev, "%s: task %u: removing ctx %p\n", __func__,
2289 		chan->ic_task, ctx);
2290 
2291 	spin_lock_irqsave(&chan->irqlock, flags);
2292 
2293 	list_del(&ctx->list);
2294 
2295 	put_res = list_empty(&chan->ctx_list);
2296 
2297 	spin_unlock_irqrestore(&chan->irqlock, flags);
2298 
2299 	if (put_res)
2300 		release_ipu_resources(chan);
2301 
2302 	free_dma_buf(priv, &ctx->rot_intermediate[1]);
2303 	free_dma_buf(priv, &ctx->rot_intermediate[0]);
2304 
2305 	kfree(ctx);
2306 }
2307 EXPORT_SYMBOL_GPL(ipu_image_convert_unprepare);
2308 
2309 /*
2310  * "Canned" asynchronous single image conversion. Allocates and returns
2311  * a new conversion run.  On successful return the caller must free the
2312  * run and call ipu_image_convert_unprepare() after conversion completes.
2313  */
2314 struct ipu_image_convert_run *
2315 ipu_image_convert(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2316 		  struct ipu_image *in, struct ipu_image *out,
2317 		  enum ipu_rotate_mode rot_mode,
2318 		  ipu_image_convert_cb_t complete,
2319 		  void *complete_context)
2320 {
2321 	struct ipu_image_convert_ctx *ctx;
2322 	struct ipu_image_convert_run *run;
2323 	int ret;
2324 
2325 	ctx = ipu_image_convert_prepare(ipu, ic_task, in, out, rot_mode,
2326 					complete, complete_context);
2327 	if (IS_ERR(ctx))
2328 		return ERR_CAST(ctx);
2329 
2330 	run = kzalloc(sizeof(*run), GFP_KERNEL);
2331 	if (!run) {
2332 		ipu_image_convert_unprepare(ctx);
2333 		return ERR_PTR(-ENOMEM);
2334 	}
2335 
2336 	run->ctx = ctx;
2337 	run->in_phys = in->phys0;
2338 	run->out_phys = out->phys0;
2339 
2340 	ret = ipu_image_convert_queue(run);
2341 	if (ret) {
2342 		ipu_image_convert_unprepare(ctx);
2343 		kfree(run);
2344 		return ERR_PTR(ret);
2345 	}
2346 
2347 	return run;
2348 }
2349 EXPORT_SYMBOL_GPL(ipu_image_convert);
2350 
2351 /* "Canned" synchronous single image conversion */
2352 static void image_convert_sync_complete(struct ipu_image_convert_run *run,
2353 					void *data)
2354 {
2355 	struct completion *comp = data;
2356 
2357 	complete(comp);
2358 }
2359 
2360 int ipu_image_convert_sync(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2361 			   struct ipu_image *in, struct ipu_image *out,
2362 			   enum ipu_rotate_mode rot_mode)
2363 {
2364 	struct ipu_image_convert_run *run;
2365 	struct completion comp;
2366 	int ret;
2367 
2368 	init_completion(&comp);
2369 
2370 	run = ipu_image_convert(ipu, ic_task, in, out, rot_mode,
2371 				image_convert_sync_complete, &comp);
2372 	if (IS_ERR(run))
2373 		return PTR_ERR(run);
2374 
2375 	ret = wait_for_completion_timeout(&comp, msecs_to_jiffies(10000));
2376 	ret = (ret == 0) ? -ETIMEDOUT : 0;
2377 
2378 	ipu_image_convert_unprepare(run->ctx);
2379 	kfree(run);
2380 
2381 	return ret;
2382 }
2383 EXPORT_SYMBOL_GPL(ipu_image_convert_sync);
2384 
2385 int ipu_image_convert_init(struct ipu_soc *ipu, struct device *dev)
2386 {
2387 	struct ipu_image_convert_priv *priv;
2388 	int i;
2389 
2390 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
2391 	if (!priv)
2392 		return -ENOMEM;
2393 
2394 	ipu->image_convert_priv = priv;
2395 	priv->ipu = ipu;
2396 
2397 	for (i = 0; i < IC_NUM_TASKS; i++) {
2398 		struct ipu_image_convert_chan *chan = &priv->chan[i];
2399 
2400 		chan->ic_task = i;
2401 		chan->priv = priv;
2402 		chan->dma_ch = &image_convert_dma_chan[i];
2403 		chan->out_eof_irq = -1;
2404 		chan->rot_out_eof_irq = -1;
2405 
2406 		spin_lock_init(&chan->irqlock);
2407 		INIT_LIST_HEAD(&chan->ctx_list);
2408 		INIT_LIST_HEAD(&chan->pending_q);
2409 		INIT_LIST_HEAD(&chan->done_q);
2410 	}
2411 
2412 	return 0;
2413 }
2414 
2415 void ipu_image_convert_exit(struct ipu_soc *ipu)
2416 {
2417 }
2418