xref: /openbmc/linux/drivers/gpu/host1x/syncpt.c (revision e7253313)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Tegra host1x Syncpoints
4  *
5  * Copyright (c) 2010-2015, NVIDIA Corporation.
6  */
7 
8 #include <linux/module.h>
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 
12 #include <trace/events/host1x.h>
13 
14 #include "syncpt.h"
15 #include "dev.h"
16 #include "intr.h"
17 #include "debug.h"
18 
19 #define SYNCPT_CHECK_PERIOD (2 * HZ)
20 #define MAX_STUCK_CHECK_COUNT 15
21 
22 static struct host1x_syncpt_base *
23 host1x_syncpt_base_request(struct host1x *host)
24 {
25 	struct host1x_syncpt_base *bases = host->bases;
26 	unsigned int i;
27 
28 	for (i = 0; i < host->info->nb_bases; i++)
29 		if (!bases[i].requested)
30 			break;
31 
32 	if (i >= host->info->nb_bases)
33 		return NULL;
34 
35 	bases[i].requested = true;
36 	return &bases[i];
37 }
38 
39 static void host1x_syncpt_base_free(struct host1x_syncpt_base *base)
40 {
41 	if (base)
42 		base->requested = false;
43 }
44 
45 static struct host1x_syncpt *host1x_syncpt_alloc(struct host1x *host,
46 						 struct host1x_client *client,
47 						 unsigned long flags)
48 {
49 	struct host1x_syncpt *sp = host->syncpt;
50 	unsigned int i;
51 	char *name;
52 
53 	mutex_lock(&host->syncpt_mutex);
54 
55 	for (i = 0; i < host->info->nb_pts && sp->name; i++, sp++)
56 		;
57 
58 	if (i >= host->info->nb_pts)
59 		goto unlock;
60 
61 	if (flags & HOST1X_SYNCPT_HAS_BASE) {
62 		sp->base = host1x_syncpt_base_request(host);
63 		if (!sp->base)
64 			goto unlock;
65 	}
66 
67 	name = kasprintf(GFP_KERNEL, "%02u-%s", sp->id,
68 			 client ? dev_name(client->dev) : NULL);
69 	if (!name)
70 		goto free_base;
71 
72 	sp->client = client;
73 	sp->name = name;
74 
75 	if (flags & HOST1X_SYNCPT_CLIENT_MANAGED)
76 		sp->client_managed = true;
77 	else
78 		sp->client_managed = false;
79 
80 	mutex_unlock(&host->syncpt_mutex);
81 	return sp;
82 
83 free_base:
84 	host1x_syncpt_base_free(sp->base);
85 	sp->base = NULL;
86 unlock:
87 	mutex_unlock(&host->syncpt_mutex);
88 	return NULL;
89 }
90 
91 /**
92  * host1x_syncpt_id() - retrieve syncpoint ID
93  * @sp: host1x syncpoint
94  *
95  * Given a pointer to a struct host1x_syncpt, retrieves its ID. This ID is
96  * often used as a value to program into registers that control how hardware
97  * blocks interact with syncpoints.
98  */
99 u32 host1x_syncpt_id(struct host1x_syncpt *sp)
100 {
101 	return sp->id;
102 }
103 EXPORT_SYMBOL(host1x_syncpt_id);
104 
105 /**
106  * host1x_syncpt_incr_max() - update the value sent to hardware
107  * @sp: host1x syncpoint
108  * @incrs: number of increments
109  */
110 u32 host1x_syncpt_incr_max(struct host1x_syncpt *sp, u32 incrs)
111 {
112 	return (u32)atomic_add_return(incrs, &sp->max_val);
113 }
114 EXPORT_SYMBOL(host1x_syncpt_incr_max);
115 
116  /*
117  * Write cached syncpoint and waitbase values to hardware.
118  */
119 void host1x_syncpt_restore(struct host1x *host)
120 {
121 	struct host1x_syncpt *sp_base = host->syncpt;
122 	unsigned int i;
123 
124 	for (i = 0; i < host1x_syncpt_nb_pts(host); i++)
125 		host1x_hw_syncpt_restore(host, sp_base + i);
126 
127 	for (i = 0; i < host1x_syncpt_nb_bases(host); i++)
128 		host1x_hw_syncpt_restore_wait_base(host, sp_base + i);
129 
130 	wmb();
131 }
132 
133 /*
134  * Update the cached syncpoint and waitbase values by reading them
135  * from the registers.
136   */
137 void host1x_syncpt_save(struct host1x *host)
138 {
139 	struct host1x_syncpt *sp_base = host->syncpt;
140 	unsigned int i;
141 
142 	for (i = 0; i < host1x_syncpt_nb_pts(host); i++) {
143 		if (host1x_syncpt_client_managed(sp_base + i))
144 			host1x_hw_syncpt_load(host, sp_base + i);
145 		else
146 			WARN_ON(!host1x_syncpt_idle(sp_base + i));
147 	}
148 
149 	for (i = 0; i < host1x_syncpt_nb_bases(host); i++)
150 		host1x_hw_syncpt_load_wait_base(host, sp_base + i);
151 }
152 
153 /*
154  * Updates the cached syncpoint value by reading a new value from the hardware
155  * register
156  */
157 u32 host1x_syncpt_load(struct host1x_syncpt *sp)
158 {
159 	u32 val;
160 
161 	val = host1x_hw_syncpt_load(sp->host, sp);
162 	trace_host1x_syncpt_load_min(sp->id, val);
163 
164 	return val;
165 }
166 
167 /*
168  * Get the current syncpoint base
169  */
170 u32 host1x_syncpt_load_wait_base(struct host1x_syncpt *sp)
171 {
172 	host1x_hw_syncpt_load_wait_base(sp->host, sp);
173 
174 	return sp->base_val;
175 }
176 
177 /**
178  * host1x_syncpt_incr() - increment syncpoint value from CPU, updating cache
179  * @sp: host1x syncpoint
180  */
181 int host1x_syncpt_incr(struct host1x_syncpt *sp)
182 {
183 	return host1x_hw_syncpt_cpu_incr(sp->host, sp);
184 }
185 EXPORT_SYMBOL(host1x_syncpt_incr);
186 
187 /*
188  * Updated sync point form hardware, and returns true if syncpoint is expired,
189  * false if we may need to wait
190  */
191 static bool syncpt_load_min_is_expired(struct host1x_syncpt *sp, u32 thresh)
192 {
193 	host1x_hw_syncpt_load(sp->host, sp);
194 
195 	return host1x_syncpt_is_expired(sp, thresh);
196 }
197 
198 /**
199  * host1x_syncpt_wait() - wait for a syncpoint to reach a given value
200  * @sp: host1x syncpoint
201  * @thresh: threshold
202  * @timeout: maximum time to wait for the syncpoint to reach the given value
203  * @value: return location for the syncpoint value
204  */
205 int host1x_syncpt_wait(struct host1x_syncpt *sp, u32 thresh, long timeout,
206 		       u32 *value)
207 {
208 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
209 	void *ref;
210 	struct host1x_waitlist *waiter;
211 	int err = 0, check_count = 0;
212 	u32 val;
213 
214 	if (value)
215 		*value = 0;
216 
217 	/* first check cache */
218 	if (host1x_syncpt_is_expired(sp, thresh)) {
219 		if (value)
220 			*value = host1x_syncpt_load(sp);
221 
222 		return 0;
223 	}
224 
225 	/* try to read from register */
226 	val = host1x_hw_syncpt_load(sp->host, sp);
227 	if (host1x_syncpt_is_expired(sp, thresh)) {
228 		if (value)
229 			*value = val;
230 
231 		goto done;
232 	}
233 
234 	if (!timeout) {
235 		err = -EAGAIN;
236 		goto done;
237 	}
238 
239 	/* allocate a waiter */
240 	waiter = kzalloc(sizeof(*waiter), GFP_KERNEL);
241 	if (!waiter) {
242 		err = -ENOMEM;
243 		goto done;
244 	}
245 
246 	/* schedule a wakeup when the syncpoint value is reached */
247 	err = host1x_intr_add_action(sp->host, sp, thresh,
248 				     HOST1X_INTR_ACTION_WAKEUP_INTERRUPTIBLE,
249 				     &wq, waiter, &ref);
250 	if (err)
251 		goto done;
252 
253 	err = -EAGAIN;
254 	/* Caller-specified timeout may be impractically low */
255 	if (timeout < 0)
256 		timeout = LONG_MAX;
257 
258 	/* wait for the syncpoint, or timeout, or signal */
259 	while (timeout) {
260 		long check = min_t(long, SYNCPT_CHECK_PERIOD, timeout);
261 		int remain;
262 
263 		remain = wait_event_interruptible_timeout(wq,
264 				syncpt_load_min_is_expired(sp, thresh),
265 				check);
266 		if (remain > 0 || host1x_syncpt_is_expired(sp, thresh)) {
267 			if (value)
268 				*value = host1x_syncpt_load(sp);
269 
270 			err = 0;
271 
272 			break;
273 		}
274 
275 		if (remain < 0) {
276 			err = remain;
277 			break;
278 		}
279 
280 		timeout -= check;
281 
282 		if (timeout && check_count <= MAX_STUCK_CHECK_COUNT) {
283 			dev_warn(sp->host->dev,
284 				"%s: syncpoint id %u (%s) stuck waiting %d, timeout=%ld\n",
285 				 current->comm, sp->id, sp->name,
286 				 thresh, timeout);
287 
288 			host1x_debug_dump_syncpts(sp->host);
289 
290 			if (check_count == MAX_STUCK_CHECK_COUNT)
291 				host1x_debug_dump(sp->host);
292 
293 			check_count++;
294 		}
295 	}
296 
297 	host1x_intr_put_ref(sp->host, sp->id, ref);
298 
299 done:
300 	return err;
301 }
302 EXPORT_SYMBOL(host1x_syncpt_wait);
303 
304 /*
305  * Returns true if syncpoint is expired, false if we may need to wait
306  */
307 bool host1x_syncpt_is_expired(struct host1x_syncpt *sp, u32 thresh)
308 {
309 	u32 current_val;
310 	u32 future_val;
311 
312 	smp_rmb();
313 
314 	current_val = (u32)atomic_read(&sp->min_val);
315 	future_val = (u32)atomic_read(&sp->max_val);
316 
317 	/* Note the use of unsigned arithmetic here (mod 1<<32).
318 	 *
319 	 * c = current_val = min_val	= the current value of the syncpoint.
320 	 * t = thresh			= the value we are checking
321 	 * f = future_val  = max_val	= the value c will reach when all
322 	 *				  outstanding increments have completed.
323 	 *
324 	 * Note that c always chases f until it reaches f.
325 	 *
326 	 * Dtf = (f - t)
327 	 * Dtc = (c - t)
328 	 *
329 	 *  Consider all cases:
330 	 *
331 	 *	A) .....c..t..f.....	Dtf < Dtc	need to wait
332 	 *	B) .....c.....f..t..	Dtf > Dtc	expired
333 	 *	C) ..t..c.....f.....	Dtf > Dtc	expired	   (Dct very large)
334 	 *
335 	 *  Any case where f==c: always expired (for any t).	Dtf == Dcf
336 	 *  Any case where t==c: always expired (for any f).	Dtf >= Dtc (because Dtc==0)
337 	 *  Any case where t==f!=c: always wait.		Dtf <  Dtc (because Dtf==0,
338 	 *							Dtc!=0)
339 	 *
340 	 *  Other cases:
341 	 *
342 	 *	A) .....t..f..c.....	Dtf < Dtc	need to wait
343 	 *	A) .....f..c..t.....	Dtf < Dtc	need to wait
344 	 *	A) .....f..t..c.....	Dtf > Dtc	expired
345 	 *
346 	 *   So:
347 	 *	   Dtf >= Dtc implies EXPIRED	(return true)
348 	 *	   Dtf <  Dtc implies WAIT	(return false)
349 	 *
350 	 * Note: If t is expired then we *cannot* wait on it. We would wait
351 	 * forever (hang the system).
352 	 *
353 	 * Note: do NOT get clever and remove the -thresh from both sides. It
354 	 * is NOT the same.
355 	 *
356 	 * If future valueis zero, we have a client managed sync point. In that
357 	 * case we do a direct comparison.
358 	 */
359 	if (!host1x_syncpt_client_managed(sp))
360 		return future_val - thresh >= current_val - thresh;
361 	else
362 		return (s32)(current_val - thresh) >= 0;
363 }
364 
365 int host1x_syncpt_init(struct host1x *host)
366 {
367 	struct host1x_syncpt_base *bases;
368 	struct host1x_syncpt *syncpt;
369 	unsigned int i;
370 
371 	syncpt = devm_kcalloc(host->dev, host->info->nb_pts, sizeof(*syncpt),
372 			      GFP_KERNEL);
373 	if (!syncpt)
374 		return -ENOMEM;
375 
376 	bases = devm_kcalloc(host->dev, host->info->nb_bases, sizeof(*bases),
377 			     GFP_KERNEL);
378 	if (!bases)
379 		return -ENOMEM;
380 
381 	for (i = 0; i < host->info->nb_pts; i++) {
382 		syncpt[i].id = i;
383 		syncpt[i].host = host;
384 
385 		/*
386 		 * Unassign syncpt from channels for purposes of Tegra186
387 		 * syncpoint protection. This prevents any channel from
388 		 * accessing it until it is reassigned.
389 		 */
390 		host1x_hw_syncpt_assign_to_channel(host, &syncpt[i], NULL);
391 	}
392 
393 	for (i = 0; i < host->info->nb_bases; i++)
394 		bases[i].id = i;
395 
396 	mutex_init(&host->syncpt_mutex);
397 	host->syncpt = syncpt;
398 	host->bases = bases;
399 
400 	host1x_syncpt_restore(host);
401 	host1x_hw_syncpt_enable_protection(host);
402 
403 	/* Allocate sync point to use for clearing waits for expired fences */
404 	host->nop_sp = host1x_syncpt_alloc(host, NULL, 0);
405 	if (!host->nop_sp)
406 		return -ENOMEM;
407 
408 	return 0;
409 }
410 
411 /**
412  * host1x_syncpt_request() - request a syncpoint
413  * @client: client requesting the syncpoint
414  * @flags: flags
415  *
416  * host1x client drivers can use this function to allocate a syncpoint for
417  * subsequent use. A syncpoint returned by this function will be reserved for
418  * use by the client exclusively. When no longer using a syncpoint, a host1x
419  * client driver needs to release it using host1x_syncpt_free().
420  */
421 struct host1x_syncpt *host1x_syncpt_request(struct host1x_client *client,
422 					    unsigned long flags)
423 {
424 	struct host1x *host = dev_get_drvdata(client->parent->parent);
425 
426 	return host1x_syncpt_alloc(host, client, flags);
427 }
428 EXPORT_SYMBOL(host1x_syncpt_request);
429 
430 /**
431  * host1x_syncpt_free() - free a requested syncpoint
432  * @sp: host1x syncpoint
433  *
434  * Release a syncpoint previously allocated using host1x_syncpt_request(). A
435  * host1x client driver should call this when the syncpoint is no longer in
436  * use. Note that client drivers must ensure that the syncpoint doesn't remain
437  * under the control of hardware after calling this function, otherwise two
438  * clients may end up trying to access the same syncpoint concurrently.
439  */
440 void host1x_syncpt_free(struct host1x_syncpt *sp)
441 {
442 	if (!sp)
443 		return;
444 
445 	mutex_lock(&sp->host->syncpt_mutex);
446 
447 	host1x_syncpt_base_free(sp->base);
448 	kfree(sp->name);
449 	sp->base = NULL;
450 	sp->client = NULL;
451 	sp->name = NULL;
452 	sp->client_managed = false;
453 
454 	mutex_unlock(&sp->host->syncpt_mutex);
455 }
456 EXPORT_SYMBOL(host1x_syncpt_free);
457 
458 void host1x_syncpt_deinit(struct host1x *host)
459 {
460 	struct host1x_syncpt *sp = host->syncpt;
461 	unsigned int i;
462 
463 	for (i = 0; i < host->info->nb_pts; i++, sp++)
464 		kfree(sp->name);
465 }
466 
467 /**
468  * host1x_syncpt_read_max() - read maximum syncpoint value
469  * @sp: host1x syncpoint
470  *
471  * The maximum syncpoint value indicates how many operations there are in
472  * queue, either in channel or in a software thread.
473  */
474 u32 host1x_syncpt_read_max(struct host1x_syncpt *sp)
475 {
476 	smp_rmb();
477 
478 	return (u32)atomic_read(&sp->max_val);
479 }
480 EXPORT_SYMBOL(host1x_syncpt_read_max);
481 
482 /**
483  * host1x_syncpt_read_min() - read minimum syncpoint value
484  * @sp: host1x syncpoint
485  *
486  * The minimum syncpoint value is a shadow of the current sync point value in
487  * hardware.
488  */
489 u32 host1x_syncpt_read_min(struct host1x_syncpt *sp)
490 {
491 	smp_rmb();
492 
493 	return (u32)atomic_read(&sp->min_val);
494 }
495 EXPORT_SYMBOL(host1x_syncpt_read_min);
496 
497 /**
498  * host1x_syncpt_read() - read the current syncpoint value
499  * @sp: host1x syncpoint
500  */
501 u32 host1x_syncpt_read(struct host1x_syncpt *sp)
502 {
503 	return host1x_syncpt_load(sp);
504 }
505 EXPORT_SYMBOL(host1x_syncpt_read);
506 
507 unsigned int host1x_syncpt_nb_pts(struct host1x *host)
508 {
509 	return host->info->nb_pts;
510 }
511 
512 unsigned int host1x_syncpt_nb_bases(struct host1x *host)
513 {
514 	return host->info->nb_bases;
515 }
516 
517 unsigned int host1x_syncpt_nb_mlocks(struct host1x *host)
518 {
519 	return host->info->nb_mlocks;
520 }
521 
522 /**
523  * host1x_syncpt_get() - obtain a syncpoint by ID
524  * @host: host1x controller
525  * @id: syncpoint ID
526  */
527 struct host1x_syncpt *host1x_syncpt_get(struct host1x *host, unsigned int id)
528 {
529 	if (id >= host->info->nb_pts)
530 		return NULL;
531 
532 	return host->syncpt + id;
533 }
534 EXPORT_SYMBOL(host1x_syncpt_get);
535 
536 /**
537  * host1x_syncpt_get_base() - obtain the wait base associated with a syncpoint
538  * @sp: host1x syncpoint
539  */
540 struct host1x_syncpt_base *host1x_syncpt_get_base(struct host1x_syncpt *sp)
541 {
542 	return sp ? sp->base : NULL;
543 }
544 EXPORT_SYMBOL(host1x_syncpt_get_base);
545 
546 /**
547  * host1x_syncpt_base_id() - retrieve the ID of a syncpoint wait base
548  * @base: host1x syncpoint wait base
549  */
550 u32 host1x_syncpt_base_id(struct host1x_syncpt_base *base)
551 {
552 	return base->id;
553 }
554 EXPORT_SYMBOL(host1x_syncpt_base_id);
555