xref: /openbmc/linux/drivers/gpu/host1x/cdma.c (revision 7d545e77)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Tegra host1x Command DMA
4  *
5  * Copyright (c) 2010-2013, NVIDIA Corporation.
6  */
7 
8 
9 #include <asm/cacheflush.h>
10 #include <linux/device.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/host1x.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel.h>
15 #include <linux/kfifo.h>
16 #include <linux/slab.h>
17 #include <trace/events/host1x.h>
18 
19 #include "cdma.h"
20 #include "channel.h"
21 #include "dev.h"
22 #include "debug.h"
23 #include "job.h"
24 
25 /*
26  * push_buffer
27  *
28  * The push buffer is a circular array of words to be fetched by command DMA.
29  * Note that it works slightly differently to the sync queue; fence == pos
30  * means that the push buffer is full, not empty.
31  */
32 
33 /*
34  * Typically the commands written into the push buffer are a pair of words. We
35  * use slots to represent each of these pairs and to simplify things. Note the
36  * strange number of slots allocated here. 512 slots will fit exactly within a
37  * single memory page. We also need one additional word at the end of the push
38  * buffer for the RESTART opcode that will instruct the CDMA to jump back to
39  * the beginning of the push buffer. With 512 slots, this means that we'll use
40  * 2 memory pages and waste 4092 bytes of the second page that will never be
41  * used.
42  */
43 #define HOST1X_PUSHBUFFER_SLOTS	511
44 
45 /*
46  * Clean up push buffer resources
47  */
48 static void host1x_pushbuffer_destroy(struct push_buffer *pb)
49 {
50 	struct host1x_cdma *cdma = pb_to_cdma(pb);
51 	struct host1x *host1x = cdma_to_host1x(cdma);
52 
53 	if (!pb->mapped)
54 		return;
55 
56 	if (host1x->domain) {
57 		iommu_unmap(host1x->domain, pb->dma, pb->alloc_size);
58 		free_iova(&host1x->iova, iova_pfn(&host1x->iova, pb->dma));
59 	}
60 
61 	dma_free_wc(host1x->dev, pb->alloc_size, pb->mapped, pb->phys);
62 
63 	pb->mapped = NULL;
64 	pb->phys = 0;
65 }
66 
67 /*
68  * Init push buffer resources
69  */
70 static int host1x_pushbuffer_init(struct push_buffer *pb)
71 {
72 	struct host1x_cdma *cdma = pb_to_cdma(pb);
73 	struct host1x *host1x = cdma_to_host1x(cdma);
74 	struct iova *alloc;
75 	u32 size;
76 	int err;
77 
78 	pb->mapped = NULL;
79 	pb->phys = 0;
80 	pb->size = HOST1X_PUSHBUFFER_SLOTS * 8;
81 
82 	size = pb->size + 4;
83 
84 	/* initialize buffer pointers */
85 	pb->fence = pb->size - 8;
86 	pb->pos = 0;
87 
88 	if (host1x->domain) {
89 		unsigned long shift;
90 
91 		size = iova_align(&host1x->iova, size);
92 
93 		pb->mapped = dma_alloc_wc(host1x->dev, size, &pb->phys,
94 					  GFP_KERNEL);
95 		if (!pb->mapped)
96 			return -ENOMEM;
97 
98 		shift = iova_shift(&host1x->iova);
99 		alloc = alloc_iova(&host1x->iova, size >> shift,
100 				   host1x->iova_end >> shift, true);
101 		if (!alloc) {
102 			err = -ENOMEM;
103 			goto iommu_free_mem;
104 		}
105 
106 		pb->dma = iova_dma_addr(&host1x->iova, alloc);
107 		err = iommu_map(host1x->domain, pb->dma, pb->phys, size,
108 				IOMMU_READ);
109 		if (err)
110 			goto iommu_free_iova;
111 	} else {
112 		pb->mapped = dma_alloc_wc(host1x->dev, size, &pb->phys,
113 					  GFP_KERNEL);
114 		if (!pb->mapped)
115 			return -ENOMEM;
116 
117 		pb->dma = pb->phys;
118 	}
119 
120 	pb->alloc_size = size;
121 
122 	host1x_hw_pushbuffer_init(host1x, pb);
123 
124 	return 0;
125 
126 iommu_free_iova:
127 	__free_iova(&host1x->iova, alloc);
128 iommu_free_mem:
129 	dma_free_wc(host1x->dev, size, pb->mapped, pb->phys);
130 
131 	return err;
132 }
133 
134 /*
135  * Push two words to the push buffer
136  * Caller must ensure push buffer is not full
137  */
138 static void host1x_pushbuffer_push(struct push_buffer *pb, u32 op1, u32 op2)
139 {
140 	u32 *p = (u32 *)((void *)pb->mapped + pb->pos);
141 
142 	WARN_ON(pb->pos == pb->fence);
143 	*(p++) = op1;
144 	*(p++) = op2;
145 	pb->pos += 8;
146 
147 	if (pb->pos >= pb->size)
148 		pb->pos -= pb->size;
149 }
150 
151 /*
152  * Pop a number of two word slots from the push buffer
153  * Caller must ensure push buffer is not empty
154  */
155 static void host1x_pushbuffer_pop(struct push_buffer *pb, unsigned int slots)
156 {
157 	/* Advance the next write position */
158 	pb->fence += slots * 8;
159 
160 	if (pb->fence >= pb->size)
161 		pb->fence -= pb->size;
162 }
163 
164 /*
165  * Return the number of two word slots free in the push buffer
166  */
167 static u32 host1x_pushbuffer_space(struct push_buffer *pb)
168 {
169 	unsigned int fence = pb->fence;
170 
171 	if (pb->fence < pb->pos)
172 		fence += pb->size;
173 
174 	return (fence - pb->pos) / 8;
175 }
176 
177 /*
178  * Sleep (if necessary) until the requested event happens
179  *   - CDMA_EVENT_SYNC_QUEUE_EMPTY : sync queue is completely empty.
180  *     - Returns 1
181  *   - CDMA_EVENT_PUSH_BUFFER_SPACE : there is space in the push buffer
182  *     - Return the amount of space (> 0)
183  * Must be called with the cdma lock held.
184  */
185 unsigned int host1x_cdma_wait_locked(struct host1x_cdma *cdma,
186 				     enum cdma_event event)
187 {
188 	for (;;) {
189 		struct push_buffer *pb = &cdma->push_buffer;
190 		unsigned int space;
191 
192 		switch (event) {
193 		case CDMA_EVENT_SYNC_QUEUE_EMPTY:
194 			space = list_empty(&cdma->sync_queue) ? 1 : 0;
195 			break;
196 
197 		case CDMA_EVENT_PUSH_BUFFER_SPACE:
198 			space = host1x_pushbuffer_space(pb);
199 			break;
200 
201 		default:
202 			WARN_ON(1);
203 			return -EINVAL;
204 		}
205 
206 		if (space)
207 			return space;
208 
209 		trace_host1x_wait_cdma(dev_name(cdma_to_channel(cdma)->dev),
210 				       event);
211 
212 		/* If somebody has managed to already start waiting, yield */
213 		if (cdma->event != CDMA_EVENT_NONE) {
214 			mutex_unlock(&cdma->lock);
215 			schedule();
216 			mutex_lock(&cdma->lock);
217 			continue;
218 		}
219 
220 		cdma->event = event;
221 
222 		mutex_unlock(&cdma->lock);
223 		wait_for_completion(&cdma->complete);
224 		mutex_lock(&cdma->lock);
225 	}
226 
227 	return 0;
228 }
229 
230 /*
231  * Sleep (if necessary) until the push buffer has enough free space.
232  *
233  * Must be called with the cdma lock held.
234  */
235 int host1x_cdma_wait_pushbuffer_space(struct host1x *host1x,
236 				      struct host1x_cdma *cdma,
237 				      unsigned int needed)
238 {
239 	while (true) {
240 		struct push_buffer *pb = &cdma->push_buffer;
241 		unsigned int space;
242 
243 		space = host1x_pushbuffer_space(pb);
244 		if (space >= needed)
245 			break;
246 
247 		trace_host1x_wait_cdma(dev_name(cdma_to_channel(cdma)->dev),
248 				       CDMA_EVENT_PUSH_BUFFER_SPACE);
249 
250 		host1x_hw_cdma_flush(host1x, cdma);
251 
252 		/* If somebody has managed to already start waiting, yield */
253 		if (cdma->event != CDMA_EVENT_NONE) {
254 			mutex_unlock(&cdma->lock);
255 			schedule();
256 			mutex_lock(&cdma->lock);
257 			continue;
258 		}
259 
260 		cdma->event = CDMA_EVENT_PUSH_BUFFER_SPACE;
261 
262 		mutex_unlock(&cdma->lock);
263 		wait_for_completion(&cdma->complete);
264 		mutex_lock(&cdma->lock);
265 	}
266 
267 	return 0;
268 }
269 /*
270  * Start timer that tracks the time spent by the job.
271  * Must be called with the cdma lock held.
272  */
273 static void cdma_start_timer_locked(struct host1x_cdma *cdma,
274 				    struct host1x_job *job)
275 {
276 	struct host1x *host = cdma_to_host1x(cdma);
277 
278 	if (cdma->timeout.client) {
279 		/* timer already started */
280 		return;
281 	}
282 
283 	cdma->timeout.client = job->client;
284 	cdma->timeout.syncpt = host1x_syncpt_get(host, job->syncpt_id);
285 	cdma->timeout.syncpt_val = job->syncpt_end;
286 	cdma->timeout.start_ktime = ktime_get();
287 
288 	schedule_delayed_work(&cdma->timeout.wq,
289 			      msecs_to_jiffies(job->timeout));
290 }
291 
292 /*
293  * Stop timer when a buffer submission completes.
294  * Must be called with the cdma lock held.
295  */
296 static void stop_cdma_timer_locked(struct host1x_cdma *cdma)
297 {
298 	cancel_delayed_work(&cdma->timeout.wq);
299 	cdma->timeout.client = NULL;
300 }
301 
302 /*
303  * For all sync queue entries that have already finished according to the
304  * current sync point registers:
305  *  - unpin & unref their mems
306  *  - pop their push buffer slots
307  *  - remove them from the sync queue
308  * This is normally called from the host code's worker thread, but can be
309  * called manually if necessary.
310  * Must be called with the cdma lock held.
311  */
312 static void update_cdma_locked(struct host1x_cdma *cdma)
313 {
314 	bool signal = false;
315 	struct host1x *host1x = cdma_to_host1x(cdma);
316 	struct host1x_job *job, *n;
317 
318 	/* If CDMA is stopped, queue is cleared and we can return */
319 	if (!cdma->running)
320 		return;
321 
322 	/*
323 	 * Walk the sync queue, reading the sync point registers as necessary,
324 	 * to consume as many sync queue entries as possible without blocking
325 	 */
326 	list_for_each_entry_safe(job, n, &cdma->sync_queue, list) {
327 		struct host1x_syncpt *sp =
328 			host1x_syncpt_get(host1x, job->syncpt_id);
329 
330 		/* Check whether this syncpt has completed, and bail if not */
331 		if (!host1x_syncpt_is_expired(sp, job->syncpt_end)) {
332 			/* Start timer on next pending syncpt */
333 			if (job->timeout)
334 				cdma_start_timer_locked(cdma, job);
335 
336 			break;
337 		}
338 
339 		/* Cancel timeout, when a buffer completes */
340 		if (cdma->timeout.client)
341 			stop_cdma_timer_locked(cdma);
342 
343 		/* Unpin the memory */
344 		host1x_job_unpin(job);
345 
346 		/* Pop push buffer slots */
347 		if (job->num_slots) {
348 			struct push_buffer *pb = &cdma->push_buffer;
349 
350 			host1x_pushbuffer_pop(pb, job->num_slots);
351 
352 			if (cdma->event == CDMA_EVENT_PUSH_BUFFER_SPACE)
353 				signal = true;
354 		}
355 
356 		list_del(&job->list);
357 		host1x_job_put(job);
358 	}
359 
360 	if (cdma->event == CDMA_EVENT_SYNC_QUEUE_EMPTY &&
361 	    list_empty(&cdma->sync_queue))
362 		signal = true;
363 
364 	if (signal) {
365 		cdma->event = CDMA_EVENT_NONE;
366 		complete(&cdma->complete);
367 	}
368 }
369 
370 void host1x_cdma_update_sync_queue(struct host1x_cdma *cdma,
371 				   struct device *dev)
372 {
373 	struct host1x *host1x = cdma_to_host1x(cdma);
374 	u32 restart_addr, syncpt_incrs, syncpt_val;
375 	struct host1x_job *job, *next_job = NULL;
376 
377 	syncpt_val = host1x_syncpt_load(cdma->timeout.syncpt);
378 
379 	dev_dbg(dev, "%s: starting cleanup (thresh %d)\n",
380 		__func__, syncpt_val);
381 
382 	/*
383 	 * Move the sync_queue read pointer to the first entry that hasn't
384 	 * completed based on the current HW syncpt value. It's likely there
385 	 * won't be any (i.e. we're still at the head), but covers the case
386 	 * where a syncpt incr happens just prior/during the teardown.
387 	 */
388 
389 	dev_dbg(dev, "%s: skip completed buffers still in sync_queue\n",
390 		__func__);
391 
392 	list_for_each_entry(job, &cdma->sync_queue, list) {
393 		if (syncpt_val < job->syncpt_end) {
394 
395 			if (!list_is_last(&job->list, &cdma->sync_queue))
396 				next_job = list_next_entry(job, list);
397 
398 			goto syncpt_incr;
399 		}
400 
401 		host1x_job_dump(dev, job);
402 	}
403 
404 	/* all jobs have been completed */
405 	job = NULL;
406 
407 syncpt_incr:
408 
409 	/*
410 	 * Increment with CPU the remaining syncpts of a partially executed job.
411 	 *
412 	 * CDMA will continue execution starting with the next job or will get
413 	 * into idle state.
414 	 */
415 	if (next_job)
416 		restart_addr = next_job->first_get;
417 	else
418 		restart_addr = cdma->last_pos;
419 
420 	/* do CPU increments for the remaining syncpts */
421 	if (job) {
422 		dev_dbg(dev, "%s: perform CPU incr on pending buffers\n",
423 			__func__);
424 
425 		/* won't need a timeout when replayed */
426 		job->timeout = 0;
427 
428 		syncpt_incrs = job->syncpt_end - syncpt_val;
429 		dev_dbg(dev, "%s: CPU incr (%d)\n", __func__, syncpt_incrs);
430 
431 		host1x_job_dump(dev, job);
432 
433 		/* safe to use CPU to incr syncpts */
434 		host1x_hw_cdma_timeout_cpu_incr(host1x, cdma, job->first_get,
435 						syncpt_incrs, job->syncpt_end,
436 						job->num_slots);
437 
438 		dev_dbg(dev, "%s: finished sync_queue modification\n",
439 			__func__);
440 	}
441 
442 	/* roll back DMAGET and start up channel again */
443 	host1x_hw_cdma_resume(host1x, cdma, restart_addr);
444 }
445 
446 /*
447  * Create a cdma
448  */
449 int host1x_cdma_init(struct host1x_cdma *cdma)
450 {
451 	int err;
452 
453 	mutex_init(&cdma->lock);
454 	init_completion(&cdma->complete);
455 
456 	INIT_LIST_HEAD(&cdma->sync_queue);
457 
458 	cdma->event = CDMA_EVENT_NONE;
459 	cdma->running = false;
460 	cdma->torndown = false;
461 
462 	err = host1x_pushbuffer_init(&cdma->push_buffer);
463 	if (err)
464 		return err;
465 
466 	return 0;
467 }
468 
469 /*
470  * Destroy a cdma
471  */
472 int host1x_cdma_deinit(struct host1x_cdma *cdma)
473 {
474 	struct push_buffer *pb = &cdma->push_buffer;
475 	struct host1x *host1x = cdma_to_host1x(cdma);
476 
477 	if (cdma->running) {
478 		pr_warn("%s: CDMA still running\n", __func__);
479 		return -EBUSY;
480 	}
481 
482 	host1x_pushbuffer_destroy(pb);
483 	host1x_hw_cdma_timeout_destroy(host1x, cdma);
484 
485 	return 0;
486 }
487 
488 /*
489  * Begin a cdma submit
490  */
491 int host1x_cdma_begin(struct host1x_cdma *cdma, struct host1x_job *job)
492 {
493 	struct host1x *host1x = cdma_to_host1x(cdma);
494 
495 	mutex_lock(&cdma->lock);
496 
497 	if (job->timeout) {
498 		/* init state on first submit with timeout value */
499 		if (!cdma->timeout.initialized) {
500 			int err;
501 
502 			err = host1x_hw_cdma_timeout_init(host1x, cdma,
503 							  job->syncpt_id);
504 			if (err) {
505 				mutex_unlock(&cdma->lock);
506 				return err;
507 			}
508 		}
509 	}
510 
511 	if (!cdma->running)
512 		host1x_hw_cdma_start(host1x, cdma);
513 
514 	cdma->slots_free = 0;
515 	cdma->slots_used = 0;
516 	cdma->first_get = cdma->push_buffer.pos;
517 
518 	trace_host1x_cdma_begin(dev_name(job->channel->dev));
519 	return 0;
520 }
521 
522 /*
523  * Push two words into a push buffer slot
524  * Blocks as necessary if the push buffer is full.
525  */
526 void host1x_cdma_push(struct host1x_cdma *cdma, u32 op1, u32 op2)
527 {
528 	struct host1x *host1x = cdma_to_host1x(cdma);
529 	struct push_buffer *pb = &cdma->push_buffer;
530 	u32 slots_free = cdma->slots_free;
531 
532 	if (host1x_debug_trace_cmdbuf)
533 		trace_host1x_cdma_push(dev_name(cdma_to_channel(cdma)->dev),
534 				       op1, op2);
535 
536 	if (slots_free == 0) {
537 		host1x_hw_cdma_flush(host1x, cdma);
538 		slots_free = host1x_cdma_wait_locked(cdma,
539 						CDMA_EVENT_PUSH_BUFFER_SPACE);
540 	}
541 
542 	cdma->slots_free = slots_free - 1;
543 	cdma->slots_used++;
544 	host1x_pushbuffer_push(pb, op1, op2);
545 }
546 
547 /*
548  * Push four words into two consecutive push buffer slots. Note that extra
549  * care needs to be taken not to split the two slots across the end of the
550  * push buffer. Otherwise the RESTART opcode at the end of the push buffer
551  * that ensures processing will restart at the beginning will break up the
552  * four words.
553  *
554  * Blocks as necessary if the push buffer is full.
555  */
556 void host1x_cdma_push_wide(struct host1x_cdma *cdma, u32 op1, u32 op2,
557 			   u32 op3, u32 op4)
558 {
559 	struct host1x_channel *channel = cdma_to_channel(cdma);
560 	struct host1x *host1x = cdma_to_host1x(cdma);
561 	struct push_buffer *pb = &cdma->push_buffer;
562 	unsigned int needed = 2, extra = 0, i;
563 	unsigned int space = cdma->slots_free;
564 
565 	if (host1x_debug_trace_cmdbuf)
566 		trace_host1x_cdma_push_wide(dev_name(channel->dev), op1, op2,
567 					    op3, op4);
568 
569 	/* compute number of extra slots needed for padding */
570 	if (pb->pos + 16 > pb->size) {
571 		extra = (pb->size - pb->pos) / 8;
572 		needed += extra;
573 	}
574 
575 	host1x_cdma_wait_pushbuffer_space(host1x, cdma, needed);
576 	space = host1x_pushbuffer_space(pb);
577 
578 	cdma->slots_free = space - needed;
579 	cdma->slots_used += needed;
580 
581 	/*
582 	 * Note that we rely on the fact that this is only used to submit wide
583 	 * gather opcodes, which consist of 3 words, and they are padded with
584 	 * a NOP to avoid having to deal with fractional slots (a slot always
585 	 * represents 2 words). The fourth opcode passed to this function will
586 	 * therefore always be a NOP.
587 	 *
588 	 * This works around a slight ambiguity when it comes to opcodes. For
589 	 * all current host1x incarnations the NOP opcode uses the exact same
590 	 * encoding (0x20000000), so we could hard-code the value here, but a
591 	 * new incarnation may change it and break that assumption.
592 	 */
593 	for (i = 0; i < extra; i++)
594 		host1x_pushbuffer_push(pb, op4, op4);
595 
596 	host1x_pushbuffer_push(pb, op1, op2);
597 	host1x_pushbuffer_push(pb, op3, op4);
598 }
599 
600 /*
601  * End a cdma submit
602  * Kick off DMA, add job to the sync queue, and a number of slots to be freed
603  * from the pushbuffer. The handles for a submit must all be pinned at the same
604  * time, but they can be unpinned in smaller chunks.
605  */
606 void host1x_cdma_end(struct host1x_cdma *cdma,
607 		     struct host1x_job *job)
608 {
609 	struct host1x *host1x = cdma_to_host1x(cdma);
610 	bool idle = list_empty(&cdma->sync_queue);
611 
612 	host1x_hw_cdma_flush(host1x, cdma);
613 
614 	job->first_get = cdma->first_get;
615 	job->num_slots = cdma->slots_used;
616 	host1x_job_get(job);
617 	list_add_tail(&job->list, &cdma->sync_queue);
618 
619 	/* start timer on idle -> active transitions */
620 	if (job->timeout && idle)
621 		cdma_start_timer_locked(cdma, job);
622 
623 	trace_host1x_cdma_end(dev_name(job->channel->dev));
624 	mutex_unlock(&cdma->lock);
625 }
626 
627 /*
628  * Update cdma state according to current sync point values
629  */
630 void host1x_cdma_update(struct host1x_cdma *cdma)
631 {
632 	mutex_lock(&cdma->lock);
633 	update_cdma_locked(cdma);
634 	mutex_unlock(&cdma->lock);
635 }
636