xref: /openbmc/linux/drivers/gpu/drm/vmwgfx/vmwgfx_ttm_buffer.c (revision f019679ea5f2ab650c3348a79e7d9c3625f62899)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3  *
4  * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 #include "vmwgfx_drv.h"
29 #include <drm/ttm/ttm_bo_driver.h>
30 #include <drm/ttm/ttm_placement.h>
31 
32 static const struct ttm_place vram_placement_flags = {
33 	.fpfn = 0,
34 	.lpfn = 0,
35 	.mem_type = TTM_PL_VRAM,
36 	.flags = 0
37 };
38 
39 static const struct ttm_place sys_placement_flags = {
40 	.fpfn = 0,
41 	.lpfn = 0,
42 	.mem_type = TTM_PL_SYSTEM,
43 	.flags = 0
44 };
45 
46 static const struct ttm_place gmr_placement_flags = {
47 	.fpfn = 0,
48 	.lpfn = 0,
49 	.mem_type = VMW_PL_GMR,
50 	.flags = 0
51 };
52 
53 static const struct ttm_place mob_placement_flags = {
54 	.fpfn = 0,
55 	.lpfn = 0,
56 	.mem_type = VMW_PL_MOB,
57 	.flags = 0
58 };
59 
60 struct ttm_placement vmw_vram_placement = {
61 	.num_placement = 1,
62 	.placement = &vram_placement_flags,
63 	.num_busy_placement = 1,
64 	.busy_placement = &vram_placement_flags
65 };
66 
67 static const struct ttm_place vram_gmr_placement_flags[] = {
68 	{
69 		.fpfn = 0,
70 		.lpfn = 0,
71 		.mem_type = TTM_PL_VRAM,
72 		.flags = 0
73 	}, {
74 		.fpfn = 0,
75 		.lpfn = 0,
76 		.mem_type = VMW_PL_GMR,
77 		.flags = 0
78 	}
79 };
80 
81 static const struct ttm_place gmr_vram_placement_flags[] = {
82 	{
83 		.fpfn = 0,
84 		.lpfn = 0,
85 		.mem_type = VMW_PL_GMR,
86 		.flags = 0
87 	}, {
88 		.fpfn = 0,
89 		.lpfn = 0,
90 		.mem_type = TTM_PL_VRAM,
91 		.flags = 0
92 	}
93 };
94 
95 static const struct ttm_place vmw_sys_placement_flags = {
96 	.fpfn = 0,
97 	.lpfn = 0,
98 	.mem_type = VMW_PL_SYSTEM,
99 	.flags = 0
100 };
101 
102 struct ttm_placement vmw_vram_gmr_placement = {
103 	.num_placement = 2,
104 	.placement = vram_gmr_placement_flags,
105 	.num_busy_placement = 1,
106 	.busy_placement = &gmr_placement_flags
107 };
108 
109 struct ttm_placement vmw_vram_sys_placement = {
110 	.num_placement = 1,
111 	.placement = &vram_placement_flags,
112 	.num_busy_placement = 1,
113 	.busy_placement = &sys_placement_flags
114 };
115 
116 struct ttm_placement vmw_sys_placement = {
117 	.num_placement = 1,
118 	.placement = &sys_placement_flags,
119 	.num_busy_placement = 1,
120 	.busy_placement = &sys_placement_flags
121 };
122 
123 struct ttm_placement vmw_pt_sys_placement = {
124 	.num_placement = 1,
125 	.placement = &vmw_sys_placement_flags,
126 	.num_busy_placement = 1,
127 	.busy_placement = &vmw_sys_placement_flags
128 };
129 
130 static const struct ttm_place nonfixed_placement_flags[] = {
131 	{
132 		.fpfn = 0,
133 		.lpfn = 0,
134 		.mem_type = TTM_PL_SYSTEM,
135 		.flags = 0
136 	}, {
137 		.fpfn = 0,
138 		.lpfn = 0,
139 		.mem_type = VMW_PL_GMR,
140 		.flags = 0
141 	}, {
142 		.fpfn = 0,
143 		.lpfn = 0,
144 		.mem_type = VMW_PL_MOB,
145 		.flags = 0
146 	}
147 };
148 
149 struct ttm_placement vmw_srf_placement = {
150 	.num_placement = 1,
151 	.num_busy_placement = 2,
152 	.placement = &gmr_placement_flags,
153 	.busy_placement = gmr_vram_placement_flags
154 };
155 
156 struct ttm_placement vmw_mob_placement = {
157 	.num_placement = 1,
158 	.num_busy_placement = 1,
159 	.placement = &mob_placement_flags,
160 	.busy_placement = &mob_placement_flags
161 };
162 
163 struct ttm_placement vmw_nonfixed_placement = {
164 	.num_placement = 3,
165 	.placement = nonfixed_placement_flags,
166 	.num_busy_placement = 1,
167 	.busy_placement = &sys_placement_flags
168 };
169 
170 const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt);
171 
172 /**
173  * __vmw_piter_non_sg_next: Helper functions to advance
174  * a struct vmw_piter iterator.
175  *
176  * @viter: Pointer to the iterator.
177  *
178  * These functions return false if past the end of the list,
179  * true otherwise. Functions are selected depending on the current
180  * DMA mapping mode.
181  */
182 static bool __vmw_piter_non_sg_next(struct vmw_piter *viter)
183 {
184 	return ++(viter->i) < viter->num_pages;
185 }
186 
187 static bool __vmw_piter_sg_next(struct vmw_piter *viter)
188 {
189 	bool ret = __vmw_piter_non_sg_next(viter);
190 
191 	return __sg_page_iter_dma_next(&viter->iter) && ret;
192 }
193 
194 
195 static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter)
196 {
197 	return viter->addrs[viter->i];
198 }
199 
200 static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter)
201 {
202 	return sg_page_iter_dma_address(&viter->iter);
203 }
204 
205 
206 /**
207  * vmw_piter_start - Initialize a struct vmw_piter.
208  *
209  * @viter: Pointer to the iterator to initialize
210  * @vsgt: Pointer to a struct vmw_sg_table to initialize from
211  * @p_offset: Pointer offset used to update current array position
212  *
213  * Note that we're following the convention of __sg_page_iter_start, so that
214  * the iterator doesn't point to a valid page after initialization; it has
215  * to be advanced one step first.
216  */
217 void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt,
218 		     unsigned long p_offset)
219 {
220 	viter->i = p_offset - 1;
221 	viter->num_pages = vsgt->num_pages;
222 	viter->pages = vsgt->pages;
223 	switch (vsgt->mode) {
224 	case vmw_dma_alloc_coherent:
225 		viter->next = &__vmw_piter_non_sg_next;
226 		viter->dma_address = &__vmw_piter_dma_addr;
227 		viter->addrs = vsgt->addrs;
228 		break;
229 	case vmw_dma_map_populate:
230 	case vmw_dma_map_bind:
231 		viter->next = &__vmw_piter_sg_next;
232 		viter->dma_address = &__vmw_piter_sg_addr;
233 		__sg_page_iter_start(&viter->iter.base, vsgt->sgt->sgl,
234 				     vsgt->sgt->orig_nents, p_offset);
235 		break;
236 	default:
237 		BUG();
238 	}
239 }
240 
241 /**
242  * vmw_ttm_unmap_from_dma - unmap  device addresses previsouly mapped for
243  * TTM pages
244  *
245  * @vmw_tt: Pointer to a struct vmw_ttm_backend
246  *
247  * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma.
248  */
249 static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt)
250 {
251 	struct device *dev = vmw_tt->dev_priv->drm.dev;
252 
253 	dma_unmap_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
254 	vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents;
255 }
256 
257 /**
258  * vmw_ttm_map_for_dma - map TTM pages to get device addresses
259  *
260  * @vmw_tt: Pointer to a struct vmw_ttm_backend
261  *
262  * This function is used to get device addresses from the kernel DMA layer.
263  * However, it's violating the DMA API in that when this operation has been
264  * performed, it's illegal for the CPU to write to the pages without first
265  * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is
266  * therefore only legal to call this function if we know that the function
267  * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most
268  * a CPU write buffer flush.
269  */
270 static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt)
271 {
272 	struct device *dev = vmw_tt->dev_priv->drm.dev;
273 
274 	return dma_map_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
275 }
276 
277 /**
278  * vmw_ttm_map_dma - Make sure TTM pages are visible to the device
279  *
280  * @vmw_tt: Pointer to a struct vmw_ttm_tt
281  *
282  * Select the correct function for and make sure the TTM pages are
283  * visible to the device. Allocate storage for the device mappings.
284  * If a mapping has already been performed, indicated by the storage
285  * pointer being non NULL, the function returns success.
286  */
287 static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt)
288 {
289 	struct vmw_private *dev_priv = vmw_tt->dev_priv;
290 	struct vmw_sg_table *vsgt = &vmw_tt->vsgt;
291 	int ret = 0;
292 
293 	if (vmw_tt->mapped)
294 		return 0;
295 
296 	vsgt->mode = dev_priv->map_mode;
297 	vsgt->pages = vmw_tt->dma_ttm.pages;
298 	vsgt->num_pages = vmw_tt->dma_ttm.num_pages;
299 	vsgt->addrs = vmw_tt->dma_ttm.dma_address;
300 	vsgt->sgt = NULL;
301 
302 	switch (dev_priv->map_mode) {
303 	case vmw_dma_map_bind:
304 	case vmw_dma_map_populate:
305 		vsgt->sgt = &vmw_tt->sgt;
306 		ret = sg_alloc_table_from_pages_segment(
307 			&vmw_tt->sgt, vsgt->pages, vsgt->num_pages, 0,
308 			(unsigned long)vsgt->num_pages << PAGE_SHIFT,
309 			dma_get_max_seg_size(dev_priv->drm.dev), GFP_KERNEL);
310 		if (ret)
311 			goto out_sg_alloc_fail;
312 
313 		ret = vmw_ttm_map_for_dma(vmw_tt);
314 		if (unlikely(ret != 0))
315 			goto out_map_fail;
316 
317 		break;
318 	default:
319 		break;
320 	}
321 
322 	vmw_tt->mapped = true;
323 	return 0;
324 
325 out_map_fail:
326 	sg_free_table(vmw_tt->vsgt.sgt);
327 	vmw_tt->vsgt.sgt = NULL;
328 out_sg_alloc_fail:
329 	return ret;
330 }
331 
332 /**
333  * vmw_ttm_unmap_dma - Tear down any TTM page device mappings
334  *
335  * @vmw_tt: Pointer to a struct vmw_ttm_tt
336  *
337  * Tear down any previously set up device DMA mappings and free
338  * any storage space allocated for them. If there are no mappings set up,
339  * this function is a NOP.
340  */
341 static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt)
342 {
343 	struct vmw_private *dev_priv = vmw_tt->dev_priv;
344 
345 	if (!vmw_tt->vsgt.sgt)
346 		return;
347 
348 	switch (dev_priv->map_mode) {
349 	case vmw_dma_map_bind:
350 	case vmw_dma_map_populate:
351 		vmw_ttm_unmap_from_dma(vmw_tt);
352 		sg_free_table(vmw_tt->vsgt.sgt);
353 		vmw_tt->vsgt.sgt = NULL;
354 		break;
355 	default:
356 		break;
357 	}
358 	vmw_tt->mapped = false;
359 }
360 
361 /**
362  * vmw_bo_sg_table - Return a struct vmw_sg_table object for a
363  * TTM buffer object
364  *
365  * @bo: Pointer to a struct ttm_buffer_object
366  *
367  * Returns a pointer to a struct vmw_sg_table object. The object should
368  * not be freed after use.
369  * Note that for the device addresses to be valid, the buffer object must
370  * either be reserved or pinned.
371  */
372 const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo)
373 {
374 	struct vmw_ttm_tt *vmw_tt =
375 		container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm);
376 
377 	return &vmw_tt->vsgt;
378 }
379 
380 
381 static int vmw_ttm_bind(struct ttm_device *bdev,
382 			struct ttm_tt *ttm, struct ttm_resource *bo_mem)
383 {
384 	struct vmw_ttm_tt *vmw_be =
385 		container_of(ttm, struct vmw_ttm_tt, dma_ttm);
386 	int ret = 0;
387 
388 	if (!bo_mem)
389 		return -EINVAL;
390 
391 	if (vmw_be->bound)
392 		return 0;
393 
394 	ret = vmw_ttm_map_dma(vmw_be);
395 	if (unlikely(ret != 0))
396 		return ret;
397 
398 	vmw_be->gmr_id = bo_mem->start;
399 	vmw_be->mem_type = bo_mem->mem_type;
400 
401 	switch (bo_mem->mem_type) {
402 	case VMW_PL_GMR:
403 		ret = vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt,
404 				    ttm->num_pages, vmw_be->gmr_id);
405 		break;
406 	case VMW_PL_MOB:
407 		if (unlikely(vmw_be->mob == NULL)) {
408 			vmw_be->mob =
409 				vmw_mob_create(ttm->num_pages);
410 			if (unlikely(vmw_be->mob == NULL))
411 				return -ENOMEM;
412 		}
413 
414 		ret = vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob,
415 				    &vmw_be->vsgt, ttm->num_pages,
416 				    vmw_be->gmr_id);
417 		break;
418 	case VMW_PL_SYSTEM:
419 		/* Nothing to be done for a system bind */
420 		break;
421 	default:
422 		BUG();
423 	}
424 	vmw_be->bound = true;
425 	return ret;
426 }
427 
428 static void vmw_ttm_unbind(struct ttm_device *bdev,
429 			   struct ttm_tt *ttm)
430 {
431 	struct vmw_ttm_tt *vmw_be =
432 		container_of(ttm, struct vmw_ttm_tt, dma_ttm);
433 
434 	if (!vmw_be->bound)
435 		return;
436 
437 	switch (vmw_be->mem_type) {
438 	case VMW_PL_GMR:
439 		vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id);
440 		break;
441 	case VMW_PL_MOB:
442 		vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob);
443 		break;
444 	case VMW_PL_SYSTEM:
445 		break;
446 	default:
447 		BUG();
448 	}
449 
450 	if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind)
451 		vmw_ttm_unmap_dma(vmw_be);
452 	vmw_be->bound = false;
453 }
454 
455 
456 static void vmw_ttm_destroy(struct ttm_device *bdev, struct ttm_tt *ttm)
457 {
458 	struct vmw_ttm_tt *vmw_be =
459 		container_of(ttm, struct vmw_ttm_tt, dma_ttm);
460 
461 	vmw_ttm_unmap_dma(vmw_be);
462 	ttm_tt_fini(ttm);
463 	if (vmw_be->mob)
464 		vmw_mob_destroy(vmw_be->mob);
465 
466 	kfree(vmw_be);
467 }
468 
469 
470 static int vmw_ttm_populate(struct ttm_device *bdev,
471 			    struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
472 {
473 	int ret;
474 
475 	/* TODO: maybe completely drop this ? */
476 	if (ttm_tt_is_populated(ttm))
477 		return 0;
478 
479 	ret = ttm_pool_alloc(&bdev->pool, ttm, ctx);
480 
481 	return ret;
482 }
483 
484 static void vmw_ttm_unpopulate(struct ttm_device *bdev,
485 			       struct ttm_tt *ttm)
486 {
487 	struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt,
488 						 dma_ttm);
489 
490 	vmw_ttm_unbind(bdev, ttm);
491 
492 	if (vmw_tt->mob) {
493 		vmw_mob_destroy(vmw_tt->mob);
494 		vmw_tt->mob = NULL;
495 	}
496 
497 	vmw_ttm_unmap_dma(vmw_tt);
498 
499 	ttm_pool_free(&bdev->pool, ttm);
500 }
501 
502 static struct ttm_tt *vmw_ttm_tt_create(struct ttm_buffer_object *bo,
503 					uint32_t page_flags)
504 {
505 	struct vmw_ttm_tt *vmw_be;
506 	int ret;
507 
508 	vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL);
509 	if (!vmw_be)
510 		return NULL;
511 
512 	vmw_be->dev_priv = container_of(bo->bdev, struct vmw_private, bdev);
513 	vmw_be->mob = NULL;
514 
515 	if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
516 		ret = ttm_sg_tt_init(&vmw_be->dma_ttm, bo, page_flags,
517 				     ttm_cached);
518 	else
519 		ret = ttm_tt_init(&vmw_be->dma_ttm, bo, page_flags,
520 				  ttm_cached, 0);
521 	if (unlikely(ret != 0))
522 		goto out_no_init;
523 
524 	return &vmw_be->dma_ttm;
525 out_no_init:
526 	kfree(vmw_be);
527 	return NULL;
528 }
529 
530 static void vmw_evict_flags(struct ttm_buffer_object *bo,
531 		     struct ttm_placement *placement)
532 {
533 	*placement = vmw_sys_placement;
534 }
535 
536 static int vmw_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem)
537 {
538 	struct vmw_private *dev_priv = container_of(bdev, struct vmw_private, bdev);
539 
540 	switch (mem->mem_type) {
541 	case TTM_PL_SYSTEM:
542 	case VMW_PL_SYSTEM:
543 	case VMW_PL_GMR:
544 	case VMW_PL_MOB:
545 		return 0;
546 	case TTM_PL_VRAM:
547 		mem->bus.offset = (mem->start << PAGE_SHIFT) +
548 			dev_priv->vram_start;
549 		mem->bus.is_iomem = true;
550 		mem->bus.caching = ttm_cached;
551 		break;
552 	default:
553 		return -EINVAL;
554 	}
555 	return 0;
556 }
557 
558 /**
559  * vmw_move_notify - TTM move_notify_callback
560  *
561  * @bo: The TTM buffer object about to move.
562  * @old_mem: The old memory where we move from
563  * @new_mem: The struct ttm_resource indicating to what memory
564  *       region the move is taking place.
565  *
566  * Calls move_notify for all subsystems needing it.
567  * (currently only resources).
568  */
569 static void vmw_move_notify(struct ttm_buffer_object *bo,
570 			    struct ttm_resource *old_mem,
571 			    struct ttm_resource *new_mem)
572 {
573 	vmw_bo_move_notify(bo, new_mem);
574 	vmw_query_move_notify(bo, old_mem, new_mem);
575 }
576 
577 
578 /**
579  * vmw_swap_notify - TTM move_notify_callback
580  *
581  * @bo: The TTM buffer object about to be swapped out.
582  */
583 static void vmw_swap_notify(struct ttm_buffer_object *bo)
584 {
585 	vmw_bo_swap_notify(bo);
586 	(void) ttm_bo_wait(bo, false, false);
587 }
588 
589 static bool vmw_memtype_is_system(uint32_t mem_type)
590 {
591 	return mem_type == TTM_PL_SYSTEM || mem_type == VMW_PL_SYSTEM;
592 }
593 
594 static int vmw_move(struct ttm_buffer_object *bo,
595 		    bool evict,
596 		    struct ttm_operation_ctx *ctx,
597 		    struct ttm_resource *new_mem,
598 		    struct ttm_place *hop)
599 {
600 	struct ttm_resource_manager *old_man = ttm_manager_type(bo->bdev, bo->resource->mem_type);
601 	struct ttm_resource_manager *new_man = ttm_manager_type(bo->bdev, new_mem->mem_type);
602 	int ret;
603 
604 	if (new_man->use_tt && !vmw_memtype_is_system(new_mem->mem_type)) {
605 		ret = vmw_ttm_bind(bo->bdev, bo->ttm, new_mem);
606 		if (ret)
607 			return ret;
608 	}
609 
610 	vmw_move_notify(bo, bo->resource, new_mem);
611 
612 	if (old_man->use_tt && new_man->use_tt) {
613 		if (vmw_memtype_is_system(bo->resource->mem_type)) {
614 			ttm_bo_move_null(bo, new_mem);
615 			return 0;
616 		}
617 		ret = ttm_bo_wait_ctx(bo, ctx);
618 		if (ret)
619 			goto fail;
620 
621 		vmw_ttm_unbind(bo->bdev, bo->ttm);
622 		ttm_resource_free(bo, &bo->resource);
623 		ttm_bo_assign_mem(bo, new_mem);
624 		return 0;
625 	} else {
626 		ret = ttm_bo_move_memcpy(bo, ctx, new_mem);
627 		if (ret)
628 			goto fail;
629 	}
630 	return 0;
631 fail:
632 	vmw_move_notify(bo, new_mem, bo->resource);
633 	return ret;
634 }
635 
636 struct ttm_device_funcs vmw_bo_driver = {
637 	.ttm_tt_create = &vmw_ttm_tt_create,
638 	.ttm_tt_populate = &vmw_ttm_populate,
639 	.ttm_tt_unpopulate = &vmw_ttm_unpopulate,
640 	.ttm_tt_destroy = &vmw_ttm_destroy,
641 	.eviction_valuable = ttm_bo_eviction_valuable,
642 	.evict_flags = vmw_evict_flags,
643 	.move = vmw_move,
644 	.swap_notify = vmw_swap_notify,
645 	.io_mem_reserve = &vmw_ttm_io_mem_reserve,
646 };
647 
648 int vmw_bo_create_and_populate(struct vmw_private *dev_priv,
649 			       unsigned long bo_size,
650 			       struct ttm_buffer_object **bo_p)
651 {
652 	struct ttm_operation_ctx ctx = {
653 		.interruptible = false,
654 		.no_wait_gpu = false
655 	};
656 	struct ttm_buffer_object *bo;
657 	int ret;
658 
659 	ret = vmw_bo_create_kernel(dev_priv, bo_size,
660 				   &vmw_pt_sys_placement,
661 				   &bo);
662 	if (unlikely(ret != 0))
663 		return ret;
664 
665 	ret = ttm_bo_reserve(bo, false, true, NULL);
666 	BUG_ON(ret != 0);
667 	ret = vmw_ttm_populate(bo->bdev, bo->ttm, &ctx);
668 	if (likely(ret == 0)) {
669 		struct vmw_ttm_tt *vmw_tt =
670 			container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm);
671 		ret = vmw_ttm_map_dma(vmw_tt);
672 	}
673 
674 	ttm_bo_unreserve(bo);
675 
676 	if (likely(ret == 0))
677 		*bo_p = bo;
678 	return ret;
679 }
680