1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /************************************************************************** 3 * 4 * Copyright 2009-2023 VMware, Inc., Palo Alto, CA., USA 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 28 #include "vmwgfx_bo.h" 29 #include "vmwgfx_drv.h" 30 #include <drm/ttm/ttm_placement.h> 31 32 static const struct ttm_place vram_placement_flags = { 33 .fpfn = 0, 34 .lpfn = 0, 35 .mem_type = TTM_PL_VRAM, 36 .flags = 0 37 }; 38 39 static const struct ttm_place sys_placement_flags = { 40 .fpfn = 0, 41 .lpfn = 0, 42 .mem_type = TTM_PL_SYSTEM, 43 .flags = 0 44 }; 45 46 static const struct ttm_place gmr_placement_flags = { 47 .fpfn = 0, 48 .lpfn = 0, 49 .mem_type = VMW_PL_GMR, 50 .flags = 0 51 }; 52 53 struct ttm_placement vmw_vram_placement = { 54 .num_placement = 1, 55 .placement = &vram_placement_flags, 56 .num_busy_placement = 1, 57 .busy_placement = &vram_placement_flags 58 }; 59 60 static const struct ttm_place vram_gmr_placement_flags[] = { 61 { 62 .fpfn = 0, 63 .lpfn = 0, 64 .mem_type = TTM_PL_VRAM, 65 .flags = 0 66 }, { 67 .fpfn = 0, 68 .lpfn = 0, 69 .mem_type = VMW_PL_GMR, 70 .flags = 0 71 } 72 }; 73 74 struct ttm_placement vmw_vram_gmr_placement = { 75 .num_placement = 2, 76 .placement = vram_gmr_placement_flags, 77 .num_busy_placement = 1, 78 .busy_placement = &gmr_placement_flags 79 }; 80 81 struct ttm_placement vmw_sys_placement = { 82 .num_placement = 1, 83 .placement = &sys_placement_flags, 84 .num_busy_placement = 1, 85 .busy_placement = &sys_placement_flags 86 }; 87 88 const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt); 89 90 /** 91 * __vmw_piter_non_sg_next: Helper functions to advance 92 * a struct vmw_piter iterator. 93 * 94 * @viter: Pointer to the iterator. 95 * 96 * These functions return false if past the end of the list, 97 * true otherwise. Functions are selected depending on the current 98 * DMA mapping mode. 99 */ 100 static bool __vmw_piter_non_sg_next(struct vmw_piter *viter) 101 { 102 return ++(viter->i) < viter->num_pages; 103 } 104 105 static bool __vmw_piter_sg_next(struct vmw_piter *viter) 106 { 107 bool ret = __vmw_piter_non_sg_next(viter); 108 109 return __sg_page_iter_dma_next(&viter->iter) && ret; 110 } 111 112 113 static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter) 114 { 115 return viter->addrs[viter->i]; 116 } 117 118 static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter) 119 { 120 return sg_page_iter_dma_address(&viter->iter); 121 } 122 123 124 /** 125 * vmw_piter_start - Initialize a struct vmw_piter. 126 * 127 * @viter: Pointer to the iterator to initialize 128 * @vsgt: Pointer to a struct vmw_sg_table to initialize from 129 * @p_offset: Pointer offset used to update current array position 130 * 131 * Note that we're following the convention of __sg_page_iter_start, so that 132 * the iterator doesn't point to a valid page after initialization; it has 133 * to be advanced one step first. 134 */ 135 void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt, 136 unsigned long p_offset) 137 { 138 viter->i = p_offset - 1; 139 viter->num_pages = vsgt->num_pages; 140 viter->pages = vsgt->pages; 141 switch (vsgt->mode) { 142 case vmw_dma_alloc_coherent: 143 viter->next = &__vmw_piter_non_sg_next; 144 viter->dma_address = &__vmw_piter_dma_addr; 145 viter->addrs = vsgt->addrs; 146 break; 147 case vmw_dma_map_populate: 148 case vmw_dma_map_bind: 149 viter->next = &__vmw_piter_sg_next; 150 viter->dma_address = &__vmw_piter_sg_addr; 151 __sg_page_iter_start(&viter->iter.base, vsgt->sgt->sgl, 152 vsgt->sgt->orig_nents, p_offset); 153 break; 154 default: 155 BUG(); 156 } 157 } 158 159 /** 160 * vmw_ttm_unmap_from_dma - unmap device addresses previsouly mapped for 161 * TTM pages 162 * 163 * @vmw_tt: Pointer to a struct vmw_ttm_backend 164 * 165 * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma. 166 */ 167 static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt) 168 { 169 struct device *dev = vmw_tt->dev_priv->drm.dev; 170 171 dma_unmap_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0); 172 vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents; 173 } 174 175 /** 176 * vmw_ttm_map_for_dma - map TTM pages to get device addresses 177 * 178 * @vmw_tt: Pointer to a struct vmw_ttm_backend 179 * 180 * This function is used to get device addresses from the kernel DMA layer. 181 * However, it's violating the DMA API in that when this operation has been 182 * performed, it's illegal for the CPU to write to the pages without first 183 * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is 184 * therefore only legal to call this function if we know that the function 185 * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most 186 * a CPU write buffer flush. 187 */ 188 static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt) 189 { 190 struct device *dev = vmw_tt->dev_priv->drm.dev; 191 192 return dma_map_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0); 193 } 194 195 /** 196 * vmw_ttm_map_dma - Make sure TTM pages are visible to the device 197 * 198 * @vmw_tt: Pointer to a struct vmw_ttm_tt 199 * 200 * Select the correct function for and make sure the TTM pages are 201 * visible to the device. Allocate storage for the device mappings. 202 * If a mapping has already been performed, indicated by the storage 203 * pointer being non NULL, the function returns success. 204 */ 205 static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt) 206 { 207 struct vmw_private *dev_priv = vmw_tt->dev_priv; 208 struct vmw_sg_table *vsgt = &vmw_tt->vsgt; 209 int ret = 0; 210 211 if (vmw_tt->mapped) 212 return 0; 213 214 vsgt->mode = dev_priv->map_mode; 215 vsgt->pages = vmw_tt->dma_ttm.pages; 216 vsgt->num_pages = vmw_tt->dma_ttm.num_pages; 217 vsgt->addrs = vmw_tt->dma_ttm.dma_address; 218 vsgt->sgt = NULL; 219 220 switch (dev_priv->map_mode) { 221 case vmw_dma_map_bind: 222 case vmw_dma_map_populate: 223 if (vmw_tt->dma_ttm.page_flags & TTM_TT_FLAG_EXTERNAL) { 224 vsgt->sgt = vmw_tt->dma_ttm.sg; 225 } else { 226 vsgt->sgt = &vmw_tt->sgt; 227 ret = sg_alloc_table_from_pages_segment(&vmw_tt->sgt, 228 vsgt->pages, vsgt->num_pages, 0, 229 (unsigned long)vsgt->num_pages << PAGE_SHIFT, 230 dma_get_max_seg_size(dev_priv->drm.dev), 231 GFP_KERNEL); 232 if (ret) 233 goto out_sg_alloc_fail; 234 } 235 236 ret = vmw_ttm_map_for_dma(vmw_tt); 237 if (unlikely(ret != 0)) 238 goto out_map_fail; 239 240 break; 241 default: 242 break; 243 } 244 245 vmw_tt->mapped = true; 246 return 0; 247 248 out_map_fail: 249 drm_warn(&dev_priv->drm, "VSG table map failed!"); 250 sg_free_table(vsgt->sgt); 251 vsgt->sgt = NULL; 252 out_sg_alloc_fail: 253 return ret; 254 } 255 256 /** 257 * vmw_ttm_unmap_dma - Tear down any TTM page device mappings 258 * 259 * @vmw_tt: Pointer to a struct vmw_ttm_tt 260 * 261 * Tear down any previously set up device DMA mappings and free 262 * any storage space allocated for them. If there are no mappings set up, 263 * this function is a NOP. 264 */ 265 static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt) 266 { 267 struct vmw_private *dev_priv = vmw_tt->dev_priv; 268 269 if (!vmw_tt->vsgt.sgt) 270 return; 271 272 switch (dev_priv->map_mode) { 273 case vmw_dma_map_bind: 274 case vmw_dma_map_populate: 275 vmw_ttm_unmap_from_dma(vmw_tt); 276 sg_free_table(vmw_tt->vsgt.sgt); 277 vmw_tt->vsgt.sgt = NULL; 278 break; 279 default: 280 break; 281 } 282 vmw_tt->mapped = false; 283 } 284 285 /** 286 * vmw_bo_sg_table - Return a struct vmw_sg_table object for a 287 * TTM buffer object 288 * 289 * @bo: Pointer to a struct ttm_buffer_object 290 * 291 * Returns a pointer to a struct vmw_sg_table object. The object should 292 * not be freed after use. 293 * Note that for the device addresses to be valid, the buffer object must 294 * either be reserved or pinned. 295 */ 296 const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo) 297 { 298 struct vmw_ttm_tt *vmw_tt = 299 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm); 300 301 return &vmw_tt->vsgt; 302 } 303 304 305 static int vmw_ttm_bind(struct ttm_device *bdev, 306 struct ttm_tt *ttm, struct ttm_resource *bo_mem) 307 { 308 struct vmw_ttm_tt *vmw_be = 309 container_of(ttm, struct vmw_ttm_tt, dma_ttm); 310 int ret = 0; 311 312 if (!bo_mem) 313 return -EINVAL; 314 315 if (vmw_be->bound) 316 return 0; 317 318 ret = vmw_ttm_map_dma(vmw_be); 319 if (unlikely(ret != 0)) 320 return ret; 321 322 vmw_be->gmr_id = bo_mem->start; 323 vmw_be->mem_type = bo_mem->mem_type; 324 325 switch (bo_mem->mem_type) { 326 case VMW_PL_GMR: 327 ret = vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt, 328 ttm->num_pages, vmw_be->gmr_id); 329 break; 330 case VMW_PL_MOB: 331 if (unlikely(vmw_be->mob == NULL)) { 332 vmw_be->mob = 333 vmw_mob_create(ttm->num_pages); 334 if (unlikely(vmw_be->mob == NULL)) 335 return -ENOMEM; 336 } 337 338 ret = vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob, 339 &vmw_be->vsgt, ttm->num_pages, 340 vmw_be->gmr_id); 341 break; 342 case VMW_PL_SYSTEM: 343 /* Nothing to be done for a system bind */ 344 break; 345 default: 346 BUG(); 347 } 348 vmw_be->bound = true; 349 return ret; 350 } 351 352 static void vmw_ttm_unbind(struct ttm_device *bdev, 353 struct ttm_tt *ttm) 354 { 355 struct vmw_ttm_tt *vmw_be = 356 container_of(ttm, struct vmw_ttm_tt, dma_ttm); 357 358 if (!vmw_be->bound) 359 return; 360 361 switch (vmw_be->mem_type) { 362 case VMW_PL_GMR: 363 vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id); 364 break; 365 case VMW_PL_MOB: 366 vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob); 367 break; 368 case VMW_PL_SYSTEM: 369 break; 370 default: 371 BUG(); 372 } 373 374 if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind) 375 vmw_ttm_unmap_dma(vmw_be); 376 vmw_be->bound = false; 377 } 378 379 380 static void vmw_ttm_destroy(struct ttm_device *bdev, struct ttm_tt *ttm) 381 { 382 struct vmw_ttm_tt *vmw_be = 383 container_of(ttm, struct vmw_ttm_tt, dma_ttm); 384 385 vmw_ttm_unmap_dma(vmw_be); 386 ttm_tt_fini(ttm); 387 if (vmw_be->mob) 388 vmw_mob_destroy(vmw_be->mob); 389 390 kfree(vmw_be); 391 } 392 393 394 static int vmw_ttm_populate(struct ttm_device *bdev, 395 struct ttm_tt *ttm, struct ttm_operation_ctx *ctx) 396 { 397 bool external = (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) != 0; 398 399 if (ttm_tt_is_populated(ttm)) 400 return 0; 401 402 if (external && ttm->sg) 403 return drm_prime_sg_to_dma_addr_array(ttm->sg, 404 ttm->dma_address, 405 ttm->num_pages); 406 407 return ttm_pool_alloc(&bdev->pool, ttm, ctx); 408 } 409 410 static void vmw_ttm_unpopulate(struct ttm_device *bdev, 411 struct ttm_tt *ttm) 412 { 413 struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt, 414 dma_ttm); 415 bool external = (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) != 0; 416 417 if (external) 418 return; 419 420 vmw_ttm_unbind(bdev, ttm); 421 422 if (vmw_tt->mob) { 423 vmw_mob_destroy(vmw_tt->mob); 424 vmw_tt->mob = NULL; 425 } 426 427 vmw_ttm_unmap_dma(vmw_tt); 428 429 ttm_pool_free(&bdev->pool, ttm); 430 } 431 432 static struct ttm_tt *vmw_ttm_tt_create(struct ttm_buffer_object *bo, 433 uint32_t page_flags) 434 { 435 struct vmw_ttm_tt *vmw_be; 436 int ret; 437 bool external = bo->type == ttm_bo_type_sg; 438 439 vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL); 440 if (!vmw_be) 441 return NULL; 442 443 vmw_be->dev_priv = vmw_priv_from_ttm(bo->bdev); 444 vmw_be->mob = NULL; 445 446 if (external) 447 page_flags |= TTM_TT_FLAG_EXTERNAL | TTM_TT_FLAG_EXTERNAL_MAPPABLE; 448 449 if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent || external) 450 ret = ttm_sg_tt_init(&vmw_be->dma_ttm, bo, page_flags, 451 ttm_cached); 452 else 453 ret = ttm_tt_init(&vmw_be->dma_ttm, bo, page_flags, 454 ttm_cached, 0); 455 if (unlikely(ret != 0)) 456 goto out_no_init; 457 458 return &vmw_be->dma_ttm; 459 out_no_init: 460 kfree(vmw_be); 461 return NULL; 462 } 463 464 static void vmw_evict_flags(struct ttm_buffer_object *bo, 465 struct ttm_placement *placement) 466 { 467 *placement = vmw_sys_placement; 468 } 469 470 static int vmw_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem) 471 { 472 struct vmw_private *dev_priv = vmw_priv_from_ttm(bdev); 473 474 switch (mem->mem_type) { 475 case TTM_PL_SYSTEM: 476 case VMW_PL_SYSTEM: 477 case VMW_PL_GMR: 478 case VMW_PL_MOB: 479 return 0; 480 case TTM_PL_VRAM: 481 mem->bus.offset = (mem->start << PAGE_SHIFT) + 482 dev_priv->vram_start; 483 mem->bus.is_iomem = true; 484 mem->bus.caching = ttm_cached; 485 break; 486 default: 487 return -EINVAL; 488 } 489 return 0; 490 } 491 492 /** 493 * vmw_move_notify - TTM move_notify_callback 494 * 495 * @bo: The TTM buffer object about to move. 496 * @old_mem: The old memory where we move from 497 * @new_mem: The struct ttm_resource indicating to what memory 498 * region the move is taking place. 499 * 500 * Calls move_notify for all subsystems needing it. 501 * (currently only resources). 502 */ 503 static void vmw_move_notify(struct ttm_buffer_object *bo, 504 struct ttm_resource *old_mem, 505 struct ttm_resource *new_mem) 506 { 507 vmw_bo_move_notify(bo, new_mem); 508 vmw_query_move_notify(bo, old_mem, new_mem); 509 } 510 511 512 /** 513 * vmw_swap_notify - TTM move_notify_callback 514 * 515 * @bo: The TTM buffer object about to be swapped out. 516 */ 517 static void vmw_swap_notify(struct ttm_buffer_object *bo) 518 { 519 vmw_bo_swap_notify(bo); 520 (void) ttm_bo_wait(bo, false, false); 521 } 522 523 static bool vmw_memtype_is_system(uint32_t mem_type) 524 { 525 return mem_type == TTM_PL_SYSTEM || mem_type == VMW_PL_SYSTEM; 526 } 527 528 static int vmw_move(struct ttm_buffer_object *bo, 529 bool evict, 530 struct ttm_operation_ctx *ctx, 531 struct ttm_resource *new_mem, 532 struct ttm_place *hop) 533 { 534 struct ttm_resource_manager *new_man; 535 struct ttm_resource_manager *old_man = NULL; 536 int ret = 0; 537 538 new_man = ttm_manager_type(bo->bdev, new_mem->mem_type); 539 if (bo->resource) 540 old_man = ttm_manager_type(bo->bdev, bo->resource->mem_type); 541 542 if (new_man->use_tt && !vmw_memtype_is_system(new_mem->mem_type)) { 543 ret = vmw_ttm_bind(bo->bdev, bo->ttm, new_mem); 544 if (ret) 545 return ret; 546 } 547 548 if (!bo->resource || (bo->resource->mem_type == TTM_PL_SYSTEM && 549 bo->ttm == NULL)) { 550 ttm_bo_move_null(bo, new_mem); 551 return 0; 552 } 553 554 vmw_move_notify(bo, bo->resource, new_mem); 555 556 if (old_man && old_man->use_tt && new_man->use_tt) { 557 if (vmw_memtype_is_system(bo->resource->mem_type)) { 558 ttm_bo_move_null(bo, new_mem); 559 return 0; 560 } 561 ret = ttm_bo_wait_ctx(bo, ctx); 562 if (ret) 563 goto fail; 564 565 vmw_ttm_unbind(bo->bdev, bo->ttm); 566 ttm_resource_free(bo, &bo->resource); 567 ttm_bo_assign_mem(bo, new_mem); 568 return 0; 569 } else { 570 ret = ttm_bo_move_memcpy(bo, ctx, new_mem); 571 if (ret) 572 goto fail; 573 } 574 return 0; 575 fail: 576 vmw_move_notify(bo, new_mem, bo->resource); 577 return ret; 578 } 579 580 struct ttm_device_funcs vmw_bo_driver = { 581 .ttm_tt_create = &vmw_ttm_tt_create, 582 .ttm_tt_populate = &vmw_ttm_populate, 583 .ttm_tt_unpopulate = &vmw_ttm_unpopulate, 584 .ttm_tt_destroy = &vmw_ttm_destroy, 585 .eviction_valuable = ttm_bo_eviction_valuable, 586 .evict_flags = vmw_evict_flags, 587 .move = vmw_move, 588 .swap_notify = vmw_swap_notify, 589 .io_mem_reserve = &vmw_ttm_io_mem_reserve, 590 }; 591 592 int vmw_bo_create_and_populate(struct vmw_private *dev_priv, 593 size_t bo_size, u32 domain, 594 struct vmw_bo **bo_p) 595 { 596 struct ttm_operation_ctx ctx = { 597 .interruptible = false, 598 .no_wait_gpu = false 599 }; 600 struct vmw_bo *vbo; 601 int ret; 602 struct vmw_bo_params bo_params = { 603 .domain = domain, 604 .busy_domain = domain, 605 .bo_type = ttm_bo_type_kernel, 606 .size = bo_size, 607 .pin = true 608 }; 609 610 ret = vmw_bo_create(dev_priv, &bo_params, &vbo); 611 if (unlikely(ret != 0)) 612 return ret; 613 614 ret = ttm_bo_reserve(&vbo->tbo, false, true, NULL); 615 BUG_ON(ret != 0); 616 ret = vmw_ttm_populate(vbo->tbo.bdev, vbo->tbo.ttm, &ctx); 617 if (likely(ret == 0)) { 618 struct vmw_ttm_tt *vmw_tt = 619 container_of(vbo->tbo.ttm, struct vmw_ttm_tt, dma_ttm); 620 ret = vmw_ttm_map_dma(vmw_tt); 621 } 622 623 ttm_bo_unreserve(&vbo->tbo); 624 625 if (likely(ret == 0)) 626 *bo_p = vbo; 627 return ret; 628 } 629