1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3  *
4  * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 #include "vmwgfx_drv.h"
29 #include <drm/ttm/ttm_bo_driver.h>
30 #include <drm/ttm/ttm_placement.h>
31 
32 static const struct ttm_place vram_placement_flags = {
33 	.fpfn = 0,
34 	.lpfn = 0,
35 	.mem_type = TTM_PL_VRAM,
36 	.flags = 0
37 };
38 
39 static const struct ttm_place sys_placement_flags = {
40 	.fpfn = 0,
41 	.lpfn = 0,
42 	.mem_type = TTM_PL_SYSTEM,
43 	.flags = 0
44 };
45 
46 static const struct ttm_place gmr_placement_flags = {
47 	.fpfn = 0,
48 	.lpfn = 0,
49 	.mem_type = VMW_PL_GMR,
50 	.flags = 0
51 };
52 
53 static const struct ttm_place mob_placement_flags = {
54 	.fpfn = 0,
55 	.lpfn = 0,
56 	.mem_type = VMW_PL_MOB,
57 	.flags = 0
58 };
59 
60 struct ttm_placement vmw_vram_placement = {
61 	.num_placement = 1,
62 	.placement = &vram_placement_flags,
63 	.num_busy_placement = 1,
64 	.busy_placement = &vram_placement_flags
65 };
66 
67 static const struct ttm_place vram_gmr_placement_flags[] = {
68 	{
69 		.fpfn = 0,
70 		.lpfn = 0,
71 		.mem_type = TTM_PL_VRAM,
72 		.flags = 0
73 	}, {
74 		.fpfn = 0,
75 		.lpfn = 0,
76 		.mem_type = VMW_PL_GMR,
77 		.flags = 0
78 	}
79 };
80 
81 static const struct ttm_place gmr_vram_placement_flags[] = {
82 	{
83 		.fpfn = 0,
84 		.lpfn = 0,
85 		.mem_type = VMW_PL_GMR,
86 		.flags = 0
87 	}, {
88 		.fpfn = 0,
89 		.lpfn = 0,
90 		.mem_type = TTM_PL_VRAM,
91 		.flags = 0
92 	}
93 };
94 
95 struct ttm_placement vmw_vram_gmr_placement = {
96 	.num_placement = 2,
97 	.placement = vram_gmr_placement_flags,
98 	.num_busy_placement = 1,
99 	.busy_placement = &gmr_placement_flags
100 };
101 
102 struct ttm_placement vmw_vram_sys_placement = {
103 	.num_placement = 1,
104 	.placement = &vram_placement_flags,
105 	.num_busy_placement = 1,
106 	.busy_placement = &sys_placement_flags
107 };
108 
109 struct ttm_placement vmw_sys_placement = {
110 	.num_placement = 1,
111 	.placement = &sys_placement_flags,
112 	.num_busy_placement = 1,
113 	.busy_placement = &sys_placement_flags
114 };
115 
116 static const struct ttm_place evictable_placement_flags[] = {
117 	{
118 		.fpfn = 0,
119 		.lpfn = 0,
120 		.mem_type = TTM_PL_SYSTEM,
121 		.flags = 0
122 	}, {
123 		.fpfn = 0,
124 		.lpfn = 0,
125 		.mem_type = TTM_PL_VRAM,
126 		.flags = 0
127 	}, {
128 		.fpfn = 0,
129 		.lpfn = 0,
130 		.mem_type = VMW_PL_GMR,
131 		.flags = 0
132 	}, {
133 		.fpfn = 0,
134 		.lpfn = 0,
135 		.mem_type = VMW_PL_MOB,
136 		.flags = 0
137 	}
138 };
139 
140 static const struct ttm_place nonfixed_placement_flags[] = {
141 	{
142 		.fpfn = 0,
143 		.lpfn = 0,
144 		.mem_type = TTM_PL_SYSTEM,
145 		.flags = 0
146 	}, {
147 		.fpfn = 0,
148 		.lpfn = 0,
149 		.mem_type = VMW_PL_GMR,
150 		.flags = 0
151 	}, {
152 		.fpfn = 0,
153 		.lpfn = 0,
154 		.mem_type = VMW_PL_MOB,
155 		.flags = 0
156 	}
157 };
158 
159 struct ttm_placement vmw_evictable_placement = {
160 	.num_placement = 4,
161 	.placement = evictable_placement_flags,
162 	.num_busy_placement = 1,
163 	.busy_placement = &sys_placement_flags
164 };
165 
166 struct ttm_placement vmw_srf_placement = {
167 	.num_placement = 1,
168 	.num_busy_placement = 2,
169 	.placement = &gmr_placement_flags,
170 	.busy_placement = gmr_vram_placement_flags
171 };
172 
173 struct ttm_placement vmw_mob_placement = {
174 	.num_placement = 1,
175 	.num_busy_placement = 1,
176 	.placement = &mob_placement_flags,
177 	.busy_placement = &mob_placement_flags
178 };
179 
180 struct ttm_placement vmw_nonfixed_placement = {
181 	.num_placement = 3,
182 	.placement = nonfixed_placement_flags,
183 	.num_busy_placement = 1,
184 	.busy_placement = &sys_placement_flags
185 };
186 
187 struct vmw_ttm_tt {
188 	struct ttm_tt dma_ttm;
189 	struct vmw_private *dev_priv;
190 	int gmr_id;
191 	struct vmw_mob *mob;
192 	int mem_type;
193 	struct sg_table sgt;
194 	struct vmw_sg_table vsgt;
195 	uint64_t sg_alloc_size;
196 	bool mapped;
197 	bool bound;
198 };
199 
200 const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt);
201 
202 /**
203  * __vmw_piter_non_sg_next: Helper functions to advance
204  * a struct vmw_piter iterator.
205  *
206  * @viter: Pointer to the iterator.
207  *
208  * These functions return false if past the end of the list,
209  * true otherwise. Functions are selected depending on the current
210  * DMA mapping mode.
211  */
212 static bool __vmw_piter_non_sg_next(struct vmw_piter *viter)
213 {
214 	return ++(viter->i) < viter->num_pages;
215 }
216 
217 static bool __vmw_piter_sg_next(struct vmw_piter *viter)
218 {
219 	bool ret = __vmw_piter_non_sg_next(viter);
220 
221 	return __sg_page_iter_dma_next(&viter->iter) && ret;
222 }
223 
224 
225 static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter)
226 {
227 	return viter->addrs[viter->i];
228 }
229 
230 static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter)
231 {
232 	return sg_page_iter_dma_address(&viter->iter);
233 }
234 
235 
236 /**
237  * vmw_piter_start - Initialize a struct vmw_piter.
238  *
239  * @viter: Pointer to the iterator to initialize
240  * @vsgt: Pointer to a struct vmw_sg_table to initialize from
241  * @p_offset: Pointer offset used to update current array position
242  *
243  * Note that we're following the convention of __sg_page_iter_start, so that
244  * the iterator doesn't point to a valid page after initialization; it has
245  * to be advanced one step first.
246  */
247 void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt,
248 		     unsigned long p_offset)
249 {
250 	viter->i = p_offset - 1;
251 	viter->num_pages = vsgt->num_pages;
252 	viter->pages = vsgt->pages;
253 	switch (vsgt->mode) {
254 	case vmw_dma_alloc_coherent:
255 		viter->next = &__vmw_piter_non_sg_next;
256 		viter->dma_address = &__vmw_piter_dma_addr;
257 		viter->addrs = vsgt->addrs;
258 		break;
259 	case vmw_dma_map_populate:
260 	case vmw_dma_map_bind:
261 		viter->next = &__vmw_piter_sg_next;
262 		viter->dma_address = &__vmw_piter_sg_addr;
263 		__sg_page_iter_start(&viter->iter.base, vsgt->sgt->sgl,
264 				     vsgt->sgt->orig_nents, p_offset);
265 		break;
266 	default:
267 		BUG();
268 	}
269 }
270 
271 /**
272  * vmw_ttm_unmap_from_dma - unmap  device addresses previsouly mapped for
273  * TTM pages
274  *
275  * @vmw_tt: Pointer to a struct vmw_ttm_backend
276  *
277  * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma.
278  */
279 static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt)
280 {
281 	struct device *dev = vmw_tt->dev_priv->drm.dev;
282 
283 	dma_unmap_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
284 	vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents;
285 }
286 
287 /**
288  * vmw_ttm_map_for_dma - map TTM pages to get device addresses
289  *
290  * @vmw_tt: Pointer to a struct vmw_ttm_backend
291  *
292  * This function is used to get device addresses from the kernel DMA layer.
293  * However, it's violating the DMA API in that when this operation has been
294  * performed, it's illegal for the CPU to write to the pages without first
295  * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is
296  * therefore only legal to call this function if we know that the function
297  * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most
298  * a CPU write buffer flush.
299  */
300 static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt)
301 {
302 	struct device *dev = vmw_tt->dev_priv->drm.dev;
303 
304 	return dma_map_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
305 }
306 
307 /**
308  * vmw_ttm_map_dma - Make sure TTM pages are visible to the device
309  *
310  * @vmw_tt: Pointer to a struct vmw_ttm_tt
311  *
312  * Select the correct function for and make sure the TTM pages are
313  * visible to the device. Allocate storage for the device mappings.
314  * If a mapping has already been performed, indicated by the storage
315  * pointer being non NULL, the function returns success.
316  */
317 static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt)
318 {
319 	struct vmw_private *dev_priv = vmw_tt->dev_priv;
320 	struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
321 	struct vmw_sg_table *vsgt = &vmw_tt->vsgt;
322 	struct ttm_operation_ctx ctx = {
323 		.interruptible = true,
324 		.no_wait_gpu = false
325 	};
326 	struct vmw_piter iter;
327 	dma_addr_t old;
328 	int ret = 0;
329 	static size_t sgl_size;
330 	static size_t sgt_size;
331 	struct scatterlist *sg;
332 
333 	if (vmw_tt->mapped)
334 		return 0;
335 
336 	vsgt->mode = dev_priv->map_mode;
337 	vsgt->pages = vmw_tt->dma_ttm.pages;
338 	vsgt->num_pages = vmw_tt->dma_ttm.num_pages;
339 	vsgt->addrs = vmw_tt->dma_ttm.dma_address;
340 	vsgt->sgt = &vmw_tt->sgt;
341 
342 	switch (dev_priv->map_mode) {
343 	case vmw_dma_map_bind:
344 	case vmw_dma_map_populate:
345 		if (unlikely(!sgl_size)) {
346 			sgl_size = ttm_round_pot(sizeof(struct scatterlist));
347 			sgt_size = ttm_round_pot(sizeof(struct sg_table));
348 		}
349 		vmw_tt->sg_alloc_size = sgt_size + sgl_size * vsgt->num_pages;
350 		ret = ttm_mem_global_alloc(glob, vmw_tt->sg_alloc_size, &ctx);
351 		if (unlikely(ret != 0))
352 			return ret;
353 
354 		sg = __sg_alloc_table_from_pages(&vmw_tt->sgt, vsgt->pages,
355 				vsgt->num_pages, 0,
356 				(unsigned long) vsgt->num_pages << PAGE_SHIFT,
357 				dma_get_max_seg_size(dev_priv->drm.dev),
358 				NULL, 0, GFP_KERNEL);
359 		if (IS_ERR(sg)) {
360 			ret = PTR_ERR(sg);
361 			goto out_sg_alloc_fail;
362 		}
363 
364 		if (vsgt->num_pages > vmw_tt->sgt.orig_nents) {
365 			uint64_t over_alloc =
366 				sgl_size * (vsgt->num_pages -
367 					    vmw_tt->sgt.orig_nents);
368 
369 			ttm_mem_global_free(glob, over_alloc);
370 			vmw_tt->sg_alloc_size -= over_alloc;
371 		}
372 
373 		ret = vmw_ttm_map_for_dma(vmw_tt);
374 		if (unlikely(ret != 0))
375 			goto out_map_fail;
376 
377 		break;
378 	default:
379 		break;
380 	}
381 
382 	old = ~((dma_addr_t) 0);
383 	vmw_tt->vsgt.num_regions = 0;
384 	for (vmw_piter_start(&iter, vsgt, 0); vmw_piter_next(&iter);) {
385 		dma_addr_t cur = vmw_piter_dma_addr(&iter);
386 
387 		if (cur != old + PAGE_SIZE)
388 			vmw_tt->vsgt.num_regions++;
389 		old = cur;
390 	}
391 
392 	vmw_tt->mapped = true;
393 	return 0;
394 
395 out_map_fail:
396 	sg_free_table(vmw_tt->vsgt.sgt);
397 	vmw_tt->vsgt.sgt = NULL;
398 out_sg_alloc_fail:
399 	ttm_mem_global_free(glob, vmw_tt->sg_alloc_size);
400 	return ret;
401 }
402 
403 /**
404  * vmw_ttm_unmap_dma - Tear down any TTM page device mappings
405  *
406  * @vmw_tt: Pointer to a struct vmw_ttm_tt
407  *
408  * Tear down any previously set up device DMA mappings and free
409  * any storage space allocated for them. If there are no mappings set up,
410  * this function is a NOP.
411  */
412 static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt)
413 {
414 	struct vmw_private *dev_priv = vmw_tt->dev_priv;
415 
416 	if (!vmw_tt->vsgt.sgt)
417 		return;
418 
419 	switch (dev_priv->map_mode) {
420 	case vmw_dma_map_bind:
421 	case vmw_dma_map_populate:
422 		vmw_ttm_unmap_from_dma(vmw_tt);
423 		sg_free_table(vmw_tt->vsgt.sgt);
424 		vmw_tt->vsgt.sgt = NULL;
425 		ttm_mem_global_free(vmw_mem_glob(dev_priv),
426 				    vmw_tt->sg_alloc_size);
427 		break;
428 	default:
429 		break;
430 	}
431 	vmw_tt->mapped = false;
432 }
433 
434 /**
435  * vmw_bo_sg_table - Return a struct vmw_sg_table object for a
436  * TTM buffer object
437  *
438  * @bo: Pointer to a struct ttm_buffer_object
439  *
440  * Returns a pointer to a struct vmw_sg_table object. The object should
441  * not be freed after use.
442  * Note that for the device addresses to be valid, the buffer object must
443  * either be reserved or pinned.
444  */
445 const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo)
446 {
447 	struct vmw_ttm_tt *vmw_tt =
448 		container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm);
449 
450 	return &vmw_tt->vsgt;
451 }
452 
453 
454 static int vmw_ttm_bind(struct ttm_device *bdev,
455 			struct ttm_tt *ttm, struct ttm_resource *bo_mem)
456 {
457 	struct vmw_ttm_tt *vmw_be =
458 		container_of(ttm, struct vmw_ttm_tt, dma_ttm);
459 	int ret = 0;
460 
461 	if (!bo_mem)
462 		return -EINVAL;
463 
464 	if (vmw_be->bound)
465 		return 0;
466 
467 	ret = vmw_ttm_map_dma(vmw_be);
468 	if (unlikely(ret != 0))
469 		return ret;
470 
471 	vmw_be->gmr_id = bo_mem->start;
472 	vmw_be->mem_type = bo_mem->mem_type;
473 
474 	switch (bo_mem->mem_type) {
475 	case VMW_PL_GMR:
476 		ret = vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt,
477 				    ttm->num_pages, vmw_be->gmr_id);
478 		break;
479 	case VMW_PL_MOB:
480 		if (unlikely(vmw_be->mob == NULL)) {
481 			vmw_be->mob =
482 				vmw_mob_create(ttm->num_pages);
483 			if (unlikely(vmw_be->mob == NULL))
484 				return -ENOMEM;
485 		}
486 
487 		ret = vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob,
488 				    &vmw_be->vsgt, ttm->num_pages,
489 				    vmw_be->gmr_id);
490 		break;
491 	default:
492 		BUG();
493 	}
494 	vmw_be->bound = true;
495 	return ret;
496 }
497 
498 static void vmw_ttm_unbind(struct ttm_device *bdev,
499 			   struct ttm_tt *ttm)
500 {
501 	struct vmw_ttm_tt *vmw_be =
502 		container_of(ttm, struct vmw_ttm_tt, dma_ttm);
503 
504 	if (!vmw_be->bound)
505 		return;
506 
507 	switch (vmw_be->mem_type) {
508 	case VMW_PL_GMR:
509 		vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id);
510 		break;
511 	case VMW_PL_MOB:
512 		vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob);
513 		break;
514 	default:
515 		BUG();
516 	}
517 
518 	if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind)
519 		vmw_ttm_unmap_dma(vmw_be);
520 	vmw_be->bound = false;
521 }
522 
523 
524 static void vmw_ttm_destroy(struct ttm_device *bdev, struct ttm_tt *ttm)
525 {
526 	struct vmw_ttm_tt *vmw_be =
527 		container_of(ttm, struct vmw_ttm_tt, dma_ttm);
528 
529 	vmw_ttm_unbind(bdev, ttm);
530 	ttm_tt_destroy_common(bdev, ttm);
531 	vmw_ttm_unmap_dma(vmw_be);
532 	if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
533 		ttm_tt_fini(&vmw_be->dma_ttm);
534 	else
535 		ttm_tt_fini(ttm);
536 
537 	if (vmw_be->mob)
538 		vmw_mob_destroy(vmw_be->mob);
539 
540 	kfree(vmw_be);
541 }
542 
543 
544 static int vmw_ttm_populate(struct ttm_device *bdev,
545 			    struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
546 {
547 	unsigned int i;
548 	int ret;
549 
550 	/* TODO: maybe completely drop this ? */
551 	if (ttm_tt_is_populated(ttm))
552 		return 0;
553 
554 	ret = ttm_pool_alloc(&bdev->pool, ttm, ctx);
555 	if (ret)
556 		return ret;
557 
558 	for (i = 0; i < ttm->num_pages; ++i) {
559 		ret = ttm_mem_global_alloc_page(&ttm_mem_glob, ttm->pages[i],
560 						PAGE_SIZE, ctx);
561 		if (ret)
562 			goto error;
563 	}
564 	return 0;
565 
566 error:
567 	while (i--)
568 		ttm_mem_global_free_page(&ttm_mem_glob, ttm->pages[i],
569 					 PAGE_SIZE);
570 	ttm_pool_free(&bdev->pool, ttm);
571 	return ret;
572 }
573 
574 static void vmw_ttm_unpopulate(struct ttm_device *bdev,
575 			       struct ttm_tt *ttm)
576 {
577 	struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt,
578 						 dma_ttm);
579 	unsigned int i;
580 
581 	if (vmw_tt->mob) {
582 		vmw_mob_destroy(vmw_tt->mob);
583 		vmw_tt->mob = NULL;
584 	}
585 
586 	vmw_ttm_unmap_dma(vmw_tt);
587 
588 	for (i = 0; i < ttm->num_pages; ++i)
589 		ttm_mem_global_free_page(&ttm_mem_glob, ttm->pages[i],
590 					 PAGE_SIZE);
591 
592 	ttm_pool_free(&bdev->pool, ttm);
593 }
594 
595 static struct ttm_tt *vmw_ttm_tt_create(struct ttm_buffer_object *bo,
596 					uint32_t page_flags)
597 {
598 	struct vmw_ttm_tt *vmw_be;
599 	int ret;
600 
601 	vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL);
602 	if (!vmw_be)
603 		return NULL;
604 
605 	vmw_be->dev_priv = container_of(bo->bdev, struct vmw_private, bdev);
606 	vmw_be->mob = NULL;
607 
608 	if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
609 		ret = ttm_sg_tt_init(&vmw_be->dma_ttm, bo, page_flags,
610 				     ttm_cached);
611 	else
612 		ret = ttm_tt_init(&vmw_be->dma_ttm, bo, page_flags,
613 				  ttm_cached);
614 	if (unlikely(ret != 0))
615 		goto out_no_init;
616 
617 	return &vmw_be->dma_ttm;
618 out_no_init:
619 	kfree(vmw_be);
620 	return NULL;
621 }
622 
623 static void vmw_evict_flags(struct ttm_buffer_object *bo,
624 		     struct ttm_placement *placement)
625 {
626 	*placement = vmw_sys_placement;
627 }
628 
629 static int vmw_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem)
630 {
631 	struct vmw_private *dev_priv = container_of(bdev, struct vmw_private, bdev);
632 
633 	switch (mem->mem_type) {
634 	case TTM_PL_SYSTEM:
635 	case VMW_PL_GMR:
636 	case VMW_PL_MOB:
637 		return 0;
638 	case TTM_PL_VRAM:
639 		mem->bus.offset = (mem->start << PAGE_SHIFT) +
640 			dev_priv->vram_start;
641 		mem->bus.is_iomem = true;
642 		mem->bus.caching = ttm_cached;
643 		break;
644 	default:
645 		return -EINVAL;
646 	}
647 	return 0;
648 }
649 
650 /**
651  * vmw_move_notify - TTM move_notify_callback
652  *
653  * @bo: The TTM buffer object about to move.
654  * @old_mem: The old memory where we move from
655  * @new_mem: The struct ttm_resource indicating to what memory
656  *       region the move is taking place.
657  *
658  * Calls move_notify for all subsystems needing it.
659  * (currently only resources).
660  */
661 static void vmw_move_notify(struct ttm_buffer_object *bo,
662 			    struct ttm_resource *old_mem,
663 			    struct ttm_resource *new_mem)
664 {
665 	vmw_bo_move_notify(bo, new_mem);
666 	vmw_query_move_notify(bo, old_mem, new_mem);
667 }
668 
669 
670 /**
671  * vmw_swap_notify - TTM move_notify_callback
672  *
673  * @bo: The TTM buffer object about to be swapped out.
674  */
675 static void vmw_swap_notify(struct ttm_buffer_object *bo)
676 {
677 	vmw_bo_swap_notify(bo);
678 	(void) ttm_bo_wait(bo, false, false);
679 }
680 
681 static int vmw_move(struct ttm_buffer_object *bo,
682 		    bool evict,
683 		    struct ttm_operation_ctx *ctx,
684 		    struct ttm_resource *new_mem,
685 		    struct ttm_place *hop)
686 {
687 	struct ttm_resource_manager *old_man = ttm_manager_type(bo->bdev, bo->resource->mem_type);
688 	struct ttm_resource_manager *new_man = ttm_manager_type(bo->bdev, new_mem->mem_type);
689 	int ret;
690 
691 	if (new_man->use_tt && new_mem->mem_type != TTM_PL_SYSTEM) {
692 		ret = vmw_ttm_bind(bo->bdev, bo->ttm, new_mem);
693 		if (ret)
694 			return ret;
695 	}
696 
697 	vmw_move_notify(bo, bo->resource, new_mem);
698 
699 	if (old_man->use_tt && new_man->use_tt) {
700 		if (bo->resource->mem_type == TTM_PL_SYSTEM) {
701 			ttm_bo_move_null(bo, new_mem);
702 			return 0;
703 		}
704 		ret = ttm_bo_wait_ctx(bo, ctx);
705 		if (ret)
706 			goto fail;
707 
708 		vmw_ttm_unbind(bo->bdev, bo->ttm);
709 		ttm_resource_free(bo, &bo->resource);
710 		ttm_bo_assign_mem(bo, new_mem);
711 		return 0;
712 	} else {
713 		ret = ttm_bo_move_memcpy(bo, ctx, new_mem);
714 		if (ret)
715 			goto fail;
716 	}
717 	return 0;
718 fail:
719 	vmw_move_notify(bo, new_mem, bo->resource);
720 	return ret;
721 }
722 
723 struct ttm_device_funcs vmw_bo_driver = {
724 	.ttm_tt_create = &vmw_ttm_tt_create,
725 	.ttm_tt_populate = &vmw_ttm_populate,
726 	.ttm_tt_unpopulate = &vmw_ttm_unpopulate,
727 	.ttm_tt_destroy = &vmw_ttm_destroy,
728 	.eviction_valuable = ttm_bo_eviction_valuable,
729 	.evict_flags = vmw_evict_flags,
730 	.move = vmw_move,
731 	.swap_notify = vmw_swap_notify,
732 	.io_mem_reserve = &vmw_ttm_io_mem_reserve,
733 };
734 
735 int vmw_bo_create_and_populate(struct vmw_private *dev_priv,
736 			       unsigned long bo_size,
737 			       struct ttm_buffer_object **bo_p)
738 {
739 	struct ttm_operation_ctx ctx = {
740 		.interruptible = false,
741 		.no_wait_gpu = false
742 	};
743 	struct ttm_buffer_object *bo;
744 	int ret;
745 
746 	ret = vmw_bo_create_kernel(dev_priv, bo_size,
747 				   &vmw_sys_placement,
748 				   &bo);
749 	if (unlikely(ret != 0))
750 		return ret;
751 
752 	ret = ttm_bo_reserve(bo, false, true, NULL);
753 	BUG_ON(ret != 0);
754 	ret = vmw_ttm_populate(bo->bdev, bo->ttm, &ctx);
755 	if (likely(ret == 0)) {
756 		struct vmw_ttm_tt *vmw_tt =
757 			container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm);
758 		ret = vmw_ttm_map_dma(vmw_tt);
759 	}
760 
761 	ttm_bo_unreserve(bo);
762 
763 	if (likely(ret == 0))
764 		*bo_p = bo;
765 	return ret;
766 }
767