1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /************************************************************************** 3 * 4 * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 28 #include "vmwgfx_drv.h" 29 #include <drm/ttm/ttm_bo_driver.h> 30 #include <drm/ttm/ttm_placement.h> 31 32 static const struct ttm_place vram_placement_flags = { 33 .fpfn = 0, 34 .lpfn = 0, 35 .mem_type = TTM_PL_VRAM, 36 .flags = 0 37 }; 38 39 static const struct ttm_place sys_placement_flags = { 40 .fpfn = 0, 41 .lpfn = 0, 42 .mem_type = TTM_PL_SYSTEM, 43 .flags = 0 44 }; 45 46 static const struct ttm_place gmr_placement_flags = { 47 .fpfn = 0, 48 .lpfn = 0, 49 .mem_type = VMW_PL_GMR, 50 .flags = 0 51 }; 52 53 static const struct ttm_place mob_placement_flags = { 54 .fpfn = 0, 55 .lpfn = 0, 56 .mem_type = VMW_PL_MOB, 57 .flags = 0 58 }; 59 60 struct ttm_placement vmw_vram_placement = { 61 .num_placement = 1, 62 .placement = &vram_placement_flags, 63 .num_busy_placement = 1, 64 .busy_placement = &vram_placement_flags 65 }; 66 67 static const struct ttm_place vram_gmr_placement_flags[] = { 68 { 69 .fpfn = 0, 70 .lpfn = 0, 71 .mem_type = TTM_PL_VRAM, 72 .flags = 0 73 }, { 74 .fpfn = 0, 75 .lpfn = 0, 76 .mem_type = VMW_PL_GMR, 77 .flags = 0 78 } 79 }; 80 81 static const struct ttm_place gmr_vram_placement_flags[] = { 82 { 83 .fpfn = 0, 84 .lpfn = 0, 85 .mem_type = VMW_PL_GMR, 86 .flags = 0 87 }, { 88 .fpfn = 0, 89 .lpfn = 0, 90 .mem_type = TTM_PL_VRAM, 91 .flags = 0 92 } 93 }; 94 95 struct ttm_placement vmw_vram_gmr_placement = { 96 .num_placement = 2, 97 .placement = vram_gmr_placement_flags, 98 .num_busy_placement = 1, 99 .busy_placement = &gmr_placement_flags 100 }; 101 102 struct ttm_placement vmw_vram_sys_placement = { 103 .num_placement = 1, 104 .placement = &vram_placement_flags, 105 .num_busy_placement = 1, 106 .busy_placement = &sys_placement_flags 107 }; 108 109 struct ttm_placement vmw_sys_placement = { 110 .num_placement = 1, 111 .placement = &sys_placement_flags, 112 .num_busy_placement = 1, 113 .busy_placement = &sys_placement_flags 114 }; 115 116 static const struct ttm_place evictable_placement_flags[] = { 117 { 118 .fpfn = 0, 119 .lpfn = 0, 120 .mem_type = TTM_PL_SYSTEM, 121 .flags = 0 122 }, { 123 .fpfn = 0, 124 .lpfn = 0, 125 .mem_type = TTM_PL_VRAM, 126 .flags = 0 127 }, { 128 .fpfn = 0, 129 .lpfn = 0, 130 .mem_type = VMW_PL_GMR, 131 .flags = 0 132 }, { 133 .fpfn = 0, 134 .lpfn = 0, 135 .mem_type = VMW_PL_MOB, 136 .flags = 0 137 } 138 }; 139 140 static const struct ttm_place nonfixed_placement_flags[] = { 141 { 142 .fpfn = 0, 143 .lpfn = 0, 144 .mem_type = TTM_PL_SYSTEM, 145 .flags = 0 146 }, { 147 .fpfn = 0, 148 .lpfn = 0, 149 .mem_type = VMW_PL_GMR, 150 .flags = 0 151 }, { 152 .fpfn = 0, 153 .lpfn = 0, 154 .mem_type = VMW_PL_MOB, 155 .flags = 0 156 } 157 }; 158 159 struct ttm_placement vmw_evictable_placement = { 160 .num_placement = 4, 161 .placement = evictable_placement_flags, 162 .num_busy_placement = 1, 163 .busy_placement = &sys_placement_flags 164 }; 165 166 struct ttm_placement vmw_srf_placement = { 167 .num_placement = 1, 168 .num_busy_placement = 2, 169 .placement = &gmr_placement_flags, 170 .busy_placement = gmr_vram_placement_flags 171 }; 172 173 struct ttm_placement vmw_mob_placement = { 174 .num_placement = 1, 175 .num_busy_placement = 1, 176 .placement = &mob_placement_flags, 177 .busy_placement = &mob_placement_flags 178 }; 179 180 struct ttm_placement vmw_nonfixed_placement = { 181 .num_placement = 3, 182 .placement = nonfixed_placement_flags, 183 .num_busy_placement = 1, 184 .busy_placement = &sys_placement_flags 185 }; 186 187 struct vmw_ttm_tt { 188 struct ttm_tt dma_ttm; 189 struct vmw_private *dev_priv; 190 int gmr_id; 191 struct vmw_mob *mob; 192 int mem_type; 193 struct sg_table sgt; 194 struct vmw_sg_table vsgt; 195 uint64_t sg_alloc_size; 196 bool mapped; 197 bool bound; 198 }; 199 200 const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt); 201 202 /** 203 * Helper functions to advance a struct vmw_piter iterator. 204 * 205 * @viter: Pointer to the iterator. 206 * 207 * These functions return false if past the end of the list, 208 * true otherwise. Functions are selected depending on the current 209 * DMA mapping mode. 210 */ 211 static bool __vmw_piter_non_sg_next(struct vmw_piter *viter) 212 { 213 return ++(viter->i) < viter->num_pages; 214 } 215 216 static bool __vmw_piter_sg_next(struct vmw_piter *viter) 217 { 218 bool ret = __vmw_piter_non_sg_next(viter); 219 220 return __sg_page_iter_dma_next(&viter->iter) && ret; 221 } 222 223 224 /** 225 * Helper functions to return a pointer to the current page. 226 * 227 * @viter: Pointer to the iterator 228 * 229 * These functions return a pointer to the page currently 230 * pointed to by @viter. Functions are selected depending on the 231 * current mapping mode. 232 */ 233 static struct page *__vmw_piter_non_sg_page(struct vmw_piter *viter) 234 { 235 return viter->pages[viter->i]; 236 } 237 238 /** 239 * Helper functions to return the DMA address of the current page. 240 * 241 * @viter: Pointer to the iterator 242 * 243 * These functions return the DMA address of the page currently 244 * pointed to by @viter. Functions are selected depending on the 245 * current mapping mode. 246 */ 247 static dma_addr_t __vmw_piter_phys_addr(struct vmw_piter *viter) 248 { 249 return page_to_phys(viter->pages[viter->i]); 250 } 251 252 static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter) 253 { 254 return viter->addrs[viter->i]; 255 } 256 257 static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter) 258 { 259 return sg_page_iter_dma_address(&viter->iter); 260 } 261 262 263 /** 264 * vmw_piter_start - Initialize a struct vmw_piter. 265 * 266 * @viter: Pointer to the iterator to initialize 267 * @vsgt: Pointer to a struct vmw_sg_table to initialize from 268 * @p_offset: Pointer offset used to update current array position 269 * 270 * Note that we're following the convention of __sg_page_iter_start, so that 271 * the iterator doesn't point to a valid page after initialization; it has 272 * to be advanced one step first. 273 */ 274 void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt, 275 unsigned long p_offset) 276 { 277 viter->i = p_offset - 1; 278 viter->num_pages = vsgt->num_pages; 279 viter->page = &__vmw_piter_non_sg_page; 280 viter->pages = vsgt->pages; 281 switch (vsgt->mode) { 282 case vmw_dma_phys: 283 viter->next = &__vmw_piter_non_sg_next; 284 viter->dma_address = &__vmw_piter_phys_addr; 285 break; 286 case vmw_dma_alloc_coherent: 287 viter->next = &__vmw_piter_non_sg_next; 288 viter->dma_address = &__vmw_piter_dma_addr; 289 viter->addrs = vsgt->addrs; 290 break; 291 case vmw_dma_map_populate: 292 case vmw_dma_map_bind: 293 viter->next = &__vmw_piter_sg_next; 294 viter->dma_address = &__vmw_piter_sg_addr; 295 __sg_page_iter_start(&viter->iter.base, vsgt->sgt->sgl, 296 vsgt->sgt->orig_nents, p_offset); 297 break; 298 default: 299 BUG(); 300 } 301 } 302 303 /** 304 * vmw_ttm_unmap_from_dma - unmap device addresses previsouly mapped for 305 * TTM pages 306 * 307 * @vmw_tt: Pointer to a struct vmw_ttm_backend 308 * 309 * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma. 310 */ 311 static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt) 312 { 313 struct device *dev = vmw_tt->dev_priv->drm.dev; 314 315 dma_unmap_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0); 316 vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents; 317 } 318 319 /** 320 * vmw_ttm_map_for_dma - map TTM pages to get device addresses 321 * 322 * @vmw_tt: Pointer to a struct vmw_ttm_backend 323 * 324 * This function is used to get device addresses from the kernel DMA layer. 325 * However, it's violating the DMA API in that when this operation has been 326 * performed, it's illegal for the CPU to write to the pages without first 327 * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is 328 * therefore only legal to call this function if we know that the function 329 * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most 330 * a CPU write buffer flush. 331 */ 332 static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt) 333 { 334 struct device *dev = vmw_tt->dev_priv->drm.dev; 335 336 return dma_map_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0); 337 } 338 339 /** 340 * vmw_ttm_map_dma - Make sure TTM pages are visible to the device 341 * 342 * @vmw_tt: Pointer to a struct vmw_ttm_tt 343 * 344 * Select the correct function for and make sure the TTM pages are 345 * visible to the device. Allocate storage for the device mappings. 346 * If a mapping has already been performed, indicated by the storage 347 * pointer being non NULL, the function returns success. 348 */ 349 static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt) 350 { 351 struct vmw_private *dev_priv = vmw_tt->dev_priv; 352 struct ttm_mem_global *glob = vmw_mem_glob(dev_priv); 353 struct vmw_sg_table *vsgt = &vmw_tt->vsgt; 354 struct ttm_operation_ctx ctx = { 355 .interruptible = true, 356 .no_wait_gpu = false 357 }; 358 struct vmw_piter iter; 359 dma_addr_t old; 360 int ret = 0; 361 static size_t sgl_size; 362 static size_t sgt_size; 363 struct scatterlist *sg; 364 365 if (vmw_tt->mapped) 366 return 0; 367 368 vsgt->mode = dev_priv->map_mode; 369 vsgt->pages = vmw_tt->dma_ttm.pages; 370 vsgt->num_pages = vmw_tt->dma_ttm.num_pages; 371 vsgt->addrs = vmw_tt->dma_ttm.dma_address; 372 vsgt->sgt = &vmw_tt->sgt; 373 374 switch (dev_priv->map_mode) { 375 case vmw_dma_map_bind: 376 case vmw_dma_map_populate: 377 if (unlikely(!sgl_size)) { 378 sgl_size = ttm_round_pot(sizeof(struct scatterlist)); 379 sgt_size = ttm_round_pot(sizeof(struct sg_table)); 380 } 381 vmw_tt->sg_alloc_size = sgt_size + sgl_size * vsgt->num_pages; 382 ret = ttm_mem_global_alloc(glob, vmw_tt->sg_alloc_size, &ctx); 383 if (unlikely(ret != 0)) 384 return ret; 385 386 sg = __sg_alloc_table_from_pages(&vmw_tt->sgt, vsgt->pages, 387 vsgt->num_pages, 0, 388 (unsigned long) vsgt->num_pages << PAGE_SHIFT, 389 dma_get_max_seg_size(dev_priv->drm.dev), 390 NULL, 0, GFP_KERNEL); 391 if (IS_ERR(sg)) { 392 ret = PTR_ERR(sg); 393 goto out_sg_alloc_fail; 394 } 395 396 if (vsgt->num_pages > vmw_tt->sgt.orig_nents) { 397 uint64_t over_alloc = 398 sgl_size * (vsgt->num_pages - 399 vmw_tt->sgt.orig_nents); 400 401 ttm_mem_global_free(glob, over_alloc); 402 vmw_tt->sg_alloc_size -= over_alloc; 403 } 404 405 ret = vmw_ttm_map_for_dma(vmw_tt); 406 if (unlikely(ret != 0)) 407 goto out_map_fail; 408 409 break; 410 default: 411 break; 412 } 413 414 old = ~((dma_addr_t) 0); 415 vmw_tt->vsgt.num_regions = 0; 416 for (vmw_piter_start(&iter, vsgt, 0); vmw_piter_next(&iter);) { 417 dma_addr_t cur = vmw_piter_dma_addr(&iter); 418 419 if (cur != old + PAGE_SIZE) 420 vmw_tt->vsgt.num_regions++; 421 old = cur; 422 } 423 424 vmw_tt->mapped = true; 425 return 0; 426 427 out_map_fail: 428 sg_free_table(vmw_tt->vsgt.sgt); 429 vmw_tt->vsgt.sgt = NULL; 430 out_sg_alloc_fail: 431 ttm_mem_global_free(glob, vmw_tt->sg_alloc_size); 432 return ret; 433 } 434 435 /** 436 * vmw_ttm_unmap_dma - Tear down any TTM page device mappings 437 * 438 * @vmw_tt: Pointer to a struct vmw_ttm_tt 439 * 440 * Tear down any previously set up device DMA mappings and free 441 * any storage space allocated for them. If there are no mappings set up, 442 * this function is a NOP. 443 */ 444 static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt) 445 { 446 struct vmw_private *dev_priv = vmw_tt->dev_priv; 447 448 if (!vmw_tt->vsgt.sgt) 449 return; 450 451 switch (dev_priv->map_mode) { 452 case vmw_dma_map_bind: 453 case vmw_dma_map_populate: 454 vmw_ttm_unmap_from_dma(vmw_tt); 455 sg_free_table(vmw_tt->vsgt.sgt); 456 vmw_tt->vsgt.sgt = NULL; 457 ttm_mem_global_free(vmw_mem_glob(dev_priv), 458 vmw_tt->sg_alloc_size); 459 break; 460 default: 461 break; 462 } 463 vmw_tt->mapped = false; 464 } 465 466 /** 467 * vmw_bo_sg_table - Return a struct vmw_sg_table object for a 468 * TTM buffer object 469 * 470 * @bo: Pointer to a struct ttm_buffer_object 471 * 472 * Returns a pointer to a struct vmw_sg_table object. The object should 473 * not be freed after use. 474 * Note that for the device addresses to be valid, the buffer object must 475 * either be reserved or pinned. 476 */ 477 const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo) 478 { 479 struct vmw_ttm_tt *vmw_tt = 480 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm); 481 482 return &vmw_tt->vsgt; 483 } 484 485 486 static int vmw_ttm_bind(struct ttm_device *bdev, 487 struct ttm_tt *ttm, struct ttm_resource *bo_mem) 488 { 489 struct vmw_ttm_tt *vmw_be = 490 container_of(ttm, struct vmw_ttm_tt, dma_ttm); 491 int ret = 0; 492 493 if (!bo_mem) 494 return -EINVAL; 495 496 if (vmw_be->bound) 497 return 0; 498 499 ret = vmw_ttm_map_dma(vmw_be); 500 if (unlikely(ret != 0)) 501 return ret; 502 503 vmw_be->gmr_id = bo_mem->start; 504 vmw_be->mem_type = bo_mem->mem_type; 505 506 switch (bo_mem->mem_type) { 507 case VMW_PL_GMR: 508 ret = vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt, 509 ttm->num_pages, vmw_be->gmr_id); 510 break; 511 case VMW_PL_MOB: 512 if (unlikely(vmw_be->mob == NULL)) { 513 vmw_be->mob = 514 vmw_mob_create(ttm->num_pages); 515 if (unlikely(vmw_be->mob == NULL)) 516 return -ENOMEM; 517 } 518 519 ret = vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob, 520 &vmw_be->vsgt, ttm->num_pages, 521 vmw_be->gmr_id); 522 break; 523 default: 524 BUG(); 525 } 526 vmw_be->bound = true; 527 return ret; 528 } 529 530 static void vmw_ttm_unbind(struct ttm_device *bdev, 531 struct ttm_tt *ttm) 532 { 533 struct vmw_ttm_tt *vmw_be = 534 container_of(ttm, struct vmw_ttm_tt, dma_ttm); 535 536 if (!vmw_be->bound) 537 return; 538 539 switch (vmw_be->mem_type) { 540 case VMW_PL_GMR: 541 vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id); 542 break; 543 case VMW_PL_MOB: 544 vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob); 545 break; 546 default: 547 BUG(); 548 } 549 550 if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind) 551 vmw_ttm_unmap_dma(vmw_be); 552 vmw_be->bound = false; 553 } 554 555 556 static void vmw_ttm_destroy(struct ttm_device *bdev, struct ttm_tt *ttm) 557 { 558 struct vmw_ttm_tt *vmw_be = 559 container_of(ttm, struct vmw_ttm_tt, dma_ttm); 560 561 vmw_ttm_unbind(bdev, ttm); 562 ttm_tt_destroy_common(bdev, ttm); 563 vmw_ttm_unmap_dma(vmw_be); 564 if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent) 565 ttm_tt_fini(&vmw_be->dma_ttm); 566 else 567 ttm_tt_fini(ttm); 568 569 if (vmw_be->mob) 570 vmw_mob_destroy(vmw_be->mob); 571 572 kfree(vmw_be); 573 } 574 575 576 static int vmw_ttm_populate(struct ttm_device *bdev, 577 struct ttm_tt *ttm, struct ttm_operation_ctx *ctx) 578 { 579 unsigned int i; 580 int ret; 581 582 /* TODO: maybe completely drop this ? */ 583 if (ttm_tt_is_populated(ttm)) 584 return 0; 585 586 ret = ttm_pool_alloc(&bdev->pool, ttm, ctx); 587 if (ret) 588 return ret; 589 590 for (i = 0; i < ttm->num_pages; ++i) { 591 ret = ttm_mem_global_alloc_page(&ttm_mem_glob, ttm->pages[i], 592 PAGE_SIZE, ctx); 593 if (ret) 594 goto error; 595 } 596 return 0; 597 598 error: 599 while (i--) 600 ttm_mem_global_free_page(&ttm_mem_glob, ttm->pages[i], 601 PAGE_SIZE); 602 ttm_pool_free(&bdev->pool, ttm); 603 return ret; 604 } 605 606 static void vmw_ttm_unpopulate(struct ttm_device *bdev, 607 struct ttm_tt *ttm) 608 { 609 struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt, 610 dma_ttm); 611 unsigned int i; 612 613 if (vmw_tt->mob) { 614 vmw_mob_destroy(vmw_tt->mob); 615 vmw_tt->mob = NULL; 616 } 617 618 vmw_ttm_unmap_dma(vmw_tt); 619 620 for (i = 0; i < ttm->num_pages; ++i) 621 ttm_mem_global_free_page(&ttm_mem_glob, ttm->pages[i], 622 PAGE_SIZE); 623 624 ttm_pool_free(&bdev->pool, ttm); 625 } 626 627 static struct ttm_tt *vmw_ttm_tt_create(struct ttm_buffer_object *bo, 628 uint32_t page_flags) 629 { 630 struct vmw_ttm_tt *vmw_be; 631 int ret; 632 633 vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL); 634 if (!vmw_be) 635 return NULL; 636 637 vmw_be->dev_priv = container_of(bo->bdev, struct vmw_private, bdev); 638 vmw_be->mob = NULL; 639 640 if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent) 641 ret = ttm_sg_tt_init(&vmw_be->dma_ttm, bo, page_flags, 642 ttm_cached); 643 else 644 ret = ttm_tt_init(&vmw_be->dma_ttm, bo, page_flags, 645 ttm_cached); 646 if (unlikely(ret != 0)) 647 goto out_no_init; 648 649 return &vmw_be->dma_ttm; 650 out_no_init: 651 kfree(vmw_be); 652 return NULL; 653 } 654 655 static void vmw_evict_flags(struct ttm_buffer_object *bo, 656 struct ttm_placement *placement) 657 { 658 *placement = vmw_sys_placement; 659 } 660 661 static int vmw_verify_access(struct ttm_buffer_object *bo, struct file *filp) 662 { 663 struct ttm_object_file *tfile = 664 vmw_fpriv((struct drm_file *)filp->private_data)->tfile; 665 666 return vmw_user_bo_verify_access(bo, tfile); 667 } 668 669 static int vmw_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem) 670 { 671 struct vmw_private *dev_priv = container_of(bdev, struct vmw_private, bdev); 672 673 switch (mem->mem_type) { 674 case TTM_PL_SYSTEM: 675 case VMW_PL_GMR: 676 case VMW_PL_MOB: 677 return 0; 678 case TTM_PL_VRAM: 679 mem->bus.offset = (mem->start << PAGE_SHIFT) + 680 dev_priv->vram_start; 681 mem->bus.is_iomem = true; 682 mem->bus.caching = ttm_cached; 683 break; 684 default: 685 return -EINVAL; 686 } 687 return 0; 688 } 689 690 /** 691 * vmw_move_notify - TTM move_notify_callback 692 * 693 * @bo: The TTM buffer object about to move. 694 * @old_mem: The old memory where we move from 695 * @new_mem: The struct ttm_resource indicating to what memory 696 * region the move is taking place. 697 * 698 * Calls move_notify for all subsystems needing it. 699 * (currently only resources). 700 */ 701 static void vmw_move_notify(struct ttm_buffer_object *bo, 702 struct ttm_resource *old_mem, 703 struct ttm_resource *new_mem) 704 { 705 vmw_bo_move_notify(bo, new_mem); 706 vmw_query_move_notify(bo, old_mem, new_mem); 707 } 708 709 710 /** 711 * vmw_swap_notify - TTM move_notify_callback 712 * 713 * @bo: The TTM buffer object about to be swapped out. 714 */ 715 static void vmw_swap_notify(struct ttm_buffer_object *bo) 716 { 717 vmw_bo_swap_notify(bo); 718 (void) ttm_bo_wait(bo, false, false); 719 } 720 721 static int vmw_move(struct ttm_buffer_object *bo, 722 bool evict, 723 struct ttm_operation_ctx *ctx, 724 struct ttm_resource *new_mem, 725 struct ttm_place *hop) 726 { 727 struct ttm_resource_manager *old_man = ttm_manager_type(bo->bdev, bo->mem.mem_type); 728 struct ttm_resource_manager *new_man = ttm_manager_type(bo->bdev, new_mem->mem_type); 729 int ret; 730 731 if (new_man->use_tt && new_mem->mem_type != TTM_PL_SYSTEM) { 732 ret = vmw_ttm_bind(bo->bdev, bo->ttm, new_mem); 733 if (ret) 734 return ret; 735 } 736 737 vmw_move_notify(bo, &bo->mem, new_mem); 738 739 if (old_man->use_tt && new_man->use_tt) { 740 if (bo->mem.mem_type == TTM_PL_SYSTEM) { 741 ttm_bo_assign_mem(bo, new_mem); 742 return 0; 743 } 744 ret = ttm_bo_wait_ctx(bo, ctx); 745 if (ret) 746 goto fail; 747 748 vmw_ttm_unbind(bo->bdev, bo->ttm); 749 ttm_resource_free(bo, &bo->mem); 750 ttm_bo_assign_mem(bo, new_mem); 751 return 0; 752 } else { 753 ret = ttm_bo_move_memcpy(bo, ctx, new_mem); 754 if (ret) 755 goto fail; 756 } 757 return 0; 758 fail: 759 vmw_move_notify(bo, new_mem, &bo->mem); 760 return ret; 761 } 762 763 struct ttm_device_funcs vmw_bo_driver = { 764 .ttm_tt_create = &vmw_ttm_tt_create, 765 .ttm_tt_populate = &vmw_ttm_populate, 766 .ttm_tt_unpopulate = &vmw_ttm_unpopulate, 767 .ttm_tt_destroy = &vmw_ttm_destroy, 768 .eviction_valuable = ttm_bo_eviction_valuable, 769 .evict_flags = vmw_evict_flags, 770 .move = vmw_move, 771 .verify_access = vmw_verify_access, 772 .swap_notify = vmw_swap_notify, 773 .io_mem_reserve = &vmw_ttm_io_mem_reserve, 774 }; 775 776 int vmw_bo_create_and_populate(struct vmw_private *dev_priv, 777 unsigned long bo_size, 778 struct ttm_buffer_object **bo_p) 779 { 780 struct ttm_operation_ctx ctx = { 781 .interruptible = false, 782 .no_wait_gpu = false 783 }; 784 struct ttm_buffer_object *bo; 785 int ret; 786 787 ret = vmw_bo_create_kernel(dev_priv, bo_size, 788 &vmw_sys_placement, 789 &bo); 790 if (unlikely(ret != 0)) 791 return ret; 792 793 ret = ttm_bo_reserve(bo, false, true, NULL); 794 BUG_ON(ret != 0); 795 ret = vmw_ttm_populate(bo->bdev, bo->ttm, &ctx); 796 if (likely(ret == 0)) { 797 struct vmw_ttm_tt *vmw_tt = 798 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm); 799 ret = vmw_ttm_map_dma(vmw_tt); 800 } 801 802 ttm_bo_unreserve(bo); 803 804 if (likely(ret == 0)) 805 *bo_p = bo; 806 return ret; 807 } 808