xref: /openbmc/linux/drivers/gpu/drm/vmwgfx/vmwgfx_ttm_buffer.c (revision c64d01b3ceba873aa8e8605598cec4a6bc6d1601)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3  *
4  * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 #include "vmwgfx_drv.h"
29 #include <drm/ttm/ttm_bo_driver.h>
30 #include <drm/ttm/ttm_placement.h>
31 
32 static const struct ttm_place vram_placement_flags = {
33 	.fpfn = 0,
34 	.lpfn = 0,
35 	.mem_type = TTM_PL_VRAM,
36 	.flags = 0
37 };
38 
39 static const struct ttm_place sys_placement_flags = {
40 	.fpfn = 0,
41 	.lpfn = 0,
42 	.mem_type = TTM_PL_SYSTEM,
43 	.flags = 0
44 };
45 
46 static const struct ttm_place gmr_placement_flags = {
47 	.fpfn = 0,
48 	.lpfn = 0,
49 	.mem_type = VMW_PL_GMR,
50 	.flags = 0
51 };
52 
53 static const struct ttm_place mob_placement_flags = {
54 	.fpfn = 0,
55 	.lpfn = 0,
56 	.mem_type = VMW_PL_MOB,
57 	.flags = 0
58 };
59 
60 struct ttm_placement vmw_vram_placement = {
61 	.num_placement = 1,
62 	.placement = &vram_placement_flags,
63 	.num_busy_placement = 1,
64 	.busy_placement = &vram_placement_flags
65 };
66 
67 static const struct ttm_place vram_gmr_placement_flags[] = {
68 	{
69 		.fpfn = 0,
70 		.lpfn = 0,
71 		.mem_type = TTM_PL_VRAM,
72 		.flags = 0
73 	}, {
74 		.fpfn = 0,
75 		.lpfn = 0,
76 		.mem_type = VMW_PL_GMR,
77 		.flags = 0
78 	}
79 };
80 
81 static const struct ttm_place gmr_vram_placement_flags[] = {
82 	{
83 		.fpfn = 0,
84 		.lpfn = 0,
85 		.mem_type = VMW_PL_GMR,
86 		.flags = 0
87 	}, {
88 		.fpfn = 0,
89 		.lpfn = 0,
90 		.mem_type = TTM_PL_VRAM,
91 		.flags = 0
92 	}
93 };
94 
95 struct ttm_placement vmw_vram_gmr_placement = {
96 	.num_placement = 2,
97 	.placement = vram_gmr_placement_flags,
98 	.num_busy_placement = 1,
99 	.busy_placement = &gmr_placement_flags
100 };
101 
102 struct ttm_placement vmw_vram_sys_placement = {
103 	.num_placement = 1,
104 	.placement = &vram_placement_flags,
105 	.num_busy_placement = 1,
106 	.busy_placement = &sys_placement_flags
107 };
108 
109 struct ttm_placement vmw_sys_placement = {
110 	.num_placement = 1,
111 	.placement = &sys_placement_flags,
112 	.num_busy_placement = 1,
113 	.busy_placement = &sys_placement_flags
114 };
115 
116 static const struct ttm_place evictable_placement_flags[] = {
117 	{
118 		.fpfn = 0,
119 		.lpfn = 0,
120 		.mem_type = TTM_PL_SYSTEM,
121 		.flags = 0
122 	}, {
123 		.fpfn = 0,
124 		.lpfn = 0,
125 		.mem_type = TTM_PL_VRAM,
126 		.flags = 0
127 	}, {
128 		.fpfn = 0,
129 		.lpfn = 0,
130 		.mem_type = VMW_PL_GMR,
131 		.flags = 0
132 	}, {
133 		.fpfn = 0,
134 		.lpfn = 0,
135 		.mem_type = VMW_PL_MOB,
136 		.flags = 0
137 	}
138 };
139 
140 static const struct ttm_place nonfixed_placement_flags[] = {
141 	{
142 		.fpfn = 0,
143 		.lpfn = 0,
144 		.mem_type = TTM_PL_SYSTEM,
145 		.flags = 0
146 	}, {
147 		.fpfn = 0,
148 		.lpfn = 0,
149 		.mem_type = VMW_PL_GMR,
150 		.flags = 0
151 	}, {
152 		.fpfn = 0,
153 		.lpfn = 0,
154 		.mem_type = VMW_PL_MOB,
155 		.flags = 0
156 	}
157 };
158 
159 struct ttm_placement vmw_evictable_placement = {
160 	.num_placement = 4,
161 	.placement = evictable_placement_flags,
162 	.num_busy_placement = 1,
163 	.busy_placement = &sys_placement_flags
164 };
165 
166 struct ttm_placement vmw_srf_placement = {
167 	.num_placement = 1,
168 	.num_busy_placement = 2,
169 	.placement = &gmr_placement_flags,
170 	.busy_placement = gmr_vram_placement_flags
171 };
172 
173 struct ttm_placement vmw_mob_placement = {
174 	.num_placement = 1,
175 	.num_busy_placement = 1,
176 	.placement = &mob_placement_flags,
177 	.busy_placement = &mob_placement_flags
178 };
179 
180 struct ttm_placement vmw_nonfixed_placement = {
181 	.num_placement = 3,
182 	.placement = nonfixed_placement_flags,
183 	.num_busy_placement = 1,
184 	.busy_placement = &sys_placement_flags
185 };
186 
187 struct vmw_ttm_tt {
188 	struct ttm_tt dma_ttm;
189 	struct vmw_private *dev_priv;
190 	int gmr_id;
191 	struct vmw_mob *mob;
192 	int mem_type;
193 	struct sg_table sgt;
194 	struct vmw_sg_table vsgt;
195 	uint64_t sg_alloc_size;
196 	bool mapped;
197 	bool bound;
198 };
199 
200 const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt);
201 
202 /**
203  * __vmw_piter_non_sg_next: Helper functions to advance
204  * a struct vmw_piter iterator.
205  *
206  * @viter: Pointer to the iterator.
207  *
208  * These functions return false if past the end of the list,
209  * true otherwise. Functions are selected depending on the current
210  * DMA mapping mode.
211  */
212 static bool __vmw_piter_non_sg_next(struct vmw_piter *viter)
213 {
214 	return ++(viter->i) < viter->num_pages;
215 }
216 
217 static bool __vmw_piter_sg_next(struct vmw_piter *viter)
218 {
219 	bool ret = __vmw_piter_non_sg_next(viter);
220 
221 	return __sg_page_iter_dma_next(&viter->iter) && ret;
222 }
223 
224 
225 static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter)
226 {
227 	return viter->addrs[viter->i];
228 }
229 
230 static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter)
231 {
232 	return sg_page_iter_dma_address(&viter->iter);
233 }
234 
235 
236 /**
237  * vmw_piter_start - Initialize a struct vmw_piter.
238  *
239  * @viter: Pointer to the iterator to initialize
240  * @vsgt: Pointer to a struct vmw_sg_table to initialize from
241  * @p_offset: Pointer offset used to update current array position
242  *
243  * Note that we're following the convention of __sg_page_iter_start, so that
244  * the iterator doesn't point to a valid page after initialization; it has
245  * to be advanced one step first.
246  */
247 void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt,
248 		     unsigned long p_offset)
249 {
250 	viter->i = p_offset - 1;
251 	viter->num_pages = vsgt->num_pages;
252 	viter->pages = vsgt->pages;
253 	switch (vsgt->mode) {
254 	case vmw_dma_alloc_coherent:
255 		viter->next = &__vmw_piter_non_sg_next;
256 		viter->dma_address = &__vmw_piter_dma_addr;
257 		viter->addrs = vsgt->addrs;
258 		break;
259 	case vmw_dma_map_populate:
260 	case vmw_dma_map_bind:
261 		viter->next = &__vmw_piter_sg_next;
262 		viter->dma_address = &__vmw_piter_sg_addr;
263 		__sg_page_iter_start(&viter->iter.base, vsgt->sgt->sgl,
264 				     vsgt->sgt->orig_nents, p_offset);
265 		break;
266 	default:
267 		BUG();
268 	}
269 }
270 
271 /**
272  * vmw_ttm_unmap_from_dma - unmap  device addresses previsouly mapped for
273  * TTM pages
274  *
275  * @vmw_tt: Pointer to a struct vmw_ttm_backend
276  *
277  * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma.
278  */
279 static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt)
280 {
281 	struct device *dev = vmw_tt->dev_priv->drm.dev;
282 
283 	dma_unmap_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
284 	vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents;
285 }
286 
287 /**
288  * vmw_ttm_map_for_dma - map TTM pages to get device addresses
289  *
290  * @vmw_tt: Pointer to a struct vmw_ttm_backend
291  *
292  * This function is used to get device addresses from the kernel DMA layer.
293  * However, it's violating the DMA API in that when this operation has been
294  * performed, it's illegal for the CPU to write to the pages without first
295  * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is
296  * therefore only legal to call this function if we know that the function
297  * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most
298  * a CPU write buffer flush.
299  */
300 static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt)
301 {
302 	struct device *dev = vmw_tt->dev_priv->drm.dev;
303 
304 	return dma_map_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
305 }
306 
307 /**
308  * vmw_ttm_map_dma - Make sure TTM pages are visible to the device
309  *
310  * @vmw_tt: Pointer to a struct vmw_ttm_tt
311  *
312  * Select the correct function for and make sure the TTM pages are
313  * visible to the device. Allocate storage for the device mappings.
314  * If a mapping has already been performed, indicated by the storage
315  * pointer being non NULL, the function returns success.
316  */
317 static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt)
318 {
319 	struct vmw_private *dev_priv = vmw_tt->dev_priv;
320 	struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
321 	struct vmw_sg_table *vsgt = &vmw_tt->vsgt;
322 	struct ttm_operation_ctx ctx = {
323 		.interruptible = true,
324 		.no_wait_gpu = false
325 	};
326 	struct vmw_piter iter;
327 	dma_addr_t old;
328 	int ret = 0;
329 	static size_t sgl_size;
330 	static size_t sgt_size;
331 
332 	if (vmw_tt->mapped)
333 		return 0;
334 
335 	vsgt->mode = dev_priv->map_mode;
336 	vsgt->pages = vmw_tt->dma_ttm.pages;
337 	vsgt->num_pages = vmw_tt->dma_ttm.num_pages;
338 	vsgt->addrs = vmw_tt->dma_ttm.dma_address;
339 	vsgt->sgt = &vmw_tt->sgt;
340 
341 	switch (dev_priv->map_mode) {
342 	case vmw_dma_map_bind:
343 	case vmw_dma_map_populate:
344 		if (unlikely(!sgl_size)) {
345 			sgl_size = ttm_round_pot(sizeof(struct scatterlist));
346 			sgt_size = ttm_round_pot(sizeof(struct sg_table));
347 		}
348 		vmw_tt->sg_alloc_size = sgt_size + sgl_size * vsgt->num_pages;
349 		ret = ttm_mem_global_alloc(glob, vmw_tt->sg_alloc_size, &ctx);
350 		if (unlikely(ret != 0))
351 			return ret;
352 
353 		ret = sg_alloc_table_from_pages_segment(
354 			&vmw_tt->sgt, vsgt->pages, vsgt->num_pages, 0,
355 			(unsigned long)vsgt->num_pages << PAGE_SHIFT,
356 			dma_get_max_seg_size(dev_priv->drm.dev), GFP_KERNEL);
357 		if (ret)
358 			goto out_sg_alloc_fail;
359 
360 		if (vsgt->num_pages > vmw_tt->sgt.orig_nents) {
361 			uint64_t over_alloc =
362 				sgl_size * (vsgt->num_pages -
363 					    vmw_tt->sgt.orig_nents);
364 
365 			ttm_mem_global_free(glob, over_alloc);
366 			vmw_tt->sg_alloc_size -= over_alloc;
367 		}
368 
369 		ret = vmw_ttm_map_for_dma(vmw_tt);
370 		if (unlikely(ret != 0))
371 			goto out_map_fail;
372 
373 		break;
374 	default:
375 		break;
376 	}
377 
378 	old = ~((dma_addr_t) 0);
379 	vmw_tt->vsgt.num_regions = 0;
380 	for (vmw_piter_start(&iter, vsgt, 0); vmw_piter_next(&iter);) {
381 		dma_addr_t cur = vmw_piter_dma_addr(&iter);
382 
383 		if (cur != old + PAGE_SIZE)
384 			vmw_tt->vsgt.num_regions++;
385 		old = cur;
386 	}
387 
388 	vmw_tt->mapped = true;
389 	return 0;
390 
391 out_map_fail:
392 	sg_free_table(vmw_tt->vsgt.sgt);
393 	vmw_tt->vsgt.sgt = NULL;
394 out_sg_alloc_fail:
395 	ttm_mem_global_free(glob, vmw_tt->sg_alloc_size);
396 	return ret;
397 }
398 
399 /**
400  * vmw_ttm_unmap_dma - Tear down any TTM page device mappings
401  *
402  * @vmw_tt: Pointer to a struct vmw_ttm_tt
403  *
404  * Tear down any previously set up device DMA mappings and free
405  * any storage space allocated for them. If there are no mappings set up,
406  * this function is a NOP.
407  */
408 static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt)
409 {
410 	struct vmw_private *dev_priv = vmw_tt->dev_priv;
411 
412 	if (!vmw_tt->vsgt.sgt)
413 		return;
414 
415 	switch (dev_priv->map_mode) {
416 	case vmw_dma_map_bind:
417 	case vmw_dma_map_populate:
418 		vmw_ttm_unmap_from_dma(vmw_tt);
419 		sg_free_table(vmw_tt->vsgt.sgt);
420 		vmw_tt->vsgt.sgt = NULL;
421 		ttm_mem_global_free(vmw_mem_glob(dev_priv),
422 				    vmw_tt->sg_alloc_size);
423 		break;
424 	default:
425 		break;
426 	}
427 	vmw_tt->mapped = false;
428 }
429 
430 /**
431  * vmw_bo_sg_table - Return a struct vmw_sg_table object for a
432  * TTM buffer object
433  *
434  * @bo: Pointer to a struct ttm_buffer_object
435  *
436  * Returns a pointer to a struct vmw_sg_table object. The object should
437  * not be freed after use.
438  * Note that for the device addresses to be valid, the buffer object must
439  * either be reserved or pinned.
440  */
441 const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo)
442 {
443 	struct vmw_ttm_tt *vmw_tt =
444 		container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm);
445 
446 	return &vmw_tt->vsgt;
447 }
448 
449 
450 static int vmw_ttm_bind(struct ttm_device *bdev,
451 			struct ttm_tt *ttm, struct ttm_resource *bo_mem)
452 {
453 	struct vmw_ttm_tt *vmw_be =
454 		container_of(ttm, struct vmw_ttm_tt, dma_ttm);
455 	int ret = 0;
456 
457 	if (!bo_mem)
458 		return -EINVAL;
459 
460 	if (vmw_be->bound)
461 		return 0;
462 
463 	ret = vmw_ttm_map_dma(vmw_be);
464 	if (unlikely(ret != 0))
465 		return ret;
466 
467 	vmw_be->gmr_id = bo_mem->start;
468 	vmw_be->mem_type = bo_mem->mem_type;
469 
470 	switch (bo_mem->mem_type) {
471 	case VMW_PL_GMR:
472 		ret = vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt,
473 				    ttm->num_pages, vmw_be->gmr_id);
474 		break;
475 	case VMW_PL_MOB:
476 		if (unlikely(vmw_be->mob == NULL)) {
477 			vmw_be->mob =
478 				vmw_mob_create(ttm->num_pages);
479 			if (unlikely(vmw_be->mob == NULL))
480 				return -ENOMEM;
481 		}
482 
483 		ret = vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob,
484 				    &vmw_be->vsgt, ttm->num_pages,
485 				    vmw_be->gmr_id);
486 		break;
487 	default:
488 		BUG();
489 	}
490 	vmw_be->bound = true;
491 	return ret;
492 }
493 
494 static void vmw_ttm_unbind(struct ttm_device *bdev,
495 			   struct ttm_tt *ttm)
496 {
497 	struct vmw_ttm_tt *vmw_be =
498 		container_of(ttm, struct vmw_ttm_tt, dma_ttm);
499 
500 	if (!vmw_be->bound)
501 		return;
502 
503 	switch (vmw_be->mem_type) {
504 	case VMW_PL_GMR:
505 		vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id);
506 		break;
507 	case VMW_PL_MOB:
508 		vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob);
509 		break;
510 	default:
511 		BUG();
512 	}
513 
514 	if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind)
515 		vmw_ttm_unmap_dma(vmw_be);
516 	vmw_be->bound = false;
517 }
518 
519 
520 static void vmw_ttm_destroy(struct ttm_device *bdev, struct ttm_tt *ttm)
521 {
522 	struct vmw_ttm_tt *vmw_be =
523 		container_of(ttm, struct vmw_ttm_tt, dma_ttm);
524 
525 	vmw_ttm_unmap_dma(vmw_be);
526 	ttm_tt_fini(ttm);
527 	if (vmw_be->mob)
528 		vmw_mob_destroy(vmw_be->mob);
529 
530 	kfree(vmw_be);
531 }
532 
533 
534 static int vmw_ttm_populate(struct ttm_device *bdev,
535 			    struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
536 {
537 	unsigned int i;
538 	int ret;
539 
540 	/* TODO: maybe completely drop this ? */
541 	if (ttm_tt_is_populated(ttm))
542 		return 0;
543 
544 	ret = ttm_pool_alloc(&bdev->pool, ttm, ctx);
545 	if (ret)
546 		return ret;
547 
548 	for (i = 0; i < ttm->num_pages; ++i) {
549 		ret = ttm_mem_global_alloc_page(&ttm_mem_glob, ttm->pages[i],
550 						PAGE_SIZE, ctx);
551 		if (ret)
552 			goto error;
553 	}
554 	return 0;
555 
556 error:
557 	while (i--)
558 		ttm_mem_global_free_page(&ttm_mem_glob, ttm->pages[i],
559 					 PAGE_SIZE);
560 	ttm_pool_free(&bdev->pool, ttm);
561 	return ret;
562 }
563 
564 static void vmw_ttm_unpopulate(struct ttm_device *bdev,
565 			       struct ttm_tt *ttm)
566 {
567 	struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt,
568 						 dma_ttm);
569 	unsigned int i;
570 
571 	vmw_ttm_unbind(bdev, ttm);
572 
573 	if (vmw_tt->mob) {
574 		vmw_mob_destroy(vmw_tt->mob);
575 		vmw_tt->mob = NULL;
576 	}
577 
578 	vmw_ttm_unmap_dma(vmw_tt);
579 
580 	for (i = 0; i < ttm->num_pages; ++i)
581 		ttm_mem_global_free_page(&ttm_mem_glob, ttm->pages[i],
582 					 PAGE_SIZE);
583 
584 	ttm_pool_free(&bdev->pool, ttm);
585 }
586 
587 static struct ttm_tt *vmw_ttm_tt_create(struct ttm_buffer_object *bo,
588 					uint32_t page_flags)
589 {
590 	struct vmw_ttm_tt *vmw_be;
591 	int ret;
592 
593 	vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL);
594 	if (!vmw_be)
595 		return NULL;
596 
597 	vmw_be->dev_priv = container_of(bo->bdev, struct vmw_private, bdev);
598 	vmw_be->mob = NULL;
599 
600 	if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
601 		ret = ttm_sg_tt_init(&vmw_be->dma_ttm, bo, page_flags,
602 				     ttm_cached);
603 	else
604 		ret = ttm_tt_init(&vmw_be->dma_ttm, bo, page_flags,
605 				  ttm_cached);
606 	if (unlikely(ret != 0))
607 		goto out_no_init;
608 
609 	return &vmw_be->dma_ttm;
610 out_no_init:
611 	kfree(vmw_be);
612 	return NULL;
613 }
614 
615 static void vmw_evict_flags(struct ttm_buffer_object *bo,
616 		     struct ttm_placement *placement)
617 {
618 	*placement = vmw_sys_placement;
619 }
620 
621 static int vmw_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem)
622 {
623 	struct vmw_private *dev_priv = container_of(bdev, struct vmw_private, bdev);
624 
625 	switch (mem->mem_type) {
626 	case TTM_PL_SYSTEM:
627 	case VMW_PL_GMR:
628 	case VMW_PL_MOB:
629 		return 0;
630 	case TTM_PL_VRAM:
631 		mem->bus.offset = (mem->start << PAGE_SHIFT) +
632 			dev_priv->vram_start;
633 		mem->bus.is_iomem = true;
634 		mem->bus.caching = ttm_cached;
635 		break;
636 	default:
637 		return -EINVAL;
638 	}
639 	return 0;
640 }
641 
642 /**
643  * vmw_move_notify - TTM move_notify_callback
644  *
645  * @bo: The TTM buffer object about to move.
646  * @old_mem: The old memory where we move from
647  * @new_mem: The struct ttm_resource indicating to what memory
648  *       region the move is taking place.
649  *
650  * Calls move_notify for all subsystems needing it.
651  * (currently only resources).
652  */
653 static void vmw_move_notify(struct ttm_buffer_object *bo,
654 			    struct ttm_resource *old_mem,
655 			    struct ttm_resource *new_mem)
656 {
657 	vmw_bo_move_notify(bo, new_mem);
658 	vmw_query_move_notify(bo, old_mem, new_mem);
659 }
660 
661 
662 /**
663  * vmw_swap_notify - TTM move_notify_callback
664  *
665  * @bo: The TTM buffer object about to be swapped out.
666  */
667 static void vmw_swap_notify(struct ttm_buffer_object *bo)
668 {
669 	vmw_bo_swap_notify(bo);
670 	(void) ttm_bo_wait(bo, false, false);
671 }
672 
673 static int vmw_move(struct ttm_buffer_object *bo,
674 		    bool evict,
675 		    struct ttm_operation_ctx *ctx,
676 		    struct ttm_resource *new_mem,
677 		    struct ttm_place *hop)
678 {
679 	struct ttm_resource_manager *old_man = ttm_manager_type(bo->bdev, bo->resource->mem_type);
680 	struct ttm_resource_manager *new_man = ttm_manager_type(bo->bdev, new_mem->mem_type);
681 	int ret;
682 
683 	if (new_man->use_tt && new_mem->mem_type != TTM_PL_SYSTEM) {
684 		ret = vmw_ttm_bind(bo->bdev, bo->ttm, new_mem);
685 		if (ret)
686 			return ret;
687 	}
688 
689 	vmw_move_notify(bo, bo->resource, new_mem);
690 
691 	if (old_man->use_tt && new_man->use_tt) {
692 		if (bo->resource->mem_type == TTM_PL_SYSTEM) {
693 			ttm_bo_move_null(bo, new_mem);
694 			return 0;
695 		}
696 		ret = ttm_bo_wait_ctx(bo, ctx);
697 		if (ret)
698 			goto fail;
699 
700 		vmw_ttm_unbind(bo->bdev, bo->ttm);
701 		ttm_resource_free(bo, &bo->resource);
702 		ttm_bo_assign_mem(bo, new_mem);
703 		return 0;
704 	} else {
705 		ret = ttm_bo_move_memcpy(bo, ctx, new_mem);
706 		if (ret)
707 			goto fail;
708 	}
709 	return 0;
710 fail:
711 	vmw_move_notify(bo, new_mem, bo->resource);
712 	return ret;
713 }
714 
715 struct ttm_device_funcs vmw_bo_driver = {
716 	.ttm_tt_create = &vmw_ttm_tt_create,
717 	.ttm_tt_populate = &vmw_ttm_populate,
718 	.ttm_tt_unpopulate = &vmw_ttm_unpopulate,
719 	.ttm_tt_destroy = &vmw_ttm_destroy,
720 	.eviction_valuable = ttm_bo_eviction_valuable,
721 	.evict_flags = vmw_evict_flags,
722 	.move = vmw_move,
723 	.swap_notify = vmw_swap_notify,
724 	.io_mem_reserve = &vmw_ttm_io_mem_reserve,
725 };
726 
727 int vmw_bo_create_and_populate(struct vmw_private *dev_priv,
728 			       unsigned long bo_size,
729 			       struct ttm_buffer_object **bo_p)
730 {
731 	struct ttm_operation_ctx ctx = {
732 		.interruptible = false,
733 		.no_wait_gpu = false
734 	};
735 	struct ttm_buffer_object *bo;
736 	int ret;
737 
738 	ret = vmw_bo_create_kernel(dev_priv, bo_size,
739 				   &vmw_sys_placement,
740 				   &bo);
741 	if (unlikely(ret != 0))
742 		return ret;
743 
744 	ret = ttm_bo_reserve(bo, false, true, NULL);
745 	BUG_ON(ret != 0);
746 	ret = vmw_ttm_populate(bo->bdev, bo->ttm, &ctx);
747 	if (likely(ret == 0)) {
748 		struct vmw_ttm_tt *vmw_tt =
749 			container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm);
750 		ret = vmw_ttm_map_dma(vmw_tt);
751 	}
752 
753 	ttm_bo_unreserve(bo);
754 
755 	if (likely(ret == 0))
756 		*bo_p = bo;
757 	return ret;
758 }
759