1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3  *
4  * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 #include "vmwgfx_drv.h"
29 #include <drm/ttm/ttm_bo_driver.h>
30 #include <drm/ttm/ttm_placement.h>
31 #include <drm/ttm/ttm_page_alloc.h>
32 
33 static const struct ttm_place vram_placement_flags = {
34 	.fpfn = 0,
35 	.lpfn = 0,
36 	.mem_type = TTM_PL_VRAM,
37 	.flags = 0
38 };
39 
40 static const struct ttm_place sys_placement_flags = {
41 	.fpfn = 0,
42 	.lpfn = 0,
43 	.mem_type = TTM_PL_SYSTEM,
44 	.flags = 0
45 };
46 
47 static const struct ttm_place gmr_placement_flags = {
48 	.fpfn = 0,
49 	.lpfn = 0,
50 	.mem_type = VMW_PL_GMR,
51 	.flags = 0
52 };
53 
54 static const struct ttm_place mob_placement_flags = {
55 	.fpfn = 0,
56 	.lpfn = 0,
57 	.mem_type = VMW_PL_MOB,
58 	.flags = 0
59 };
60 
61 struct ttm_placement vmw_vram_placement = {
62 	.num_placement = 1,
63 	.placement = &vram_placement_flags,
64 	.num_busy_placement = 1,
65 	.busy_placement = &vram_placement_flags
66 };
67 
68 static const struct ttm_place vram_gmr_placement_flags[] = {
69 	{
70 		.fpfn = 0,
71 		.lpfn = 0,
72 		.mem_type = TTM_PL_VRAM,
73 		.flags = 0
74 	}, {
75 		.fpfn = 0,
76 		.lpfn = 0,
77 		.mem_type = VMW_PL_GMR,
78 		.flags = 0
79 	}
80 };
81 
82 static const struct ttm_place gmr_vram_placement_flags[] = {
83 	{
84 		.fpfn = 0,
85 		.lpfn = 0,
86 		.mem_type = VMW_PL_GMR,
87 		.flags = 0
88 	}, {
89 		.fpfn = 0,
90 		.lpfn = 0,
91 		.mem_type = TTM_PL_VRAM,
92 		.flags = 0
93 	}
94 };
95 
96 struct ttm_placement vmw_vram_gmr_placement = {
97 	.num_placement = 2,
98 	.placement = vram_gmr_placement_flags,
99 	.num_busy_placement = 1,
100 	.busy_placement = &gmr_placement_flags
101 };
102 
103 struct ttm_placement vmw_vram_sys_placement = {
104 	.num_placement = 1,
105 	.placement = &vram_placement_flags,
106 	.num_busy_placement = 1,
107 	.busy_placement = &sys_placement_flags
108 };
109 
110 struct ttm_placement vmw_sys_placement = {
111 	.num_placement = 1,
112 	.placement = &sys_placement_flags,
113 	.num_busy_placement = 1,
114 	.busy_placement = &sys_placement_flags
115 };
116 
117 static const struct ttm_place evictable_placement_flags[] = {
118 	{
119 		.fpfn = 0,
120 		.lpfn = 0,
121 		.mem_type = TTM_PL_SYSTEM,
122 		.flags = 0
123 	}, {
124 		.fpfn = 0,
125 		.lpfn = 0,
126 		.mem_type = TTM_PL_VRAM,
127 		.flags = 0
128 	}, {
129 		.fpfn = 0,
130 		.lpfn = 0,
131 		.mem_type = VMW_PL_GMR,
132 		.flags = 0
133 	}, {
134 		.fpfn = 0,
135 		.lpfn = 0,
136 		.mem_type = VMW_PL_MOB,
137 		.flags = 0
138 	}
139 };
140 
141 static const struct ttm_place nonfixed_placement_flags[] = {
142 	{
143 		.fpfn = 0,
144 		.lpfn = 0,
145 		.mem_type = TTM_PL_SYSTEM,
146 		.flags = 0
147 	}, {
148 		.fpfn = 0,
149 		.lpfn = 0,
150 		.mem_type = VMW_PL_GMR,
151 		.flags = 0
152 	}, {
153 		.fpfn = 0,
154 		.lpfn = 0,
155 		.mem_type = VMW_PL_MOB,
156 		.flags = 0
157 	}
158 };
159 
160 struct ttm_placement vmw_evictable_placement = {
161 	.num_placement = 4,
162 	.placement = evictable_placement_flags,
163 	.num_busy_placement = 1,
164 	.busy_placement = &sys_placement_flags
165 };
166 
167 struct ttm_placement vmw_srf_placement = {
168 	.num_placement = 1,
169 	.num_busy_placement = 2,
170 	.placement = &gmr_placement_flags,
171 	.busy_placement = gmr_vram_placement_flags
172 };
173 
174 struct ttm_placement vmw_mob_placement = {
175 	.num_placement = 1,
176 	.num_busy_placement = 1,
177 	.placement = &mob_placement_flags,
178 	.busy_placement = &mob_placement_flags
179 };
180 
181 struct ttm_placement vmw_nonfixed_placement = {
182 	.num_placement = 3,
183 	.placement = nonfixed_placement_flags,
184 	.num_busy_placement = 1,
185 	.busy_placement = &sys_placement_flags
186 };
187 
188 struct vmw_ttm_tt {
189 	struct ttm_dma_tt dma_ttm;
190 	struct vmw_private *dev_priv;
191 	int gmr_id;
192 	struct vmw_mob *mob;
193 	int mem_type;
194 	struct sg_table sgt;
195 	struct vmw_sg_table vsgt;
196 	uint64_t sg_alloc_size;
197 	bool mapped;
198 	bool bound;
199 };
200 
201 const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt);
202 
203 /**
204  * Helper functions to advance a struct vmw_piter iterator.
205  *
206  * @viter: Pointer to the iterator.
207  *
208  * These functions return false if past the end of the list,
209  * true otherwise. Functions are selected depending on the current
210  * DMA mapping mode.
211  */
212 static bool __vmw_piter_non_sg_next(struct vmw_piter *viter)
213 {
214 	return ++(viter->i) < viter->num_pages;
215 }
216 
217 static bool __vmw_piter_sg_next(struct vmw_piter *viter)
218 {
219 	bool ret = __vmw_piter_non_sg_next(viter);
220 
221 	return __sg_page_iter_dma_next(&viter->iter) && ret;
222 }
223 
224 
225 /**
226  * Helper functions to return a pointer to the current page.
227  *
228  * @viter: Pointer to the iterator
229  *
230  * These functions return a pointer to the page currently
231  * pointed to by @viter. Functions are selected depending on the
232  * current mapping mode.
233  */
234 static struct page *__vmw_piter_non_sg_page(struct vmw_piter *viter)
235 {
236 	return viter->pages[viter->i];
237 }
238 
239 /**
240  * Helper functions to return the DMA address of the current page.
241  *
242  * @viter: Pointer to the iterator
243  *
244  * These functions return the DMA address of the page currently
245  * pointed to by @viter. Functions are selected depending on the
246  * current mapping mode.
247  */
248 static dma_addr_t __vmw_piter_phys_addr(struct vmw_piter *viter)
249 {
250 	return page_to_phys(viter->pages[viter->i]);
251 }
252 
253 static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter)
254 {
255 	return viter->addrs[viter->i];
256 }
257 
258 static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter)
259 {
260 	return sg_page_iter_dma_address(&viter->iter);
261 }
262 
263 
264 /**
265  * vmw_piter_start - Initialize a struct vmw_piter.
266  *
267  * @viter: Pointer to the iterator to initialize
268  * @vsgt: Pointer to a struct vmw_sg_table to initialize from
269  *
270  * Note that we're following the convention of __sg_page_iter_start, so that
271  * the iterator doesn't point to a valid page after initialization; it has
272  * to be advanced one step first.
273  */
274 void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt,
275 		     unsigned long p_offset)
276 {
277 	viter->i = p_offset - 1;
278 	viter->num_pages = vsgt->num_pages;
279 	viter->page = &__vmw_piter_non_sg_page;
280 	viter->pages = vsgt->pages;
281 	switch (vsgt->mode) {
282 	case vmw_dma_phys:
283 		viter->next = &__vmw_piter_non_sg_next;
284 		viter->dma_address = &__vmw_piter_phys_addr;
285 		break;
286 	case vmw_dma_alloc_coherent:
287 		viter->next = &__vmw_piter_non_sg_next;
288 		viter->dma_address = &__vmw_piter_dma_addr;
289 		viter->addrs = vsgt->addrs;
290 		break;
291 	case vmw_dma_map_populate:
292 	case vmw_dma_map_bind:
293 		viter->next = &__vmw_piter_sg_next;
294 		viter->dma_address = &__vmw_piter_sg_addr;
295 		__sg_page_iter_start(&viter->iter.base, vsgt->sgt->sgl,
296 				     vsgt->sgt->orig_nents, p_offset);
297 		break;
298 	default:
299 		BUG();
300 	}
301 }
302 
303 /**
304  * vmw_ttm_unmap_from_dma - unmap  device addresses previsouly mapped for
305  * TTM pages
306  *
307  * @vmw_tt: Pointer to a struct vmw_ttm_backend
308  *
309  * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma.
310  */
311 static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt)
312 {
313 	struct device *dev = vmw_tt->dev_priv->dev->dev;
314 
315 	dma_unmap_sg(dev, vmw_tt->sgt.sgl, vmw_tt->sgt.nents,
316 		DMA_BIDIRECTIONAL);
317 	vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents;
318 }
319 
320 /**
321  * vmw_ttm_map_for_dma - map TTM pages to get device addresses
322  *
323  * @vmw_tt: Pointer to a struct vmw_ttm_backend
324  *
325  * This function is used to get device addresses from the kernel DMA layer.
326  * However, it's violating the DMA API in that when this operation has been
327  * performed, it's illegal for the CPU to write to the pages without first
328  * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is
329  * therefore only legal to call this function if we know that the function
330  * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most
331  * a CPU write buffer flush.
332  */
333 static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt)
334 {
335 	struct device *dev = vmw_tt->dev_priv->dev->dev;
336 	int ret;
337 
338 	ret = dma_map_sg(dev, vmw_tt->sgt.sgl, vmw_tt->sgt.orig_nents,
339 			 DMA_BIDIRECTIONAL);
340 	if (unlikely(ret == 0))
341 		return -ENOMEM;
342 
343 	vmw_tt->sgt.nents = ret;
344 
345 	return 0;
346 }
347 
348 /**
349  * vmw_ttm_map_dma - Make sure TTM pages are visible to the device
350  *
351  * @vmw_tt: Pointer to a struct vmw_ttm_tt
352  *
353  * Select the correct function for and make sure the TTM pages are
354  * visible to the device. Allocate storage for the device mappings.
355  * If a mapping has already been performed, indicated by the storage
356  * pointer being non NULL, the function returns success.
357  */
358 static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt)
359 {
360 	struct vmw_private *dev_priv = vmw_tt->dev_priv;
361 	struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
362 	struct vmw_sg_table *vsgt = &vmw_tt->vsgt;
363 	struct ttm_operation_ctx ctx = {
364 		.interruptible = true,
365 		.no_wait_gpu = false
366 	};
367 	struct vmw_piter iter;
368 	dma_addr_t old;
369 	int ret = 0;
370 	static size_t sgl_size;
371 	static size_t sgt_size;
372 
373 	if (vmw_tt->mapped)
374 		return 0;
375 
376 	vsgt->mode = dev_priv->map_mode;
377 	vsgt->pages = vmw_tt->dma_ttm.ttm.pages;
378 	vsgt->num_pages = vmw_tt->dma_ttm.ttm.num_pages;
379 	vsgt->addrs = vmw_tt->dma_ttm.dma_address;
380 	vsgt->sgt = &vmw_tt->sgt;
381 
382 	switch (dev_priv->map_mode) {
383 	case vmw_dma_map_bind:
384 	case vmw_dma_map_populate:
385 		if (unlikely(!sgl_size)) {
386 			sgl_size = ttm_round_pot(sizeof(struct scatterlist));
387 			sgt_size = ttm_round_pot(sizeof(struct sg_table));
388 		}
389 		vmw_tt->sg_alloc_size = sgt_size + sgl_size * vsgt->num_pages;
390 		ret = ttm_mem_global_alloc(glob, vmw_tt->sg_alloc_size, &ctx);
391 		if (unlikely(ret != 0))
392 			return ret;
393 
394 		ret = __sg_alloc_table_from_pages
395 			(&vmw_tt->sgt, vsgt->pages, vsgt->num_pages, 0,
396 			 (unsigned long) vsgt->num_pages << PAGE_SHIFT,
397 			 dma_get_max_seg_size(dev_priv->dev->dev),
398 			 GFP_KERNEL);
399 		if (unlikely(ret != 0))
400 			goto out_sg_alloc_fail;
401 
402 		if (vsgt->num_pages > vmw_tt->sgt.nents) {
403 			uint64_t over_alloc =
404 				sgl_size * (vsgt->num_pages -
405 					    vmw_tt->sgt.nents);
406 
407 			ttm_mem_global_free(glob, over_alloc);
408 			vmw_tt->sg_alloc_size -= over_alloc;
409 		}
410 
411 		ret = vmw_ttm_map_for_dma(vmw_tt);
412 		if (unlikely(ret != 0))
413 			goto out_map_fail;
414 
415 		break;
416 	default:
417 		break;
418 	}
419 
420 	old = ~((dma_addr_t) 0);
421 	vmw_tt->vsgt.num_regions = 0;
422 	for (vmw_piter_start(&iter, vsgt, 0); vmw_piter_next(&iter);) {
423 		dma_addr_t cur = vmw_piter_dma_addr(&iter);
424 
425 		if (cur != old + PAGE_SIZE)
426 			vmw_tt->vsgt.num_regions++;
427 		old = cur;
428 	}
429 
430 	vmw_tt->mapped = true;
431 	return 0;
432 
433 out_map_fail:
434 	sg_free_table(vmw_tt->vsgt.sgt);
435 	vmw_tt->vsgt.sgt = NULL;
436 out_sg_alloc_fail:
437 	ttm_mem_global_free(glob, vmw_tt->sg_alloc_size);
438 	return ret;
439 }
440 
441 /**
442  * vmw_ttm_unmap_dma - Tear down any TTM page device mappings
443  *
444  * @vmw_tt: Pointer to a struct vmw_ttm_tt
445  *
446  * Tear down any previously set up device DMA mappings and free
447  * any storage space allocated for them. If there are no mappings set up,
448  * this function is a NOP.
449  */
450 static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt)
451 {
452 	struct vmw_private *dev_priv = vmw_tt->dev_priv;
453 
454 	if (!vmw_tt->vsgt.sgt)
455 		return;
456 
457 	switch (dev_priv->map_mode) {
458 	case vmw_dma_map_bind:
459 	case vmw_dma_map_populate:
460 		vmw_ttm_unmap_from_dma(vmw_tt);
461 		sg_free_table(vmw_tt->vsgt.sgt);
462 		vmw_tt->vsgt.sgt = NULL;
463 		ttm_mem_global_free(vmw_mem_glob(dev_priv),
464 				    vmw_tt->sg_alloc_size);
465 		break;
466 	default:
467 		break;
468 	}
469 	vmw_tt->mapped = false;
470 }
471 
472 /**
473  * vmw_bo_sg_table - Return a struct vmw_sg_table object for a
474  * TTM buffer object
475  *
476  * @bo: Pointer to a struct ttm_buffer_object
477  *
478  * Returns a pointer to a struct vmw_sg_table object. The object should
479  * not be freed after use.
480  * Note that for the device addresses to be valid, the buffer object must
481  * either be reserved or pinned.
482  */
483 const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo)
484 {
485 	struct vmw_ttm_tt *vmw_tt =
486 		container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
487 
488 	return &vmw_tt->vsgt;
489 }
490 
491 
492 static int vmw_ttm_bind(struct ttm_bo_device *bdev,
493 			struct ttm_tt *ttm, struct ttm_resource *bo_mem)
494 {
495 	struct vmw_ttm_tt *vmw_be =
496 		container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
497 	int ret = 0;
498 
499 	if (!bo_mem)
500 		return -EINVAL;
501 
502 	if (vmw_be->bound)
503 		return 0;
504 
505 	ret = vmw_ttm_map_dma(vmw_be);
506 	if (unlikely(ret != 0))
507 		return ret;
508 
509 	vmw_be->gmr_id = bo_mem->start;
510 	vmw_be->mem_type = bo_mem->mem_type;
511 
512 	switch (bo_mem->mem_type) {
513 	case VMW_PL_GMR:
514 		ret = vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt,
515 				    ttm->num_pages, vmw_be->gmr_id);
516 		break;
517 	case VMW_PL_MOB:
518 		if (unlikely(vmw_be->mob == NULL)) {
519 			vmw_be->mob =
520 				vmw_mob_create(ttm->num_pages);
521 			if (unlikely(vmw_be->mob == NULL))
522 				return -ENOMEM;
523 		}
524 
525 		ret = vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob,
526 				    &vmw_be->vsgt, ttm->num_pages,
527 				    vmw_be->gmr_id);
528 		break;
529 	default:
530 		BUG();
531 	}
532 	vmw_be->bound = true;
533 	return ret;
534 }
535 
536 static void vmw_ttm_unbind(struct ttm_bo_device *bdev,
537 			   struct ttm_tt *ttm)
538 {
539 	struct vmw_ttm_tt *vmw_be =
540 		container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
541 
542 	if (!vmw_be->bound)
543 		return;
544 
545 	switch (vmw_be->mem_type) {
546 	case VMW_PL_GMR:
547 		vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id);
548 		break;
549 	case VMW_PL_MOB:
550 		vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob);
551 		break;
552 	default:
553 		BUG();
554 	}
555 
556 	if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind)
557 		vmw_ttm_unmap_dma(vmw_be);
558 	vmw_be->bound = false;
559 }
560 
561 
562 static void vmw_ttm_destroy(struct ttm_bo_device *bdev, struct ttm_tt *ttm)
563 {
564 	struct vmw_ttm_tt *vmw_be =
565 		container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
566 
567 	vmw_ttm_unbind(bdev, ttm);
568 	ttm_tt_destroy_common(bdev, ttm);
569 	vmw_ttm_unmap_dma(vmw_be);
570 	if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
571 		ttm_dma_tt_fini(&vmw_be->dma_ttm);
572 	else
573 		ttm_tt_fini(ttm);
574 
575 	if (vmw_be->mob)
576 		vmw_mob_destroy(vmw_be->mob);
577 
578 	kfree(vmw_be);
579 }
580 
581 
582 static int vmw_ttm_populate(struct ttm_bo_device *bdev,
583 			    struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
584 {
585 	struct vmw_ttm_tt *vmw_tt =
586 		container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
587 	struct vmw_private *dev_priv = vmw_tt->dev_priv;
588 	struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
589 	int ret;
590 
591 	if (ttm_tt_is_populated(ttm))
592 		return 0;
593 
594 	if (dev_priv->map_mode == vmw_dma_alloc_coherent) {
595 		size_t size =
596 			ttm_round_pot(ttm->num_pages * sizeof(dma_addr_t));
597 		ret = ttm_mem_global_alloc(glob, size, ctx);
598 		if (unlikely(ret != 0))
599 			return ret;
600 
601 		ret = ttm_dma_populate(&vmw_tt->dma_ttm, dev_priv->dev->dev,
602 					ctx);
603 		if (unlikely(ret != 0))
604 			ttm_mem_global_free(glob, size);
605 	} else
606 		ret = ttm_pool_populate(ttm, ctx);
607 
608 	return ret;
609 }
610 
611 static void vmw_ttm_unpopulate(struct ttm_bo_device *bdev,
612 			       struct ttm_tt *ttm)
613 {
614 	struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt,
615 						 dma_ttm.ttm);
616 	struct vmw_private *dev_priv = vmw_tt->dev_priv;
617 	struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
618 
619 
620 	if (vmw_tt->mob) {
621 		vmw_mob_destroy(vmw_tt->mob);
622 		vmw_tt->mob = NULL;
623 	}
624 
625 	vmw_ttm_unmap_dma(vmw_tt);
626 	if (dev_priv->map_mode == vmw_dma_alloc_coherent) {
627 		size_t size =
628 			ttm_round_pot(ttm->num_pages * sizeof(dma_addr_t));
629 
630 		ttm_dma_unpopulate(&vmw_tt->dma_ttm, dev_priv->dev->dev);
631 		ttm_mem_global_free(glob, size);
632 	} else
633 		ttm_pool_unpopulate(ttm);
634 }
635 
636 static struct ttm_tt *vmw_ttm_tt_create(struct ttm_buffer_object *bo,
637 					uint32_t page_flags)
638 {
639 	struct vmw_ttm_tt *vmw_be;
640 	int ret;
641 
642 	vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL);
643 	if (!vmw_be)
644 		return NULL;
645 
646 	vmw_be->dev_priv = container_of(bo->bdev, struct vmw_private, bdev);
647 	vmw_be->mob = NULL;
648 
649 	if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
650 		ret = ttm_dma_tt_init(&vmw_be->dma_ttm, bo, page_flags,
651 				      ttm_cached);
652 	else
653 		ret = ttm_tt_init(&vmw_be->dma_ttm.ttm, bo, page_flags,
654 				  ttm_cached);
655 	if (unlikely(ret != 0))
656 		goto out_no_init;
657 
658 	return &vmw_be->dma_ttm.ttm;
659 out_no_init:
660 	kfree(vmw_be);
661 	return NULL;
662 }
663 
664 static void vmw_evict_flags(struct ttm_buffer_object *bo,
665 		     struct ttm_placement *placement)
666 {
667 	*placement = vmw_sys_placement;
668 }
669 
670 static int vmw_verify_access(struct ttm_buffer_object *bo, struct file *filp)
671 {
672 	struct ttm_object_file *tfile =
673 		vmw_fpriv((struct drm_file *)filp->private_data)->tfile;
674 
675 	return vmw_user_bo_verify_access(bo, tfile);
676 }
677 
678 static int vmw_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_resource *mem)
679 {
680 	struct vmw_private *dev_priv = container_of(bdev, struct vmw_private, bdev);
681 
682 	switch (mem->mem_type) {
683 	case TTM_PL_SYSTEM:
684 	case VMW_PL_GMR:
685 	case VMW_PL_MOB:
686 		return 0;
687 	case TTM_PL_VRAM:
688 		mem->bus.offset = (mem->start << PAGE_SHIFT) +
689 			dev_priv->vram_start;
690 		mem->bus.is_iomem = true;
691 		mem->bus.caching = ttm_cached;
692 		break;
693 	default:
694 		return -EINVAL;
695 	}
696 	return 0;
697 }
698 
699 /**
700  * vmw_move_notify - TTM move_notify_callback
701  *
702  * @bo: The TTM buffer object about to move.
703  * @mem: The struct ttm_resource indicating to what memory
704  *       region the move is taking place.
705  *
706  * Calls move_notify for all subsystems needing it.
707  * (currently only resources).
708  */
709 static void vmw_move_notify(struct ttm_buffer_object *bo,
710 			    bool evict,
711 			    struct ttm_resource *mem)
712 {
713 	if (!mem)
714 		return;
715 	vmw_bo_move_notify(bo, mem);
716 	vmw_query_move_notify(bo, mem);
717 }
718 
719 
720 /**
721  * vmw_swap_notify - TTM move_notify_callback
722  *
723  * @bo: The TTM buffer object about to be swapped out.
724  */
725 static void vmw_swap_notify(struct ttm_buffer_object *bo)
726 {
727 	vmw_bo_swap_notify(bo);
728 	(void) ttm_bo_wait(bo, false, false);
729 }
730 
731 static int vmw_move(struct ttm_buffer_object *bo,
732 		    bool evict,
733 		    struct ttm_operation_ctx *ctx,
734 		    struct ttm_resource *new_mem)
735 {
736 	struct ttm_resource_manager *old_man = ttm_manager_type(bo->bdev, bo->mem.mem_type);
737 	struct ttm_resource_manager *new_man = ttm_manager_type(bo->bdev, new_mem->mem_type);
738 
739 	if (old_man->use_tt && new_man->use_tt) {
740 		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
741 			ttm_bo_assign_mem(bo, new_mem);
742 			return 0;
743 		}
744 		return ttm_bo_move_ttm(bo, ctx, new_mem);
745 	} else {
746 		return ttm_bo_move_memcpy(bo, ctx, new_mem);
747 	}
748 }
749 
750 struct ttm_bo_driver vmw_bo_driver = {
751 	.ttm_tt_create = &vmw_ttm_tt_create,
752 	.ttm_tt_populate = &vmw_ttm_populate,
753 	.ttm_tt_unpopulate = &vmw_ttm_unpopulate,
754 	.ttm_tt_bind = &vmw_ttm_bind,
755 	.ttm_tt_unbind = &vmw_ttm_unbind,
756 	.ttm_tt_destroy = &vmw_ttm_destroy,
757 	.eviction_valuable = ttm_bo_eviction_valuable,
758 	.evict_flags = vmw_evict_flags,
759 	.move = vmw_move,
760 	.verify_access = vmw_verify_access,
761 	.move_notify = vmw_move_notify,
762 	.swap_notify = vmw_swap_notify,
763 	.io_mem_reserve = &vmw_ttm_io_mem_reserve,
764 };
765 
766 int vmw_bo_create_and_populate(struct vmw_private *dev_priv,
767 			       unsigned long bo_size,
768 			       struct ttm_buffer_object **bo_p)
769 {
770 	struct ttm_operation_ctx ctx = {
771 		.interruptible = false,
772 		.no_wait_gpu = false
773 	};
774 	struct ttm_buffer_object *bo;
775 	int ret;
776 
777 	ret = vmw_bo_create_kernel(dev_priv, bo_size,
778 				   &vmw_sys_placement,
779 				   &bo);
780 	if (unlikely(ret != 0))
781 		return ret;
782 
783 	ret = ttm_bo_reserve(bo, false, true, NULL);
784 	BUG_ON(ret != 0);
785 	ret = vmw_ttm_populate(bo->bdev, bo->ttm, &ctx);
786 	if (likely(ret == 0)) {
787 		struct vmw_ttm_tt *vmw_tt =
788 			container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
789 		ret = vmw_ttm_map_dma(vmw_tt);
790 	}
791 
792 	ttm_bo_unreserve(bo);
793 
794 	if (likely(ret == 0))
795 		*bo_p = bo;
796 	return ret;
797 }
798