1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3  *
4  * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 #include "vmwgfx_drv.h"
29 #include <drm/ttm/ttm_bo_driver.h>
30 #include <drm/ttm/ttm_placement.h>
31 #include <drm/ttm/ttm_page_alloc.h>
32 
33 static const struct ttm_place vram_placement_flags = {
34 	.fpfn = 0,
35 	.lpfn = 0,
36 	.mem_type = TTM_PL_VRAM,
37 	.flags = TTM_PL_FLAG_CACHED
38 };
39 
40 static const struct ttm_place vram_ne_placement_flags = {
41 	.fpfn = 0,
42 	.lpfn = 0,
43 	.mem_type = TTM_PL_VRAM,
44 	.flags = TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
45 };
46 
47 static const struct ttm_place sys_placement_flags = {
48 	.fpfn = 0,
49 	.lpfn = 0,
50 	.mem_type = TTM_PL_SYSTEM,
51 	.flags = TTM_PL_FLAG_CACHED
52 };
53 
54 static const struct ttm_place sys_ne_placement_flags = {
55 	.fpfn = 0,
56 	.lpfn = 0,
57 	.mem_type = TTM_PL_SYSTEM,
58 	.flags = TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
59 };
60 
61 static const struct ttm_place gmr_placement_flags = {
62 	.fpfn = 0,
63 	.lpfn = 0,
64 	.mem_type = VMW_PL_GMR,
65 	.flags = TTM_PL_FLAG_CACHED
66 };
67 
68 static const struct ttm_place gmr_ne_placement_flags = {
69 	.fpfn = 0,
70 	.lpfn = 0,
71 	.mem_type = VMW_PL_GMR,
72 	.flags = TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
73 };
74 
75 static const struct ttm_place mob_placement_flags = {
76 	.fpfn = 0,
77 	.lpfn = 0,
78 	.mem_type = VMW_PL_MOB,
79 	.flags = TTM_PL_FLAG_CACHED
80 };
81 
82 static const struct ttm_place mob_ne_placement_flags = {
83 	.fpfn = 0,
84 	.lpfn = 0,
85 	.mem_type = VMW_PL_MOB,
86 	.flags = TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
87 };
88 
89 struct ttm_placement vmw_vram_placement = {
90 	.num_placement = 1,
91 	.placement = &vram_placement_flags,
92 	.num_busy_placement = 1,
93 	.busy_placement = &vram_placement_flags
94 };
95 
96 static const struct ttm_place vram_gmr_placement_flags[] = {
97 	{
98 		.fpfn = 0,
99 		.lpfn = 0,
100 		.mem_type = TTM_PL_VRAM,
101 		.flags = TTM_PL_FLAG_CACHED
102 	}, {
103 		.fpfn = 0,
104 		.lpfn = 0,
105 		.mem_type = VMW_PL_GMR,
106 		.flags = TTM_PL_FLAG_CACHED
107 	}
108 };
109 
110 static const struct ttm_place gmr_vram_placement_flags[] = {
111 	{
112 		.fpfn = 0,
113 		.lpfn = 0,
114 		.mem_type = VMW_PL_GMR,
115 		.flags = TTM_PL_FLAG_CACHED
116 	}, {
117 		.fpfn = 0,
118 		.lpfn = 0,
119 		.mem_type = TTM_PL_VRAM,
120 		.flags = TTM_PL_FLAG_CACHED
121 	}
122 };
123 
124 struct ttm_placement vmw_vram_gmr_placement = {
125 	.num_placement = 2,
126 	.placement = vram_gmr_placement_flags,
127 	.num_busy_placement = 1,
128 	.busy_placement = &gmr_placement_flags
129 };
130 
131 static const struct ttm_place vram_gmr_ne_placement_flags[] = {
132 	{
133 		.fpfn = 0,
134 		.lpfn = 0,
135 		.mem_type = TTM_PL_VRAM,
136 		.flags = TTM_PL_FLAG_CACHED |
137 			 TTM_PL_FLAG_NO_EVICT
138 	}, {
139 		.fpfn = 0,
140 		.lpfn = 0,
141 		.mem_type = VMW_PL_GMR,
142 		.flags = TTM_PL_FLAG_CACHED |
143 			 TTM_PL_FLAG_NO_EVICT
144 	}
145 };
146 
147 struct ttm_placement vmw_vram_gmr_ne_placement = {
148 	.num_placement = 2,
149 	.placement = vram_gmr_ne_placement_flags,
150 	.num_busy_placement = 1,
151 	.busy_placement = &gmr_ne_placement_flags
152 };
153 
154 struct ttm_placement vmw_vram_sys_placement = {
155 	.num_placement = 1,
156 	.placement = &vram_placement_flags,
157 	.num_busy_placement = 1,
158 	.busy_placement = &sys_placement_flags
159 };
160 
161 struct ttm_placement vmw_vram_ne_placement = {
162 	.num_placement = 1,
163 	.placement = &vram_ne_placement_flags,
164 	.num_busy_placement = 1,
165 	.busy_placement = &vram_ne_placement_flags
166 };
167 
168 struct ttm_placement vmw_sys_placement = {
169 	.num_placement = 1,
170 	.placement = &sys_placement_flags,
171 	.num_busy_placement = 1,
172 	.busy_placement = &sys_placement_flags
173 };
174 
175 struct ttm_placement vmw_sys_ne_placement = {
176 	.num_placement = 1,
177 	.placement = &sys_ne_placement_flags,
178 	.num_busy_placement = 1,
179 	.busy_placement = &sys_ne_placement_flags
180 };
181 
182 static const struct ttm_place evictable_placement_flags[] = {
183 	{
184 		.fpfn = 0,
185 		.lpfn = 0,
186 		.mem_type = TTM_PL_SYSTEM,
187 		.flags = TTM_PL_FLAG_CACHED
188 	}, {
189 		.fpfn = 0,
190 		.lpfn = 0,
191 		.mem_type = TTM_PL_VRAM,
192 		.flags = TTM_PL_FLAG_CACHED
193 	}, {
194 		.fpfn = 0,
195 		.lpfn = 0,
196 		.mem_type = VMW_PL_GMR,
197 		.flags = TTM_PL_FLAG_CACHED
198 	}, {
199 		.fpfn = 0,
200 		.lpfn = 0,
201 		.mem_type = VMW_PL_MOB,
202 		.flags = TTM_PL_FLAG_CACHED
203 	}
204 };
205 
206 static const struct ttm_place nonfixed_placement_flags[] = {
207 	{
208 		.fpfn = 0,
209 		.lpfn = 0,
210 		.mem_type = TTM_PL_SYSTEM,
211 		.flags = TTM_PL_FLAG_CACHED
212 	}, {
213 		.fpfn = 0,
214 		.lpfn = 0,
215 		.mem_type = VMW_PL_GMR,
216 		.flags = TTM_PL_FLAG_CACHED
217 	}, {
218 		.fpfn = 0,
219 		.lpfn = 0,
220 		.mem_type = VMW_PL_MOB,
221 		.flags = TTM_PL_FLAG_CACHED
222 	}
223 };
224 
225 struct ttm_placement vmw_evictable_placement = {
226 	.num_placement = 4,
227 	.placement = evictable_placement_flags,
228 	.num_busy_placement = 1,
229 	.busy_placement = &sys_placement_flags
230 };
231 
232 struct ttm_placement vmw_srf_placement = {
233 	.num_placement = 1,
234 	.num_busy_placement = 2,
235 	.placement = &gmr_placement_flags,
236 	.busy_placement = gmr_vram_placement_flags
237 };
238 
239 struct ttm_placement vmw_mob_placement = {
240 	.num_placement = 1,
241 	.num_busy_placement = 1,
242 	.placement = &mob_placement_flags,
243 	.busy_placement = &mob_placement_flags
244 };
245 
246 struct ttm_placement vmw_mob_ne_placement = {
247 	.num_placement = 1,
248 	.num_busy_placement = 1,
249 	.placement = &mob_ne_placement_flags,
250 	.busy_placement = &mob_ne_placement_flags
251 };
252 
253 struct ttm_placement vmw_nonfixed_placement = {
254 	.num_placement = 3,
255 	.placement = nonfixed_placement_flags,
256 	.num_busy_placement = 1,
257 	.busy_placement = &sys_placement_flags
258 };
259 
260 struct vmw_ttm_tt {
261 	struct ttm_dma_tt dma_ttm;
262 	struct vmw_private *dev_priv;
263 	int gmr_id;
264 	struct vmw_mob *mob;
265 	int mem_type;
266 	struct sg_table sgt;
267 	struct vmw_sg_table vsgt;
268 	uint64_t sg_alloc_size;
269 	bool mapped;
270 	bool bound;
271 };
272 
273 const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt);
274 
275 /**
276  * Helper functions to advance a struct vmw_piter iterator.
277  *
278  * @viter: Pointer to the iterator.
279  *
280  * These functions return false if past the end of the list,
281  * true otherwise. Functions are selected depending on the current
282  * DMA mapping mode.
283  */
284 static bool __vmw_piter_non_sg_next(struct vmw_piter *viter)
285 {
286 	return ++(viter->i) < viter->num_pages;
287 }
288 
289 static bool __vmw_piter_sg_next(struct vmw_piter *viter)
290 {
291 	bool ret = __vmw_piter_non_sg_next(viter);
292 
293 	return __sg_page_iter_dma_next(&viter->iter) && ret;
294 }
295 
296 
297 /**
298  * Helper functions to return a pointer to the current page.
299  *
300  * @viter: Pointer to the iterator
301  *
302  * These functions return a pointer to the page currently
303  * pointed to by @viter. Functions are selected depending on the
304  * current mapping mode.
305  */
306 static struct page *__vmw_piter_non_sg_page(struct vmw_piter *viter)
307 {
308 	return viter->pages[viter->i];
309 }
310 
311 /**
312  * Helper functions to return the DMA address of the current page.
313  *
314  * @viter: Pointer to the iterator
315  *
316  * These functions return the DMA address of the page currently
317  * pointed to by @viter. Functions are selected depending on the
318  * current mapping mode.
319  */
320 static dma_addr_t __vmw_piter_phys_addr(struct vmw_piter *viter)
321 {
322 	return page_to_phys(viter->pages[viter->i]);
323 }
324 
325 static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter)
326 {
327 	return viter->addrs[viter->i];
328 }
329 
330 static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter)
331 {
332 	return sg_page_iter_dma_address(&viter->iter);
333 }
334 
335 
336 /**
337  * vmw_piter_start - Initialize a struct vmw_piter.
338  *
339  * @viter: Pointer to the iterator to initialize
340  * @vsgt: Pointer to a struct vmw_sg_table to initialize from
341  *
342  * Note that we're following the convention of __sg_page_iter_start, so that
343  * the iterator doesn't point to a valid page after initialization; it has
344  * to be advanced one step first.
345  */
346 void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt,
347 		     unsigned long p_offset)
348 {
349 	viter->i = p_offset - 1;
350 	viter->num_pages = vsgt->num_pages;
351 	viter->page = &__vmw_piter_non_sg_page;
352 	viter->pages = vsgt->pages;
353 	switch (vsgt->mode) {
354 	case vmw_dma_phys:
355 		viter->next = &__vmw_piter_non_sg_next;
356 		viter->dma_address = &__vmw_piter_phys_addr;
357 		break;
358 	case vmw_dma_alloc_coherent:
359 		viter->next = &__vmw_piter_non_sg_next;
360 		viter->dma_address = &__vmw_piter_dma_addr;
361 		viter->addrs = vsgt->addrs;
362 		break;
363 	case vmw_dma_map_populate:
364 	case vmw_dma_map_bind:
365 		viter->next = &__vmw_piter_sg_next;
366 		viter->dma_address = &__vmw_piter_sg_addr;
367 		__sg_page_iter_start(&viter->iter.base, vsgt->sgt->sgl,
368 				     vsgt->sgt->orig_nents, p_offset);
369 		break;
370 	default:
371 		BUG();
372 	}
373 }
374 
375 /**
376  * vmw_ttm_unmap_from_dma - unmap  device addresses previsouly mapped for
377  * TTM pages
378  *
379  * @vmw_tt: Pointer to a struct vmw_ttm_backend
380  *
381  * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma.
382  */
383 static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt)
384 {
385 	struct device *dev = vmw_tt->dev_priv->dev->dev;
386 
387 	dma_unmap_sg(dev, vmw_tt->sgt.sgl, vmw_tt->sgt.nents,
388 		DMA_BIDIRECTIONAL);
389 	vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents;
390 }
391 
392 /**
393  * vmw_ttm_map_for_dma - map TTM pages to get device addresses
394  *
395  * @vmw_tt: Pointer to a struct vmw_ttm_backend
396  *
397  * This function is used to get device addresses from the kernel DMA layer.
398  * However, it's violating the DMA API in that when this operation has been
399  * performed, it's illegal for the CPU to write to the pages without first
400  * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is
401  * therefore only legal to call this function if we know that the function
402  * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most
403  * a CPU write buffer flush.
404  */
405 static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt)
406 {
407 	struct device *dev = vmw_tt->dev_priv->dev->dev;
408 	int ret;
409 
410 	ret = dma_map_sg(dev, vmw_tt->sgt.sgl, vmw_tt->sgt.orig_nents,
411 			 DMA_BIDIRECTIONAL);
412 	if (unlikely(ret == 0))
413 		return -ENOMEM;
414 
415 	vmw_tt->sgt.nents = ret;
416 
417 	return 0;
418 }
419 
420 /**
421  * vmw_ttm_map_dma - Make sure TTM pages are visible to the device
422  *
423  * @vmw_tt: Pointer to a struct vmw_ttm_tt
424  *
425  * Select the correct function for and make sure the TTM pages are
426  * visible to the device. Allocate storage for the device mappings.
427  * If a mapping has already been performed, indicated by the storage
428  * pointer being non NULL, the function returns success.
429  */
430 static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt)
431 {
432 	struct vmw_private *dev_priv = vmw_tt->dev_priv;
433 	struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
434 	struct vmw_sg_table *vsgt = &vmw_tt->vsgt;
435 	struct ttm_operation_ctx ctx = {
436 		.interruptible = true,
437 		.no_wait_gpu = false
438 	};
439 	struct vmw_piter iter;
440 	dma_addr_t old;
441 	int ret = 0;
442 	static size_t sgl_size;
443 	static size_t sgt_size;
444 
445 	if (vmw_tt->mapped)
446 		return 0;
447 
448 	vsgt->mode = dev_priv->map_mode;
449 	vsgt->pages = vmw_tt->dma_ttm.ttm.pages;
450 	vsgt->num_pages = vmw_tt->dma_ttm.ttm.num_pages;
451 	vsgt->addrs = vmw_tt->dma_ttm.dma_address;
452 	vsgt->sgt = &vmw_tt->sgt;
453 
454 	switch (dev_priv->map_mode) {
455 	case vmw_dma_map_bind:
456 	case vmw_dma_map_populate:
457 		if (unlikely(!sgl_size)) {
458 			sgl_size = ttm_round_pot(sizeof(struct scatterlist));
459 			sgt_size = ttm_round_pot(sizeof(struct sg_table));
460 		}
461 		vmw_tt->sg_alloc_size = sgt_size + sgl_size * vsgt->num_pages;
462 		ret = ttm_mem_global_alloc(glob, vmw_tt->sg_alloc_size, &ctx);
463 		if (unlikely(ret != 0))
464 			return ret;
465 
466 		ret = __sg_alloc_table_from_pages
467 			(&vmw_tt->sgt, vsgt->pages, vsgt->num_pages, 0,
468 			 (unsigned long) vsgt->num_pages << PAGE_SHIFT,
469 			 dma_get_max_seg_size(dev_priv->dev->dev),
470 			 GFP_KERNEL);
471 		if (unlikely(ret != 0))
472 			goto out_sg_alloc_fail;
473 
474 		if (vsgt->num_pages > vmw_tt->sgt.nents) {
475 			uint64_t over_alloc =
476 				sgl_size * (vsgt->num_pages -
477 					    vmw_tt->sgt.nents);
478 
479 			ttm_mem_global_free(glob, over_alloc);
480 			vmw_tt->sg_alloc_size -= over_alloc;
481 		}
482 
483 		ret = vmw_ttm_map_for_dma(vmw_tt);
484 		if (unlikely(ret != 0))
485 			goto out_map_fail;
486 
487 		break;
488 	default:
489 		break;
490 	}
491 
492 	old = ~((dma_addr_t) 0);
493 	vmw_tt->vsgt.num_regions = 0;
494 	for (vmw_piter_start(&iter, vsgt, 0); vmw_piter_next(&iter);) {
495 		dma_addr_t cur = vmw_piter_dma_addr(&iter);
496 
497 		if (cur != old + PAGE_SIZE)
498 			vmw_tt->vsgt.num_regions++;
499 		old = cur;
500 	}
501 
502 	vmw_tt->mapped = true;
503 	return 0;
504 
505 out_map_fail:
506 	sg_free_table(vmw_tt->vsgt.sgt);
507 	vmw_tt->vsgt.sgt = NULL;
508 out_sg_alloc_fail:
509 	ttm_mem_global_free(glob, vmw_tt->sg_alloc_size);
510 	return ret;
511 }
512 
513 /**
514  * vmw_ttm_unmap_dma - Tear down any TTM page device mappings
515  *
516  * @vmw_tt: Pointer to a struct vmw_ttm_tt
517  *
518  * Tear down any previously set up device DMA mappings and free
519  * any storage space allocated for them. If there are no mappings set up,
520  * this function is a NOP.
521  */
522 static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt)
523 {
524 	struct vmw_private *dev_priv = vmw_tt->dev_priv;
525 
526 	if (!vmw_tt->vsgt.sgt)
527 		return;
528 
529 	switch (dev_priv->map_mode) {
530 	case vmw_dma_map_bind:
531 	case vmw_dma_map_populate:
532 		vmw_ttm_unmap_from_dma(vmw_tt);
533 		sg_free_table(vmw_tt->vsgt.sgt);
534 		vmw_tt->vsgt.sgt = NULL;
535 		ttm_mem_global_free(vmw_mem_glob(dev_priv),
536 				    vmw_tt->sg_alloc_size);
537 		break;
538 	default:
539 		break;
540 	}
541 	vmw_tt->mapped = false;
542 }
543 
544 /**
545  * vmw_bo_sg_table - Return a struct vmw_sg_table object for a
546  * TTM buffer object
547  *
548  * @bo: Pointer to a struct ttm_buffer_object
549  *
550  * Returns a pointer to a struct vmw_sg_table object. The object should
551  * not be freed after use.
552  * Note that for the device addresses to be valid, the buffer object must
553  * either be reserved or pinned.
554  */
555 const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo)
556 {
557 	struct vmw_ttm_tt *vmw_tt =
558 		container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
559 
560 	return &vmw_tt->vsgt;
561 }
562 
563 
564 static int vmw_ttm_bind(struct ttm_bo_device *bdev,
565 			struct ttm_tt *ttm, struct ttm_resource *bo_mem)
566 {
567 	struct vmw_ttm_tt *vmw_be =
568 		container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
569 	int ret = 0;
570 
571 	if (!bo_mem)
572 		return -EINVAL;
573 
574 	if (vmw_be->bound)
575 		return 0;
576 
577 	ret = vmw_ttm_map_dma(vmw_be);
578 	if (unlikely(ret != 0))
579 		return ret;
580 
581 	vmw_be->gmr_id = bo_mem->start;
582 	vmw_be->mem_type = bo_mem->mem_type;
583 
584 	switch (bo_mem->mem_type) {
585 	case VMW_PL_GMR:
586 		ret = vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt,
587 				    ttm->num_pages, vmw_be->gmr_id);
588 		break;
589 	case VMW_PL_MOB:
590 		if (unlikely(vmw_be->mob == NULL)) {
591 			vmw_be->mob =
592 				vmw_mob_create(ttm->num_pages);
593 			if (unlikely(vmw_be->mob == NULL))
594 				return -ENOMEM;
595 		}
596 
597 		ret = vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob,
598 				    &vmw_be->vsgt, ttm->num_pages,
599 				    vmw_be->gmr_id);
600 		break;
601 	default:
602 		BUG();
603 	}
604 	vmw_be->bound = true;
605 	return ret;
606 }
607 
608 static void vmw_ttm_unbind(struct ttm_bo_device *bdev,
609 			   struct ttm_tt *ttm)
610 {
611 	struct vmw_ttm_tt *vmw_be =
612 		container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
613 
614 	if (!vmw_be->bound)
615 		return;
616 
617 	switch (vmw_be->mem_type) {
618 	case VMW_PL_GMR:
619 		vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id);
620 		break;
621 	case VMW_PL_MOB:
622 		vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob);
623 		break;
624 	default:
625 		BUG();
626 	}
627 
628 	if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind)
629 		vmw_ttm_unmap_dma(vmw_be);
630 	vmw_be->bound = false;
631 }
632 
633 
634 static void vmw_ttm_destroy(struct ttm_bo_device *bdev, struct ttm_tt *ttm)
635 {
636 	struct vmw_ttm_tt *vmw_be =
637 		container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
638 
639 	vmw_ttm_unbind(bdev, ttm);
640 	ttm_tt_destroy_common(bdev, ttm);
641 	vmw_ttm_unmap_dma(vmw_be);
642 	if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
643 		ttm_dma_tt_fini(&vmw_be->dma_ttm);
644 	else
645 		ttm_tt_fini(ttm);
646 
647 	if (vmw_be->mob)
648 		vmw_mob_destroy(vmw_be->mob);
649 
650 	kfree(vmw_be);
651 }
652 
653 
654 static int vmw_ttm_populate(struct ttm_bo_device *bdev,
655 			    struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
656 {
657 	struct vmw_ttm_tt *vmw_tt =
658 		container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
659 	struct vmw_private *dev_priv = vmw_tt->dev_priv;
660 	struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
661 	int ret;
662 
663 	if (ttm_tt_is_populated(ttm))
664 		return 0;
665 
666 	if (dev_priv->map_mode == vmw_dma_alloc_coherent) {
667 		size_t size =
668 			ttm_round_pot(ttm->num_pages * sizeof(dma_addr_t));
669 		ret = ttm_mem_global_alloc(glob, size, ctx);
670 		if (unlikely(ret != 0))
671 			return ret;
672 
673 		ret = ttm_dma_populate(&vmw_tt->dma_ttm, dev_priv->dev->dev,
674 					ctx);
675 		if (unlikely(ret != 0))
676 			ttm_mem_global_free(glob, size);
677 	} else
678 		ret = ttm_pool_populate(ttm, ctx);
679 
680 	return ret;
681 }
682 
683 static void vmw_ttm_unpopulate(struct ttm_bo_device *bdev,
684 			       struct ttm_tt *ttm)
685 {
686 	struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt,
687 						 dma_ttm.ttm);
688 	struct vmw_private *dev_priv = vmw_tt->dev_priv;
689 	struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
690 
691 
692 	if (vmw_tt->mob) {
693 		vmw_mob_destroy(vmw_tt->mob);
694 		vmw_tt->mob = NULL;
695 	}
696 
697 	vmw_ttm_unmap_dma(vmw_tt);
698 	if (dev_priv->map_mode == vmw_dma_alloc_coherent) {
699 		size_t size =
700 			ttm_round_pot(ttm->num_pages * sizeof(dma_addr_t));
701 
702 		ttm_dma_unpopulate(&vmw_tt->dma_ttm, dev_priv->dev->dev);
703 		ttm_mem_global_free(glob, size);
704 	} else
705 		ttm_pool_unpopulate(ttm);
706 }
707 
708 static struct ttm_tt *vmw_ttm_tt_create(struct ttm_buffer_object *bo,
709 					uint32_t page_flags)
710 {
711 	struct vmw_ttm_tt *vmw_be;
712 	int ret;
713 
714 	vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL);
715 	if (!vmw_be)
716 		return NULL;
717 
718 	vmw_be->dev_priv = container_of(bo->bdev, struct vmw_private, bdev);
719 	vmw_be->mob = NULL;
720 
721 	if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
722 		ret = ttm_dma_tt_init(&vmw_be->dma_ttm, bo, page_flags);
723 	else
724 		ret = ttm_tt_init(&vmw_be->dma_ttm.ttm, bo, page_flags);
725 	if (unlikely(ret != 0))
726 		goto out_no_init;
727 
728 	return &vmw_be->dma_ttm.ttm;
729 out_no_init:
730 	kfree(vmw_be);
731 	return NULL;
732 }
733 
734 static void vmw_evict_flags(struct ttm_buffer_object *bo,
735 		     struct ttm_placement *placement)
736 {
737 	*placement = vmw_sys_placement;
738 }
739 
740 static int vmw_verify_access(struct ttm_buffer_object *bo, struct file *filp)
741 {
742 	struct ttm_object_file *tfile =
743 		vmw_fpriv((struct drm_file *)filp->private_data)->tfile;
744 
745 	return vmw_user_bo_verify_access(bo, tfile);
746 }
747 
748 static int vmw_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_resource *mem)
749 {
750 	struct vmw_private *dev_priv = container_of(bdev, struct vmw_private, bdev);
751 
752 	switch (mem->mem_type) {
753 	case TTM_PL_SYSTEM:
754 	case VMW_PL_GMR:
755 	case VMW_PL_MOB:
756 		return 0;
757 	case TTM_PL_VRAM:
758 		mem->bus.offset = (mem->start << PAGE_SHIFT) +
759 			dev_priv->vram_start;
760 		mem->bus.is_iomem = true;
761 		break;
762 	default:
763 		return -EINVAL;
764 	}
765 	return 0;
766 }
767 
768 /**
769  * vmw_move_notify - TTM move_notify_callback
770  *
771  * @bo: The TTM buffer object about to move.
772  * @mem: The struct ttm_resource indicating to what memory
773  *       region the move is taking place.
774  *
775  * Calls move_notify for all subsystems needing it.
776  * (currently only resources).
777  */
778 static void vmw_move_notify(struct ttm_buffer_object *bo,
779 			    bool evict,
780 			    struct ttm_resource *mem)
781 {
782 	vmw_bo_move_notify(bo, mem);
783 	vmw_query_move_notify(bo, mem);
784 }
785 
786 
787 /**
788  * vmw_swap_notify - TTM move_notify_callback
789  *
790  * @bo: The TTM buffer object about to be swapped out.
791  */
792 static void vmw_swap_notify(struct ttm_buffer_object *bo)
793 {
794 	vmw_bo_swap_notify(bo);
795 	(void) ttm_bo_wait(bo, false, false);
796 }
797 
798 
799 struct ttm_bo_driver vmw_bo_driver = {
800 	.ttm_tt_create = &vmw_ttm_tt_create,
801 	.ttm_tt_populate = &vmw_ttm_populate,
802 	.ttm_tt_unpopulate = &vmw_ttm_unpopulate,
803 	.ttm_tt_bind = &vmw_ttm_bind,
804 	.ttm_tt_unbind = &vmw_ttm_unbind,
805 	.ttm_tt_destroy = &vmw_ttm_destroy,
806 	.eviction_valuable = ttm_bo_eviction_valuable,
807 	.evict_flags = vmw_evict_flags,
808 	.move = NULL,
809 	.verify_access = vmw_verify_access,
810 	.move_notify = vmw_move_notify,
811 	.swap_notify = vmw_swap_notify,
812 	.io_mem_reserve = &vmw_ttm_io_mem_reserve,
813 };
814 
815 int vmw_bo_create_and_populate(struct vmw_private *dev_priv,
816 			       unsigned long bo_size,
817 			       struct ttm_buffer_object **bo_p)
818 {
819 	struct ttm_operation_ctx ctx = {
820 		.interruptible = false,
821 		.no_wait_gpu = false
822 	};
823 	struct ttm_buffer_object *bo;
824 	int ret;
825 
826 	ret = ttm_bo_create(&dev_priv->bdev, bo_size,
827 			    ttm_bo_type_device,
828 			    &vmw_sys_ne_placement,
829 			    0, false, &bo);
830 
831 	if (unlikely(ret != 0))
832 		return ret;
833 
834 	ret = ttm_bo_reserve(bo, false, true, NULL);
835 	BUG_ON(ret != 0);
836 	ret = vmw_ttm_populate(bo->bdev, bo->ttm, &ctx);
837 	if (likely(ret == 0)) {
838 		struct vmw_ttm_tt *vmw_tt =
839 			container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
840 		ret = vmw_ttm_map_dma(vmw_tt);
841 	}
842 
843 	ttm_bo_unreserve(bo);
844 
845 	if (likely(ret == 0))
846 		*bo_p = bo;
847 	return ret;
848 }
849