1 /************************************************************************** 2 * 3 * Copyright © 2009-2015 VMware, Inc., Palo Alto, CA., USA 4 * All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 28 #include "vmwgfx_drv.h" 29 #include <drm/vmwgfx_drm.h> 30 #include <drm/ttm/ttm_object.h> 31 #include <drm/ttm/ttm_placement.h> 32 #include <drm/drmP.h> 33 #include "vmwgfx_resource_priv.h" 34 #include "vmwgfx_binding.h" 35 36 #define VMW_RES_EVICT_ERR_COUNT 10 37 38 struct vmw_user_dma_buffer { 39 struct ttm_prime_object prime; 40 struct vmw_dma_buffer dma; 41 }; 42 43 struct vmw_bo_user_rep { 44 uint32_t handle; 45 uint64_t map_handle; 46 }; 47 48 static inline struct vmw_dma_buffer * 49 vmw_dma_buffer(struct ttm_buffer_object *bo) 50 { 51 return container_of(bo, struct vmw_dma_buffer, base); 52 } 53 54 static inline struct vmw_user_dma_buffer * 55 vmw_user_dma_buffer(struct ttm_buffer_object *bo) 56 { 57 struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo); 58 return container_of(vmw_bo, struct vmw_user_dma_buffer, dma); 59 } 60 61 struct vmw_resource *vmw_resource_reference(struct vmw_resource *res) 62 { 63 kref_get(&res->kref); 64 return res; 65 } 66 67 struct vmw_resource * 68 vmw_resource_reference_unless_doomed(struct vmw_resource *res) 69 { 70 return kref_get_unless_zero(&res->kref) ? res : NULL; 71 } 72 73 /** 74 * vmw_resource_release_id - release a resource id to the id manager. 75 * 76 * @res: Pointer to the resource. 77 * 78 * Release the resource id to the resource id manager and set it to -1 79 */ 80 void vmw_resource_release_id(struct vmw_resource *res) 81 { 82 struct vmw_private *dev_priv = res->dev_priv; 83 struct idr *idr = &dev_priv->res_idr[res->func->res_type]; 84 85 write_lock(&dev_priv->resource_lock); 86 if (res->id != -1) 87 idr_remove(idr, res->id); 88 res->id = -1; 89 write_unlock(&dev_priv->resource_lock); 90 } 91 92 static void vmw_resource_release(struct kref *kref) 93 { 94 struct vmw_resource *res = 95 container_of(kref, struct vmw_resource, kref); 96 struct vmw_private *dev_priv = res->dev_priv; 97 int id; 98 struct idr *idr = &dev_priv->res_idr[res->func->res_type]; 99 100 write_lock(&dev_priv->resource_lock); 101 res->avail = false; 102 list_del_init(&res->lru_head); 103 write_unlock(&dev_priv->resource_lock); 104 if (res->backup) { 105 struct ttm_buffer_object *bo = &res->backup->base; 106 107 ttm_bo_reserve(bo, false, false, NULL); 108 if (!list_empty(&res->mob_head) && 109 res->func->unbind != NULL) { 110 struct ttm_validate_buffer val_buf; 111 112 val_buf.bo = bo; 113 val_buf.shared = false; 114 res->func->unbind(res, false, &val_buf); 115 } 116 res->backup_dirty = false; 117 list_del_init(&res->mob_head); 118 ttm_bo_unreserve(bo); 119 vmw_dmabuf_unreference(&res->backup); 120 } 121 122 if (likely(res->hw_destroy != NULL)) { 123 mutex_lock(&dev_priv->binding_mutex); 124 vmw_binding_res_list_kill(&res->binding_head); 125 mutex_unlock(&dev_priv->binding_mutex); 126 res->hw_destroy(res); 127 } 128 129 id = res->id; 130 if (res->res_free != NULL) 131 res->res_free(res); 132 else 133 kfree(res); 134 135 write_lock(&dev_priv->resource_lock); 136 if (id != -1) 137 idr_remove(idr, id); 138 write_unlock(&dev_priv->resource_lock); 139 } 140 141 void vmw_resource_unreference(struct vmw_resource **p_res) 142 { 143 struct vmw_resource *res = *p_res; 144 145 *p_res = NULL; 146 kref_put(&res->kref, vmw_resource_release); 147 } 148 149 150 /** 151 * vmw_resource_alloc_id - release a resource id to the id manager. 152 * 153 * @res: Pointer to the resource. 154 * 155 * Allocate the lowest free resource from the resource manager, and set 156 * @res->id to that id. Returns 0 on success and -ENOMEM on failure. 157 */ 158 int vmw_resource_alloc_id(struct vmw_resource *res) 159 { 160 struct vmw_private *dev_priv = res->dev_priv; 161 int ret; 162 struct idr *idr = &dev_priv->res_idr[res->func->res_type]; 163 164 BUG_ON(res->id != -1); 165 166 idr_preload(GFP_KERNEL); 167 write_lock(&dev_priv->resource_lock); 168 169 ret = idr_alloc(idr, res, 1, 0, GFP_NOWAIT); 170 if (ret >= 0) 171 res->id = ret; 172 173 write_unlock(&dev_priv->resource_lock); 174 idr_preload_end(); 175 return ret < 0 ? ret : 0; 176 } 177 178 /** 179 * vmw_resource_init - initialize a struct vmw_resource 180 * 181 * @dev_priv: Pointer to a device private struct. 182 * @res: The struct vmw_resource to initialize. 183 * @obj_type: Resource object type. 184 * @delay_id: Boolean whether to defer device id allocation until 185 * the first validation. 186 * @res_free: Resource destructor. 187 * @func: Resource function table. 188 */ 189 int vmw_resource_init(struct vmw_private *dev_priv, struct vmw_resource *res, 190 bool delay_id, 191 void (*res_free) (struct vmw_resource *res), 192 const struct vmw_res_func *func) 193 { 194 kref_init(&res->kref); 195 res->hw_destroy = NULL; 196 res->res_free = res_free; 197 res->avail = false; 198 res->dev_priv = dev_priv; 199 res->func = func; 200 INIT_LIST_HEAD(&res->lru_head); 201 INIT_LIST_HEAD(&res->mob_head); 202 INIT_LIST_HEAD(&res->binding_head); 203 res->id = -1; 204 res->backup = NULL; 205 res->backup_offset = 0; 206 res->backup_dirty = false; 207 res->res_dirty = false; 208 if (delay_id) 209 return 0; 210 else 211 return vmw_resource_alloc_id(res); 212 } 213 214 /** 215 * vmw_resource_activate 216 * 217 * @res: Pointer to the newly created resource 218 * @hw_destroy: Destroy function. NULL if none. 219 * 220 * Activate a resource after the hardware has been made aware of it. 221 * Set tye destroy function to @destroy. Typically this frees the 222 * resource and destroys the hardware resources associated with it. 223 * Activate basically means that the function vmw_resource_lookup will 224 * find it. 225 */ 226 void vmw_resource_activate(struct vmw_resource *res, 227 void (*hw_destroy) (struct vmw_resource *)) 228 { 229 struct vmw_private *dev_priv = res->dev_priv; 230 231 write_lock(&dev_priv->resource_lock); 232 res->avail = true; 233 res->hw_destroy = hw_destroy; 234 write_unlock(&dev_priv->resource_lock); 235 } 236 237 /** 238 * vmw_user_resource_lookup_handle - lookup a struct resource from a 239 * TTM user-space handle and perform basic type checks 240 * 241 * @dev_priv: Pointer to a device private struct 242 * @tfile: Pointer to a struct ttm_object_file identifying the caller 243 * @handle: The TTM user-space handle 244 * @converter: Pointer to an object describing the resource type 245 * @p_res: On successful return the location pointed to will contain 246 * a pointer to a refcounted struct vmw_resource. 247 * 248 * If the handle can't be found or is associated with an incorrect resource 249 * type, -EINVAL will be returned. 250 */ 251 int vmw_user_resource_lookup_handle(struct vmw_private *dev_priv, 252 struct ttm_object_file *tfile, 253 uint32_t handle, 254 const struct vmw_user_resource_conv 255 *converter, 256 struct vmw_resource **p_res) 257 { 258 struct ttm_base_object *base; 259 struct vmw_resource *res; 260 int ret = -EINVAL; 261 262 base = ttm_base_object_lookup(tfile, handle); 263 if (unlikely(base == NULL)) 264 return -EINVAL; 265 266 if (unlikely(ttm_base_object_type(base) != converter->object_type)) 267 goto out_bad_resource; 268 269 res = converter->base_obj_to_res(base); 270 271 read_lock(&dev_priv->resource_lock); 272 if (!res->avail || res->res_free != converter->res_free) { 273 read_unlock(&dev_priv->resource_lock); 274 goto out_bad_resource; 275 } 276 277 kref_get(&res->kref); 278 read_unlock(&dev_priv->resource_lock); 279 280 *p_res = res; 281 ret = 0; 282 283 out_bad_resource: 284 ttm_base_object_unref(&base); 285 286 return ret; 287 } 288 289 /** 290 * Helper function that looks either a surface or dmabuf. 291 * 292 * The pointer this pointed at by out_surf and out_buf needs to be null. 293 */ 294 int vmw_user_lookup_handle(struct vmw_private *dev_priv, 295 struct ttm_object_file *tfile, 296 uint32_t handle, 297 struct vmw_surface **out_surf, 298 struct vmw_dma_buffer **out_buf) 299 { 300 struct vmw_resource *res; 301 int ret; 302 303 BUG_ON(*out_surf || *out_buf); 304 305 ret = vmw_user_resource_lookup_handle(dev_priv, tfile, handle, 306 user_surface_converter, 307 &res); 308 if (!ret) { 309 *out_surf = vmw_res_to_srf(res); 310 return 0; 311 } 312 313 *out_surf = NULL; 314 ret = vmw_user_dmabuf_lookup(tfile, handle, out_buf, NULL); 315 return ret; 316 } 317 318 /** 319 * Buffer management. 320 */ 321 322 /** 323 * vmw_dmabuf_acc_size - Calculate the pinned memory usage of buffers 324 * 325 * @dev_priv: Pointer to a struct vmw_private identifying the device. 326 * @size: The requested buffer size. 327 * @user: Whether this is an ordinary dma buffer or a user dma buffer. 328 */ 329 static size_t vmw_dmabuf_acc_size(struct vmw_private *dev_priv, size_t size, 330 bool user) 331 { 332 static size_t struct_size, user_struct_size; 333 size_t num_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 334 size_t page_array_size = ttm_round_pot(num_pages * sizeof(void *)); 335 336 if (unlikely(struct_size == 0)) { 337 size_t backend_size = ttm_round_pot(vmw_tt_size); 338 339 struct_size = backend_size + 340 ttm_round_pot(sizeof(struct vmw_dma_buffer)); 341 user_struct_size = backend_size + 342 ttm_round_pot(sizeof(struct vmw_user_dma_buffer)); 343 } 344 345 if (dev_priv->map_mode == vmw_dma_alloc_coherent) 346 page_array_size += 347 ttm_round_pot(num_pages * sizeof(dma_addr_t)); 348 349 return ((user) ? user_struct_size : struct_size) + 350 page_array_size; 351 } 352 353 void vmw_dmabuf_bo_free(struct ttm_buffer_object *bo) 354 { 355 struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo); 356 357 kfree(vmw_bo); 358 } 359 360 static void vmw_user_dmabuf_destroy(struct ttm_buffer_object *bo) 361 { 362 struct vmw_user_dma_buffer *vmw_user_bo = vmw_user_dma_buffer(bo); 363 364 ttm_prime_object_kfree(vmw_user_bo, prime); 365 } 366 367 int vmw_dmabuf_init(struct vmw_private *dev_priv, 368 struct vmw_dma_buffer *vmw_bo, 369 size_t size, struct ttm_placement *placement, 370 bool interruptible, 371 void (*bo_free) (struct ttm_buffer_object *bo)) 372 { 373 struct ttm_bo_device *bdev = &dev_priv->bdev; 374 size_t acc_size; 375 int ret; 376 bool user = (bo_free == &vmw_user_dmabuf_destroy); 377 378 BUG_ON(!bo_free && (!user && (bo_free != vmw_dmabuf_bo_free))); 379 380 acc_size = vmw_dmabuf_acc_size(dev_priv, size, user); 381 memset(vmw_bo, 0, sizeof(*vmw_bo)); 382 383 INIT_LIST_HEAD(&vmw_bo->res_list); 384 385 ret = ttm_bo_init(bdev, &vmw_bo->base, size, 386 ttm_bo_type_device, placement, 387 0, interruptible, 388 NULL, acc_size, NULL, NULL, bo_free); 389 return ret; 390 } 391 392 static void vmw_user_dmabuf_release(struct ttm_base_object **p_base) 393 { 394 struct vmw_user_dma_buffer *vmw_user_bo; 395 struct ttm_base_object *base = *p_base; 396 struct ttm_buffer_object *bo; 397 398 *p_base = NULL; 399 400 if (unlikely(base == NULL)) 401 return; 402 403 vmw_user_bo = container_of(base, struct vmw_user_dma_buffer, 404 prime.base); 405 bo = &vmw_user_bo->dma.base; 406 ttm_bo_unref(&bo); 407 } 408 409 static void vmw_user_dmabuf_ref_obj_release(struct ttm_base_object *base, 410 enum ttm_ref_type ref_type) 411 { 412 struct vmw_user_dma_buffer *user_bo; 413 user_bo = container_of(base, struct vmw_user_dma_buffer, prime.base); 414 415 switch (ref_type) { 416 case TTM_REF_SYNCCPU_WRITE: 417 ttm_bo_synccpu_write_release(&user_bo->dma.base); 418 break; 419 default: 420 BUG(); 421 } 422 } 423 424 /** 425 * vmw_user_dmabuf_alloc - Allocate a user dma buffer 426 * 427 * @dev_priv: Pointer to a struct device private. 428 * @tfile: Pointer to a struct ttm_object_file on which to register the user 429 * object. 430 * @size: Size of the dma buffer. 431 * @shareable: Boolean whether the buffer is shareable with other open files. 432 * @handle: Pointer to where the handle value should be assigned. 433 * @p_dma_buf: Pointer to where the refcounted struct vmw_dma_buffer pointer 434 * should be assigned. 435 */ 436 int vmw_user_dmabuf_alloc(struct vmw_private *dev_priv, 437 struct ttm_object_file *tfile, 438 uint32_t size, 439 bool shareable, 440 uint32_t *handle, 441 struct vmw_dma_buffer **p_dma_buf, 442 struct ttm_base_object **p_base) 443 { 444 struct vmw_user_dma_buffer *user_bo; 445 struct ttm_buffer_object *tmp; 446 int ret; 447 448 user_bo = kzalloc(sizeof(*user_bo), GFP_KERNEL); 449 if (unlikely(!user_bo)) { 450 DRM_ERROR("Failed to allocate a buffer.\n"); 451 return -ENOMEM; 452 } 453 454 ret = vmw_dmabuf_init(dev_priv, &user_bo->dma, size, 455 (dev_priv->has_mob) ? 456 &vmw_sys_placement : 457 &vmw_vram_sys_placement, true, 458 &vmw_user_dmabuf_destroy); 459 if (unlikely(ret != 0)) 460 return ret; 461 462 tmp = ttm_bo_reference(&user_bo->dma.base); 463 ret = ttm_prime_object_init(tfile, 464 size, 465 &user_bo->prime, 466 shareable, 467 ttm_buffer_type, 468 &vmw_user_dmabuf_release, 469 &vmw_user_dmabuf_ref_obj_release); 470 if (unlikely(ret != 0)) { 471 ttm_bo_unref(&tmp); 472 goto out_no_base_object; 473 } 474 475 *p_dma_buf = &user_bo->dma; 476 if (p_base) { 477 *p_base = &user_bo->prime.base; 478 kref_get(&(*p_base)->refcount); 479 } 480 *handle = user_bo->prime.base.hash.key; 481 482 out_no_base_object: 483 return ret; 484 } 485 486 /** 487 * vmw_user_dmabuf_verify_access - verify access permissions on this 488 * buffer object. 489 * 490 * @bo: Pointer to the buffer object being accessed 491 * @tfile: Identifying the caller. 492 */ 493 int vmw_user_dmabuf_verify_access(struct ttm_buffer_object *bo, 494 struct ttm_object_file *tfile) 495 { 496 struct vmw_user_dma_buffer *vmw_user_bo; 497 498 if (unlikely(bo->destroy != vmw_user_dmabuf_destroy)) 499 return -EPERM; 500 501 vmw_user_bo = vmw_user_dma_buffer(bo); 502 503 /* Check that the caller has opened the object. */ 504 if (likely(ttm_ref_object_exists(tfile, &vmw_user_bo->prime.base))) 505 return 0; 506 507 DRM_ERROR("Could not grant buffer access.\n"); 508 return -EPERM; 509 } 510 511 /** 512 * vmw_user_dmabuf_synccpu_grab - Grab a struct vmw_user_dma_buffer for cpu 513 * access, idling previous GPU operations on the buffer and optionally 514 * blocking it for further command submissions. 515 * 516 * @user_bo: Pointer to the buffer object being grabbed for CPU access 517 * @tfile: Identifying the caller. 518 * @flags: Flags indicating how the grab should be performed. 519 * 520 * A blocking grab will be automatically released when @tfile is closed. 521 */ 522 static int vmw_user_dmabuf_synccpu_grab(struct vmw_user_dma_buffer *user_bo, 523 struct ttm_object_file *tfile, 524 uint32_t flags) 525 { 526 struct ttm_buffer_object *bo = &user_bo->dma.base; 527 bool existed; 528 int ret; 529 530 if (flags & drm_vmw_synccpu_allow_cs) { 531 bool nonblock = !!(flags & drm_vmw_synccpu_dontblock); 532 long lret; 533 534 lret = reservation_object_wait_timeout_rcu(bo->resv, true, true, 535 nonblock ? 0 : MAX_SCHEDULE_TIMEOUT); 536 if (!lret) 537 return -EBUSY; 538 else if (lret < 0) 539 return lret; 540 return 0; 541 } 542 543 ret = ttm_bo_synccpu_write_grab 544 (bo, !!(flags & drm_vmw_synccpu_dontblock)); 545 if (unlikely(ret != 0)) 546 return ret; 547 548 ret = ttm_ref_object_add(tfile, &user_bo->prime.base, 549 TTM_REF_SYNCCPU_WRITE, &existed, false); 550 if (ret != 0 || existed) 551 ttm_bo_synccpu_write_release(&user_bo->dma.base); 552 553 return ret; 554 } 555 556 /** 557 * vmw_user_dmabuf_synccpu_release - Release a previous grab for CPU access, 558 * and unblock command submission on the buffer if blocked. 559 * 560 * @handle: Handle identifying the buffer object. 561 * @tfile: Identifying the caller. 562 * @flags: Flags indicating the type of release. 563 */ 564 static int vmw_user_dmabuf_synccpu_release(uint32_t handle, 565 struct ttm_object_file *tfile, 566 uint32_t flags) 567 { 568 if (!(flags & drm_vmw_synccpu_allow_cs)) 569 return ttm_ref_object_base_unref(tfile, handle, 570 TTM_REF_SYNCCPU_WRITE); 571 572 return 0; 573 } 574 575 /** 576 * vmw_user_dmabuf_synccpu_release - ioctl function implementing the synccpu 577 * functionality. 578 * 579 * @dev: Identifies the drm device. 580 * @data: Pointer to the ioctl argument. 581 * @file_priv: Identifies the caller. 582 * 583 * This function checks the ioctl arguments for validity and calls the 584 * relevant synccpu functions. 585 */ 586 int vmw_user_dmabuf_synccpu_ioctl(struct drm_device *dev, void *data, 587 struct drm_file *file_priv) 588 { 589 struct drm_vmw_synccpu_arg *arg = 590 (struct drm_vmw_synccpu_arg *) data; 591 struct vmw_dma_buffer *dma_buf; 592 struct vmw_user_dma_buffer *user_bo; 593 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; 594 struct ttm_base_object *buffer_base; 595 int ret; 596 597 if ((arg->flags & (drm_vmw_synccpu_read | drm_vmw_synccpu_write)) == 0 598 || (arg->flags & ~(drm_vmw_synccpu_read | drm_vmw_synccpu_write | 599 drm_vmw_synccpu_dontblock | 600 drm_vmw_synccpu_allow_cs)) != 0) { 601 DRM_ERROR("Illegal synccpu flags.\n"); 602 return -EINVAL; 603 } 604 605 switch (arg->op) { 606 case drm_vmw_synccpu_grab: 607 ret = vmw_user_dmabuf_lookup(tfile, arg->handle, &dma_buf, 608 &buffer_base); 609 if (unlikely(ret != 0)) 610 return ret; 611 612 user_bo = container_of(dma_buf, struct vmw_user_dma_buffer, 613 dma); 614 ret = vmw_user_dmabuf_synccpu_grab(user_bo, tfile, arg->flags); 615 vmw_dmabuf_unreference(&dma_buf); 616 ttm_base_object_unref(&buffer_base); 617 if (unlikely(ret != 0 && ret != -ERESTARTSYS && 618 ret != -EBUSY)) { 619 DRM_ERROR("Failed synccpu grab on handle 0x%08x.\n", 620 (unsigned int) arg->handle); 621 return ret; 622 } 623 break; 624 case drm_vmw_synccpu_release: 625 ret = vmw_user_dmabuf_synccpu_release(arg->handle, tfile, 626 arg->flags); 627 if (unlikely(ret != 0)) { 628 DRM_ERROR("Failed synccpu release on handle 0x%08x.\n", 629 (unsigned int) arg->handle); 630 return ret; 631 } 632 break; 633 default: 634 DRM_ERROR("Invalid synccpu operation.\n"); 635 return -EINVAL; 636 } 637 638 return 0; 639 } 640 641 int vmw_dmabuf_alloc_ioctl(struct drm_device *dev, void *data, 642 struct drm_file *file_priv) 643 { 644 struct vmw_private *dev_priv = vmw_priv(dev); 645 union drm_vmw_alloc_dmabuf_arg *arg = 646 (union drm_vmw_alloc_dmabuf_arg *)data; 647 struct drm_vmw_alloc_dmabuf_req *req = &arg->req; 648 struct drm_vmw_dmabuf_rep *rep = &arg->rep; 649 struct vmw_dma_buffer *dma_buf; 650 uint32_t handle; 651 int ret; 652 653 ret = ttm_read_lock(&dev_priv->reservation_sem, true); 654 if (unlikely(ret != 0)) 655 return ret; 656 657 ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile, 658 req->size, false, &handle, &dma_buf, 659 NULL); 660 if (unlikely(ret != 0)) 661 goto out_no_dmabuf; 662 663 rep->handle = handle; 664 rep->map_handle = drm_vma_node_offset_addr(&dma_buf->base.vma_node); 665 rep->cur_gmr_id = handle; 666 rep->cur_gmr_offset = 0; 667 668 vmw_dmabuf_unreference(&dma_buf); 669 670 out_no_dmabuf: 671 ttm_read_unlock(&dev_priv->reservation_sem); 672 673 return ret; 674 } 675 676 int vmw_dmabuf_unref_ioctl(struct drm_device *dev, void *data, 677 struct drm_file *file_priv) 678 { 679 struct drm_vmw_unref_dmabuf_arg *arg = 680 (struct drm_vmw_unref_dmabuf_arg *)data; 681 682 return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile, 683 arg->handle, 684 TTM_REF_USAGE); 685 } 686 687 int vmw_user_dmabuf_lookup(struct ttm_object_file *tfile, 688 uint32_t handle, struct vmw_dma_buffer **out, 689 struct ttm_base_object **p_base) 690 { 691 struct vmw_user_dma_buffer *vmw_user_bo; 692 struct ttm_base_object *base; 693 694 base = ttm_base_object_lookup(tfile, handle); 695 if (unlikely(base == NULL)) { 696 pr_err("Invalid buffer object handle 0x%08lx\n", 697 (unsigned long)handle); 698 return -ESRCH; 699 } 700 701 if (unlikely(ttm_base_object_type(base) != ttm_buffer_type)) { 702 ttm_base_object_unref(&base); 703 pr_err("Invalid buffer object handle 0x%08lx\n", 704 (unsigned long)handle); 705 return -EINVAL; 706 } 707 708 vmw_user_bo = container_of(base, struct vmw_user_dma_buffer, 709 prime.base); 710 (void)ttm_bo_reference(&vmw_user_bo->dma.base); 711 if (p_base) 712 *p_base = base; 713 else 714 ttm_base_object_unref(&base); 715 *out = &vmw_user_bo->dma; 716 717 return 0; 718 } 719 720 int vmw_user_dmabuf_reference(struct ttm_object_file *tfile, 721 struct vmw_dma_buffer *dma_buf, 722 uint32_t *handle) 723 { 724 struct vmw_user_dma_buffer *user_bo; 725 726 if (dma_buf->base.destroy != vmw_user_dmabuf_destroy) 727 return -EINVAL; 728 729 user_bo = container_of(dma_buf, struct vmw_user_dma_buffer, dma); 730 731 *handle = user_bo->prime.base.hash.key; 732 return ttm_ref_object_add(tfile, &user_bo->prime.base, 733 TTM_REF_USAGE, NULL, false); 734 } 735 736 /** 737 * vmw_dumb_create - Create a dumb kms buffer 738 * 739 * @file_priv: Pointer to a struct drm_file identifying the caller. 740 * @dev: Pointer to the drm device. 741 * @args: Pointer to a struct drm_mode_create_dumb structure 742 * 743 * This is a driver callback for the core drm create_dumb functionality. 744 * Note that this is very similar to the vmw_dmabuf_alloc ioctl, except 745 * that the arguments have a different format. 746 */ 747 int vmw_dumb_create(struct drm_file *file_priv, 748 struct drm_device *dev, 749 struct drm_mode_create_dumb *args) 750 { 751 struct vmw_private *dev_priv = vmw_priv(dev); 752 struct vmw_dma_buffer *dma_buf; 753 int ret; 754 755 args->pitch = args->width * ((args->bpp + 7) / 8); 756 args->size = args->pitch * args->height; 757 758 ret = ttm_read_lock(&dev_priv->reservation_sem, true); 759 if (unlikely(ret != 0)) 760 return ret; 761 762 ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile, 763 args->size, false, &args->handle, 764 &dma_buf, NULL); 765 if (unlikely(ret != 0)) 766 goto out_no_dmabuf; 767 768 vmw_dmabuf_unreference(&dma_buf); 769 out_no_dmabuf: 770 ttm_read_unlock(&dev_priv->reservation_sem); 771 return ret; 772 } 773 774 /** 775 * vmw_dumb_map_offset - Return the address space offset of a dumb buffer 776 * 777 * @file_priv: Pointer to a struct drm_file identifying the caller. 778 * @dev: Pointer to the drm device. 779 * @handle: Handle identifying the dumb buffer. 780 * @offset: The address space offset returned. 781 * 782 * This is a driver callback for the core drm dumb_map_offset functionality. 783 */ 784 int vmw_dumb_map_offset(struct drm_file *file_priv, 785 struct drm_device *dev, uint32_t handle, 786 uint64_t *offset) 787 { 788 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; 789 struct vmw_dma_buffer *out_buf; 790 int ret; 791 792 ret = vmw_user_dmabuf_lookup(tfile, handle, &out_buf, NULL); 793 if (ret != 0) 794 return -EINVAL; 795 796 *offset = drm_vma_node_offset_addr(&out_buf->base.vma_node); 797 vmw_dmabuf_unreference(&out_buf); 798 return 0; 799 } 800 801 /** 802 * vmw_dumb_destroy - Destroy a dumb boffer 803 * 804 * @file_priv: Pointer to a struct drm_file identifying the caller. 805 * @dev: Pointer to the drm device. 806 * @handle: Handle identifying the dumb buffer. 807 * 808 * This is a driver callback for the core drm dumb_destroy functionality. 809 */ 810 int vmw_dumb_destroy(struct drm_file *file_priv, 811 struct drm_device *dev, 812 uint32_t handle) 813 { 814 return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile, 815 handle, TTM_REF_USAGE); 816 } 817 818 /** 819 * vmw_resource_buf_alloc - Allocate a backup buffer for a resource. 820 * 821 * @res: The resource for which to allocate a backup buffer. 822 * @interruptible: Whether any sleeps during allocation should be 823 * performed while interruptible. 824 */ 825 static int vmw_resource_buf_alloc(struct vmw_resource *res, 826 bool interruptible) 827 { 828 unsigned long size = 829 (res->backup_size + PAGE_SIZE - 1) & PAGE_MASK; 830 struct vmw_dma_buffer *backup; 831 int ret; 832 833 if (likely(res->backup)) { 834 BUG_ON(res->backup->base.num_pages * PAGE_SIZE < size); 835 return 0; 836 } 837 838 backup = kzalloc(sizeof(*backup), GFP_KERNEL); 839 if (unlikely(!backup)) 840 return -ENOMEM; 841 842 ret = vmw_dmabuf_init(res->dev_priv, backup, res->backup_size, 843 res->func->backup_placement, 844 interruptible, 845 &vmw_dmabuf_bo_free); 846 if (unlikely(ret != 0)) 847 goto out_no_dmabuf; 848 849 res->backup = backup; 850 851 out_no_dmabuf: 852 return ret; 853 } 854 855 /** 856 * vmw_resource_do_validate - Make a resource up-to-date and visible 857 * to the device. 858 * 859 * @res: The resource to make visible to the device. 860 * @val_buf: Information about a buffer possibly 861 * containing backup data if a bind operation is needed. 862 * 863 * On hardware resource shortage, this function returns -EBUSY and 864 * should be retried once resources have been freed up. 865 */ 866 static int vmw_resource_do_validate(struct vmw_resource *res, 867 struct ttm_validate_buffer *val_buf) 868 { 869 int ret = 0; 870 const struct vmw_res_func *func = res->func; 871 872 if (unlikely(res->id == -1)) { 873 ret = func->create(res); 874 if (unlikely(ret != 0)) 875 return ret; 876 } 877 878 if (func->bind && 879 ((func->needs_backup && list_empty(&res->mob_head) && 880 val_buf->bo != NULL) || 881 (!func->needs_backup && val_buf->bo != NULL))) { 882 ret = func->bind(res, val_buf); 883 if (unlikely(ret != 0)) 884 goto out_bind_failed; 885 if (func->needs_backup) 886 list_add_tail(&res->mob_head, &res->backup->res_list); 887 } 888 889 /* 890 * Only do this on write operations, and move to 891 * vmw_resource_unreserve if it can be called after 892 * backup buffers have been unreserved. Otherwise 893 * sort out locking. 894 */ 895 res->res_dirty = true; 896 897 return 0; 898 899 out_bind_failed: 900 func->destroy(res); 901 902 return ret; 903 } 904 905 /** 906 * vmw_resource_unreserve - Unreserve a resource previously reserved for 907 * command submission. 908 * 909 * @res: Pointer to the struct vmw_resource to unreserve. 910 * @switch_backup: Backup buffer has been switched. 911 * @new_backup: Pointer to new backup buffer if command submission 912 * switched. May be NULL. 913 * @new_backup_offset: New backup offset if @switch_backup is true. 914 * 915 * Currently unreserving a resource means putting it back on the device's 916 * resource lru list, so that it can be evicted if necessary. 917 */ 918 void vmw_resource_unreserve(struct vmw_resource *res, 919 bool switch_backup, 920 struct vmw_dma_buffer *new_backup, 921 unsigned long new_backup_offset) 922 { 923 struct vmw_private *dev_priv = res->dev_priv; 924 925 if (!list_empty(&res->lru_head)) 926 return; 927 928 if (switch_backup && new_backup != res->backup) { 929 if (res->backup) { 930 lockdep_assert_held(&res->backup->base.resv->lock.base); 931 list_del_init(&res->mob_head); 932 vmw_dmabuf_unreference(&res->backup); 933 } 934 935 if (new_backup) { 936 res->backup = vmw_dmabuf_reference(new_backup); 937 lockdep_assert_held(&new_backup->base.resv->lock.base); 938 list_add_tail(&res->mob_head, &new_backup->res_list); 939 } else { 940 res->backup = NULL; 941 } 942 } 943 if (switch_backup) 944 res->backup_offset = new_backup_offset; 945 946 if (!res->func->may_evict || res->id == -1 || res->pin_count) 947 return; 948 949 write_lock(&dev_priv->resource_lock); 950 list_add_tail(&res->lru_head, 951 &res->dev_priv->res_lru[res->func->res_type]); 952 write_unlock(&dev_priv->resource_lock); 953 } 954 955 /** 956 * vmw_resource_check_buffer - Check whether a backup buffer is needed 957 * for a resource and in that case, allocate 958 * one, reserve and validate it. 959 * 960 * @res: The resource for which to allocate a backup buffer. 961 * @interruptible: Whether any sleeps during allocation should be 962 * performed while interruptible. 963 * @val_buf: On successful return contains data about the 964 * reserved and validated backup buffer. 965 */ 966 static int 967 vmw_resource_check_buffer(struct vmw_resource *res, 968 bool interruptible, 969 struct ttm_validate_buffer *val_buf) 970 { 971 struct ttm_operation_ctx ctx = { true, false }; 972 struct list_head val_list; 973 bool backup_dirty = false; 974 int ret; 975 976 if (unlikely(res->backup == NULL)) { 977 ret = vmw_resource_buf_alloc(res, interruptible); 978 if (unlikely(ret != 0)) 979 return ret; 980 } 981 982 INIT_LIST_HEAD(&val_list); 983 val_buf->bo = ttm_bo_reference(&res->backup->base); 984 val_buf->shared = false; 985 list_add_tail(&val_buf->head, &val_list); 986 ret = ttm_eu_reserve_buffers(NULL, &val_list, interruptible, NULL); 987 if (unlikely(ret != 0)) 988 goto out_no_reserve; 989 990 if (res->func->needs_backup && list_empty(&res->mob_head)) 991 return 0; 992 993 backup_dirty = res->backup_dirty; 994 ret = ttm_bo_validate(&res->backup->base, 995 res->func->backup_placement, 996 &ctx); 997 998 if (unlikely(ret != 0)) 999 goto out_no_validate; 1000 1001 return 0; 1002 1003 out_no_validate: 1004 ttm_eu_backoff_reservation(NULL, &val_list); 1005 out_no_reserve: 1006 ttm_bo_unref(&val_buf->bo); 1007 if (backup_dirty) 1008 vmw_dmabuf_unreference(&res->backup); 1009 1010 return ret; 1011 } 1012 1013 /** 1014 * vmw_resource_reserve - Reserve a resource for command submission 1015 * 1016 * @res: The resource to reserve. 1017 * 1018 * This function takes the resource off the LRU list and make sure 1019 * a backup buffer is present for guest-backed resources. However, 1020 * the buffer may not be bound to the resource at this point. 1021 * 1022 */ 1023 int vmw_resource_reserve(struct vmw_resource *res, bool interruptible, 1024 bool no_backup) 1025 { 1026 struct vmw_private *dev_priv = res->dev_priv; 1027 int ret; 1028 1029 write_lock(&dev_priv->resource_lock); 1030 list_del_init(&res->lru_head); 1031 write_unlock(&dev_priv->resource_lock); 1032 1033 if (res->func->needs_backup && res->backup == NULL && 1034 !no_backup) { 1035 ret = vmw_resource_buf_alloc(res, interruptible); 1036 if (unlikely(ret != 0)) { 1037 DRM_ERROR("Failed to allocate a backup buffer " 1038 "of size %lu. bytes\n", 1039 (unsigned long) res->backup_size); 1040 return ret; 1041 } 1042 } 1043 1044 return 0; 1045 } 1046 1047 /** 1048 * vmw_resource_backoff_reservation - Unreserve and unreference a 1049 * backup buffer 1050 *. 1051 * @val_buf: Backup buffer information. 1052 */ 1053 static void 1054 vmw_resource_backoff_reservation(struct ttm_validate_buffer *val_buf) 1055 { 1056 struct list_head val_list; 1057 1058 if (likely(val_buf->bo == NULL)) 1059 return; 1060 1061 INIT_LIST_HEAD(&val_list); 1062 list_add_tail(&val_buf->head, &val_list); 1063 ttm_eu_backoff_reservation(NULL, &val_list); 1064 ttm_bo_unref(&val_buf->bo); 1065 } 1066 1067 /** 1068 * vmw_resource_do_evict - Evict a resource, and transfer its data 1069 * to a backup buffer. 1070 * 1071 * @res: The resource to evict. 1072 * @interruptible: Whether to wait interruptible. 1073 */ 1074 static int vmw_resource_do_evict(struct vmw_resource *res, bool interruptible) 1075 { 1076 struct ttm_validate_buffer val_buf; 1077 const struct vmw_res_func *func = res->func; 1078 int ret; 1079 1080 BUG_ON(!func->may_evict); 1081 1082 val_buf.bo = NULL; 1083 val_buf.shared = false; 1084 ret = vmw_resource_check_buffer(res, interruptible, &val_buf); 1085 if (unlikely(ret != 0)) 1086 return ret; 1087 1088 if (unlikely(func->unbind != NULL && 1089 (!func->needs_backup || !list_empty(&res->mob_head)))) { 1090 ret = func->unbind(res, res->res_dirty, &val_buf); 1091 if (unlikely(ret != 0)) 1092 goto out_no_unbind; 1093 list_del_init(&res->mob_head); 1094 } 1095 ret = func->destroy(res); 1096 res->backup_dirty = true; 1097 res->res_dirty = false; 1098 out_no_unbind: 1099 vmw_resource_backoff_reservation(&val_buf); 1100 1101 return ret; 1102 } 1103 1104 1105 /** 1106 * vmw_resource_validate - Make a resource up-to-date and visible 1107 * to the device. 1108 * 1109 * @res: The resource to make visible to the device. 1110 * 1111 * On succesful return, any backup DMA buffer pointed to by @res->backup will 1112 * be reserved and validated. 1113 * On hardware resource shortage, this function will repeatedly evict 1114 * resources of the same type until the validation succeeds. 1115 */ 1116 int vmw_resource_validate(struct vmw_resource *res) 1117 { 1118 int ret; 1119 struct vmw_resource *evict_res; 1120 struct vmw_private *dev_priv = res->dev_priv; 1121 struct list_head *lru_list = &dev_priv->res_lru[res->func->res_type]; 1122 struct ttm_validate_buffer val_buf; 1123 unsigned err_count = 0; 1124 1125 if (!res->func->create) 1126 return 0; 1127 1128 val_buf.bo = NULL; 1129 val_buf.shared = false; 1130 if (res->backup) 1131 val_buf.bo = &res->backup->base; 1132 do { 1133 ret = vmw_resource_do_validate(res, &val_buf); 1134 if (likely(ret != -EBUSY)) 1135 break; 1136 1137 write_lock(&dev_priv->resource_lock); 1138 if (list_empty(lru_list) || !res->func->may_evict) { 1139 DRM_ERROR("Out of device device resources " 1140 "for %s.\n", res->func->type_name); 1141 ret = -EBUSY; 1142 write_unlock(&dev_priv->resource_lock); 1143 break; 1144 } 1145 1146 evict_res = vmw_resource_reference 1147 (list_first_entry(lru_list, struct vmw_resource, 1148 lru_head)); 1149 list_del_init(&evict_res->lru_head); 1150 1151 write_unlock(&dev_priv->resource_lock); 1152 1153 ret = vmw_resource_do_evict(evict_res, true); 1154 if (unlikely(ret != 0)) { 1155 write_lock(&dev_priv->resource_lock); 1156 list_add_tail(&evict_res->lru_head, lru_list); 1157 write_unlock(&dev_priv->resource_lock); 1158 if (ret == -ERESTARTSYS || 1159 ++err_count > VMW_RES_EVICT_ERR_COUNT) { 1160 vmw_resource_unreference(&evict_res); 1161 goto out_no_validate; 1162 } 1163 } 1164 1165 vmw_resource_unreference(&evict_res); 1166 } while (1); 1167 1168 if (unlikely(ret != 0)) 1169 goto out_no_validate; 1170 else if (!res->func->needs_backup && res->backup) { 1171 list_del_init(&res->mob_head); 1172 vmw_dmabuf_unreference(&res->backup); 1173 } 1174 1175 return 0; 1176 1177 out_no_validate: 1178 return ret; 1179 } 1180 1181 /** 1182 * vmw_fence_single_bo - Utility function to fence a single TTM buffer 1183 * object without unreserving it. 1184 * 1185 * @bo: Pointer to the struct ttm_buffer_object to fence. 1186 * @fence: Pointer to the fence. If NULL, this function will 1187 * insert a fence into the command stream.. 1188 * 1189 * Contrary to the ttm_eu version of this function, it takes only 1190 * a single buffer object instead of a list, and it also doesn't 1191 * unreserve the buffer object, which needs to be done separately. 1192 */ 1193 void vmw_fence_single_bo(struct ttm_buffer_object *bo, 1194 struct vmw_fence_obj *fence) 1195 { 1196 struct ttm_bo_device *bdev = bo->bdev; 1197 1198 struct vmw_private *dev_priv = 1199 container_of(bdev, struct vmw_private, bdev); 1200 1201 if (fence == NULL) { 1202 vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL); 1203 reservation_object_add_excl_fence(bo->resv, &fence->base); 1204 dma_fence_put(&fence->base); 1205 } else 1206 reservation_object_add_excl_fence(bo->resv, &fence->base); 1207 } 1208 1209 /** 1210 * vmw_resource_move_notify - TTM move_notify_callback 1211 * 1212 * @bo: The TTM buffer object about to move. 1213 * @mem: The struct ttm_mem_reg indicating to what memory 1214 * region the move is taking place. 1215 * 1216 * Evicts the Guest Backed hardware resource if the backup 1217 * buffer is being moved out of MOB memory. 1218 * Note that this function should not race with the resource 1219 * validation code as long as it accesses only members of struct 1220 * resource that remain static while bo::res is !NULL and 1221 * while we have @bo reserved. struct resource::backup is *not* a 1222 * static member. The resource validation code will take care 1223 * to set @bo::res to NULL, while having @bo reserved when the 1224 * buffer is no longer bound to the resource, so @bo:res can be 1225 * used to determine whether there is a need to unbind and whether 1226 * it is safe to unbind. 1227 */ 1228 void vmw_resource_move_notify(struct ttm_buffer_object *bo, 1229 struct ttm_mem_reg *mem) 1230 { 1231 struct vmw_dma_buffer *dma_buf; 1232 1233 if (mem == NULL) 1234 return; 1235 1236 if (bo->destroy != vmw_dmabuf_bo_free && 1237 bo->destroy != vmw_user_dmabuf_destroy) 1238 return; 1239 1240 dma_buf = container_of(bo, struct vmw_dma_buffer, base); 1241 1242 if (mem->mem_type != VMW_PL_MOB) { 1243 struct vmw_resource *res, *n; 1244 struct ttm_validate_buffer val_buf; 1245 1246 val_buf.bo = bo; 1247 val_buf.shared = false; 1248 1249 list_for_each_entry_safe(res, n, &dma_buf->res_list, mob_head) { 1250 1251 if (unlikely(res->func->unbind == NULL)) 1252 continue; 1253 1254 (void) res->func->unbind(res, true, &val_buf); 1255 res->backup_dirty = true; 1256 res->res_dirty = false; 1257 list_del_init(&res->mob_head); 1258 } 1259 1260 (void) ttm_bo_wait(bo, false, false); 1261 } 1262 } 1263 1264 1265 1266 /** 1267 * vmw_query_readback_all - Read back cached query states 1268 * 1269 * @dx_query_mob: Buffer containing the DX query MOB 1270 * 1271 * Read back cached states from the device if they exist. This function 1272 * assumings binding_mutex is held. 1273 */ 1274 int vmw_query_readback_all(struct vmw_dma_buffer *dx_query_mob) 1275 { 1276 struct vmw_resource *dx_query_ctx; 1277 struct vmw_private *dev_priv; 1278 struct { 1279 SVGA3dCmdHeader header; 1280 SVGA3dCmdDXReadbackAllQuery body; 1281 } *cmd; 1282 1283 1284 /* No query bound, so do nothing */ 1285 if (!dx_query_mob || !dx_query_mob->dx_query_ctx) 1286 return 0; 1287 1288 dx_query_ctx = dx_query_mob->dx_query_ctx; 1289 dev_priv = dx_query_ctx->dev_priv; 1290 1291 cmd = vmw_fifo_reserve_dx(dev_priv, sizeof(*cmd), dx_query_ctx->id); 1292 if (unlikely(cmd == NULL)) { 1293 DRM_ERROR("Failed reserving FIFO space for " 1294 "query MOB read back.\n"); 1295 return -ENOMEM; 1296 } 1297 1298 cmd->header.id = SVGA_3D_CMD_DX_READBACK_ALL_QUERY; 1299 cmd->header.size = sizeof(cmd->body); 1300 cmd->body.cid = dx_query_ctx->id; 1301 1302 vmw_fifo_commit(dev_priv, sizeof(*cmd)); 1303 1304 /* Triggers a rebind the next time affected context is bound */ 1305 dx_query_mob->dx_query_ctx = NULL; 1306 1307 return 0; 1308 } 1309 1310 1311 1312 /** 1313 * vmw_query_move_notify - Read back cached query states 1314 * 1315 * @bo: The TTM buffer object about to move. 1316 * @mem: The memory region @bo is moving to. 1317 * 1318 * Called before the query MOB is swapped out to read back cached query 1319 * states from the device. 1320 */ 1321 void vmw_query_move_notify(struct ttm_buffer_object *bo, 1322 struct ttm_mem_reg *mem) 1323 { 1324 struct vmw_dma_buffer *dx_query_mob; 1325 struct ttm_bo_device *bdev = bo->bdev; 1326 struct vmw_private *dev_priv; 1327 1328 1329 dev_priv = container_of(bdev, struct vmw_private, bdev); 1330 1331 mutex_lock(&dev_priv->binding_mutex); 1332 1333 dx_query_mob = container_of(bo, struct vmw_dma_buffer, base); 1334 if (mem == NULL || !dx_query_mob || !dx_query_mob->dx_query_ctx) { 1335 mutex_unlock(&dev_priv->binding_mutex); 1336 return; 1337 } 1338 1339 /* If BO is being moved from MOB to system memory */ 1340 if (mem->mem_type == TTM_PL_SYSTEM && bo->mem.mem_type == VMW_PL_MOB) { 1341 struct vmw_fence_obj *fence; 1342 1343 (void) vmw_query_readback_all(dx_query_mob); 1344 mutex_unlock(&dev_priv->binding_mutex); 1345 1346 /* Create a fence and attach the BO to it */ 1347 (void) vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL); 1348 vmw_fence_single_bo(bo, fence); 1349 1350 if (fence != NULL) 1351 vmw_fence_obj_unreference(&fence); 1352 1353 (void) ttm_bo_wait(bo, false, false); 1354 } else 1355 mutex_unlock(&dev_priv->binding_mutex); 1356 1357 } 1358 1359 /** 1360 * vmw_resource_needs_backup - Return whether a resource needs a backup buffer. 1361 * 1362 * @res: The resource being queried. 1363 */ 1364 bool vmw_resource_needs_backup(const struct vmw_resource *res) 1365 { 1366 return res->func->needs_backup; 1367 } 1368 1369 /** 1370 * vmw_resource_evict_type - Evict all resources of a specific type 1371 * 1372 * @dev_priv: Pointer to a device private struct 1373 * @type: The resource type to evict 1374 * 1375 * To avoid thrashing starvation or as part of the hibernation sequence, 1376 * try to evict all evictable resources of a specific type. 1377 */ 1378 static void vmw_resource_evict_type(struct vmw_private *dev_priv, 1379 enum vmw_res_type type) 1380 { 1381 struct list_head *lru_list = &dev_priv->res_lru[type]; 1382 struct vmw_resource *evict_res; 1383 unsigned err_count = 0; 1384 int ret; 1385 1386 do { 1387 write_lock(&dev_priv->resource_lock); 1388 1389 if (list_empty(lru_list)) 1390 goto out_unlock; 1391 1392 evict_res = vmw_resource_reference( 1393 list_first_entry(lru_list, struct vmw_resource, 1394 lru_head)); 1395 list_del_init(&evict_res->lru_head); 1396 write_unlock(&dev_priv->resource_lock); 1397 1398 ret = vmw_resource_do_evict(evict_res, false); 1399 if (unlikely(ret != 0)) { 1400 write_lock(&dev_priv->resource_lock); 1401 list_add_tail(&evict_res->lru_head, lru_list); 1402 write_unlock(&dev_priv->resource_lock); 1403 if (++err_count > VMW_RES_EVICT_ERR_COUNT) { 1404 vmw_resource_unreference(&evict_res); 1405 return; 1406 } 1407 } 1408 1409 vmw_resource_unreference(&evict_res); 1410 } while (1); 1411 1412 out_unlock: 1413 write_unlock(&dev_priv->resource_lock); 1414 } 1415 1416 /** 1417 * vmw_resource_evict_all - Evict all evictable resources 1418 * 1419 * @dev_priv: Pointer to a device private struct 1420 * 1421 * To avoid thrashing starvation or as part of the hibernation sequence, 1422 * evict all evictable resources. In particular this means that all 1423 * guest-backed resources that are registered with the device are 1424 * evicted and the OTable becomes clean. 1425 */ 1426 void vmw_resource_evict_all(struct vmw_private *dev_priv) 1427 { 1428 enum vmw_res_type type; 1429 1430 mutex_lock(&dev_priv->cmdbuf_mutex); 1431 1432 for (type = 0; type < vmw_res_max; ++type) 1433 vmw_resource_evict_type(dev_priv, type); 1434 1435 mutex_unlock(&dev_priv->cmdbuf_mutex); 1436 } 1437 1438 /** 1439 * vmw_resource_pin - Add a pin reference on a resource 1440 * 1441 * @res: The resource to add a pin reference on 1442 * 1443 * This function adds a pin reference, and if needed validates the resource. 1444 * Having a pin reference means that the resource can never be evicted, and 1445 * its id will never change as long as there is a pin reference. 1446 * This function returns 0 on success and a negative error code on failure. 1447 */ 1448 int vmw_resource_pin(struct vmw_resource *res, bool interruptible) 1449 { 1450 struct ttm_operation_ctx ctx = { interruptible, false }; 1451 struct vmw_private *dev_priv = res->dev_priv; 1452 int ret; 1453 1454 ttm_write_lock(&dev_priv->reservation_sem, interruptible); 1455 mutex_lock(&dev_priv->cmdbuf_mutex); 1456 ret = vmw_resource_reserve(res, interruptible, false); 1457 if (ret) 1458 goto out_no_reserve; 1459 1460 if (res->pin_count == 0) { 1461 struct vmw_dma_buffer *vbo = NULL; 1462 1463 if (res->backup) { 1464 vbo = res->backup; 1465 1466 ttm_bo_reserve(&vbo->base, interruptible, false, NULL); 1467 if (!vbo->pin_count) { 1468 ret = ttm_bo_validate 1469 (&vbo->base, 1470 res->func->backup_placement, 1471 &ctx); 1472 if (ret) { 1473 ttm_bo_unreserve(&vbo->base); 1474 goto out_no_validate; 1475 } 1476 } 1477 1478 /* Do we really need to pin the MOB as well? */ 1479 vmw_bo_pin_reserved(vbo, true); 1480 } 1481 ret = vmw_resource_validate(res); 1482 if (vbo) 1483 ttm_bo_unreserve(&vbo->base); 1484 if (ret) 1485 goto out_no_validate; 1486 } 1487 res->pin_count++; 1488 1489 out_no_validate: 1490 vmw_resource_unreserve(res, false, NULL, 0UL); 1491 out_no_reserve: 1492 mutex_unlock(&dev_priv->cmdbuf_mutex); 1493 ttm_write_unlock(&dev_priv->reservation_sem); 1494 1495 return ret; 1496 } 1497 1498 /** 1499 * vmw_resource_unpin - Remove a pin reference from a resource 1500 * 1501 * @res: The resource to remove a pin reference from 1502 * 1503 * Having a pin reference means that the resource can never be evicted, and 1504 * its id will never change as long as there is a pin reference. 1505 */ 1506 void vmw_resource_unpin(struct vmw_resource *res) 1507 { 1508 struct vmw_private *dev_priv = res->dev_priv; 1509 int ret; 1510 1511 (void) ttm_read_lock(&dev_priv->reservation_sem, false); 1512 mutex_lock(&dev_priv->cmdbuf_mutex); 1513 1514 ret = vmw_resource_reserve(res, false, true); 1515 WARN_ON(ret); 1516 1517 WARN_ON(res->pin_count == 0); 1518 if (--res->pin_count == 0 && res->backup) { 1519 struct vmw_dma_buffer *vbo = res->backup; 1520 1521 (void) ttm_bo_reserve(&vbo->base, false, false, NULL); 1522 vmw_bo_pin_reserved(vbo, false); 1523 ttm_bo_unreserve(&vbo->base); 1524 } 1525 1526 vmw_resource_unreserve(res, false, NULL, 0UL); 1527 1528 mutex_unlock(&dev_priv->cmdbuf_mutex); 1529 ttm_read_unlock(&dev_priv->reservation_sem); 1530 } 1531 1532 /** 1533 * vmw_res_type - Return the resource type 1534 * 1535 * @res: Pointer to the resource 1536 */ 1537 enum vmw_res_type vmw_res_type(const struct vmw_resource *res) 1538 { 1539 return res->func->res_type; 1540 } 1541