1 /************************************************************************** 2 * 3 * Copyright © 2009-2015 VMware, Inc., Palo Alto, CA., USA 4 * All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 28 #include "vmwgfx_drv.h" 29 #include <drm/vmwgfx_drm.h> 30 #include <drm/ttm/ttm_object.h> 31 #include <drm/ttm/ttm_placement.h> 32 #include <drm/drmP.h> 33 #include "vmwgfx_resource_priv.h" 34 #include "vmwgfx_binding.h" 35 36 #define VMW_RES_EVICT_ERR_COUNT 10 37 38 struct vmw_user_dma_buffer { 39 struct ttm_prime_object prime; 40 struct vmw_dma_buffer dma; 41 }; 42 43 struct vmw_bo_user_rep { 44 uint32_t handle; 45 uint64_t map_handle; 46 }; 47 48 static inline struct vmw_dma_buffer * 49 vmw_dma_buffer(struct ttm_buffer_object *bo) 50 { 51 return container_of(bo, struct vmw_dma_buffer, base); 52 } 53 54 static inline struct vmw_user_dma_buffer * 55 vmw_user_dma_buffer(struct ttm_buffer_object *bo) 56 { 57 struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo); 58 return container_of(vmw_bo, struct vmw_user_dma_buffer, dma); 59 } 60 61 struct vmw_resource *vmw_resource_reference(struct vmw_resource *res) 62 { 63 kref_get(&res->kref); 64 return res; 65 } 66 67 struct vmw_resource * 68 vmw_resource_reference_unless_doomed(struct vmw_resource *res) 69 { 70 return kref_get_unless_zero(&res->kref) ? res : NULL; 71 } 72 73 /** 74 * vmw_resource_release_id - release a resource id to the id manager. 75 * 76 * @res: Pointer to the resource. 77 * 78 * Release the resource id to the resource id manager and set it to -1 79 */ 80 void vmw_resource_release_id(struct vmw_resource *res) 81 { 82 struct vmw_private *dev_priv = res->dev_priv; 83 struct idr *idr = &dev_priv->res_idr[res->func->res_type]; 84 85 write_lock(&dev_priv->resource_lock); 86 if (res->id != -1) 87 idr_remove(idr, res->id); 88 res->id = -1; 89 write_unlock(&dev_priv->resource_lock); 90 } 91 92 static void vmw_resource_release(struct kref *kref) 93 { 94 struct vmw_resource *res = 95 container_of(kref, struct vmw_resource, kref); 96 struct vmw_private *dev_priv = res->dev_priv; 97 int id; 98 struct idr *idr = &dev_priv->res_idr[res->func->res_type]; 99 100 write_lock(&dev_priv->resource_lock); 101 res->avail = false; 102 list_del_init(&res->lru_head); 103 write_unlock(&dev_priv->resource_lock); 104 if (res->backup) { 105 struct ttm_buffer_object *bo = &res->backup->base; 106 107 ttm_bo_reserve(bo, false, false, NULL); 108 if (!list_empty(&res->mob_head) && 109 res->func->unbind != NULL) { 110 struct ttm_validate_buffer val_buf; 111 112 val_buf.bo = bo; 113 val_buf.shared = false; 114 res->func->unbind(res, false, &val_buf); 115 } 116 res->backup_dirty = false; 117 list_del_init(&res->mob_head); 118 ttm_bo_unreserve(bo); 119 vmw_dmabuf_unreference(&res->backup); 120 } 121 122 if (likely(res->hw_destroy != NULL)) { 123 mutex_lock(&dev_priv->binding_mutex); 124 vmw_binding_res_list_kill(&res->binding_head); 125 mutex_unlock(&dev_priv->binding_mutex); 126 res->hw_destroy(res); 127 } 128 129 id = res->id; 130 if (res->res_free != NULL) 131 res->res_free(res); 132 else 133 kfree(res); 134 135 write_lock(&dev_priv->resource_lock); 136 if (id != -1) 137 idr_remove(idr, id); 138 write_unlock(&dev_priv->resource_lock); 139 } 140 141 void vmw_resource_unreference(struct vmw_resource **p_res) 142 { 143 struct vmw_resource *res = *p_res; 144 145 *p_res = NULL; 146 kref_put(&res->kref, vmw_resource_release); 147 } 148 149 150 /** 151 * vmw_resource_alloc_id - release a resource id to the id manager. 152 * 153 * @res: Pointer to the resource. 154 * 155 * Allocate the lowest free resource from the resource manager, and set 156 * @res->id to that id. Returns 0 on success and -ENOMEM on failure. 157 */ 158 int vmw_resource_alloc_id(struct vmw_resource *res) 159 { 160 struct vmw_private *dev_priv = res->dev_priv; 161 int ret; 162 struct idr *idr = &dev_priv->res_idr[res->func->res_type]; 163 164 BUG_ON(res->id != -1); 165 166 idr_preload(GFP_KERNEL); 167 write_lock(&dev_priv->resource_lock); 168 169 ret = idr_alloc(idr, res, 1, 0, GFP_NOWAIT); 170 if (ret >= 0) 171 res->id = ret; 172 173 write_unlock(&dev_priv->resource_lock); 174 idr_preload_end(); 175 return ret < 0 ? ret : 0; 176 } 177 178 /** 179 * vmw_resource_init - initialize a struct vmw_resource 180 * 181 * @dev_priv: Pointer to a device private struct. 182 * @res: The struct vmw_resource to initialize. 183 * @obj_type: Resource object type. 184 * @delay_id: Boolean whether to defer device id allocation until 185 * the first validation. 186 * @res_free: Resource destructor. 187 * @func: Resource function table. 188 */ 189 int vmw_resource_init(struct vmw_private *dev_priv, struct vmw_resource *res, 190 bool delay_id, 191 void (*res_free) (struct vmw_resource *res), 192 const struct vmw_res_func *func) 193 { 194 kref_init(&res->kref); 195 res->hw_destroy = NULL; 196 res->res_free = res_free; 197 res->avail = false; 198 res->dev_priv = dev_priv; 199 res->func = func; 200 INIT_LIST_HEAD(&res->lru_head); 201 INIT_LIST_HEAD(&res->mob_head); 202 INIT_LIST_HEAD(&res->binding_head); 203 res->id = -1; 204 res->backup = NULL; 205 res->backup_offset = 0; 206 res->backup_dirty = false; 207 res->res_dirty = false; 208 if (delay_id) 209 return 0; 210 else 211 return vmw_resource_alloc_id(res); 212 } 213 214 /** 215 * vmw_resource_activate 216 * 217 * @res: Pointer to the newly created resource 218 * @hw_destroy: Destroy function. NULL if none. 219 * 220 * Activate a resource after the hardware has been made aware of it. 221 * Set tye destroy function to @destroy. Typically this frees the 222 * resource and destroys the hardware resources associated with it. 223 * Activate basically means that the function vmw_resource_lookup will 224 * find it. 225 */ 226 void vmw_resource_activate(struct vmw_resource *res, 227 void (*hw_destroy) (struct vmw_resource *)) 228 { 229 struct vmw_private *dev_priv = res->dev_priv; 230 231 write_lock(&dev_priv->resource_lock); 232 res->avail = true; 233 res->hw_destroy = hw_destroy; 234 write_unlock(&dev_priv->resource_lock); 235 } 236 237 /** 238 * vmw_user_resource_lookup_handle - lookup a struct resource from a 239 * TTM user-space handle and perform basic type checks 240 * 241 * @dev_priv: Pointer to a device private struct 242 * @tfile: Pointer to a struct ttm_object_file identifying the caller 243 * @handle: The TTM user-space handle 244 * @converter: Pointer to an object describing the resource type 245 * @p_res: On successful return the location pointed to will contain 246 * a pointer to a refcounted struct vmw_resource. 247 * 248 * If the handle can't be found or is associated with an incorrect resource 249 * type, -EINVAL will be returned. 250 */ 251 int vmw_user_resource_lookup_handle(struct vmw_private *dev_priv, 252 struct ttm_object_file *tfile, 253 uint32_t handle, 254 const struct vmw_user_resource_conv 255 *converter, 256 struct vmw_resource **p_res) 257 { 258 struct ttm_base_object *base; 259 struct vmw_resource *res; 260 int ret = -EINVAL; 261 262 base = ttm_base_object_lookup(tfile, handle); 263 if (unlikely(base == NULL)) 264 return -EINVAL; 265 266 if (unlikely(ttm_base_object_type(base) != converter->object_type)) 267 goto out_bad_resource; 268 269 res = converter->base_obj_to_res(base); 270 271 read_lock(&dev_priv->resource_lock); 272 if (!res->avail || res->res_free != converter->res_free) { 273 read_unlock(&dev_priv->resource_lock); 274 goto out_bad_resource; 275 } 276 277 kref_get(&res->kref); 278 read_unlock(&dev_priv->resource_lock); 279 280 *p_res = res; 281 ret = 0; 282 283 out_bad_resource: 284 ttm_base_object_unref(&base); 285 286 return ret; 287 } 288 289 /** 290 * Helper function that looks either a surface or dmabuf. 291 * 292 * The pointer this pointed at by out_surf and out_buf needs to be null. 293 */ 294 int vmw_user_lookup_handle(struct vmw_private *dev_priv, 295 struct ttm_object_file *tfile, 296 uint32_t handle, 297 struct vmw_surface **out_surf, 298 struct vmw_dma_buffer **out_buf) 299 { 300 struct vmw_resource *res; 301 int ret; 302 303 BUG_ON(*out_surf || *out_buf); 304 305 ret = vmw_user_resource_lookup_handle(dev_priv, tfile, handle, 306 user_surface_converter, 307 &res); 308 if (!ret) { 309 *out_surf = vmw_res_to_srf(res); 310 return 0; 311 } 312 313 *out_surf = NULL; 314 ret = vmw_user_dmabuf_lookup(tfile, handle, out_buf, NULL); 315 return ret; 316 } 317 318 /** 319 * Buffer management. 320 */ 321 322 /** 323 * vmw_dmabuf_acc_size - Calculate the pinned memory usage of buffers 324 * 325 * @dev_priv: Pointer to a struct vmw_private identifying the device. 326 * @size: The requested buffer size. 327 * @user: Whether this is an ordinary dma buffer or a user dma buffer. 328 */ 329 static size_t vmw_dmabuf_acc_size(struct vmw_private *dev_priv, size_t size, 330 bool user) 331 { 332 static size_t struct_size, user_struct_size; 333 size_t num_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 334 size_t page_array_size = ttm_round_pot(num_pages * sizeof(void *)); 335 336 if (unlikely(struct_size == 0)) { 337 size_t backend_size = ttm_round_pot(vmw_tt_size); 338 339 struct_size = backend_size + 340 ttm_round_pot(sizeof(struct vmw_dma_buffer)); 341 user_struct_size = backend_size + 342 ttm_round_pot(sizeof(struct vmw_user_dma_buffer)); 343 } 344 345 if (dev_priv->map_mode == vmw_dma_alloc_coherent) 346 page_array_size += 347 ttm_round_pot(num_pages * sizeof(dma_addr_t)); 348 349 return ((user) ? user_struct_size : struct_size) + 350 page_array_size; 351 } 352 353 void vmw_dmabuf_bo_free(struct ttm_buffer_object *bo) 354 { 355 struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo); 356 357 vmw_dma_buffer_unmap(vmw_bo); 358 kfree(vmw_bo); 359 } 360 361 static void vmw_user_dmabuf_destroy(struct ttm_buffer_object *bo) 362 { 363 struct vmw_user_dma_buffer *vmw_user_bo = vmw_user_dma_buffer(bo); 364 365 vmw_dma_buffer_unmap(&vmw_user_bo->dma); 366 ttm_prime_object_kfree(vmw_user_bo, prime); 367 } 368 369 int vmw_dmabuf_init(struct vmw_private *dev_priv, 370 struct vmw_dma_buffer *vmw_bo, 371 size_t size, struct ttm_placement *placement, 372 bool interruptible, 373 void (*bo_free) (struct ttm_buffer_object *bo)) 374 { 375 struct ttm_bo_device *bdev = &dev_priv->bdev; 376 size_t acc_size; 377 int ret; 378 bool user = (bo_free == &vmw_user_dmabuf_destroy); 379 380 BUG_ON(!bo_free && (!user && (bo_free != vmw_dmabuf_bo_free))); 381 382 acc_size = vmw_dmabuf_acc_size(dev_priv, size, user); 383 memset(vmw_bo, 0, sizeof(*vmw_bo)); 384 385 INIT_LIST_HEAD(&vmw_bo->res_list); 386 387 ret = ttm_bo_init(bdev, &vmw_bo->base, size, 388 ttm_bo_type_device, placement, 389 0, interruptible, acc_size, 390 NULL, NULL, bo_free); 391 return ret; 392 } 393 394 static void vmw_user_dmabuf_release(struct ttm_base_object **p_base) 395 { 396 struct vmw_user_dma_buffer *vmw_user_bo; 397 struct ttm_base_object *base = *p_base; 398 struct ttm_buffer_object *bo; 399 400 *p_base = NULL; 401 402 if (unlikely(base == NULL)) 403 return; 404 405 vmw_user_bo = container_of(base, struct vmw_user_dma_buffer, 406 prime.base); 407 bo = &vmw_user_bo->dma.base; 408 ttm_bo_unref(&bo); 409 } 410 411 static void vmw_user_dmabuf_ref_obj_release(struct ttm_base_object *base, 412 enum ttm_ref_type ref_type) 413 { 414 struct vmw_user_dma_buffer *user_bo; 415 user_bo = container_of(base, struct vmw_user_dma_buffer, prime.base); 416 417 switch (ref_type) { 418 case TTM_REF_SYNCCPU_WRITE: 419 ttm_bo_synccpu_write_release(&user_bo->dma.base); 420 break; 421 default: 422 BUG(); 423 } 424 } 425 426 /** 427 * vmw_user_dmabuf_alloc - Allocate a user dma buffer 428 * 429 * @dev_priv: Pointer to a struct device private. 430 * @tfile: Pointer to a struct ttm_object_file on which to register the user 431 * object. 432 * @size: Size of the dma buffer. 433 * @shareable: Boolean whether the buffer is shareable with other open files. 434 * @handle: Pointer to where the handle value should be assigned. 435 * @p_dma_buf: Pointer to where the refcounted struct vmw_dma_buffer pointer 436 * should be assigned. 437 */ 438 int vmw_user_dmabuf_alloc(struct vmw_private *dev_priv, 439 struct ttm_object_file *tfile, 440 uint32_t size, 441 bool shareable, 442 uint32_t *handle, 443 struct vmw_dma_buffer **p_dma_buf, 444 struct ttm_base_object **p_base) 445 { 446 struct vmw_user_dma_buffer *user_bo; 447 struct ttm_buffer_object *tmp; 448 int ret; 449 450 user_bo = kzalloc(sizeof(*user_bo), GFP_KERNEL); 451 if (unlikely(!user_bo)) { 452 DRM_ERROR("Failed to allocate a buffer.\n"); 453 return -ENOMEM; 454 } 455 456 ret = vmw_dmabuf_init(dev_priv, &user_bo->dma, size, 457 (dev_priv->has_mob) ? 458 &vmw_sys_placement : 459 &vmw_vram_sys_placement, true, 460 &vmw_user_dmabuf_destroy); 461 if (unlikely(ret != 0)) 462 return ret; 463 464 tmp = ttm_bo_reference(&user_bo->dma.base); 465 ret = ttm_prime_object_init(tfile, 466 size, 467 &user_bo->prime, 468 shareable, 469 ttm_buffer_type, 470 &vmw_user_dmabuf_release, 471 &vmw_user_dmabuf_ref_obj_release); 472 if (unlikely(ret != 0)) { 473 ttm_bo_unref(&tmp); 474 goto out_no_base_object; 475 } 476 477 *p_dma_buf = &user_bo->dma; 478 if (p_base) { 479 *p_base = &user_bo->prime.base; 480 kref_get(&(*p_base)->refcount); 481 } 482 *handle = user_bo->prime.base.hash.key; 483 484 out_no_base_object: 485 return ret; 486 } 487 488 /** 489 * vmw_user_dmabuf_verify_access - verify access permissions on this 490 * buffer object. 491 * 492 * @bo: Pointer to the buffer object being accessed 493 * @tfile: Identifying the caller. 494 */ 495 int vmw_user_dmabuf_verify_access(struct ttm_buffer_object *bo, 496 struct ttm_object_file *tfile) 497 { 498 struct vmw_user_dma_buffer *vmw_user_bo; 499 500 if (unlikely(bo->destroy != vmw_user_dmabuf_destroy)) 501 return -EPERM; 502 503 vmw_user_bo = vmw_user_dma_buffer(bo); 504 505 /* Check that the caller has opened the object. */ 506 if (likely(ttm_ref_object_exists(tfile, &vmw_user_bo->prime.base))) 507 return 0; 508 509 DRM_ERROR("Could not grant buffer access.\n"); 510 return -EPERM; 511 } 512 513 /** 514 * vmw_user_dmabuf_synccpu_grab - Grab a struct vmw_user_dma_buffer for cpu 515 * access, idling previous GPU operations on the buffer and optionally 516 * blocking it for further command submissions. 517 * 518 * @user_bo: Pointer to the buffer object being grabbed for CPU access 519 * @tfile: Identifying the caller. 520 * @flags: Flags indicating how the grab should be performed. 521 * 522 * A blocking grab will be automatically released when @tfile is closed. 523 */ 524 static int vmw_user_dmabuf_synccpu_grab(struct vmw_user_dma_buffer *user_bo, 525 struct ttm_object_file *tfile, 526 uint32_t flags) 527 { 528 struct ttm_buffer_object *bo = &user_bo->dma.base; 529 bool existed; 530 int ret; 531 532 if (flags & drm_vmw_synccpu_allow_cs) { 533 bool nonblock = !!(flags & drm_vmw_synccpu_dontblock); 534 long lret; 535 536 lret = reservation_object_wait_timeout_rcu(bo->resv, true, true, 537 nonblock ? 0 : MAX_SCHEDULE_TIMEOUT); 538 if (!lret) 539 return -EBUSY; 540 else if (lret < 0) 541 return lret; 542 return 0; 543 } 544 545 ret = ttm_bo_synccpu_write_grab 546 (bo, !!(flags & drm_vmw_synccpu_dontblock)); 547 if (unlikely(ret != 0)) 548 return ret; 549 550 ret = ttm_ref_object_add(tfile, &user_bo->prime.base, 551 TTM_REF_SYNCCPU_WRITE, &existed, false); 552 if (ret != 0 || existed) 553 ttm_bo_synccpu_write_release(&user_bo->dma.base); 554 555 return ret; 556 } 557 558 /** 559 * vmw_user_dmabuf_synccpu_release - Release a previous grab for CPU access, 560 * and unblock command submission on the buffer if blocked. 561 * 562 * @handle: Handle identifying the buffer object. 563 * @tfile: Identifying the caller. 564 * @flags: Flags indicating the type of release. 565 */ 566 static int vmw_user_dmabuf_synccpu_release(uint32_t handle, 567 struct ttm_object_file *tfile, 568 uint32_t flags) 569 { 570 if (!(flags & drm_vmw_synccpu_allow_cs)) 571 return ttm_ref_object_base_unref(tfile, handle, 572 TTM_REF_SYNCCPU_WRITE); 573 574 return 0; 575 } 576 577 /** 578 * vmw_user_dmabuf_synccpu_release - ioctl function implementing the synccpu 579 * functionality. 580 * 581 * @dev: Identifies the drm device. 582 * @data: Pointer to the ioctl argument. 583 * @file_priv: Identifies the caller. 584 * 585 * This function checks the ioctl arguments for validity and calls the 586 * relevant synccpu functions. 587 */ 588 int vmw_user_dmabuf_synccpu_ioctl(struct drm_device *dev, void *data, 589 struct drm_file *file_priv) 590 { 591 struct drm_vmw_synccpu_arg *arg = 592 (struct drm_vmw_synccpu_arg *) data; 593 struct vmw_dma_buffer *dma_buf; 594 struct vmw_user_dma_buffer *user_bo; 595 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; 596 struct ttm_base_object *buffer_base; 597 int ret; 598 599 if ((arg->flags & (drm_vmw_synccpu_read | drm_vmw_synccpu_write)) == 0 600 || (arg->flags & ~(drm_vmw_synccpu_read | drm_vmw_synccpu_write | 601 drm_vmw_synccpu_dontblock | 602 drm_vmw_synccpu_allow_cs)) != 0) { 603 DRM_ERROR("Illegal synccpu flags.\n"); 604 return -EINVAL; 605 } 606 607 switch (arg->op) { 608 case drm_vmw_synccpu_grab: 609 ret = vmw_user_dmabuf_lookup(tfile, arg->handle, &dma_buf, 610 &buffer_base); 611 if (unlikely(ret != 0)) 612 return ret; 613 614 user_bo = container_of(dma_buf, struct vmw_user_dma_buffer, 615 dma); 616 ret = vmw_user_dmabuf_synccpu_grab(user_bo, tfile, arg->flags); 617 vmw_dmabuf_unreference(&dma_buf); 618 ttm_base_object_unref(&buffer_base); 619 if (unlikely(ret != 0 && ret != -ERESTARTSYS && 620 ret != -EBUSY)) { 621 DRM_ERROR("Failed synccpu grab on handle 0x%08x.\n", 622 (unsigned int) arg->handle); 623 return ret; 624 } 625 break; 626 case drm_vmw_synccpu_release: 627 ret = vmw_user_dmabuf_synccpu_release(arg->handle, tfile, 628 arg->flags); 629 if (unlikely(ret != 0)) { 630 DRM_ERROR("Failed synccpu release on handle 0x%08x.\n", 631 (unsigned int) arg->handle); 632 return ret; 633 } 634 break; 635 default: 636 DRM_ERROR("Invalid synccpu operation.\n"); 637 return -EINVAL; 638 } 639 640 return 0; 641 } 642 643 int vmw_dmabuf_alloc_ioctl(struct drm_device *dev, void *data, 644 struct drm_file *file_priv) 645 { 646 struct vmw_private *dev_priv = vmw_priv(dev); 647 union drm_vmw_alloc_dmabuf_arg *arg = 648 (union drm_vmw_alloc_dmabuf_arg *)data; 649 struct drm_vmw_alloc_dmabuf_req *req = &arg->req; 650 struct drm_vmw_dmabuf_rep *rep = &arg->rep; 651 struct vmw_dma_buffer *dma_buf; 652 uint32_t handle; 653 int ret; 654 655 ret = ttm_read_lock(&dev_priv->reservation_sem, true); 656 if (unlikely(ret != 0)) 657 return ret; 658 659 ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile, 660 req->size, false, &handle, &dma_buf, 661 NULL); 662 if (unlikely(ret != 0)) 663 goto out_no_dmabuf; 664 665 rep->handle = handle; 666 rep->map_handle = drm_vma_node_offset_addr(&dma_buf->base.vma_node); 667 rep->cur_gmr_id = handle; 668 rep->cur_gmr_offset = 0; 669 670 vmw_dmabuf_unreference(&dma_buf); 671 672 out_no_dmabuf: 673 ttm_read_unlock(&dev_priv->reservation_sem); 674 675 return ret; 676 } 677 678 int vmw_dmabuf_unref_ioctl(struct drm_device *dev, void *data, 679 struct drm_file *file_priv) 680 { 681 struct drm_vmw_unref_dmabuf_arg *arg = 682 (struct drm_vmw_unref_dmabuf_arg *)data; 683 684 return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile, 685 arg->handle, 686 TTM_REF_USAGE); 687 } 688 689 int vmw_user_dmabuf_lookup(struct ttm_object_file *tfile, 690 uint32_t handle, struct vmw_dma_buffer **out, 691 struct ttm_base_object **p_base) 692 { 693 struct vmw_user_dma_buffer *vmw_user_bo; 694 struct ttm_base_object *base; 695 696 base = ttm_base_object_lookup(tfile, handle); 697 if (unlikely(base == NULL)) { 698 pr_err("Invalid buffer object handle 0x%08lx\n", 699 (unsigned long)handle); 700 return -ESRCH; 701 } 702 703 if (unlikely(ttm_base_object_type(base) != ttm_buffer_type)) { 704 ttm_base_object_unref(&base); 705 pr_err("Invalid buffer object handle 0x%08lx\n", 706 (unsigned long)handle); 707 return -EINVAL; 708 } 709 710 vmw_user_bo = container_of(base, struct vmw_user_dma_buffer, 711 prime.base); 712 (void)ttm_bo_reference(&vmw_user_bo->dma.base); 713 if (p_base) 714 *p_base = base; 715 else 716 ttm_base_object_unref(&base); 717 *out = &vmw_user_bo->dma; 718 719 return 0; 720 } 721 722 int vmw_user_dmabuf_reference(struct ttm_object_file *tfile, 723 struct vmw_dma_buffer *dma_buf, 724 uint32_t *handle) 725 { 726 struct vmw_user_dma_buffer *user_bo; 727 728 if (dma_buf->base.destroy != vmw_user_dmabuf_destroy) 729 return -EINVAL; 730 731 user_bo = container_of(dma_buf, struct vmw_user_dma_buffer, dma); 732 733 *handle = user_bo->prime.base.hash.key; 734 return ttm_ref_object_add(tfile, &user_bo->prime.base, 735 TTM_REF_USAGE, NULL, false); 736 } 737 738 /** 739 * vmw_dumb_create - Create a dumb kms buffer 740 * 741 * @file_priv: Pointer to a struct drm_file identifying the caller. 742 * @dev: Pointer to the drm device. 743 * @args: Pointer to a struct drm_mode_create_dumb structure 744 * 745 * This is a driver callback for the core drm create_dumb functionality. 746 * Note that this is very similar to the vmw_dmabuf_alloc ioctl, except 747 * that the arguments have a different format. 748 */ 749 int vmw_dumb_create(struct drm_file *file_priv, 750 struct drm_device *dev, 751 struct drm_mode_create_dumb *args) 752 { 753 struct vmw_private *dev_priv = vmw_priv(dev); 754 struct vmw_dma_buffer *dma_buf; 755 int ret; 756 757 args->pitch = args->width * ((args->bpp + 7) / 8); 758 args->size = args->pitch * args->height; 759 760 ret = ttm_read_lock(&dev_priv->reservation_sem, true); 761 if (unlikely(ret != 0)) 762 return ret; 763 764 ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile, 765 args->size, false, &args->handle, 766 &dma_buf, NULL); 767 if (unlikely(ret != 0)) 768 goto out_no_dmabuf; 769 770 vmw_dmabuf_unreference(&dma_buf); 771 out_no_dmabuf: 772 ttm_read_unlock(&dev_priv->reservation_sem); 773 return ret; 774 } 775 776 /** 777 * vmw_dumb_map_offset - Return the address space offset of a dumb buffer 778 * 779 * @file_priv: Pointer to a struct drm_file identifying the caller. 780 * @dev: Pointer to the drm device. 781 * @handle: Handle identifying the dumb buffer. 782 * @offset: The address space offset returned. 783 * 784 * This is a driver callback for the core drm dumb_map_offset functionality. 785 */ 786 int vmw_dumb_map_offset(struct drm_file *file_priv, 787 struct drm_device *dev, uint32_t handle, 788 uint64_t *offset) 789 { 790 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; 791 struct vmw_dma_buffer *out_buf; 792 int ret; 793 794 ret = vmw_user_dmabuf_lookup(tfile, handle, &out_buf, NULL); 795 if (ret != 0) 796 return -EINVAL; 797 798 *offset = drm_vma_node_offset_addr(&out_buf->base.vma_node); 799 vmw_dmabuf_unreference(&out_buf); 800 return 0; 801 } 802 803 /** 804 * vmw_dumb_destroy - Destroy a dumb boffer 805 * 806 * @file_priv: Pointer to a struct drm_file identifying the caller. 807 * @dev: Pointer to the drm device. 808 * @handle: Handle identifying the dumb buffer. 809 * 810 * This is a driver callback for the core drm dumb_destroy functionality. 811 */ 812 int vmw_dumb_destroy(struct drm_file *file_priv, 813 struct drm_device *dev, 814 uint32_t handle) 815 { 816 return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile, 817 handle, TTM_REF_USAGE); 818 } 819 820 /** 821 * vmw_resource_buf_alloc - Allocate a backup buffer for a resource. 822 * 823 * @res: The resource for which to allocate a backup buffer. 824 * @interruptible: Whether any sleeps during allocation should be 825 * performed while interruptible. 826 */ 827 static int vmw_resource_buf_alloc(struct vmw_resource *res, 828 bool interruptible) 829 { 830 unsigned long size = 831 (res->backup_size + PAGE_SIZE - 1) & PAGE_MASK; 832 struct vmw_dma_buffer *backup; 833 int ret; 834 835 if (likely(res->backup)) { 836 BUG_ON(res->backup->base.num_pages * PAGE_SIZE < size); 837 return 0; 838 } 839 840 backup = kzalloc(sizeof(*backup), GFP_KERNEL); 841 if (unlikely(!backup)) 842 return -ENOMEM; 843 844 ret = vmw_dmabuf_init(res->dev_priv, backup, res->backup_size, 845 res->func->backup_placement, 846 interruptible, 847 &vmw_dmabuf_bo_free); 848 if (unlikely(ret != 0)) 849 goto out_no_dmabuf; 850 851 res->backup = backup; 852 853 out_no_dmabuf: 854 return ret; 855 } 856 857 /** 858 * vmw_resource_do_validate - Make a resource up-to-date and visible 859 * to the device. 860 * 861 * @res: The resource to make visible to the device. 862 * @val_buf: Information about a buffer possibly 863 * containing backup data if a bind operation is needed. 864 * 865 * On hardware resource shortage, this function returns -EBUSY and 866 * should be retried once resources have been freed up. 867 */ 868 static int vmw_resource_do_validate(struct vmw_resource *res, 869 struct ttm_validate_buffer *val_buf) 870 { 871 int ret = 0; 872 const struct vmw_res_func *func = res->func; 873 874 if (unlikely(res->id == -1)) { 875 ret = func->create(res); 876 if (unlikely(ret != 0)) 877 return ret; 878 } 879 880 if (func->bind && 881 ((func->needs_backup && list_empty(&res->mob_head) && 882 val_buf->bo != NULL) || 883 (!func->needs_backup && val_buf->bo != NULL))) { 884 ret = func->bind(res, val_buf); 885 if (unlikely(ret != 0)) 886 goto out_bind_failed; 887 if (func->needs_backup) 888 list_add_tail(&res->mob_head, &res->backup->res_list); 889 } 890 891 /* 892 * Only do this on write operations, and move to 893 * vmw_resource_unreserve if it can be called after 894 * backup buffers have been unreserved. Otherwise 895 * sort out locking. 896 */ 897 res->res_dirty = true; 898 899 return 0; 900 901 out_bind_failed: 902 func->destroy(res); 903 904 return ret; 905 } 906 907 /** 908 * vmw_resource_unreserve - Unreserve a resource previously reserved for 909 * command submission. 910 * 911 * @res: Pointer to the struct vmw_resource to unreserve. 912 * @switch_backup: Backup buffer has been switched. 913 * @new_backup: Pointer to new backup buffer if command submission 914 * switched. May be NULL. 915 * @new_backup_offset: New backup offset if @switch_backup is true. 916 * 917 * Currently unreserving a resource means putting it back on the device's 918 * resource lru list, so that it can be evicted if necessary. 919 */ 920 void vmw_resource_unreserve(struct vmw_resource *res, 921 bool switch_backup, 922 struct vmw_dma_buffer *new_backup, 923 unsigned long new_backup_offset) 924 { 925 struct vmw_private *dev_priv = res->dev_priv; 926 927 if (!list_empty(&res->lru_head)) 928 return; 929 930 if (switch_backup && new_backup != res->backup) { 931 if (res->backup) { 932 lockdep_assert_held(&res->backup->base.resv->lock.base); 933 list_del_init(&res->mob_head); 934 vmw_dmabuf_unreference(&res->backup); 935 } 936 937 if (new_backup) { 938 res->backup = vmw_dmabuf_reference(new_backup); 939 lockdep_assert_held(&new_backup->base.resv->lock.base); 940 list_add_tail(&res->mob_head, &new_backup->res_list); 941 } else { 942 res->backup = NULL; 943 } 944 } 945 if (switch_backup) 946 res->backup_offset = new_backup_offset; 947 948 if (!res->func->may_evict || res->id == -1 || res->pin_count) 949 return; 950 951 write_lock(&dev_priv->resource_lock); 952 list_add_tail(&res->lru_head, 953 &res->dev_priv->res_lru[res->func->res_type]); 954 write_unlock(&dev_priv->resource_lock); 955 } 956 957 /** 958 * vmw_resource_check_buffer - Check whether a backup buffer is needed 959 * for a resource and in that case, allocate 960 * one, reserve and validate it. 961 * 962 * @res: The resource for which to allocate a backup buffer. 963 * @interruptible: Whether any sleeps during allocation should be 964 * performed while interruptible. 965 * @val_buf: On successful return contains data about the 966 * reserved and validated backup buffer. 967 */ 968 static int 969 vmw_resource_check_buffer(struct vmw_resource *res, 970 bool interruptible, 971 struct ttm_validate_buffer *val_buf) 972 { 973 struct ttm_operation_ctx ctx = { true, false }; 974 struct list_head val_list; 975 bool backup_dirty = false; 976 int ret; 977 978 if (unlikely(res->backup == NULL)) { 979 ret = vmw_resource_buf_alloc(res, interruptible); 980 if (unlikely(ret != 0)) 981 return ret; 982 } 983 984 INIT_LIST_HEAD(&val_list); 985 val_buf->bo = ttm_bo_reference(&res->backup->base); 986 val_buf->shared = false; 987 list_add_tail(&val_buf->head, &val_list); 988 ret = ttm_eu_reserve_buffers(NULL, &val_list, interruptible, NULL); 989 if (unlikely(ret != 0)) 990 goto out_no_reserve; 991 992 if (res->func->needs_backup && list_empty(&res->mob_head)) 993 return 0; 994 995 backup_dirty = res->backup_dirty; 996 ret = ttm_bo_validate(&res->backup->base, 997 res->func->backup_placement, 998 &ctx); 999 1000 if (unlikely(ret != 0)) 1001 goto out_no_validate; 1002 1003 return 0; 1004 1005 out_no_validate: 1006 ttm_eu_backoff_reservation(NULL, &val_list); 1007 out_no_reserve: 1008 ttm_bo_unref(&val_buf->bo); 1009 if (backup_dirty) 1010 vmw_dmabuf_unreference(&res->backup); 1011 1012 return ret; 1013 } 1014 1015 /** 1016 * vmw_resource_reserve - Reserve a resource for command submission 1017 * 1018 * @res: The resource to reserve. 1019 * 1020 * This function takes the resource off the LRU list and make sure 1021 * a backup buffer is present for guest-backed resources. However, 1022 * the buffer may not be bound to the resource at this point. 1023 * 1024 */ 1025 int vmw_resource_reserve(struct vmw_resource *res, bool interruptible, 1026 bool no_backup) 1027 { 1028 struct vmw_private *dev_priv = res->dev_priv; 1029 int ret; 1030 1031 write_lock(&dev_priv->resource_lock); 1032 list_del_init(&res->lru_head); 1033 write_unlock(&dev_priv->resource_lock); 1034 1035 if (res->func->needs_backup && res->backup == NULL && 1036 !no_backup) { 1037 ret = vmw_resource_buf_alloc(res, interruptible); 1038 if (unlikely(ret != 0)) { 1039 DRM_ERROR("Failed to allocate a backup buffer " 1040 "of size %lu. bytes\n", 1041 (unsigned long) res->backup_size); 1042 return ret; 1043 } 1044 } 1045 1046 return 0; 1047 } 1048 1049 /** 1050 * vmw_resource_backoff_reservation - Unreserve and unreference a 1051 * backup buffer 1052 *. 1053 * @val_buf: Backup buffer information. 1054 */ 1055 static void 1056 vmw_resource_backoff_reservation(struct ttm_validate_buffer *val_buf) 1057 { 1058 struct list_head val_list; 1059 1060 if (likely(val_buf->bo == NULL)) 1061 return; 1062 1063 INIT_LIST_HEAD(&val_list); 1064 list_add_tail(&val_buf->head, &val_list); 1065 ttm_eu_backoff_reservation(NULL, &val_list); 1066 ttm_bo_unref(&val_buf->bo); 1067 } 1068 1069 /** 1070 * vmw_resource_do_evict - Evict a resource, and transfer its data 1071 * to a backup buffer. 1072 * 1073 * @res: The resource to evict. 1074 * @interruptible: Whether to wait interruptible. 1075 */ 1076 static int vmw_resource_do_evict(struct vmw_resource *res, bool interruptible) 1077 { 1078 struct ttm_validate_buffer val_buf; 1079 const struct vmw_res_func *func = res->func; 1080 int ret; 1081 1082 BUG_ON(!func->may_evict); 1083 1084 val_buf.bo = NULL; 1085 val_buf.shared = false; 1086 ret = vmw_resource_check_buffer(res, interruptible, &val_buf); 1087 if (unlikely(ret != 0)) 1088 return ret; 1089 1090 if (unlikely(func->unbind != NULL && 1091 (!func->needs_backup || !list_empty(&res->mob_head)))) { 1092 ret = func->unbind(res, res->res_dirty, &val_buf); 1093 if (unlikely(ret != 0)) 1094 goto out_no_unbind; 1095 list_del_init(&res->mob_head); 1096 } 1097 ret = func->destroy(res); 1098 res->backup_dirty = true; 1099 res->res_dirty = false; 1100 out_no_unbind: 1101 vmw_resource_backoff_reservation(&val_buf); 1102 1103 return ret; 1104 } 1105 1106 1107 /** 1108 * vmw_resource_validate - Make a resource up-to-date and visible 1109 * to the device. 1110 * 1111 * @res: The resource to make visible to the device. 1112 * 1113 * On succesful return, any backup DMA buffer pointed to by @res->backup will 1114 * be reserved and validated. 1115 * On hardware resource shortage, this function will repeatedly evict 1116 * resources of the same type until the validation succeeds. 1117 */ 1118 int vmw_resource_validate(struct vmw_resource *res) 1119 { 1120 int ret; 1121 struct vmw_resource *evict_res; 1122 struct vmw_private *dev_priv = res->dev_priv; 1123 struct list_head *lru_list = &dev_priv->res_lru[res->func->res_type]; 1124 struct ttm_validate_buffer val_buf; 1125 unsigned err_count = 0; 1126 1127 if (!res->func->create) 1128 return 0; 1129 1130 val_buf.bo = NULL; 1131 val_buf.shared = false; 1132 if (res->backup) 1133 val_buf.bo = &res->backup->base; 1134 do { 1135 ret = vmw_resource_do_validate(res, &val_buf); 1136 if (likely(ret != -EBUSY)) 1137 break; 1138 1139 write_lock(&dev_priv->resource_lock); 1140 if (list_empty(lru_list) || !res->func->may_evict) { 1141 DRM_ERROR("Out of device device resources " 1142 "for %s.\n", res->func->type_name); 1143 ret = -EBUSY; 1144 write_unlock(&dev_priv->resource_lock); 1145 break; 1146 } 1147 1148 evict_res = vmw_resource_reference 1149 (list_first_entry(lru_list, struct vmw_resource, 1150 lru_head)); 1151 list_del_init(&evict_res->lru_head); 1152 1153 write_unlock(&dev_priv->resource_lock); 1154 1155 ret = vmw_resource_do_evict(evict_res, true); 1156 if (unlikely(ret != 0)) { 1157 write_lock(&dev_priv->resource_lock); 1158 list_add_tail(&evict_res->lru_head, lru_list); 1159 write_unlock(&dev_priv->resource_lock); 1160 if (ret == -ERESTARTSYS || 1161 ++err_count > VMW_RES_EVICT_ERR_COUNT) { 1162 vmw_resource_unreference(&evict_res); 1163 goto out_no_validate; 1164 } 1165 } 1166 1167 vmw_resource_unreference(&evict_res); 1168 } while (1); 1169 1170 if (unlikely(ret != 0)) 1171 goto out_no_validate; 1172 else if (!res->func->needs_backup && res->backup) { 1173 list_del_init(&res->mob_head); 1174 vmw_dmabuf_unreference(&res->backup); 1175 } 1176 1177 return 0; 1178 1179 out_no_validate: 1180 return ret; 1181 } 1182 1183 /** 1184 * vmw_fence_single_bo - Utility function to fence a single TTM buffer 1185 * object without unreserving it. 1186 * 1187 * @bo: Pointer to the struct ttm_buffer_object to fence. 1188 * @fence: Pointer to the fence. If NULL, this function will 1189 * insert a fence into the command stream.. 1190 * 1191 * Contrary to the ttm_eu version of this function, it takes only 1192 * a single buffer object instead of a list, and it also doesn't 1193 * unreserve the buffer object, which needs to be done separately. 1194 */ 1195 void vmw_fence_single_bo(struct ttm_buffer_object *bo, 1196 struct vmw_fence_obj *fence) 1197 { 1198 struct ttm_bo_device *bdev = bo->bdev; 1199 1200 struct vmw_private *dev_priv = 1201 container_of(bdev, struct vmw_private, bdev); 1202 1203 if (fence == NULL) { 1204 vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL); 1205 reservation_object_add_excl_fence(bo->resv, &fence->base); 1206 dma_fence_put(&fence->base); 1207 } else 1208 reservation_object_add_excl_fence(bo->resv, &fence->base); 1209 } 1210 1211 /** 1212 * vmw_resource_move_notify - TTM move_notify_callback 1213 * 1214 * @bo: The TTM buffer object about to move. 1215 * @mem: The struct ttm_mem_reg indicating to what memory 1216 * region the move is taking place. 1217 * 1218 * Evicts the Guest Backed hardware resource if the backup 1219 * buffer is being moved out of MOB memory. 1220 * Note that this function should not race with the resource 1221 * validation code as long as it accesses only members of struct 1222 * resource that remain static while bo::res is !NULL and 1223 * while we have @bo reserved. struct resource::backup is *not* a 1224 * static member. The resource validation code will take care 1225 * to set @bo::res to NULL, while having @bo reserved when the 1226 * buffer is no longer bound to the resource, so @bo:res can be 1227 * used to determine whether there is a need to unbind and whether 1228 * it is safe to unbind. 1229 */ 1230 void vmw_resource_move_notify(struct ttm_buffer_object *bo, 1231 struct ttm_mem_reg *mem) 1232 { 1233 struct vmw_dma_buffer *dma_buf; 1234 1235 if (mem == NULL) 1236 return; 1237 1238 if (bo->destroy != vmw_dmabuf_bo_free && 1239 bo->destroy != vmw_user_dmabuf_destroy) 1240 return; 1241 1242 dma_buf = container_of(bo, struct vmw_dma_buffer, base); 1243 1244 /* 1245 * Kill any cached kernel maps before move. An optimization could 1246 * be to do this iff source or destination memory type is VRAM. 1247 */ 1248 vmw_dma_buffer_unmap(dma_buf); 1249 1250 if (mem->mem_type != VMW_PL_MOB) { 1251 struct vmw_resource *res, *n; 1252 struct ttm_validate_buffer val_buf; 1253 1254 val_buf.bo = bo; 1255 val_buf.shared = false; 1256 1257 list_for_each_entry_safe(res, n, &dma_buf->res_list, mob_head) { 1258 1259 if (unlikely(res->func->unbind == NULL)) 1260 continue; 1261 1262 (void) res->func->unbind(res, true, &val_buf); 1263 res->backup_dirty = true; 1264 res->res_dirty = false; 1265 list_del_init(&res->mob_head); 1266 } 1267 1268 (void) ttm_bo_wait(bo, false, false); 1269 } 1270 } 1271 1272 1273 /** 1274 * vmw_resource_swap_notify - swapout notify callback. 1275 * 1276 * @bo: The buffer object to be swapped out. 1277 */ 1278 void vmw_resource_swap_notify(struct ttm_buffer_object *bo) 1279 { 1280 if (bo->destroy != vmw_dmabuf_bo_free && 1281 bo->destroy != vmw_user_dmabuf_destroy) 1282 return; 1283 1284 /* Kill any cached kernel maps before swapout */ 1285 vmw_dma_buffer_unmap(vmw_dma_buffer(bo)); 1286 } 1287 1288 1289 /** 1290 * vmw_query_readback_all - Read back cached query states 1291 * 1292 * @dx_query_mob: Buffer containing the DX query MOB 1293 * 1294 * Read back cached states from the device if they exist. This function 1295 * assumings binding_mutex is held. 1296 */ 1297 int vmw_query_readback_all(struct vmw_dma_buffer *dx_query_mob) 1298 { 1299 struct vmw_resource *dx_query_ctx; 1300 struct vmw_private *dev_priv; 1301 struct { 1302 SVGA3dCmdHeader header; 1303 SVGA3dCmdDXReadbackAllQuery body; 1304 } *cmd; 1305 1306 1307 /* No query bound, so do nothing */ 1308 if (!dx_query_mob || !dx_query_mob->dx_query_ctx) 1309 return 0; 1310 1311 dx_query_ctx = dx_query_mob->dx_query_ctx; 1312 dev_priv = dx_query_ctx->dev_priv; 1313 1314 cmd = vmw_fifo_reserve_dx(dev_priv, sizeof(*cmd), dx_query_ctx->id); 1315 if (unlikely(cmd == NULL)) { 1316 DRM_ERROR("Failed reserving FIFO space for " 1317 "query MOB read back.\n"); 1318 return -ENOMEM; 1319 } 1320 1321 cmd->header.id = SVGA_3D_CMD_DX_READBACK_ALL_QUERY; 1322 cmd->header.size = sizeof(cmd->body); 1323 cmd->body.cid = dx_query_ctx->id; 1324 1325 vmw_fifo_commit(dev_priv, sizeof(*cmd)); 1326 1327 /* Triggers a rebind the next time affected context is bound */ 1328 dx_query_mob->dx_query_ctx = NULL; 1329 1330 return 0; 1331 } 1332 1333 1334 1335 /** 1336 * vmw_query_move_notify - Read back cached query states 1337 * 1338 * @bo: The TTM buffer object about to move. 1339 * @mem: The memory region @bo is moving to. 1340 * 1341 * Called before the query MOB is swapped out to read back cached query 1342 * states from the device. 1343 */ 1344 void vmw_query_move_notify(struct ttm_buffer_object *bo, 1345 struct ttm_mem_reg *mem) 1346 { 1347 struct vmw_dma_buffer *dx_query_mob; 1348 struct ttm_bo_device *bdev = bo->bdev; 1349 struct vmw_private *dev_priv; 1350 1351 1352 dev_priv = container_of(bdev, struct vmw_private, bdev); 1353 1354 mutex_lock(&dev_priv->binding_mutex); 1355 1356 dx_query_mob = container_of(bo, struct vmw_dma_buffer, base); 1357 if (mem == NULL || !dx_query_mob || !dx_query_mob->dx_query_ctx) { 1358 mutex_unlock(&dev_priv->binding_mutex); 1359 return; 1360 } 1361 1362 /* If BO is being moved from MOB to system memory */ 1363 if (mem->mem_type == TTM_PL_SYSTEM && bo->mem.mem_type == VMW_PL_MOB) { 1364 struct vmw_fence_obj *fence; 1365 1366 (void) vmw_query_readback_all(dx_query_mob); 1367 mutex_unlock(&dev_priv->binding_mutex); 1368 1369 /* Create a fence and attach the BO to it */ 1370 (void) vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL); 1371 vmw_fence_single_bo(bo, fence); 1372 1373 if (fence != NULL) 1374 vmw_fence_obj_unreference(&fence); 1375 1376 (void) ttm_bo_wait(bo, false, false); 1377 } else 1378 mutex_unlock(&dev_priv->binding_mutex); 1379 1380 } 1381 1382 /** 1383 * vmw_resource_needs_backup - Return whether a resource needs a backup buffer. 1384 * 1385 * @res: The resource being queried. 1386 */ 1387 bool vmw_resource_needs_backup(const struct vmw_resource *res) 1388 { 1389 return res->func->needs_backup; 1390 } 1391 1392 /** 1393 * vmw_resource_evict_type - Evict all resources of a specific type 1394 * 1395 * @dev_priv: Pointer to a device private struct 1396 * @type: The resource type to evict 1397 * 1398 * To avoid thrashing starvation or as part of the hibernation sequence, 1399 * try to evict all evictable resources of a specific type. 1400 */ 1401 static void vmw_resource_evict_type(struct vmw_private *dev_priv, 1402 enum vmw_res_type type) 1403 { 1404 struct list_head *lru_list = &dev_priv->res_lru[type]; 1405 struct vmw_resource *evict_res; 1406 unsigned err_count = 0; 1407 int ret; 1408 1409 do { 1410 write_lock(&dev_priv->resource_lock); 1411 1412 if (list_empty(lru_list)) 1413 goto out_unlock; 1414 1415 evict_res = vmw_resource_reference( 1416 list_first_entry(lru_list, struct vmw_resource, 1417 lru_head)); 1418 list_del_init(&evict_res->lru_head); 1419 write_unlock(&dev_priv->resource_lock); 1420 1421 ret = vmw_resource_do_evict(evict_res, false); 1422 if (unlikely(ret != 0)) { 1423 write_lock(&dev_priv->resource_lock); 1424 list_add_tail(&evict_res->lru_head, lru_list); 1425 write_unlock(&dev_priv->resource_lock); 1426 if (++err_count > VMW_RES_EVICT_ERR_COUNT) { 1427 vmw_resource_unreference(&evict_res); 1428 return; 1429 } 1430 } 1431 1432 vmw_resource_unreference(&evict_res); 1433 } while (1); 1434 1435 out_unlock: 1436 write_unlock(&dev_priv->resource_lock); 1437 } 1438 1439 /** 1440 * vmw_resource_evict_all - Evict all evictable resources 1441 * 1442 * @dev_priv: Pointer to a device private struct 1443 * 1444 * To avoid thrashing starvation or as part of the hibernation sequence, 1445 * evict all evictable resources. In particular this means that all 1446 * guest-backed resources that are registered with the device are 1447 * evicted and the OTable becomes clean. 1448 */ 1449 void vmw_resource_evict_all(struct vmw_private *dev_priv) 1450 { 1451 enum vmw_res_type type; 1452 1453 mutex_lock(&dev_priv->cmdbuf_mutex); 1454 1455 for (type = 0; type < vmw_res_max; ++type) 1456 vmw_resource_evict_type(dev_priv, type); 1457 1458 mutex_unlock(&dev_priv->cmdbuf_mutex); 1459 } 1460 1461 /** 1462 * vmw_resource_pin - Add a pin reference on a resource 1463 * 1464 * @res: The resource to add a pin reference on 1465 * 1466 * This function adds a pin reference, and if needed validates the resource. 1467 * Having a pin reference means that the resource can never be evicted, and 1468 * its id will never change as long as there is a pin reference. 1469 * This function returns 0 on success and a negative error code on failure. 1470 */ 1471 int vmw_resource_pin(struct vmw_resource *res, bool interruptible) 1472 { 1473 struct ttm_operation_ctx ctx = { interruptible, false }; 1474 struct vmw_private *dev_priv = res->dev_priv; 1475 int ret; 1476 1477 ttm_write_lock(&dev_priv->reservation_sem, interruptible); 1478 mutex_lock(&dev_priv->cmdbuf_mutex); 1479 ret = vmw_resource_reserve(res, interruptible, false); 1480 if (ret) 1481 goto out_no_reserve; 1482 1483 if (res->pin_count == 0) { 1484 struct vmw_dma_buffer *vbo = NULL; 1485 1486 if (res->backup) { 1487 vbo = res->backup; 1488 1489 ttm_bo_reserve(&vbo->base, interruptible, false, NULL); 1490 if (!vbo->pin_count) { 1491 ret = ttm_bo_validate 1492 (&vbo->base, 1493 res->func->backup_placement, 1494 &ctx); 1495 if (ret) { 1496 ttm_bo_unreserve(&vbo->base); 1497 goto out_no_validate; 1498 } 1499 } 1500 1501 /* Do we really need to pin the MOB as well? */ 1502 vmw_bo_pin_reserved(vbo, true); 1503 } 1504 ret = vmw_resource_validate(res); 1505 if (vbo) 1506 ttm_bo_unreserve(&vbo->base); 1507 if (ret) 1508 goto out_no_validate; 1509 } 1510 res->pin_count++; 1511 1512 out_no_validate: 1513 vmw_resource_unreserve(res, false, NULL, 0UL); 1514 out_no_reserve: 1515 mutex_unlock(&dev_priv->cmdbuf_mutex); 1516 ttm_write_unlock(&dev_priv->reservation_sem); 1517 1518 return ret; 1519 } 1520 1521 /** 1522 * vmw_resource_unpin - Remove a pin reference from a resource 1523 * 1524 * @res: The resource to remove a pin reference from 1525 * 1526 * Having a pin reference means that the resource can never be evicted, and 1527 * its id will never change as long as there is a pin reference. 1528 */ 1529 void vmw_resource_unpin(struct vmw_resource *res) 1530 { 1531 struct vmw_private *dev_priv = res->dev_priv; 1532 int ret; 1533 1534 (void) ttm_read_lock(&dev_priv->reservation_sem, false); 1535 mutex_lock(&dev_priv->cmdbuf_mutex); 1536 1537 ret = vmw_resource_reserve(res, false, true); 1538 WARN_ON(ret); 1539 1540 WARN_ON(res->pin_count == 0); 1541 if (--res->pin_count == 0 && res->backup) { 1542 struct vmw_dma_buffer *vbo = res->backup; 1543 1544 (void) ttm_bo_reserve(&vbo->base, false, false, NULL); 1545 vmw_bo_pin_reserved(vbo, false); 1546 ttm_bo_unreserve(&vbo->base); 1547 } 1548 1549 vmw_resource_unreserve(res, false, NULL, 0UL); 1550 1551 mutex_unlock(&dev_priv->cmdbuf_mutex); 1552 ttm_read_unlock(&dev_priv->reservation_sem); 1553 } 1554 1555 /** 1556 * vmw_res_type - Return the resource type 1557 * 1558 * @res: Pointer to the resource 1559 */ 1560 enum vmw_res_type vmw_res_type(const struct vmw_resource *res) 1561 { 1562 return res->func->res_type; 1563 } 1564