xref: /openbmc/linux/drivers/gpu/drm/vmwgfx/vmwgfx_resource.c (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 /**************************************************************************
2  *
3  * Copyright © 2009-2015 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 #include "vmwgfx_drv.h"
29 #include <drm/vmwgfx_drm.h>
30 #include <drm/ttm/ttm_object.h>
31 #include <drm/ttm/ttm_placement.h>
32 #include <drm/drmP.h>
33 #include "vmwgfx_resource_priv.h"
34 #include "vmwgfx_binding.h"
35 
36 #define VMW_RES_EVICT_ERR_COUNT 10
37 
38 struct vmw_user_dma_buffer {
39 	struct ttm_prime_object prime;
40 	struct vmw_dma_buffer dma;
41 };
42 
43 struct vmw_bo_user_rep {
44 	uint32_t handle;
45 	uint64_t map_handle;
46 };
47 
48 static inline struct vmw_dma_buffer *
49 vmw_dma_buffer(struct ttm_buffer_object *bo)
50 {
51 	return container_of(bo, struct vmw_dma_buffer, base);
52 }
53 
54 static inline struct vmw_user_dma_buffer *
55 vmw_user_dma_buffer(struct ttm_buffer_object *bo)
56 {
57 	struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
58 	return container_of(vmw_bo, struct vmw_user_dma_buffer, dma);
59 }
60 
61 struct vmw_resource *vmw_resource_reference(struct vmw_resource *res)
62 {
63 	kref_get(&res->kref);
64 	return res;
65 }
66 
67 struct vmw_resource *
68 vmw_resource_reference_unless_doomed(struct vmw_resource *res)
69 {
70 	return kref_get_unless_zero(&res->kref) ? res : NULL;
71 }
72 
73 /**
74  * vmw_resource_release_id - release a resource id to the id manager.
75  *
76  * @res: Pointer to the resource.
77  *
78  * Release the resource id to the resource id manager and set it to -1
79  */
80 void vmw_resource_release_id(struct vmw_resource *res)
81 {
82 	struct vmw_private *dev_priv = res->dev_priv;
83 	struct idr *idr = &dev_priv->res_idr[res->func->res_type];
84 
85 	write_lock(&dev_priv->resource_lock);
86 	if (res->id != -1)
87 		idr_remove(idr, res->id);
88 	res->id = -1;
89 	write_unlock(&dev_priv->resource_lock);
90 }
91 
92 static void vmw_resource_release(struct kref *kref)
93 {
94 	struct vmw_resource *res =
95 	    container_of(kref, struct vmw_resource, kref);
96 	struct vmw_private *dev_priv = res->dev_priv;
97 	int id;
98 	struct idr *idr = &dev_priv->res_idr[res->func->res_type];
99 
100 	write_lock(&dev_priv->resource_lock);
101 	res->avail = false;
102 	list_del_init(&res->lru_head);
103 	write_unlock(&dev_priv->resource_lock);
104 	if (res->backup) {
105 		struct ttm_buffer_object *bo = &res->backup->base;
106 
107 		ttm_bo_reserve(bo, false, false, NULL);
108 		if (!list_empty(&res->mob_head) &&
109 		    res->func->unbind != NULL) {
110 			struct ttm_validate_buffer val_buf;
111 
112 			val_buf.bo = bo;
113 			val_buf.shared = false;
114 			res->func->unbind(res, false, &val_buf);
115 		}
116 		res->backup_dirty = false;
117 		list_del_init(&res->mob_head);
118 		ttm_bo_unreserve(bo);
119 		vmw_dmabuf_unreference(&res->backup);
120 	}
121 
122 	if (likely(res->hw_destroy != NULL)) {
123 		mutex_lock(&dev_priv->binding_mutex);
124 		vmw_binding_res_list_kill(&res->binding_head);
125 		mutex_unlock(&dev_priv->binding_mutex);
126 		res->hw_destroy(res);
127 	}
128 
129 	id = res->id;
130 	if (res->res_free != NULL)
131 		res->res_free(res);
132 	else
133 		kfree(res);
134 
135 	write_lock(&dev_priv->resource_lock);
136 	if (id != -1)
137 		idr_remove(idr, id);
138 	write_unlock(&dev_priv->resource_lock);
139 }
140 
141 void vmw_resource_unreference(struct vmw_resource **p_res)
142 {
143 	struct vmw_resource *res = *p_res;
144 
145 	*p_res = NULL;
146 	kref_put(&res->kref, vmw_resource_release);
147 }
148 
149 
150 /**
151  * vmw_resource_alloc_id - release a resource id to the id manager.
152  *
153  * @res: Pointer to the resource.
154  *
155  * Allocate the lowest free resource from the resource manager, and set
156  * @res->id to that id. Returns 0 on success and -ENOMEM on failure.
157  */
158 int vmw_resource_alloc_id(struct vmw_resource *res)
159 {
160 	struct vmw_private *dev_priv = res->dev_priv;
161 	int ret;
162 	struct idr *idr = &dev_priv->res_idr[res->func->res_type];
163 
164 	BUG_ON(res->id != -1);
165 
166 	idr_preload(GFP_KERNEL);
167 	write_lock(&dev_priv->resource_lock);
168 
169 	ret = idr_alloc(idr, res, 1, 0, GFP_NOWAIT);
170 	if (ret >= 0)
171 		res->id = ret;
172 
173 	write_unlock(&dev_priv->resource_lock);
174 	idr_preload_end();
175 	return ret < 0 ? ret : 0;
176 }
177 
178 /**
179  * vmw_resource_init - initialize a struct vmw_resource
180  *
181  * @dev_priv:       Pointer to a device private struct.
182  * @res:            The struct vmw_resource to initialize.
183  * @obj_type:       Resource object type.
184  * @delay_id:       Boolean whether to defer device id allocation until
185  *                  the first validation.
186  * @res_free:       Resource destructor.
187  * @func:           Resource function table.
188  */
189 int vmw_resource_init(struct vmw_private *dev_priv, struct vmw_resource *res,
190 		      bool delay_id,
191 		      void (*res_free) (struct vmw_resource *res),
192 		      const struct vmw_res_func *func)
193 {
194 	kref_init(&res->kref);
195 	res->hw_destroy = NULL;
196 	res->res_free = res_free;
197 	res->avail = false;
198 	res->dev_priv = dev_priv;
199 	res->func = func;
200 	INIT_LIST_HEAD(&res->lru_head);
201 	INIT_LIST_HEAD(&res->mob_head);
202 	INIT_LIST_HEAD(&res->binding_head);
203 	res->id = -1;
204 	res->backup = NULL;
205 	res->backup_offset = 0;
206 	res->backup_dirty = false;
207 	res->res_dirty = false;
208 	if (delay_id)
209 		return 0;
210 	else
211 		return vmw_resource_alloc_id(res);
212 }
213 
214 /**
215  * vmw_resource_activate
216  *
217  * @res:        Pointer to the newly created resource
218  * @hw_destroy: Destroy function. NULL if none.
219  *
220  * Activate a resource after the hardware has been made aware of it.
221  * Set tye destroy function to @destroy. Typically this frees the
222  * resource and destroys the hardware resources associated with it.
223  * Activate basically means that the function vmw_resource_lookup will
224  * find it.
225  */
226 void vmw_resource_activate(struct vmw_resource *res,
227 			   void (*hw_destroy) (struct vmw_resource *))
228 {
229 	struct vmw_private *dev_priv = res->dev_priv;
230 
231 	write_lock(&dev_priv->resource_lock);
232 	res->avail = true;
233 	res->hw_destroy = hw_destroy;
234 	write_unlock(&dev_priv->resource_lock);
235 }
236 
237 /**
238  * vmw_user_resource_lookup_handle - lookup a struct resource from a
239  * TTM user-space handle and perform basic type checks
240  *
241  * @dev_priv:     Pointer to a device private struct
242  * @tfile:        Pointer to a struct ttm_object_file identifying the caller
243  * @handle:       The TTM user-space handle
244  * @converter:    Pointer to an object describing the resource type
245  * @p_res:        On successful return the location pointed to will contain
246  *                a pointer to a refcounted struct vmw_resource.
247  *
248  * If the handle can't be found or is associated with an incorrect resource
249  * type, -EINVAL will be returned.
250  */
251 int vmw_user_resource_lookup_handle(struct vmw_private *dev_priv,
252 				    struct ttm_object_file *tfile,
253 				    uint32_t handle,
254 				    const struct vmw_user_resource_conv
255 				    *converter,
256 				    struct vmw_resource **p_res)
257 {
258 	struct ttm_base_object *base;
259 	struct vmw_resource *res;
260 	int ret = -EINVAL;
261 
262 	base = ttm_base_object_lookup(tfile, handle);
263 	if (unlikely(base == NULL))
264 		return -EINVAL;
265 
266 	if (unlikely(ttm_base_object_type(base) != converter->object_type))
267 		goto out_bad_resource;
268 
269 	res = converter->base_obj_to_res(base);
270 
271 	read_lock(&dev_priv->resource_lock);
272 	if (!res->avail || res->res_free != converter->res_free) {
273 		read_unlock(&dev_priv->resource_lock);
274 		goto out_bad_resource;
275 	}
276 
277 	kref_get(&res->kref);
278 	read_unlock(&dev_priv->resource_lock);
279 
280 	*p_res = res;
281 	ret = 0;
282 
283 out_bad_resource:
284 	ttm_base_object_unref(&base);
285 
286 	return ret;
287 }
288 
289 /**
290  * Helper function that looks either a surface or dmabuf.
291  *
292  * The pointer this pointed at by out_surf and out_buf needs to be null.
293  */
294 int vmw_user_lookup_handle(struct vmw_private *dev_priv,
295 			   struct ttm_object_file *tfile,
296 			   uint32_t handle,
297 			   struct vmw_surface **out_surf,
298 			   struct vmw_dma_buffer **out_buf)
299 {
300 	struct vmw_resource *res;
301 	int ret;
302 
303 	BUG_ON(*out_surf || *out_buf);
304 
305 	ret = vmw_user_resource_lookup_handle(dev_priv, tfile, handle,
306 					      user_surface_converter,
307 					      &res);
308 	if (!ret) {
309 		*out_surf = vmw_res_to_srf(res);
310 		return 0;
311 	}
312 
313 	*out_surf = NULL;
314 	ret = vmw_user_dmabuf_lookup(tfile, handle, out_buf, NULL);
315 	return ret;
316 }
317 
318 /**
319  * Buffer management.
320  */
321 
322 /**
323  * vmw_dmabuf_acc_size - Calculate the pinned memory usage of buffers
324  *
325  * @dev_priv: Pointer to a struct vmw_private identifying the device.
326  * @size: The requested buffer size.
327  * @user: Whether this is an ordinary dma buffer or a user dma buffer.
328  */
329 static size_t vmw_dmabuf_acc_size(struct vmw_private *dev_priv, size_t size,
330 				  bool user)
331 {
332 	static size_t struct_size, user_struct_size;
333 	size_t num_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
334 	size_t page_array_size = ttm_round_pot(num_pages * sizeof(void *));
335 
336 	if (unlikely(struct_size == 0)) {
337 		size_t backend_size = ttm_round_pot(vmw_tt_size);
338 
339 		struct_size = backend_size +
340 			ttm_round_pot(sizeof(struct vmw_dma_buffer));
341 		user_struct_size = backend_size +
342 			ttm_round_pot(sizeof(struct vmw_user_dma_buffer));
343 	}
344 
345 	if (dev_priv->map_mode == vmw_dma_alloc_coherent)
346 		page_array_size +=
347 			ttm_round_pot(num_pages * sizeof(dma_addr_t));
348 
349 	return ((user) ? user_struct_size : struct_size) +
350 		page_array_size;
351 }
352 
353 void vmw_dmabuf_bo_free(struct ttm_buffer_object *bo)
354 {
355 	struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
356 
357 	vmw_dma_buffer_unmap(vmw_bo);
358 	kfree(vmw_bo);
359 }
360 
361 static void vmw_user_dmabuf_destroy(struct ttm_buffer_object *bo)
362 {
363 	struct vmw_user_dma_buffer *vmw_user_bo = vmw_user_dma_buffer(bo);
364 
365 	vmw_dma_buffer_unmap(&vmw_user_bo->dma);
366 	ttm_prime_object_kfree(vmw_user_bo, prime);
367 }
368 
369 int vmw_dmabuf_init(struct vmw_private *dev_priv,
370 		    struct vmw_dma_buffer *vmw_bo,
371 		    size_t size, struct ttm_placement *placement,
372 		    bool interruptible,
373 		    void (*bo_free) (struct ttm_buffer_object *bo))
374 {
375 	struct ttm_bo_device *bdev = &dev_priv->bdev;
376 	size_t acc_size;
377 	int ret;
378 	bool user = (bo_free == &vmw_user_dmabuf_destroy);
379 
380 	BUG_ON(!bo_free && (!user && (bo_free != vmw_dmabuf_bo_free)));
381 
382 	acc_size = vmw_dmabuf_acc_size(dev_priv, size, user);
383 	memset(vmw_bo, 0, sizeof(*vmw_bo));
384 
385 	INIT_LIST_HEAD(&vmw_bo->res_list);
386 
387 	ret = ttm_bo_init(bdev, &vmw_bo->base, size,
388 			  ttm_bo_type_device, placement,
389 			  0, interruptible, acc_size,
390 			  NULL, NULL, bo_free);
391 	return ret;
392 }
393 
394 static void vmw_user_dmabuf_release(struct ttm_base_object **p_base)
395 {
396 	struct vmw_user_dma_buffer *vmw_user_bo;
397 	struct ttm_base_object *base = *p_base;
398 	struct ttm_buffer_object *bo;
399 
400 	*p_base = NULL;
401 
402 	if (unlikely(base == NULL))
403 		return;
404 
405 	vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
406 				   prime.base);
407 	bo = &vmw_user_bo->dma.base;
408 	ttm_bo_unref(&bo);
409 }
410 
411 static void vmw_user_dmabuf_ref_obj_release(struct ttm_base_object *base,
412 					    enum ttm_ref_type ref_type)
413 {
414 	struct vmw_user_dma_buffer *user_bo;
415 	user_bo = container_of(base, struct vmw_user_dma_buffer, prime.base);
416 
417 	switch (ref_type) {
418 	case TTM_REF_SYNCCPU_WRITE:
419 		ttm_bo_synccpu_write_release(&user_bo->dma.base);
420 		break;
421 	default:
422 		BUG();
423 	}
424 }
425 
426 /**
427  * vmw_user_dmabuf_alloc - Allocate a user dma buffer
428  *
429  * @dev_priv: Pointer to a struct device private.
430  * @tfile: Pointer to a struct ttm_object_file on which to register the user
431  * object.
432  * @size: Size of the dma buffer.
433  * @shareable: Boolean whether the buffer is shareable with other open files.
434  * @handle: Pointer to where the handle value should be assigned.
435  * @p_dma_buf: Pointer to where the refcounted struct vmw_dma_buffer pointer
436  * should be assigned.
437  */
438 int vmw_user_dmabuf_alloc(struct vmw_private *dev_priv,
439 			  struct ttm_object_file *tfile,
440 			  uint32_t size,
441 			  bool shareable,
442 			  uint32_t *handle,
443 			  struct vmw_dma_buffer **p_dma_buf,
444 			  struct ttm_base_object **p_base)
445 {
446 	struct vmw_user_dma_buffer *user_bo;
447 	struct ttm_buffer_object *tmp;
448 	int ret;
449 
450 	user_bo = kzalloc(sizeof(*user_bo), GFP_KERNEL);
451 	if (unlikely(!user_bo)) {
452 		DRM_ERROR("Failed to allocate a buffer.\n");
453 		return -ENOMEM;
454 	}
455 
456 	ret = vmw_dmabuf_init(dev_priv, &user_bo->dma, size,
457 			      (dev_priv->has_mob) ?
458 			      &vmw_sys_placement :
459 			      &vmw_vram_sys_placement, true,
460 			      &vmw_user_dmabuf_destroy);
461 	if (unlikely(ret != 0))
462 		return ret;
463 
464 	tmp = ttm_bo_reference(&user_bo->dma.base);
465 	ret = ttm_prime_object_init(tfile,
466 				    size,
467 				    &user_bo->prime,
468 				    shareable,
469 				    ttm_buffer_type,
470 				    &vmw_user_dmabuf_release,
471 				    &vmw_user_dmabuf_ref_obj_release);
472 	if (unlikely(ret != 0)) {
473 		ttm_bo_unref(&tmp);
474 		goto out_no_base_object;
475 	}
476 
477 	*p_dma_buf = &user_bo->dma;
478 	if (p_base) {
479 		*p_base = &user_bo->prime.base;
480 		kref_get(&(*p_base)->refcount);
481 	}
482 	*handle = user_bo->prime.base.hash.key;
483 
484 out_no_base_object:
485 	return ret;
486 }
487 
488 /**
489  * vmw_user_dmabuf_verify_access - verify access permissions on this
490  * buffer object.
491  *
492  * @bo: Pointer to the buffer object being accessed
493  * @tfile: Identifying the caller.
494  */
495 int vmw_user_dmabuf_verify_access(struct ttm_buffer_object *bo,
496 				  struct ttm_object_file *tfile)
497 {
498 	struct vmw_user_dma_buffer *vmw_user_bo;
499 
500 	if (unlikely(bo->destroy != vmw_user_dmabuf_destroy))
501 		return -EPERM;
502 
503 	vmw_user_bo = vmw_user_dma_buffer(bo);
504 
505 	/* Check that the caller has opened the object. */
506 	if (likely(ttm_ref_object_exists(tfile, &vmw_user_bo->prime.base)))
507 		return 0;
508 
509 	DRM_ERROR("Could not grant buffer access.\n");
510 	return -EPERM;
511 }
512 
513 /**
514  * vmw_user_dmabuf_synccpu_grab - Grab a struct vmw_user_dma_buffer for cpu
515  * access, idling previous GPU operations on the buffer and optionally
516  * blocking it for further command submissions.
517  *
518  * @user_bo: Pointer to the buffer object being grabbed for CPU access
519  * @tfile: Identifying the caller.
520  * @flags: Flags indicating how the grab should be performed.
521  *
522  * A blocking grab will be automatically released when @tfile is closed.
523  */
524 static int vmw_user_dmabuf_synccpu_grab(struct vmw_user_dma_buffer *user_bo,
525 					struct ttm_object_file *tfile,
526 					uint32_t flags)
527 {
528 	struct ttm_buffer_object *bo = &user_bo->dma.base;
529 	bool existed;
530 	int ret;
531 
532 	if (flags & drm_vmw_synccpu_allow_cs) {
533 		bool nonblock = !!(flags & drm_vmw_synccpu_dontblock);
534 		long lret;
535 
536 		lret = reservation_object_wait_timeout_rcu(bo->resv, true, true,
537 							   nonblock ? 0 : MAX_SCHEDULE_TIMEOUT);
538 		if (!lret)
539 			return -EBUSY;
540 		else if (lret < 0)
541 			return lret;
542 		return 0;
543 	}
544 
545 	ret = ttm_bo_synccpu_write_grab
546 		(bo, !!(flags & drm_vmw_synccpu_dontblock));
547 	if (unlikely(ret != 0))
548 		return ret;
549 
550 	ret = ttm_ref_object_add(tfile, &user_bo->prime.base,
551 				 TTM_REF_SYNCCPU_WRITE, &existed, false);
552 	if (ret != 0 || existed)
553 		ttm_bo_synccpu_write_release(&user_bo->dma.base);
554 
555 	return ret;
556 }
557 
558 /**
559  * vmw_user_dmabuf_synccpu_release - Release a previous grab for CPU access,
560  * and unblock command submission on the buffer if blocked.
561  *
562  * @handle: Handle identifying the buffer object.
563  * @tfile: Identifying the caller.
564  * @flags: Flags indicating the type of release.
565  */
566 static int vmw_user_dmabuf_synccpu_release(uint32_t handle,
567 					   struct ttm_object_file *tfile,
568 					   uint32_t flags)
569 {
570 	if (!(flags & drm_vmw_synccpu_allow_cs))
571 		return ttm_ref_object_base_unref(tfile, handle,
572 						 TTM_REF_SYNCCPU_WRITE);
573 
574 	return 0;
575 }
576 
577 /**
578  * vmw_user_dmabuf_synccpu_release - ioctl function implementing the synccpu
579  * functionality.
580  *
581  * @dev: Identifies the drm device.
582  * @data: Pointer to the ioctl argument.
583  * @file_priv: Identifies the caller.
584  *
585  * This function checks the ioctl arguments for validity and calls the
586  * relevant synccpu functions.
587  */
588 int vmw_user_dmabuf_synccpu_ioctl(struct drm_device *dev, void *data,
589 				  struct drm_file *file_priv)
590 {
591 	struct drm_vmw_synccpu_arg *arg =
592 		(struct drm_vmw_synccpu_arg *) data;
593 	struct vmw_dma_buffer *dma_buf;
594 	struct vmw_user_dma_buffer *user_bo;
595 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
596 	struct ttm_base_object *buffer_base;
597 	int ret;
598 
599 	if ((arg->flags & (drm_vmw_synccpu_read | drm_vmw_synccpu_write)) == 0
600 	    || (arg->flags & ~(drm_vmw_synccpu_read | drm_vmw_synccpu_write |
601 			       drm_vmw_synccpu_dontblock |
602 			       drm_vmw_synccpu_allow_cs)) != 0) {
603 		DRM_ERROR("Illegal synccpu flags.\n");
604 		return -EINVAL;
605 	}
606 
607 	switch (arg->op) {
608 	case drm_vmw_synccpu_grab:
609 		ret = vmw_user_dmabuf_lookup(tfile, arg->handle, &dma_buf,
610 					     &buffer_base);
611 		if (unlikely(ret != 0))
612 			return ret;
613 
614 		user_bo = container_of(dma_buf, struct vmw_user_dma_buffer,
615 				       dma);
616 		ret = vmw_user_dmabuf_synccpu_grab(user_bo, tfile, arg->flags);
617 		vmw_dmabuf_unreference(&dma_buf);
618 		ttm_base_object_unref(&buffer_base);
619 		if (unlikely(ret != 0 && ret != -ERESTARTSYS &&
620 			     ret != -EBUSY)) {
621 			DRM_ERROR("Failed synccpu grab on handle 0x%08x.\n",
622 				  (unsigned int) arg->handle);
623 			return ret;
624 		}
625 		break;
626 	case drm_vmw_synccpu_release:
627 		ret = vmw_user_dmabuf_synccpu_release(arg->handle, tfile,
628 						      arg->flags);
629 		if (unlikely(ret != 0)) {
630 			DRM_ERROR("Failed synccpu release on handle 0x%08x.\n",
631 				  (unsigned int) arg->handle);
632 			return ret;
633 		}
634 		break;
635 	default:
636 		DRM_ERROR("Invalid synccpu operation.\n");
637 		return -EINVAL;
638 	}
639 
640 	return 0;
641 }
642 
643 int vmw_dmabuf_alloc_ioctl(struct drm_device *dev, void *data,
644 			   struct drm_file *file_priv)
645 {
646 	struct vmw_private *dev_priv = vmw_priv(dev);
647 	union drm_vmw_alloc_dmabuf_arg *arg =
648 	    (union drm_vmw_alloc_dmabuf_arg *)data;
649 	struct drm_vmw_alloc_dmabuf_req *req = &arg->req;
650 	struct drm_vmw_dmabuf_rep *rep = &arg->rep;
651 	struct vmw_dma_buffer *dma_buf;
652 	uint32_t handle;
653 	int ret;
654 
655 	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
656 	if (unlikely(ret != 0))
657 		return ret;
658 
659 	ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
660 				    req->size, false, &handle, &dma_buf,
661 				    NULL);
662 	if (unlikely(ret != 0))
663 		goto out_no_dmabuf;
664 
665 	rep->handle = handle;
666 	rep->map_handle = drm_vma_node_offset_addr(&dma_buf->base.vma_node);
667 	rep->cur_gmr_id = handle;
668 	rep->cur_gmr_offset = 0;
669 
670 	vmw_dmabuf_unreference(&dma_buf);
671 
672 out_no_dmabuf:
673 	ttm_read_unlock(&dev_priv->reservation_sem);
674 
675 	return ret;
676 }
677 
678 int vmw_dmabuf_unref_ioctl(struct drm_device *dev, void *data,
679 			   struct drm_file *file_priv)
680 {
681 	struct drm_vmw_unref_dmabuf_arg *arg =
682 	    (struct drm_vmw_unref_dmabuf_arg *)data;
683 
684 	return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
685 					 arg->handle,
686 					 TTM_REF_USAGE);
687 }
688 
689 int vmw_user_dmabuf_lookup(struct ttm_object_file *tfile,
690 			   uint32_t handle, struct vmw_dma_buffer **out,
691 			   struct ttm_base_object **p_base)
692 {
693 	struct vmw_user_dma_buffer *vmw_user_bo;
694 	struct ttm_base_object *base;
695 
696 	base = ttm_base_object_lookup(tfile, handle);
697 	if (unlikely(base == NULL)) {
698 		pr_err("Invalid buffer object handle 0x%08lx\n",
699 		       (unsigned long)handle);
700 		return -ESRCH;
701 	}
702 
703 	if (unlikely(ttm_base_object_type(base) != ttm_buffer_type)) {
704 		ttm_base_object_unref(&base);
705 		pr_err("Invalid buffer object handle 0x%08lx\n",
706 		       (unsigned long)handle);
707 		return -EINVAL;
708 	}
709 
710 	vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
711 				   prime.base);
712 	(void)ttm_bo_reference(&vmw_user_bo->dma.base);
713 	if (p_base)
714 		*p_base = base;
715 	else
716 		ttm_base_object_unref(&base);
717 	*out = &vmw_user_bo->dma;
718 
719 	return 0;
720 }
721 
722 int vmw_user_dmabuf_reference(struct ttm_object_file *tfile,
723 			      struct vmw_dma_buffer *dma_buf,
724 			      uint32_t *handle)
725 {
726 	struct vmw_user_dma_buffer *user_bo;
727 
728 	if (dma_buf->base.destroy != vmw_user_dmabuf_destroy)
729 		return -EINVAL;
730 
731 	user_bo = container_of(dma_buf, struct vmw_user_dma_buffer, dma);
732 
733 	*handle = user_bo->prime.base.hash.key;
734 	return ttm_ref_object_add(tfile, &user_bo->prime.base,
735 				  TTM_REF_USAGE, NULL, false);
736 }
737 
738 /**
739  * vmw_dumb_create - Create a dumb kms buffer
740  *
741  * @file_priv: Pointer to a struct drm_file identifying the caller.
742  * @dev: Pointer to the drm device.
743  * @args: Pointer to a struct drm_mode_create_dumb structure
744  *
745  * This is a driver callback for the core drm create_dumb functionality.
746  * Note that this is very similar to the vmw_dmabuf_alloc ioctl, except
747  * that the arguments have a different format.
748  */
749 int vmw_dumb_create(struct drm_file *file_priv,
750 		    struct drm_device *dev,
751 		    struct drm_mode_create_dumb *args)
752 {
753 	struct vmw_private *dev_priv = vmw_priv(dev);
754 	struct vmw_dma_buffer *dma_buf;
755 	int ret;
756 
757 	args->pitch = args->width * ((args->bpp + 7) / 8);
758 	args->size = args->pitch * args->height;
759 
760 	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
761 	if (unlikely(ret != 0))
762 		return ret;
763 
764 	ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
765 				    args->size, false, &args->handle,
766 				    &dma_buf, NULL);
767 	if (unlikely(ret != 0))
768 		goto out_no_dmabuf;
769 
770 	vmw_dmabuf_unreference(&dma_buf);
771 out_no_dmabuf:
772 	ttm_read_unlock(&dev_priv->reservation_sem);
773 	return ret;
774 }
775 
776 /**
777  * vmw_dumb_map_offset - Return the address space offset of a dumb buffer
778  *
779  * @file_priv: Pointer to a struct drm_file identifying the caller.
780  * @dev: Pointer to the drm device.
781  * @handle: Handle identifying the dumb buffer.
782  * @offset: The address space offset returned.
783  *
784  * This is a driver callback for the core drm dumb_map_offset functionality.
785  */
786 int vmw_dumb_map_offset(struct drm_file *file_priv,
787 			struct drm_device *dev, uint32_t handle,
788 			uint64_t *offset)
789 {
790 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
791 	struct vmw_dma_buffer *out_buf;
792 	int ret;
793 
794 	ret = vmw_user_dmabuf_lookup(tfile, handle, &out_buf, NULL);
795 	if (ret != 0)
796 		return -EINVAL;
797 
798 	*offset = drm_vma_node_offset_addr(&out_buf->base.vma_node);
799 	vmw_dmabuf_unreference(&out_buf);
800 	return 0;
801 }
802 
803 /**
804  * vmw_dumb_destroy - Destroy a dumb boffer
805  *
806  * @file_priv: Pointer to a struct drm_file identifying the caller.
807  * @dev: Pointer to the drm device.
808  * @handle: Handle identifying the dumb buffer.
809  *
810  * This is a driver callback for the core drm dumb_destroy functionality.
811  */
812 int vmw_dumb_destroy(struct drm_file *file_priv,
813 		     struct drm_device *dev,
814 		     uint32_t handle)
815 {
816 	return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
817 					 handle, TTM_REF_USAGE);
818 }
819 
820 /**
821  * vmw_resource_buf_alloc - Allocate a backup buffer for a resource.
822  *
823  * @res:            The resource for which to allocate a backup buffer.
824  * @interruptible:  Whether any sleeps during allocation should be
825  *                  performed while interruptible.
826  */
827 static int vmw_resource_buf_alloc(struct vmw_resource *res,
828 				  bool interruptible)
829 {
830 	unsigned long size =
831 		(res->backup_size + PAGE_SIZE - 1) & PAGE_MASK;
832 	struct vmw_dma_buffer *backup;
833 	int ret;
834 
835 	if (likely(res->backup)) {
836 		BUG_ON(res->backup->base.num_pages * PAGE_SIZE < size);
837 		return 0;
838 	}
839 
840 	backup = kzalloc(sizeof(*backup), GFP_KERNEL);
841 	if (unlikely(!backup))
842 		return -ENOMEM;
843 
844 	ret = vmw_dmabuf_init(res->dev_priv, backup, res->backup_size,
845 			      res->func->backup_placement,
846 			      interruptible,
847 			      &vmw_dmabuf_bo_free);
848 	if (unlikely(ret != 0))
849 		goto out_no_dmabuf;
850 
851 	res->backup = backup;
852 
853 out_no_dmabuf:
854 	return ret;
855 }
856 
857 /**
858  * vmw_resource_do_validate - Make a resource up-to-date and visible
859  *                            to the device.
860  *
861  * @res:            The resource to make visible to the device.
862  * @val_buf:        Information about a buffer possibly
863  *                  containing backup data if a bind operation is needed.
864  *
865  * On hardware resource shortage, this function returns -EBUSY and
866  * should be retried once resources have been freed up.
867  */
868 static int vmw_resource_do_validate(struct vmw_resource *res,
869 				    struct ttm_validate_buffer *val_buf)
870 {
871 	int ret = 0;
872 	const struct vmw_res_func *func = res->func;
873 
874 	if (unlikely(res->id == -1)) {
875 		ret = func->create(res);
876 		if (unlikely(ret != 0))
877 			return ret;
878 	}
879 
880 	if (func->bind &&
881 	    ((func->needs_backup && list_empty(&res->mob_head) &&
882 	      val_buf->bo != NULL) ||
883 	     (!func->needs_backup && val_buf->bo != NULL))) {
884 		ret = func->bind(res, val_buf);
885 		if (unlikely(ret != 0))
886 			goto out_bind_failed;
887 		if (func->needs_backup)
888 			list_add_tail(&res->mob_head, &res->backup->res_list);
889 	}
890 
891 	/*
892 	 * Only do this on write operations, and move to
893 	 * vmw_resource_unreserve if it can be called after
894 	 * backup buffers have been unreserved. Otherwise
895 	 * sort out locking.
896 	 */
897 	res->res_dirty = true;
898 
899 	return 0;
900 
901 out_bind_failed:
902 	func->destroy(res);
903 
904 	return ret;
905 }
906 
907 /**
908  * vmw_resource_unreserve - Unreserve a resource previously reserved for
909  * command submission.
910  *
911  * @res:               Pointer to the struct vmw_resource to unreserve.
912  * @switch_backup:     Backup buffer has been switched.
913  * @new_backup:        Pointer to new backup buffer if command submission
914  *                     switched. May be NULL.
915  * @new_backup_offset: New backup offset if @switch_backup is true.
916  *
917  * Currently unreserving a resource means putting it back on the device's
918  * resource lru list, so that it can be evicted if necessary.
919  */
920 void vmw_resource_unreserve(struct vmw_resource *res,
921 			    bool switch_backup,
922 			    struct vmw_dma_buffer *new_backup,
923 			    unsigned long new_backup_offset)
924 {
925 	struct vmw_private *dev_priv = res->dev_priv;
926 
927 	if (!list_empty(&res->lru_head))
928 		return;
929 
930 	if (switch_backup && new_backup != res->backup) {
931 		if (res->backup) {
932 			lockdep_assert_held(&res->backup->base.resv->lock.base);
933 			list_del_init(&res->mob_head);
934 			vmw_dmabuf_unreference(&res->backup);
935 		}
936 
937 		if (new_backup) {
938 			res->backup = vmw_dmabuf_reference(new_backup);
939 			lockdep_assert_held(&new_backup->base.resv->lock.base);
940 			list_add_tail(&res->mob_head, &new_backup->res_list);
941 		} else {
942 			res->backup = NULL;
943 		}
944 	}
945 	if (switch_backup)
946 		res->backup_offset = new_backup_offset;
947 
948 	if (!res->func->may_evict || res->id == -1 || res->pin_count)
949 		return;
950 
951 	write_lock(&dev_priv->resource_lock);
952 	list_add_tail(&res->lru_head,
953 		      &res->dev_priv->res_lru[res->func->res_type]);
954 	write_unlock(&dev_priv->resource_lock);
955 }
956 
957 /**
958  * vmw_resource_check_buffer - Check whether a backup buffer is needed
959  *                             for a resource and in that case, allocate
960  *                             one, reserve and validate it.
961  *
962  * @res:            The resource for which to allocate a backup buffer.
963  * @interruptible:  Whether any sleeps during allocation should be
964  *                  performed while interruptible.
965  * @val_buf:        On successful return contains data about the
966  *                  reserved and validated backup buffer.
967  */
968 static int
969 vmw_resource_check_buffer(struct vmw_resource *res,
970 			  bool interruptible,
971 			  struct ttm_validate_buffer *val_buf)
972 {
973 	struct ttm_operation_ctx ctx = { true, false };
974 	struct list_head val_list;
975 	bool backup_dirty = false;
976 	int ret;
977 
978 	if (unlikely(res->backup == NULL)) {
979 		ret = vmw_resource_buf_alloc(res, interruptible);
980 		if (unlikely(ret != 0))
981 			return ret;
982 	}
983 
984 	INIT_LIST_HEAD(&val_list);
985 	val_buf->bo = ttm_bo_reference(&res->backup->base);
986 	val_buf->shared = false;
987 	list_add_tail(&val_buf->head, &val_list);
988 	ret = ttm_eu_reserve_buffers(NULL, &val_list, interruptible, NULL);
989 	if (unlikely(ret != 0))
990 		goto out_no_reserve;
991 
992 	if (res->func->needs_backup && list_empty(&res->mob_head))
993 		return 0;
994 
995 	backup_dirty = res->backup_dirty;
996 	ret = ttm_bo_validate(&res->backup->base,
997 			      res->func->backup_placement,
998 			      &ctx);
999 
1000 	if (unlikely(ret != 0))
1001 		goto out_no_validate;
1002 
1003 	return 0;
1004 
1005 out_no_validate:
1006 	ttm_eu_backoff_reservation(NULL, &val_list);
1007 out_no_reserve:
1008 	ttm_bo_unref(&val_buf->bo);
1009 	if (backup_dirty)
1010 		vmw_dmabuf_unreference(&res->backup);
1011 
1012 	return ret;
1013 }
1014 
1015 /**
1016  * vmw_resource_reserve - Reserve a resource for command submission
1017  *
1018  * @res:            The resource to reserve.
1019  *
1020  * This function takes the resource off the LRU list and make sure
1021  * a backup buffer is present for guest-backed resources. However,
1022  * the buffer may not be bound to the resource at this point.
1023  *
1024  */
1025 int vmw_resource_reserve(struct vmw_resource *res, bool interruptible,
1026 			 bool no_backup)
1027 {
1028 	struct vmw_private *dev_priv = res->dev_priv;
1029 	int ret;
1030 
1031 	write_lock(&dev_priv->resource_lock);
1032 	list_del_init(&res->lru_head);
1033 	write_unlock(&dev_priv->resource_lock);
1034 
1035 	if (res->func->needs_backup && res->backup == NULL &&
1036 	    !no_backup) {
1037 		ret = vmw_resource_buf_alloc(res, interruptible);
1038 		if (unlikely(ret != 0)) {
1039 			DRM_ERROR("Failed to allocate a backup buffer "
1040 				  "of size %lu. bytes\n",
1041 				  (unsigned long) res->backup_size);
1042 			return ret;
1043 		}
1044 	}
1045 
1046 	return 0;
1047 }
1048 
1049 /**
1050  * vmw_resource_backoff_reservation - Unreserve and unreference a
1051  *                                    backup buffer
1052  *.
1053  * @val_buf:        Backup buffer information.
1054  */
1055 static void
1056 vmw_resource_backoff_reservation(struct ttm_validate_buffer *val_buf)
1057 {
1058 	struct list_head val_list;
1059 
1060 	if (likely(val_buf->bo == NULL))
1061 		return;
1062 
1063 	INIT_LIST_HEAD(&val_list);
1064 	list_add_tail(&val_buf->head, &val_list);
1065 	ttm_eu_backoff_reservation(NULL, &val_list);
1066 	ttm_bo_unref(&val_buf->bo);
1067 }
1068 
1069 /**
1070  * vmw_resource_do_evict - Evict a resource, and transfer its data
1071  *                         to a backup buffer.
1072  *
1073  * @res:            The resource to evict.
1074  * @interruptible:  Whether to wait interruptible.
1075  */
1076 static int vmw_resource_do_evict(struct vmw_resource *res, bool interruptible)
1077 {
1078 	struct ttm_validate_buffer val_buf;
1079 	const struct vmw_res_func *func = res->func;
1080 	int ret;
1081 
1082 	BUG_ON(!func->may_evict);
1083 
1084 	val_buf.bo = NULL;
1085 	val_buf.shared = false;
1086 	ret = vmw_resource_check_buffer(res, interruptible, &val_buf);
1087 	if (unlikely(ret != 0))
1088 		return ret;
1089 
1090 	if (unlikely(func->unbind != NULL &&
1091 		     (!func->needs_backup || !list_empty(&res->mob_head)))) {
1092 		ret = func->unbind(res, res->res_dirty, &val_buf);
1093 		if (unlikely(ret != 0))
1094 			goto out_no_unbind;
1095 		list_del_init(&res->mob_head);
1096 	}
1097 	ret = func->destroy(res);
1098 	res->backup_dirty = true;
1099 	res->res_dirty = false;
1100 out_no_unbind:
1101 	vmw_resource_backoff_reservation(&val_buf);
1102 
1103 	return ret;
1104 }
1105 
1106 
1107 /**
1108  * vmw_resource_validate - Make a resource up-to-date and visible
1109  *                         to the device.
1110  *
1111  * @res:            The resource to make visible to the device.
1112  *
1113  * On succesful return, any backup DMA buffer pointed to by @res->backup will
1114  * be reserved and validated.
1115  * On hardware resource shortage, this function will repeatedly evict
1116  * resources of the same type until the validation succeeds.
1117  */
1118 int vmw_resource_validate(struct vmw_resource *res)
1119 {
1120 	int ret;
1121 	struct vmw_resource *evict_res;
1122 	struct vmw_private *dev_priv = res->dev_priv;
1123 	struct list_head *lru_list = &dev_priv->res_lru[res->func->res_type];
1124 	struct ttm_validate_buffer val_buf;
1125 	unsigned err_count = 0;
1126 
1127 	if (!res->func->create)
1128 		return 0;
1129 
1130 	val_buf.bo = NULL;
1131 	val_buf.shared = false;
1132 	if (res->backup)
1133 		val_buf.bo = &res->backup->base;
1134 	do {
1135 		ret = vmw_resource_do_validate(res, &val_buf);
1136 		if (likely(ret != -EBUSY))
1137 			break;
1138 
1139 		write_lock(&dev_priv->resource_lock);
1140 		if (list_empty(lru_list) || !res->func->may_evict) {
1141 			DRM_ERROR("Out of device device resources "
1142 				  "for %s.\n", res->func->type_name);
1143 			ret = -EBUSY;
1144 			write_unlock(&dev_priv->resource_lock);
1145 			break;
1146 		}
1147 
1148 		evict_res = vmw_resource_reference
1149 			(list_first_entry(lru_list, struct vmw_resource,
1150 					  lru_head));
1151 		list_del_init(&evict_res->lru_head);
1152 
1153 		write_unlock(&dev_priv->resource_lock);
1154 
1155 		ret = vmw_resource_do_evict(evict_res, true);
1156 		if (unlikely(ret != 0)) {
1157 			write_lock(&dev_priv->resource_lock);
1158 			list_add_tail(&evict_res->lru_head, lru_list);
1159 			write_unlock(&dev_priv->resource_lock);
1160 			if (ret == -ERESTARTSYS ||
1161 			    ++err_count > VMW_RES_EVICT_ERR_COUNT) {
1162 				vmw_resource_unreference(&evict_res);
1163 				goto out_no_validate;
1164 			}
1165 		}
1166 
1167 		vmw_resource_unreference(&evict_res);
1168 	} while (1);
1169 
1170 	if (unlikely(ret != 0))
1171 		goto out_no_validate;
1172 	else if (!res->func->needs_backup && res->backup) {
1173 		list_del_init(&res->mob_head);
1174 		vmw_dmabuf_unreference(&res->backup);
1175 	}
1176 
1177 	return 0;
1178 
1179 out_no_validate:
1180 	return ret;
1181 }
1182 
1183 /**
1184  * vmw_fence_single_bo - Utility function to fence a single TTM buffer
1185  *                       object without unreserving it.
1186  *
1187  * @bo:             Pointer to the struct ttm_buffer_object to fence.
1188  * @fence:          Pointer to the fence. If NULL, this function will
1189  *                  insert a fence into the command stream..
1190  *
1191  * Contrary to the ttm_eu version of this function, it takes only
1192  * a single buffer object instead of a list, and it also doesn't
1193  * unreserve the buffer object, which needs to be done separately.
1194  */
1195 void vmw_fence_single_bo(struct ttm_buffer_object *bo,
1196 			 struct vmw_fence_obj *fence)
1197 {
1198 	struct ttm_bo_device *bdev = bo->bdev;
1199 
1200 	struct vmw_private *dev_priv =
1201 		container_of(bdev, struct vmw_private, bdev);
1202 
1203 	if (fence == NULL) {
1204 		vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
1205 		reservation_object_add_excl_fence(bo->resv, &fence->base);
1206 		dma_fence_put(&fence->base);
1207 	} else
1208 		reservation_object_add_excl_fence(bo->resv, &fence->base);
1209 }
1210 
1211 /**
1212  * vmw_resource_move_notify - TTM move_notify_callback
1213  *
1214  * @bo: The TTM buffer object about to move.
1215  * @mem: The struct ttm_mem_reg indicating to what memory
1216  *       region the move is taking place.
1217  *
1218  * Evicts the Guest Backed hardware resource if the backup
1219  * buffer is being moved out of MOB memory.
1220  * Note that this function should not race with the resource
1221  * validation code as long as it accesses only members of struct
1222  * resource that remain static while bo::res is !NULL and
1223  * while we have @bo reserved. struct resource::backup is *not* a
1224  * static member. The resource validation code will take care
1225  * to set @bo::res to NULL, while having @bo reserved when the
1226  * buffer is no longer bound to the resource, so @bo:res can be
1227  * used to determine whether there is a need to unbind and whether
1228  * it is safe to unbind.
1229  */
1230 void vmw_resource_move_notify(struct ttm_buffer_object *bo,
1231 			      struct ttm_mem_reg *mem)
1232 {
1233 	struct vmw_dma_buffer *dma_buf;
1234 
1235 	if (mem == NULL)
1236 		return;
1237 
1238 	if (bo->destroy != vmw_dmabuf_bo_free &&
1239 	    bo->destroy != vmw_user_dmabuf_destroy)
1240 		return;
1241 
1242 	dma_buf = container_of(bo, struct vmw_dma_buffer, base);
1243 
1244 	/*
1245 	 * Kill any cached kernel maps before move. An optimization could
1246 	 * be to do this iff source or destination memory type is VRAM.
1247 	 */
1248 	vmw_dma_buffer_unmap(dma_buf);
1249 
1250 	if (mem->mem_type != VMW_PL_MOB) {
1251 		struct vmw_resource *res, *n;
1252 		struct ttm_validate_buffer val_buf;
1253 
1254 		val_buf.bo = bo;
1255 		val_buf.shared = false;
1256 
1257 		list_for_each_entry_safe(res, n, &dma_buf->res_list, mob_head) {
1258 
1259 			if (unlikely(res->func->unbind == NULL))
1260 				continue;
1261 
1262 			(void) res->func->unbind(res, true, &val_buf);
1263 			res->backup_dirty = true;
1264 			res->res_dirty = false;
1265 			list_del_init(&res->mob_head);
1266 		}
1267 
1268 		(void) ttm_bo_wait(bo, false, false);
1269 	}
1270 }
1271 
1272 
1273 /**
1274  * vmw_resource_swap_notify - swapout notify callback.
1275  *
1276  * @bo: The buffer object to be swapped out.
1277  */
1278 void vmw_resource_swap_notify(struct ttm_buffer_object *bo)
1279 {
1280 	if (bo->destroy != vmw_dmabuf_bo_free &&
1281 	    bo->destroy != vmw_user_dmabuf_destroy)
1282 		return;
1283 
1284 	/* Kill any cached kernel maps before swapout */
1285 	vmw_dma_buffer_unmap(vmw_dma_buffer(bo));
1286 }
1287 
1288 
1289 /**
1290  * vmw_query_readback_all - Read back cached query states
1291  *
1292  * @dx_query_mob: Buffer containing the DX query MOB
1293  *
1294  * Read back cached states from the device if they exist.  This function
1295  * assumings binding_mutex is held.
1296  */
1297 int vmw_query_readback_all(struct vmw_dma_buffer *dx_query_mob)
1298 {
1299 	struct vmw_resource *dx_query_ctx;
1300 	struct vmw_private *dev_priv;
1301 	struct {
1302 		SVGA3dCmdHeader header;
1303 		SVGA3dCmdDXReadbackAllQuery body;
1304 	} *cmd;
1305 
1306 
1307 	/* No query bound, so do nothing */
1308 	if (!dx_query_mob || !dx_query_mob->dx_query_ctx)
1309 		return 0;
1310 
1311 	dx_query_ctx = dx_query_mob->dx_query_ctx;
1312 	dev_priv     = dx_query_ctx->dev_priv;
1313 
1314 	cmd = vmw_fifo_reserve_dx(dev_priv, sizeof(*cmd), dx_query_ctx->id);
1315 	if (unlikely(cmd == NULL)) {
1316 		DRM_ERROR("Failed reserving FIFO space for "
1317 			  "query MOB read back.\n");
1318 		return -ENOMEM;
1319 	}
1320 
1321 	cmd->header.id   = SVGA_3D_CMD_DX_READBACK_ALL_QUERY;
1322 	cmd->header.size = sizeof(cmd->body);
1323 	cmd->body.cid    = dx_query_ctx->id;
1324 
1325 	vmw_fifo_commit(dev_priv, sizeof(*cmd));
1326 
1327 	/* Triggers a rebind the next time affected context is bound */
1328 	dx_query_mob->dx_query_ctx = NULL;
1329 
1330 	return 0;
1331 }
1332 
1333 
1334 
1335 /**
1336  * vmw_query_move_notify - Read back cached query states
1337  *
1338  * @bo: The TTM buffer object about to move.
1339  * @mem: The memory region @bo is moving to.
1340  *
1341  * Called before the query MOB is swapped out to read back cached query
1342  * states from the device.
1343  */
1344 void vmw_query_move_notify(struct ttm_buffer_object *bo,
1345 			   struct ttm_mem_reg *mem)
1346 {
1347 	struct vmw_dma_buffer *dx_query_mob;
1348 	struct ttm_bo_device *bdev = bo->bdev;
1349 	struct vmw_private *dev_priv;
1350 
1351 
1352 	dev_priv = container_of(bdev, struct vmw_private, bdev);
1353 
1354 	mutex_lock(&dev_priv->binding_mutex);
1355 
1356 	dx_query_mob = container_of(bo, struct vmw_dma_buffer, base);
1357 	if (mem == NULL || !dx_query_mob || !dx_query_mob->dx_query_ctx) {
1358 		mutex_unlock(&dev_priv->binding_mutex);
1359 		return;
1360 	}
1361 
1362 	/* If BO is being moved from MOB to system memory */
1363 	if (mem->mem_type == TTM_PL_SYSTEM && bo->mem.mem_type == VMW_PL_MOB) {
1364 		struct vmw_fence_obj *fence;
1365 
1366 		(void) vmw_query_readback_all(dx_query_mob);
1367 		mutex_unlock(&dev_priv->binding_mutex);
1368 
1369 		/* Create a fence and attach the BO to it */
1370 		(void) vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
1371 		vmw_fence_single_bo(bo, fence);
1372 
1373 		if (fence != NULL)
1374 			vmw_fence_obj_unreference(&fence);
1375 
1376 		(void) ttm_bo_wait(bo, false, false);
1377 	} else
1378 		mutex_unlock(&dev_priv->binding_mutex);
1379 
1380 }
1381 
1382 /**
1383  * vmw_resource_needs_backup - Return whether a resource needs a backup buffer.
1384  *
1385  * @res:            The resource being queried.
1386  */
1387 bool vmw_resource_needs_backup(const struct vmw_resource *res)
1388 {
1389 	return res->func->needs_backup;
1390 }
1391 
1392 /**
1393  * vmw_resource_evict_type - Evict all resources of a specific type
1394  *
1395  * @dev_priv:       Pointer to a device private struct
1396  * @type:           The resource type to evict
1397  *
1398  * To avoid thrashing starvation or as part of the hibernation sequence,
1399  * try to evict all evictable resources of a specific type.
1400  */
1401 static void vmw_resource_evict_type(struct vmw_private *dev_priv,
1402 				    enum vmw_res_type type)
1403 {
1404 	struct list_head *lru_list = &dev_priv->res_lru[type];
1405 	struct vmw_resource *evict_res;
1406 	unsigned err_count = 0;
1407 	int ret;
1408 
1409 	do {
1410 		write_lock(&dev_priv->resource_lock);
1411 
1412 		if (list_empty(lru_list))
1413 			goto out_unlock;
1414 
1415 		evict_res = vmw_resource_reference(
1416 			list_first_entry(lru_list, struct vmw_resource,
1417 					 lru_head));
1418 		list_del_init(&evict_res->lru_head);
1419 		write_unlock(&dev_priv->resource_lock);
1420 
1421 		ret = vmw_resource_do_evict(evict_res, false);
1422 		if (unlikely(ret != 0)) {
1423 			write_lock(&dev_priv->resource_lock);
1424 			list_add_tail(&evict_res->lru_head, lru_list);
1425 			write_unlock(&dev_priv->resource_lock);
1426 			if (++err_count > VMW_RES_EVICT_ERR_COUNT) {
1427 				vmw_resource_unreference(&evict_res);
1428 				return;
1429 			}
1430 		}
1431 
1432 		vmw_resource_unreference(&evict_res);
1433 	} while (1);
1434 
1435 out_unlock:
1436 	write_unlock(&dev_priv->resource_lock);
1437 }
1438 
1439 /**
1440  * vmw_resource_evict_all - Evict all evictable resources
1441  *
1442  * @dev_priv:       Pointer to a device private struct
1443  *
1444  * To avoid thrashing starvation or as part of the hibernation sequence,
1445  * evict all evictable resources. In particular this means that all
1446  * guest-backed resources that are registered with the device are
1447  * evicted and the OTable becomes clean.
1448  */
1449 void vmw_resource_evict_all(struct vmw_private *dev_priv)
1450 {
1451 	enum vmw_res_type type;
1452 
1453 	mutex_lock(&dev_priv->cmdbuf_mutex);
1454 
1455 	for (type = 0; type < vmw_res_max; ++type)
1456 		vmw_resource_evict_type(dev_priv, type);
1457 
1458 	mutex_unlock(&dev_priv->cmdbuf_mutex);
1459 }
1460 
1461 /**
1462  * vmw_resource_pin - Add a pin reference on a resource
1463  *
1464  * @res: The resource to add a pin reference on
1465  *
1466  * This function adds a pin reference, and if needed validates the resource.
1467  * Having a pin reference means that the resource can never be evicted, and
1468  * its id will never change as long as there is a pin reference.
1469  * This function returns 0 on success and a negative error code on failure.
1470  */
1471 int vmw_resource_pin(struct vmw_resource *res, bool interruptible)
1472 {
1473 	struct ttm_operation_ctx ctx = { interruptible, false };
1474 	struct vmw_private *dev_priv = res->dev_priv;
1475 	int ret;
1476 
1477 	ttm_write_lock(&dev_priv->reservation_sem, interruptible);
1478 	mutex_lock(&dev_priv->cmdbuf_mutex);
1479 	ret = vmw_resource_reserve(res, interruptible, false);
1480 	if (ret)
1481 		goto out_no_reserve;
1482 
1483 	if (res->pin_count == 0) {
1484 		struct vmw_dma_buffer *vbo = NULL;
1485 
1486 		if (res->backup) {
1487 			vbo = res->backup;
1488 
1489 			ttm_bo_reserve(&vbo->base, interruptible, false, NULL);
1490 			if (!vbo->pin_count) {
1491 				ret = ttm_bo_validate
1492 					(&vbo->base,
1493 					 res->func->backup_placement,
1494 					 &ctx);
1495 				if (ret) {
1496 					ttm_bo_unreserve(&vbo->base);
1497 					goto out_no_validate;
1498 				}
1499 			}
1500 
1501 			/* Do we really need to pin the MOB as well? */
1502 			vmw_bo_pin_reserved(vbo, true);
1503 		}
1504 		ret = vmw_resource_validate(res);
1505 		if (vbo)
1506 			ttm_bo_unreserve(&vbo->base);
1507 		if (ret)
1508 			goto out_no_validate;
1509 	}
1510 	res->pin_count++;
1511 
1512 out_no_validate:
1513 	vmw_resource_unreserve(res, false, NULL, 0UL);
1514 out_no_reserve:
1515 	mutex_unlock(&dev_priv->cmdbuf_mutex);
1516 	ttm_write_unlock(&dev_priv->reservation_sem);
1517 
1518 	return ret;
1519 }
1520 
1521 /**
1522  * vmw_resource_unpin - Remove a pin reference from a resource
1523  *
1524  * @res: The resource to remove a pin reference from
1525  *
1526  * Having a pin reference means that the resource can never be evicted, and
1527  * its id will never change as long as there is a pin reference.
1528  */
1529 void vmw_resource_unpin(struct vmw_resource *res)
1530 {
1531 	struct vmw_private *dev_priv = res->dev_priv;
1532 	int ret;
1533 
1534 	(void) ttm_read_lock(&dev_priv->reservation_sem, false);
1535 	mutex_lock(&dev_priv->cmdbuf_mutex);
1536 
1537 	ret = vmw_resource_reserve(res, false, true);
1538 	WARN_ON(ret);
1539 
1540 	WARN_ON(res->pin_count == 0);
1541 	if (--res->pin_count == 0 && res->backup) {
1542 		struct vmw_dma_buffer *vbo = res->backup;
1543 
1544 		(void) ttm_bo_reserve(&vbo->base, false, false, NULL);
1545 		vmw_bo_pin_reserved(vbo, false);
1546 		ttm_bo_unreserve(&vbo->base);
1547 	}
1548 
1549 	vmw_resource_unreserve(res, false, NULL, 0UL);
1550 
1551 	mutex_unlock(&dev_priv->cmdbuf_mutex);
1552 	ttm_read_unlock(&dev_priv->reservation_sem);
1553 }
1554 
1555 /**
1556  * vmw_res_type - Return the resource type
1557  *
1558  * @res: Pointer to the resource
1559  */
1560 enum vmw_res_type vmw_res_type(const struct vmw_resource *res)
1561 {
1562 	return res->func->res_type;
1563 }
1564