1 /************************************************************************** 2 * 3 * Copyright © 2009 VMware, Inc., Palo Alto, CA., USA 4 * All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 28 #include "vmwgfx_drv.h" 29 #include <drm/vmwgfx_drm.h> 30 #include <drm/ttm/ttm_object.h> 31 #include <drm/ttm/ttm_placement.h> 32 #include <drm/drmP.h> 33 #include "vmwgfx_resource_priv.h" 34 35 #define VMW_RES_EVICT_ERR_COUNT 10 36 37 struct vmw_user_dma_buffer { 38 struct ttm_prime_object prime; 39 struct vmw_dma_buffer dma; 40 }; 41 42 struct vmw_bo_user_rep { 43 uint32_t handle; 44 uint64_t map_handle; 45 }; 46 47 struct vmw_stream { 48 struct vmw_resource res; 49 uint32_t stream_id; 50 }; 51 52 struct vmw_user_stream { 53 struct ttm_base_object base; 54 struct vmw_stream stream; 55 }; 56 57 58 static uint64_t vmw_user_stream_size; 59 60 static const struct vmw_res_func vmw_stream_func = { 61 .res_type = vmw_res_stream, 62 .needs_backup = false, 63 .may_evict = false, 64 .type_name = "video streams", 65 .backup_placement = NULL, 66 .create = NULL, 67 .destroy = NULL, 68 .bind = NULL, 69 .unbind = NULL 70 }; 71 72 static inline struct vmw_dma_buffer * 73 vmw_dma_buffer(struct ttm_buffer_object *bo) 74 { 75 return container_of(bo, struct vmw_dma_buffer, base); 76 } 77 78 static inline struct vmw_user_dma_buffer * 79 vmw_user_dma_buffer(struct ttm_buffer_object *bo) 80 { 81 struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo); 82 return container_of(vmw_bo, struct vmw_user_dma_buffer, dma); 83 } 84 85 struct vmw_resource *vmw_resource_reference(struct vmw_resource *res) 86 { 87 kref_get(&res->kref); 88 return res; 89 } 90 91 struct vmw_resource * 92 vmw_resource_reference_unless_doomed(struct vmw_resource *res) 93 { 94 return kref_get_unless_zero(&res->kref) ? res : NULL; 95 } 96 97 /** 98 * vmw_resource_release_id - release a resource id to the id manager. 99 * 100 * @res: Pointer to the resource. 101 * 102 * Release the resource id to the resource id manager and set it to -1 103 */ 104 void vmw_resource_release_id(struct vmw_resource *res) 105 { 106 struct vmw_private *dev_priv = res->dev_priv; 107 struct idr *idr = &dev_priv->res_idr[res->func->res_type]; 108 109 write_lock(&dev_priv->resource_lock); 110 if (res->id != -1) 111 idr_remove(idr, res->id); 112 res->id = -1; 113 write_unlock(&dev_priv->resource_lock); 114 } 115 116 static void vmw_resource_release(struct kref *kref) 117 { 118 struct vmw_resource *res = 119 container_of(kref, struct vmw_resource, kref); 120 struct vmw_private *dev_priv = res->dev_priv; 121 int id; 122 struct idr *idr = &dev_priv->res_idr[res->func->res_type]; 123 124 res->avail = false; 125 list_del_init(&res->lru_head); 126 write_unlock(&dev_priv->resource_lock); 127 if (res->backup) { 128 struct ttm_buffer_object *bo = &res->backup->base; 129 130 ttm_bo_reserve(bo, false, false, false, 0); 131 if (!list_empty(&res->mob_head) && 132 res->func->unbind != NULL) { 133 struct ttm_validate_buffer val_buf; 134 135 val_buf.bo = bo; 136 res->func->unbind(res, false, &val_buf); 137 } 138 res->backup_dirty = false; 139 list_del_init(&res->mob_head); 140 ttm_bo_unreserve(bo); 141 vmw_dmabuf_unreference(&res->backup); 142 } 143 144 if (likely(res->hw_destroy != NULL)) { 145 res->hw_destroy(res); 146 mutex_lock(&dev_priv->binding_mutex); 147 vmw_context_binding_res_list_kill(&res->binding_head); 148 mutex_unlock(&dev_priv->binding_mutex); 149 } 150 151 id = res->id; 152 if (res->res_free != NULL) 153 res->res_free(res); 154 else 155 kfree(res); 156 157 write_lock(&dev_priv->resource_lock); 158 159 if (id != -1) 160 idr_remove(idr, id); 161 } 162 163 void vmw_resource_unreference(struct vmw_resource **p_res) 164 { 165 struct vmw_resource *res = *p_res; 166 struct vmw_private *dev_priv = res->dev_priv; 167 168 *p_res = NULL; 169 write_lock(&dev_priv->resource_lock); 170 kref_put(&res->kref, vmw_resource_release); 171 write_unlock(&dev_priv->resource_lock); 172 } 173 174 175 /** 176 * vmw_resource_alloc_id - release a resource id to the id manager. 177 * 178 * @res: Pointer to the resource. 179 * 180 * Allocate the lowest free resource from the resource manager, and set 181 * @res->id to that id. Returns 0 on success and -ENOMEM on failure. 182 */ 183 int vmw_resource_alloc_id(struct vmw_resource *res) 184 { 185 struct vmw_private *dev_priv = res->dev_priv; 186 int ret; 187 struct idr *idr = &dev_priv->res_idr[res->func->res_type]; 188 189 BUG_ON(res->id != -1); 190 191 idr_preload(GFP_KERNEL); 192 write_lock(&dev_priv->resource_lock); 193 194 ret = idr_alloc(idr, res, 1, 0, GFP_NOWAIT); 195 if (ret >= 0) 196 res->id = ret; 197 198 write_unlock(&dev_priv->resource_lock); 199 idr_preload_end(); 200 return ret < 0 ? ret : 0; 201 } 202 203 /** 204 * vmw_resource_init - initialize a struct vmw_resource 205 * 206 * @dev_priv: Pointer to a device private struct. 207 * @res: The struct vmw_resource to initialize. 208 * @obj_type: Resource object type. 209 * @delay_id: Boolean whether to defer device id allocation until 210 * the first validation. 211 * @res_free: Resource destructor. 212 * @func: Resource function table. 213 */ 214 int vmw_resource_init(struct vmw_private *dev_priv, struct vmw_resource *res, 215 bool delay_id, 216 void (*res_free) (struct vmw_resource *res), 217 const struct vmw_res_func *func) 218 { 219 kref_init(&res->kref); 220 res->hw_destroy = NULL; 221 res->res_free = res_free; 222 res->avail = false; 223 res->dev_priv = dev_priv; 224 res->func = func; 225 INIT_LIST_HEAD(&res->lru_head); 226 INIT_LIST_HEAD(&res->mob_head); 227 INIT_LIST_HEAD(&res->binding_head); 228 res->id = -1; 229 res->backup = NULL; 230 res->backup_offset = 0; 231 res->backup_dirty = false; 232 res->res_dirty = false; 233 if (delay_id) 234 return 0; 235 else 236 return vmw_resource_alloc_id(res); 237 } 238 239 /** 240 * vmw_resource_activate 241 * 242 * @res: Pointer to the newly created resource 243 * @hw_destroy: Destroy function. NULL if none. 244 * 245 * Activate a resource after the hardware has been made aware of it. 246 * Set tye destroy function to @destroy. Typically this frees the 247 * resource and destroys the hardware resources associated with it. 248 * Activate basically means that the function vmw_resource_lookup will 249 * find it. 250 */ 251 void vmw_resource_activate(struct vmw_resource *res, 252 void (*hw_destroy) (struct vmw_resource *)) 253 { 254 struct vmw_private *dev_priv = res->dev_priv; 255 256 write_lock(&dev_priv->resource_lock); 257 res->avail = true; 258 res->hw_destroy = hw_destroy; 259 write_unlock(&dev_priv->resource_lock); 260 } 261 262 struct vmw_resource *vmw_resource_lookup(struct vmw_private *dev_priv, 263 struct idr *idr, int id) 264 { 265 struct vmw_resource *res; 266 267 read_lock(&dev_priv->resource_lock); 268 res = idr_find(idr, id); 269 if (res && res->avail) 270 kref_get(&res->kref); 271 else 272 res = NULL; 273 read_unlock(&dev_priv->resource_lock); 274 275 if (unlikely(res == NULL)) 276 return NULL; 277 278 return res; 279 } 280 281 /** 282 * vmw_user_resource_lookup_handle - lookup a struct resource from a 283 * TTM user-space handle and perform basic type checks 284 * 285 * @dev_priv: Pointer to a device private struct 286 * @tfile: Pointer to a struct ttm_object_file identifying the caller 287 * @handle: The TTM user-space handle 288 * @converter: Pointer to an object describing the resource type 289 * @p_res: On successful return the location pointed to will contain 290 * a pointer to a refcounted struct vmw_resource. 291 * 292 * If the handle can't be found or is associated with an incorrect resource 293 * type, -EINVAL will be returned. 294 */ 295 int vmw_user_resource_lookup_handle(struct vmw_private *dev_priv, 296 struct ttm_object_file *tfile, 297 uint32_t handle, 298 const struct vmw_user_resource_conv 299 *converter, 300 struct vmw_resource **p_res) 301 { 302 struct ttm_base_object *base; 303 struct vmw_resource *res; 304 int ret = -EINVAL; 305 306 base = ttm_base_object_lookup(tfile, handle); 307 if (unlikely(base == NULL)) 308 return -EINVAL; 309 310 if (unlikely(ttm_base_object_type(base) != converter->object_type)) 311 goto out_bad_resource; 312 313 res = converter->base_obj_to_res(base); 314 315 read_lock(&dev_priv->resource_lock); 316 if (!res->avail || res->res_free != converter->res_free) { 317 read_unlock(&dev_priv->resource_lock); 318 goto out_bad_resource; 319 } 320 321 kref_get(&res->kref); 322 read_unlock(&dev_priv->resource_lock); 323 324 *p_res = res; 325 ret = 0; 326 327 out_bad_resource: 328 ttm_base_object_unref(&base); 329 330 return ret; 331 } 332 333 /** 334 * Helper function that looks either a surface or dmabuf. 335 * 336 * The pointer this pointed at by out_surf and out_buf needs to be null. 337 */ 338 int vmw_user_lookup_handle(struct vmw_private *dev_priv, 339 struct ttm_object_file *tfile, 340 uint32_t handle, 341 struct vmw_surface **out_surf, 342 struct vmw_dma_buffer **out_buf) 343 { 344 struct vmw_resource *res; 345 int ret; 346 347 BUG_ON(*out_surf || *out_buf); 348 349 ret = vmw_user_resource_lookup_handle(dev_priv, tfile, handle, 350 user_surface_converter, 351 &res); 352 if (!ret) { 353 *out_surf = vmw_res_to_srf(res); 354 return 0; 355 } 356 357 *out_surf = NULL; 358 ret = vmw_user_dmabuf_lookup(tfile, handle, out_buf); 359 return ret; 360 } 361 362 /** 363 * Buffer management. 364 */ 365 366 /** 367 * vmw_dmabuf_acc_size - Calculate the pinned memory usage of buffers 368 * 369 * @dev_priv: Pointer to a struct vmw_private identifying the device. 370 * @size: The requested buffer size. 371 * @user: Whether this is an ordinary dma buffer or a user dma buffer. 372 */ 373 static size_t vmw_dmabuf_acc_size(struct vmw_private *dev_priv, size_t size, 374 bool user) 375 { 376 static size_t struct_size, user_struct_size; 377 size_t num_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 378 size_t page_array_size = ttm_round_pot(num_pages * sizeof(void *)); 379 380 if (unlikely(struct_size == 0)) { 381 size_t backend_size = ttm_round_pot(vmw_tt_size); 382 383 struct_size = backend_size + 384 ttm_round_pot(sizeof(struct vmw_dma_buffer)); 385 user_struct_size = backend_size + 386 ttm_round_pot(sizeof(struct vmw_user_dma_buffer)); 387 } 388 389 if (dev_priv->map_mode == vmw_dma_alloc_coherent) 390 page_array_size += 391 ttm_round_pot(num_pages * sizeof(dma_addr_t)); 392 393 return ((user) ? user_struct_size : struct_size) + 394 page_array_size; 395 } 396 397 void vmw_dmabuf_bo_free(struct ttm_buffer_object *bo) 398 { 399 struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo); 400 401 kfree(vmw_bo); 402 } 403 404 static void vmw_user_dmabuf_destroy(struct ttm_buffer_object *bo) 405 { 406 struct vmw_user_dma_buffer *vmw_user_bo = vmw_user_dma_buffer(bo); 407 408 ttm_prime_object_kfree(vmw_user_bo, prime); 409 } 410 411 int vmw_dmabuf_init(struct vmw_private *dev_priv, 412 struct vmw_dma_buffer *vmw_bo, 413 size_t size, struct ttm_placement *placement, 414 bool interruptible, 415 void (*bo_free) (struct ttm_buffer_object *bo)) 416 { 417 struct ttm_bo_device *bdev = &dev_priv->bdev; 418 size_t acc_size; 419 int ret; 420 bool user = (bo_free == &vmw_user_dmabuf_destroy); 421 422 BUG_ON(!bo_free && (!user && (bo_free != vmw_dmabuf_bo_free))); 423 424 acc_size = vmw_dmabuf_acc_size(dev_priv, size, user); 425 memset(vmw_bo, 0, sizeof(*vmw_bo)); 426 427 INIT_LIST_HEAD(&vmw_bo->res_list); 428 429 ret = ttm_bo_init(bdev, &vmw_bo->base, size, 430 ttm_bo_type_device, placement, 431 0, interruptible, 432 NULL, acc_size, NULL, bo_free); 433 return ret; 434 } 435 436 static void vmw_user_dmabuf_release(struct ttm_base_object **p_base) 437 { 438 struct vmw_user_dma_buffer *vmw_user_bo; 439 struct ttm_base_object *base = *p_base; 440 struct ttm_buffer_object *bo; 441 442 *p_base = NULL; 443 444 if (unlikely(base == NULL)) 445 return; 446 447 vmw_user_bo = container_of(base, struct vmw_user_dma_buffer, 448 prime.base); 449 bo = &vmw_user_bo->dma.base; 450 ttm_bo_unref(&bo); 451 } 452 453 static void vmw_user_dmabuf_ref_obj_release(struct ttm_base_object *base, 454 enum ttm_ref_type ref_type) 455 { 456 struct vmw_user_dma_buffer *user_bo; 457 user_bo = container_of(base, struct vmw_user_dma_buffer, prime.base); 458 459 switch (ref_type) { 460 case TTM_REF_SYNCCPU_WRITE: 461 ttm_bo_synccpu_write_release(&user_bo->dma.base); 462 break; 463 default: 464 BUG(); 465 } 466 } 467 468 /** 469 * vmw_user_dmabuf_alloc - Allocate a user dma buffer 470 * 471 * @dev_priv: Pointer to a struct device private. 472 * @tfile: Pointer to a struct ttm_object_file on which to register the user 473 * object. 474 * @size: Size of the dma buffer. 475 * @shareable: Boolean whether the buffer is shareable with other open files. 476 * @handle: Pointer to where the handle value should be assigned. 477 * @p_dma_buf: Pointer to where the refcounted struct vmw_dma_buffer pointer 478 * should be assigned. 479 */ 480 int vmw_user_dmabuf_alloc(struct vmw_private *dev_priv, 481 struct ttm_object_file *tfile, 482 uint32_t size, 483 bool shareable, 484 uint32_t *handle, 485 struct vmw_dma_buffer **p_dma_buf) 486 { 487 struct vmw_user_dma_buffer *user_bo; 488 struct ttm_buffer_object *tmp; 489 int ret; 490 491 user_bo = kzalloc(sizeof(*user_bo), GFP_KERNEL); 492 if (unlikely(user_bo == NULL)) { 493 DRM_ERROR("Failed to allocate a buffer.\n"); 494 return -ENOMEM; 495 } 496 497 ret = vmw_dmabuf_init(dev_priv, &user_bo->dma, size, 498 (dev_priv->has_mob) ? 499 &vmw_sys_placement : 500 &vmw_vram_sys_placement, true, 501 &vmw_user_dmabuf_destroy); 502 if (unlikely(ret != 0)) 503 return ret; 504 505 tmp = ttm_bo_reference(&user_bo->dma.base); 506 ret = ttm_prime_object_init(tfile, 507 size, 508 &user_bo->prime, 509 shareable, 510 ttm_buffer_type, 511 &vmw_user_dmabuf_release, 512 &vmw_user_dmabuf_ref_obj_release); 513 if (unlikely(ret != 0)) { 514 ttm_bo_unref(&tmp); 515 goto out_no_base_object; 516 } 517 518 *p_dma_buf = &user_bo->dma; 519 *handle = user_bo->prime.base.hash.key; 520 521 out_no_base_object: 522 return ret; 523 } 524 525 /** 526 * vmw_user_dmabuf_verify_access - verify access permissions on this 527 * buffer object. 528 * 529 * @bo: Pointer to the buffer object being accessed 530 * @tfile: Identifying the caller. 531 */ 532 int vmw_user_dmabuf_verify_access(struct ttm_buffer_object *bo, 533 struct ttm_object_file *tfile) 534 { 535 struct vmw_user_dma_buffer *vmw_user_bo; 536 537 if (unlikely(bo->destroy != vmw_user_dmabuf_destroy)) 538 return -EPERM; 539 540 vmw_user_bo = vmw_user_dma_buffer(bo); 541 return (vmw_user_bo->prime.base.tfile == tfile || 542 vmw_user_bo->prime.base.shareable) ? 0 : -EPERM; 543 } 544 545 /** 546 * vmw_user_dmabuf_synccpu_grab - Grab a struct vmw_user_dma_buffer for cpu 547 * access, idling previous GPU operations on the buffer and optionally 548 * blocking it for further command submissions. 549 * 550 * @user_bo: Pointer to the buffer object being grabbed for CPU access 551 * @tfile: Identifying the caller. 552 * @flags: Flags indicating how the grab should be performed. 553 * 554 * A blocking grab will be automatically released when @tfile is closed. 555 */ 556 static int vmw_user_dmabuf_synccpu_grab(struct vmw_user_dma_buffer *user_bo, 557 struct ttm_object_file *tfile, 558 uint32_t flags) 559 { 560 struct ttm_buffer_object *bo = &user_bo->dma.base; 561 bool existed; 562 int ret; 563 564 if (flags & drm_vmw_synccpu_allow_cs) { 565 struct ttm_bo_device *bdev = bo->bdev; 566 567 spin_lock(&bdev->fence_lock); 568 ret = ttm_bo_wait(bo, false, true, 569 !!(flags & drm_vmw_synccpu_dontblock)); 570 spin_unlock(&bdev->fence_lock); 571 return ret; 572 } 573 574 ret = ttm_bo_synccpu_write_grab 575 (bo, !!(flags & drm_vmw_synccpu_dontblock)); 576 if (unlikely(ret != 0)) 577 return ret; 578 579 ret = ttm_ref_object_add(tfile, &user_bo->prime.base, 580 TTM_REF_SYNCCPU_WRITE, &existed); 581 if (ret != 0 || existed) 582 ttm_bo_synccpu_write_release(&user_bo->dma.base); 583 584 return ret; 585 } 586 587 /** 588 * vmw_user_dmabuf_synccpu_release - Release a previous grab for CPU access, 589 * and unblock command submission on the buffer if blocked. 590 * 591 * @handle: Handle identifying the buffer object. 592 * @tfile: Identifying the caller. 593 * @flags: Flags indicating the type of release. 594 */ 595 static int vmw_user_dmabuf_synccpu_release(uint32_t handle, 596 struct ttm_object_file *tfile, 597 uint32_t flags) 598 { 599 if (!(flags & drm_vmw_synccpu_allow_cs)) 600 return ttm_ref_object_base_unref(tfile, handle, 601 TTM_REF_SYNCCPU_WRITE); 602 603 return 0; 604 } 605 606 /** 607 * vmw_user_dmabuf_synccpu_release - ioctl function implementing the synccpu 608 * functionality. 609 * 610 * @dev: Identifies the drm device. 611 * @data: Pointer to the ioctl argument. 612 * @file_priv: Identifies the caller. 613 * 614 * This function checks the ioctl arguments for validity and calls the 615 * relevant synccpu functions. 616 */ 617 int vmw_user_dmabuf_synccpu_ioctl(struct drm_device *dev, void *data, 618 struct drm_file *file_priv) 619 { 620 struct drm_vmw_synccpu_arg *arg = 621 (struct drm_vmw_synccpu_arg *) data; 622 struct vmw_dma_buffer *dma_buf; 623 struct vmw_user_dma_buffer *user_bo; 624 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; 625 int ret; 626 627 if ((arg->flags & (drm_vmw_synccpu_read | drm_vmw_synccpu_write)) == 0 628 || (arg->flags & ~(drm_vmw_synccpu_read | drm_vmw_synccpu_write | 629 drm_vmw_synccpu_dontblock | 630 drm_vmw_synccpu_allow_cs)) != 0) { 631 DRM_ERROR("Illegal synccpu flags.\n"); 632 return -EINVAL; 633 } 634 635 switch (arg->op) { 636 case drm_vmw_synccpu_grab: 637 ret = vmw_user_dmabuf_lookup(tfile, arg->handle, &dma_buf); 638 if (unlikely(ret != 0)) 639 return ret; 640 641 user_bo = container_of(dma_buf, struct vmw_user_dma_buffer, 642 dma); 643 ret = vmw_user_dmabuf_synccpu_grab(user_bo, tfile, arg->flags); 644 vmw_dmabuf_unreference(&dma_buf); 645 if (unlikely(ret != 0 && ret != -ERESTARTSYS && 646 ret != -EBUSY)) { 647 DRM_ERROR("Failed synccpu grab on handle 0x%08x.\n", 648 (unsigned int) arg->handle); 649 return ret; 650 } 651 break; 652 case drm_vmw_synccpu_release: 653 ret = vmw_user_dmabuf_synccpu_release(arg->handle, tfile, 654 arg->flags); 655 if (unlikely(ret != 0)) { 656 DRM_ERROR("Failed synccpu release on handle 0x%08x.\n", 657 (unsigned int) arg->handle); 658 return ret; 659 } 660 break; 661 default: 662 DRM_ERROR("Invalid synccpu operation.\n"); 663 return -EINVAL; 664 } 665 666 return 0; 667 } 668 669 int vmw_dmabuf_alloc_ioctl(struct drm_device *dev, void *data, 670 struct drm_file *file_priv) 671 { 672 struct vmw_private *dev_priv = vmw_priv(dev); 673 union drm_vmw_alloc_dmabuf_arg *arg = 674 (union drm_vmw_alloc_dmabuf_arg *)data; 675 struct drm_vmw_alloc_dmabuf_req *req = &arg->req; 676 struct drm_vmw_dmabuf_rep *rep = &arg->rep; 677 struct vmw_dma_buffer *dma_buf; 678 uint32_t handle; 679 struct vmw_master *vmaster = vmw_master(file_priv->master); 680 int ret; 681 682 ret = ttm_read_lock(&vmaster->lock, true); 683 if (unlikely(ret != 0)) 684 return ret; 685 686 ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile, 687 req->size, false, &handle, &dma_buf); 688 if (unlikely(ret != 0)) 689 goto out_no_dmabuf; 690 691 rep->handle = handle; 692 rep->map_handle = drm_vma_node_offset_addr(&dma_buf->base.vma_node); 693 rep->cur_gmr_id = handle; 694 rep->cur_gmr_offset = 0; 695 696 vmw_dmabuf_unreference(&dma_buf); 697 698 out_no_dmabuf: 699 ttm_read_unlock(&vmaster->lock); 700 701 return ret; 702 } 703 704 int vmw_dmabuf_unref_ioctl(struct drm_device *dev, void *data, 705 struct drm_file *file_priv) 706 { 707 struct drm_vmw_unref_dmabuf_arg *arg = 708 (struct drm_vmw_unref_dmabuf_arg *)data; 709 710 return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile, 711 arg->handle, 712 TTM_REF_USAGE); 713 } 714 715 int vmw_user_dmabuf_lookup(struct ttm_object_file *tfile, 716 uint32_t handle, struct vmw_dma_buffer **out) 717 { 718 struct vmw_user_dma_buffer *vmw_user_bo; 719 struct ttm_base_object *base; 720 721 base = ttm_base_object_lookup(tfile, handle); 722 if (unlikely(base == NULL)) { 723 printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n", 724 (unsigned long)handle); 725 return -ESRCH; 726 } 727 728 if (unlikely(ttm_base_object_type(base) != ttm_buffer_type)) { 729 ttm_base_object_unref(&base); 730 printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n", 731 (unsigned long)handle); 732 return -EINVAL; 733 } 734 735 vmw_user_bo = container_of(base, struct vmw_user_dma_buffer, 736 prime.base); 737 (void)ttm_bo_reference(&vmw_user_bo->dma.base); 738 ttm_base_object_unref(&base); 739 *out = &vmw_user_bo->dma; 740 741 return 0; 742 } 743 744 int vmw_user_dmabuf_reference(struct ttm_object_file *tfile, 745 struct vmw_dma_buffer *dma_buf, 746 uint32_t *handle) 747 { 748 struct vmw_user_dma_buffer *user_bo; 749 750 if (dma_buf->base.destroy != vmw_user_dmabuf_destroy) 751 return -EINVAL; 752 753 user_bo = container_of(dma_buf, struct vmw_user_dma_buffer, dma); 754 755 *handle = user_bo->prime.base.hash.key; 756 return ttm_ref_object_add(tfile, &user_bo->prime.base, 757 TTM_REF_USAGE, NULL); 758 } 759 760 /* 761 * Stream management 762 */ 763 764 static void vmw_stream_destroy(struct vmw_resource *res) 765 { 766 struct vmw_private *dev_priv = res->dev_priv; 767 struct vmw_stream *stream; 768 int ret; 769 770 DRM_INFO("%s: unref\n", __func__); 771 stream = container_of(res, struct vmw_stream, res); 772 773 ret = vmw_overlay_unref(dev_priv, stream->stream_id); 774 WARN_ON(ret != 0); 775 } 776 777 static int vmw_stream_init(struct vmw_private *dev_priv, 778 struct vmw_stream *stream, 779 void (*res_free) (struct vmw_resource *res)) 780 { 781 struct vmw_resource *res = &stream->res; 782 int ret; 783 784 ret = vmw_resource_init(dev_priv, res, false, res_free, 785 &vmw_stream_func); 786 787 if (unlikely(ret != 0)) { 788 if (res_free == NULL) 789 kfree(stream); 790 else 791 res_free(&stream->res); 792 return ret; 793 } 794 795 ret = vmw_overlay_claim(dev_priv, &stream->stream_id); 796 if (ret) { 797 vmw_resource_unreference(&res); 798 return ret; 799 } 800 801 DRM_INFO("%s: claimed\n", __func__); 802 803 vmw_resource_activate(&stream->res, vmw_stream_destroy); 804 return 0; 805 } 806 807 static void vmw_user_stream_free(struct vmw_resource *res) 808 { 809 struct vmw_user_stream *stream = 810 container_of(res, struct vmw_user_stream, stream.res); 811 struct vmw_private *dev_priv = res->dev_priv; 812 813 ttm_base_object_kfree(stream, base); 814 ttm_mem_global_free(vmw_mem_glob(dev_priv), 815 vmw_user_stream_size); 816 } 817 818 /** 819 * This function is called when user space has no more references on the 820 * base object. It releases the base-object's reference on the resource object. 821 */ 822 823 static void vmw_user_stream_base_release(struct ttm_base_object **p_base) 824 { 825 struct ttm_base_object *base = *p_base; 826 struct vmw_user_stream *stream = 827 container_of(base, struct vmw_user_stream, base); 828 struct vmw_resource *res = &stream->stream.res; 829 830 *p_base = NULL; 831 vmw_resource_unreference(&res); 832 } 833 834 int vmw_stream_unref_ioctl(struct drm_device *dev, void *data, 835 struct drm_file *file_priv) 836 { 837 struct vmw_private *dev_priv = vmw_priv(dev); 838 struct vmw_resource *res; 839 struct vmw_user_stream *stream; 840 struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data; 841 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; 842 struct idr *idr = &dev_priv->res_idr[vmw_res_stream]; 843 int ret = 0; 844 845 846 res = vmw_resource_lookup(dev_priv, idr, arg->stream_id); 847 if (unlikely(res == NULL)) 848 return -EINVAL; 849 850 if (res->res_free != &vmw_user_stream_free) { 851 ret = -EINVAL; 852 goto out; 853 } 854 855 stream = container_of(res, struct vmw_user_stream, stream.res); 856 if (stream->base.tfile != tfile) { 857 ret = -EINVAL; 858 goto out; 859 } 860 861 ttm_ref_object_base_unref(tfile, stream->base.hash.key, TTM_REF_USAGE); 862 out: 863 vmw_resource_unreference(&res); 864 return ret; 865 } 866 867 int vmw_stream_claim_ioctl(struct drm_device *dev, void *data, 868 struct drm_file *file_priv) 869 { 870 struct vmw_private *dev_priv = vmw_priv(dev); 871 struct vmw_user_stream *stream; 872 struct vmw_resource *res; 873 struct vmw_resource *tmp; 874 struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data; 875 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; 876 struct vmw_master *vmaster = vmw_master(file_priv->master); 877 int ret; 878 879 /* 880 * Approximate idr memory usage with 128 bytes. It will be limited 881 * by maximum number_of streams anyway? 882 */ 883 884 if (unlikely(vmw_user_stream_size == 0)) 885 vmw_user_stream_size = ttm_round_pot(sizeof(*stream)) + 128; 886 887 ret = ttm_read_lock(&vmaster->lock, true); 888 if (unlikely(ret != 0)) 889 return ret; 890 891 ret = ttm_mem_global_alloc(vmw_mem_glob(dev_priv), 892 vmw_user_stream_size, 893 false, true); 894 if (unlikely(ret != 0)) { 895 if (ret != -ERESTARTSYS) 896 DRM_ERROR("Out of graphics memory for stream" 897 " creation.\n"); 898 goto out_unlock; 899 } 900 901 902 stream = kmalloc(sizeof(*stream), GFP_KERNEL); 903 if (unlikely(stream == NULL)) { 904 ttm_mem_global_free(vmw_mem_glob(dev_priv), 905 vmw_user_stream_size); 906 ret = -ENOMEM; 907 goto out_unlock; 908 } 909 910 res = &stream->stream.res; 911 stream->base.shareable = false; 912 stream->base.tfile = NULL; 913 914 /* 915 * From here on, the destructor takes over resource freeing. 916 */ 917 918 ret = vmw_stream_init(dev_priv, &stream->stream, vmw_user_stream_free); 919 if (unlikely(ret != 0)) 920 goto out_unlock; 921 922 tmp = vmw_resource_reference(res); 923 ret = ttm_base_object_init(tfile, &stream->base, false, VMW_RES_STREAM, 924 &vmw_user_stream_base_release, NULL); 925 926 if (unlikely(ret != 0)) { 927 vmw_resource_unreference(&tmp); 928 goto out_err; 929 } 930 931 arg->stream_id = res->id; 932 out_err: 933 vmw_resource_unreference(&res); 934 out_unlock: 935 ttm_read_unlock(&vmaster->lock); 936 return ret; 937 } 938 939 int vmw_user_stream_lookup(struct vmw_private *dev_priv, 940 struct ttm_object_file *tfile, 941 uint32_t *inout_id, struct vmw_resource **out) 942 { 943 struct vmw_user_stream *stream; 944 struct vmw_resource *res; 945 int ret; 946 947 res = vmw_resource_lookup(dev_priv, &dev_priv->res_idr[vmw_res_stream], 948 *inout_id); 949 if (unlikely(res == NULL)) 950 return -EINVAL; 951 952 if (res->res_free != &vmw_user_stream_free) { 953 ret = -EINVAL; 954 goto err_ref; 955 } 956 957 stream = container_of(res, struct vmw_user_stream, stream.res); 958 if (stream->base.tfile != tfile) { 959 ret = -EPERM; 960 goto err_ref; 961 } 962 963 *inout_id = stream->stream.stream_id; 964 *out = res; 965 return 0; 966 err_ref: 967 vmw_resource_unreference(&res); 968 return ret; 969 } 970 971 972 /** 973 * vmw_dumb_create - Create a dumb kms buffer 974 * 975 * @file_priv: Pointer to a struct drm_file identifying the caller. 976 * @dev: Pointer to the drm device. 977 * @args: Pointer to a struct drm_mode_create_dumb structure 978 * 979 * This is a driver callback for the core drm create_dumb functionality. 980 * Note that this is very similar to the vmw_dmabuf_alloc ioctl, except 981 * that the arguments have a different format. 982 */ 983 int vmw_dumb_create(struct drm_file *file_priv, 984 struct drm_device *dev, 985 struct drm_mode_create_dumb *args) 986 { 987 struct vmw_private *dev_priv = vmw_priv(dev); 988 struct vmw_master *vmaster = vmw_master(file_priv->master); 989 struct vmw_dma_buffer *dma_buf; 990 int ret; 991 992 args->pitch = args->width * ((args->bpp + 7) / 8); 993 args->size = args->pitch * args->height; 994 995 ret = ttm_read_lock(&vmaster->lock, true); 996 if (unlikely(ret != 0)) 997 return ret; 998 999 ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile, 1000 args->size, false, &args->handle, 1001 &dma_buf); 1002 if (unlikely(ret != 0)) 1003 goto out_no_dmabuf; 1004 1005 vmw_dmabuf_unreference(&dma_buf); 1006 out_no_dmabuf: 1007 ttm_read_unlock(&vmaster->lock); 1008 return ret; 1009 } 1010 1011 /** 1012 * vmw_dumb_map_offset - Return the address space offset of a dumb buffer 1013 * 1014 * @file_priv: Pointer to a struct drm_file identifying the caller. 1015 * @dev: Pointer to the drm device. 1016 * @handle: Handle identifying the dumb buffer. 1017 * @offset: The address space offset returned. 1018 * 1019 * This is a driver callback for the core drm dumb_map_offset functionality. 1020 */ 1021 int vmw_dumb_map_offset(struct drm_file *file_priv, 1022 struct drm_device *dev, uint32_t handle, 1023 uint64_t *offset) 1024 { 1025 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; 1026 struct vmw_dma_buffer *out_buf; 1027 int ret; 1028 1029 ret = vmw_user_dmabuf_lookup(tfile, handle, &out_buf); 1030 if (ret != 0) 1031 return -EINVAL; 1032 1033 *offset = drm_vma_node_offset_addr(&out_buf->base.vma_node); 1034 vmw_dmabuf_unreference(&out_buf); 1035 return 0; 1036 } 1037 1038 /** 1039 * vmw_dumb_destroy - Destroy a dumb boffer 1040 * 1041 * @file_priv: Pointer to a struct drm_file identifying the caller. 1042 * @dev: Pointer to the drm device. 1043 * @handle: Handle identifying the dumb buffer. 1044 * 1045 * This is a driver callback for the core drm dumb_destroy functionality. 1046 */ 1047 int vmw_dumb_destroy(struct drm_file *file_priv, 1048 struct drm_device *dev, 1049 uint32_t handle) 1050 { 1051 return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile, 1052 handle, TTM_REF_USAGE); 1053 } 1054 1055 /** 1056 * vmw_resource_buf_alloc - Allocate a backup buffer for a resource. 1057 * 1058 * @res: The resource for which to allocate a backup buffer. 1059 * @interruptible: Whether any sleeps during allocation should be 1060 * performed while interruptible. 1061 */ 1062 static int vmw_resource_buf_alloc(struct vmw_resource *res, 1063 bool interruptible) 1064 { 1065 unsigned long size = 1066 (res->backup_size + PAGE_SIZE - 1) & PAGE_MASK; 1067 struct vmw_dma_buffer *backup; 1068 int ret; 1069 1070 if (likely(res->backup)) { 1071 BUG_ON(res->backup->base.num_pages * PAGE_SIZE < size); 1072 return 0; 1073 } 1074 1075 backup = kzalloc(sizeof(*backup), GFP_KERNEL); 1076 if (unlikely(backup == NULL)) 1077 return -ENOMEM; 1078 1079 ret = vmw_dmabuf_init(res->dev_priv, backup, res->backup_size, 1080 res->func->backup_placement, 1081 interruptible, 1082 &vmw_dmabuf_bo_free); 1083 if (unlikely(ret != 0)) 1084 goto out_no_dmabuf; 1085 1086 res->backup = backup; 1087 1088 out_no_dmabuf: 1089 return ret; 1090 } 1091 1092 /** 1093 * vmw_resource_do_validate - Make a resource up-to-date and visible 1094 * to the device. 1095 * 1096 * @res: The resource to make visible to the device. 1097 * @val_buf: Information about a buffer possibly 1098 * containing backup data if a bind operation is needed. 1099 * 1100 * On hardware resource shortage, this function returns -EBUSY and 1101 * should be retried once resources have been freed up. 1102 */ 1103 static int vmw_resource_do_validate(struct vmw_resource *res, 1104 struct ttm_validate_buffer *val_buf) 1105 { 1106 int ret = 0; 1107 const struct vmw_res_func *func = res->func; 1108 1109 if (unlikely(res->id == -1)) { 1110 ret = func->create(res); 1111 if (unlikely(ret != 0)) 1112 return ret; 1113 } 1114 1115 if (func->bind && 1116 ((func->needs_backup && list_empty(&res->mob_head) && 1117 val_buf->bo != NULL) || 1118 (!func->needs_backup && val_buf->bo != NULL))) { 1119 ret = func->bind(res, val_buf); 1120 if (unlikely(ret != 0)) 1121 goto out_bind_failed; 1122 if (func->needs_backup) 1123 list_add_tail(&res->mob_head, &res->backup->res_list); 1124 } 1125 1126 /* 1127 * Only do this on write operations, and move to 1128 * vmw_resource_unreserve if it can be called after 1129 * backup buffers have been unreserved. Otherwise 1130 * sort out locking. 1131 */ 1132 res->res_dirty = true; 1133 1134 return 0; 1135 1136 out_bind_failed: 1137 func->destroy(res); 1138 1139 return ret; 1140 } 1141 1142 /** 1143 * vmw_resource_unreserve - Unreserve a resource previously reserved for 1144 * command submission. 1145 * 1146 * @res: Pointer to the struct vmw_resource to unreserve. 1147 * @new_backup: Pointer to new backup buffer if command submission 1148 * switched. 1149 * @new_backup_offset: New backup offset if @new_backup is !NULL. 1150 * 1151 * Currently unreserving a resource means putting it back on the device's 1152 * resource lru list, so that it can be evicted if necessary. 1153 */ 1154 void vmw_resource_unreserve(struct vmw_resource *res, 1155 struct vmw_dma_buffer *new_backup, 1156 unsigned long new_backup_offset) 1157 { 1158 struct vmw_private *dev_priv = res->dev_priv; 1159 1160 if (!list_empty(&res->lru_head)) 1161 return; 1162 1163 if (new_backup && new_backup != res->backup) { 1164 1165 if (res->backup) { 1166 lockdep_assert_held(&res->backup->base.resv->lock.base); 1167 list_del_init(&res->mob_head); 1168 vmw_dmabuf_unreference(&res->backup); 1169 } 1170 1171 res->backup = vmw_dmabuf_reference(new_backup); 1172 lockdep_assert_held(&new_backup->base.resv->lock.base); 1173 list_add_tail(&res->mob_head, &new_backup->res_list); 1174 } 1175 if (new_backup) 1176 res->backup_offset = new_backup_offset; 1177 1178 if (!res->func->may_evict || res->id == -1) 1179 return; 1180 1181 write_lock(&dev_priv->resource_lock); 1182 list_add_tail(&res->lru_head, 1183 &res->dev_priv->res_lru[res->func->res_type]); 1184 write_unlock(&dev_priv->resource_lock); 1185 } 1186 1187 /** 1188 * vmw_resource_check_buffer - Check whether a backup buffer is needed 1189 * for a resource and in that case, allocate 1190 * one, reserve and validate it. 1191 * 1192 * @res: The resource for which to allocate a backup buffer. 1193 * @interruptible: Whether any sleeps during allocation should be 1194 * performed while interruptible. 1195 * @val_buf: On successful return contains data about the 1196 * reserved and validated backup buffer. 1197 */ 1198 static int 1199 vmw_resource_check_buffer(struct vmw_resource *res, 1200 bool interruptible, 1201 struct ttm_validate_buffer *val_buf) 1202 { 1203 struct list_head val_list; 1204 bool backup_dirty = false; 1205 int ret; 1206 1207 if (unlikely(res->backup == NULL)) { 1208 ret = vmw_resource_buf_alloc(res, interruptible); 1209 if (unlikely(ret != 0)) 1210 return ret; 1211 } 1212 1213 INIT_LIST_HEAD(&val_list); 1214 val_buf->bo = ttm_bo_reference(&res->backup->base); 1215 list_add_tail(&val_buf->head, &val_list); 1216 ret = ttm_eu_reserve_buffers(NULL, &val_list); 1217 if (unlikely(ret != 0)) 1218 goto out_no_reserve; 1219 1220 if (res->func->needs_backup && list_empty(&res->mob_head)) 1221 return 0; 1222 1223 backup_dirty = res->backup_dirty; 1224 ret = ttm_bo_validate(&res->backup->base, 1225 res->func->backup_placement, 1226 true, false); 1227 1228 if (unlikely(ret != 0)) 1229 goto out_no_validate; 1230 1231 return 0; 1232 1233 out_no_validate: 1234 ttm_eu_backoff_reservation(NULL, &val_list); 1235 out_no_reserve: 1236 ttm_bo_unref(&val_buf->bo); 1237 if (backup_dirty) 1238 vmw_dmabuf_unreference(&res->backup); 1239 1240 return ret; 1241 } 1242 1243 /** 1244 * vmw_resource_reserve - Reserve a resource for command submission 1245 * 1246 * @res: The resource to reserve. 1247 * 1248 * This function takes the resource off the LRU list and make sure 1249 * a backup buffer is present for guest-backed resources. However, 1250 * the buffer may not be bound to the resource at this point. 1251 * 1252 */ 1253 int vmw_resource_reserve(struct vmw_resource *res, bool no_backup) 1254 { 1255 struct vmw_private *dev_priv = res->dev_priv; 1256 int ret; 1257 1258 write_lock(&dev_priv->resource_lock); 1259 list_del_init(&res->lru_head); 1260 write_unlock(&dev_priv->resource_lock); 1261 1262 if (res->func->needs_backup && res->backup == NULL && 1263 !no_backup) { 1264 ret = vmw_resource_buf_alloc(res, true); 1265 if (unlikely(ret != 0)) 1266 return ret; 1267 } 1268 1269 return 0; 1270 } 1271 1272 /** 1273 * vmw_resource_backoff_reservation - Unreserve and unreference a 1274 * backup buffer 1275 *. 1276 * @val_buf: Backup buffer information. 1277 */ 1278 static void 1279 vmw_resource_backoff_reservation(struct ttm_validate_buffer *val_buf) 1280 { 1281 struct list_head val_list; 1282 1283 if (likely(val_buf->bo == NULL)) 1284 return; 1285 1286 INIT_LIST_HEAD(&val_list); 1287 list_add_tail(&val_buf->head, &val_list); 1288 ttm_eu_backoff_reservation(NULL, &val_list); 1289 ttm_bo_unref(&val_buf->bo); 1290 } 1291 1292 /** 1293 * vmw_resource_do_evict - Evict a resource, and transfer its data 1294 * to a backup buffer. 1295 * 1296 * @res: The resource to evict. 1297 * @interruptible: Whether to wait interruptible. 1298 */ 1299 int vmw_resource_do_evict(struct vmw_resource *res, bool interruptible) 1300 { 1301 struct ttm_validate_buffer val_buf; 1302 const struct vmw_res_func *func = res->func; 1303 int ret; 1304 1305 BUG_ON(!func->may_evict); 1306 1307 val_buf.bo = NULL; 1308 ret = vmw_resource_check_buffer(res, interruptible, &val_buf); 1309 if (unlikely(ret != 0)) 1310 return ret; 1311 1312 if (unlikely(func->unbind != NULL && 1313 (!func->needs_backup || !list_empty(&res->mob_head)))) { 1314 ret = func->unbind(res, res->res_dirty, &val_buf); 1315 if (unlikely(ret != 0)) 1316 goto out_no_unbind; 1317 list_del_init(&res->mob_head); 1318 } 1319 ret = func->destroy(res); 1320 res->backup_dirty = true; 1321 res->res_dirty = false; 1322 out_no_unbind: 1323 vmw_resource_backoff_reservation(&val_buf); 1324 1325 return ret; 1326 } 1327 1328 1329 /** 1330 * vmw_resource_validate - Make a resource up-to-date and visible 1331 * to the device. 1332 * 1333 * @res: The resource to make visible to the device. 1334 * 1335 * On succesful return, any backup DMA buffer pointed to by @res->backup will 1336 * be reserved and validated. 1337 * On hardware resource shortage, this function will repeatedly evict 1338 * resources of the same type until the validation succeeds. 1339 */ 1340 int vmw_resource_validate(struct vmw_resource *res) 1341 { 1342 int ret; 1343 struct vmw_resource *evict_res; 1344 struct vmw_private *dev_priv = res->dev_priv; 1345 struct list_head *lru_list = &dev_priv->res_lru[res->func->res_type]; 1346 struct ttm_validate_buffer val_buf; 1347 unsigned err_count = 0; 1348 1349 if (likely(!res->func->may_evict)) 1350 return 0; 1351 1352 val_buf.bo = NULL; 1353 if (res->backup) 1354 val_buf.bo = &res->backup->base; 1355 do { 1356 ret = vmw_resource_do_validate(res, &val_buf); 1357 if (likely(ret != -EBUSY)) 1358 break; 1359 1360 write_lock(&dev_priv->resource_lock); 1361 if (list_empty(lru_list) || !res->func->may_evict) { 1362 DRM_ERROR("Out of device device resources " 1363 "for %s.\n", res->func->type_name); 1364 ret = -EBUSY; 1365 write_unlock(&dev_priv->resource_lock); 1366 break; 1367 } 1368 1369 evict_res = vmw_resource_reference 1370 (list_first_entry(lru_list, struct vmw_resource, 1371 lru_head)); 1372 list_del_init(&evict_res->lru_head); 1373 1374 write_unlock(&dev_priv->resource_lock); 1375 1376 ret = vmw_resource_do_evict(evict_res, true); 1377 if (unlikely(ret != 0)) { 1378 write_lock(&dev_priv->resource_lock); 1379 list_add_tail(&evict_res->lru_head, lru_list); 1380 write_unlock(&dev_priv->resource_lock); 1381 if (ret == -ERESTARTSYS || 1382 ++err_count > VMW_RES_EVICT_ERR_COUNT) { 1383 vmw_resource_unreference(&evict_res); 1384 goto out_no_validate; 1385 } 1386 } 1387 1388 vmw_resource_unreference(&evict_res); 1389 } while (1); 1390 1391 if (unlikely(ret != 0)) 1392 goto out_no_validate; 1393 else if (!res->func->needs_backup && res->backup) { 1394 list_del_init(&res->mob_head); 1395 vmw_dmabuf_unreference(&res->backup); 1396 } 1397 1398 return 0; 1399 1400 out_no_validate: 1401 return ret; 1402 } 1403 1404 /** 1405 * vmw_fence_single_bo - Utility function to fence a single TTM buffer 1406 * object without unreserving it. 1407 * 1408 * @bo: Pointer to the struct ttm_buffer_object to fence. 1409 * @fence: Pointer to the fence. If NULL, this function will 1410 * insert a fence into the command stream.. 1411 * 1412 * Contrary to the ttm_eu version of this function, it takes only 1413 * a single buffer object instead of a list, and it also doesn't 1414 * unreserve the buffer object, which needs to be done separately. 1415 */ 1416 void vmw_fence_single_bo(struct ttm_buffer_object *bo, 1417 struct vmw_fence_obj *fence) 1418 { 1419 struct ttm_bo_device *bdev = bo->bdev; 1420 struct ttm_bo_driver *driver = bdev->driver; 1421 struct vmw_fence_obj *old_fence_obj; 1422 struct vmw_private *dev_priv = 1423 container_of(bdev, struct vmw_private, bdev); 1424 1425 if (fence == NULL) 1426 vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL); 1427 else 1428 driver->sync_obj_ref(fence); 1429 1430 spin_lock(&bdev->fence_lock); 1431 1432 old_fence_obj = bo->sync_obj; 1433 bo->sync_obj = fence; 1434 1435 spin_unlock(&bdev->fence_lock); 1436 1437 if (old_fence_obj) 1438 vmw_fence_obj_unreference(&old_fence_obj); 1439 } 1440 1441 /** 1442 * vmw_resource_move_notify - TTM move_notify_callback 1443 * 1444 * @bo: The TTM buffer object about to move. 1445 * @mem: The truct ttm_mem_reg indicating to what memory 1446 * region the move is taking place. 1447 * 1448 * Evicts the Guest Backed hardware resource if the backup 1449 * buffer is being moved out of MOB memory. 1450 * Note that this function should not race with the resource 1451 * validation code as long as it accesses only members of struct 1452 * resource that remain static while bo::res is !NULL and 1453 * while we have @bo reserved. struct resource::backup is *not* a 1454 * static member. The resource validation code will take care 1455 * to set @bo::res to NULL, while having @bo reserved when the 1456 * buffer is no longer bound to the resource, so @bo:res can be 1457 * used to determine whether there is a need to unbind and whether 1458 * it is safe to unbind. 1459 */ 1460 void vmw_resource_move_notify(struct ttm_buffer_object *bo, 1461 struct ttm_mem_reg *mem) 1462 { 1463 struct vmw_dma_buffer *dma_buf; 1464 1465 if (mem == NULL) 1466 return; 1467 1468 if (bo->destroy != vmw_dmabuf_bo_free && 1469 bo->destroy != vmw_user_dmabuf_destroy) 1470 return; 1471 1472 dma_buf = container_of(bo, struct vmw_dma_buffer, base); 1473 1474 if (mem->mem_type != VMW_PL_MOB) { 1475 struct vmw_resource *res, *n; 1476 struct ttm_bo_device *bdev = bo->bdev; 1477 struct ttm_validate_buffer val_buf; 1478 1479 val_buf.bo = bo; 1480 1481 list_for_each_entry_safe(res, n, &dma_buf->res_list, mob_head) { 1482 1483 if (unlikely(res->func->unbind == NULL)) 1484 continue; 1485 1486 (void) res->func->unbind(res, true, &val_buf); 1487 res->backup_dirty = true; 1488 res->res_dirty = false; 1489 list_del_init(&res->mob_head); 1490 } 1491 1492 spin_lock(&bdev->fence_lock); 1493 (void) ttm_bo_wait(bo, false, false, false); 1494 spin_unlock(&bdev->fence_lock); 1495 } 1496 } 1497 1498 /** 1499 * vmw_resource_needs_backup - Return whether a resource needs a backup buffer. 1500 * 1501 * @res: The resource being queried. 1502 */ 1503 bool vmw_resource_needs_backup(const struct vmw_resource *res) 1504 { 1505 return res->func->needs_backup; 1506 } 1507 1508 /** 1509 * vmw_resource_evict_type - Evict all resources of a specific type 1510 * 1511 * @dev_priv: Pointer to a device private struct 1512 * @type: The resource type to evict 1513 * 1514 * To avoid thrashing starvation or as part of the hibernation sequence, 1515 * try to evict all evictable resources of a specific type. 1516 */ 1517 static void vmw_resource_evict_type(struct vmw_private *dev_priv, 1518 enum vmw_res_type type) 1519 { 1520 struct list_head *lru_list = &dev_priv->res_lru[type]; 1521 struct vmw_resource *evict_res; 1522 unsigned err_count = 0; 1523 int ret; 1524 1525 do { 1526 write_lock(&dev_priv->resource_lock); 1527 1528 if (list_empty(lru_list)) 1529 goto out_unlock; 1530 1531 evict_res = vmw_resource_reference( 1532 list_first_entry(lru_list, struct vmw_resource, 1533 lru_head)); 1534 list_del_init(&evict_res->lru_head); 1535 write_unlock(&dev_priv->resource_lock); 1536 1537 ret = vmw_resource_do_evict(evict_res, false); 1538 if (unlikely(ret != 0)) { 1539 write_lock(&dev_priv->resource_lock); 1540 list_add_tail(&evict_res->lru_head, lru_list); 1541 write_unlock(&dev_priv->resource_lock); 1542 if (++err_count > VMW_RES_EVICT_ERR_COUNT) { 1543 vmw_resource_unreference(&evict_res); 1544 return; 1545 } 1546 } 1547 1548 vmw_resource_unreference(&evict_res); 1549 } while (1); 1550 1551 out_unlock: 1552 write_unlock(&dev_priv->resource_lock); 1553 } 1554 1555 /** 1556 * vmw_resource_evict_all - Evict all evictable resources 1557 * 1558 * @dev_priv: Pointer to a device private struct 1559 * 1560 * To avoid thrashing starvation or as part of the hibernation sequence, 1561 * evict all evictable resources. In particular this means that all 1562 * guest-backed resources that are registered with the device are 1563 * evicted and the OTable becomes clean. 1564 */ 1565 void vmw_resource_evict_all(struct vmw_private *dev_priv) 1566 { 1567 enum vmw_res_type type; 1568 1569 mutex_lock(&dev_priv->cmdbuf_mutex); 1570 1571 for (type = 0; type < vmw_res_max; ++type) 1572 vmw_resource_evict_type(dev_priv, type); 1573 1574 mutex_unlock(&dev_priv->cmdbuf_mutex); 1575 } 1576