1 /**************************************************************************
2  *
3  * Copyright © 2009-2015 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 #include "vmwgfx_drv.h"
29 #include <drm/vmwgfx_drm.h>
30 #include <drm/ttm/ttm_object.h>
31 #include <drm/ttm/ttm_placement.h>
32 #include <drm/drmP.h>
33 #include "vmwgfx_resource_priv.h"
34 #include "vmwgfx_binding.h"
35 
36 #define VMW_RES_EVICT_ERR_COUNT 10
37 
38 struct vmw_user_dma_buffer {
39 	struct ttm_prime_object prime;
40 	struct vmw_dma_buffer dma;
41 };
42 
43 struct vmw_bo_user_rep {
44 	uint32_t handle;
45 	uint64_t map_handle;
46 };
47 
48 struct vmw_stream {
49 	struct vmw_resource res;
50 	uint32_t stream_id;
51 };
52 
53 struct vmw_user_stream {
54 	struct ttm_base_object base;
55 	struct vmw_stream stream;
56 };
57 
58 
59 static uint64_t vmw_user_stream_size;
60 
61 static const struct vmw_res_func vmw_stream_func = {
62 	.res_type = vmw_res_stream,
63 	.needs_backup = false,
64 	.may_evict = false,
65 	.type_name = "video streams",
66 	.backup_placement = NULL,
67 	.create = NULL,
68 	.destroy = NULL,
69 	.bind = NULL,
70 	.unbind = NULL
71 };
72 
73 static inline struct vmw_dma_buffer *
74 vmw_dma_buffer(struct ttm_buffer_object *bo)
75 {
76 	return container_of(bo, struct vmw_dma_buffer, base);
77 }
78 
79 static inline struct vmw_user_dma_buffer *
80 vmw_user_dma_buffer(struct ttm_buffer_object *bo)
81 {
82 	struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
83 	return container_of(vmw_bo, struct vmw_user_dma_buffer, dma);
84 }
85 
86 struct vmw_resource *vmw_resource_reference(struct vmw_resource *res)
87 {
88 	kref_get(&res->kref);
89 	return res;
90 }
91 
92 struct vmw_resource *
93 vmw_resource_reference_unless_doomed(struct vmw_resource *res)
94 {
95 	return kref_get_unless_zero(&res->kref) ? res : NULL;
96 }
97 
98 /**
99  * vmw_resource_release_id - release a resource id to the id manager.
100  *
101  * @res: Pointer to the resource.
102  *
103  * Release the resource id to the resource id manager and set it to -1
104  */
105 void vmw_resource_release_id(struct vmw_resource *res)
106 {
107 	struct vmw_private *dev_priv = res->dev_priv;
108 	struct idr *idr = &dev_priv->res_idr[res->func->res_type];
109 
110 	write_lock(&dev_priv->resource_lock);
111 	if (res->id != -1)
112 		idr_remove(idr, res->id);
113 	res->id = -1;
114 	write_unlock(&dev_priv->resource_lock);
115 }
116 
117 static void vmw_resource_release(struct kref *kref)
118 {
119 	struct vmw_resource *res =
120 	    container_of(kref, struct vmw_resource, kref);
121 	struct vmw_private *dev_priv = res->dev_priv;
122 	int id;
123 	struct idr *idr = &dev_priv->res_idr[res->func->res_type];
124 
125 	write_lock(&dev_priv->resource_lock);
126 	res->avail = false;
127 	list_del_init(&res->lru_head);
128 	write_unlock(&dev_priv->resource_lock);
129 	if (res->backup) {
130 		struct ttm_buffer_object *bo = &res->backup->base;
131 
132 		ttm_bo_reserve(bo, false, false, false, NULL);
133 		if (!list_empty(&res->mob_head) &&
134 		    res->func->unbind != NULL) {
135 			struct ttm_validate_buffer val_buf;
136 
137 			val_buf.bo = bo;
138 			val_buf.shared = false;
139 			res->func->unbind(res, false, &val_buf);
140 		}
141 		res->backup_dirty = false;
142 		list_del_init(&res->mob_head);
143 		ttm_bo_unreserve(bo);
144 		vmw_dmabuf_unreference(&res->backup);
145 	}
146 
147 	if (likely(res->hw_destroy != NULL)) {
148 		mutex_lock(&dev_priv->binding_mutex);
149 		vmw_binding_res_list_kill(&res->binding_head);
150 		mutex_unlock(&dev_priv->binding_mutex);
151 		res->hw_destroy(res);
152 	}
153 
154 	id = res->id;
155 	if (res->res_free != NULL)
156 		res->res_free(res);
157 	else
158 		kfree(res);
159 
160 	write_lock(&dev_priv->resource_lock);
161 	if (id != -1)
162 		idr_remove(idr, id);
163 	write_unlock(&dev_priv->resource_lock);
164 }
165 
166 void vmw_resource_unreference(struct vmw_resource **p_res)
167 {
168 	struct vmw_resource *res = *p_res;
169 
170 	*p_res = NULL;
171 	kref_put(&res->kref, vmw_resource_release);
172 }
173 
174 
175 /**
176  * vmw_resource_alloc_id - release a resource id to the id manager.
177  *
178  * @res: Pointer to the resource.
179  *
180  * Allocate the lowest free resource from the resource manager, and set
181  * @res->id to that id. Returns 0 on success and -ENOMEM on failure.
182  */
183 int vmw_resource_alloc_id(struct vmw_resource *res)
184 {
185 	struct vmw_private *dev_priv = res->dev_priv;
186 	int ret;
187 	struct idr *idr = &dev_priv->res_idr[res->func->res_type];
188 
189 	BUG_ON(res->id != -1);
190 
191 	idr_preload(GFP_KERNEL);
192 	write_lock(&dev_priv->resource_lock);
193 
194 	ret = idr_alloc(idr, res, 1, 0, GFP_NOWAIT);
195 	if (ret >= 0)
196 		res->id = ret;
197 
198 	write_unlock(&dev_priv->resource_lock);
199 	idr_preload_end();
200 	return ret < 0 ? ret : 0;
201 }
202 
203 /**
204  * vmw_resource_init - initialize a struct vmw_resource
205  *
206  * @dev_priv:       Pointer to a device private struct.
207  * @res:            The struct vmw_resource to initialize.
208  * @obj_type:       Resource object type.
209  * @delay_id:       Boolean whether to defer device id allocation until
210  *                  the first validation.
211  * @res_free:       Resource destructor.
212  * @func:           Resource function table.
213  */
214 int vmw_resource_init(struct vmw_private *dev_priv, struct vmw_resource *res,
215 		      bool delay_id,
216 		      void (*res_free) (struct vmw_resource *res),
217 		      const struct vmw_res_func *func)
218 {
219 	kref_init(&res->kref);
220 	res->hw_destroy = NULL;
221 	res->res_free = res_free;
222 	res->avail = false;
223 	res->dev_priv = dev_priv;
224 	res->func = func;
225 	INIT_LIST_HEAD(&res->lru_head);
226 	INIT_LIST_HEAD(&res->mob_head);
227 	INIT_LIST_HEAD(&res->binding_head);
228 	res->id = -1;
229 	res->backup = NULL;
230 	res->backup_offset = 0;
231 	res->backup_dirty = false;
232 	res->res_dirty = false;
233 	if (delay_id)
234 		return 0;
235 	else
236 		return vmw_resource_alloc_id(res);
237 }
238 
239 /**
240  * vmw_resource_activate
241  *
242  * @res:        Pointer to the newly created resource
243  * @hw_destroy: Destroy function. NULL if none.
244  *
245  * Activate a resource after the hardware has been made aware of it.
246  * Set tye destroy function to @destroy. Typically this frees the
247  * resource and destroys the hardware resources associated with it.
248  * Activate basically means that the function vmw_resource_lookup will
249  * find it.
250  */
251 void vmw_resource_activate(struct vmw_resource *res,
252 			   void (*hw_destroy) (struct vmw_resource *))
253 {
254 	struct vmw_private *dev_priv = res->dev_priv;
255 
256 	write_lock(&dev_priv->resource_lock);
257 	res->avail = true;
258 	res->hw_destroy = hw_destroy;
259 	write_unlock(&dev_priv->resource_lock);
260 }
261 
262 static struct vmw_resource *vmw_resource_lookup(struct vmw_private *dev_priv,
263 						struct idr *idr, int id)
264 {
265 	struct vmw_resource *res;
266 
267 	read_lock(&dev_priv->resource_lock);
268 	res = idr_find(idr, id);
269 	if (!res || !res->avail || !kref_get_unless_zero(&res->kref))
270 		res = NULL;
271 
272 	read_unlock(&dev_priv->resource_lock);
273 
274 	if (unlikely(res == NULL))
275 		return NULL;
276 
277 	return res;
278 }
279 
280 /**
281  * vmw_user_resource_lookup_handle - lookup a struct resource from a
282  * TTM user-space handle and perform basic type checks
283  *
284  * @dev_priv:     Pointer to a device private struct
285  * @tfile:        Pointer to a struct ttm_object_file identifying the caller
286  * @handle:       The TTM user-space handle
287  * @converter:    Pointer to an object describing the resource type
288  * @p_res:        On successful return the location pointed to will contain
289  *                a pointer to a refcounted struct vmw_resource.
290  *
291  * If the handle can't be found or is associated with an incorrect resource
292  * type, -EINVAL will be returned.
293  */
294 int vmw_user_resource_lookup_handle(struct vmw_private *dev_priv,
295 				    struct ttm_object_file *tfile,
296 				    uint32_t handle,
297 				    const struct vmw_user_resource_conv
298 				    *converter,
299 				    struct vmw_resource **p_res)
300 {
301 	struct ttm_base_object *base;
302 	struct vmw_resource *res;
303 	int ret = -EINVAL;
304 
305 	base = ttm_base_object_lookup(tfile, handle);
306 	if (unlikely(base == NULL))
307 		return -EINVAL;
308 
309 	if (unlikely(ttm_base_object_type(base) != converter->object_type))
310 		goto out_bad_resource;
311 
312 	res = converter->base_obj_to_res(base);
313 
314 	read_lock(&dev_priv->resource_lock);
315 	if (!res->avail || res->res_free != converter->res_free) {
316 		read_unlock(&dev_priv->resource_lock);
317 		goto out_bad_resource;
318 	}
319 
320 	kref_get(&res->kref);
321 	read_unlock(&dev_priv->resource_lock);
322 
323 	*p_res = res;
324 	ret = 0;
325 
326 out_bad_resource:
327 	ttm_base_object_unref(&base);
328 
329 	return ret;
330 }
331 
332 /**
333  * Helper function that looks either a surface or dmabuf.
334  *
335  * The pointer this pointed at by out_surf and out_buf needs to be null.
336  */
337 int vmw_user_lookup_handle(struct vmw_private *dev_priv,
338 			   struct ttm_object_file *tfile,
339 			   uint32_t handle,
340 			   struct vmw_surface **out_surf,
341 			   struct vmw_dma_buffer **out_buf)
342 {
343 	struct vmw_resource *res;
344 	int ret;
345 
346 	BUG_ON(*out_surf || *out_buf);
347 
348 	ret = vmw_user_resource_lookup_handle(dev_priv, tfile, handle,
349 					      user_surface_converter,
350 					      &res);
351 	if (!ret) {
352 		*out_surf = vmw_res_to_srf(res);
353 		return 0;
354 	}
355 
356 	*out_surf = NULL;
357 	ret = vmw_user_dmabuf_lookup(tfile, handle, out_buf);
358 	return ret;
359 }
360 
361 /**
362  * Buffer management.
363  */
364 
365 /**
366  * vmw_dmabuf_acc_size - Calculate the pinned memory usage of buffers
367  *
368  * @dev_priv: Pointer to a struct vmw_private identifying the device.
369  * @size: The requested buffer size.
370  * @user: Whether this is an ordinary dma buffer or a user dma buffer.
371  */
372 static size_t vmw_dmabuf_acc_size(struct vmw_private *dev_priv, size_t size,
373 				  bool user)
374 {
375 	static size_t struct_size, user_struct_size;
376 	size_t num_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
377 	size_t page_array_size = ttm_round_pot(num_pages * sizeof(void *));
378 
379 	if (unlikely(struct_size == 0)) {
380 		size_t backend_size = ttm_round_pot(vmw_tt_size);
381 
382 		struct_size = backend_size +
383 			ttm_round_pot(sizeof(struct vmw_dma_buffer));
384 		user_struct_size = backend_size +
385 			ttm_round_pot(sizeof(struct vmw_user_dma_buffer));
386 	}
387 
388 	if (dev_priv->map_mode == vmw_dma_alloc_coherent)
389 		page_array_size +=
390 			ttm_round_pot(num_pages * sizeof(dma_addr_t));
391 
392 	return ((user) ? user_struct_size : struct_size) +
393 		page_array_size;
394 }
395 
396 void vmw_dmabuf_bo_free(struct ttm_buffer_object *bo)
397 {
398 	struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
399 
400 	kfree(vmw_bo);
401 }
402 
403 static void vmw_user_dmabuf_destroy(struct ttm_buffer_object *bo)
404 {
405 	struct vmw_user_dma_buffer *vmw_user_bo = vmw_user_dma_buffer(bo);
406 
407 	ttm_prime_object_kfree(vmw_user_bo, prime);
408 }
409 
410 int vmw_dmabuf_init(struct vmw_private *dev_priv,
411 		    struct vmw_dma_buffer *vmw_bo,
412 		    size_t size, struct ttm_placement *placement,
413 		    bool interruptible,
414 		    void (*bo_free) (struct ttm_buffer_object *bo))
415 {
416 	struct ttm_bo_device *bdev = &dev_priv->bdev;
417 	size_t acc_size;
418 	int ret;
419 	bool user = (bo_free == &vmw_user_dmabuf_destroy);
420 
421 	BUG_ON(!bo_free && (!user && (bo_free != vmw_dmabuf_bo_free)));
422 
423 	acc_size = vmw_dmabuf_acc_size(dev_priv, size, user);
424 	memset(vmw_bo, 0, sizeof(*vmw_bo));
425 
426 	INIT_LIST_HEAD(&vmw_bo->res_list);
427 
428 	ret = ttm_bo_init(bdev, &vmw_bo->base, size,
429 			  ttm_bo_type_device, placement,
430 			  0, interruptible,
431 			  NULL, acc_size, NULL, NULL, bo_free);
432 	return ret;
433 }
434 
435 static void vmw_user_dmabuf_release(struct ttm_base_object **p_base)
436 {
437 	struct vmw_user_dma_buffer *vmw_user_bo;
438 	struct ttm_base_object *base = *p_base;
439 	struct ttm_buffer_object *bo;
440 
441 	*p_base = NULL;
442 
443 	if (unlikely(base == NULL))
444 		return;
445 
446 	vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
447 				   prime.base);
448 	bo = &vmw_user_bo->dma.base;
449 	ttm_bo_unref(&bo);
450 }
451 
452 static void vmw_user_dmabuf_ref_obj_release(struct ttm_base_object *base,
453 					    enum ttm_ref_type ref_type)
454 {
455 	struct vmw_user_dma_buffer *user_bo;
456 	user_bo = container_of(base, struct vmw_user_dma_buffer, prime.base);
457 
458 	switch (ref_type) {
459 	case TTM_REF_SYNCCPU_WRITE:
460 		ttm_bo_synccpu_write_release(&user_bo->dma.base);
461 		break;
462 	default:
463 		BUG();
464 	}
465 }
466 
467 /**
468  * vmw_user_dmabuf_alloc - Allocate a user dma buffer
469  *
470  * @dev_priv: Pointer to a struct device private.
471  * @tfile: Pointer to a struct ttm_object_file on which to register the user
472  * object.
473  * @size: Size of the dma buffer.
474  * @shareable: Boolean whether the buffer is shareable with other open files.
475  * @handle: Pointer to where the handle value should be assigned.
476  * @p_dma_buf: Pointer to where the refcounted struct vmw_dma_buffer pointer
477  * should be assigned.
478  */
479 int vmw_user_dmabuf_alloc(struct vmw_private *dev_priv,
480 			  struct ttm_object_file *tfile,
481 			  uint32_t size,
482 			  bool shareable,
483 			  uint32_t *handle,
484 			  struct vmw_dma_buffer **p_dma_buf)
485 {
486 	struct vmw_user_dma_buffer *user_bo;
487 	struct ttm_buffer_object *tmp;
488 	int ret;
489 
490 	user_bo = kzalloc(sizeof(*user_bo), GFP_KERNEL);
491 	if (unlikely(user_bo == NULL)) {
492 		DRM_ERROR("Failed to allocate a buffer.\n");
493 		return -ENOMEM;
494 	}
495 
496 	ret = vmw_dmabuf_init(dev_priv, &user_bo->dma, size,
497 			      (dev_priv->has_mob) ?
498 			      &vmw_sys_placement :
499 			      &vmw_vram_sys_placement, true,
500 			      &vmw_user_dmabuf_destroy);
501 	if (unlikely(ret != 0))
502 		return ret;
503 
504 	tmp = ttm_bo_reference(&user_bo->dma.base);
505 	ret = ttm_prime_object_init(tfile,
506 				    size,
507 				    &user_bo->prime,
508 				    shareable,
509 				    ttm_buffer_type,
510 				    &vmw_user_dmabuf_release,
511 				    &vmw_user_dmabuf_ref_obj_release);
512 	if (unlikely(ret != 0)) {
513 		ttm_bo_unref(&tmp);
514 		goto out_no_base_object;
515 	}
516 
517 	*p_dma_buf = &user_bo->dma;
518 	*handle = user_bo->prime.base.hash.key;
519 
520 out_no_base_object:
521 	return ret;
522 }
523 
524 /**
525  * vmw_user_dmabuf_verify_access - verify access permissions on this
526  * buffer object.
527  *
528  * @bo: Pointer to the buffer object being accessed
529  * @tfile: Identifying the caller.
530  */
531 int vmw_user_dmabuf_verify_access(struct ttm_buffer_object *bo,
532 				  struct ttm_object_file *tfile)
533 {
534 	struct vmw_user_dma_buffer *vmw_user_bo;
535 
536 	if (unlikely(bo->destroy != vmw_user_dmabuf_destroy))
537 		return -EPERM;
538 
539 	vmw_user_bo = vmw_user_dma_buffer(bo);
540 
541 	/* Check that the caller has opened the object. */
542 	if (likely(ttm_ref_object_exists(tfile, &vmw_user_bo->prime.base)))
543 		return 0;
544 
545 	DRM_ERROR("Could not grant buffer access.\n");
546 	return -EPERM;
547 }
548 
549 /**
550  * vmw_user_dmabuf_synccpu_grab - Grab a struct vmw_user_dma_buffer for cpu
551  * access, idling previous GPU operations on the buffer and optionally
552  * blocking it for further command submissions.
553  *
554  * @user_bo: Pointer to the buffer object being grabbed for CPU access
555  * @tfile: Identifying the caller.
556  * @flags: Flags indicating how the grab should be performed.
557  *
558  * A blocking grab will be automatically released when @tfile is closed.
559  */
560 static int vmw_user_dmabuf_synccpu_grab(struct vmw_user_dma_buffer *user_bo,
561 					struct ttm_object_file *tfile,
562 					uint32_t flags)
563 {
564 	struct ttm_buffer_object *bo = &user_bo->dma.base;
565 	bool existed;
566 	int ret;
567 
568 	if (flags & drm_vmw_synccpu_allow_cs) {
569 		bool nonblock = !!(flags & drm_vmw_synccpu_dontblock);
570 		long lret;
571 
572 		if (nonblock)
573 			return reservation_object_test_signaled_rcu(bo->resv, true) ? 0 : -EBUSY;
574 
575 		lret = reservation_object_wait_timeout_rcu(bo->resv, true, true, MAX_SCHEDULE_TIMEOUT);
576 		if (!lret)
577 			return -EBUSY;
578 		else if (lret < 0)
579 			return lret;
580 		return 0;
581 	}
582 
583 	ret = ttm_bo_synccpu_write_grab
584 		(bo, !!(flags & drm_vmw_synccpu_dontblock));
585 	if (unlikely(ret != 0))
586 		return ret;
587 
588 	ret = ttm_ref_object_add(tfile, &user_bo->prime.base,
589 				 TTM_REF_SYNCCPU_WRITE, &existed);
590 	if (ret != 0 || existed)
591 		ttm_bo_synccpu_write_release(&user_bo->dma.base);
592 
593 	return ret;
594 }
595 
596 /**
597  * vmw_user_dmabuf_synccpu_release - Release a previous grab for CPU access,
598  * and unblock command submission on the buffer if blocked.
599  *
600  * @handle: Handle identifying the buffer object.
601  * @tfile: Identifying the caller.
602  * @flags: Flags indicating the type of release.
603  */
604 static int vmw_user_dmabuf_synccpu_release(uint32_t handle,
605 					   struct ttm_object_file *tfile,
606 					   uint32_t flags)
607 {
608 	if (!(flags & drm_vmw_synccpu_allow_cs))
609 		return ttm_ref_object_base_unref(tfile, handle,
610 						 TTM_REF_SYNCCPU_WRITE);
611 
612 	return 0;
613 }
614 
615 /**
616  * vmw_user_dmabuf_synccpu_release - ioctl function implementing the synccpu
617  * functionality.
618  *
619  * @dev: Identifies the drm device.
620  * @data: Pointer to the ioctl argument.
621  * @file_priv: Identifies the caller.
622  *
623  * This function checks the ioctl arguments for validity and calls the
624  * relevant synccpu functions.
625  */
626 int vmw_user_dmabuf_synccpu_ioctl(struct drm_device *dev, void *data,
627 				  struct drm_file *file_priv)
628 {
629 	struct drm_vmw_synccpu_arg *arg =
630 		(struct drm_vmw_synccpu_arg *) data;
631 	struct vmw_dma_buffer *dma_buf;
632 	struct vmw_user_dma_buffer *user_bo;
633 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
634 	int ret;
635 
636 	if ((arg->flags & (drm_vmw_synccpu_read | drm_vmw_synccpu_write)) == 0
637 	    || (arg->flags & ~(drm_vmw_synccpu_read | drm_vmw_synccpu_write |
638 			       drm_vmw_synccpu_dontblock |
639 			       drm_vmw_synccpu_allow_cs)) != 0) {
640 		DRM_ERROR("Illegal synccpu flags.\n");
641 		return -EINVAL;
642 	}
643 
644 	switch (arg->op) {
645 	case drm_vmw_synccpu_grab:
646 		ret = vmw_user_dmabuf_lookup(tfile, arg->handle, &dma_buf);
647 		if (unlikely(ret != 0))
648 			return ret;
649 
650 		user_bo = container_of(dma_buf, struct vmw_user_dma_buffer,
651 				       dma);
652 		ret = vmw_user_dmabuf_synccpu_grab(user_bo, tfile, arg->flags);
653 		vmw_dmabuf_unreference(&dma_buf);
654 		if (unlikely(ret != 0 && ret != -ERESTARTSYS &&
655 			     ret != -EBUSY)) {
656 			DRM_ERROR("Failed synccpu grab on handle 0x%08x.\n",
657 				  (unsigned int) arg->handle);
658 			return ret;
659 		}
660 		break;
661 	case drm_vmw_synccpu_release:
662 		ret = vmw_user_dmabuf_synccpu_release(arg->handle, tfile,
663 						      arg->flags);
664 		if (unlikely(ret != 0)) {
665 			DRM_ERROR("Failed synccpu release on handle 0x%08x.\n",
666 				  (unsigned int) arg->handle);
667 			return ret;
668 		}
669 		break;
670 	default:
671 		DRM_ERROR("Invalid synccpu operation.\n");
672 		return -EINVAL;
673 	}
674 
675 	return 0;
676 }
677 
678 int vmw_dmabuf_alloc_ioctl(struct drm_device *dev, void *data,
679 			   struct drm_file *file_priv)
680 {
681 	struct vmw_private *dev_priv = vmw_priv(dev);
682 	union drm_vmw_alloc_dmabuf_arg *arg =
683 	    (union drm_vmw_alloc_dmabuf_arg *)data;
684 	struct drm_vmw_alloc_dmabuf_req *req = &arg->req;
685 	struct drm_vmw_dmabuf_rep *rep = &arg->rep;
686 	struct vmw_dma_buffer *dma_buf;
687 	uint32_t handle;
688 	int ret;
689 
690 	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
691 	if (unlikely(ret != 0))
692 		return ret;
693 
694 	ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
695 				    req->size, false, &handle, &dma_buf);
696 	if (unlikely(ret != 0))
697 		goto out_no_dmabuf;
698 
699 	rep->handle = handle;
700 	rep->map_handle = drm_vma_node_offset_addr(&dma_buf->base.vma_node);
701 	rep->cur_gmr_id = handle;
702 	rep->cur_gmr_offset = 0;
703 
704 	vmw_dmabuf_unreference(&dma_buf);
705 
706 out_no_dmabuf:
707 	ttm_read_unlock(&dev_priv->reservation_sem);
708 
709 	return ret;
710 }
711 
712 int vmw_dmabuf_unref_ioctl(struct drm_device *dev, void *data,
713 			   struct drm_file *file_priv)
714 {
715 	struct drm_vmw_unref_dmabuf_arg *arg =
716 	    (struct drm_vmw_unref_dmabuf_arg *)data;
717 
718 	return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
719 					 arg->handle,
720 					 TTM_REF_USAGE);
721 }
722 
723 int vmw_user_dmabuf_lookup(struct ttm_object_file *tfile,
724 			   uint32_t handle, struct vmw_dma_buffer **out)
725 {
726 	struct vmw_user_dma_buffer *vmw_user_bo;
727 	struct ttm_base_object *base;
728 
729 	base = ttm_base_object_lookup(tfile, handle);
730 	if (unlikely(base == NULL)) {
731 		printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
732 		       (unsigned long)handle);
733 		return -ESRCH;
734 	}
735 
736 	if (unlikely(ttm_base_object_type(base) != ttm_buffer_type)) {
737 		ttm_base_object_unref(&base);
738 		printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
739 		       (unsigned long)handle);
740 		return -EINVAL;
741 	}
742 
743 	vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
744 				   prime.base);
745 	(void)ttm_bo_reference(&vmw_user_bo->dma.base);
746 	ttm_base_object_unref(&base);
747 	*out = &vmw_user_bo->dma;
748 
749 	return 0;
750 }
751 
752 int vmw_user_dmabuf_reference(struct ttm_object_file *tfile,
753 			      struct vmw_dma_buffer *dma_buf,
754 			      uint32_t *handle)
755 {
756 	struct vmw_user_dma_buffer *user_bo;
757 
758 	if (dma_buf->base.destroy != vmw_user_dmabuf_destroy)
759 		return -EINVAL;
760 
761 	user_bo = container_of(dma_buf, struct vmw_user_dma_buffer, dma);
762 
763 	*handle = user_bo->prime.base.hash.key;
764 	return ttm_ref_object_add(tfile, &user_bo->prime.base,
765 				  TTM_REF_USAGE, NULL);
766 }
767 
768 /*
769  * Stream management
770  */
771 
772 static void vmw_stream_destroy(struct vmw_resource *res)
773 {
774 	struct vmw_private *dev_priv = res->dev_priv;
775 	struct vmw_stream *stream;
776 	int ret;
777 
778 	DRM_INFO("%s: unref\n", __func__);
779 	stream = container_of(res, struct vmw_stream, res);
780 
781 	ret = vmw_overlay_unref(dev_priv, stream->stream_id);
782 	WARN_ON(ret != 0);
783 }
784 
785 static int vmw_stream_init(struct vmw_private *dev_priv,
786 			   struct vmw_stream *stream,
787 			   void (*res_free) (struct vmw_resource *res))
788 {
789 	struct vmw_resource *res = &stream->res;
790 	int ret;
791 
792 	ret = vmw_resource_init(dev_priv, res, false, res_free,
793 				&vmw_stream_func);
794 
795 	if (unlikely(ret != 0)) {
796 		if (res_free == NULL)
797 			kfree(stream);
798 		else
799 			res_free(&stream->res);
800 		return ret;
801 	}
802 
803 	ret = vmw_overlay_claim(dev_priv, &stream->stream_id);
804 	if (ret) {
805 		vmw_resource_unreference(&res);
806 		return ret;
807 	}
808 
809 	DRM_INFO("%s: claimed\n", __func__);
810 
811 	vmw_resource_activate(&stream->res, vmw_stream_destroy);
812 	return 0;
813 }
814 
815 static void vmw_user_stream_free(struct vmw_resource *res)
816 {
817 	struct vmw_user_stream *stream =
818 	    container_of(res, struct vmw_user_stream, stream.res);
819 	struct vmw_private *dev_priv = res->dev_priv;
820 
821 	ttm_base_object_kfree(stream, base);
822 	ttm_mem_global_free(vmw_mem_glob(dev_priv),
823 			    vmw_user_stream_size);
824 }
825 
826 /**
827  * This function is called when user space has no more references on the
828  * base object. It releases the base-object's reference on the resource object.
829  */
830 
831 static void vmw_user_stream_base_release(struct ttm_base_object **p_base)
832 {
833 	struct ttm_base_object *base = *p_base;
834 	struct vmw_user_stream *stream =
835 	    container_of(base, struct vmw_user_stream, base);
836 	struct vmw_resource *res = &stream->stream.res;
837 
838 	*p_base = NULL;
839 	vmw_resource_unreference(&res);
840 }
841 
842 int vmw_stream_unref_ioctl(struct drm_device *dev, void *data,
843 			   struct drm_file *file_priv)
844 {
845 	struct vmw_private *dev_priv = vmw_priv(dev);
846 	struct vmw_resource *res;
847 	struct vmw_user_stream *stream;
848 	struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
849 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
850 	struct idr *idr = &dev_priv->res_idr[vmw_res_stream];
851 	int ret = 0;
852 
853 
854 	res = vmw_resource_lookup(dev_priv, idr, arg->stream_id);
855 	if (unlikely(res == NULL))
856 		return -EINVAL;
857 
858 	if (res->res_free != &vmw_user_stream_free) {
859 		ret = -EINVAL;
860 		goto out;
861 	}
862 
863 	stream = container_of(res, struct vmw_user_stream, stream.res);
864 	if (stream->base.tfile != tfile) {
865 		ret = -EINVAL;
866 		goto out;
867 	}
868 
869 	ttm_ref_object_base_unref(tfile, stream->base.hash.key, TTM_REF_USAGE);
870 out:
871 	vmw_resource_unreference(&res);
872 	return ret;
873 }
874 
875 int vmw_stream_claim_ioctl(struct drm_device *dev, void *data,
876 			   struct drm_file *file_priv)
877 {
878 	struct vmw_private *dev_priv = vmw_priv(dev);
879 	struct vmw_user_stream *stream;
880 	struct vmw_resource *res;
881 	struct vmw_resource *tmp;
882 	struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
883 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
884 	int ret;
885 
886 	/*
887 	 * Approximate idr memory usage with 128 bytes. It will be limited
888 	 * by maximum number_of streams anyway?
889 	 */
890 
891 	if (unlikely(vmw_user_stream_size == 0))
892 		vmw_user_stream_size = ttm_round_pot(sizeof(*stream)) + 128;
893 
894 	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
895 	if (unlikely(ret != 0))
896 		return ret;
897 
898 	ret = ttm_mem_global_alloc(vmw_mem_glob(dev_priv),
899 				   vmw_user_stream_size,
900 				   false, true);
901 	ttm_read_unlock(&dev_priv->reservation_sem);
902 	if (unlikely(ret != 0)) {
903 		if (ret != -ERESTARTSYS)
904 			DRM_ERROR("Out of graphics memory for stream"
905 				  " creation.\n");
906 
907 		goto out_ret;
908 	}
909 
910 	stream = kmalloc(sizeof(*stream), GFP_KERNEL);
911 	if (unlikely(stream == NULL)) {
912 		ttm_mem_global_free(vmw_mem_glob(dev_priv),
913 				    vmw_user_stream_size);
914 		ret = -ENOMEM;
915 		goto out_ret;
916 	}
917 
918 	res = &stream->stream.res;
919 	stream->base.shareable = false;
920 	stream->base.tfile = NULL;
921 
922 	/*
923 	 * From here on, the destructor takes over resource freeing.
924 	 */
925 
926 	ret = vmw_stream_init(dev_priv, &stream->stream, vmw_user_stream_free);
927 	if (unlikely(ret != 0))
928 		goto out_ret;
929 
930 	tmp = vmw_resource_reference(res);
931 	ret = ttm_base_object_init(tfile, &stream->base, false, VMW_RES_STREAM,
932 				   &vmw_user_stream_base_release, NULL);
933 
934 	if (unlikely(ret != 0)) {
935 		vmw_resource_unreference(&tmp);
936 		goto out_err;
937 	}
938 
939 	arg->stream_id = res->id;
940 out_err:
941 	vmw_resource_unreference(&res);
942 out_ret:
943 	return ret;
944 }
945 
946 int vmw_user_stream_lookup(struct vmw_private *dev_priv,
947 			   struct ttm_object_file *tfile,
948 			   uint32_t *inout_id, struct vmw_resource **out)
949 {
950 	struct vmw_user_stream *stream;
951 	struct vmw_resource *res;
952 	int ret;
953 
954 	res = vmw_resource_lookup(dev_priv, &dev_priv->res_idr[vmw_res_stream],
955 				  *inout_id);
956 	if (unlikely(res == NULL))
957 		return -EINVAL;
958 
959 	if (res->res_free != &vmw_user_stream_free) {
960 		ret = -EINVAL;
961 		goto err_ref;
962 	}
963 
964 	stream = container_of(res, struct vmw_user_stream, stream.res);
965 	if (stream->base.tfile != tfile) {
966 		ret = -EPERM;
967 		goto err_ref;
968 	}
969 
970 	*inout_id = stream->stream.stream_id;
971 	*out = res;
972 	return 0;
973 err_ref:
974 	vmw_resource_unreference(&res);
975 	return ret;
976 }
977 
978 
979 /**
980  * vmw_dumb_create - Create a dumb kms buffer
981  *
982  * @file_priv: Pointer to a struct drm_file identifying the caller.
983  * @dev: Pointer to the drm device.
984  * @args: Pointer to a struct drm_mode_create_dumb structure
985  *
986  * This is a driver callback for the core drm create_dumb functionality.
987  * Note that this is very similar to the vmw_dmabuf_alloc ioctl, except
988  * that the arguments have a different format.
989  */
990 int vmw_dumb_create(struct drm_file *file_priv,
991 		    struct drm_device *dev,
992 		    struct drm_mode_create_dumb *args)
993 {
994 	struct vmw_private *dev_priv = vmw_priv(dev);
995 	struct vmw_dma_buffer *dma_buf;
996 	int ret;
997 
998 	args->pitch = args->width * ((args->bpp + 7) / 8);
999 	args->size = args->pitch * args->height;
1000 
1001 	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
1002 	if (unlikely(ret != 0))
1003 		return ret;
1004 
1005 	ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
1006 				    args->size, false, &args->handle,
1007 				    &dma_buf);
1008 	if (unlikely(ret != 0))
1009 		goto out_no_dmabuf;
1010 
1011 	vmw_dmabuf_unreference(&dma_buf);
1012 out_no_dmabuf:
1013 	ttm_read_unlock(&dev_priv->reservation_sem);
1014 	return ret;
1015 }
1016 
1017 /**
1018  * vmw_dumb_map_offset - Return the address space offset of a dumb buffer
1019  *
1020  * @file_priv: Pointer to a struct drm_file identifying the caller.
1021  * @dev: Pointer to the drm device.
1022  * @handle: Handle identifying the dumb buffer.
1023  * @offset: The address space offset returned.
1024  *
1025  * This is a driver callback for the core drm dumb_map_offset functionality.
1026  */
1027 int vmw_dumb_map_offset(struct drm_file *file_priv,
1028 			struct drm_device *dev, uint32_t handle,
1029 			uint64_t *offset)
1030 {
1031 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1032 	struct vmw_dma_buffer *out_buf;
1033 	int ret;
1034 
1035 	ret = vmw_user_dmabuf_lookup(tfile, handle, &out_buf);
1036 	if (ret != 0)
1037 		return -EINVAL;
1038 
1039 	*offset = drm_vma_node_offset_addr(&out_buf->base.vma_node);
1040 	vmw_dmabuf_unreference(&out_buf);
1041 	return 0;
1042 }
1043 
1044 /**
1045  * vmw_dumb_destroy - Destroy a dumb boffer
1046  *
1047  * @file_priv: Pointer to a struct drm_file identifying the caller.
1048  * @dev: Pointer to the drm device.
1049  * @handle: Handle identifying the dumb buffer.
1050  *
1051  * This is a driver callback for the core drm dumb_destroy functionality.
1052  */
1053 int vmw_dumb_destroy(struct drm_file *file_priv,
1054 		     struct drm_device *dev,
1055 		     uint32_t handle)
1056 {
1057 	return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
1058 					 handle, TTM_REF_USAGE);
1059 }
1060 
1061 /**
1062  * vmw_resource_buf_alloc - Allocate a backup buffer for a resource.
1063  *
1064  * @res:            The resource for which to allocate a backup buffer.
1065  * @interruptible:  Whether any sleeps during allocation should be
1066  *                  performed while interruptible.
1067  */
1068 static int vmw_resource_buf_alloc(struct vmw_resource *res,
1069 				  bool interruptible)
1070 {
1071 	unsigned long size =
1072 		(res->backup_size + PAGE_SIZE - 1) & PAGE_MASK;
1073 	struct vmw_dma_buffer *backup;
1074 	int ret;
1075 
1076 	if (likely(res->backup)) {
1077 		BUG_ON(res->backup->base.num_pages * PAGE_SIZE < size);
1078 		return 0;
1079 	}
1080 
1081 	backup = kzalloc(sizeof(*backup), GFP_KERNEL);
1082 	if (unlikely(backup == NULL))
1083 		return -ENOMEM;
1084 
1085 	ret = vmw_dmabuf_init(res->dev_priv, backup, res->backup_size,
1086 			      res->func->backup_placement,
1087 			      interruptible,
1088 			      &vmw_dmabuf_bo_free);
1089 	if (unlikely(ret != 0))
1090 		goto out_no_dmabuf;
1091 
1092 	res->backup = backup;
1093 
1094 out_no_dmabuf:
1095 	return ret;
1096 }
1097 
1098 /**
1099  * vmw_resource_do_validate - Make a resource up-to-date and visible
1100  *                            to the device.
1101  *
1102  * @res:            The resource to make visible to the device.
1103  * @val_buf:        Information about a buffer possibly
1104  *                  containing backup data if a bind operation is needed.
1105  *
1106  * On hardware resource shortage, this function returns -EBUSY and
1107  * should be retried once resources have been freed up.
1108  */
1109 static int vmw_resource_do_validate(struct vmw_resource *res,
1110 				    struct ttm_validate_buffer *val_buf)
1111 {
1112 	int ret = 0;
1113 	const struct vmw_res_func *func = res->func;
1114 
1115 	if (unlikely(res->id == -1)) {
1116 		ret = func->create(res);
1117 		if (unlikely(ret != 0))
1118 			return ret;
1119 	}
1120 
1121 	if (func->bind &&
1122 	    ((func->needs_backup && list_empty(&res->mob_head) &&
1123 	      val_buf->bo != NULL) ||
1124 	     (!func->needs_backup && val_buf->bo != NULL))) {
1125 		ret = func->bind(res, val_buf);
1126 		if (unlikely(ret != 0))
1127 			goto out_bind_failed;
1128 		if (func->needs_backup)
1129 			list_add_tail(&res->mob_head, &res->backup->res_list);
1130 	}
1131 
1132 	/*
1133 	 * Only do this on write operations, and move to
1134 	 * vmw_resource_unreserve if it can be called after
1135 	 * backup buffers have been unreserved. Otherwise
1136 	 * sort out locking.
1137 	 */
1138 	res->res_dirty = true;
1139 
1140 	return 0;
1141 
1142 out_bind_failed:
1143 	func->destroy(res);
1144 
1145 	return ret;
1146 }
1147 
1148 /**
1149  * vmw_resource_unreserve - Unreserve a resource previously reserved for
1150  * command submission.
1151  *
1152  * @res:               Pointer to the struct vmw_resource to unreserve.
1153  * @switch_backup:     Backup buffer has been switched.
1154  * @new_backup:        Pointer to new backup buffer if command submission
1155  *                     switched. May be NULL.
1156  * @new_backup_offset: New backup offset if @switch_backup is true.
1157  *
1158  * Currently unreserving a resource means putting it back on the device's
1159  * resource lru list, so that it can be evicted if necessary.
1160  */
1161 void vmw_resource_unreserve(struct vmw_resource *res,
1162 			    bool switch_backup,
1163 			    struct vmw_dma_buffer *new_backup,
1164 			    unsigned long new_backup_offset)
1165 {
1166 	struct vmw_private *dev_priv = res->dev_priv;
1167 
1168 	if (!list_empty(&res->lru_head))
1169 		return;
1170 
1171 	if (switch_backup && new_backup != res->backup) {
1172 		if (res->backup) {
1173 			lockdep_assert_held(&res->backup->base.resv->lock.base);
1174 			list_del_init(&res->mob_head);
1175 			vmw_dmabuf_unreference(&res->backup);
1176 		}
1177 
1178 		if (new_backup) {
1179 			res->backup = vmw_dmabuf_reference(new_backup);
1180 			lockdep_assert_held(&new_backup->base.resv->lock.base);
1181 			list_add_tail(&res->mob_head, &new_backup->res_list);
1182 		} else {
1183 			res->backup = NULL;
1184 		}
1185 	}
1186 	if (switch_backup)
1187 		res->backup_offset = new_backup_offset;
1188 
1189 	if (!res->func->may_evict || res->id == -1 || res->pin_count)
1190 		return;
1191 
1192 	write_lock(&dev_priv->resource_lock);
1193 	list_add_tail(&res->lru_head,
1194 		      &res->dev_priv->res_lru[res->func->res_type]);
1195 	write_unlock(&dev_priv->resource_lock);
1196 }
1197 
1198 /**
1199  * vmw_resource_check_buffer - Check whether a backup buffer is needed
1200  *                             for a resource and in that case, allocate
1201  *                             one, reserve and validate it.
1202  *
1203  * @res:            The resource for which to allocate a backup buffer.
1204  * @interruptible:  Whether any sleeps during allocation should be
1205  *                  performed while interruptible.
1206  * @val_buf:        On successful return contains data about the
1207  *                  reserved and validated backup buffer.
1208  */
1209 static int
1210 vmw_resource_check_buffer(struct vmw_resource *res,
1211 			  bool interruptible,
1212 			  struct ttm_validate_buffer *val_buf)
1213 {
1214 	struct list_head val_list;
1215 	bool backup_dirty = false;
1216 	int ret;
1217 
1218 	if (unlikely(res->backup == NULL)) {
1219 		ret = vmw_resource_buf_alloc(res, interruptible);
1220 		if (unlikely(ret != 0))
1221 			return ret;
1222 	}
1223 
1224 	INIT_LIST_HEAD(&val_list);
1225 	val_buf->bo = ttm_bo_reference(&res->backup->base);
1226 	val_buf->shared = false;
1227 	list_add_tail(&val_buf->head, &val_list);
1228 	ret = ttm_eu_reserve_buffers(NULL, &val_list, interruptible, NULL);
1229 	if (unlikely(ret != 0))
1230 		goto out_no_reserve;
1231 
1232 	if (res->func->needs_backup && list_empty(&res->mob_head))
1233 		return 0;
1234 
1235 	backup_dirty = res->backup_dirty;
1236 	ret = ttm_bo_validate(&res->backup->base,
1237 			      res->func->backup_placement,
1238 			      true, false);
1239 
1240 	if (unlikely(ret != 0))
1241 		goto out_no_validate;
1242 
1243 	return 0;
1244 
1245 out_no_validate:
1246 	ttm_eu_backoff_reservation(NULL, &val_list);
1247 out_no_reserve:
1248 	ttm_bo_unref(&val_buf->bo);
1249 	if (backup_dirty)
1250 		vmw_dmabuf_unreference(&res->backup);
1251 
1252 	return ret;
1253 }
1254 
1255 /**
1256  * vmw_resource_reserve - Reserve a resource for command submission
1257  *
1258  * @res:            The resource to reserve.
1259  *
1260  * This function takes the resource off the LRU list and make sure
1261  * a backup buffer is present for guest-backed resources. However,
1262  * the buffer may not be bound to the resource at this point.
1263  *
1264  */
1265 int vmw_resource_reserve(struct vmw_resource *res, bool interruptible,
1266 			 bool no_backup)
1267 {
1268 	struct vmw_private *dev_priv = res->dev_priv;
1269 	int ret;
1270 
1271 	write_lock(&dev_priv->resource_lock);
1272 	list_del_init(&res->lru_head);
1273 	write_unlock(&dev_priv->resource_lock);
1274 
1275 	if (res->func->needs_backup && res->backup == NULL &&
1276 	    !no_backup) {
1277 		ret = vmw_resource_buf_alloc(res, interruptible);
1278 		if (unlikely(ret != 0)) {
1279 			DRM_ERROR("Failed to allocate a backup buffer "
1280 				  "of size %lu. bytes\n",
1281 				  (unsigned long) res->backup_size);
1282 			return ret;
1283 		}
1284 	}
1285 
1286 	return 0;
1287 }
1288 
1289 /**
1290  * vmw_resource_backoff_reservation - Unreserve and unreference a
1291  *                                    backup buffer
1292  *.
1293  * @val_buf:        Backup buffer information.
1294  */
1295 static void
1296 vmw_resource_backoff_reservation(struct ttm_validate_buffer *val_buf)
1297 {
1298 	struct list_head val_list;
1299 
1300 	if (likely(val_buf->bo == NULL))
1301 		return;
1302 
1303 	INIT_LIST_HEAD(&val_list);
1304 	list_add_tail(&val_buf->head, &val_list);
1305 	ttm_eu_backoff_reservation(NULL, &val_list);
1306 	ttm_bo_unref(&val_buf->bo);
1307 }
1308 
1309 /**
1310  * vmw_resource_do_evict - Evict a resource, and transfer its data
1311  *                         to a backup buffer.
1312  *
1313  * @res:            The resource to evict.
1314  * @interruptible:  Whether to wait interruptible.
1315  */
1316 static int vmw_resource_do_evict(struct vmw_resource *res, bool interruptible)
1317 {
1318 	struct ttm_validate_buffer val_buf;
1319 	const struct vmw_res_func *func = res->func;
1320 	int ret;
1321 
1322 	BUG_ON(!func->may_evict);
1323 
1324 	val_buf.bo = NULL;
1325 	val_buf.shared = false;
1326 	ret = vmw_resource_check_buffer(res, interruptible, &val_buf);
1327 	if (unlikely(ret != 0))
1328 		return ret;
1329 
1330 	if (unlikely(func->unbind != NULL &&
1331 		     (!func->needs_backup || !list_empty(&res->mob_head)))) {
1332 		ret = func->unbind(res, res->res_dirty, &val_buf);
1333 		if (unlikely(ret != 0))
1334 			goto out_no_unbind;
1335 		list_del_init(&res->mob_head);
1336 	}
1337 	ret = func->destroy(res);
1338 	res->backup_dirty = true;
1339 	res->res_dirty = false;
1340 out_no_unbind:
1341 	vmw_resource_backoff_reservation(&val_buf);
1342 
1343 	return ret;
1344 }
1345 
1346 
1347 /**
1348  * vmw_resource_validate - Make a resource up-to-date and visible
1349  *                         to the device.
1350  *
1351  * @res:            The resource to make visible to the device.
1352  *
1353  * On succesful return, any backup DMA buffer pointed to by @res->backup will
1354  * be reserved and validated.
1355  * On hardware resource shortage, this function will repeatedly evict
1356  * resources of the same type until the validation succeeds.
1357  */
1358 int vmw_resource_validate(struct vmw_resource *res)
1359 {
1360 	int ret;
1361 	struct vmw_resource *evict_res;
1362 	struct vmw_private *dev_priv = res->dev_priv;
1363 	struct list_head *lru_list = &dev_priv->res_lru[res->func->res_type];
1364 	struct ttm_validate_buffer val_buf;
1365 	unsigned err_count = 0;
1366 
1367 	if (!res->func->create)
1368 		return 0;
1369 
1370 	val_buf.bo = NULL;
1371 	val_buf.shared = false;
1372 	if (res->backup)
1373 		val_buf.bo = &res->backup->base;
1374 	do {
1375 		ret = vmw_resource_do_validate(res, &val_buf);
1376 		if (likely(ret != -EBUSY))
1377 			break;
1378 
1379 		write_lock(&dev_priv->resource_lock);
1380 		if (list_empty(lru_list) || !res->func->may_evict) {
1381 			DRM_ERROR("Out of device device resources "
1382 				  "for %s.\n", res->func->type_name);
1383 			ret = -EBUSY;
1384 			write_unlock(&dev_priv->resource_lock);
1385 			break;
1386 		}
1387 
1388 		evict_res = vmw_resource_reference
1389 			(list_first_entry(lru_list, struct vmw_resource,
1390 					  lru_head));
1391 		list_del_init(&evict_res->lru_head);
1392 
1393 		write_unlock(&dev_priv->resource_lock);
1394 
1395 		ret = vmw_resource_do_evict(evict_res, true);
1396 		if (unlikely(ret != 0)) {
1397 			write_lock(&dev_priv->resource_lock);
1398 			list_add_tail(&evict_res->lru_head, lru_list);
1399 			write_unlock(&dev_priv->resource_lock);
1400 			if (ret == -ERESTARTSYS ||
1401 			    ++err_count > VMW_RES_EVICT_ERR_COUNT) {
1402 				vmw_resource_unreference(&evict_res);
1403 				goto out_no_validate;
1404 			}
1405 		}
1406 
1407 		vmw_resource_unreference(&evict_res);
1408 	} while (1);
1409 
1410 	if (unlikely(ret != 0))
1411 		goto out_no_validate;
1412 	else if (!res->func->needs_backup && res->backup) {
1413 		list_del_init(&res->mob_head);
1414 		vmw_dmabuf_unreference(&res->backup);
1415 	}
1416 
1417 	return 0;
1418 
1419 out_no_validate:
1420 	return ret;
1421 }
1422 
1423 /**
1424  * vmw_fence_single_bo - Utility function to fence a single TTM buffer
1425  *                       object without unreserving it.
1426  *
1427  * @bo:             Pointer to the struct ttm_buffer_object to fence.
1428  * @fence:          Pointer to the fence. If NULL, this function will
1429  *                  insert a fence into the command stream..
1430  *
1431  * Contrary to the ttm_eu version of this function, it takes only
1432  * a single buffer object instead of a list, and it also doesn't
1433  * unreserve the buffer object, which needs to be done separately.
1434  */
1435 void vmw_fence_single_bo(struct ttm_buffer_object *bo,
1436 			 struct vmw_fence_obj *fence)
1437 {
1438 	struct ttm_bo_device *bdev = bo->bdev;
1439 
1440 	struct vmw_private *dev_priv =
1441 		container_of(bdev, struct vmw_private, bdev);
1442 
1443 	if (fence == NULL) {
1444 		vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
1445 		reservation_object_add_excl_fence(bo->resv, &fence->base);
1446 		fence_put(&fence->base);
1447 	} else
1448 		reservation_object_add_excl_fence(bo->resv, &fence->base);
1449 }
1450 
1451 /**
1452  * vmw_resource_move_notify - TTM move_notify_callback
1453  *
1454  * @bo: The TTM buffer object about to move.
1455  * @mem: The struct ttm_mem_reg indicating to what memory
1456  *       region the move is taking place.
1457  *
1458  * Evicts the Guest Backed hardware resource if the backup
1459  * buffer is being moved out of MOB memory.
1460  * Note that this function should not race with the resource
1461  * validation code as long as it accesses only members of struct
1462  * resource that remain static while bo::res is !NULL and
1463  * while we have @bo reserved. struct resource::backup is *not* a
1464  * static member. The resource validation code will take care
1465  * to set @bo::res to NULL, while having @bo reserved when the
1466  * buffer is no longer bound to the resource, so @bo:res can be
1467  * used to determine whether there is a need to unbind and whether
1468  * it is safe to unbind.
1469  */
1470 void vmw_resource_move_notify(struct ttm_buffer_object *bo,
1471 			      struct ttm_mem_reg *mem)
1472 {
1473 	struct vmw_dma_buffer *dma_buf;
1474 
1475 	if (mem == NULL)
1476 		return;
1477 
1478 	if (bo->destroy != vmw_dmabuf_bo_free &&
1479 	    bo->destroy != vmw_user_dmabuf_destroy)
1480 		return;
1481 
1482 	dma_buf = container_of(bo, struct vmw_dma_buffer, base);
1483 
1484 	if (mem->mem_type != VMW_PL_MOB) {
1485 		struct vmw_resource *res, *n;
1486 		struct ttm_validate_buffer val_buf;
1487 
1488 		val_buf.bo = bo;
1489 		val_buf.shared = false;
1490 
1491 		list_for_each_entry_safe(res, n, &dma_buf->res_list, mob_head) {
1492 
1493 			if (unlikely(res->func->unbind == NULL))
1494 				continue;
1495 
1496 			(void) res->func->unbind(res, true, &val_buf);
1497 			res->backup_dirty = true;
1498 			res->res_dirty = false;
1499 			list_del_init(&res->mob_head);
1500 		}
1501 
1502 		(void) ttm_bo_wait(bo, false, false, false);
1503 	}
1504 }
1505 
1506 
1507 
1508 /**
1509  * vmw_query_readback_all - Read back cached query states
1510  *
1511  * @dx_query_mob: Buffer containing the DX query MOB
1512  *
1513  * Read back cached states from the device if they exist.  This function
1514  * assumings binding_mutex is held.
1515  */
1516 int vmw_query_readback_all(struct vmw_dma_buffer *dx_query_mob)
1517 {
1518 	struct vmw_resource *dx_query_ctx;
1519 	struct vmw_private *dev_priv;
1520 	struct {
1521 		SVGA3dCmdHeader header;
1522 		SVGA3dCmdDXReadbackAllQuery body;
1523 	} *cmd;
1524 
1525 
1526 	/* No query bound, so do nothing */
1527 	if (!dx_query_mob || !dx_query_mob->dx_query_ctx)
1528 		return 0;
1529 
1530 	dx_query_ctx = dx_query_mob->dx_query_ctx;
1531 	dev_priv     = dx_query_ctx->dev_priv;
1532 
1533 	cmd = vmw_fifo_reserve_dx(dev_priv, sizeof(*cmd), dx_query_ctx->id);
1534 	if (unlikely(cmd == NULL)) {
1535 		DRM_ERROR("Failed reserving FIFO space for "
1536 			  "query MOB read back.\n");
1537 		return -ENOMEM;
1538 	}
1539 
1540 	cmd->header.id   = SVGA_3D_CMD_DX_READBACK_ALL_QUERY;
1541 	cmd->header.size = sizeof(cmd->body);
1542 	cmd->body.cid    = dx_query_ctx->id;
1543 
1544 	vmw_fifo_commit(dev_priv, sizeof(*cmd));
1545 
1546 	/* Triggers a rebind the next time affected context is bound */
1547 	dx_query_mob->dx_query_ctx = NULL;
1548 
1549 	return 0;
1550 }
1551 
1552 
1553 
1554 /**
1555  * vmw_query_move_notify - Read back cached query states
1556  *
1557  * @bo: The TTM buffer object about to move.
1558  * @mem: The memory region @bo is moving to.
1559  *
1560  * Called before the query MOB is swapped out to read back cached query
1561  * states from the device.
1562  */
1563 void vmw_query_move_notify(struct ttm_buffer_object *bo,
1564 			   struct ttm_mem_reg *mem)
1565 {
1566 	struct vmw_dma_buffer *dx_query_mob;
1567 	struct ttm_bo_device *bdev = bo->bdev;
1568 	struct vmw_private *dev_priv;
1569 
1570 
1571 	dev_priv = container_of(bdev, struct vmw_private, bdev);
1572 
1573 	mutex_lock(&dev_priv->binding_mutex);
1574 
1575 	dx_query_mob = container_of(bo, struct vmw_dma_buffer, base);
1576 	if (mem == NULL || !dx_query_mob || !dx_query_mob->dx_query_ctx) {
1577 		mutex_unlock(&dev_priv->binding_mutex);
1578 		return;
1579 	}
1580 
1581 	/* If BO is being moved from MOB to system memory */
1582 	if (mem->mem_type == TTM_PL_SYSTEM && bo->mem.mem_type == VMW_PL_MOB) {
1583 		struct vmw_fence_obj *fence;
1584 
1585 		(void) vmw_query_readback_all(dx_query_mob);
1586 		mutex_unlock(&dev_priv->binding_mutex);
1587 
1588 		/* Create a fence and attach the BO to it */
1589 		(void) vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
1590 		vmw_fence_single_bo(bo, fence);
1591 
1592 		if (fence != NULL)
1593 			vmw_fence_obj_unreference(&fence);
1594 
1595 		(void) ttm_bo_wait(bo, false, false, false);
1596 	} else
1597 		mutex_unlock(&dev_priv->binding_mutex);
1598 
1599 }
1600 
1601 /**
1602  * vmw_resource_needs_backup - Return whether a resource needs a backup buffer.
1603  *
1604  * @res:            The resource being queried.
1605  */
1606 bool vmw_resource_needs_backup(const struct vmw_resource *res)
1607 {
1608 	return res->func->needs_backup;
1609 }
1610 
1611 /**
1612  * vmw_resource_evict_type - Evict all resources of a specific type
1613  *
1614  * @dev_priv:       Pointer to a device private struct
1615  * @type:           The resource type to evict
1616  *
1617  * To avoid thrashing starvation or as part of the hibernation sequence,
1618  * try to evict all evictable resources of a specific type.
1619  */
1620 static void vmw_resource_evict_type(struct vmw_private *dev_priv,
1621 				    enum vmw_res_type type)
1622 {
1623 	struct list_head *lru_list = &dev_priv->res_lru[type];
1624 	struct vmw_resource *evict_res;
1625 	unsigned err_count = 0;
1626 	int ret;
1627 
1628 	do {
1629 		write_lock(&dev_priv->resource_lock);
1630 
1631 		if (list_empty(lru_list))
1632 			goto out_unlock;
1633 
1634 		evict_res = vmw_resource_reference(
1635 			list_first_entry(lru_list, struct vmw_resource,
1636 					 lru_head));
1637 		list_del_init(&evict_res->lru_head);
1638 		write_unlock(&dev_priv->resource_lock);
1639 
1640 		ret = vmw_resource_do_evict(evict_res, false);
1641 		if (unlikely(ret != 0)) {
1642 			write_lock(&dev_priv->resource_lock);
1643 			list_add_tail(&evict_res->lru_head, lru_list);
1644 			write_unlock(&dev_priv->resource_lock);
1645 			if (++err_count > VMW_RES_EVICT_ERR_COUNT) {
1646 				vmw_resource_unreference(&evict_res);
1647 				return;
1648 			}
1649 		}
1650 
1651 		vmw_resource_unreference(&evict_res);
1652 	} while (1);
1653 
1654 out_unlock:
1655 	write_unlock(&dev_priv->resource_lock);
1656 }
1657 
1658 /**
1659  * vmw_resource_evict_all - Evict all evictable resources
1660  *
1661  * @dev_priv:       Pointer to a device private struct
1662  *
1663  * To avoid thrashing starvation or as part of the hibernation sequence,
1664  * evict all evictable resources. In particular this means that all
1665  * guest-backed resources that are registered with the device are
1666  * evicted and the OTable becomes clean.
1667  */
1668 void vmw_resource_evict_all(struct vmw_private *dev_priv)
1669 {
1670 	enum vmw_res_type type;
1671 
1672 	mutex_lock(&dev_priv->cmdbuf_mutex);
1673 
1674 	for (type = 0; type < vmw_res_max; ++type)
1675 		vmw_resource_evict_type(dev_priv, type);
1676 
1677 	mutex_unlock(&dev_priv->cmdbuf_mutex);
1678 }
1679 
1680 /**
1681  * vmw_resource_pin - Add a pin reference on a resource
1682  *
1683  * @res: The resource to add a pin reference on
1684  *
1685  * This function adds a pin reference, and if needed validates the resource.
1686  * Having a pin reference means that the resource can never be evicted, and
1687  * its id will never change as long as there is a pin reference.
1688  * This function returns 0 on success and a negative error code on failure.
1689  */
1690 int vmw_resource_pin(struct vmw_resource *res, bool interruptible)
1691 {
1692 	struct vmw_private *dev_priv = res->dev_priv;
1693 	int ret;
1694 
1695 	ttm_write_lock(&dev_priv->reservation_sem, interruptible);
1696 	mutex_lock(&dev_priv->cmdbuf_mutex);
1697 	ret = vmw_resource_reserve(res, interruptible, false);
1698 	if (ret)
1699 		goto out_no_reserve;
1700 
1701 	if (res->pin_count == 0) {
1702 		struct vmw_dma_buffer *vbo = NULL;
1703 
1704 		if (res->backup) {
1705 			vbo = res->backup;
1706 
1707 			ttm_bo_reserve(&vbo->base, interruptible, false, false,
1708 				       NULL);
1709 			if (!vbo->pin_count) {
1710 				ret = ttm_bo_validate
1711 					(&vbo->base,
1712 					 res->func->backup_placement,
1713 					 interruptible, false);
1714 				if (ret) {
1715 					ttm_bo_unreserve(&vbo->base);
1716 					goto out_no_validate;
1717 				}
1718 			}
1719 
1720 			/* Do we really need to pin the MOB as well? */
1721 			vmw_bo_pin_reserved(vbo, true);
1722 		}
1723 		ret = vmw_resource_validate(res);
1724 		if (vbo)
1725 			ttm_bo_unreserve(&vbo->base);
1726 		if (ret)
1727 			goto out_no_validate;
1728 	}
1729 	res->pin_count++;
1730 
1731 out_no_validate:
1732 	vmw_resource_unreserve(res, false, NULL, 0UL);
1733 out_no_reserve:
1734 	mutex_unlock(&dev_priv->cmdbuf_mutex);
1735 	ttm_write_unlock(&dev_priv->reservation_sem);
1736 
1737 	return ret;
1738 }
1739 
1740 /**
1741  * vmw_resource_unpin - Remove a pin reference from a resource
1742  *
1743  * @res: The resource to remove a pin reference from
1744  *
1745  * Having a pin reference means that the resource can never be evicted, and
1746  * its id will never change as long as there is a pin reference.
1747  */
1748 void vmw_resource_unpin(struct vmw_resource *res)
1749 {
1750 	struct vmw_private *dev_priv = res->dev_priv;
1751 	int ret;
1752 
1753 	ttm_read_lock(&dev_priv->reservation_sem, false);
1754 	mutex_lock(&dev_priv->cmdbuf_mutex);
1755 
1756 	ret = vmw_resource_reserve(res, false, true);
1757 	WARN_ON(ret);
1758 
1759 	WARN_ON(res->pin_count == 0);
1760 	if (--res->pin_count == 0 && res->backup) {
1761 		struct vmw_dma_buffer *vbo = res->backup;
1762 
1763 		ttm_bo_reserve(&vbo->base, false, false, false, NULL);
1764 		vmw_bo_pin_reserved(vbo, false);
1765 		ttm_bo_unreserve(&vbo->base);
1766 	}
1767 
1768 	vmw_resource_unreserve(res, false, NULL, 0UL);
1769 
1770 	mutex_unlock(&dev_priv->cmdbuf_mutex);
1771 	ttm_read_unlock(&dev_priv->reservation_sem);
1772 }
1773 
1774 /**
1775  * vmw_res_type - Return the resource type
1776  *
1777  * @res: Pointer to the resource
1778  */
1779 enum vmw_res_type vmw_res_type(const struct vmw_resource *res)
1780 {
1781 	return res->func->res_type;
1782 }
1783