1 /**************************************************************************
2  *
3  * Copyright © 2009-2015 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 #include "vmwgfx_drv.h"
29 #include <drm/vmwgfx_drm.h>
30 #include <drm/ttm/ttm_object.h>
31 #include <drm/ttm/ttm_placement.h>
32 #include <drm/drmP.h>
33 #include "vmwgfx_resource_priv.h"
34 #include "vmwgfx_binding.h"
35 
36 #define VMW_RES_EVICT_ERR_COUNT 10
37 
38 struct vmw_user_dma_buffer {
39 	struct ttm_prime_object prime;
40 	struct vmw_dma_buffer dma;
41 };
42 
43 struct vmw_bo_user_rep {
44 	uint32_t handle;
45 	uint64_t map_handle;
46 };
47 
48 static inline struct vmw_dma_buffer *
49 vmw_dma_buffer(struct ttm_buffer_object *bo)
50 {
51 	return container_of(bo, struct vmw_dma_buffer, base);
52 }
53 
54 static inline struct vmw_user_dma_buffer *
55 vmw_user_dma_buffer(struct ttm_buffer_object *bo)
56 {
57 	struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
58 	return container_of(vmw_bo, struct vmw_user_dma_buffer, dma);
59 }
60 
61 struct vmw_resource *vmw_resource_reference(struct vmw_resource *res)
62 {
63 	kref_get(&res->kref);
64 	return res;
65 }
66 
67 struct vmw_resource *
68 vmw_resource_reference_unless_doomed(struct vmw_resource *res)
69 {
70 	return kref_get_unless_zero(&res->kref) ? res : NULL;
71 }
72 
73 /**
74  * vmw_resource_release_id - release a resource id to the id manager.
75  *
76  * @res: Pointer to the resource.
77  *
78  * Release the resource id to the resource id manager and set it to -1
79  */
80 void vmw_resource_release_id(struct vmw_resource *res)
81 {
82 	struct vmw_private *dev_priv = res->dev_priv;
83 	struct idr *idr = &dev_priv->res_idr[res->func->res_type];
84 
85 	write_lock(&dev_priv->resource_lock);
86 	if (res->id != -1)
87 		idr_remove(idr, res->id);
88 	res->id = -1;
89 	write_unlock(&dev_priv->resource_lock);
90 }
91 
92 static void vmw_resource_release(struct kref *kref)
93 {
94 	struct vmw_resource *res =
95 	    container_of(kref, struct vmw_resource, kref);
96 	struct vmw_private *dev_priv = res->dev_priv;
97 	int id;
98 	struct idr *idr = &dev_priv->res_idr[res->func->res_type];
99 
100 	write_lock(&dev_priv->resource_lock);
101 	res->avail = false;
102 	list_del_init(&res->lru_head);
103 	write_unlock(&dev_priv->resource_lock);
104 	if (res->backup) {
105 		struct ttm_buffer_object *bo = &res->backup->base;
106 
107 		ttm_bo_reserve(bo, false, false, NULL);
108 		if (!list_empty(&res->mob_head) &&
109 		    res->func->unbind != NULL) {
110 			struct ttm_validate_buffer val_buf;
111 
112 			val_buf.bo = bo;
113 			val_buf.shared = false;
114 			res->func->unbind(res, false, &val_buf);
115 		}
116 		res->backup_dirty = false;
117 		list_del_init(&res->mob_head);
118 		ttm_bo_unreserve(bo);
119 		vmw_dmabuf_unreference(&res->backup);
120 	}
121 
122 	if (likely(res->hw_destroy != NULL)) {
123 		mutex_lock(&dev_priv->binding_mutex);
124 		vmw_binding_res_list_kill(&res->binding_head);
125 		mutex_unlock(&dev_priv->binding_mutex);
126 		res->hw_destroy(res);
127 	}
128 
129 	id = res->id;
130 	if (res->res_free != NULL)
131 		res->res_free(res);
132 	else
133 		kfree(res);
134 
135 	write_lock(&dev_priv->resource_lock);
136 	if (id != -1)
137 		idr_remove(idr, id);
138 	write_unlock(&dev_priv->resource_lock);
139 }
140 
141 void vmw_resource_unreference(struct vmw_resource **p_res)
142 {
143 	struct vmw_resource *res = *p_res;
144 
145 	*p_res = NULL;
146 	kref_put(&res->kref, vmw_resource_release);
147 }
148 
149 
150 /**
151  * vmw_resource_alloc_id - release a resource id to the id manager.
152  *
153  * @res: Pointer to the resource.
154  *
155  * Allocate the lowest free resource from the resource manager, and set
156  * @res->id to that id. Returns 0 on success and -ENOMEM on failure.
157  */
158 int vmw_resource_alloc_id(struct vmw_resource *res)
159 {
160 	struct vmw_private *dev_priv = res->dev_priv;
161 	int ret;
162 	struct idr *idr = &dev_priv->res_idr[res->func->res_type];
163 
164 	BUG_ON(res->id != -1);
165 
166 	idr_preload(GFP_KERNEL);
167 	write_lock(&dev_priv->resource_lock);
168 
169 	ret = idr_alloc(idr, res, 1, 0, GFP_NOWAIT);
170 	if (ret >= 0)
171 		res->id = ret;
172 
173 	write_unlock(&dev_priv->resource_lock);
174 	idr_preload_end();
175 	return ret < 0 ? ret : 0;
176 }
177 
178 /**
179  * vmw_resource_init - initialize a struct vmw_resource
180  *
181  * @dev_priv:       Pointer to a device private struct.
182  * @res:            The struct vmw_resource to initialize.
183  * @obj_type:       Resource object type.
184  * @delay_id:       Boolean whether to defer device id allocation until
185  *                  the first validation.
186  * @res_free:       Resource destructor.
187  * @func:           Resource function table.
188  */
189 int vmw_resource_init(struct vmw_private *dev_priv, struct vmw_resource *res,
190 		      bool delay_id,
191 		      void (*res_free) (struct vmw_resource *res),
192 		      const struct vmw_res_func *func)
193 {
194 	kref_init(&res->kref);
195 	res->hw_destroy = NULL;
196 	res->res_free = res_free;
197 	res->avail = false;
198 	res->dev_priv = dev_priv;
199 	res->func = func;
200 	INIT_LIST_HEAD(&res->lru_head);
201 	INIT_LIST_HEAD(&res->mob_head);
202 	INIT_LIST_HEAD(&res->binding_head);
203 	res->id = -1;
204 	res->backup = NULL;
205 	res->backup_offset = 0;
206 	res->backup_dirty = false;
207 	res->res_dirty = false;
208 	if (delay_id)
209 		return 0;
210 	else
211 		return vmw_resource_alloc_id(res);
212 }
213 
214 /**
215  * vmw_resource_activate
216  *
217  * @res:        Pointer to the newly created resource
218  * @hw_destroy: Destroy function. NULL if none.
219  *
220  * Activate a resource after the hardware has been made aware of it.
221  * Set tye destroy function to @destroy. Typically this frees the
222  * resource and destroys the hardware resources associated with it.
223  * Activate basically means that the function vmw_resource_lookup will
224  * find it.
225  */
226 void vmw_resource_activate(struct vmw_resource *res,
227 			   void (*hw_destroy) (struct vmw_resource *))
228 {
229 	struct vmw_private *dev_priv = res->dev_priv;
230 
231 	write_lock(&dev_priv->resource_lock);
232 	res->avail = true;
233 	res->hw_destroy = hw_destroy;
234 	write_unlock(&dev_priv->resource_lock);
235 }
236 
237 /**
238  * vmw_user_resource_lookup_handle - lookup a struct resource from a
239  * TTM user-space handle and perform basic type checks
240  *
241  * @dev_priv:     Pointer to a device private struct
242  * @tfile:        Pointer to a struct ttm_object_file identifying the caller
243  * @handle:       The TTM user-space handle
244  * @converter:    Pointer to an object describing the resource type
245  * @p_res:        On successful return the location pointed to will contain
246  *                a pointer to a refcounted struct vmw_resource.
247  *
248  * If the handle can't be found or is associated with an incorrect resource
249  * type, -EINVAL will be returned.
250  */
251 int vmw_user_resource_lookup_handle(struct vmw_private *dev_priv,
252 				    struct ttm_object_file *tfile,
253 				    uint32_t handle,
254 				    const struct vmw_user_resource_conv
255 				    *converter,
256 				    struct vmw_resource **p_res)
257 {
258 	struct ttm_base_object *base;
259 	struct vmw_resource *res;
260 	int ret = -EINVAL;
261 
262 	base = ttm_base_object_lookup(tfile, handle);
263 	if (unlikely(base == NULL))
264 		return -EINVAL;
265 
266 	if (unlikely(ttm_base_object_type(base) != converter->object_type))
267 		goto out_bad_resource;
268 
269 	res = converter->base_obj_to_res(base);
270 
271 	read_lock(&dev_priv->resource_lock);
272 	if (!res->avail || res->res_free != converter->res_free) {
273 		read_unlock(&dev_priv->resource_lock);
274 		goto out_bad_resource;
275 	}
276 
277 	kref_get(&res->kref);
278 	read_unlock(&dev_priv->resource_lock);
279 
280 	*p_res = res;
281 	ret = 0;
282 
283 out_bad_resource:
284 	ttm_base_object_unref(&base);
285 
286 	return ret;
287 }
288 
289 /**
290  * Helper function that looks either a surface or dmabuf.
291  *
292  * The pointer this pointed at by out_surf and out_buf needs to be null.
293  */
294 int vmw_user_lookup_handle(struct vmw_private *dev_priv,
295 			   struct ttm_object_file *tfile,
296 			   uint32_t handle,
297 			   struct vmw_surface **out_surf,
298 			   struct vmw_dma_buffer **out_buf)
299 {
300 	struct vmw_resource *res;
301 	int ret;
302 
303 	BUG_ON(*out_surf || *out_buf);
304 
305 	ret = vmw_user_resource_lookup_handle(dev_priv, tfile, handle,
306 					      user_surface_converter,
307 					      &res);
308 	if (!ret) {
309 		*out_surf = vmw_res_to_srf(res);
310 		return 0;
311 	}
312 
313 	*out_surf = NULL;
314 	ret = vmw_user_dmabuf_lookup(tfile, handle, out_buf, NULL);
315 	return ret;
316 }
317 
318 /**
319  * Buffer management.
320  */
321 
322 /**
323  * vmw_dmabuf_acc_size - Calculate the pinned memory usage of buffers
324  *
325  * @dev_priv: Pointer to a struct vmw_private identifying the device.
326  * @size: The requested buffer size.
327  * @user: Whether this is an ordinary dma buffer or a user dma buffer.
328  */
329 static size_t vmw_dmabuf_acc_size(struct vmw_private *dev_priv, size_t size,
330 				  bool user)
331 {
332 	static size_t struct_size, user_struct_size;
333 	size_t num_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
334 	size_t page_array_size = ttm_round_pot(num_pages * sizeof(void *));
335 
336 	if (unlikely(struct_size == 0)) {
337 		size_t backend_size = ttm_round_pot(vmw_tt_size);
338 
339 		struct_size = backend_size +
340 			ttm_round_pot(sizeof(struct vmw_dma_buffer));
341 		user_struct_size = backend_size +
342 			ttm_round_pot(sizeof(struct vmw_user_dma_buffer));
343 	}
344 
345 	if (dev_priv->map_mode == vmw_dma_alloc_coherent)
346 		page_array_size +=
347 			ttm_round_pot(num_pages * sizeof(dma_addr_t));
348 
349 	return ((user) ? user_struct_size : struct_size) +
350 		page_array_size;
351 }
352 
353 void vmw_dmabuf_bo_free(struct ttm_buffer_object *bo)
354 {
355 	struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
356 
357 	kfree(vmw_bo);
358 }
359 
360 static void vmw_user_dmabuf_destroy(struct ttm_buffer_object *bo)
361 {
362 	struct vmw_user_dma_buffer *vmw_user_bo = vmw_user_dma_buffer(bo);
363 
364 	ttm_prime_object_kfree(vmw_user_bo, prime);
365 }
366 
367 int vmw_dmabuf_init(struct vmw_private *dev_priv,
368 		    struct vmw_dma_buffer *vmw_bo,
369 		    size_t size, struct ttm_placement *placement,
370 		    bool interruptible,
371 		    void (*bo_free) (struct ttm_buffer_object *bo))
372 {
373 	struct ttm_bo_device *bdev = &dev_priv->bdev;
374 	size_t acc_size;
375 	int ret;
376 	bool user = (bo_free == &vmw_user_dmabuf_destroy);
377 
378 	BUG_ON(!bo_free && (!user && (bo_free != vmw_dmabuf_bo_free)));
379 
380 	acc_size = vmw_dmabuf_acc_size(dev_priv, size, user);
381 	memset(vmw_bo, 0, sizeof(*vmw_bo));
382 
383 	INIT_LIST_HEAD(&vmw_bo->res_list);
384 
385 	ret = ttm_bo_init(bdev, &vmw_bo->base, size,
386 			  ttm_bo_type_device, placement,
387 			  0, interruptible,
388 			  NULL, acc_size, NULL, NULL, bo_free);
389 	return ret;
390 }
391 
392 static void vmw_user_dmabuf_release(struct ttm_base_object **p_base)
393 {
394 	struct vmw_user_dma_buffer *vmw_user_bo;
395 	struct ttm_base_object *base = *p_base;
396 	struct ttm_buffer_object *bo;
397 
398 	*p_base = NULL;
399 
400 	if (unlikely(base == NULL))
401 		return;
402 
403 	vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
404 				   prime.base);
405 	bo = &vmw_user_bo->dma.base;
406 	ttm_bo_unref(&bo);
407 }
408 
409 static void vmw_user_dmabuf_ref_obj_release(struct ttm_base_object *base,
410 					    enum ttm_ref_type ref_type)
411 {
412 	struct vmw_user_dma_buffer *user_bo;
413 	user_bo = container_of(base, struct vmw_user_dma_buffer, prime.base);
414 
415 	switch (ref_type) {
416 	case TTM_REF_SYNCCPU_WRITE:
417 		ttm_bo_synccpu_write_release(&user_bo->dma.base);
418 		break;
419 	default:
420 		BUG();
421 	}
422 }
423 
424 /**
425  * vmw_user_dmabuf_alloc - Allocate a user dma buffer
426  *
427  * @dev_priv: Pointer to a struct device private.
428  * @tfile: Pointer to a struct ttm_object_file on which to register the user
429  * object.
430  * @size: Size of the dma buffer.
431  * @shareable: Boolean whether the buffer is shareable with other open files.
432  * @handle: Pointer to where the handle value should be assigned.
433  * @p_dma_buf: Pointer to where the refcounted struct vmw_dma_buffer pointer
434  * should be assigned.
435  */
436 int vmw_user_dmabuf_alloc(struct vmw_private *dev_priv,
437 			  struct ttm_object_file *tfile,
438 			  uint32_t size,
439 			  bool shareable,
440 			  uint32_t *handle,
441 			  struct vmw_dma_buffer **p_dma_buf,
442 			  struct ttm_base_object **p_base)
443 {
444 	struct vmw_user_dma_buffer *user_bo;
445 	struct ttm_buffer_object *tmp;
446 	int ret;
447 
448 	user_bo = kzalloc(sizeof(*user_bo), GFP_KERNEL);
449 	if (unlikely(!user_bo)) {
450 		DRM_ERROR("Failed to allocate a buffer.\n");
451 		return -ENOMEM;
452 	}
453 
454 	ret = vmw_dmabuf_init(dev_priv, &user_bo->dma, size,
455 			      (dev_priv->has_mob) ?
456 			      &vmw_sys_placement :
457 			      &vmw_vram_sys_placement, true,
458 			      &vmw_user_dmabuf_destroy);
459 	if (unlikely(ret != 0))
460 		return ret;
461 
462 	tmp = ttm_bo_reference(&user_bo->dma.base);
463 	ret = ttm_prime_object_init(tfile,
464 				    size,
465 				    &user_bo->prime,
466 				    shareable,
467 				    ttm_buffer_type,
468 				    &vmw_user_dmabuf_release,
469 				    &vmw_user_dmabuf_ref_obj_release);
470 	if (unlikely(ret != 0)) {
471 		ttm_bo_unref(&tmp);
472 		goto out_no_base_object;
473 	}
474 
475 	*p_dma_buf = &user_bo->dma;
476 	if (p_base) {
477 		*p_base = &user_bo->prime.base;
478 		kref_get(&(*p_base)->refcount);
479 	}
480 	*handle = user_bo->prime.base.hash.key;
481 
482 out_no_base_object:
483 	return ret;
484 }
485 
486 /**
487  * vmw_user_dmabuf_verify_access - verify access permissions on this
488  * buffer object.
489  *
490  * @bo: Pointer to the buffer object being accessed
491  * @tfile: Identifying the caller.
492  */
493 int vmw_user_dmabuf_verify_access(struct ttm_buffer_object *bo,
494 				  struct ttm_object_file *tfile)
495 {
496 	struct vmw_user_dma_buffer *vmw_user_bo;
497 
498 	if (unlikely(bo->destroy != vmw_user_dmabuf_destroy))
499 		return -EPERM;
500 
501 	vmw_user_bo = vmw_user_dma_buffer(bo);
502 
503 	/* Check that the caller has opened the object. */
504 	if (likely(ttm_ref_object_exists(tfile, &vmw_user_bo->prime.base)))
505 		return 0;
506 
507 	DRM_ERROR("Could not grant buffer access.\n");
508 	return -EPERM;
509 }
510 
511 /**
512  * vmw_user_dmabuf_synccpu_grab - Grab a struct vmw_user_dma_buffer for cpu
513  * access, idling previous GPU operations on the buffer and optionally
514  * blocking it for further command submissions.
515  *
516  * @user_bo: Pointer to the buffer object being grabbed for CPU access
517  * @tfile: Identifying the caller.
518  * @flags: Flags indicating how the grab should be performed.
519  *
520  * A blocking grab will be automatically released when @tfile is closed.
521  */
522 static int vmw_user_dmabuf_synccpu_grab(struct vmw_user_dma_buffer *user_bo,
523 					struct ttm_object_file *tfile,
524 					uint32_t flags)
525 {
526 	struct ttm_buffer_object *bo = &user_bo->dma.base;
527 	bool existed;
528 	int ret;
529 
530 	if (flags & drm_vmw_synccpu_allow_cs) {
531 		bool nonblock = !!(flags & drm_vmw_synccpu_dontblock);
532 		long lret;
533 
534 		lret = reservation_object_wait_timeout_rcu(bo->resv, true, true,
535 							   nonblock ? 0 : MAX_SCHEDULE_TIMEOUT);
536 		if (!lret)
537 			return -EBUSY;
538 		else if (lret < 0)
539 			return lret;
540 		return 0;
541 	}
542 
543 	ret = ttm_bo_synccpu_write_grab
544 		(bo, !!(flags & drm_vmw_synccpu_dontblock));
545 	if (unlikely(ret != 0))
546 		return ret;
547 
548 	ret = ttm_ref_object_add(tfile, &user_bo->prime.base,
549 				 TTM_REF_SYNCCPU_WRITE, &existed, false);
550 	if (ret != 0 || existed)
551 		ttm_bo_synccpu_write_release(&user_bo->dma.base);
552 
553 	return ret;
554 }
555 
556 /**
557  * vmw_user_dmabuf_synccpu_release - Release a previous grab for CPU access,
558  * and unblock command submission on the buffer if blocked.
559  *
560  * @handle: Handle identifying the buffer object.
561  * @tfile: Identifying the caller.
562  * @flags: Flags indicating the type of release.
563  */
564 static int vmw_user_dmabuf_synccpu_release(uint32_t handle,
565 					   struct ttm_object_file *tfile,
566 					   uint32_t flags)
567 {
568 	if (!(flags & drm_vmw_synccpu_allow_cs))
569 		return ttm_ref_object_base_unref(tfile, handle,
570 						 TTM_REF_SYNCCPU_WRITE);
571 
572 	return 0;
573 }
574 
575 /**
576  * vmw_user_dmabuf_synccpu_release - ioctl function implementing the synccpu
577  * functionality.
578  *
579  * @dev: Identifies the drm device.
580  * @data: Pointer to the ioctl argument.
581  * @file_priv: Identifies the caller.
582  *
583  * This function checks the ioctl arguments for validity and calls the
584  * relevant synccpu functions.
585  */
586 int vmw_user_dmabuf_synccpu_ioctl(struct drm_device *dev, void *data,
587 				  struct drm_file *file_priv)
588 {
589 	struct drm_vmw_synccpu_arg *arg =
590 		(struct drm_vmw_synccpu_arg *) data;
591 	struct vmw_dma_buffer *dma_buf;
592 	struct vmw_user_dma_buffer *user_bo;
593 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
594 	struct ttm_base_object *buffer_base;
595 	int ret;
596 
597 	if ((arg->flags & (drm_vmw_synccpu_read | drm_vmw_synccpu_write)) == 0
598 	    || (arg->flags & ~(drm_vmw_synccpu_read | drm_vmw_synccpu_write |
599 			       drm_vmw_synccpu_dontblock |
600 			       drm_vmw_synccpu_allow_cs)) != 0) {
601 		DRM_ERROR("Illegal synccpu flags.\n");
602 		return -EINVAL;
603 	}
604 
605 	switch (arg->op) {
606 	case drm_vmw_synccpu_grab:
607 		ret = vmw_user_dmabuf_lookup(tfile, arg->handle, &dma_buf,
608 					     &buffer_base);
609 		if (unlikely(ret != 0))
610 			return ret;
611 
612 		user_bo = container_of(dma_buf, struct vmw_user_dma_buffer,
613 				       dma);
614 		ret = vmw_user_dmabuf_synccpu_grab(user_bo, tfile, arg->flags);
615 		vmw_dmabuf_unreference(&dma_buf);
616 		ttm_base_object_unref(&buffer_base);
617 		if (unlikely(ret != 0 && ret != -ERESTARTSYS &&
618 			     ret != -EBUSY)) {
619 			DRM_ERROR("Failed synccpu grab on handle 0x%08x.\n",
620 				  (unsigned int) arg->handle);
621 			return ret;
622 		}
623 		break;
624 	case drm_vmw_synccpu_release:
625 		ret = vmw_user_dmabuf_synccpu_release(arg->handle, tfile,
626 						      arg->flags);
627 		if (unlikely(ret != 0)) {
628 			DRM_ERROR("Failed synccpu release on handle 0x%08x.\n",
629 				  (unsigned int) arg->handle);
630 			return ret;
631 		}
632 		break;
633 	default:
634 		DRM_ERROR("Invalid synccpu operation.\n");
635 		return -EINVAL;
636 	}
637 
638 	return 0;
639 }
640 
641 int vmw_dmabuf_alloc_ioctl(struct drm_device *dev, void *data,
642 			   struct drm_file *file_priv)
643 {
644 	struct vmw_private *dev_priv = vmw_priv(dev);
645 	union drm_vmw_alloc_dmabuf_arg *arg =
646 	    (union drm_vmw_alloc_dmabuf_arg *)data;
647 	struct drm_vmw_alloc_dmabuf_req *req = &arg->req;
648 	struct drm_vmw_dmabuf_rep *rep = &arg->rep;
649 	struct vmw_dma_buffer *dma_buf;
650 	uint32_t handle;
651 	int ret;
652 
653 	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
654 	if (unlikely(ret != 0))
655 		return ret;
656 
657 	ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
658 				    req->size, false, &handle, &dma_buf,
659 				    NULL);
660 	if (unlikely(ret != 0))
661 		goto out_no_dmabuf;
662 
663 	rep->handle = handle;
664 	rep->map_handle = drm_vma_node_offset_addr(&dma_buf->base.vma_node);
665 	rep->cur_gmr_id = handle;
666 	rep->cur_gmr_offset = 0;
667 
668 	vmw_dmabuf_unreference(&dma_buf);
669 
670 out_no_dmabuf:
671 	ttm_read_unlock(&dev_priv->reservation_sem);
672 
673 	return ret;
674 }
675 
676 int vmw_dmabuf_unref_ioctl(struct drm_device *dev, void *data,
677 			   struct drm_file *file_priv)
678 {
679 	struct drm_vmw_unref_dmabuf_arg *arg =
680 	    (struct drm_vmw_unref_dmabuf_arg *)data;
681 
682 	return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
683 					 arg->handle,
684 					 TTM_REF_USAGE);
685 }
686 
687 int vmw_user_dmabuf_lookup(struct ttm_object_file *tfile,
688 			   uint32_t handle, struct vmw_dma_buffer **out,
689 			   struct ttm_base_object **p_base)
690 {
691 	struct vmw_user_dma_buffer *vmw_user_bo;
692 	struct ttm_base_object *base;
693 
694 	base = ttm_base_object_lookup(tfile, handle);
695 	if (unlikely(base == NULL)) {
696 		pr_err("Invalid buffer object handle 0x%08lx\n",
697 		       (unsigned long)handle);
698 		return -ESRCH;
699 	}
700 
701 	if (unlikely(ttm_base_object_type(base) != ttm_buffer_type)) {
702 		ttm_base_object_unref(&base);
703 		pr_err("Invalid buffer object handle 0x%08lx\n",
704 		       (unsigned long)handle);
705 		return -EINVAL;
706 	}
707 
708 	vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
709 				   prime.base);
710 	(void)ttm_bo_reference(&vmw_user_bo->dma.base);
711 	if (p_base)
712 		*p_base = base;
713 	else
714 		ttm_base_object_unref(&base);
715 	*out = &vmw_user_bo->dma;
716 
717 	return 0;
718 }
719 
720 int vmw_user_dmabuf_reference(struct ttm_object_file *tfile,
721 			      struct vmw_dma_buffer *dma_buf,
722 			      uint32_t *handle)
723 {
724 	struct vmw_user_dma_buffer *user_bo;
725 
726 	if (dma_buf->base.destroy != vmw_user_dmabuf_destroy)
727 		return -EINVAL;
728 
729 	user_bo = container_of(dma_buf, struct vmw_user_dma_buffer, dma);
730 
731 	*handle = user_bo->prime.base.hash.key;
732 	return ttm_ref_object_add(tfile, &user_bo->prime.base,
733 				  TTM_REF_USAGE, NULL, false);
734 }
735 
736 /**
737  * vmw_dumb_create - Create a dumb kms buffer
738  *
739  * @file_priv: Pointer to a struct drm_file identifying the caller.
740  * @dev: Pointer to the drm device.
741  * @args: Pointer to a struct drm_mode_create_dumb structure
742  *
743  * This is a driver callback for the core drm create_dumb functionality.
744  * Note that this is very similar to the vmw_dmabuf_alloc ioctl, except
745  * that the arguments have a different format.
746  */
747 int vmw_dumb_create(struct drm_file *file_priv,
748 		    struct drm_device *dev,
749 		    struct drm_mode_create_dumb *args)
750 {
751 	struct vmw_private *dev_priv = vmw_priv(dev);
752 	struct vmw_dma_buffer *dma_buf;
753 	int ret;
754 
755 	args->pitch = args->width * ((args->bpp + 7) / 8);
756 	args->size = args->pitch * args->height;
757 
758 	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
759 	if (unlikely(ret != 0))
760 		return ret;
761 
762 	ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
763 				    args->size, false, &args->handle,
764 				    &dma_buf, NULL);
765 	if (unlikely(ret != 0))
766 		goto out_no_dmabuf;
767 
768 	vmw_dmabuf_unreference(&dma_buf);
769 out_no_dmabuf:
770 	ttm_read_unlock(&dev_priv->reservation_sem);
771 	return ret;
772 }
773 
774 /**
775  * vmw_dumb_map_offset - Return the address space offset of a dumb buffer
776  *
777  * @file_priv: Pointer to a struct drm_file identifying the caller.
778  * @dev: Pointer to the drm device.
779  * @handle: Handle identifying the dumb buffer.
780  * @offset: The address space offset returned.
781  *
782  * This is a driver callback for the core drm dumb_map_offset functionality.
783  */
784 int vmw_dumb_map_offset(struct drm_file *file_priv,
785 			struct drm_device *dev, uint32_t handle,
786 			uint64_t *offset)
787 {
788 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
789 	struct vmw_dma_buffer *out_buf;
790 	int ret;
791 
792 	ret = vmw_user_dmabuf_lookup(tfile, handle, &out_buf, NULL);
793 	if (ret != 0)
794 		return -EINVAL;
795 
796 	*offset = drm_vma_node_offset_addr(&out_buf->base.vma_node);
797 	vmw_dmabuf_unreference(&out_buf);
798 	return 0;
799 }
800 
801 /**
802  * vmw_dumb_destroy - Destroy a dumb boffer
803  *
804  * @file_priv: Pointer to a struct drm_file identifying the caller.
805  * @dev: Pointer to the drm device.
806  * @handle: Handle identifying the dumb buffer.
807  *
808  * This is a driver callback for the core drm dumb_destroy functionality.
809  */
810 int vmw_dumb_destroy(struct drm_file *file_priv,
811 		     struct drm_device *dev,
812 		     uint32_t handle)
813 {
814 	return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
815 					 handle, TTM_REF_USAGE);
816 }
817 
818 /**
819  * vmw_resource_buf_alloc - Allocate a backup buffer for a resource.
820  *
821  * @res:            The resource for which to allocate a backup buffer.
822  * @interruptible:  Whether any sleeps during allocation should be
823  *                  performed while interruptible.
824  */
825 static int vmw_resource_buf_alloc(struct vmw_resource *res,
826 				  bool interruptible)
827 {
828 	unsigned long size =
829 		(res->backup_size + PAGE_SIZE - 1) & PAGE_MASK;
830 	struct vmw_dma_buffer *backup;
831 	int ret;
832 
833 	if (likely(res->backup)) {
834 		BUG_ON(res->backup->base.num_pages * PAGE_SIZE < size);
835 		return 0;
836 	}
837 
838 	backup = kzalloc(sizeof(*backup), GFP_KERNEL);
839 	if (unlikely(!backup))
840 		return -ENOMEM;
841 
842 	ret = vmw_dmabuf_init(res->dev_priv, backup, res->backup_size,
843 			      res->func->backup_placement,
844 			      interruptible,
845 			      &vmw_dmabuf_bo_free);
846 	if (unlikely(ret != 0))
847 		goto out_no_dmabuf;
848 
849 	res->backup = backup;
850 
851 out_no_dmabuf:
852 	return ret;
853 }
854 
855 /**
856  * vmw_resource_do_validate - Make a resource up-to-date and visible
857  *                            to the device.
858  *
859  * @res:            The resource to make visible to the device.
860  * @val_buf:        Information about a buffer possibly
861  *                  containing backup data if a bind operation is needed.
862  *
863  * On hardware resource shortage, this function returns -EBUSY and
864  * should be retried once resources have been freed up.
865  */
866 static int vmw_resource_do_validate(struct vmw_resource *res,
867 				    struct ttm_validate_buffer *val_buf)
868 {
869 	int ret = 0;
870 	const struct vmw_res_func *func = res->func;
871 
872 	if (unlikely(res->id == -1)) {
873 		ret = func->create(res);
874 		if (unlikely(ret != 0))
875 			return ret;
876 	}
877 
878 	if (func->bind &&
879 	    ((func->needs_backup && list_empty(&res->mob_head) &&
880 	      val_buf->bo != NULL) ||
881 	     (!func->needs_backup && val_buf->bo != NULL))) {
882 		ret = func->bind(res, val_buf);
883 		if (unlikely(ret != 0))
884 			goto out_bind_failed;
885 		if (func->needs_backup)
886 			list_add_tail(&res->mob_head, &res->backup->res_list);
887 	}
888 
889 	/*
890 	 * Only do this on write operations, and move to
891 	 * vmw_resource_unreserve if it can be called after
892 	 * backup buffers have been unreserved. Otherwise
893 	 * sort out locking.
894 	 */
895 	res->res_dirty = true;
896 
897 	return 0;
898 
899 out_bind_failed:
900 	func->destroy(res);
901 
902 	return ret;
903 }
904 
905 /**
906  * vmw_resource_unreserve - Unreserve a resource previously reserved for
907  * command submission.
908  *
909  * @res:               Pointer to the struct vmw_resource to unreserve.
910  * @switch_backup:     Backup buffer has been switched.
911  * @new_backup:        Pointer to new backup buffer if command submission
912  *                     switched. May be NULL.
913  * @new_backup_offset: New backup offset if @switch_backup is true.
914  *
915  * Currently unreserving a resource means putting it back on the device's
916  * resource lru list, so that it can be evicted if necessary.
917  */
918 void vmw_resource_unreserve(struct vmw_resource *res,
919 			    bool switch_backup,
920 			    struct vmw_dma_buffer *new_backup,
921 			    unsigned long new_backup_offset)
922 {
923 	struct vmw_private *dev_priv = res->dev_priv;
924 
925 	if (!list_empty(&res->lru_head))
926 		return;
927 
928 	if (switch_backup && new_backup != res->backup) {
929 		if (res->backup) {
930 			lockdep_assert_held(&res->backup->base.resv->lock.base);
931 			list_del_init(&res->mob_head);
932 			vmw_dmabuf_unreference(&res->backup);
933 		}
934 
935 		if (new_backup) {
936 			res->backup = vmw_dmabuf_reference(new_backup);
937 			lockdep_assert_held(&new_backup->base.resv->lock.base);
938 			list_add_tail(&res->mob_head, &new_backup->res_list);
939 		} else {
940 			res->backup = NULL;
941 		}
942 	}
943 	if (switch_backup)
944 		res->backup_offset = new_backup_offset;
945 
946 	if (!res->func->may_evict || res->id == -1 || res->pin_count)
947 		return;
948 
949 	write_lock(&dev_priv->resource_lock);
950 	list_add_tail(&res->lru_head,
951 		      &res->dev_priv->res_lru[res->func->res_type]);
952 	write_unlock(&dev_priv->resource_lock);
953 }
954 
955 /**
956  * vmw_resource_check_buffer - Check whether a backup buffer is needed
957  *                             for a resource and in that case, allocate
958  *                             one, reserve and validate it.
959  *
960  * @res:            The resource for which to allocate a backup buffer.
961  * @interruptible:  Whether any sleeps during allocation should be
962  *                  performed while interruptible.
963  * @val_buf:        On successful return contains data about the
964  *                  reserved and validated backup buffer.
965  */
966 static int
967 vmw_resource_check_buffer(struct vmw_resource *res,
968 			  bool interruptible,
969 			  struct ttm_validate_buffer *val_buf)
970 {
971 	struct list_head val_list;
972 	bool backup_dirty = false;
973 	int ret;
974 
975 	if (unlikely(res->backup == NULL)) {
976 		ret = vmw_resource_buf_alloc(res, interruptible);
977 		if (unlikely(ret != 0))
978 			return ret;
979 	}
980 
981 	INIT_LIST_HEAD(&val_list);
982 	val_buf->bo = ttm_bo_reference(&res->backup->base);
983 	val_buf->shared = false;
984 	list_add_tail(&val_buf->head, &val_list);
985 	ret = ttm_eu_reserve_buffers(NULL, &val_list, interruptible, NULL);
986 	if (unlikely(ret != 0))
987 		goto out_no_reserve;
988 
989 	if (res->func->needs_backup && list_empty(&res->mob_head))
990 		return 0;
991 
992 	backup_dirty = res->backup_dirty;
993 	ret = ttm_bo_validate(&res->backup->base,
994 			      res->func->backup_placement,
995 			      true, false);
996 
997 	if (unlikely(ret != 0))
998 		goto out_no_validate;
999 
1000 	return 0;
1001 
1002 out_no_validate:
1003 	ttm_eu_backoff_reservation(NULL, &val_list);
1004 out_no_reserve:
1005 	ttm_bo_unref(&val_buf->bo);
1006 	if (backup_dirty)
1007 		vmw_dmabuf_unreference(&res->backup);
1008 
1009 	return ret;
1010 }
1011 
1012 /**
1013  * vmw_resource_reserve - Reserve a resource for command submission
1014  *
1015  * @res:            The resource to reserve.
1016  *
1017  * This function takes the resource off the LRU list and make sure
1018  * a backup buffer is present for guest-backed resources. However,
1019  * the buffer may not be bound to the resource at this point.
1020  *
1021  */
1022 int vmw_resource_reserve(struct vmw_resource *res, bool interruptible,
1023 			 bool no_backup)
1024 {
1025 	struct vmw_private *dev_priv = res->dev_priv;
1026 	int ret;
1027 
1028 	write_lock(&dev_priv->resource_lock);
1029 	list_del_init(&res->lru_head);
1030 	write_unlock(&dev_priv->resource_lock);
1031 
1032 	if (res->func->needs_backup && res->backup == NULL &&
1033 	    !no_backup) {
1034 		ret = vmw_resource_buf_alloc(res, interruptible);
1035 		if (unlikely(ret != 0)) {
1036 			DRM_ERROR("Failed to allocate a backup buffer "
1037 				  "of size %lu. bytes\n",
1038 				  (unsigned long) res->backup_size);
1039 			return ret;
1040 		}
1041 	}
1042 
1043 	return 0;
1044 }
1045 
1046 /**
1047  * vmw_resource_backoff_reservation - Unreserve and unreference a
1048  *                                    backup buffer
1049  *.
1050  * @val_buf:        Backup buffer information.
1051  */
1052 static void
1053 vmw_resource_backoff_reservation(struct ttm_validate_buffer *val_buf)
1054 {
1055 	struct list_head val_list;
1056 
1057 	if (likely(val_buf->bo == NULL))
1058 		return;
1059 
1060 	INIT_LIST_HEAD(&val_list);
1061 	list_add_tail(&val_buf->head, &val_list);
1062 	ttm_eu_backoff_reservation(NULL, &val_list);
1063 	ttm_bo_unref(&val_buf->bo);
1064 }
1065 
1066 /**
1067  * vmw_resource_do_evict - Evict a resource, and transfer its data
1068  *                         to a backup buffer.
1069  *
1070  * @res:            The resource to evict.
1071  * @interruptible:  Whether to wait interruptible.
1072  */
1073 static int vmw_resource_do_evict(struct vmw_resource *res, bool interruptible)
1074 {
1075 	struct ttm_validate_buffer val_buf;
1076 	const struct vmw_res_func *func = res->func;
1077 	int ret;
1078 
1079 	BUG_ON(!func->may_evict);
1080 
1081 	val_buf.bo = NULL;
1082 	val_buf.shared = false;
1083 	ret = vmw_resource_check_buffer(res, interruptible, &val_buf);
1084 	if (unlikely(ret != 0))
1085 		return ret;
1086 
1087 	if (unlikely(func->unbind != NULL &&
1088 		     (!func->needs_backup || !list_empty(&res->mob_head)))) {
1089 		ret = func->unbind(res, res->res_dirty, &val_buf);
1090 		if (unlikely(ret != 0))
1091 			goto out_no_unbind;
1092 		list_del_init(&res->mob_head);
1093 	}
1094 	ret = func->destroy(res);
1095 	res->backup_dirty = true;
1096 	res->res_dirty = false;
1097 out_no_unbind:
1098 	vmw_resource_backoff_reservation(&val_buf);
1099 
1100 	return ret;
1101 }
1102 
1103 
1104 /**
1105  * vmw_resource_validate - Make a resource up-to-date and visible
1106  *                         to the device.
1107  *
1108  * @res:            The resource to make visible to the device.
1109  *
1110  * On succesful return, any backup DMA buffer pointed to by @res->backup will
1111  * be reserved and validated.
1112  * On hardware resource shortage, this function will repeatedly evict
1113  * resources of the same type until the validation succeeds.
1114  */
1115 int vmw_resource_validate(struct vmw_resource *res)
1116 {
1117 	int ret;
1118 	struct vmw_resource *evict_res;
1119 	struct vmw_private *dev_priv = res->dev_priv;
1120 	struct list_head *lru_list = &dev_priv->res_lru[res->func->res_type];
1121 	struct ttm_validate_buffer val_buf;
1122 	unsigned err_count = 0;
1123 
1124 	if (!res->func->create)
1125 		return 0;
1126 
1127 	val_buf.bo = NULL;
1128 	val_buf.shared = false;
1129 	if (res->backup)
1130 		val_buf.bo = &res->backup->base;
1131 	do {
1132 		ret = vmw_resource_do_validate(res, &val_buf);
1133 		if (likely(ret != -EBUSY))
1134 			break;
1135 
1136 		write_lock(&dev_priv->resource_lock);
1137 		if (list_empty(lru_list) || !res->func->may_evict) {
1138 			DRM_ERROR("Out of device device resources "
1139 				  "for %s.\n", res->func->type_name);
1140 			ret = -EBUSY;
1141 			write_unlock(&dev_priv->resource_lock);
1142 			break;
1143 		}
1144 
1145 		evict_res = vmw_resource_reference
1146 			(list_first_entry(lru_list, struct vmw_resource,
1147 					  lru_head));
1148 		list_del_init(&evict_res->lru_head);
1149 
1150 		write_unlock(&dev_priv->resource_lock);
1151 
1152 		ret = vmw_resource_do_evict(evict_res, true);
1153 		if (unlikely(ret != 0)) {
1154 			write_lock(&dev_priv->resource_lock);
1155 			list_add_tail(&evict_res->lru_head, lru_list);
1156 			write_unlock(&dev_priv->resource_lock);
1157 			if (ret == -ERESTARTSYS ||
1158 			    ++err_count > VMW_RES_EVICT_ERR_COUNT) {
1159 				vmw_resource_unreference(&evict_res);
1160 				goto out_no_validate;
1161 			}
1162 		}
1163 
1164 		vmw_resource_unreference(&evict_res);
1165 	} while (1);
1166 
1167 	if (unlikely(ret != 0))
1168 		goto out_no_validate;
1169 	else if (!res->func->needs_backup && res->backup) {
1170 		list_del_init(&res->mob_head);
1171 		vmw_dmabuf_unreference(&res->backup);
1172 	}
1173 
1174 	return 0;
1175 
1176 out_no_validate:
1177 	return ret;
1178 }
1179 
1180 /**
1181  * vmw_fence_single_bo - Utility function to fence a single TTM buffer
1182  *                       object without unreserving it.
1183  *
1184  * @bo:             Pointer to the struct ttm_buffer_object to fence.
1185  * @fence:          Pointer to the fence. If NULL, this function will
1186  *                  insert a fence into the command stream..
1187  *
1188  * Contrary to the ttm_eu version of this function, it takes only
1189  * a single buffer object instead of a list, and it also doesn't
1190  * unreserve the buffer object, which needs to be done separately.
1191  */
1192 void vmw_fence_single_bo(struct ttm_buffer_object *bo,
1193 			 struct vmw_fence_obj *fence)
1194 {
1195 	struct ttm_bo_device *bdev = bo->bdev;
1196 
1197 	struct vmw_private *dev_priv =
1198 		container_of(bdev, struct vmw_private, bdev);
1199 
1200 	if (fence == NULL) {
1201 		vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
1202 		reservation_object_add_excl_fence(bo->resv, &fence->base);
1203 		dma_fence_put(&fence->base);
1204 	} else
1205 		reservation_object_add_excl_fence(bo->resv, &fence->base);
1206 }
1207 
1208 /**
1209  * vmw_resource_move_notify - TTM move_notify_callback
1210  *
1211  * @bo: The TTM buffer object about to move.
1212  * @mem: The struct ttm_mem_reg indicating to what memory
1213  *       region the move is taking place.
1214  *
1215  * Evicts the Guest Backed hardware resource if the backup
1216  * buffer is being moved out of MOB memory.
1217  * Note that this function should not race with the resource
1218  * validation code as long as it accesses only members of struct
1219  * resource that remain static while bo::res is !NULL and
1220  * while we have @bo reserved. struct resource::backup is *not* a
1221  * static member. The resource validation code will take care
1222  * to set @bo::res to NULL, while having @bo reserved when the
1223  * buffer is no longer bound to the resource, so @bo:res can be
1224  * used to determine whether there is a need to unbind and whether
1225  * it is safe to unbind.
1226  */
1227 void vmw_resource_move_notify(struct ttm_buffer_object *bo,
1228 			      struct ttm_mem_reg *mem)
1229 {
1230 	struct vmw_dma_buffer *dma_buf;
1231 
1232 	if (mem == NULL)
1233 		return;
1234 
1235 	if (bo->destroy != vmw_dmabuf_bo_free &&
1236 	    bo->destroy != vmw_user_dmabuf_destroy)
1237 		return;
1238 
1239 	dma_buf = container_of(bo, struct vmw_dma_buffer, base);
1240 
1241 	if (mem->mem_type != VMW_PL_MOB) {
1242 		struct vmw_resource *res, *n;
1243 		struct ttm_validate_buffer val_buf;
1244 
1245 		val_buf.bo = bo;
1246 		val_buf.shared = false;
1247 
1248 		list_for_each_entry_safe(res, n, &dma_buf->res_list, mob_head) {
1249 
1250 			if (unlikely(res->func->unbind == NULL))
1251 				continue;
1252 
1253 			(void) res->func->unbind(res, true, &val_buf);
1254 			res->backup_dirty = true;
1255 			res->res_dirty = false;
1256 			list_del_init(&res->mob_head);
1257 		}
1258 
1259 		(void) ttm_bo_wait(bo, false, false);
1260 	}
1261 }
1262 
1263 
1264 
1265 /**
1266  * vmw_query_readback_all - Read back cached query states
1267  *
1268  * @dx_query_mob: Buffer containing the DX query MOB
1269  *
1270  * Read back cached states from the device if they exist.  This function
1271  * assumings binding_mutex is held.
1272  */
1273 int vmw_query_readback_all(struct vmw_dma_buffer *dx_query_mob)
1274 {
1275 	struct vmw_resource *dx_query_ctx;
1276 	struct vmw_private *dev_priv;
1277 	struct {
1278 		SVGA3dCmdHeader header;
1279 		SVGA3dCmdDXReadbackAllQuery body;
1280 	} *cmd;
1281 
1282 
1283 	/* No query bound, so do nothing */
1284 	if (!dx_query_mob || !dx_query_mob->dx_query_ctx)
1285 		return 0;
1286 
1287 	dx_query_ctx = dx_query_mob->dx_query_ctx;
1288 	dev_priv     = dx_query_ctx->dev_priv;
1289 
1290 	cmd = vmw_fifo_reserve_dx(dev_priv, sizeof(*cmd), dx_query_ctx->id);
1291 	if (unlikely(cmd == NULL)) {
1292 		DRM_ERROR("Failed reserving FIFO space for "
1293 			  "query MOB read back.\n");
1294 		return -ENOMEM;
1295 	}
1296 
1297 	cmd->header.id   = SVGA_3D_CMD_DX_READBACK_ALL_QUERY;
1298 	cmd->header.size = sizeof(cmd->body);
1299 	cmd->body.cid    = dx_query_ctx->id;
1300 
1301 	vmw_fifo_commit(dev_priv, sizeof(*cmd));
1302 
1303 	/* Triggers a rebind the next time affected context is bound */
1304 	dx_query_mob->dx_query_ctx = NULL;
1305 
1306 	return 0;
1307 }
1308 
1309 
1310 
1311 /**
1312  * vmw_query_move_notify - Read back cached query states
1313  *
1314  * @bo: The TTM buffer object about to move.
1315  * @mem: The memory region @bo is moving to.
1316  *
1317  * Called before the query MOB is swapped out to read back cached query
1318  * states from the device.
1319  */
1320 void vmw_query_move_notify(struct ttm_buffer_object *bo,
1321 			   struct ttm_mem_reg *mem)
1322 {
1323 	struct vmw_dma_buffer *dx_query_mob;
1324 	struct ttm_bo_device *bdev = bo->bdev;
1325 	struct vmw_private *dev_priv;
1326 
1327 
1328 	dev_priv = container_of(bdev, struct vmw_private, bdev);
1329 
1330 	mutex_lock(&dev_priv->binding_mutex);
1331 
1332 	dx_query_mob = container_of(bo, struct vmw_dma_buffer, base);
1333 	if (mem == NULL || !dx_query_mob || !dx_query_mob->dx_query_ctx) {
1334 		mutex_unlock(&dev_priv->binding_mutex);
1335 		return;
1336 	}
1337 
1338 	/* If BO is being moved from MOB to system memory */
1339 	if (mem->mem_type == TTM_PL_SYSTEM && bo->mem.mem_type == VMW_PL_MOB) {
1340 		struct vmw_fence_obj *fence;
1341 
1342 		(void) vmw_query_readback_all(dx_query_mob);
1343 		mutex_unlock(&dev_priv->binding_mutex);
1344 
1345 		/* Create a fence and attach the BO to it */
1346 		(void) vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
1347 		vmw_fence_single_bo(bo, fence);
1348 
1349 		if (fence != NULL)
1350 			vmw_fence_obj_unreference(&fence);
1351 
1352 		(void) ttm_bo_wait(bo, false, false);
1353 	} else
1354 		mutex_unlock(&dev_priv->binding_mutex);
1355 
1356 }
1357 
1358 /**
1359  * vmw_resource_needs_backup - Return whether a resource needs a backup buffer.
1360  *
1361  * @res:            The resource being queried.
1362  */
1363 bool vmw_resource_needs_backup(const struct vmw_resource *res)
1364 {
1365 	return res->func->needs_backup;
1366 }
1367 
1368 /**
1369  * vmw_resource_evict_type - Evict all resources of a specific type
1370  *
1371  * @dev_priv:       Pointer to a device private struct
1372  * @type:           The resource type to evict
1373  *
1374  * To avoid thrashing starvation or as part of the hibernation sequence,
1375  * try to evict all evictable resources of a specific type.
1376  */
1377 static void vmw_resource_evict_type(struct vmw_private *dev_priv,
1378 				    enum vmw_res_type type)
1379 {
1380 	struct list_head *lru_list = &dev_priv->res_lru[type];
1381 	struct vmw_resource *evict_res;
1382 	unsigned err_count = 0;
1383 	int ret;
1384 
1385 	do {
1386 		write_lock(&dev_priv->resource_lock);
1387 
1388 		if (list_empty(lru_list))
1389 			goto out_unlock;
1390 
1391 		evict_res = vmw_resource_reference(
1392 			list_first_entry(lru_list, struct vmw_resource,
1393 					 lru_head));
1394 		list_del_init(&evict_res->lru_head);
1395 		write_unlock(&dev_priv->resource_lock);
1396 
1397 		ret = vmw_resource_do_evict(evict_res, false);
1398 		if (unlikely(ret != 0)) {
1399 			write_lock(&dev_priv->resource_lock);
1400 			list_add_tail(&evict_res->lru_head, lru_list);
1401 			write_unlock(&dev_priv->resource_lock);
1402 			if (++err_count > VMW_RES_EVICT_ERR_COUNT) {
1403 				vmw_resource_unreference(&evict_res);
1404 				return;
1405 			}
1406 		}
1407 
1408 		vmw_resource_unreference(&evict_res);
1409 	} while (1);
1410 
1411 out_unlock:
1412 	write_unlock(&dev_priv->resource_lock);
1413 }
1414 
1415 /**
1416  * vmw_resource_evict_all - Evict all evictable resources
1417  *
1418  * @dev_priv:       Pointer to a device private struct
1419  *
1420  * To avoid thrashing starvation or as part of the hibernation sequence,
1421  * evict all evictable resources. In particular this means that all
1422  * guest-backed resources that are registered with the device are
1423  * evicted and the OTable becomes clean.
1424  */
1425 void vmw_resource_evict_all(struct vmw_private *dev_priv)
1426 {
1427 	enum vmw_res_type type;
1428 
1429 	mutex_lock(&dev_priv->cmdbuf_mutex);
1430 
1431 	for (type = 0; type < vmw_res_max; ++type)
1432 		vmw_resource_evict_type(dev_priv, type);
1433 
1434 	mutex_unlock(&dev_priv->cmdbuf_mutex);
1435 }
1436 
1437 /**
1438  * vmw_resource_pin - Add a pin reference on a resource
1439  *
1440  * @res: The resource to add a pin reference on
1441  *
1442  * This function adds a pin reference, and if needed validates the resource.
1443  * Having a pin reference means that the resource can never be evicted, and
1444  * its id will never change as long as there is a pin reference.
1445  * This function returns 0 on success and a negative error code on failure.
1446  */
1447 int vmw_resource_pin(struct vmw_resource *res, bool interruptible)
1448 {
1449 	struct vmw_private *dev_priv = res->dev_priv;
1450 	int ret;
1451 
1452 	ttm_write_lock(&dev_priv->reservation_sem, interruptible);
1453 	mutex_lock(&dev_priv->cmdbuf_mutex);
1454 	ret = vmw_resource_reserve(res, interruptible, false);
1455 	if (ret)
1456 		goto out_no_reserve;
1457 
1458 	if (res->pin_count == 0) {
1459 		struct vmw_dma_buffer *vbo = NULL;
1460 
1461 		if (res->backup) {
1462 			vbo = res->backup;
1463 
1464 			ttm_bo_reserve(&vbo->base, interruptible, false, NULL);
1465 			if (!vbo->pin_count) {
1466 				ret = ttm_bo_validate
1467 					(&vbo->base,
1468 					 res->func->backup_placement,
1469 					 interruptible, false);
1470 				if (ret) {
1471 					ttm_bo_unreserve(&vbo->base);
1472 					goto out_no_validate;
1473 				}
1474 			}
1475 
1476 			/* Do we really need to pin the MOB as well? */
1477 			vmw_bo_pin_reserved(vbo, true);
1478 		}
1479 		ret = vmw_resource_validate(res);
1480 		if (vbo)
1481 			ttm_bo_unreserve(&vbo->base);
1482 		if (ret)
1483 			goto out_no_validate;
1484 	}
1485 	res->pin_count++;
1486 
1487 out_no_validate:
1488 	vmw_resource_unreserve(res, false, NULL, 0UL);
1489 out_no_reserve:
1490 	mutex_unlock(&dev_priv->cmdbuf_mutex);
1491 	ttm_write_unlock(&dev_priv->reservation_sem);
1492 
1493 	return ret;
1494 }
1495 
1496 /**
1497  * vmw_resource_unpin - Remove a pin reference from a resource
1498  *
1499  * @res: The resource to remove a pin reference from
1500  *
1501  * Having a pin reference means that the resource can never be evicted, and
1502  * its id will never change as long as there is a pin reference.
1503  */
1504 void vmw_resource_unpin(struct vmw_resource *res)
1505 {
1506 	struct vmw_private *dev_priv = res->dev_priv;
1507 	int ret;
1508 
1509 	(void) ttm_read_lock(&dev_priv->reservation_sem, false);
1510 	mutex_lock(&dev_priv->cmdbuf_mutex);
1511 
1512 	ret = vmw_resource_reserve(res, false, true);
1513 	WARN_ON(ret);
1514 
1515 	WARN_ON(res->pin_count == 0);
1516 	if (--res->pin_count == 0 && res->backup) {
1517 		struct vmw_dma_buffer *vbo = res->backup;
1518 
1519 		(void) ttm_bo_reserve(&vbo->base, false, false, NULL);
1520 		vmw_bo_pin_reserved(vbo, false);
1521 		ttm_bo_unreserve(&vbo->base);
1522 	}
1523 
1524 	vmw_resource_unreserve(res, false, NULL, 0UL);
1525 
1526 	mutex_unlock(&dev_priv->cmdbuf_mutex);
1527 	ttm_read_unlock(&dev_priv->reservation_sem);
1528 }
1529 
1530 /**
1531  * vmw_res_type - Return the resource type
1532  *
1533  * @res: Pointer to the resource
1534  */
1535 enum vmw_res_type vmw_res_type(const struct vmw_resource *res)
1536 {
1537 	return res->func->res_type;
1538 }
1539