1 /**************************************************************************
2  *
3  * Copyright © 2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 #include "vmwgfx_drv.h"
29 #include <drm/vmwgfx_drm.h>
30 #include <drm/ttm/ttm_object.h>
31 #include <drm/ttm/ttm_placement.h>
32 #include <drm/drmP.h>
33 #include "vmwgfx_resource_priv.h"
34 
35 #define VMW_RES_EVICT_ERR_COUNT 10
36 
37 struct vmw_user_dma_buffer {
38 	struct ttm_prime_object prime;
39 	struct vmw_dma_buffer dma;
40 };
41 
42 struct vmw_bo_user_rep {
43 	uint32_t handle;
44 	uint64_t map_handle;
45 };
46 
47 struct vmw_stream {
48 	struct vmw_resource res;
49 	uint32_t stream_id;
50 };
51 
52 struct vmw_user_stream {
53 	struct ttm_base_object base;
54 	struct vmw_stream stream;
55 };
56 
57 
58 static uint64_t vmw_user_stream_size;
59 
60 static const struct vmw_res_func vmw_stream_func = {
61 	.res_type = vmw_res_stream,
62 	.needs_backup = false,
63 	.may_evict = false,
64 	.type_name = "video streams",
65 	.backup_placement = NULL,
66 	.create = NULL,
67 	.destroy = NULL,
68 	.bind = NULL,
69 	.unbind = NULL
70 };
71 
72 static inline struct vmw_dma_buffer *
73 vmw_dma_buffer(struct ttm_buffer_object *bo)
74 {
75 	return container_of(bo, struct vmw_dma_buffer, base);
76 }
77 
78 static inline struct vmw_user_dma_buffer *
79 vmw_user_dma_buffer(struct ttm_buffer_object *bo)
80 {
81 	struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
82 	return container_of(vmw_bo, struct vmw_user_dma_buffer, dma);
83 }
84 
85 struct vmw_resource *vmw_resource_reference(struct vmw_resource *res)
86 {
87 	kref_get(&res->kref);
88 	return res;
89 }
90 
91 
92 /**
93  * vmw_resource_release_id - release a resource id to the id manager.
94  *
95  * @res: Pointer to the resource.
96  *
97  * Release the resource id to the resource id manager and set it to -1
98  */
99 void vmw_resource_release_id(struct vmw_resource *res)
100 {
101 	struct vmw_private *dev_priv = res->dev_priv;
102 	struct idr *idr = &dev_priv->res_idr[res->func->res_type];
103 
104 	write_lock(&dev_priv->resource_lock);
105 	if (res->id != -1)
106 		idr_remove(idr, res->id);
107 	res->id = -1;
108 	write_unlock(&dev_priv->resource_lock);
109 }
110 
111 static void vmw_resource_release(struct kref *kref)
112 {
113 	struct vmw_resource *res =
114 	    container_of(kref, struct vmw_resource, kref);
115 	struct vmw_private *dev_priv = res->dev_priv;
116 	int id;
117 	struct idr *idr = &dev_priv->res_idr[res->func->res_type];
118 
119 	res->avail = false;
120 	list_del_init(&res->lru_head);
121 	write_unlock(&dev_priv->resource_lock);
122 	if (res->backup) {
123 		struct ttm_buffer_object *bo = &res->backup->base;
124 
125 		ttm_bo_reserve(bo, false, false, false, 0);
126 		if (!list_empty(&res->mob_head) &&
127 		    res->func->unbind != NULL) {
128 			struct ttm_validate_buffer val_buf;
129 
130 			val_buf.bo = bo;
131 			res->func->unbind(res, false, &val_buf);
132 		}
133 		res->backup_dirty = false;
134 		list_del_init(&res->mob_head);
135 		ttm_bo_unreserve(bo);
136 		vmw_dmabuf_unreference(&res->backup);
137 	}
138 
139 	if (likely(res->hw_destroy != NULL))
140 		res->hw_destroy(res);
141 
142 	id = res->id;
143 	if (res->res_free != NULL)
144 		res->res_free(res);
145 	else
146 		kfree(res);
147 
148 	write_lock(&dev_priv->resource_lock);
149 
150 	if (id != -1)
151 		idr_remove(idr, id);
152 }
153 
154 void vmw_resource_unreference(struct vmw_resource **p_res)
155 {
156 	struct vmw_resource *res = *p_res;
157 	struct vmw_private *dev_priv = res->dev_priv;
158 
159 	*p_res = NULL;
160 	write_lock(&dev_priv->resource_lock);
161 	kref_put(&res->kref, vmw_resource_release);
162 	write_unlock(&dev_priv->resource_lock);
163 }
164 
165 
166 /**
167  * vmw_resource_alloc_id - release a resource id to the id manager.
168  *
169  * @res: Pointer to the resource.
170  *
171  * Allocate the lowest free resource from the resource manager, and set
172  * @res->id to that id. Returns 0 on success and -ENOMEM on failure.
173  */
174 int vmw_resource_alloc_id(struct vmw_resource *res)
175 {
176 	struct vmw_private *dev_priv = res->dev_priv;
177 	int ret;
178 	struct idr *idr = &dev_priv->res_idr[res->func->res_type];
179 
180 	BUG_ON(res->id != -1);
181 
182 	idr_preload(GFP_KERNEL);
183 	write_lock(&dev_priv->resource_lock);
184 
185 	ret = idr_alloc(idr, res, 1, 0, GFP_NOWAIT);
186 	if (ret >= 0)
187 		res->id = ret;
188 
189 	write_unlock(&dev_priv->resource_lock);
190 	idr_preload_end();
191 	return ret < 0 ? ret : 0;
192 }
193 
194 /**
195  * vmw_resource_init - initialize a struct vmw_resource
196  *
197  * @dev_priv:       Pointer to a device private struct.
198  * @res:            The struct vmw_resource to initialize.
199  * @obj_type:       Resource object type.
200  * @delay_id:       Boolean whether to defer device id allocation until
201  *                  the first validation.
202  * @res_free:       Resource destructor.
203  * @func:           Resource function table.
204  */
205 int vmw_resource_init(struct vmw_private *dev_priv, struct vmw_resource *res,
206 		      bool delay_id,
207 		      void (*res_free) (struct vmw_resource *res),
208 		      const struct vmw_res_func *func)
209 {
210 	kref_init(&res->kref);
211 	res->hw_destroy = NULL;
212 	res->res_free = res_free;
213 	res->avail = false;
214 	res->dev_priv = dev_priv;
215 	res->func = func;
216 	INIT_LIST_HEAD(&res->lru_head);
217 	INIT_LIST_HEAD(&res->mob_head);
218 	res->id = -1;
219 	res->backup = NULL;
220 	res->backup_offset = 0;
221 	res->backup_dirty = false;
222 	res->res_dirty = false;
223 	if (delay_id)
224 		return 0;
225 	else
226 		return vmw_resource_alloc_id(res);
227 }
228 
229 /**
230  * vmw_resource_activate
231  *
232  * @res:        Pointer to the newly created resource
233  * @hw_destroy: Destroy function. NULL if none.
234  *
235  * Activate a resource after the hardware has been made aware of it.
236  * Set tye destroy function to @destroy. Typically this frees the
237  * resource and destroys the hardware resources associated with it.
238  * Activate basically means that the function vmw_resource_lookup will
239  * find it.
240  */
241 void vmw_resource_activate(struct vmw_resource *res,
242 			   void (*hw_destroy) (struct vmw_resource *))
243 {
244 	struct vmw_private *dev_priv = res->dev_priv;
245 
246 	write_lock(&dev_priv->resource_lock);
247 	res->avail = true;
248 	res->hw_destroy = hw_destroy;
249 	write_unlock(&dev_priv->resource_lock);
250 }
251 
252 struct vmw_resource *vmw_resource_lookup(struct vmw_private *dev_priv,
253 					 struct idr *idr, int id)
254 {
255 	struct vmw_resource *res;
256 
257 	read_lock(&dev_priv->resource_lock);
258 	res = idr_find(idr, id);
259 	if (res && res->avail)
260 		kref_get(&res->kref);
261 	else
262 		res = NULL;
263 	read_unlock(&dev_priv->resource_lock);
264 
265 	if (unlikely(res == NULL))
266 		return NULL;
267 
268 	return res;
269 }
270 
271 /**
272  * vmw_user_resource_lookup_handle - lookup a struct resource from a
273  * TTM user-space handle and perform basic type checks
274  *
275  * @dev_priv:     Pointer to a device private struct
276  * @tfile:        Pointer to a struct ttm_object_file identifying the caller
277  * @handle:       The TTM user-space handle
278  * @converter:    Pointer to an object describing the resource type
279  * @p_res:        On successful return the location pointed to will contain
280  *                a pointer to a refcounted struct vmw_resource.
281  *
282  * If the handle can't be found or is associated with an incorrect resource
283  * type, -EINVAL will be returned.
284  */
285 int vmw_user_resource_lookup_handle(struct vmw_private *dev_priv,
286 				    struct ttm_object_file *tfile,
287 				    uint32_t handle,
288 				    const struct vmw_user_resource_conv
289 				    *converter,
290 				    struct vmw_resource **p_res)
291 {
292 	struct ttm_base_object *base;
293 	struct vmw_resource *res;
294 	int ret = -EINVAL;
295 
296 	base = ttm_base_object_lookup(tfile, handle);
297 	if (unlikely(base == NULL))
298 		return -EINVAL;
299 
300 	if (unlikely(ttm_base_object_type(base) != converter->object_type))
301 		goto out_bad_resource;
302 
303 	res = converter->base_obj_to_res(base);
304 
305 	read_lock(&dev_priv->resource_lock);
306 	if (!res->avail || res->res_free != converter->res_free) {
307 		read_unlock(&dev_priv->resource_lock);
308 		goto out_bad_resource;
309 	}
310 
311 	kref_get(&res->kref);
312 	read_unlock(&dev_priv->resource_lock);
313 
314 	*p_res = res;
315 	ret = 0;
316 
317 out_bad_resource:
318 	ttm_base_object_unref(&base);
319 
320 	return ret;
321 }
322 
323 /**
324  * Helper function that looks either a surface or dmabuf.
325  *
326  * The pointer this pointed at by out_surf and out_buf needs to be null.
327  */
328 int vmw_user_lookup_handle(struct vmw_private *dev_priv,
329 			   struct ttm_object_file *tfile,
330 			   uint32_t handle,
331 			   struct vmw_surface **out_surf,
332 			   struct vmw_dma_buffer **out_buf)
333 {
334 	struct vmw_resource *res;
335 	int ret;
336 
337 	BUG_ON(*out_surf || *out_buf);
338 
339 	ret = vmw_user_resource_lookup_handle(dev_priv, tfile, handle,
340 					      user_surface_converter,
341 					      &res);
342 	if (!ret) {
343 		*out_surf = vmw_res_to_srf(res);
344 		return 0;
345 	}
346 
347 	*out_surf = NULL;
348 	ret = vmw_user_dmabuf_lookup(tfile, handle, out_buf);
349 	return ret;
350 }
351 
352 /**
353  * Buffer management.
354  */
355 
356 /**
357  * vmw_dmabuf_acc_size - Calculate the pinned memory usage of buffers
358  *
359  * @dev_priv: Pointer to a struct vmw_private identifying the device.
360  * @size: The requested buffer size.
361  * @user: Whether this is an ordinary dma buffer or a user dma buffer.
362  */
363 static size_t vmw_dmabuf_acc_size(struct vmw_private *dev_priv, size_t size,
364 				  bool user)
365 {
366 	static size_t struct_size, user_struct_size;
367 	size_t num_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
368 	size_t page_array_size = ttm_round_pot(num_pages * sizeof(void *));
369 
370 	if (unlikely(struct_size == 0)) {
371 		size_t backend_size = ttm_round_pot(vmw_tt_size);
372 
373 		struct_size = backend_size +
374 			ttm_round_pot(sizeof(struct vmw_dma_buffer));
375 		user_struct_size = backend_size +
376 			ttm_round_pot(sizeof(struct vmw_user_dma_buffer));
377 	}
378 
379 	if (dev_priv->map_mode == vmw_dma_alloc_coherent)
380 		page_array_size +=
381 			ttm_round_pot(num_pages * sizeof(dma_addr_t));
382 
383 	return ((user) ? user_struct_size : struct_size) +
384 		page_array_size;
385 }
386 
387 void vmw_dmabuf_bo_free(struct ttm_buffer_object *bo)
388 {
389 	struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
390 
391 	kfree(vmw_bo);
392 }
393 
394 static void vmw_user_dmabuf_destroy(struct ttm_buffer_object *bo)
395 {
396 	struct vmw_user_dma_buffer *vmw_user_bo = vmw_user_dma_buffer(bo);
397 
398 	ttm_prime_object_kfree(vmw_user_bo, prime);
399 }
400 
401 int vmw_dmabuf_init(struct vmw_private *dev_priv,
402 		    struct vmw_dma_buffer *vmw_bo,
403 		    size_t size, struct ttm_placement *placement,
404 		    bool interruptible,
405 		    void (*bo_free) (struct ttm_buffer_object *bo))
406 {
407 	struct ttm_bo_device *bdev = &dev_priv->bdev;
408 	size_t acc_size;
409 	int ret;
410 	bool user = (bo_free == &vmw_user_dmabuf_destroy);
411 
412 	BUG_ON(!bo_free && (!user && (bo_free != vmw_dmabuf_bo_free)));
413 
414 	acc_size = vmw_dmabuf_acc_size(dev_priv, size, user);
415 	memset(vmw_bo, 0, sizeof(*vmw_bo));
416 
417 	INIT_LIST_HEAD(&vmw_bo->res_list);
418 
419 	ret = ttm_bo_init(bdev, &vmw_bo->base, size,
420 			  (user) ? ttm_bo_type_device :
421 			  ttm_bo_type_kernel, placement,
422 			  0, interruptible,
423 			  NULL, acc_size, NULL, bo_free);
424 	return ret;
425 }
426 
427 static void vmw_user_dmabuf_release(struct ttm_base_object **p_base)
428 {
429 	struct vmw_user_dma_buffer *vmw_user_bo;
430 	struct ttm_base_object *base = *p_base;
431 	struct ttm_buffer_object *bo;
432 
433 	*p_base = NULL;
434 
435 	if (unlikely(base == NULL))
436 		return;
437 
438 	vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
439 				   prime.base);
440 	bo = &vmw_user_bo->dma.base;
441 	ttm_bo_unref(&bo);
442 }
443 
444 /**
445  * vmw_user_dmabuf_alloc - Allocate a user dma buffer
446  *
447  * @dev_priv: Pointer to a struct device private.
448  * @tfile: Pointer to a struct ttm_object_file on which to register the user
449  * object.
450  * @size: Size of the dma buffer.
451  * @shareable: Boolean whether the buffer is shareable with other open files.
452  * @handle: Pointer to where the handle value should be assigned.
453  * @p_dma_buf: Pointer to where the refcounted struct vmw_dma_buffer pointer
454  * should be assigned.
455  */
456 int vmw_user_dmabuf_alloc(struct vmw_private *dev_priv,
457 			  struct ttm_object_file *tfile,
458 			  uint32_t size,
459 			  bool shareable,
460 			  uint32_t *handle,
461 			  struct vmw_dma_buffer **p_dma_buf)
462 {
463 	struct vmw_user_dma_buffer *user_bo;
464 	struct ttm_buffer_object *tmp;
465 	int ret;
466 
467 	user_bo = kzalloc(sizeof(*user_bo), GFP_KERNEL);
468 	if (unlikely(user_bo == NULL)) {
469 		DRM_ERROR("Failed to allocate a buffer.\n");
470 		return -ENOMEM;
471 	}
472 
473 	ret = vmw_dmabuf_init(dev_priv, &user_bo->dma, size,
474 			      &vmw_vram_sys_placement, true,
475 			      &vmw_user_dmabuf_destroy);
476 	if (unlikely(ret != 0))
477 		return ret;
478 
479 	tmp = ttm_bo_reference(&user_bo->dma.base);
480 	ret = ttm_prime_object_init(tfile,
481 				    size,
482 				    &user_bo->prime,
483 				    shareable,
484 				    ttm_buffer_type,
485 				    &vmw_user_dmabuf_release, NULL);
486 	if (unlikely(ret != 0)) {
487 		ttm_bo_unref(&tmp);
488 		goto out_no_base_object;
489 	}
490 
491 	*p_dma_buf = &user_bo->dma;
492 	*handle = user_bo->prime.base.hash.key;
493 
494 out_no_base_object:
495 	return ret;
496 }
497 
498 /**
499  * vmw_user_dmabuf_verify_access - verify access permissions on this
500  * buffer object.
501  *
502  * @bo: Pointer to the buffer object being accessed
503  * @tfile: Identifying the caller.
504  */
505 int vmw_user_dmabuf_verify_access(struct ttm_buffer_object *bo,
506 				  struct ttm_object_file *tfile)
507 {
508 	struct vmw_user_dma_buffer *vmw_user_bo;
509 
510 	if (unlikely(bo->destroy != vmw_user_dmabuf_destroy))
511 		return -EPERM;
512 
513 	vmw_user_bo = vmw_user_dma_buffer(bo);
514 	return (vmw_user_bo->prime.base.tfile == tfile ||
515 		vmw_user_bo->prime.base.shareable) ? 0 : -EPERM;
516 }
517 
518 int vmw_dmabuf_alloc_ioctl(struct drm_device *dev, void *data,
519 			   struct drm_file *file_priv)
520 {
521 	struct vmw_private *dev_priv = vmw_priv(dev);
522 	union drm_vmw_alloc_dmabuf_arg *arg =
523 	    (union drm_vmw_alloc_dmabuf_arg *)data;
524 	struct drm_vmw_alloc_dmabuf_req *req = &arg->req;
525 	struct drm_vmw_dmabuf_rep *rep = &arg->rep;
526 	struct vmw_dma_buffer *dma_buf;
527 	uint32_t handle;
528 	struct vmw_master *vmaster = vmw_master(file_priv->master);
529 	int ret;
530 
531 	ret = ttm_read_lock(&vmaster->lock, true);
532 	if (unlikely(ret != 0))
533 		return ret;
534 
535 	ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
536 				    req->size, false, &handle, &dma_buf);
537 	if (unlikely(ret != 0))
538 		goto out_no_dmabuf;
539 
540 	rep->handle = handle;
541 	rep->map_handle = drm_vma_node_offset_addr(&dma_buf->base.vma_node);
542 	rep->cur_gmr_id = handle;
543 	rep->cur_gmr_offset = 0;
544 
545 	vmw_dmabuf_unreference(&dma_buf);
546 
547 out_no_dmabuf:
548 	ttm_read_unlock(&vmaster->lock);
549 
550 	return ret;
551 }
552 
553 int vmw_dmabuf_unref_ioctl(struct drm_device *dev, void *data,
554 			   struct drm_file *file_priv)
555 {
556 	struct drm_vmw_unref_dmabuf_arg *arg =
557 	    (struct drm_vmw_unref_dmabuf_arg *)data;
558 
559 	return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
560 					 arg->handle,
561 					 TTM_REF_USAGE);
562 }
563 
564 int vmw_user_dmabuf_lookup(struct ttm_object_file *tfile,
565 			   uint32_t handle, struct vmw_dma_buffer **out)
566 {
567 	struct vmw_user_dma_buffer *vmw_user_bo;
568 	struct ttm_base_object *base;
569 
570 	base = ttm_base_object_lookup(tfile, handle);
571 	if (unlikely(base == NULL)) {
572 		printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
573 		       (unsigned long)handle);
574 		return -ESRCH;
575 	}
576 
577 	if (unlikely(ttm_base_object_type(base) != ttm_buffer_type)) {
578 		ttm_base_object_unref(&base);
579 		printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
580 		       (unsigned long)handle);
581 		return -EINVAL;
582 	}
583 
584 	vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
585 				   prime.base);
586 	(void)ttm_bo_reference(&vmw_user_bo->dma.base);
587 	ttm_base_object_unref(&base);
588 	*out = &vmw_user_bo->dma;
589 
590 	return 0;
591 }
592 
593 int vmw_user_dmabuf_reference(struct ttm_object_file *tfile,
594 			      struct vmw_dma_buffer *dma_buf)
595 {
596 	struct vmw_user_dma_buffer *user_bo;
597 
598 	if (dma_buf->base.destroy != vmw_user_dmabuf_destroy)
599 		return -EINVAL;
600 
601 	user_bo = container_of(dma_buf, struct vmw_user_dma_buffer, dma);
602 	return ttm_ref_object_add(tfile, &user_bo->prime.base,
603 				  TTM_REF_USAGE, NULL);
604 }
605 
606 /*
607  * Stream management
608  */
609 
610 static void vmw_stream_destroy(struct vmw_resource *res)
611 {
612 	struct vmw_private *dev_priv = res->dev_priv;
613 	struct vmw_stream *stream;
614 	int ret;
615 
616 	DRM_INFO("%s: unref\n", __func__);
617 	stream = container_of(res, struct vmw_stream, res);
618 
619 	ret = vmw_overlay_unref(dev_priv, stream->stream_id);
620 	WARN_ON(ret != 0);
621 }
622 
623 static int vmw_stream_init(struct vmw_private *dev_priv,
624 			   struct vmw_stream *stream,
625 			   void (*res_free) (struct vmw_resource *res))
626 {
627 	struct vmw_resource *res = &stream->res;
628 	int ret;
629 
630 	ret = vmw_resource_init(dev_priv, res, false, res_free,
631 				&vmw_stream_func);
632 
633 	if (unlikely(ret != 0)) {
634 		if (res_free == NULL)
635 			kfree(stream);
636 		else
637 			res_free(&stream->res);
638 		return ret;
639 	}
640 
641 	ret = vmw_overlay_claim(dev_priv, &stream->stream_id);
642 	if (ret) {
643 		vmw_resource_unreference(&res);
644 		return ret;
645 	}
646 
647 	DRM_INFO("%s: claimed\n", __func__);
648 
649 	vmw_resource_activate(&stream->res, vmw_stream_destroy);
650 	return 0;
651 }
652 
653 static void vmw_user_stream_free(struct vmw_resource *res)
654 {
655 	struct vmw_user_stream *stream =
656 	    container_of(res, struct vmw_user_stream, stream.res);
657 	struct vmw_private *dev_priv = res->dev_priv;
658 
659 	ttm_base_object_kfree(stream, base);
660 	ttm_mem_global_free(vmw_mem_glob(dev_priv),
661 			    vmw_user_stream_size);
662 }
663 
664 /**
665  * This function is called when user space has no more references on the
666  * base object. It releases the base-object's reference on the resource object.
667  */
668 
669 static void vmw_user_stream_base_release(struct ttm_base_object **p_base)
670 {
671 	struct ttm_base_object *base = *p_base;
672 	struct vmw_user_stream *stream =
673 	    container_of(base, struct vmw_user_stream, base);
674 	struct vmw_resource *res = &stream->stream.res;
675 
676 	*p_base = NULL;
677 	vmw_resource_unreference(&res);
678 }
679 
680 int vmw_stream_unref_ioctl(struct drm_device *dev, void *data,
681 			   struct drm_file *file_priv)
682 {
683 	struct vmw_private *dev_priv = vmw_priv(dev);
684 	struct vmw_resource *res;
685 	struct vmw_user_stream *stream;
686 	struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
687 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
688 	struct idr *idr = &dev_priv->res_idr[vmw_res_stream];
689 	int ret = 0;
690 
691 
692 	res = vmw_resource_lookup(dev_priv, idr, arg->stream_id);
693 	if (unlikely(res == NULL))
694 		return -EINVAL;
695 
696 	if (res->res_free != &vmw_user_stream_free) {
697 		ret = -EINVAL;
698 		goto out;
699 	}
700 
701 	stream = container_of(res, struct vmw_user_stream, stream.res);
702 	if (stream->base.tfile != tfile) {
703 		ret = -EINVAL;
704 		goto out;
705 	}
706 
707 	ttm_ref_object_base_unref(tfile, stream->base.hash.key, TTM_REF_USAGE);
708 out:
709 	vmw_resource_unreference(&res);
710 	return ret;
711 }
712 
713 int vmw_stream_claim_ioctl(struct drm_device *dev, void *data,
714 			   struct drm_file *file_priv)
715 {
716 	struct vmw_private *dev_priv = vmw_priv(dev);
717 	struct vmw_user_stream *stream;
718 	struct vmw_resource *res;
719 	struct vmw_resource *tmp;
720 	struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
721 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
722 	struct vmw_master *vmaster = vmw_master(file_priv->master);
723 	int ret;
724 
725 	/*
726 	 * Approximate idr memory usage with 128 bytes. It will be limited
727 	 * by maximum number_of streams anyway?
728 	 */
729 
730 	if (unlikely(vmw_user_stream_size == 0))
731 		vmw_user_stream_size = ttm_round_pot(sizeof(*stream)) + 128;
732 
733 	ret = ttm_read_lock(&vmaster->lock, true);
734 	if (unlikely(ret != 0))
735 		return ret;
736 
737 	ret = ttm_mem_global_alloc(vmw_mem_glob(dev_priv),
738 				   vmw_user_stream_size,
739 				   false, true);
740 	if (unlikely(ret != 0)) {
741 		if (ret != -ERESTARTSYS)
742 			DRM_ERROR("Out of graphics memory for stream"
743 				  " creation.\n");
744 		goto out_unlock;
745 	}
746 
747 
748 	stream = kmalloc(sizeof(*stream), GFP_KERNEL);
749 	if (unlikely(stream == NULL)) {
750 		ttm_mem_global_free(vmw_mem_glob(dev_priv),
751 				    vmw_user_stream_size);
752 		ret = -ENOMEM;
753 		goto out_unlock;
754 	}
755 
756 	res = &stream->stream.res;
757 	stream->base.shareable = false;
758 	stream->base.tfile = NULL;
759 
760 	/*
761 	 * From here on, the destructor takes over resource freeing.
762 	 */
763 
764 	ret = vmw_stream_init(dev_priv, &stream->stream, vmw_user_stream_free);
765 	if (unlikely(ret != 0))
766 		goto out_unlock;
767 
768 	tmp = vmw_resource_reference(res);
769 	ret = ttm_base_object_init(tfile, &stream->base, false, VMW_RES_STREAM,
770 				   &vmw_user_stream_base_release, NULL);
771 
772 	if (unlikely(ret != 0)) {
773 		vmw_resource_unreference(&tmp);
774 		goto out_err;
775 	}
776 
777 	arg->stream_id = res->id;
778 out_err:
779 	vmw_resource_unreference(&res);
780 out_unlock:
781 	ttm_read_unlock(&vmaster->lock);
782 	return ret;
783 }
784 
785 int vmw_user_stream_lookup(struct vmw_private *dev_priv,
786 			   struct ttm_object_file *tfile,
787 			   uint32_t *inout_id, struct vmw_resource **out)
788 {
789 	struct vmw_user_stream *stream;
790 	struct vmw_resource *res;
791 	int ret;
792 
793 	res = vmw_resource_lookup(dev_priv, &dev_priv->res_idr[vmw_res_stream],
794 				  *inout_id);
795 	if (unlikely(res == NULL))
796 		return -EINVAL;
797 
798 	if (res->res_free != &vmw_user_stream_free) {
799 		ret = -EINVAL;
800 		goto err_ref;
801 	}
802 
803 	stream = container_of(res, struct vmw_user_stream, stream.res);
804 	if (stream->base.tfile != tfile) {
805 		ret = -EPERM;
806 		goto err_ref;
807 	}
808 
809 	*inout_id = stream->stream.stream_id;
810 	*out = res;
811 	return 0;
812 err_ref:
813 	vmw_resource_unreference(&res);
814 	return ret;
815 }
816 
817 
818 /**
819  * vmw_dumb_create - Create a dumb kms buffer
820  *
821  * @file_priv: Pointer to a struct drm_file identifying the caller.
822  * @dev: Pointer to the drm device.
823  * @args: Pointer to a struct drm_mode_create_dumb structure
824  *
825  * This is a driver callback for the core drm create_dumb functionality.
826  * Note that this is very similar to the vmw_dmabuf_alloc ioctl, except
827  * that the arguments have a different format.
828  */
829 int vmw_dumb_create(struct drm_file *file_priv,
830 		    struct drm_device *dev,
831 		    struct drm_mode_create_dumb *args)
832 {
833 	struct vmw_private *dev_priv = vmw_priv(dev);
834 	struct vmw_master *vmaster = vmw_master(file_priv->master);
835 	struct vmw_dma_buffer *dma_buf;
836 	int ret;
837 
838 	args->pitch = args->width * ((args->bpp + 7) / 8);
839 	args->size = args->pitch * args->height;
840 
841 	ret = ttm_read_lock(&vmaster->lock, true);
842 	if (unlikely(ret != 0))
843 		return ret;
844 
845 	ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
846 				    args->size, false, &args->handle,
847 				    &dma_buf);
848 	if (unlikely(ret != 0))
849 		goto out_no_dmabuf;
850 
851 	vmw_dmabuf_unreference(&dma_buf);
852 out_no_dmabuf:
853 	ttm_read_unlock(&vmaster->lock);
854 	return ret;
855 }
856 
857 /**
858  * vmw_dumb_map_offset - Return the address space offset of a dumb buffer
859  *
860  * @file_priv: Pointer to a struct drm_file identifying the caller.
861  * @dev: Pointer to the drm device.
862  * @handle: Handle identifying the dumb buffer.
863  * @offset: The address space offset returned.
864  *
865  * This is a driver callback for the core drm dumb_map_offset functionality.
866  */
867 int vmw_dumb_map_offset(struct drm_file *file_priv,
868 			struct drm_device *dev, uint32_t handle,
869 			uint64_t *offset)
870 {
871 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
872 	struct vmw_dma_buffer *out_buf;
873 	int ret;
874 
875 	ret = vmw_user_dmabuf_lookup(tfile, handle, &out_buf);
876 	if (ret != 0)
877 		return -EINVAL;
878 
879 	*offset = drm_vma_node_offset_addr(&out_buf->base.vma_node);
880 	vmw_dmabuf_unreference(&out_buf);
881 	return 0;
882 }
883 
884 /**
885  * vmw_dumb_destroy - Destroy a dumb boffer
886  *
887  * @file_priv: Pointer to a struct drm_file identifying the caller.
888  * @dev: Pointer to the drm device.
889  * @handle: Handle identifying the dumb buffer.
890  *
891  * This is a driver callback for the core drm dumb_destroy functionality.
892  */
893 int vmw_dumb_destroy(struct drm_file *file_priv,
894 		     struct drm_device *dev,
895 		     uint32_t handle)
896 {
897 	return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
898 					 handle, TTM_REF_USAGE);
899 }
900 
901 /**
902  * vmw_resource_buf_alloc - Allocate a backup buffer for a resource.
903  *
904  * @res:            The resource for which to allocate a backup buffer.
905  * @interruptible:  Whether any sleeps during allocation should be
906  *                  performed while interruptible.
907  */
908 static int vmw_resource_buf_alloc(struct vmw_resource *res,
909 				  bool interruptible)
910 {
911 	unsigned long size =
912 		(res->backup_size + PAGE_SIZE - 1) & PAGE_MASK;
913 	struct vmw_dma_buffer *backup;
914 	int ret;
915 
916 	if (likely(res->backup)) {
917 		BUG_ON(res->backup->base.num_pages * PAGE_SIZE < size);
918 		return 0;
919 	}
920 
921 	backup = kzalloc(sizeof(*backup), GFP_KERNEL);
922 	if (unlikely(backup == NULL))
923 		return -ENOMEM;
924 
925 	ret = vmw_dmabuf_init(res->dev_priv, backup, res->backup_size,
926 			      res->func->backup_placement,
927 			      interruptible,
928 			      &vmw_dmabuf_bo_free);
929 	if (unlikely(ret != 0))
930 		goto out_no_dmabuf;
931 
932 	res->backup = backup;
933 
934 out_no_dmabuf:
935 	return ret;
936 }
937 
938 /**
939  * vmw_resource_do_validate - Make a resource up-to-date and visible
940  *                            to the device.
941  *
942  * @res:            The resource to make visible to the device.
943  * @val_buf:        Information about a buffer possibly
944  *                  containing backup data if a bind operation is needed.
945  *
946  * On hardware resource shortage, this function returns -EBUSY and
947  * should be retried once resources have been freed up.
948  */
949 static int vmw_resource_do_validate(struct vmw_resource *res,
950 				    struct ttm_validate_buffer *val_buf)
951 {
952 	int ret = 0;
953 	const struct vmw_res_func *func = res->func;
954 
955 	if (unlikely(res->id == -1)) {
956 		ret = func->create(res);
957 		if (unlikely(ret != 0))
958 			return ret;
959 	}
960 
961 	if (func->bind &&
962 	    ((func->needs_backup && list_empty(&res->mob_head) &&
963 	      val_buf->bo != NULL) ||
964 	     (!func->needs_backup && val_buf->bo != NULL))) {
965 		ret = func->bind(res, val_buf);
966 		if (unlikely(ret != 0))
967 			goto out_bind_failed;
968 		if (func->needs_backup)
969 			list_add_tail(&res->mob_head, &res->backup->res_list);
970 	}
971 
972 	/*
973 	 * Only do this on write operations, and move to
974 	 * vmw_resource_unreserve if it can be called after
975 	 * backup buffers have been unreserved. Otherwise
976 	 * sort out locking.
977 	 */
978 	res->res_dirty = true;
979 
980 	return 0;
981 
982 out_bind_failed:
983 	func->destroy(res);
984 
985 	return ret;
986 }
987 
988 /**
989  * vmw_resource_unreserve - Unreserve a resource previously reserved for
990  * command submission.
991  *
992  * @res:               Pointer to the struct vmw_resource to unreserve.
993  * @new_backup:        Pointer to new backup buffer if command submission
994  *                     switched.
995  * @new_backup_offset: New backup offset if @new_backup is !NULL.
996  *
997  * Currently unreserving a resource means putting it back on the device's
998  * resource lru list, so that it can be evicted if necessary.
999  */
1000 void vmw_resource_unreserve(struct vmw_resource *res,
1001 			    struct vmw_dma_buffer *new_backup,
1002 			    unsigned long new_backup_offset)
1003 {
1004 	struct vmw_private *dev_priv = res->dev_priv;
1005 
1006 	if (!list_empty(&res->lru_head))
1007 		return;
1008 
1009 	if (new_backup && new_backup != res->backup) {
1010 
1011 		if (res->backup) {
1012 			lockdep_assert_held(&res->backup->base.resv->lock.base);
1013 			list_del_init(&res->mob_head);
1014 			vmw_dmabuf_unreference(&res->backup);
1015 		}
1016 
1017 		res->backup = vmw_dmabuf_reference(new_backup);
1018 		lockdep_assert_held(&new_backup->base.resv->lock.base);
1019 		list_add_tail(&res->mob_head, &new_backup->res_list);
1020 	}
1021 	if (new_backup)
1022 		res->backup_offset = new_backup_offset;
1023 
1024 	if (!res->func->may_evict || res->id == -1)
1025 		return;
1026 
1027 	write_lock(&dev_priv->resource_lock);
1028 	list_add_tail(&res->lru_head,
1029 		      &res->dev_priv->res_lru[res->func->res_type]);
1030 	write_unlock(&dev_priv->resource_lock);
1031 }
1032 
1033 /**
1034  * vmw_resource_check_buffer - Check whether a backup buffer is needed
1035  *                             for a resource and in that case, allocate
1036  *                             one, reserve and validate it.
1037  *
1038  * @res:            The resource for which to allocate a backup buffer.
1039  * @interruptible:  Whether any sleeps during allocation should be
1040  *                  performed while interruptible.
1041  * @val_buf:        On successful return contains data about the
1042  *                  reserved and validated backup buffer.
1043  */
1044 static int
1045 vmw_resource_check_buffer(struct vmw_resource *res,
1046 			  bool interruptible,
1047 			  struct ttm_validate_buffer *val_buf)
1048 {
1049 	struct list_head val_list;
1050 	bool backup_dirty = false;
1051 	int ret;
1052 
1053 	if (unlikely(res->backup == NULL)) {
1054 		ret = vmw_resource_buf_alloc(res, interruptible);
1055 		if (unlikely(ret != 0))
1056 			return ret;
1057 	}
1058 
1059 	INIT_LIST_HEAD(&val_list);
1060 	val_buf->bo = ttm_bo_reference(&res->backup->base);
1061 	list_add_tail(&val_buf->head, &val_list);
1062 	ret = ttm_eu_reserve_buffers(NULL, &val_list);
1063 	if (unlikely(ret != 0))
1064 		goto out_no_reserve;
1065 
1066 	if (res->func->needs_backup && list_empty(&res->mob_head))
1067 		return 0;
1068 
1069 	backup_dirty = res->backup_dirty;
1070 	ret = ttm_bo_validate(&res->backup->base,
1071 			      res->func->backup_placement,
1072 			      true, false);
1073 
1074 	if (unlikely(ret != 0))
1075 		goto out_no_validate;
1076 
1077 	return 0;
1078 
1079 out_no_validate:
1080 	ttm_eu_backoff_reservation(NULL, &val_list);
1081 out_no_reserve:
1082 	ttm_bo_unref(&val_buf->bo);
1083 	if (backup_dirty)
1084 		vmw_dmabuf_unreference(&res->backup);
1085 
1086 	return ret;
1087 }
1088 
1089 /**
1090  * vmw_resource_reserve - Reserve a resource for command submission
1091  *
1092  * @res:            The resource to reserve.
1093  *
1094  * This function takes the resource off the LRU list and make sure
1095  * a backup buffer is present for guest-backed resources. However,
1096  * the buffer may not be bound to the resource at this point.
1097  *
1098  */
1099 int vmw_resource_reserve(struct vmw_resource *res, bool no_backup)
1100 {
1101 	struct vmw_private *dev_priv = res->dev_priv;
1102 	int ret;
1103 
1104 	write_lock(&dev_priv->resource_lock);
1105 	list_del_init(&res->lru_head);
1106 	write_unlock(&dev_priv->resource_lock);
1107 
1108 	if (res->func->needs_backup && res->backup == NULL &&
1109 	    !no_backup) {
1110 		ret = vmw_resource_buf_alloc(res, true);
1111 		if (unlikely(ret != 0))
1112 			return ret;
1113 	}
1114 
1115 	return 0;
1116 }
1117 
1118 /**
1119  * vmw_resource_backoff_reservation - Unreserve and unreference a
1120  *                                    backup buffer
1121  *.
1122  * @val_buf:        Backup buffer information.
1123  */
1124 static void
1125 vmw_resource_backoff_reservation(struct ttm_validate_buffer *val_buf)
1126 {
1127 	struct list_head val_list;
1128 
1129 	if (likely(val_buf->bo == NULL))
1130 		return;
1131 
1132 	INIT_LIST_HEAD(&val_list);
1133 	list_add_tail(&val_buf->head, &val_list);
1134 	ttm_eu_backoff_reservation(NULL, &val_list);
1135 	ttm_bo_unref(&val_buf->bo);
1136 }
1137 
1138 /**
1139  * vmw_resource_do_evict - Evict a resource, and transfer its data
1140  *                         to a backup buffer.
1141  *
1142  * @res:            The resource to evict.
1143  * @interruptible:  Whether to wait interruptible.
1144  */
1145 int vmw_resource_do_evict(struct vmw_resource *res, bool interruptible)
1146 {
1147 	struct ttm_validate_buffer val_buf;
1148 	const struct vmw_res_func *func = res->func;
1149 	int ret;
1150 
1151 	BUG_ON(!func->may_evict);
1152 
1153 	val_buf.bo = NULL;
1154 	ret = vmw_resource_check_buffer(res, interruptible, &val_buf);
1155 	if (unlikely(ret != 0))
1156 		return ret;
1157 
1158 	if (unlikely(func->unbind != NULL &&
1159 		     (!func->needs_backup || !list_empty(&res->mob_head)))) {
1160 		ret = func->unbind(res, res->res_dirty, &val_buf);
1161 		if (unlikely(ret != 0))
1162 			goto out_no_unbind;
1163 		list_del_init(&res->mob_head);
1164 	}
1165 	ret = func->destroy(res);
1166 	res->backup_dirty = true;
1167 	res->res_dirty = false;
1168 out_no_unbind:
1169 	vmw_resource_backoff_reservation(&val_buf);
1170 
1171 	return ret;
1172 }
1173 
1174 
1175 /**
1176  * vmw_resource_validate - Make a resource up-to-date and visible
1177  *                         to the device.
1178  *
1179  * @res:            The resource to make visible to the device.
1180  *
1181  * On succesful return, any backup DMA buffer pointed to by @res->backup will
1182  * be reserved and validated.
1183  * On hardware resource shortage, this function will repeatedly evict
1184  * resources of the same type until the validation succeeds.
1185  */
1186 int vmw_resource_validate(struct vmw_resource *res)
1187 {
1188 	int ret;
1189 	struct vmw_resource *evict_res;
1190 	struct vmw_private *dev_priv = res->dev_priv;
1191 	struct list_head *lru_list = &dev_priv->res_lru[res->func->res_type];
1192 	struct ttm_validate_buffer val_buf;
1193 	unsigned err_count = 0;
1194 
1195 	if (likely(!res->func->may_evict))
1196 		return 0;
1197 
1198 	val_buf.bo = NULL;
1199 	if (res->backup)
1200 		val_buf.bo = &res->backup->base;
1201 	do {
1202 		ret = vmw_resource_do_validate(res, &val_buf);
1203 		if (likely(ret != -EBUSY))
1204 			break;
1205 
1206 		write_lock(&dev_priv->resource_lock);
1207 		if (list_empty(lru_list) || !res->func->may_evict) {
1208 			DRM_ERROR("Out of device device resources "
1209 				  "for %s.\n", res->func->type_name);
1210 			ret = -EBUSY;
1211 			write_unlock(&dev_priv->resource_lock);
1212 			break;
1213 		}
1214 
1215 		evict_res = vmw_resource_reference
1216 			(list_first_entry(lru_list, struct vmw_resource,
1217 					  lru_head));
1218 		list_del_init(&evict_res->lru_head);
1219 
1220 		write_unlock(&dev_priv->resource_lock);
1221 
1222 		ret = vmw_resource_do_evict(evict_res, true);
1223 		if (unlikely(ret != 0)) {
1224 			write_lock(&dev_priv->resource_lock);
1225 			list_add_tail(&evict_res->lru_head, lru_list);
1226 			write_unlock(&dev_priv->resource_lock);
1227 			if (ret == -ERESTARTSYS ||
1228 			    ++err_count > VMW_RES_EVICT_ERR_COUNT) {
1229 				vmw_resource_unreference(&evict_res);
1230 				goto out_no_validate;
1231 			}
1232 		}
1233 
1234 		vmw_resource_unreference(&evict_res);
1235 	} while (1);
1236 
1237 	if (unlikely(ret != 0))
1238 		goto out_no_validate;
1239 	else if (!res->func->needs_backup && res->backup) {
1240 		list_del_init(&res->mob_head);
1241 		vmw_dmabuf_unreference(&res->backup);
1242 	}
1243 
1244 	return 0;
1245 
1246 out_no_validate:
1247 	return ret;
1248 }
1249 
1250 /**
1251  * vmw_fence_single_bo - Utility function to fence a single TTM buffer
1252  *                       object without unreserving it.
1253  *
1254  * @bo:             Pointer to the struct ttm_buffer_object to fence.
1255  * @fence:          Pointer to the fence. If NULL, this function will
1256  *                  insert a fence into the command stream..
1257  *
1258  * Contrary to the ttm_eu version of this function, it takes only
1259  * a single buffer object instead of a list, and it also doesn't
1260  * unreserve the buffer object, which needs to be done separately.
1261  */
1262 void vmw_fence_single_bo(struct ttm_buffer_object *bo,
1263 			 struct vmw_fence_obj *fence)
1264 {
1265 	struct ttm_bo_device *bdev = bo->bdev;
1266 	struct ttm_bo_driver *driver = bdev->driver;
1267 	struct vmw_fence_obj *old_fence_obj;
1268 	struct vmw_private *dev_priv =
1269 		container_of(bdev, struct vmw_private, bdev);
1270 
1271 	if (fence == NULL)
1272 		vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
1273 	else
1274 		driver->sync_obj_ref(fence);
1275 
1276 	spin_lock(&bdev->fence_lock);
1277 
1278 	old_fence_obj = bo->sync_obj;
1279 	bo->sync_obj = fence;
1280 
1281 	spin_unlock(&bdev->fence_lock);
1282 
1283 	if (old_fence_obj)
1284 		vmw_fence_obj_unreference(&old_fence_obj);
1285 }
1286 
1287 /**
1288  * vmw_resource_move_notify - TTM move_notify_callback
1289  *
1290  * @bo:             The TTM buffer object about to move.
1291  * @mem:            The truct ttm_mem_reg indicating to what memory
1292  *                  region the move is taking place.
1293  *
1294  * For now does nothing.
1295  */
1296 void vmw_resource_move_notify(struct ttm_buffer_object *bo,
1297 			      struct ttm_mem_reg *mem)
1298 {
1299 }
1300 
1301 /**
1302  * vmw_resource_needs_backup - Return whether a resource needs a backup buffer.
1303  *
1304  * @res:            The resource being queried.
1305  */
1306 bool vmw_resource_needs_backup(const struct vmw_resource *res)
1307 {
1308 	return res->func->needs_backup;
1309 }
1310 
1311 /**
1312  * vmw_resource_evict_type - Evict all resources of a specific type
1313  *
1314  * @dev_priv:       Pointer to a device private struct
1315  * @type:           The resource type to evict
1316  *
1317  * To avoid thrashing starvation or as part of the hibernation sequence,
1318  * try to evict all evictable resources of a specific type.
1319  */
1320 static void vmw_resource_evict_type(struct vmw_private *dev_priv,
1321 				    enum vmw_res_type type)
1322 {
1323 	struct list_head *lru_list = &dev_priv->res_lru[type];
1324 	struct vmw_resource *evict_res;
1325 	unsigned err_count = 0;
1326 	int ret;
1327 
1328 	do {
1329 		write_lock(&dev_priv->resource_lock);
1330 
1331 		if (list_empty(lru_list))
1332 			goto out_unlock;
1333 
1334 		evict_res = vmw_resource_reference(
1335 			list_first_entry(lru_list, struct vmw_resource,
1336 					 lru_head));
1337 		list_del_init(&evict_res->lru_head);
1338 		write_unlock(&dev_priv->resource_lock);
1339 
1340 		ret = vmw_resource_do_evict(evict_res, false);
1341 		if (unlikely(ret != 0)) {
1342 			write_lock(&dev_priv->resource_lock);
1343 			list_add_tail(&evict_res->lru_head, lru_list);
1344 			write_unlock(&dev_priv->resource_lock);
1345 			if (++err_count > VMW_RES_EVICT_ERR_COUNT) {
1346 				vmw_resource_unreference(&evict_res);
1347 				return;
1348 			}
1349 		}
1350 
1351 		vmw_resource_unreference(&evict_res);
1352 	} while (1);
1353 
1354 out_unlock:
1355 	write_unlock(&dev_priv->resource_lock);
1356 }
1357 
1358 /**
1359  * vmw_resource_evict_all - Evict all evictable resources
1360  *
1361  * @dev_priv:       Pointer to a device private struct
1362  *
1363  * To avoid thrashing starvation or as part of the hibernation sequence,
1364  * evict all evictable resources. In particular this means that all
1365  * guest-backed resources that are registered with the device are
1366  * evicted and the OTable becomes clean.
1367  */
1368 void vmw_resource_evict_all(struct vmw_private *dev_priv)
1369 {
1370 	enum vmw_res_type type;
1371 
1372 	mutex_lock(&dev_priv->cmdbuf_mutex);
1373 
1374 	for (type = 0; type < vmw_res_max; ++type)
1375 		vmw_resource_evict_type(dev_priv, type);
1376 
1377 	mutex_unlock(&dev_priv->cmdbuf_mutex);
1378 }
1379