1 /************************************************************************** 2 * 3 * Copyright © 2009 VMware, Inc., Palo Alto, CA., USA 4 * All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 28 #include "vmwgfx_drv.h" 29 #include <drm/vmwgfx_drm.h> 30 #include <drm/ttm/ttm_object.h> 31 #include <drm/ttm/ttm_placement.h> 32 #include <drm/drmP.h> 33 #include "vmwgfx_resource_priv.h" 34 35 #define VMW_RES_EVICT_ERR_COUNT 10 36 37 struct vmw_user_dma_buffer { 38 struct ttm_prime_object prime; 39 struct vmw_dma_buffer dma; 40 }; 41 42 struct vmw_bo_user_rep { 43 uint32_t handle; 44 uint64_t map_handle; 45 }; 46 47 struct vmw_stream { 48 struct vmw_resource res; 49 uint32_t stream_id; 50 }; 51 52 struct vmw_user_stream { 53 struct ttm_base_object base; 54 struct vmw_stream stream; 55 }; 56 57 58 static uint64_t vmw_user_stream_size; 59 60 static const struct vmw_res_func vmw_stream_func = { 61 .res_type = vmw_res_stream, 62 .needs_backup = false, 63 .may_evict = false, 64 .type_name = "video streams", 65 .backup_placement = NULL, 66 .create = NULL, 67 .destroy = NULL, 68 .bind = NULL, 69 .unbind = NULL 70 }; 71 72 static inline struct vmw_dma_buffer * 73 vmw_dma_buffer(struct ttm_buffer_object *bo) 74 { 75 return container_of(bo, struct vmw_dma_buffer, base); 76 } 77 78 static inline struct vmw_user_dma_buffer * 79 vmw_user_dma_buffer(struct ttm_buffer_object *bo) 80 { 81 struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo); 82 return container_of(vmw_bo, struct vmw_user_dma_buffer, dma); 83 } 84 85 struct vmw_resource *vmw_resource_reference(struct vmw_resource *res) 86 { 87 kref_get(&res->kref); 88 return res; 89 } 90 91 struct vmw_resource * 92 vmw_resource_reference_unless_doomed(struct vmw_resource *res) 93 { 94 return kref_get_unless_zero(&res->kref) ? res : NULL; 95 } 96 97 /** 98 * vmw_resource_release_id - release a resource id to the id manager. 99 * 100 * @res: Pointer to the resource. 101 * 102 * Release the resource id to the resource id manager and set it to -1 103 */ 104 void vmw_resource_release_id(struct vmw_resource *res) 105 { 106 struct vmw_private *dev_priv = res->dev_priv; 107 struct idr *idr = &dev_priv->res_idr[res->func->res_type]; 108 109 write_lock(&dev_priv->resource_lock); 110 if (res->id != -1) 111 idr_remove(idr, res->id); 112 res->id = -1; 113 write_unlock(&dev_priv->resource_lock); 114 } 115 116 static void vmw_resource_release(struct kref *kref) 117 { 118 struct vmw_resource *res = 119 container_of(kref, struct vmw_resource, kref); 120 struct vmw_private *dev_priv = res->dev_priv; 121 int id; 122 struct idr *idr = &dev_priv->res_idr[res->func->res_type]; 123 124 res->avail = false; 125 list_del_init(&res->lru_head); 126 write_unlock(&dev_priv->resource_lock); 127 if (res->backup) { 128 struct ttm_buffer_object *bo = &res->backup->base; 129 130 ttm_bo_reserve(bo, false, false, false, 0); 131 if (!list_empty(&res->mob_head) && 132 res->func->unbind != NULL) { 133 struct ttm_validate_buffer val_buf; 134 135 val_buf.bo = bo; 136 res->func->unbind(res, false, &val_buf); 137 } 138 res->backup_dirty = false; 139 list_del_init(&res->mob_head); 140 ttm_bo_unreserve(bo); 141 vmw_dmabuf_unreference(&res->backup); 142 } 143 144 if (likely(res->hw_destroy != NULL)) { 145 res->hw_destroy(res); 146 mutex_lock(&dev_priv->binding_mutex); 147 vmw_context_binding_res_list_kill(&res->binding_head); 148 mutex_unlock(&dev_priv->binding_mutex); 149 } 150 151 id = res->id; 152 if (res->res_free != NULL) 153 res->res_free(res); 154 else 155 kfree(res); 156 157 write_lock(&dev_priv->resource_lock); 158 159 if (id != -1) 160 idr_remove(idr, id); 161 } 162 163 void vmw_resource_unreference(struct vmw_resource **p_res) 164 { 165 struct vmw_resource *res = *p_res; 166 struct vmw_private *dev_priv = res->dev_priv; 167 168 *p_res = NULL; 169 write_lock(&dev_priv->resource_lock); 170 kref_put(&res->kref, vmw_resource_release); 171 write_unlock(&dev_priv->resource_lock); 172 } 173 174 175 /** 176 * vmw_resource_alloc_id - release a resource id to the id manager. 177 * 178 * @res: Pointer to the resource. 179 * 180 * Allocate the lowest free resource from the resource manager, and set 181 * @res->id to that id. Returns 0 on success and -ENOMEM on failure. 182 */ 183 int vmw_resource_alloc_id(struct vmw_resource *res) 184 { 185 struct vmw_private *dev_priv = res->dev_priv; 186 int ret; 187 struct idr *idr = &dev_priv->res_idr[res->func->res_type]; 188 189 BUG_ON(res->id != -1); 190 191 idr_preload(GFP_KERNEL); 192 write_lock(&dev_priv->resource_lock); 193 194 ret = idr_alloc(idr, res, 1, 0, GFP_NOWAIT); 195 if (ret >= 0) 196 res->id = ret; 197 198 write_unlock(&dev_priv->resource_lock); 199 idr_preload_end(); 200 return ret < 0 ? ret : 0; 201 } 202 203 /** 204 * vmw_resource_init - initialize a struct vmw_resource 205 * 206 * @dev_priv: Pointer to a device private struct. 207 * @res: The struct vmw_resource to initialize. 208 * @obj_type: Resource object type. 209 * @delay_id: Boolean whether to defer device id allocation until 210 * the first validation. 211 * @res_free: Resource destructor. 212 * @func: Resource function table. 213 */ 214 int vmw_resource_init(struct vmw_private *dev_priv, struct vmw_resource *res, 215 bool delay_id, 216 void (*res_free) (struct vmw_resource *res), 217 const struct vmw_res_func *func) 218 { 219 kref_init(&res->kref); 220 res->hw_destroy = NULL; 221 res->res_free = res_free; 222 res->avail = false; 223 res->dev_priv = dev_priv; 224 res->func = func; 225 INIT_LIST_HEAD(&res->lru_head); 226 INIT_LIST_HEAD(&res->mob_head); 227 INIT_LIST_HEAD(&res->binding_head); 228 res->id = -1; 229 res->backup = NULL; 230 res->backup_offset = 0; 231 res->backup_dirty = false; 232 res->res_dirty = false; 233 if (delay_id) 234 return 0; 235 else 236 return vmw_resource_alloc_id(res); 237 } 238 239 /** 240 * vmw_resource_activate 241 * 242 * @res: Pointer to the newly created resource 243 * @hw_destroy: Destroy function. NULL if none. 244 * 245 * Activate a resource after the hardware has been made aware of it. 246 * Set tye destroy function to @destroy. Typically this frees the 247 * resource and destroys the hardware resources associated with it. 248 * Activate basically means that the function vmw_resource_lookup will 249 * find it. 250 */ 251 void vmw_resource_activate(struct vmw_resource *res, 252 void (*hw_destroy) (struct vmw_resource *)) 253 { 254 struct vmw_private *dev_priv = res->dev_priv; 255 256 write_lock(&dev_priv->resource_lock); 257 res->avail = true; 258 res->hw_destroy = hw_destroy; 259 write_unlock(&dev_priv->resource_lock); 260 } 261 262 struct vmw_resource *vmw_resource_lookup(struct vmw_private *dev_priv, 263 struct idr *idr, int id) 264 { 265 struct vmw_resource *res; 266 267 read_lock(&dev_priv->resource_lock); 268 res = idr_find(idr, id); 269 if (res && res->avail) 270 kref_get(&res->kref); 271 else 272 res = NULL; 273 read_unlock(&dev_priv->resource_lock); 274 275 if (unlikely(res == NULL)) 276 return NULL; 277 278 return res; 279 } 280 281 /** 282 * vmw_user_resource_lookup_handle - lookup a struct resource from a 283 * TTM user-space handle and perform basic type checks 284 * 285 * @dev_priv: Pointer to a device private struct 286 * @tfile: Pointer to a struct ttm_object_file identifying the caller 287 * @handle: The TTM user-space handle 288 * @converter: Pointer to an object describing the resource type 289 * @p_res: On successful return the location pointed to will contain 290 * a pointer to a refcounted struct vmw_resource. 291 * 292 * If the handle can't be found or is associated with an incorrect resource 293 * type, -EINVAL will be returned. 294 */ 295 int vmw_user_resource_lookup_handle(struct vmw_private *dev_priv, 296 struct ttm_object_file *tfile, 297 uint32_t handle, 298 const struct vmw_user_resource_conv 299 *converter, 300 struct vmw_resource **p_res) 301 { 302 struct ttm_base_object *base; 303 struct vmw_resource *res; 304 int ret = -EINVAL; 305 306 base = ttm_base_object_lookup(tfile, handle); 307 if (unlikely(base == NULL)) 308 return -EINVAL; 309 310 if (unlikely(ttm_base_object_type(base) != converter->object_type)) 311 goto out_bad_resource; 312 313 res = converter->base_obj_to_res(base); 314 315 read_lock(&dev_priv->resource_lock); 316 if (!res->avail || res->res_free != converter->res_free) { 317 read_unlock(&dev_priv->resource_lock); 318 goto out_bad_resource; 319 } 320 321 kref_get(&res->kref); 322 read_unlock(&dev_priv->resource_lock); 323 324 *p_res = res; 325 ret = 0; 326 327 out_bad_resource: 328 ttm_base_object_unref(&base); 329 330 return ret; 331 } 332 333 /** 334 * Helper function that looks either a surface or dmabuf. 335 * 336 * The pointer this pointed at by out_surf and out_buf needs to be null. 337 */ 338 int vmw_user_lookup_handle(struct vmw_private *dev_priv, 339 struct ttm_object_file *tfile, 340 uint32_t handle, 341 struct vmw_surface **out_surf, 342 struct vmw_dma_buffer **out_buf) 343 { 344 struct vmw_resource *res; 345 int ret; 346 347 BUG_ON(*out_surf || *out_buf); 348 349 ret = vmw_user_resource_lookup_handle(dev_priv, tfile, handle, 350 user_surface_converter, 351 &res); 352 if (!ret) { 353 *out_surf = vmw_res_to_srf(res); 354 return 0; 355 } 356 357 *out_surf = NULL; 358 ret = vmw_user_dmabuf_lookup(tfile, handle, out_buf); 359 return ret; 360 } 361 362 /** 363 * Buffer management. 364 */ 365 366 /** 367 * vmw_dmabuf_acc_size - Calculate the pinned memory usage of buffers 368 * 369 * @dev_priv: Pointer to a struct vmw_private identifying the device. 370 * @size: The requested buffer size. 371 * @user: Whether this is an ordinary dma buffer or a user dma buffer. 372 */ 373 static size_t vmw_dmabuf_acc_size(struct vmw_private *dev_priv, size_t size, 374 bool user) 375 { 376 static size_t struct_size, user_struct_size; 377 size_t num_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 378 size_t page_array_size = ttm_round_pot(num_pages * sizeof(void *)); 379 380 if (unlikely(struct_size == 0)) { 381 size_t backend_size = ttm_round_pot(vmw_tt_size); 382 383 struct_size = backend_size + 384 ttm_round_pot(sizeof(struct vmw_dma_buffer)); 385 user_struct_size = backend_size + 386 ttm_round_pot(sizeof(struct vmw_user_dma_buffer)); 387 } 388 389 if (dev_priv->map_mode == vmw_dma_alloc_coherent) 390 page_array_size += 391 ttm_round_pot(num_pages * sizeof(dma_addr_t)); 392 393 return ((user) ? user_struct_size : struct_size) + 394 page_array_size; 395 } 396 397 void vmw_dmabuf_bo_free(struct ttm_buffer_object *bo) 398 { 399 struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo); 400 401 kfree(vmw_bo); 402 } 403 404 static void vmw_user_dmabuf_destroy(struct ttm_buffer_object *bo) 405 { 406 struct vmw_user_dma_buffer *vmw_user_bo = vmw_user_dma_buffer(bo); 407 408 ttm_prime_object_kfree(vmw_user_bo, prime); 409 } 410 411 int vmw_dmabuf_init(struct vmw_private *dev_priv, 412 struct vmw_dma_buffer *vmw_bo, 413 size_t size, struct ttm_placement *placement, 414 bool interruptible, 415 void (*bo_free) (struct ttm_buffer_object *bo)) 416 { 417 struct ttm_bo_device *bdev = &dev_priv->bdev; 418 size_t acc_size; 419 int ret; 420 bool user = (bo_free == &vmw_user_dmabuf_destroy); 421 422 BUG_ON(!bo_free && (!user && (bo_free != vmw_dmabuf_bo_free))); 423 424 acc_size = vmw_dmabuf_acc_size(dev_priv, size, user); 425 memset(vmw_bo, 0, sizeof(*vmw_bo)); 426 427 INIT_LIST_HEAD(&vmw_bo->res_list); 428 429 ret = ttm_bo_init(bdev, &vmw_bo->base, size, 430 ttm_bo_type_device, placement, 431 0, interruptible, 432 NULL, acc_size, NULL, bo_free); 433 return ret; 434 } 435 436 static void vmw_user_dmabuf_release(struct ttm_base_object **p_base) 437 { 438 struct vmw_user_dma_buffer *vmw_user_bo; 439 struct ttm_base_object *base = *p_base; 440 struct ttm_buffer_object *bo; 441 442 *p_base = NULL; 443 444 if (unlikely(base == NULL)) 445 return; 446 447 vmw_user_bo = container_of(base, struct vmw_user_dma_buffer, 448 prime.base); 449 bo = &vmw_user_bo->dma.base; 450 ttm_bo_unref(&bo); 451 } 452 453 static void vmw_user_dmabuf_ref_obj_release(struct ttm_base_object *base, 454 enum ttm_ref_type ref_type) 455 { 456 struct vmw_user_dma_buffer *user_bo; 457 user_bo = container_of(base, struct vmw_user_dma_buffer, prime.base); 458 459 switch (ref_type) { 460 case TTM_REF_SYNCCPU_WRITE: 461 ttm_bo_synccpu_write_release(&user_bo->dma.base); 462 break; 463 default: 464 BUG(); 465 } 466 } 467 468 /** 469 * vmw_user_dmabuf_alloc - Allocate a user dma buffer 470 * 471 * @dev_priv: Pointer to a struct device private. 472 * @tfile: Pointer to a struct ttm_object_file on which to register the user 473 * object. 474 * @size: Size of the dma buffer. 475 * @shareable: Boolean whether the buffer is shareable with other open files. 476 * @handle: Pointer to where the handle value should be assigned. 477 * @p_dma_buf: Pointer to where the refcounted struct vmw_dma_buffer pointer 478 * should be assigned. 479 */ 480 int vmw_user_dmabuf_alloc(struct vmw_private *dev_priv, 481 struct ttm_object_file *tfile, 482 uint32_t size, 483 bool shareable, 484 uint32_t *handle, 485 struct vmw_dma_buffer **p_dma_buf) 486 { 487 struct vmw_user_dma_buffer *user_bo; 488 struct ttm_buffer_object *tmp; 489 int ret; 490 491 user_bo = kzalloc(sizeof(*user_bo), GFP_KERNEL); 492 if (unlikely(user_bo == NULL)) { 493 DRM_ERROR("Failed to allocate a buffer.\n"); 494 return -ENOMEM; 495 } 496 497 ret = vmw_dmabuf_init(dev_priv, &user_bo->dma, size, 498 (dev_priv->has_mob) ? 499 &vmw_sys_placement : 500 &vmw_vram_sys_placement, true, 501 &vmw_user_dmabuf_destroy); 502 if (unlikely(ret != 0)) 503 return ret; 504 505 tmp = ttm_bo_reference(&user_bo->dma.base); 506 ret = ttm_prime_object_init(tfile, 507 size, 508 &user_bo->prime, 509 shareable, 510 ttm_buffer_type, 511 &vmw_user_dmabuf_release, 512 &vmw_user_dmabuf_ref_obj_release); 513 if (unlikely(ret != 0)) { 514 ttm_bo_unref(&tmp); 515 goto out_no_base_object; 516 } 517 518 *p_dma_buf = &user_bo->dma; 519 *handle = user_bo->prime.base.hash.key; 520 521 out_no_base_object: 522 return ret; 523 } 524 525 /** 526 * vmw_user_dmabuf_verify_access - verify access permissions on this 527 * buffer object. 528 * 529 * @bo: Pointer to the buffer object being accessed 530 * @tfile: Identifying the caller. 531 */ 532 int vmw_user_dmabuf_verify_access(struct ttm_buffer_object *bo, 533 struct ttm_object_file *tfile) 534 { 535 struct vmw_user_dma_buffer *vmw_user_bo; 536 537 if (unlikely(bo->destroy != vmw_user_dmabuf_destroy)) 538 return -EPERM; 539 540 vmw_user_bo = vmw_user_dma_buffer(bo); 541 542 /* Check that the caller has opened the object. */ 543 if (likely(ttm_ref_object_exists(tfile, &vmw_user_bo->prime.base))) 544 return 0; 545 546 DRM_ERROR("Could not grant buffer access.\n"); 547 return -EPERM; 548 } 549 550 /** 551 * vmw_user_dmabuf_synccpu_grab - Grab a struct vmw_user_dma_buffer for cpu 552 * access, idling previous GPU operations on the buffer and optionally 553 * blocking it for further command submissions. 554 * 555 * @user_bo: Pointer to the buffer object being grabbed for CPU access 556 * @tfile: Identifying the caller. 557 * @flags: Flags indicating how the grab should be performed. 558 * 559 * A blocking grab will be automatically released when @tfile is closed. 560 */ 561 static int vmw_user_dmabuf_synccpu_grab(struct vmw_user_dma_buffer *user_bo, 562 struct ttm_object_file *tfile, 563 uint32_t flags) 564 { 565 struct ttm_buffer_object *bo = &user_bo->dma.base; 566 bool existed; 567 int ret; 568 569 if (flags & drm_vmw_synccpu_allow_cs) { 570 struct ttm_bo_device *bdev = bo->bdev; 571 572 spin_lock(&bdev->fence_lock); 573 ret = ttm_bo_wait(bo, false, true, 574 !!(flags & drm_vmw_synccpu_dontblock)); 575 spin_unlock(&bdev->fence_lock); 576 return ret; 577 } 578 579 ret = ttm_bo_synccpu_write_grab 580 (bo, !!(flags & drm_vmw_synccpu_dontblock)); 581 if (unlikely(ret != 0)) 582 return ret; 583 584 ret = ttm_ref_object_add(tfile, &user_bo->prime.base, 585 TTM_REF_SYNCCPU_WRITE, &existed); 586 if (ret != 0 || existed) 587 ttm_bo_synccpu_write_release(&user_bo->dma.base); 588 589 return ret; 590 } 591 592 /** 593 * vmw_user_dmabuf_synccpu_release - Release a previous grab for CPU access, 594 * and unblock command submission on the buffer if blocked. 595 * 596 * @handle: Handle identifying the buffer object. 597 * @tfile: Identifying the caller. 598 * @flags: Flags indicating the type of release. 599 */ 600 static int vmw_user_dmabuf_synccpu_release(uint32_t handle, 601 struct ttm_object_file *tfile, 602 uint32_t flags) 603 { 604 if (!(flags & drm_vmw_synccpu_allow_cs)) 605 return ttm_ref_object_base_unref(tfile, handle, 606 TTM_REF_SYNCCPU_WRITE); 607 608 return 0; 609 } 610 611 /** 612 * vmw_user_dmabuf_synccpu_release - ioctl function implementing the synccpu 613 * functionality. 614 * 615 * @dev: Identifies the drm device. 616 * @data: Pointer to the ioctl argument. 617 * @file_priv: Identifies the caller. 618 * 619 * This function checks the ioctl arguments for validity and calls the 620 * relevant synccpu functions. 621 */ 622 int vmw_user_dmabuf_synccpu_ioctl(struct drm_device *dev, void *data, 623 struct drm_file *file_priv) 624 { 625 struct drm_vmw_synccpu_arg *arg = 626 (struct drm_vmw_synccpu_arg *) data; 627 struct vmw_dma_buffer *dma_buf; 628 struct vmw_user_dma_buffer *user_bo; 629 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; 630 int ret; 631 632 if ((arg->flags & (drm_vmw_synccpu_read | drm_vmw_synccpu_write)) == 0 633 || (arg->flags & ~(drm_vmw_synccpu_read | drm_vmw_synccpu_write | 634 drm_vmw_synccpu_dontblock | 635 drm_vmw_synccpu_allow_cs)) != 0) { 636 DRM_ERROR("Illegal synccpu flags.\n"); 637 return -EINVAL; 638 } 639 640 switch (arg->op) { 641 case drm_vmw_synccpu_grab: 642 ret = vmw_user_dmabuf_lookup(tfile, arg->handle, &dma_buf); 643 if (unlikely(ret != 0)) 644 return ret; 645 646 user_bo = container_of(dma_buf, struct vmw_user_dma_buffer, 647 dma); 648 ret = vmw_user_dmabuf_synccpu_grab(user_bo, tfile, arg->flags); 649 vmw_dmabuf_unreference(&dma_buf); 650 if (unlikely(ret != 0 && ret != -ERESTARTSYS && 651 ret != -EBUSY)) { 652 DRM_ERROR("Failed synccpu grab on handle 0x%08x.\n", 653 (unsigned int) arg->handle); 654 return ret; 655 } 656 break; 657 case drm_vmw_synccpu_release: 658 ret = vmw_user_dmabuf_synccpu_release(arg->handle, tfile, 659 arg->flags); 660 if (unlikely(ret != 0)) { 661 DRM_ERROR("Failed synccpu release on handle 0x%08x.\n", 662 (unsigned int) arg->handle); 663 return ret; 664 } 665 break; 666 default: 667 DRM_ERROR("Invalid synccpu operation.\n"); 668 return -EINVAL; 669 } 670 671 return 0; 672 } 673 674 int vmw_dmabuf_alloc_ioctl(struct drm_device *dev, void *data, 675 struct drm_file *file_priv) 676 { 677 struct vmw_private *dev_priv = vmw_priv(dev); 678 union drm_vmw_alloc_dmabuf_arg *arg = 679 (union drm_vmw_alloc_dmabuf_arg *)data; 680 struct drm_vmw_alloc_dmabuf_req *req = &arg->req; 681 struct drm_vmw_dmabuf_rep *rep = &arg->rep; 682 struct vmw_dma_buffer *dma_buf; 683 uint32_t handle; 684 int ret; 685 686 ret = ttm_read_lock(&dev_priv->reservation_sem, true); 687 if (unlikely(ret != 0)) 688 return ret; 689 690 ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile, 691 req->size, false, &handle, &dma_buf); 692 if (unlikely(ret != 0)) 693 goto out_no_dmabuf; 694 695 rep->handle = handle; 696 rep->map_handle = drm_vma_node_offset_addr(&dma_buf->base.vma_node); 697 rep->cur_gmr_id = handle; 698 rep->cur_gmr_offset = 0; 699 700 vmw_dmabuf_unreference(&dma_buf); 701 702 out_no_dmabuf: 703 ttm_read_unlock(&dev_priv->reservation_sem); 704 705 return ret; 706 } 707 708 int vmw_dmabuf_unref_ioctl(struct drm_device *dev, void *data, 709 struct drm_file *file_priv) 710 { 711 struct drm_vmw_unref_dmabuf_arg *arg = 712 (struct drm_vmw_unref_dmabuf_arg *)data; 713 714 return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile, 715 arg->handle, 716 TTM_REF_USAGE); 717 } 718 719 int vmw_user_dmabuf_lookup(struct ttm_object_file *tfile, 720 uint32_t handle, struct vmw_dma_buffer **out) 721 { 722 struct vmw_user_dma_buffer *vmw_user_bo; 723 struct ttm_base_object *base; 724 725 base = ttm_base_object_lookup(tfile, handle); 726 if (unlikely(base == NULL)) { 727 printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n", 728 (unsigned long)handle); 729 return -ESRCH; 730 } 731 732 if (unlikely(ttm_base_object_type(base) != ttm_buffer_type)) { 733 ttm_base_object_unref(&base); 734 printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n", 735 (unsigned long)handle); 736 return -EINVAL; 737 } 738 739 vmw_user_bo = container_of(base, struct vmw_user_dma_buffer, 740 prime.base); 741 (void)ttm_bo_reference(&vmw_user_bo->dma.base); 742 ttm_base_object_unref(&base); 743 *out = &vmw_user_bo->dma; 744 745 return 0; 746 } 747 748 int vmw_user_dmabuf_reference(struct ttm_object_file *tfile, 749 struct vmw_dma_buffer *dma_buf, 750 uint32_t *handle) 751 { 752 struct vmw_user_dma_buffer *user_bo; 753 754 if (dma_buf->base.destroy != vmw_user_dmabuf_destroy) 755 return -EINVAL; 756 757 user_bo = container_of(dma_buf, struct vmw_user_dma_buffer, dma); 758 759 *handle = user_bo->prime.base.hash.key; 760 return ttm_ref_object_add(tfile, &user_bo->prime.base, 761 TTM_REF_USAGE, NULL); 762 } 763 764 /* 765 * Stream management 766 */ 767 768 static void vmw_stream_destroy(struct vmw_resource *res) 769 { 770 struct vmw_private *dev_priv = res->dev_priv; 771 struct vmw_stream *stream; 772 int ret; 773 774 DRM_INFO("%s: unref\n", __func__); 775 stream = container_of(res, struct vmw_stream, res); 776 777 ret = vmw_overlay_unref(dev_priv, stream->stream_id); 778 WARN_ON(ret != 0); 779 } 780 781 static int vmw_stream_init(struct vmw_private *dev_priv, 782 struct vmw_stream *stream, 783 void (*res_free) (struct vmw_resource *res)) 784 { 785 struct vmw_resource *res = &stream->res; 786 int ret; 787 788 ret = vmw_resource_init(dev_priv, res, false, res_free, 789 &vmw_stream_func); 790 791 if (unlikely(ret != 0)) { 792 if (res_free == NULL) 793 kfree(stream); 794 else 795 res_free(&stream->res); 796 return ret; 797 } 798 799 ret = vmw_overlay_claim(dev_priv, &stream->stream_id); 800 if (ret) { 801 vmw_resource_unreference(&res); 802 return ret; 803 } 804 805 DRM_INFO("%s: claimed\n", __func__); 806 807 vmw_resource_activate(&stream->res, vmw_stream_destroy); 808 return 0; 809 } 810 811 static void vmw_user_stream_free(struct vmw_resource *res) 812 { 813 struct vmw_user_stream *stream = 814 container_of(res, struct vmw_user_stream, stream.res); 815 struct vmw_private *dev_priv = res->dev_priv; 816 817 ttm_base_object_kfree(stream, base); 818 ttm_mem_global_free(vmw_mem_glob(dev_priv), 819 vmw_user_stream_size); 820 } 821 822 /** 823 * This function is called when user space has no more references on the 824 * base object. It releases the base-object's reference on the resource object. 825 */ 826 827 static void vmw_user_stream_base_release(struct ttm_base_object **p_base) 828 { 829 struct ttm_base_object *base = *p_base; 830 struct vmw_user_stream *stream = 831 container_of(base, struct vmw_user_stream, base); 832 struct vmw_resource *res = &stream->stream.res; 833 834 *p_base = NULL; 835 vmw_resource_unreference(&res); 836 } 837 838 int vmw_stream_unref_ioctl(struct drm_device *dev, void *data, 839 struct drm_file *file_priv) 840 { 841 struct vmw_private *dev_priv = vmw_priv(dev); 842 struct vmw_resource *res; 843 struct vmw_user_stream *stream; 844 struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data; 845 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; 846 struct idr *idr = &dev_priv->res_idr[vmw_res_stream]; 847 int ret = 0; 848 849 850 res = vmw_resource_lookup(dev_priv, idr, arg->stream_id); 851 if (unlikely(res == NULL)) 852 return -EINVAL; 853 854 if (res->res_free != &vmw_user_stream_free) { 855 ret = -EINVAL; 856 goto out; 857 } 858 859 stream = container_of(res, struct vmw_user_stream, stream.res); 860 if (stream->base.tfile != tfile) { 861 ret = -EINVAL; 862 goto out; 863 } 864 865 ttm_ref_object_base_unref(tfile, stream->base.hash.key, TTM_REF_USAGE); 866 out: 867 vmw_resource_unreference(&res); 868 return ret; 869 } 870 871 int vmw_stream_claim_ioctl(struct drm_device *dev, void *data, 872 struct drm_file *file_priv) 873 { 874 struct vmw_private *dev_priv = vmw_priv(dev); 875 struct vmw_user_stream *stream; 876 struct vmw_resource *res; 877 struct vmw_resource *tmp; 878 struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data; 879 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; 880 int ret; 881 882 /* 883 * Approximate idr memory usage with 128 bytes. It will be limited 884 * by maximum number_of streams anyway? 885 */ 886 887 if (unlikely(vmw_user_stream_size == 0)) 888 vmw_user_stream_size = ttm_round_pot(sizeof(*stream)) + 128; 889 890 ret = ttm_read_lock(&dev_priv->reservation_sem, true); 891 if (unlikely(ret != 0)) 892 return ret; 893 894 ret = ttm_mem_global_alloc(vmw_mem_glob(dev_priv), 895 vmw_user_stream_size, 896 false, true); 897 if (unlikely(ret != 0)) { 898 if (ret != -ERESTARTSYS) 899 DRM_ERROR("Out of graphics memory for stream" 900 " creation.\n"); 901 goto out_unlock; 902 } 903 904 905 stream = kmalloc(sizeof(*stream), GFP_KERNEL); 906 if (unlikely(stream == NULL)) { 907 ttm_mem_global_free(vmw_mem_glob(dev_priv), 908 vmw_user_stream_size); 909 ret = -ENOMEM; 910 goto out_unlock; 911 } 912 913 res = &stream->stream.res; 914 stream->base.shareable = false; 915 stream->base.tfile = NULL; 916 917 /* 918 * From here on, the destructor takes over resource freeing. 919 */ 920 921 ret = vmw_stream_init(dev_priv, &stream->stream, vmw_user_stream_free); 922 if (unlikely(ret != 0)) 923 goto out_unlock; 924 925 tmp = vmw_resource_reference(res); 926 ret = ttm_base_object_init(tfile, &stream->base, false, VMW_RES_STREAM, 927 &vmw_user_stream_base_release, NULL); 928 929 if (unlikely(ret != 0)) { 930 vmw_resource_unreference(&tmp); 931 goto out_err; 932 } 933 934 arg->stream_id = res->id; 935 out_err: 936 vmw_resource_unreference(&res); 937 out_unlock: 938 ttm_read_unlock(&dev_priv->reservation_sem); 939 return ret; 940 } 941 942 int vmw_user_stream_lookup(struct vmw_private *dev_priv, 943 struct ttm_object_file *tfile, 944 uint32_t *inout_id, struct vmw_resource **out) 945 { 946 struct vmw_user_stream *stream; 947 struct vmw_resource *res; 948 int ret; 949 950 res = vmw_resource_lookup(dev_priv, &dev_priv->res_idr[vmw_res_stream], 951 *inout_id); 952 if (unlikely(res == NULL)) 953 return -EINVAL; 954 955 if (res->res_free != &vmw_user_stream_free) { 956 ret = -EINVAL; 957 goto err_ref; 958 } 959 960 stream = container_of(res, struct vmw_user_stream, stream.res); 961 if (stream->base.tfile != tfile) { 962 ret = -EPERM; 963 goto err_ref; 964 } 965 966 *inout_id = stream->stream.stream_id; 967 *out = res; 968 return 0; 969 err_ref: 970 vmw_resource_unreference(&res); 971 return ret; 972 } 973 974 975 /** 976 * vmw_dumb_create - Create a dumb kms buffer 977 * 978 * @file_priv: Pointer to a struct drm_file identifying the caller. 979 * @dev: Pointer to the drm device. 980 * @args: Pointer to a struct drm_mode_create_dumb structure 981 * 982 * This is a driver callback for the core drm create_dumb functionality. 983 * Note that this is very similar to the vmw_dmabuf_alloc ioctl, except 984 * that the arguments have a different format. 985 */ 986 int vmw_dumb_create(struct drm_file *file_priv, 987 struct drm_device *dev, 988 struct drm_mode_create_dumb *args) 989 { 990 struct vmw_private *dev_priv = vmw_priv(dev); 991 struct vmw_dma_buffer *dma_buf; 992 int ret; 993 994 args->pitch = args->width * ((args->bpp + 7) / 8); 995 args->size = args->pitch * args->height; 996 997 ret = ttm_read_lock(&dev_priv->reservation_sem, true); 998 if (unlikely(ret != 0)) 999 return ret; 1000 1001 ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile, 1002 args->size, false, &args->handle, 1003 &dma_buf); 1004 if (unlikely(ret != 0)) 1005 goto out_no_dmabuf; 1006 1007 vmw_dmabuf_unreference(&dma_buf); 1008 out_no_dmabuf: 1009 ttm_read_unlock(&dev_priv->reservation_sem); 1010 return ret; 1011 } 1012 1013 /** 1014 * vmw_dumb_map_offset - Return the address space offset of a dumb buffer 1015 * 1016 * @file_priv: Pointer to a struct drm_file identifying the caller. 1017 * @dev: Pointer to the drm device. 1018 * @handle: Handle identifying the dumb buffer. 1019 * @offset: The address space offset returned. 1020 * 1021 * This is a driver callback for the core drm dumb_map_offset functionality. 1022 */ 1023 int vmw_dumb_map_offset(struct drm_file *file_priv, 1024 struct drm_device *dev, uint32_t handle, 1025 uint64_t *offset) 1026 { 1027 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; 1028 struct vmw_dma_buffer *out_buf; 1029 int ret; 1030 1031 ret = vmw_user_dmabuf_lookup(tfile, handle, &out_buf); 1032 if (ret != 0) 1033 return -EINVAL; 1034 1035 *offset = drm_vma_node_offset_addr(&out_buf->base.vma_node); 1036 vmw_dmabuf_unreference(&out_buf); 1037 return 0; 1038 } 1039 1040 /** 1041 * vmw_dumb_destroy - Destroy a dumb boffer 1042 * 1043 * @file_priv: Pointer to a struct drm_file identifying the caller. 1044 * @dev: Pointer to the drm device. 1045 * @handle: Handle identifying the dumb buffer. 1046 * 1047 * This is a driver callback for the core drm dumb_destroy functionality. 1048 */ 1049 int vmw_dumb_destroy(struct drm_file *file_priv, 1050 struct drm_device *dev, 1051 uint32_t handle) 1052 { 1053 return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile, 1054 handle, TTM_REF_USAGE); 1055 } 1056 1057 /** 1058 * vmw_resource_buf_alloc - Allocate a backup buffer for a resource. 1059 * 1060 * @res: The resource for which to allocate a backup buffer. 1061 * @interruptible: Whether any sleeps during allocation should be 1062 * performed while interruptible. 1063 */ 1064 static int vmw_resource_buf_alloc(struct vmw_resource *res, 1065 bool interruptible) 1066 { 1067 unsigned long size = 1068 (res->backup_size + PAGE_SIZE - 1) & PAGE_MASK; 1069 struct vmw_dma_buffer *backup; 1070 int ret; 1071 1072 if (likely(res->backup)) { 1073 BUG_ON(res->backup->base.num_pages * PAGE_SIZE < size); 1074 return 0; 1075 } 1076 1077 backup = kzalloc(sizeof(*backup), GFP_KERNEL); 1078 if (unlikely(backup == NULL)) 1079 return -ENOMEM; 1080 1081 ret = vmw_dmabuf_init(res->dev_priv, backup, res->backup_size, 1082 res->func->backup_placement, 1083 interruptible, 1084 &vmw_dmabuf_bo_free); 1085 if (unlikely(ret != 0)) 1086 goto out_no_dmabuf; 1087 1088 res->backup = backup; 1089 1090 out_no_dmabuf: 1091 return ret; 1092 } 1093 1094 /** 1095 * vmw_resource_do_validate - Make a resource up-to-date and visible 1096 * to the device. 1097 * 1098 * @res: The resource to make visible to the device. 1099 * @val_buf: Information about a buffer possibly 1100 * containing backup data if a bind operation is needed. 1101 * 1102 * On hardware resource shortage, this function returns -EBUSY and 1103 * should be retried once resources have been freed up. 1104 */ 1105 static int vmw_resource_do_validate(struct vmw_resource *res, 1106 struct ttm_validate_buffer *val_buf) 1107 { 1108 int ret = 0; 1109 const struct vmw_res_func *func = res->func; 1110 1111 if (unlikely(res->id == -1)) { 1112 ret = func->create(res); 1113 if (unlikely(ret != 0)) 1114 return ret; 1115 } 1116 1117 if (func->bind && 1118 ((func->needs_backup && list_empty(&res->mob_head) && 1119 val_buf->bo != NULL) || 1120 (!func->needs_backup && val_buf->bo != NULL))) { 1121 ret = func->bind(res, val_buf); 1122 if (unlikely(ret != 0)) 1123 goto out_bind_failed; 1124 if (func->needs_backup) 1125 list_add_tail(&res->mob_head, &res->backup->res_list); 1126 } 1127 1128 /* 1129 * Only do this on write operations, and move to 1130 * vmw_resource_unreserve if it can be called after 1131 * backup buffers have been unreserved. Otherwise 1132 * sort out locking. 1133 */ 1134 res->res_dirty = true; 1135 1136 return 0; 1137 1138 out_bind_failed: 1139 func->destroy(res); 1140 1141 return ret; 1142 } 1143 1144 /** 1145 * vmw_resource_unreserve - Unreserve a resource previously reserved for 1146 * command submission. 1147 * 1148 * @res: Pointer to the struct vmw_resource to unreserve. 1149 * @new_backup: Pointer to new backup buffer if command submission 1150 * switched. 1151 * @new_backup_offset: New backup offset if @new_backup is !NULL. 1152 * 1153 * Currently unreserving a resource means putting it back on the device's 1154 * resource lru list, so that it can be evicted if necessary. 1155 */ 1156 void vmw_resource_unreserve(struct vmw_resource *res, 1157 struct vmw_dma_buffer *new_backup, 1158 unsigned long new_backup_offset) 1159 { 1160 struct vmw_private *dev_priv = res->dev_priv; 1161 1162 if (!list_empty(&res->lru_head)) 1163 return; 1164 1165 if (new_backup && new_backup != res->backup) { 1166 1167 if (res->backup) { 1168 lockdep_assert_held(&res->backup->base.resv->lock.base); 1169 list_del_init(&res->mob_head); 1170 vmw_dmabuf_unreference(&res->backup); 1171 } 1172 1173 res->backup = vmw_dmabuf_reference(new_backup); 1174 lockdep_assert_held(&new_backup->base.resv->lock.base); 1175 list_add_tail(&res->mob_head, &new_backup->res_list); 1176 } 1177 if (new_backup) 1178 res->backup_offset = new_backup_offset; 1179 1180 if (!res->func->may_evict || res->id == -1) 1181 return; 1182 1183 write_lock(&dev_priv->resource_lock); 1184 list_add_tail(&res->lru_head, 1185 &res->dev_priv->res_lru[res->func->res_type]); 1186 write_unlock(&dev_priv->resource_lock); 1187 } 1188 1189 /** 1190 * vmw_resource_check_buffer - Check whether a backup buffer is needed 1191 * for a resource and in that case, allocate 1192 * one, reserve and validate it. 1193 * 1194 * @res: The resource for which to allocate a backup buffer. 1195 * @interruptible: Whether any sleeps during allocation should be 1196 * performed while interruptible. 1197 * @val_buf: On successful return contains data about the 1198 * reserved and validated backup buffer. 1199 */ 1200 static int 1201 vmw_resource_check_buffer(struct vmw_resource *res, 1202 bool interruptible, 1203 struct ttm_validate_buffer *val_buf) 1204 { 1205 struct list_head val_list; 1206 bool backup_dirty = false; 1207 int ret; 1208 1209 if (unlikely(res->backup == NULL)) { 1210 ret = vmw_resource_buf_alloc(res, interruptible); 1211 if (unlikely(ret != 0)) 1212 return ret; 1213 } 1214 1215 INIT_LIST_HEAD(&val_list); 1216 val_buf->bo = ttm_bo_reference(&res->backup->base); 1217 list_add_tail(&val_buf->head, &val_list); 1218 ret = ttm_eu_reserve_buffers(NULL, &val_list); 1219 if (unlikely(ret != 0)) 1220 goto out_no_reserve; 1221 1222 if (res->func->needs_backup && list_empty(&res->mob_head)) 1223 return 0; 1224 1225 backup_dirty = res->backup_dirty; 1226 ret = ttm_bo_validate(&res->backup->base, 1227 res->func->backup_placement, 1228 true, false); 1229 1230 if (unlikely(ret != 0)) 1231 goto out_no_validate; 1232 1233 return 0; 1234 1235 out_no_validate: 1236 ttm_eu_backoff_reservation(NULL, &val_list); 1237 out_no_reserve: 1238 ttm_bo_unref(&val_buf->bo); 1239 if (backup_dirty) 1240 vmw_dmabuf_unreference(&res->backup); 1241 1242 return ret; 1243 } 1244 1245 /** 1246 * vmw_resource_reserve - Reserve a resource for command submission 1247 * 1248 * @res: The resource to reserve. 1249 * 1250 * This function takes the resource off the LRU list and make sure 1251 * a backup buffer is present for guest-backed resources. However, 1252 * the buffer may not be bound to the resource at this point. 1253 * 1254 */ 1255 int vmw_resource_reserve(struct vmw_resource *res, bool no_backup) 1256 { 1257 struct vmw_private *dev_priv = res->dev_priv; 1258 int ret; 1259 1260 write_lock(&dev_priv->resource_lock); 1261 list_del_init(&res->lru_head); 1262 write_unlock(&dev_priv->resource_lock); 1263 1264 if (res->func->needs_backup && res->backup == NULL && 1265 !no_backup) { 1266 ret = vmw_resource_buf_alloc(res, true); 1267 if (unlikely(ret != 0)) 1268 return ret; 1269 } 1270 1271 return 0; 1272 } 1273 1274 /** 1275 * vmw_resource_backoff_reservation - Unreserve and unreference a 1276 * backup buffer 1277 *. 1278 * @val_buf: Backup buffer information. 1279 */ 1280 static void 1281 vmw_resource_backoff_reservation(struct ttm_validate_buffer *val_buf) 1282 { 1283 struct list_head val_list; 1284 1285 if (likely(val_buf->bo == NULL)) 1286 return; 1287 1288 INIT_LIST_HEAD(&val_list); 1289 list_add_tail(&val_buf->head, &val_list); 1290 ttm_eu_backoff_reservation(NULL, &val_list); 1291 ttm_bo_unref(&val_buf->bo); 1292 } 1293 1294 /** 1295 * vmw_resource_do_evict - Evict a resource, and transfer its data 1296 * to a backup buffer. 1297 * 1298 * @res: The resource to evict. 1299 * @interruptible: Whether to wait interruptible. 1300 */ 1301 int vmw_resource_do_evict(struct vmw_resource *res, bool interruptible) 1302 { 1303 struct ttm_validate_buffer val_buf; 1304 const struct vmw_res_func *func = res->func; 1305 int ret; 1306 1307 BUG_ON(!func->may_evict); 1308 1309 val_buf.bo = NULL; 1310 ret = vmw_resource_check_buffer(res, interruptible, &val_buf); 1311 if (unlikely(ret != 0)) 1312 return ret; 1313 1314 if (unlikely(func->unbind != NULL && 1315 (!func->needs_backup || !list_empty(&res->mob_head)))) { 1316 ret = func->unbind(res, res->res_dirty, &val_buf); 1317 if (unlikely(ret != 0)) 1318 goto out_no_unbind; 1319 list_del_init(&res->mob_head); 1320 } 1321 ret = func->destroy(res); 1322 res->backup_dirty = true; 1323 res->res_dirty = false; 1324 out_no_unbind: 1325 vmw_resource_backoff_reservation(&val_buf); 1326 1327 return ret; 1328 } 1329 1330 1331 /** 1332 * vmw_resource_validate - Make a resource up-to-date and visible 1333 * to the device. 1334 * 1335 * @res: The resource to make visible to the device. 1336 * 1337 * On succesful return, any backup DMA buffer pointed to by @res->backup will 1338 * be reserved and validated. 1339 * On hardware resource shortage, this function will repeatedly evict 1340 * resources of the same type until the validation succeeds. 1341 */ 1342 int vmw_resource_validate(struct vmw_resource *res) 1343 { 1344 int ret; 1345 struct vmw_resource *evict_res; 1346 struct vmw_private *dev_priv = res->dev_priv; 1347 struct list_head *lru_list = &dev_priv->res_lru[res->func->res_type]; 1348 struct ttm_validate_buffer val_buf; 1349 unsigned err_count = 0; 1350 1351 if (likely(!res->func->may_evict)) 1352 return 0; 1353 1354 val_buf.bo = NULL; 1355 if (res->backup) 1356 val_buf.bo = &res->backup->base; 1357 do { 1358 ret = vmw_resource_do_validate(res, &val_buf); 1359 if (likely(ret != -EBUSY)) 1360 break; 1361 1362 write_lock(&dev_priv->resource_lock); 1363 if (list_empty(lru_list) || !res->func->may_evict) { 1364 DRM_ERROR("Out of device device resources " 1365 "for %s.\n", res->func->type_name); 1366 ret = -EBUSY; 1367 write_unlock(&dev_priv->resource_lock); 1368 break; 1369 } 1370 1371 evict_res = vmw_resource_reference 1372 (list_first_entry(lru_list, struct vmw_resource, 1373 lru_head)); 1374 list_del_init(&evict_res->lru_head); 1375 1376 write_unlock(&dev_priv->resource_lock); 1377 1378 ret = vmw_resource_do_evict(evict_res, true); 1379 if (unlikely(ret != 0)) { 1380 write_lock(&dev_priv->resource_lock); 1381 list_add_tail(&evict_res->lru_head, lru_list); 1382 write_unlock(&dev_priv->resource_lock); 1383 if (ret == -ERESTARTSYS || 1384 ++err_count > VMW_RES_EVICT_ERR_COUNT) { 1385 vmw_resource_unreference(&evict_res); 1386 goto out_no_validate; 1387 } 1388 } 1389 1390 vmw_resource_unreference(&evict_res); 1391 } while (1); 1392 1393 if (unlikely(ret != 0)) 1394 goto out_no_validate; 1395 else if (!res->func->needs_backup && res->backup) { 1396 list_del_init(&res->mob_head); 1397 vmw_dmabuf_unreference(&res->backup); 1398 } 1399 1400 return 0; 1401 1402 out_no_validate: 1403 return ret; 1404 } 1405 1406 /** 1407 * vmw_fence_single_bo - Utility function to fence a single TTM buffer 1408 * object without unreserving it. 1409 * 1410 * @bo: Pointer to the struct ttm_buffer_object to fence. 1411 * @fence: Pointer to the fence. If NULL, this function will 1412 * insert a fence into the command stream.. 1413 * 1414 * Contrary to the ttm_eu version of this function, it takes only 1415 * a single buffer object instead of a list, and it also doesn't 1416 * unreserve the buffer object, which needs to be done separately. 1417 */ 1418 void vmw_fence_single_bo(struct ttm_buffer_object *bo, 1419 struct vmw_fence_obj *fence) 1420 { 1421 struct ttm_bo_device *bdev = bo->bdev; 1422 struct ttm_bo_driver *driver = bdev->driver; 1423 struct vmw_fence_obj *old_fence_obj; 1424 struct vmw_private *dev_priv = 1425 container_of(bdev, struct vmw_private, bdev); 1426 1427 if (fence == NULL) 1428 vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL); 1429 else 1430 driver->sync_obj_ref(fence); 1431 1432 spin_lock(&bdev->fence_lock); 1433 1434 old_fence_obj = bo->sync_obj; 1435 bo->sync_obj = fence; 1436 1437 spin_unlock(&bdev->fence_lock); 1438 1439 if (old_fence_obj) 1440 vmw_fence_obj_unreference(&old_fence_obj); 1441 } 1442 1443 /** 1444 * vmw_resource_move_notify - TTM move_notify_callback 1445 * 1446 * @bo: The TTM buffer object about to move. 1447 * @mem: The truct ttm_mem_reg indicating to what memory 1448 * region the move is taking place. 1449 * 1450 * Evicts the Guest Backed hardware resource if the backup 1451 * buffer is being moved out of MOB memory. 1452 * Note that this function should not race with the resource 1453 * validation code as long as it accesses only members of struct 1454 * resource that remain static while bo::res is !NULL and 1455 * while we have @bo reserved. struct resource::backup is *not* a 1456 * static member. The resource validation code will take care 1457 * to set @bo::res to NULL, while having @bo reserved when the 1458 * buffer is no longer bound to the resource, so @bo:res can be 1459 * used to determine whether there is a need to unbind and whether 1460 * it is safe to unbind. 1461 */ 1462 void vmw_resource_move_notify(struct ttm_buffer_object *bo, 1463 struct ttm_mem_reg *mem) 1464 { 1465 struct vmw_dma_buffer *dma_buf; 1466 1467 if (mem == NULL) 1468 return; 1469 1470 if (bo->destroy != vmw_dmabuf_bo_free && 1471 bo->destroy != vmw_user_dmabuf_destroy) 1472 return; 1473 1474 dma_buf = container_of(bo, struct vmw_dma_buffer, base); 1475 1476 if (mem->mem_type != VMW_PL_MOB) { 1477 struct vmw_resource *res, *n; 1478 struct ttm_bo_device *bdev = bo->bdev; 1479 struct ttm_validate_buffer val_buf; 1480 1481 val_buf.bo = bo; 1482 1483 list_for_each_entry_safe(res, n, &dma_buf->res_list, mob_head) { 1484 1485 if (unlikely(res->func->unbind == NULL)) 1486 continue; 1487 1488 (void) res->func->unbind(res, true, &val_buf); 1489 res->backup_dirty = true; 1490 res->res_dirty = false; 1491 list_del_init(&res->mob_head); 1492 } 1493 1494 spin_lock(&bdev->fence_lock); 1495 (void) ttm_bo_wait(bo, false, false, false); 1496 spin_unlock(&bdev->fence_lock); 1497 } 1498 } 1499 1500 /** 1501 * vmw_resource_needs_backup - Return whether a resource needs a backup buffer. 1502 * 1503 * @res: The resource being queried. 1504 */ 1505 bool vmw_resource_needs_backup(const struct vmw_resource *res) 1506 { 1507 return res->func->needs_backup; 1508 } 1509 1510 /** 1511 * vmw_resource_evict_type - Evict all resources of a specific type 1512 * 1513 * @dev_priv: Pointer to a device private struct 1514 * @type: The resource type to evict 1515 * 1516 * To avoid thrashing starvation or as part of the hibernation sequence, 1517 * try to evict all evictable resources of a specific type. 1518 */ 1519 static void vmw_resource_evict_type(struct vmw_private *dev_priv, 1520 enum vmw_res_type type) 1521 { 1522 struct list_head *lru_list = &dev_priv->res_lru[type]; 1523 struct vmw_resource *evict_res; 1524 unsigned err_count = 0; 1525 int ret; 1526 1527 do { 1528 write_lock(&dev_priv->resource_lock); 1529 1530 if (list_empty(lru_list)) 1531 goto out_unlock; 1532 1533 evict_res = vmw_resource_reference( 1534 list_first_entry(lru_list, struct vmw_resource, 1535 lru_head)); 1536 list_del_init(&evict_res->lru_head); 1537 write_unlock(&dev_priv->resource_lock); 1538 1539 ret = vmw_resource_do_evict(evict_res, false); 1540 if (unlikely(ret != 0)) { 1541 write_lock(&dev_priv->resource_lock); 1542 list_add_tail(&evict_res->lru_head, lru_list); 1543 write_unlock(&dev_priv->resource_lock); 1544 if (++err_count > VMW_RES_EVICT_ERR_COUNT) { 1545 vmw_resource_unreference(&evict_res); 1546 return; 1547 } 1548 } 1549 1550 vmw_resource_unreference(&evict_res); 1551 } while (1); 1552 1553 out_unlock: 1554 write_unlock(&dev_priv->resource_lock); 1555 } 1556 1557 /** 1558 * vmw_resource_evict_all - Evict all evictable resources 1559 * 1560 * @dev_priv: Pointer to a device private struct 1561 * 1562 * To avoid thrashing starvation or as part of the hibernation sequence, 1563 * evict all evictable resources. In particular this means that all 1564 * guest-backed resources that are registered with the device are 1565 * evicted and the OTable becomes clean. 1566 */ 1567 void vmw_resource_evict_all(struct vmw_private *dev_priv) 1568 { 1569 enum vmw_res_type type; 1570 1571 mutex_lock(&dev_priv->cmdbuf_mutex); 1572 1573 for (type = 0; type < vmw_res_max; ++type) 1574 vmw_resource_evict_type(dev_priv, type); 1575 1576 mutex_unlock(&dev_priv->cmdbuf_mutex); 1577 } 1578