1 /**************************************************************************
2  *
3  * Copyright © 2009-2015 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 #include "vmwgfx_drv.h"
29 #include <drm/vmwgfx_drm.h>
30 #include <drm/ttm/ttm_object.h>
31 #include <drm/ttm/ttm_placement.h>
32 #include <drm/drmP.h>
33 #include "vmwgfx_resource_priv.h"
34 #include "vmwgfx_binding.h"
35 
36 #define VMW_RES_EVICT_ERR_COUNT 10
37 
38 struct vmw_user_dma_buffer {
39 	struct ttm_prime_object prime;
40 	struct vmw_dma_buffer dma;
41 };
42 
43 struct vmw_bo_user_rep {
44 	uint32_t handle;
45 	uint64_t map_handle;
46 };
47 
48 struct vmw_stream {
49 	struct vmw_resource res;
50 	uint32_t stream_id;
51 };
52 
53 struct vmw_user_stream {
54 	struct ttm_base_object base;
55 	struct vmw_stream stream;
56 };
57 
58 
59 static uint64_t vmw_user_stream_size;
60 
61 static const struct vmw_res_func vmw_stream_func = {
62 	.res_type = vmw_res_stream,
63 	.needs_backup = false,
64 	.may_evict = false,
65 	.type_name = "video streams",
66 	.backup_placement = NULL,
67 	.create = NULL,
68 	.destroy = NULL,
69 	.bind = NULL,
70 	.unbind = NULL
71 };
72 
73 static inline struct vmw_dma_buffer *
74 vmw_dma_buffer(struct ttm_buffer_object *bo)
75 {
76 	return container_of(bo, struct vmw_dma_buffer, base);
77 }
78 
79 static inline struct vmw_user_dma_buffer *
80 vmw_user_dma_buffer(struct ttm_buffer_object *bo)
81 {
82 	struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
83 	return container_of(vmw_bo, struct vmw_user_dma_buffer, dma);
84 }
85 
86 struct vmw_resource *vmw_resource_reference(struct vmw_resource *res)
87 {
88 	kref_get(&res->kref);
89 	return res;
90 }
91 
92 struct vmw_resource *
93 vmw_resource_reference_unless_doomed(struct vmw_resource *res)
94 {
95 	return kref_get_unless_zero(&res->kref) ? res : NULL;
96 }
97 
98 /**
99  * vmw_resource_release_id - release a resource id to the id manager.
100  *
101  * @res: Pointer to the resource.
102  *
103  * Release the resource id to the resource id manager and set it to -1
104  */
105 void vmw_resource_release_id(struct vmw_resource *res)
106 {
107 	struct vmw_private *dev_priv = res->dev_priv;
108 	struct idr *idr = &dev_priv->res_idr[res->func->res_type];
109 
110 	write_lock(&dev_priv->resource_lock);
111 	if (res->id != -1)
112 		idr_remove(idr, res->id);
113 	res->id = -1;
114 	write_unlock(&dev_priv->resource_lock);
115 }
116 
117 static void vmw_resource_release(struct kref *kref)
118 {
119 	struct vmw_resource *res =
120 	    container_of(kref, struct vmw_resource, kref);
121 	struct vmw_private *dev_priv = res->dev_priv;
122 	int id;
123 	struct idr *idr = &dev_priv->res_idr[res->func->res_type];
124 
125 	write_lock(&dev_priv->resource_lock);
126 	res->avail = false;
127 	list_del_init(&res->lru_head);
128 	write_unlock(&dev_priv->resource_lock);
129 	if (res->backup) {
130 		struct ttm_buffer_object *bo = &res->backup->base;
131 
132 		ttm_bo_reserve(bo, false, false, NULL);
133 		if (!list_empty(&res->mob_head) &&
134 		    res->func->unbind != NULL) {
135 			struct ttm_validate_buffer val_buf;
136 
137 			val_buf.bo = bo;
138 			val_buf.shared = false;
139 			res->func->unbind(res, false, &val_buf);
140 		}
141 		res->backup_dirty = false;
142 		list_del_init(&res->mob_head);
143 		ttm_bo_unreserve(bo);
144 		vmw_dmabuf_unreference(&res->backup);
145 	}
146 
147 	if (likely(res->hw_destroy != NULL)) {
148 		mutex_lock(&dev_priv->binding_mutex);
149 		vmw_binding_res_list_kill(&res->binding_head);
150 		mutex_unlock(&dev_priv->binding_mutex);
151 		res->hw_destroy(res);
152 	}
153 
154 	id = res->id;
155 	if (res->res_free != NULL)
156 		res->res_free(res);
157 	else
158 		kfree(res);
159 
160 	write_lock(&dev_priv->resource_lock);
161 	if (id != -1)
162 		idr_remove(idr, id);
163 	write_unlock(&dev_priv->resource_lock);
164 }
165 
166 void vmw_resource_unreference(struct vmw_resource **p_res)
167 {
168 	struct vmw_resource *res = *p_res;
169 
170 	*p_res = NULL;
171 	kref_put(&res->kref, vmw_resource_release);
172 }
173 
174 
175 /**
176  * vmw_resource_alloc_id - release a resource id to the id manager.
177  *
178  * @res: Pointer to the resource.
179  *
180  * Allocate the lowest free resource from the resource manager, and set
181  * @res->id to that id. Returns 0 on success and -ENOMEM on failure.
182  */
183 int vmw_resource_alloc_id(struct vmw_resource *res)
184 {
185 	struct vmw_private *dev_priv = res->dev_priv;
186 	int ret;
187 	struct idr *idr = &dev_priv->res_idr[res->func->res_type];
188 
189 	BUG_ON(res->id != -1);
190 
191 	idr_preload(GFP_KERNEL);
192 	write_lock(&dev_priv->resource_lock);
193 
194 	ret = idr_alloc(idr, res, 1, 0, GFP_NOWAIT);
195 	if (ret >= 0)
196 		res->id = ret;
197 
198 	write_unlock(&dev_priv->resource_lock);
199 	idr_preload_end();
200 	return ret < 0 ? ret : 0;
201 }
202 
203 /**
204  * vmw_resource_init - initialize a struct vmw_resource
205  *
206  * @dev_priv:       Pointer to a device private struct.
207  * @res:            The struct vmw_resource to initialize.
208  * @obj_type:       Resource object type.
209  * @delay_id:       Boolean whether to defer device id allocation until
210  *                  the first validation.
211  * @res_free:       Resource destructor.
212  * @func:           Resource function table.
213  */
214 int vmw_resource_init(struct vmw_private *dev_priv, struct vmw_resource *res,
215 		      bool delay_id,
216 		      void (*res_free) (struct vmw_resource *res),
217 		      const struct vmw_res_func *func)
218 {
219 	kref_init(&res->kref);
220 	res->hw_destroy = NULL;
221 	res->res_free = res_free;
222 	res->avail = false;
223 	res->dev_priv = dev_priv;
224 	res->func = func;
225 	INIT_LIST_HEAD(&res->lru_head);
226 	INIT_LIST_HEAD(&res->mob_head);
227 	INIT_LIST_HEAD(&res->binding_head);
228 	res->id = -1;
229 	res->backup = NULL;
230 	res->backup_offset = 0;
231 	res->backup_dirty = false;
232 	res->res_dirty = false;
233 	if (delay_id)
234 		return 0;
235 	else
236 		return vmw_resource_alloc_id(res);
237 }
238 
239 /**
240  * vmw_resource_activate
241  *
242  * @res:        Pointer to the newly created resource
243  * @hw_destroy: Destroy function. NULL if none.
244  *
245  * Activate a resource after the hardware has been made aware of it.
246  * Set tye destroy function to @destroy. Typically this frees the
247  * resource and destroys the hardware resources associated with it.
248  * Activate basically means that the function vmw_resource_lookup will
249  * find it.
250  */
251 void vmw_resource_activate(struct vmw_resource *res,
252 			   void (*hw_destroy) (struct vmw_resource *))
253 {
254 	struct vmw_private *dev_priv = res->dev_priv;
255 
256 	write_lock(&dev_priv->resource_lock);
257 	res->avail = true;
258 	res->hw_destroy = hw_destroy;
259 	write_unlock(&dev_priv->resource_lock);
260 }
261 
262 static struct vmw_resource *vmw_resource_lookup(struct vmw_private *dev_priv,
263 						struct idr *idr, int id)
264 {
265 	struct vmw_resource *res;
266 
267 	read_lock(&dev_priv->resource_lock);
268 	res = idr_find(idr, id);
269 	if (!res || !res->avail || !kref_get_unless_zero(&res->kref))
270 		res = NULL;
271 
272 	read_unlock(&dev_priv->resource_lock);
273 
274 	if (unlikely(res == NULL))
275 		return NULL;
276 
277 	return res;
278 }
279 
280 /**
281  * vmw_user_resource_lookup_handle - lookup a struct resource from a
282  * TTM user-space handle and perform basic type checks
283  *
284  * @dev_priv:     Pointer to a device private struct
285  * @tfile:        Pointer to a struct ttm_object_file identifying the caller
286  * @handle:       The TTM user-space handle
287  * @converter:    Pointer to an object describing the resource type
288  * @p_res:        On successful return the location pointed to will contain
289  *                a pointer to a refcounted struct vmw_resource.
290  *
291  * If the handle can't be found or is associated with an incorrect resource
292  * type, -EINVAL will be returned.
293  */
294 int vmw_user_resource_lookup_handle(struct vmw_private *dev_priv,
295 				    struct ttm_object_file *tfile,
296 				    uint32_t handle,
297 				    const struct vmw_user_resource_conv
298 				    *converter,
299 				    struct vmw_resource **p_res)
300 {
301 	struct ttm_base_object *base;
302 	struct vmw_resource *res;
303 	int ret = -EINVAL;
304 
305 	base = ttm_base_object_lookup(tfile, handle);
306 	if (unlikely(base == NULL))
307 		return -EINVAL;
308 
309 	if (unlikely(ttm_base_object_type(base) != converter->object_type))
310 		goto out_bad_resource;
311 
312 	res = converter->base_obj_to_res(base);
313 
314 	read_lock(&dev_priv->resource_lock);
315 	if (!res->avail || res->res_free != converter->res_free) {
316 		read_unlock(&dev_priv->resource_lock);
317 		goto out_bad_resource;
318 	}
319 
320 	kref_get(&res->kref);
321 	read_unlock(&dev_priv->resource_lock);
322 
323 	*p_res = res;
324 	ret = 0;
325 
326 out_bad_resource:
327 	ttm_base_object_unref(&base);
328 
329 	return ret;
330 }
331 
332 /**
333  * Helper function that looks either a surface or dmabuf.
334  *
335  * The pointer this pointed at by out_surf and out_buf needs to be null.
336  */
337 int vmw_user_lookup_handle(struct vmw_private *dev_priv,
338 			   struct ttm_object_file *tfile,
339 			   uint32_t handle,
340 			   struct vmw_surface **out_surf,
341 			   struct vmw_dma_buffer **out_buf)
342 {
343 	struct vmw_resource *res;
344 	int ret;
345 
346 	BUG_ON(*out_surf || *out_buf);
347 
348 	ret = vmw_user_resource_lookup_handle(dev_priv, tfile, handle,
349 					      user_surface_converter,
350 					      &res);
351 	if (!ret) {
352 		*out_surf = vmw_res_to_srf(res);
353 		return 0;
354 	}
355 
356 	*out_surf = NULL;
357 	ret = vmw_user_dmabuf_lookup(tfile, handle, out_buf, NULL);
358 	return ret;
359 }
360 
361 /**
362  * Buffer management.
363  */
364 
365 /**
366  * vmw_dmabuf_acc_size - Calculate the pinned memory usage of buffers
367  *
368  * @dev_priv: Pointer to a struct vmw_private identifying the device.
369  * @size: The requested buffer size.
370  * @user: Whether this is an ordinary dma buffer or a user dma buffer.
371  */
372 static size_t vmw_dmabuf_acc_size(struct vmw_private *dev_priv, size_t size,
373 				  bool user)
374 {
375 	static size_t struct_size, user_struct_size;
376 	size_t num_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
377 	size_t page_array_size = ttm_round_pot(num_pages * sizeof(void *));
378 
379 	if (unlikely(struct_size == 0)) {
380 		size_t backend_size = ttm_round_pot(vmw_tt_size);
381 
382 		struct_size = backend_size +
383 			ttm_round_pot(sizeof(struct vmw_dma_buffer));
384 		user_struct_size = backend_size +
385 			ttm_round_pot(sizeof(struct vmw_user_dma_buffer));
386 	}
387 
388 	if (dev_priv->map_mode == vmw_dma_alloc_coherent)
389 		page_array_size +=
390 			ttm_round_pot(num_pages * sizeof(dma_addr_t));
391 
392 	return ((user) ? user_struct_size : struct_size) +
393 		page_array_size;
394 }
395 
396 void vmw_dmabuf_bo_free(struct ttm_buffer_object *bo)
397 {
398 	struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
399 
400 	kfree(vmw_bo);
401 }
402 
403 static void vmw_user_dmabuf_destroy(struct ttm_buffer_object *bo)
404 {
405 	struct vmw_user_dma_buffer *vmw_user_bo = vmw_user_dma_buffer(bo);
406 
407 	ttm_prime_object_kfree(vmw_user_bo, prime);
408 }
409 
410 int vmw_dmabuf_init(struct vmw_private *dev_priv,
411 		    struct vmw_dma_buffer *vmw_bo,
412 		    size_t size, struct ttm_placement *placement,
413 		    bool interruptible,
414 		    void (*bo_free) (struct ttm_buffer_object *bo))
415 {
416 	struct ttm_bo_device *bdev = &dev_priv->bdev;
417 	size_t acc_size;
418 	int ret;
419 	bool user = (bo_free == &vmw_user_dmabuf_destroy);
420 
421 	BUG_ON(!bo_free && (!user && (bo_free != vmw_dmabuf_bo_free)));
422 
423 	acc_size = vmw_dmabuf_acc_size(dev_priv, size, user);
424 	memset(vmw_bo, 0, sizeof(*vmw_bo));
425 
426 	INIT_LIST_HEAD(&vmw_bo->res_list);
427 
428 	ret = ttm_bo_init(bdev, &vmw_bo->base, size,
429 			  ttm_bo_type_device, placement,
430 			  0, interruptible,
431 			  NULL, acc_size, NULL, NULL, bo_free);
432 	return ret;
433 }
434 
435 static void vmw_user_dmabuf_release(struct ttm_base_object **p_base)
436 {
437 	struct vmw_user_dma_buffer *vmw_user_bo;
438 	struct ttm_base_object *base = *p_base;
439 	struct ttm_buffer_object *bo;
440 
441 	*p_base = NULL;
442 
443 	if (unlikely(base == NULL))
444 		return;
445 
446 	vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
447 				   prime.base);
448 	bo = &vmw_user_bo->dma.base;
449 	ttm_bo_unref(&bo);
450 }
451 
452 static void vmw_user_dmabuf_ref_obj_release(struct ttm_base_object *base,
453 					    enum ttm_ref_type ref_type)
454 {
455 	struct vmw_user_dma_buffer *user_bo;
456 	user_bo = container_of(base, struct vmw_user_dma_buffer, prime.base);
457 
458 	switch (ref_type) {
459 	case TTM_REF_SYNCCPU_WRITE:
460 		ttm_bo_synccpu_write_release(&user_bo->dma.base);
461 		break;
462 	default:
463 		BUG();
464 	}
465 }
466 
467 /**
468  * vmw_user_dmabuf_alloc - Allocate a user dma buffer
469  *
470  * @dev_priv: Pointer to a struct device private.
471  * @tfile: Pointer to a struct ttm_object_file on which to register the user
472  * object.
473  * @size: Size of the dma buffer.
474  * @shareable: Boolean whether the buffer is shareable with other open files.
475  * @handle: Pointer to where the handle value should be assigned.
476  * @p_dma_buf: Pointer to where the refcounted struct vmw_dma_buffer pointer
477  * should be assigned.
478  */
479 int vmw_user_dmabuf_alloc(struct vmw_private *dev_priv,
480 			  struct ttm_object_file *tfile,
481 			  uint32_t size,
482 			  bool shareable,
483 			  uint32_t *handle,
484 			  struct vmw_dma_buffer **p_dma_buf,
485 			  struct ttm_base_object **p_base)
486 {
487 	struct vmw_user_dma_buffer *user_bo;
488 	struct ttm_buffer_object *tmp;
489 	int ret;
490 
491 	user_bo = kzalloc(sizeof(*user_bo), GFP_KERNEL);
492 	if (unlikely(user_bo == NULL)) {
493 		DRM_ERROR("Failed to allocate a buffer.\n");
494 		return -ENOMEM;
495 	}
496 
497 	ret = vmw_dmabuf_init(dev_priv, &user_bo->dma, size,
498 			      (dev_priv->has_mob) ?
499 			      &vmw_sys_placement :
500 			      &vmw_vram_sys_placement, true,
501 			      &vmw_user_dmabuf_destroy);
502 	if (unlikely(ret != 0))
503 		return ret;
504 
505 	tmp = ttm_bo_reference(&user_bo->dma.base);
506 	ret = ttm_prime_object_init(tfile,
507 				    size,
508 				    &user_bo->prime,
509 				    shareable,
510 				    ttm_buffer_type,
511 				    &vmw_user_dmabuf_release,
512 				    &vmw_user_dmabuf_ref_obj_release);
513 	if (unlikely(ret != 0)) {
514 		ttm_bo_unref(&tmp);
515 		goto out_no_base_object;
516 	}
517 
518 	*p_dma_buf = &user_bo->dma;
519 	if (p_base) {
520 		*p_base = &user_bo->prime.base;
521 		kref_get(&(*p_base)->refcount);
522 	}
523 	*handle = user_bo->prime.base.hash.key;
524 
525 out_no_base_object:
526 	return ret;
527 }
528 
529 /**
530  * vmw_user_dmabuf_verify_access - verify access permissions on this
531  * buffer object.
532  *
533  * @bo: Pointer to the buffer object being accessed
534  * @tfile: Identifying the caller.
535  */
536 int vmw_user_dmabuf_verify_access(struct ttm_buffer_object *bo,
537 				  struct ttm_object_file *tfile)
538 {
539 	struct vmw_user_dma_buffer *vmw_user_bo;
540 
541 	if (unlikely(bo->destroy != vmw_user_dmabuf_destroy))
542 		return -EPERM;
543 
544 	vmw_user_bo = vmw_user_dma_buffer(bo);
545 
546 	/* Check that the caller has opened the object. */
547 	if (likely(ttm_ref_object_exists(tfile, &vmw_user_bo->prime.base)))
548 		return 0;
549 
550 	DRM_ERROR("Could not grant buffer access.\n");
551 	return -EPERM;
552 }
553 
554 /**
555  * vmw_user_dmabuf_synccpu_grab - Grab a struct vmw_user_dma_buffer for cpu
556  * access, idling previous GPU operations on the buffer and optionally
557  * blocking it for further command submissions.
558  *
559  * @user_bo: Pointer to the buffer object being grabbed for CPU access
560  * @tfile: Identifying the caller.
561  * @flags: Flags indicating how the grab should be performed.
562  *
563  * A blocking grab will be automatically released when @tfile is closed.
564  */
565 static int vmw_user_dmabuf_synccpu_grab(struct vmw_user_dma_buffer *user_bo,
566 					struct ttm_object_file *tfile,
567 					uint32_t flags)
568 {
569 	struct ttm_buffer_object *bo = &user_bo->dma.base;
570 	bool existed;
571 	int ret;
572 
573 	if (flags & drm_vmw_synccpu_allow_cs) {
574 		bool nonblock = !!(flags & drm_vmw_synccpu_dontblock);
575 		long lret;
576 
577 		lret = reservation_object_wait_timeout_rcu(bo->resv, true, true,
578 							   nonblock ? 0 : MAX_SCHEDULE_TIMEOUT);
579 		if (!lret)
580 			return -EBUSY;
581 		else if (lret < 0)
582 			return lret;
583 		return 0;
584 	}
585 
586 	ret = ttm_bo_synccpu_write_grab
587 		(bo, !!(flags & drm_vmw_synccpu_dontblock));
588 	if (unlikely(ret != 0))
589 		return ret;
590 
591 	ret = ttm_ref_object_add(tfile, &user_bo->prime.base,
592 				 TTM_REF_SYNCCPU_WRITE, &existed, false);
593 	if (ret != 0 || existed)
594 		ttm_bo_synccpu_write_release(&user_bo->dma.base);
595 
596 	return ret;
597 }
598 
599 /**
600  * vmw_user_dmabuf_synccpu_release - Release a previous grab for CPU access,
601  * and unblock command submission on the buffer if blocked.
602  *
603  * @handle: Handle identifying the buffer object.
604  * @tfile: Identifying the caller.
605  * @flags: Flags indicating the type of release.
606  */
607 static int vmw_user_dmabuf_synccpu_release(uint32_t handle,
608 					   struct ttm_object_file *tfile,
609 					   uint32_t flags)
610 {
611 	if (!(flags & drm_vmw_synccpu_allow_cs))
612 		return ttm_ref_object_base_unref(tfile, handle,
613 						 TTM_REF_SYNCCPU_WRITE);
614 
615 	return 0;
616 }
617 
618 /**
619  * vmw_user_dmabuf_synccpu_release - ioctl function implementing the synccpu
620  * functionality.
621  *
622  * @dev: Identifies the drm device.
623  * @data: Pointer to the ioctl argument.
624  * @file_priv: Identifies the caller.
625  *
626  * This function checks the ioctl arguments for validity and calls the
627  * relevant synccpu functions.
628  */
629 int vmw_user_dmabuf_synccpu_ioctl(struct drm_device *dev, void *data,
630 				  struct drm_file *file_priv)
631 {
632 	struct drm_vmw_synccpu_arg *arg =
633 		(struct drm_vmw_synccpu_arg *) data;
634 	struct vmw_dma_buffer *dma_buf;
635 	struct vmw_user_dma_buffer *user_bo;
636 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
637 	struct ttm_base_object *buffer_base;
638 	int ret;
639 
640 	if ((arg->flags & (drm_vmw_synccpu_read | drm_vmw_synccpu_write)) == 0
641 	    || (arg->flags & ~(drm_vmw_synccpu_read | drm_vmw_synccpu_write |
642 			       drm_vmw_synccpu_dontblock |
643 			       drm_vmw_synccpu_allow_cs)) != 0) {
644 		DRM_ERROR("Illegal synccpu flags.\n");
645 		return -EINVAL;
646 	}
647 
648 	switch (arg->op) {
649 	case drm_vmw_synccpu_grab:
650 		ret = vmw_user_dmabuf_lookup(tfile, arg->handle, &dma_buf,
651 					     &buffer_base);
652 		if (unlikely(ret != 0))
653 			return ret;
654 
655 		user_bo = container_of(dma_buf, struct vmw_user_dma_buffer,
656 				       dma);
657 		ret = vmw_user_dmabuf_synccpu_grab(user_bo, tfile, arg->flags);
658 		vmw_dmabuf_unreference(&dma_buf);
659 		ttm_base_object_unref(&buffer_base);
660 		if (unlikely(ret != 0 && ret != -ERESTARTSYS &&
661 			     ret != -EBUSY)) {
662 			DRM_ERROR("Failed synccpu grab on handle 0x%08x.\n",
663 				  (unsigned int) arg->handle);
664 			return ret;
665 		}
666 		break;
667 	case drm_vmw_synccpu_release:
668 		ret = vmw_user_dmabuf_synccpu_release(arg->handle, tfile,
669 						      arg->flags);
670 		if (unlikely(ret != 0)) {
671 			DRM_ERROR("Failed synccpu release on handle 0x%08x.\n",
672 				  (unsigned int) arg->handle);
673 			return ret;
674 		}
675 		break;
676 	default:
677 		DRM_ERROR("Invalid synccpu operation.\n");
678 		return -EINVAL;
679 	}
680 
681 	return 0;
682 }
683 
684 int vmw_dmabuf_alloc_ioctl(struct drm_device *dev, void *data,
685 			   struct drm_file *file_priv)
686 {
687 	struct vmw_private *dev_priv = vmw_priv(dev);
688 	union drm_vmw_alloc_dmabuf_arg *arg =
689 	    (union drm_vmw_alloc_dmabuf_arg *)data;
690 	struct drm_vmw_alloc_dmabuf_req *req = &arg->req;
691 	struct drm_vmw_dmabuf_rep *rep = &arg->rep;
692 	struct vmw_dma_buffer *dma_buf;
693 	uint32_t handle;
694 	int ret;
695 
696 	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
697 	if (unlikely(ret != 0))
698 		return ret;
699 
700 	ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
701 				    req->size, false, &handle, &dma_buf,
702 				    NULL);
703 	if (unlikely(ret != 0))
704 		goto out_no_dmabuf;
705 
706 	rep->handle = handle;
707 	rep->map_handle = drm_vma_node_offset_addr(&dma_buf->base.vma_node);
708 	rep->cur_gmr_id = handle;
709 	rep->cur_gmr_offset = 0;
710 
711 	vmw_dmabuf_unreference(&dma_buf);
712 
713 out_no_dmabuf:
714 	ttm_read_unlock(&dev_priv->reservation_sem);
715 
716 	return ret;
717 }
718 
719 int vmw_dmabuf_unref_ioctl(struct drm_device *dev, void *data,
720 			   struct drm_file *file_priv)
721 {
722 	struct drm_vmw_unref_dmabuf_arg *arg =
723 	    (struct drm_vmw_unref_dmabuf_arg *)data;
724 
725 	return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
726 					 arg->handle,
727 					 TTM_REF_USAGE);
728 }
729 
730 int vmw_user_dmabuf_lookup(struct ttm_object_file *tfile,
731 			   uint32_t handle, struct vmw_dma_buffer **out,
732 			   struct ttm_base_object **p_base)
733 {
734 	struct vmw_user_dma_buffer *vmw_user_bo;
735 	struct ttm_base_object *base;
736 
737 	base = ttm_base_object_lookup(tfile, handle);
738 	if (unlikely(base == NULL)) {
739 		printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
740 		       (unsigned long)handle);
741 		return -ESRCH;
742 	}
743 
744 	if (unlikely(ttm_base_object_type(base) != ttm_buffer_type)) {
745 		ttm_base_object_unref(&base);
746 		printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
747 		       (unsigned long)handle);
748 		return -EINVAL;
749 	}
750 
751 	vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
752 				   prime.base);
753 	(void)ttm_bo_reference(&vmw_user_bo->dma.base);
754 	if (p_base)
755 		*p_base = base;
756 	else
757 		ttm_base_object_unref(&base);
758 	*out = &vmw_user_bo->dma;
759 
760 	return 0;
761 }
762 
763 int vmw_user_dmabuf_reference(struct ttm_object_file *tfile,
764 			      struct vmw_dma_buffer *dma_buf,
765 			      uint32_t *handle)
766 {
767 	struct vmw_user_dma_buffer *user_bo;
768 
769 	if (dma_buf->base.destroy != vmw_user_dmabuf_destroy)
770 		return -EINVAL;
771 
772 	user_bo = container_of(dma_buf, struct vmw_user_dma_buffer, dma);
773 
774 	*handle = user_bo->prime.base.hash.key;
775 	return ttm_ref_object_add(tfile, &user_bo->prime.base,
776 				  TTM_REF_USAGE, NULL, false);
777 }
778 
779 /*
780  * Stream management
781  */
782 
783 static void vmw_stream_destroy(struct vmw_resource *res)
784 {
785 	struct vmw_private *dev_priv = res->dev_priv;
786 	struct vmw_stream *stream;
787 	int ret;
788 
789 	DRM_INFO("%s: unref\n", __func__);
790 	stream = container_of(res, struct vmw_stream, res);
791 
792 	ret = vmw_overlay_unref(dev_priv, stream->stream_id);
793 	WARN_ON(ret != 0);
794 }
795 
796 static int vmw_stream_init(struct vmw_private *dev_priv,
797 			   struct vmw_stream *stream,
798 			   void (*res_free) (struct vmw_resource *res))
799 {
800 	struct vmw_resource *res = &stream->res;
801 	int ret;
802 
803 	ret = vmw_resource_init(dev_priv, res, false, res_free,
804 				&vmw_stream_func);
805 
806 	if (unlikely(ret != 0)) {
807 		if (res_free == NULL)
808 			kfree(stream);
809 		else
810 			res_free(&stream->res);
811 		return ret;
812 	}
813 
814 	ret = vmw_overlay_claim(dev_priv, &stream->stream_id);
815 	if (ret) {
816 		vmw_resource_unreference(&res);
817 		return ret;
818 	}
819 
820 	DRM_INFO("%s: claimed\n", __func__);
821 
822 	vmw_resource_activate(&stream->res, vmw_stream_destroy);
823 	return 0;
824 }
825 
826 static void vmw_user_stream_free(struct vmw_resource *res)
827 {
828 	struct vmw_user_stream *stream =
829 	    container_of(res, struct vmw_user_stream, stream.res);
830 	struct vmw_private *dev_priv = res->dev_priv;
831 
832 	ttm_base_object_kfree(stream, base);
833 	ttm_mem_global_free(vmw_mem_glob(dev_priv),
834 			    vmw_user_stream_size);
835 }
836 
837 /**
838  * This function is called when user space has no more references on the
839  * base object. It releases the base-object's reference on the resource object.
840  */
841 
842 static void vmw_user_stream_base_release(struct ttm_base_object **p_base)
843 {
844 	struct ttm_base_object *base = *p_base;
845 	struct vmw_user_stream *stream =
846 	    container_of(base, struct vmw_user_stream, base);
847 	struct vmw_resource *res = &stream->stream.res;
848 
849 	*p_base = NULL;
850 	vmw_resource_unreference(&res);
851 }
852 
853 int vmw_stream_unref_ioctl(struct drm_device *dev, void *data,
854 			   struct drm_file *file_priv)
855 {
856 	struct vmw_private *dev_priv = vmw_priv(dev);
857 	struct vmw_resource *res;
858 	struct vmw_user_stream *stream;
859 	struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
860 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
861 	struct idr *idr = &dev_priv->res_idr[vmw_res_stream];
862 	int ret = 0;
863 
864 
865 	res = vmw_resource_lookup(dev_priv, idr, arg->stream_id);
866 	if (unlikely(res == NULL))
867 		return -EINVAL;
868 
869 	if (res->res_free != &vmw_user_stream_free) {
870 		ret = -EINVAL;
871 		goto out;
872 	}
873 
874 	stream = container_of(res, struct vmw_user_stream, stream.res);
875 	if (stream->base.tfile != tfile) {
876 		ret = -EINVAL;
877 		goto out;
878 	}
879 
880 	ttm_ref_object_base_unref(tfile, stream->base.hash.key, TTM_REF_USAGE);
881 out:
882 	vmw_resource_unreference(&res);
883 	return ret;
884 }
885 
886 int vmw_stream_claim_ioctl(struct drm_device *dev, void *data,
887 			   struct drm_file *file_priv)
888 {
889 	struct vmw_private *dev_priv = vmw_priv(dev);
890 	struct vmw_user_stream *stream;
891 	struct vmw_resource *res;
892 	struct vmw_resource *tmp;
893 	struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
894 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
895 	int ret;
896 
897 	/*
898 	 * Approximate idr memory usage with 128 bytes. It will be limited
899 	 * by maximum number_of streams anyway?
900 	 */
901 
902 	if (unlikely(vmw_user_stream_size == 0))
903 		vmw_user_stream_size = ttm_round_pot(sizeof(*stream)) + 128;
904 
905 	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
906 	if (unlikely(ret != 0))
907 		return ret;
908 
909 	ret = ttm_mem_global_alloc(vmw_mem_glob(dev_priv),
910 				   vmw_user_stream_size,
911 				   false, true);
912 	ttm_read_unlock(&dev_priv->reservation_sem);
913 	if (unlikely(ret != 0)) {
914 		if (ret != -ERESTARTSYS)
915 			DRM_ERROR("Out of graphics memory for stream"
916 				  " creation.\n");
917 
918 		goto out_ret;
919 	}
920 
921 	stream = kmalloc(sizeof(*stream), GFP_KERNEL);
922 	if (unlikely(stream == NULL)) {
923 		ttm_mem_global_free(vmw_mem_glob(dev_priv),
924 				    vmw_user_stream_size);
925 		ret = -ENOMEM;
926 		goto out_ret;
927 	}
928 
929 	res = &stream->stream.res;
930 	stream->base.shareable = false;
931 	stream->base.tfile = NULL;
932 
933 	/*
934 	 * From here on, the destructor takes over resource freeing.
935 	 */
936 
937 	ret = vmw_stream_init(dev_priv, &stream->stream, vmw_user_stream_free);
938 	if (unlikely(ret != 0))
939 		goto out_ret;
940 
941 	tmp = vmw_resource_reference(res);
942 	ret = ttm_base_object_init(tfile, &stream->base, false, VMW_RES_STREAM,
943 				   &vmw_user_stream_base_release, NULL);
944 
945 	if (unlikely(ret != 0)) {
946 		vmw_resource_unreference(&tmp);
947 		goto out_err;
948 	}
949 
950 	arg->stream_id = res->id;
951 out_err:
952 	vmw_resource_unreference(&res);
953 out_ret:
954 	return ret;
955 }
956 
957 int vmw_user_stream_lookup(struct vmw_private *dev_priv,
958 			   struct ttm_object_file *tfile,
959 			   uint32_t *inout_id, struct vmw_resource **out)
960 {
961 	struct vmw_user_stream *stream;
962 	struct vmw_resource *res;
963 	int ret;
964 
965 	res = vmw_resource_lookup(dev_priv, &dev_priv->res_idr[vmw_res_stream],
966 				  *inout_id);
967 	if (unlikely(res == NULL))
968 		return -EINVAL;
969 
970 	if (res->res_free != &vmw_user_stream_free) {
971 		ret = -EINVAL;
972 		goto err_ref;
973 	}
974 
975 	stream = container_of(res, struct vmw_user_stream, stream.res);
976 	if (stream->base.tfile != tfile) {
977 		ret = -EPERM;
978 		goto err_ref;
979 	}
980 
981 	*inout_id = stream->stream.stream_id;
982 	*out = res;
983 	return 0;
984 err_ref:
985 	vmw_resource_unreference(&res);
986 	return ret;
987 }
988 
989 
990 /**
991  * vmw_dumb_create - Create a dumb kms buffer
992  *
993  * @file_priv: Pointer to a struct drm_file identifying the caller.
994  * @dev: Pointer to the drm device.
995  * @args: Pointer to a struct drm_mode_create_dumb structure
996  *
997  * This is a driver callback for the core drm create_dumb functionality.
998  * Note that this is very similar to the vmw_dmabuf_alloc ioctl, except
999  * that the arguments have a different format.
1000  */
1001 int vmw_dumb_create(struct drm_file *file_priv,
1002 		    struct drm_device *dev,
1003 		    struct drm_mode_create_dumb *args)
1004 {
1005 	struct vmw_private *dev_priv = vmw_priv(dev);
1006 	struct vmw_dma_buffer *dma_buf;
1007 	int ret;
1008 
1009 	args->pitch = args->width * ((args->bpp + 7) / 8);
1010 	args->size = args->pitch * args->height;
1011 
1012 	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
1013 	if (unlikely(ret != 0))
1014 		return ret;
1015 
1016 	ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
1017 				    args->size, false, &args->handle,
1018 				    &dma_buf, NULL);
1019 	if (unlikely(ret != 0))
1020 		goto out_no_dmabuf;
1021 
1022 	vmw_dmabuf_unreference(&dma_buf);
1023 out_no_dmabuf:
1024 	ttm_read_unlock(&dev_priv->reservation_sem);
1025 	return ret;
1026 }
1027 
1028 /**
1029  * vmw_dumb_map_offset - Return the address space offset of a dumb buffer
1030  *
1031  * @file_priv: Pointer to a struct drm_file identifying the caller.
1032  * @dev: Pointer to the drm device.
1033  * @handle: Handle identifying the dumb buffer.
1034  * @offset: The address space offset returned.
1035  *
1036  * This is a driver callback for the core drm dumb_map_offset functionality.
1037  */
1038 int vmw_dumb_map_offset(struct drm_file *file_priv,
1039 			struct drm_device *dev, uint32_t handle,
1040 			uint64_t *offset)
1041 {
1042 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1043 	struct vmw_dma_buffer *out_buf;
1044 	int ret;
1045 
1046 	ret = vmw_user_dmabuf_lookup(tfile, handle, &out_buf, NULL);
1047 	if (ret != 0)
1048 		return -EINVAL;
1049 
1050 	*offset = drm_vma_node_offset_addr(&out_buf->base.vma_node);
1051 	vmw_dmabuf_unreference(&out_buf);
1052 	return 0;
1053 }
1054 
1055 /**
1056  * vmw_dumb_destroy - Destroy a dumb boffer
1057  *
1058  * @file_priv: Pointer to a struct drm_file identifying the caller.
1059  * @dev: Pointer to the drm device.
1060  * @handle: Handle identifying the dumb buffer.
1061  *
1062  * This is a driver callback for the core drm dumb_destroy functionality.
1063  */
1064 int vmw_dumb_destroy(struct drm_file *file_priv,
1065 		     struct drm_device *dev,
1066 		     uint32_t handle)
1067 {
1068 	return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
1069 					 handle, TTM_REF_USAGE);
1070 }
1071 
1072 /**
1073  * vmw_resource_buf_alloc - Allocate a backup buffer for a resource.
1074  *
1075  * @res:            The resource for which to allocate a backup buffer.
1076  * @interruptible:  Whether any sleeps during allocation should be
1077  *                  performed while interruptible.
1078  */
1079 static int vmw_resource_buf_alloc(struct vmw_resource *res,
1080 				  bool interruptible)
1081 {
1082 	unsigned long size =
1083 		(res->backup_size + PAGE_SIZE - 1) & PAGE_MASK;
1084 	struct vmw_dma_buffer *backup;
1085 	int ret;
1086 
1087 	if (likely(res->backup)) {
1088 		BUG_ON(res->backup->base.num_pages * PAGE_SIZE < size);
1089 		return 0;
1090 	}
1091 
1092 	backup = kzalloc(sizeof(*backup), GFP_KERNEL);
1093 	if (unlikely(backup == NULL))
1094 		return -ENOMEM;
1095 
1096 	ret = vmw_dmabuf_init(res->dev_priv, backup, res->backup_size,
1097 			      res->func->backup_placement,
1098 			      interruptible,
1099 			      &vmw_dmabuf_bo_free);
1100 	if (unlikely(ret != 0))
1101 		goto out_no_dmabuf;
1102 
1103 	res->backup = backup;
1104 
1105 out_no_dmabuf:
1106 	return ret;
1107 }
1108 
1109 /**
1110  * vmw_resource_do_validate - Make a resource up-to-date and visible
1111  *                            to the device.
1112  *
1113  * @res:            The resource to make visible to the device.
1114  * @val_buf:        Information about a buffer possibly
1115  *                  containing backup data if a bind operation is needed.
1116  *
1117  * On hardware resource shortage, this function returns -EBUSY and
1118  * should be retried once resources have been freed up.
1119  */
1120 static int vmw_resource_do_validate(struct vmw_resource *res,
1121 				    struct ttm_validate_buffer *val_buf)
1122 {
1123 	int ret = 0;
1124 	const struct vmw_res_func *func = res->func;
1125 
1126 	if (unlikely(res->id == -1)) {
1127 		ret = func->create(res);
1128 		if (unlikely(ret != 0))
1129 			return ret;
1130 	}
1131 
1132 	if (func->bind &&
1133 	    ((func->needs_backup && list_empty(&res->mob_head) &&
1134 	      val_buf->bo != NULL) ||
1135 	     (!func->needs_backup && val_buf->bo != NULL))) {
1136 		ret = func->bind(res, val_buf);
1137 		if (unlikely(ret != 0))
1138 			goto out_bind_failed;
1139 		if (func->needs_backup)
1140 			list_add_tail(&res->mob_head, &res->backup->res_list);
1141 	}
1142 
1143 	/*
1144 	 * Only do this on write operations, and move to
1145 	 * vmw_resource_unreserve if it can be called after
1146 	 * backup buffers have been unreserved. Otherwise
1147 	 * sort out locking.
1148 	 */
1149 	res->res_dirty = true;
1150 
1151 	return 0;
1152 
1153 out_bind_failed:
1154 	func->destroy(res);
1155 
1156 	return ret;
1157 }
1158 
1159 /**
1160  * vmw_resource_unreserve - Unreserve a resource previously reserved for
1161  * command submission.
1162  *
1163  * @res:               Pointer to the struct vmw_resource to unreserve.
1164  * @switch_backup:     Backup buffer has been switched.
1165  * @new_backup:        Pointer to new backup buffer if command submission
1166  *                     switched. May be NULL.
1167  * @new_backup_offset: New backup offset if @switch_backup is true.
1168  *
1169  * Currently unreserving a resource means putting it back on the device's
1170  * resource lru list, so that it can be evicted if necessary.
1171  */
1172 void vmw_resource_unreserve(struct vmw_resource *res,
1173 			    bool switch_backup,
1174 			    struct vmw_dma_buffer *new_backup,
1175 			    unsigned long new_backup_offset)
1176 {
1177 	struct vmw_private *dev_priv = res->dev_priv;
1178 
1179 	if (!list_empty(&res->lru_head))
1180 		return;
1181 
1182 	if (switch_backup && new_backup != res->backup) {
1183 		if (res->backup) {
1184 			lockdep_assert_held(&res->backup->base.resv->lock.base);
1185 			list_del_init(&res->mob_head);
1186 			vmw_dmabuf_unreference(&res->backup);
1187 		}
1188 
1189 		if (new_backup) {
1190 			res->backup = vmw_dmabuf_reference(new_backup);
1191 			lockdep_assert_held(&new_backup->base.resv->lock.base);
1192 			list_add_tail(&res->mob_head, &new_backup->res_list);
1193 		} else {
1194 			res->backup = NULL;
1195 		}
1196 	}
1197 	if (switch_backup)
1198 		res->backup_offset = new_backup_offset;
1199 
1200 	if (!res->func->may_evict || res->id == -1 || res->pin_count)
1201 		return;
1202 
1203 	write_lock(&dev_priv->resource_lock);
1204 	list_add_tail(&res->lru_head,
1205 		      &res->dev_priv->res_lru[res->func->res_type]);
1206 	write_unlock(&dev_priv->resource_lock);
1207 }
1208 
1209 /**
1210  * vmw_resource_check_buffer - Check whether a backup buffer is needed
1211  *                             for a resource and in that case, allocate
1212  *                             one, reserve and validate it.
1213  *
1214  * @res:            The resource for which to allocate a backup buffer.
1215  * @interruptible:  Whether any sleeps during allocation should be
1216  *                  performed while interruptible.
1217  * @val_buf:        On successful return contains data about the
1218  *                  reserved and validated backup buffer.
1219  */
1220 static int
1221 vmw_resource_check_buffer(struct vmw_resource *res,
1222 			  bool interruptible,
1223 			  struct ttm_validate_buffer *val_buf)
1224 {
1225 	struct list_head val_list;
1226 	bool backup_dirty = false;
1227 	int ret;
1228 
1229 	if (unlikely(res->backup == NULL)) {
1230 		ret = vmw_resource_buf_alloc(res, interruptible);
1231 		if (unlikely(ret != 0))
1232 			return ret;
1233 	}
1234 
1235 	INIT_LIST_HEAD(&val_list);
1236 	val_buf->bo = ttm_bo_reference(&res->backup->base);
1237 	val_buf->shared = false;
1238 	list_add_tail(&val_buf->head, &val_list);
1239 	ret = ttm_eu_reserve_buffers(NULL, &val_list, interruptible, NULL);
1240 	if (unlikely(ret != 0))
1241 		goto out_no_reserve;
1242 
1243 	if (res->func->needs_backup && list_empty(&res->mob_head))
1244 		return 0;
1245 
1246 	backup_dirty = res->backup_dirty;
1247 	ret = ttm_bo_validate(&res->backup->base,
1248 			      res->func->backup_placement,
1249 			      true, false);
1250 
1251 	if (unlikely(ret != 0))
1252 		goto out_no_validate;
1253 
1254 	return 0;
1255 
1256 out_no_validate:
1257 	ttm_eu_backoff_reservation(NULL, &val_list);
1258 out_no_reserve:
1259 	ttm_bo_unref(&val_buf->bo);
1260 	if (backup_dirty)
1261 		vmw_dmabuf_unreference(&res->backup);
1262 
1263 	return ret;
1264 }
1265 
1266 /**
1267  * vmw_resource_reserve - Reserve a resource for command submission
1268  *
1269  * @res:            The resource to reserve.
1270  *
1271  * This function takes the resource off the LRU list and make sure
1272  * a backup buffer is present for guest-backed resources. However,
1273  * the buffer may not be bound to the resource at this point.
1274  *
1275  */
1276 int vmw_resource_reserve(struct vmw_resource *res, bool interruptible,
1277 			 bool no_backup)
1278 {
1279 	struct vmw_private *dev_priv = res->dev_priv;
1280 	int ret;
1281 
1282 	write_lock(&dev_priv->resource_lock);
1283 	list_del_init(&res->lru_head);
1284 	write_unlock(&dev_priv->resource_lock);
1285 
1286 	if (res->func->needs_backup && res->backup == NULL &&
1287 	    !no_backup) {
1288 		ret = vmw_resource_buf_alloc(res, interruptible);
1289 		if (unlikely(ret != 0)) {
1290 			DRM_ERROR("Failed to allocate a backup buffer "
1291 				  "of size %lu. bytes\n",
1292 				  (unsigned long) res->backup_size);
1293 			return ret;
1294 		}
1295 	}
1296 
1297 	return 0;
1298 }
1299 
1300 /**
1301  * vmw_resource_backoff_reservation - Unreserve and unreference a
1302  *                                    backup buffer
1303  *.
1304  * @val_buf:        Backup buffer information.
1305  */
1306 static void
1307 vmw_resource_backoff_reservation(struct ttm_validate_buffer *val_buf)
1308 {
1309 	struct list_head val_list;
1310 
1311 	if (likely(val_buf->bo == NULL))
1312 		return;
1313 
1314 	INIT_LIST_HEAD(&val_list);
1315 	list_add_tail(&val_buf->head, &val_list);
1316 	ttm_eu_backoff_reservation(NULL, &val_list);
1317 	ttm_bo_unref(&val_buf->bo);
1318 }
1319 
1320 /**
1321  * vmw_resource_do_evict - Evict a resource, and transfer its data
1322  *                         to a backup buffer.
1323  *
1324  * @res:            The resource to evict.
1325  * @interruptible:  Whether to wait interruptible.
1326  */
1327 static int vmw_resource_do_evict(struct vmw_resource *res, bool interruptible)
1328 {
1329 	struct ttm_validate_buffer val_buf;
1330 	const struct vmw_res_func *func = res->func;
1331 	int ret;
1332 
1333 	BUG_ON(!func->may_evict);
1334 
1335 	val_buf.bo = NULL;
1336 	val_buf.shared = false;
1337 	ret = vmw_resource_check_buffer(res, interruptible, &val_buf);
1338 	if (unlikely(ret != 0))
1339 		return ret;
1340 
1341 	if (unlikely(func->unbind != NULL &&
1342 		     (!func->needs_backup || !list_empty(&res->mob_head)))) {
1343 		ret = func->unbind(res, res->res_dirty, &val_buf);
1344 		if (unlikely(ret != 0))
1345 			goto out_no_unbind;
1346 		list_del_init(&res->mob_head);
1347 	}
1348 	ret = func->destroy(res);
1349 	res->backup_dirty = true;
1350 	res->res_dirty = false;
1351 out_no_unbind:
1352 	vmw_resource_backoff_reservation(&val_buf);
1353 
1354 	return ret;
1355 }
1356 
1357 
1358 /**
1359  * vmw_resource_validate - Make a resource up-to-date and visible
1360  *                         to the device.
1361  *
1362  * @res:            The resource to make visible to the device.
1363  *
1364  * On succesful return, any backup DMA buffer pointed to by @res->backup will
1365  * be reserved and validated.
1366  * On hardware resource shortage, this function will repeatedly evict
1367  * resources of the same type until the validation succeeds.
1368  */
1369 int vmw_resource_validate(struct vmw_resource *res)
1370 {
1371 	int ret;
1372 	struct vmw_resource *evict_res;
1373 	struct vmw_private *dev_priv = res->dev_priv;
1374 	struct list_head *lru_list = &dev_priv->res_lru[res->func->res_type];
1375 	struct ttm_validate_buffer val_buf;
1376 	unsigned err_count = 0;
1377 
1378 	if (!res->func->create)
1379 		return 0;
1380 
1381 	val_buf.bo = NULL;
1382 	val_buf.shared = false;
1383 	if (res->backup)
1384 		val_buf.bo = &res->backup->base;
1385 	do {
1386 		ret = vmw_resource_do_validate(res, &val_buf);
1387 		if (likely(ret != -EBUSY))
1388 			break;
1389 
1390 		write_lock(&dev_priv->resource_lock);
1391 		if (list_empty(lru_list) || !res->func->may_evict) {
1392 			DRM_ERROR("Out of device device resources "
1393 				  "for %s.\n", res->func->type_name);
1394 			ret = -EBUSY;
1395 			write_unlock(&dev_priv->resource_lock);
1396 			break;
1397 		}
1398 
1399 		evict_res = vmw_resource_reference
1400 			(list_first_entry(lru_list, struct vmw_resource,
1401 					  lru_head));
1402 		list_del_init(&evict_res->lru_head);
1403 
1404 		write_unlock(&dev_priv->resource_lock);
1405 
1406 		ret = vmw_resource_do_evict(evict_res, true);
1407 		if (unlikely(ret != 0)) {
1408 			write_lock(&dev_priv->resource_lock);
1409 			list_add_tail(&evict_res->lru_head, lru_list);
1410 			write_unlock(&dev_priv->resource_lock);
1411 			if (ret == -ERESTARTSYS ||
1412 			    ++err_count > VMW_RES_EVICT_ERR_COUNT) {
1413 				vmw_resource_unreference(&evict_res);
1414 				goto out_no_validate;
1415 			}
1416 		}
1417 
1418 		vmw_resource_unreference(&evict_res);
1419 	} while (1);
1420 
1421 	if (unlikely(ret != 0))
1422 		goto out_no_validate;
1423 	else if (!res->func->needs_backup && res->backup) {
1424 		list_del_init(&res->mob_head);
1425 		vmw_dmabuf_unreference(&res->backup);
1426 	}
1427 
1428 	return 0;
1429 
1430 out_no_validate:
1431 	return ret;
1432 }
1433 
1434 /**
1435  * vmw_fence_single_bo - Utility function to fence a single TTM buffer
1436  *                       object without unreserving it.
1437  *
1438  * @bo:             Pointer to the struct ttm_buffer_object to fence.
1439  * @fence:          Pointer to the fence. If NULL, this function will
1440  *                  insert a fence into the command stream..
1441  *
1442  * Contrary to the ttm_eu version of this function, it takes only
1443  * a single buffer object instead of a list, and it also doesn't
1444  * unreserve the buffer object, which needs to be done separately.
1445  */
1446 void vmw_fence_single_bo(struct ttm_buffer_object *bo,
1447 			 struct vmw_fence_obj *fence)
1448 {
1449 	struct ttm_bo_device *bdev = bo->bdev;
1450 
1451 	struct vmw_private *dev_priv =
1452 		container_of(bdev, struct vmw_private, bdev);
1453 
1454 	if (fence == NULL) {
1455 		vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
1456 		reservation_object_add_excl_fence(bo->resv, &fence->base);
1457 		dma_fence_put(&fence->base);
1458 	} else
1459 		reservation_object_add_excl_fence(bo->resv, &fence->base);
1460 }
1461 
1462 /**
1463  * vmw_resource_move_notify - TTM move_notify_callback
1464  *
1465  * @bo: The TTM buffer object about to move.
1466  * @mem: The struct ttm_mem_reg indicating to what memory
1467  *       region the move is taking place.
1468  *
1469  * Evicts the Guest Backed hardware resource if the backup
1470  * buffer is being moved out of MOB memory.
1471  * Note that this function should not race with the resource
1472  * validation code as long as it accesses only members of struct
1473  * resource that remain static while bo::res is !NULL and
1474  * while we have @bo reserved. struct resource::backup is *not* a
1475  * static member. The resource validation code will take care
1476  * to set @bo::res to NULL, while having @bo reserved when the
1477  * buffer is no longer bound to the resource, so @bo:res can be
1478  * used to determine whether there is a need to unbind and whether
1479  * it is safe to unbind.
1480  */
1481 void vmw_resource_move_notify(struct ttm_buffer_object *bo,
1482 			      struct ttm_mem_reg *mem)
1483 {
1484 	struct vmw_dma_buffer *dma_buf;
1485 
1486 	if (mem == NULL)
1487 		return;
1488 
1489 	if (bo->destroy != vmw_dmabuf_bo_free &&
1490 	    bo->destroy != vmw_user_dmabuf_destroy)
1491 		return;
1492 
1493 	dma_buf = container_of(bo, struct vmw_dma_buffer, base);
1494 
1495 	if (mem->mem_type != VMW_PL_MOB) {
1496 		struct vmw_resource *res, *n;
1497 		struct ttm_validate_buffer val_buf;
1498 
1499 		val_buf.bo = bo;
1500 		val_buf.shared = false;
1501 
1502 		list_for_each_entry_safe(res, n, &dma_buf->res_list, mob_head) {
1503 
1504 			if (unlikely(res->func->unbind == NULL))
1505 				continue;
1506 
1507 			(void) res->func->unbind(res, true, &val_buf);
1508 			res->backup_dirty = true;
1509 			res->res_dirty = false;
1510 			list_del_init(&res->mob_head);
1511 		}
1512 
1513 		(void) ttm_bo_wait(bo, false, false);
1514 	}
1515 }
1516 
1517 
1518 
1519 /**
1520  * vmw_query_readback_all - Read back cached query states
1521  *
1522  * @dx_query_mob: Buffer containing the DX query MOB
1523  *
1524  * Read back cached states from the device if they exist.  This function
1525  * assumings binding_mutex is held.
1526  */
1527 int vmw_query_readback_all(struct vmw_dma_buffer *dx_query_mob)
1528 {
1529 	struct vmw_resource *dx_query_ctx;
1530 	struct vmw_private *dev_priv;
1531 	struct {
1532 		SVGA3dCmdHeader header;
1533 		SVGA3dCmdDXReadbackAllQuery body;
1534 	} *cmd;
1535 
1536 
1537 	/* No query bound, so do nothing */
1538 	if (!dx_query_mob || !dx_query_mob->dx_query_ctx)
1539 		return 0;
1540 
1541 	dx_query_ctx = dx_query_mob->dx_query_ctx;
1542 	dev_priv     = dx_query_ctx->dev_priv;
1543 
1544 	cmd = vmw_fifo_reserve_dx(dev_priv, sizeof(*cmd), dx_query_ctx->id);
1545 	if (unlikely(cmd == NULL)) {
1546 		DRM_ERROR("Failed reserving FIFO space for "
1547 			  "query MOB read back.\n");
1548 		return -ENOMEM;
1549 	}
1550 
1551 	cmd->header.id   = SVGA_3D_CMD_DX_READBACK_ALL_QUERY;
1552 	cmd->header.size = sizeof(cmd->body);
1553 	cmd->body.cid    = dx_query_ctx->id;
1554 
1555 	vmw_fifo_commit(dev_priv, sizeof(*cmd));
1556 
1557 	/* Triggers a rebind the next time affected context is bound */
1558 	dx_query_mob->dx_query_ctx = NULL;
1559 
1560 	return 0;
1561 }
1562 
1563 
1564 
1565 /**
1566  * vmw_query_move_notify - Read back cached query states
1567  *
1568  * @bo: The TTM buffer object about to move.
1569  * @mem: The memory region @bo is moving to.
1570  *
1571  * Called before the query MOB is swapped out to read back cached query
1572  * states from the device.
1573  */
1574 void vmw_query_move_notify(struct ttm_buffer_object *bo,
1575 			   struct ttm_mem_reg *mem)
1576 {
1577 	struct vmw_dma_buffer *dx_query_mob;
1578 	struct ttm_bo_device *bdev = bo->bdev;
1579 	struct vmw_private *dev_priv;
1580 
1581 
1582 	dev_priv = container_of(bdev, struct vmw_private, bdev);
1583 
1584 	mutex_lock(&dev_priv->binding_mutex);
1585 
1586 	dx_query_mob = container_of(bo, struct vmw_dma_buffer, base);
1587 	if (mem == NULL || !dx_query_mob || !dx_query_mob->dx_query_ctx) {
1588 		mutex_unlock(&dev_priv->binding_mutex);
1589 		return;
1590 	}
1591 
1592 	/* If BO is being moved from MOB to system memory */
1593 	if (mem->mem_type == TTM_PL_SYSTEM && bo->mem.mem_type == VMW_PL_MOB) {
1594 		struct vmw_fence_obj *fence;
1595 
1596 		(void) vmw_query_readback_all(dx_query_mob);
1597 		mutex_unlock(&dev_priv->binding_mutex);
1598 
1599 		/* Create a fence and attach the BO to it */
1600 		(void) vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
1601 		vmw_fence_single_bo(bo, fence);
1602 
1603 		if (fence != NULL)
1604 			vmw_fence_obj_unreference(&fence);
1605 
1606 		(void) ttm_bo_wait(bo, false, false);
1607 	} else
1608 		mutex_unlock(&dev_priv->binding_mutex);
1609 
1610 }
1611 
1612 /**
1613  * vmw_resource_needs_backup - Return whether a resource needs a backup buffer.
1614  *
1615  * @res:            The resource being queried.
1616  */
1617 bool vmw_resource_needs_backup(const struct vmw_resource *res)
1618 {
1619 	return res->func->needs_backup;
1620 }
1621 
1622 /**
1623  * vmw_resource_evict_type - Evict all resources of a specific type
1624  *
1625  * @dev_priv:       Pointer to a device private struct
1626  * @type:           The resource type to evict
1627  *
1628  * To avoid thrashing starvation or as part of the hibernation sequence,
1629  * try to evict all evictable resources of a specific type.
1630  */
1631 static void vmw_resource_evict_type(struct vmw_private *dev_priv,
1632 				    enum vmw_res_type type)
1633 {
1634 	struct list_head *lru_list = &dev_priv->res_lru[type];
1635 	struct vmw_resource *evict_res;
1636 	unsigned err_count = 0;
1637 	int ret;
1638 
1639 	do {
1640 		write_lock(&dev_priv->resource_lock);
1641 
1642 		if (list_empty(lru_list))
1643 			goto out_unlock;
1644 
1645 		evict_res = vmw_resource_reference(
1646 			list_first_entry(lru_list, struct vmw_resource,
1647 					 lru_head));
1648 		list_del_init(&evict_res->lru_head);
1649 		write_unlock(&dev_priv->resource_lock);
1650 
1651 		ret = vmw_resource_do_evict(evict_res, false);
1652 		if (unlikely(ret != 0)) {
1653 			write_lock(&dev_priv->resource_lock);
1654 			list_add_tail(&evict_res->lru_head, lru_list);
1655 			write_unlock(&dev_priv->resource_lock);
1656 			if (++err_count > VMW_RES_EVICT_ERR_COUNT) {
1657 				vmw_resource_unreference(&evict_res);
1658 				return;
1659 			}
1660 		}
1661 
1662 		vmw_resource_unreference(&evict_res);
1663 	} while (1);
1664 
1665 out_unlock:
1666 	write_unlock(&dev_priv->resource_lock);
1667 }
1668 
1669 /**
1670  * vmw_resource_evict_all - Evict all evictable resources
1671  *
1672  * @dev_priv:       Pointer to a device private struct
1673  *
1674  * To avoid thrashing starvation or as part of the hibernation sequence,
1675  * evict all evictable resources. In particular this means that all
1676  * guest-backed resources that are registered with the device are
1677  * evicted and the OTable becomes clean.
1678  */
1679 void vmw_resource_evict_all(struct vmw_private *dev_priv)
1680 {
1681 	enum vmw_res_type type;
1682 
1683 	mutex_lock(&dev_priv->cmdbuf_mutex);
1684 
1685 	for (type = 0; type < vmw_res_max; ++type)
1686 		vmw_resource_evict_type(dev_priv, type);
1687 
1688 	mutex_unlock(&dev_priv->cmdbuf_mutex);
1689 }
1690 
1691 /**
1692  * vmw_resource_pin - Add a pin reference on a resource
1693  *
1694  * @res: The resource to add a pin reference on
1695  *
1696  * This function adds a pin reference, and if needed validates the resource.
1697  * Having a pin reference means that the resource can never be evicted, and
1698  * its id will never change as long as there is a pin reference.
1699  * This function returns 0 on success and a negative error code on failure.
1700  */
1701 int vmw_resource_pin(struct vmw_resource *res, bool interruptible)
1702 {
1703 	struct vmw_private *dev_priv = res->dev_priv;
1704 	int ret;
1705 
1706 	ttm_write_lock(&dev_priv->reservation_sem, interruptible);
1707 	mutex_lock(&dev_priv->cmdbuf_mutex);
1708 	ret = vmw_resource_reserve(res, interruptible, false);
1709 	if (ret)
1710 		goto out_no_reserve;
1711 
1712 	if (res->pin_count == 0) {
1713 		struct vmw_dma_buffer *vbo = NULL;
1714 
1715 		if (res->backup) {
1716 			vbo = res->backup;
1717 
1718 			ttm_bo_reserve(&vbo->base, interruptible, false, NULL);
1719 			if (!vbo->pin_count) {
1720 				ret = ttm_bo_validate
1721 					(&vbo->base,
1722 					 res->func->backup_placement,
1723 					 interruptible, false);
1724 				if (ret) {
1725 					ttm_bo_unreserve(&vbo->base);
1726 					goto out_no_validate;
1727 				}
1728 			}
1729 
1730 			/* Do we really need to pin the MOB as well? */
1731 			vmw_bo_pin_reserved(vbo, true);
1732 		}
1733 		ret = vmw_resource_validate(res);
1734 		if (vbo)
1735 			ttm_bo_unreserve(&vbo->base);
1736 		if (ret)
1737 			goto out_no_validate;
1738 	}
1739 	res->pin_count++;
1740 
1741 out_no_validate:
1742 	vmw_resource_unreserve(res, false, NULL, 0UL);
1743 out_no_reserve:
1744 	mutex_unlock(&dev_priv->cmdbuf_mutex);
1745 	ttm_write_unlock(&dev_priv->reservation_sem);
1746 
1747 	return ret;
1748 }
1749 
1750 /**
1751  * vmw_resource_unpin - Remove a pin reference from a resource
1752  *
1753  * @res: The resource to remove a pin reference from
1754  *
1755  * Having a pin reference means that the resource can never be evicted, and
1756  * its id will never change as long as there is a pin reference.
1757  */
1758 void vmw_resource_unpin(struct vmw_resource *res)
1759 {
1760 	struct vmw_private *dev_priv = res->dev_priv;
1761 	int ret;
1762 
1763 	(void) ttm_read_lock(&dev_priv->reservation_sem, false);
1764 	mutex_lock(&dev_priv->cmdbuf_mutex);
1765 
1766 	ret = vmw_resource_reserve(res, false, true);
1767 	WARN_ON(ret);
1768 
1769 	WARN_ON(res->pin_count == 0);
1770 	if (--res->pin_count == 0 && res->backup) {
1771 		struct vmw_dma_buffer *vbo = res->backup;
1772 
1773 		(void) ttm_bo_reserve(&vbo->base, false, false, NULL);
1774 		vmw_bo_pin_reserved(vbo, false);
1775 		ttm_bo_unreserve(&vbo->base);
1776 	}
1777 
1778 	vmw_resource_unreserve(res, false, NULL, 0UL);
1779 
1780 	mutex_unlock(&dev_priv->cmdbuf_mutex);
1781 	ttm_read_unlock(&dev_priv->reservation_sem);
1782 }
1783 
1784 /**
1785  * vmw_res_type - Return the resource type
1786  *
1787  * @res: Pointer to the resource
1788  */
1789 enum vmw_res_type vmw_res_type(const struct vmw_resource *res)
1790 {
1791 	return res->func->res_type;
1792 }
1793