1 /**************************************************************************
2  *
3  * Copyright © 2009-2015 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 #include "vmwgfx_kms.h"
29 #include <drm/drm_plane_helper.h>
30 #include <drm/drm_atomic.h>
31 #include <drm/drm_atomic_helper.h>
32 #include <drm/drm_rect.h>
33 
34 
35 /* Might need a hrtimer here? */
36 #define VMWGFX_PRESENT_RATE ((HZ / 60 > 0) ? HZ / 60 : 1)
37 
38 void vmw_du_cleanup(struct vmw_display_unit *du)
39 {
40 	drm_plane_cleanup(&du->primary);
41 	drm_plane_cleanup(&du->cursor);
42 
43 	drm_connector_unregister(&du->connector);
44 	drm_crtc_cleanup(&du->crtc);
45 	drm_encoder_cleanup(&du->encoder);
46 	drm_connector_cleanup(&du->connector);
47 }
48 
49 /*
50  * Display Unit Cursor functions
51  */
52 
53 static int vmw_cursor_update_image(struct vmw_private *dev_priv,
54 				   u32 *image, u32 width, u32 height,
55 				   u32 hotspotX, u32 hotspotY)
56 {
57 	struct {
58 		u32 cmd;
59 		SVGAFifoCmdDefineAlphaCursor cursor;
60 	} *cmd;
61 	u32 image_size = width * height * 4;
62 	u32 cmd_size = sizeof(*cmd) + image_size;
63 
64 	if (!image)
65 		return -EINVAL;
66 
67 	cmd = vmw_fifo_reserve(dev_priv, cmd_size);
68 	if (unlikely(cmd == NULL)) {
69 		DRM_ERROR("Fifo reserve failed.\n");
70 		return -ENOMEM;
71 	}
72 
73 	memset(cmd, 0, sizeof(*cmd));
74 
75 	memcpy(&cmd[1], image, image_size);
76 
77 	cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR;
78 	cmd->cursor.id = 0;
79 	cmd->cursor.width = width;
80 	cmd->cursor.height = height;
81 	cmd->cursor.hotspotX = hotspotX;
82 	cmd->cursor.hotspotY = hotspotY;
83 
84 	vmw_fifo_commit_flush(dev_priv, cmd_size);
85 
86 	return 0;
87 }
88 
89 static int vmw_cursor_update_dmabuf(struct vmw_private *dev_priv,
90 				    struct vmw_dma_buffer *dmabuf,
91 				    u32 width, u32 height,
92 				    u32 hotspotX, u32 hotspotY)
93 {
94 	struct ttm_bo_kmap_obj map;
95 	unsigned long kmap_offset;
96 	unsigned long kmap_num;
97 	void *virtual;
98 	bool dummy;
99 	int ret;
100 
101 	kmap_offset = 0;
102 	kmap_num = (width*height*4 + PAGE_SIZE - 1) >> PAGE_SHIFT;
103 
104 	ret = ttm_bo_reserve(&dmabuf->base, true, false, NULL);
105 	if (unlikely(ret != 0)) {
106 		DRM_ERROR("reserve failed\n");
107 		return -EINVAL;
108 	}
109 
110 	ret = ttm_bo_kmap(&dmabuf->base, kmap_offset, kmap_num, &map);
111 	if (unlikely(ret != 0))
112 		goto err_unreserve;
113 
114 	virtual = ttm_kmap_obj_virtual(&map, &dummy);
115 	ret = vmw_cursor_update_image(dev_priv, virtual, width, height,
116 				      hotspotX, hotspotY);
117 
118 	ttm_bo_kunmap(&map);
119 err_unreserve:
120 	ttm_bo_unreserve(&dmabuf->base);
121 
122 	return ret;
123 }
124 
125 
126 static void vmw_cursor_update_position(struct vmw_private *dev_priv,
127 				       bool show, int x, int y)
128 {
129 	u32 *fifo_mem = dev_priv->mmio_virt;
130 	uint32_t count;
131 
132 	spin_lock(&dev_priv->cursor_lock);
133 	vmw_mmio_write(show ? 1 : 0, fifo_mem + SVGA_FIFO_CURSOR_ON);
134 	vmw_mmio_write(x, fifo_mem + SVGA_FIFO_CURSOR_X);
135 	vmw_mmio_write(y, fifo_mem + SVGA_FIFO_CURSOR_Y);
136 	count = vmw_mmio_read(fifo_mem + SVGA_FIFO_CURSOR_COUNT);
137 	vmw_mmio_write(++count, fifo_mem + SVGA_FIFO_CURSOR_COUNT);
138 	spin_unlock(&dev_priv->cursor_lock);
139 }
140 
141 
142 void vmw_kms_cursor_snoop(struct vmw_surface *srf,
143 			  struct ttm_object_file *tfile,
144 			  struct ttm_buffer_object *bo,
145 			  SVGA3dCmdHeader *header)
146 {
147 	struct ttm_bo_kmap_obj map;
148 	unsigned long kmap_offset;
149 	unsigned long kmap_num;
150 	SVGA3dCopyBox *box;
151 	unsigned box_count;
152 	void *virtual;
153 	bool dummy;
154 	struct vmw_dma_cmd {
155 		SVGA3dCmdHeader header;
156 		SVGA3dCmdSurfaceDMA dma;
157 	} *cmd;
158 	int i, ret;
159 
160 	cmd = container_of(header, struct vmw_dma_cmd, header);
161 
162 	/* No snooper installed */
163 	if (!srf->snooper.image)
164 		return;
165 
166 	if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) {
167 		DRM_ERROR("face and mipmap for cursors should never != 0\n");
168 		return;
169 	}
170 
171 	if (cmd->header.size < 64) {
172 		DRM_ERROR("at least one full copy box must be given\n");
173 		return;
174 	}
175 
176 	box = (SVGA3dCopyBox *)&cmd[1];
177 	box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) /
178 			sizeof(SVGA3dCopyBox);
179 
180 	if (cmd->dma.guest.ptr.offset % PAGE_SIZE ||
181 	    box->x != 0    || box->y != 0    || box->z != 0    ||
182 	    box->srcx != 0 || box->srcy != 0 || box->srcz != 0 ||
183 	    box->d != 1    || box_count != 1) {
184 		/* TODO handle none page aligned offsets */
185 		/* TODO handle more dst & src != 0 */
186 		/* TODO handle more then one copy */
187 		DRM_ERROR("Cant snoop dma request for cursor!\n");
188 		DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n",
189 			  box->srcx, box->srcy, box->srcz,
190 			  box->x, box->y, box->z,
191 			  box->w, box->h, box->d, box_count,
192 			  cmd->dma.guest.ptr.offset);
193 		return;
194 	}
195 
196 	kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT;
197 	kmap_num = (64*64*4) >> PAGE_SHIFT;
198 
199 	ret = ttm_bo_reserve(bo, true, false, NULL);
200 	if (unlikely(ret != 0)) {
201 		DRM_ERROR("reserve failed\n");
202 		return;
203 	}
204 
205 	ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map);
206 	if (unlikely(ret != 0))
207 		goto err_unreserve;
208 
209 	virtual = ttm_kmap_obj_virtual(&map, &dummy);
210 
211 	if (box->w == 64 && cmd->dma.guest.pitch == 64*4) {
212 		memcpy(srf->snooper.image, virtual, 64*64*4);
213 	} else {
214 		/* Image is unsigned pointer. */
215 		for (i = 0; i < box->h; i++)
216 			memcpy(srf->snooper.image + i * 64,
217 			       virtual + i * cmd->dma.guest.pitch,
218 			       box->w * 4);
219 	}
220 
221 	srf->snooper.age++;
222 
223 	ttm_bo_kunmap(&map);
224 err_unreserve:
225 	ttm_bo_unreserve(bo);
226 }
227 
228 /**
229  * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots
230  *
231  * @dev_priv: Pointer to the device private struct.
232  *
233  * Clears all legacy hotspots.
234  */
235 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv)
236 {
237 	struct drm_device *dev = dev_priv->dev;
238 	struct vmw_display_unit *du;
239 	struct drm_crtc *crtc;
240 
241 	drm_modeset_lock_all(dev);
242 	drm_for_each_crtc(crtc, dev) {
243 		du = vmw_crtc_to_du(crtc);
244 
245 		du->hotspot_x = 0;
246 		du->hotspot_y = 0;
247 	}
248 	drm_modeset_unlock_all(dev);
249 }
250 
251 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv)
252 {
253 	struct drm_device *dev = dev_priv->dev;
254 	struct vmw_display_unit *du;
255 	struct drm_crtc *crtc;
256 
257 	mutex_lock(&dev->mode_config.mutex);
258 
259 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
260 		du = vmw_crtc_to_du(crtc);
261 		if (!du->cursor_surface ||
262 		    du->cursor_age == du->cursor_surface->snooper.age)
263 			continue;
264 
265 		du->cursor_age = du->cursor_surface->snooper.age;
266 		vmw_cursor_update_image(dev_priv,
267 					du->cursor_surface->snooper.image,
268 					64, 64,
269 					du->hotspot_x + du->core_hotspot_x,
270 					du->hotspot_y + du->core_hotspot_y);
271 	}
272 
273 	mutex_unlock(&dev->mode_config.mutex);
274 }
275 
276 
277 void vmw_du_cursor_plane_destroy(struct drm_plane *plane)
278 {
279 	vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0);
280 
281 	drm_plane_cleanup(plane);
282 }
283 
284 
285 void vmw_du_primary_plane_destroy(struct drm_plane *plane)
286 {
287 	drm_plane_cleanup(plane);
288 
289 	/* Planes are static in our case so we don't free it */
290 }
291 
292 
293 /**
294  * vmw_du_vps_unpin_surf - unpins resource associated with a framebuffer surface
295  *
296  * @vps: plane state associated with the display surface
297  * @unreference: true if we also want to unreference the display.
298  */
299 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps,
300 			     bool unreference)
301 {
302 	if (vps->surf) {
303 		if (vps->pinned) {
304 			vmw_resource_unpin(&vps->surf->res);
305 			vps->pinned--;
306 		}
307 
308 		if (unreference) {
309 			if (vps->pinned)
310 				DRM_ERROR("Surface still pinned\n");
311 			vmw_surface_unreference(&vps->surf);
312 		}
313 	}
314 }
315 
316 
317 /**
318  * vmw_du_plane_cleanup_fb - Unpins the cursor
319  *
320  * @plane:  display plane
321  * @old_state: Contains the FB to clean up
322  *
323  * Unpins the framebuffer surface
324  *
325  * Returns 0 on success
326  */
327 void
328 vmw_du_plane_cleanup_fb(struct drm_plane *plane,
329 			struct drm_plane_state *old_state)
330 {
331 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state);
332 
333 	vmw_du_plane_unpin_surf(vps, false);
334 }
335 
336 
337 /**
338  * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it
339  *
340  * @plane:  display plane
341  * @new_state: info on the new plane state, including the FB
342  *
343  * Returns 0 on success
344  */
345 int
346 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane,
347 			       struct drm_plane_state *new_state)
348 {
349 	struct drm_framebuffer *fb = new_state->fb;
350 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state);
351 
352 
353 	if (vps->surf)
354 		vmw_surface_unreference(&vps->surf);
355 
356 	if (vps->dmabuf)
357 		vmw_dmabuf_unreference(&vps->dmabuf);
358 
359 	if (fb) {
360 		if (vmw_framebuffer_to_vfb(fb)->dmabuf) {
361 			vps->dmabuf = vmw_framebuffer_to_vfbd(fb)->buffer;
362 			vmw_dmabuf_reference(vps->dmabuf);
363 		} else {
364 			vps->surf = vmw_framebuffer_to_vfbs(fb)->surface;
365 			vmw_surface_reference(vps->surf);
366 		}
367 	}
368 
369 	return 0;
370 }
371 
372 
373 void
374 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane,
375 				  struct drm_plane_state *old_state)
376 {
377 	struct drm_crtc *crtc = plane->state->crtc ?: old_state->crtc;
378 	struct vmw_private *dev_priv = vmw_priv(crtc->dev);
379 	struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
380 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(plane->state);
381 	s32 hotspot_x, hotspot_y;
382 	int ret = 0;
383 
384 
385 	hotspot_x = du->hotspot_x;
386 	hotspot_y = du->hotspot_y;
387 
388 	if (plane->fb) {
389 		hotspot_x += plane->fb->hot_x;
390 		hotspot_y += plane->fb->hot_y;
391 	}
392 
393 	du->cursor_surface = vps->surf;
394 	du->cursor_dmabuf = vps->dmabuf;
395 
396 	/* setup new image */
397 	if (vps->surf) {
398 		du->cursor_age = du->cursor_surface->snooper.age;
399 
400 		ret = vmw_cursor_update_image(dev_priv,
401 					      vps->surf->snooper.image,
402 					      64, 64, hotspot_x, hotspot_y);
403 	} else if (vps->dmabuf) {
404 		ret = vmw_cursor_update_dmabuf(dev_priv, vps->dmabuf,
405 					       plane->state->crtc_w,
406 					       plane->state->crtc_h,
407 					       hotspot_x, hotspot_y);
408 	} else {
409 		vmw_cursor_update_position(dev_priv, false, 0, 0);
410 		return;
411 	}
412 
413 	if (!ret) {
414 		du->cursor_x = plane->state->crtc_x + du->set_gui_x;
415 		du->cursor_y = plane->state->crtc_y + du->set_gui_y;
416 
417 		vmw_cursor_update_position(dev_priv, true,
418 					   du->cursor_x + hotspot_x,
419 					   du->cursor_y + hotspot_y);
420 
421 		du->core_hotspot_x = hotspot_x - du->hotspot_x;
422 		du->core_hotspot_y = hotspot_y - du->hotspot_y;
423 	} else {
424 		DRM_ERROR("Failed to update cursor image\n");
425 	}
426 }
427 
428 
429 /**
430  * vmw_du_primary_plane_atomic_check - check if the new state is okay
431  *
432  * @plane: display plane
433  * @state: info on the new plane state, including the FB
434  *
435  * Check if the new state is settable given the current state.  Other
436  * than what the atomic helper checks, we care about crtc fitting
437  * the FB and maintaining one active framebuffer.
438  *
439  * Returns 0 on success
440  */
441 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane,
442 				      struct drm_plane_state *state)
443 {
444 	struct drm_crtc_state *crtc_state = NULL;
445 	struct drm_framebuffer *new_fb = state->fb;
446 	struct drm_rect clip = {};
447 	int ret;
448 
449 	if (state->crtc)
450 		crtc_state = drm_atomic_get_new_crtc_state(state->state, state->crtc);
451 
452 	if (crtc_state && crtc_state->enable) {
453 		clip.x2 = crtc_state->adjusted_mode.hdisplay;
454 		clip.y2 = crtc_state->adjusted_mode.vdisplay;
455 	}
456 
457 	ret = drm_atomic_helper_check_plane_state(state, crtc_state, &clip,
458 						  DRM_PLANE_HELPER_NO_SCALING,
459 						  DRM_PLANE_HELPER_NO_SCALING,
460 						  false, true);
461 
462 	if (!ret && new_fb) {
463 		struct drm_crtc *crtc = state->crtc;
464 		struct vmw_connector_state *vcs;
465 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
466 		struct vmw_private *dev_priv = vmw_priv(crtc->dev);
467 		struct vmw_framebuffer *vfb = vmw_framebuffer_to_vfb(new_fb);
468 
469 		vcs = vmw_connector_state_to_vcs(du->connector.state);
470 
471 		/* Only one active implicit framebuffer at a time. */
472 		mutex_lock(&dev_priv->global_kms_state_mutex);
473 		if (vcs->is_implicit && dev_priv->implicit_fb &&
474 		    !(dev_priv->num_implicit == 1 && du->active_implicit)
475 		    && dev_priv->implicit_fb != vfb) {
476 			DRM_ERROR("Multiple implicit framebuffers "
477 				  "not supported.\n");
478 			ret = -EINVAL;
479 		}
480 		mutex_unlock(&dev_priv->global_kms_state_mutex);
481 	}
482 
483 
484 	return ret;
485 }
486 
487 
488 /**
489  * vmw_du_cursor_plane_atomic_check - check if the new state is okay
490  *
491  * @plane: cursor plane
492  * @state: info on the new plane state
493  *
494  * This is a chance to fail if the new cursor state does not fit
495  * our requirements.
496  *
497  * Returns 0 on success
498  */
499 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane,
500 				     struct drm_plane_state *new_state)
501 {
502 	int ret = 0;
503 	struct vmw_surface *surface = NULL;
504 	struct drm_framebuffer *fb = new_state->fb;
505 
506 
507 	/* Turning off */
508 	if (!fb)
509 		return ret;
510 
511 	/* A lot of the code assumes this */
512 	if (new_state->crtc_w != 64 || new_state->crtc_h != 64) {
513 		DRM_ERROR("Invalid cursor dimensions (%d, %d)\n",
514 			  new_state->crtc_w, new_state->crtc_h);
515 		ret = -EINVAL;
516 	}
517 
518 	if (!vmw_framebuffer_to_vfb(fb)->dmabuf)
519 		surface = vmw_framebuffer_to_vfbs(fb)->surface;
520 
521 	if (surface && !surface->snooper.image) {
522 		DRM_ERROR("surface not suitable for cursor\n");
523 		ret = -EINVAL;
524 	}
525 
526 	return ret;
527 }
528 
529 
530 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc,
531 			     struct drm_crtc_state *new_state)
532 {
533 	struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc);
534 	int connector_mask = 1 << drm_connector_index(&du->connector);
535 	bool has_primary = new_state->plane_mask &
536 			   BIT(drm_plane_index(crtc->primary));
537 
538 	/* We always want to have an active plane with an active CRTC */
539 	if (has_primary != new_state->enable)
540 		return -EINVAL;
541 
542 
543 	if (new_state->connector_mask != connector_mask &&
544 	    new_state->connector_mask != 0) {
545 		DRM_ERROR("Invalid connectors configuration\n");
546 		return -EINVAL;
547 	}
548 
549 	/*
550 	 * Our virtual device does not have a dot clock, so use the logical
551 	 * clock value as the dot clock.
552 	 */
553 	if (new_state->mode.crtc_clock == 0)
554 		new_state->adjusted_mode.crtc_clock = new_state->mode.clock;
555 
556 	return 0;
557 }
558 
559 
560 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc,
561 			      struct drm_crtc_state *old_crtc_state)
562 {
563 }
564 
565 
566 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc,
567 			      struct drm_crtc_state *old_crtc_state)
568 {
569 	struct drm_pending_vblank_event *event = crtc->state->event;
570 
571 	if (event) {
572 		crtc->state->event = NULL;
573 
574 		spin_lock_irq(&crtc->dev->event_lock);
575 		if (drm_crtc_vblank_get(crtc) == 0)
576 			drm_crtc_arm_vblank_event(crtc, event);
577 		else
578 			drm_crtc_send_vblank_event(crtc, event);
579 		spin_unlock_irq(&crtc->dev->event_lock);
580 	}
581 
582 }
583 
584 
585 /**
586  * vmw_du_crtc_duplicate_state - duplicate crtc state
587  * @crtc: DRM crtc
588  *
589  * Allocates and returns a copy of the crtc state (both common and
590  * vmw-specific) for the specified crtc.
591  *
592  * Returns: The newly allocated crtc state, or NULL on failure.
593  */
594 struct drm_crtc_state *
595 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc)
596 {
597 	struct drm_crtc_state *state;
598 	struct vmw_crtc_state *vcs;
599 
600 	if (WARN_ON(!crtc->state))
601 		return NULL;
602 
603 	vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL);
604 
605 	if (!vcs)
606 		return NULL;
607 
608 	state = &vcs->base;
609 
610 	__drm_atomic_helper_crtc_duplicate_state(crtc, state);
611 
612 	return state;
613 }
614 
615 
616 /**
617  * vmw_du_crtc_reset - creates a blank vmw crtc state
618  * @crtc: DRM crtc
619  *
620  * Resets the atomic state for @crtc by freeing the state pointer (which
621  * might be NULL, e.g. at driver load time) and allocating a new empty state
622  * object.
623  */
624 void vmw_du_crtc_reset(struct drm_crtc *crtc)
625 {
626 	struct vmw_crtc_state *vcs;
627 
628 
629 	if (crtc->state) {
630 		__drm_atomic_helper_crtc_destroy_state(crtc->state);
631 
632 		kfree(vmw_crtc_state_to_vcs(crtc->state));
633 	}
634 
635 	vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
636 
637 	if (!vcs) {
638 		DRM_ERROR("Cannot allocate vmw_crtc_state\n");
639 		return;
640 	}
641 
642 	crtc->state = &vcs->base;
643 	crtc->state->crtc = crtc;
644 }
645 
646 
647 /**
648  * vmw_du_crtc_destroy_state - destroy crtc state
649  * @crtc: DRM crtc
650  * @state: state object to destroy
651  *
652  * Destroys the crtc state (both common and vmw-specific) for the
653  * specified plane.
654  */
655 void
656 vmw_du_crtc_destroy_state(struct drm_crtc *crtc,
657 			  struct drm_crtc_state *state)
658 {
659 	drm_atomic_helper_crtc_destroy_state(crtc, state);
660 }
661 
662 
663 /**
664  * vmw_du_plane_duplicate_state - duplicate plane state
665  * @plane: drm plane
666  *
667  * Allocates and returns a copy of the plane state (both common and
668  * vmw-specific) for the specified plane.
669  *
670  * Returns: The newly allocated plane state, or NULL on failure.
671  */
672 struct drm_plane_state *
673 vmw_du_plane_duplicate_state(struct drm_plane *plane)
674 {
675 	struct drm_plane_state *state;
676 	struct vmw_plane_state *vps;
677 
678 	vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL);
679 
680 	if (!vps)
681 		return NULL;
682 
683 	vps->pinned = 0;
684 
685 	/* Mapping is managed by prepare_fb/cleanup_fb */
686 	memset(&vps->guest_map, 0, sizeof(vps->guest_map));
687 	memset(&vps->host_map, 0, sizeof(vps->host_map));
688 	vps->cpp = 0;
689 
690 	/* Each ref counted resource needs to be acquired again */
691 	if (vps->surf)
692 		(void) vmw_surface_reference(vps->surf);
693 
694 	if (vps->dmabuf)
695 		(void) vmw_dmabuf_reference(vps->dmabuf);
696 
697 	state = &vps->base;
698 
699 	__drm_atomic_helper_plane_duplicate_state(plane, state);
700 
701 	return state;
702 }
703 
704 
705 /**
706  * vmw_du_plane_reset - creates a blank vmw plane state
707  * @plane: drm plane
708  *
709  * Resets the atomic state for @plane by freeing the state pointer (which might
710  * be NULL, e.g. at driver load time) and allocating a new empty state object.
711  */
712 void vmw_du_plane_reset(struct drm_plane *plane)
713 {
714 	struct vmw_plane_state *vps;
715 
716 
717 	if (plane->state)
718 		vmw_du_plane_destroy_state(plane, plane->state);
719 
720 	vps = kzalloc(sizeof(*vps), GFP_KERNEL);
721 
722 	if (!vps) {
723 		DRM_ERROR("Cannot allocate vmw_plane_state\n");
724 		return;
725 	}
726 
727 	plane->state = &vps->base;
728 	plane->state->plane = plane;
729 	plane->state->rotation = DRM_MODE_ROTATE_0;
730 }
731 
732 
733 /**
734  * vmw_du_plane_destroy_state - destroy plane state
735  * @plane: DRM plane
736  * @state: state object to destroy
737  *
738  * Destroys the plane state (both common and vmw-specific) for the
739  * specified plane.
740  */
741 void
742 vmw_du_plane_destroy_state(struct drm_plane *plane,
743 			   struct drm_plane_state *state)
744 {
745 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(state);
746 
747 
748 	/* Should have been freed by cleanup_fb */
749 	if (vps->guest_map.virtual) {
750 		DRM_ERROR("Guest mapping not freed\n");
751 		ttm_bo_kunmap(&vps->guest_map);
752 	}
753 
754 	if (vps->host_map.virtual) {
755 		DRM_ERROR("Host mapping not freed\n");
756 		ttm_bo_kunmap(&vps->host_map);
757 	}
758 
759 	if (vps->surf)
760 		vmw_surface_unreference(&vps->surf);
761 
762 	if (vps->dmabuf)
763 		vmw_dmabuf_unreference(&vps->dmabuf);
764 
765 	drm_atomic_helper_plane_destroy_state(plane, state);
766 }
767 
768 
769 /**
770  * vmw_du_connector_duplicate_state - duplicate connector state
771  * @connector: DRM connector
772  *
773  * Allocates and returns a copy of the connector state (both common and
774  * vmw-specific) for the specified connector.
775  *
776  * Returns: The newly allocated connector state, or NULL on failure.
777  */
778 struct drm_connector_state *
779 vmw_du_connector_duplicate_state(struct drm_connector *connector)
780 {
781 	struct drm_connector_state *state;
782 	struct vmw_connector_state *vcs;
783 
784 	if (WARN_ON(!connector->state))
785 		return NULL;
786 
787 	vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL);
788 
789 	if (!vcs)
790 		return NULL;
791 
792 	state = &vcs->base;
793 
794 	__drm_atomic_helper_connector_duplicate_state(connector, state);
795 
796 	return state;
797 }
798 
799 
800 /**
801  * vmw_du_connector_reset - creates a blank vmw connector state
802  * @connector: DRM connector
803  *
804  * Resets the atomic state for @connector by freeing the state pointer (which
805  * might be NULL, e.g. at driver load time) and allocating a new empty state
806  * object.
807  */
808 void vmw_du_connector_reset(struct drm_connector *connector)
809 {
810 	struct vmw_connector_state *vcs;
811 
812 
813 	if (connector->state) {
814 		__drm_atomic_helper_connector_destroy_state(connector->state);
815 
816 		kfree(vmw_connector_state_to_vcs(connector->state));
817 	}
818 
819 	vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
820 
821 	if (!vcs) {
822 		DRM_ERROR("Cannot allocate vmw_connector_state\n");
823 		return;
824 	}
825 
826 	__drm_atomic_helper_connector_reset(connector, &vcs->base);
827 }
828 
829 
830 /**
831  * vmw_du_connector_destroy_state - destroy connector state
832  * @connector: DRM connector
833  * @state: state object to destroy
834  *
835  * Destroys the connector state (both common and vmw-specific) for the
836  * specified plane.
837  */
838 void
839 vmw_du_connector_destroy_state(struct drm_connector *connector,
840 			  struct drm_connector_state *state)
841 {
842 	drm_atomic_helper_connector_destroy_state(connector, state);
843 }
844 /*
845  * Generic framebuffer code
846  */
847 
848 /*
849  * Surface framebuffer code
850  */
851 
852 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer)
853 {
854 	struct vmw_framebuffer_surface *vfbs =
855 		vmw_framebuffer_to_vfbs(framebuffer);
856 
857 	drm_framebuffer_cleanup(framebuffer);
858 	vmw_surface_unreference(&vfbs->surface);
859 	if (vfbs->base.user_obj)
860 		ttm_base_object_unref(&vfbs->base.user_obj);
861 
862 	kfree(vfbs);
863 }
864 
865 static int vmw_framebuffer_surface_dirty(struct drm_framebuffer *framebuffer,
866 				  struct drm_file *file_priv,
867 				  unsigned flags, unsigned color,
868 				  struct drm_clip_rect *clips,
869 				  unsigned num_clips)
870 {
871 	struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
872 	struct vmw_framebuffer_surface *vfbs =
873 		vmw_framebuffer_to_vfbs(framebuffer);
874 	struct drm_clip_rect norect;
875 	int ret, inc = 1;
876 
877 	/* Legacy Display Unit does not support 3D */
878 	if (dev_priv->active_display_unit == vmw_du_legacy)
879 		return -EINVAL;
880 
881 	drm_modeset_lock_all(dev_priv->dev);
882 
883 	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
884 	if (unlikely(ret != 0)) {
885 		drm_modeset_unlock_all(dev_priv->dev);
886 		return ret;
887 	}
888 
889 	if (!num_clips) {
890 		num_clips = 1;
891 		clips = &norect;
892 		norect.x1 = norect.y1 = 0;
893 		norect.x2 = framebuffer->width;
894 		norect.y2 = framebuffer->height;
895 	} else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
896 		num_clips /= 2;
897 		inc = 2; /* skip source rects */
898 	}
899 
900 	if (dev_priv->active_display_unit == vmw_du_screen_object)
901 		ret = vmw_kms_sou_do_surface_dirty(dev_priv, &vfbs->base,
902 						   clips, NULL, NULL, 0, 0,
903 						   num_clips, inc, NULL);
904 	else
905 		ret = vmw_kms_stdu_surface_dirty(dev_priv, &vfbs->base,
906 						 clips, NULL, NULL, 0, 0,
907 						 num_clips, inc, NULL);
908 
909 	vmw_fifo_flush(dev_priv, false);
910 	ttm_read_unlock(&dev_priv->reservation_sem);
911 
912 	drm_modeset_unlock_all(dev_priv->dev);
913 
914 	return 0;
915 }
916 
917 /**
918  * vmw_kms_readback - Perform a readback from the screen system to
919  * a dma-buffer backed framebuffer.
920  *
921  * @dev_priv: Pointer to the device private structure.
922  * @file_priv: Pointer to a struct drm_file identifying the caller.
923  * Must be set to NULL if @user_fence_rep is NULL.
924  * @vfb: Pointer to the dma-buffer backed framebuffer.
925  * @user_fence_rep: User-space provided structure for fence information.
926  * Must be set to non-NULL if @file_priv is non-NULL.
927  * @vclips: Array of clip rects.
928  * @num_clips: Number of clip rects in @vclips.
929  *
930  * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
931  * interrupted.
932  */
933 int vmw_kms_readback(struct vmw_private *dev_priv,
934 		     struct drm_file *file_priv,
935 		     struct vmw_framebuffer *vfb,
936 		     struct drm_vmw_fence_rep __user *user_fence_rep,
937 		     struct drm_vmw_rect *vclips,
938 		     uint32_t num_clips)
939 {
940 	switch (dev_priv->active_display_unit) {
941 	case vmw_du_screen_object:
942 		return vmw_kms_sou_readback(dev_priv, file_priv, vfb,
943 					    user_fence_rep, vclips, num_clips);
944 	case vmw_du_screen_target:
945 		return vmw_kms_stdu_dma(dev_priv, file_priv, vfb,
946 					user_fence_rep, NULL, vclips, num_clips,
947 					1, false, true);
948 	default:
949 		WARN_ONCE(true,
950 			  "Readback called with invalid display system.\n");
951 }
952 
953 	return -ENOSYS;
954 }
955 
956 
957 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = {
958 	.destroy = vmw_framebuffer_surface_destroy,
959 	.dirty = vmw_framebuffer_surface_dirty,
960 };
961 
962 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv,
963 					   struct vmw_surface *surface,
964 					   struct vmw_framebuffer **out,
965 					   const struct drm_mode_fb_cmd2
966 					   *mode_cmd,
967 					   bool is_dmabuf_proxy)
968 
969 {
970 	struct drm_device *dev = dev_priv->dev;
971 	struct vmw_framebuffer_surface *vfbs;
972 	enum SVGA3dSurfaceFormat format;
973 	int ret;
974 	struct drm_format_name_buf format_name;
975 
976 	/* 3D is only supported on HWv8 and newer hosts */
977 	if (dev_priv->active_display_unit == vmw_du_legacy)
978 		return -ENOSYS;
979 
980 	/*
981 	 * Sanity checks.
982 	 */
983 
984 	/* Surface must be marked as a scanout. */
985 	if (unlikely(!surface->scanout))
986 		return -EINVAL;
987 
988 	if (unlikely(surface->mip_levels[0] != 1 ||
989 		     surface->num_sizes != 1 ||
990 		     surface->base_size.width < mode_cmd->width ||
991 		     surface->base_size.height < mode_cmd->height ||
992 		     surface->base_size.depth != 1)) {
993 		DRM_ERROR("Incompatible surface dimensions "
994 			  "for requested mode.\n");
995 		return -EINVAL;
996 	}
997 
998 	switch (mode_cmd->pixel_format) {
999 	case DRM_FORMAT_ARGB8888:
1000 		format = SVGA3D_A8R8G8B8;
1001 		break;
1002 	case DRM_FORMAT_XRGB8888:
1003 		format = SVGA3D_X8R8G8B8;
1004 		break;
1005 	case DRM_FORMAT_RGB565:
1006 		format = SVGA3D_R5G6B5;
1007 		break;
1008 	case DRM_FORMAT_XRGB1555:
1009 		format = SVGA3D_A1R5G5B5;
1010 		break;
1011 	default:
1012 		DRM_ERROR("Invalid pixel format: %s\n",
1013 			  drm_get_format_name(mode_cmd->pixel_format, &format_name));
1014 		return -EINVAL;
1015 	}
1016 
1017 	/*
1018 	 * For DX, surface format validation is done when surface->scanout
1019 	 * is set.
1020 	 */
1021 	if (!dev_priv->has_dx && format != surface->format) {
1022 		DRM_ERROR("Invalid surface format for requested mode.\n");
1023 		return -EINVAL;
1024 	}
1025 
1026 	vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL);
1027 	if (!vfbs) {
1028 		ret = -ENOMEM;
1029 		goto out_err1;
1030 	}
1031 
1032 	drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd);
1033 	vfbs->surface = vmw_surface_reference(surface);
1034 	vfbs->base.user_handle = mode_cmd->handles[0];
1035 	vfbs->is_dmabuf_proxy = is_dmabuf_proxy;
1036 
1037 	*out = &vfbs->base;
1038 
1039 	ret = drm_framebuffer_init(dev, &vfbs->base.base,
1040 				   &vmw_framebuffer_surface_funcs);
1041 	if (ret)
1042 		goto out_err2;
1043 
1044 	return 0;
1045 
1046 out_err2:
1047 	vmw_surface_unreference(&surface);
1048 	kfree(vfbs);
1049 out_err1:
1050 	return ret;
1051 }
1052 
1053 /*
1054  * Dmabuf framebuffer code
1055  */
1056 
1057 static void vmw_framebuffer_dmabuf_destroy(struct drm_framebuffer *framebuffer)
1058 {
1059 	struct vmw_framebuffer_dmabuf *vfbd =
1060 		vmw_framebuffer_to_vfbd(framebuffer);
1061 
1062 	drm_framebuffer_cleanup(framebuffer);
1063 	vmw_dmabuf_unreference(&vfbd->buffer);
1064 	if (vfbd->base.user_obj)
1065 		ttm_base_object_unref(&vfbd->base.user_obj);
1066 
1067 	kfree(vfbd);
1068 }
1069 
1070 static int vmw_framebuffer_dmabuf_dirty(struct drm_framebuffer *framebuffer,
1071 				 struct drm_file *file_priv,
1072 				 unsigned flags, unsigned color,
1073 				 struct drm_clip_rect *clips,
1074 				 unsigned num_clips)
1075 {
1076 	struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
1077 	struct vmw_framebuffer_dmabuf *vfbd =
1078 		vmw_framebuffer_to_vfbd(framebuffer);
1079 	struct drm_clip_rect norect;
1080 	int ret, increment = 1;
1081 
1082 	drm_modeset_lock_all(dev_priv->dev);
1083 
1084 	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
1085 	if (unlikely(ret != 0)) {
1086 		drm_modeset_unlock_all(dev_priv->dev);
1087 		return ret;
1088 	}
1089 
1090 	if (!num_clips) {
1091 		num_clips = 1;
1092 		clips = &norect;
1093 		norect.x1 = norect.y1 = 0;
1094 		norect.x2 = framebuffer->width;
1095 		norect.y2 = framebuffer->height;
1096 	} else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
1097 		num_clips /= 2;
1098 		increment = 2;
1099 	}
1100 
1101 	switch (dev_priv->active_display_unit) {
1102 	case vmw_du_screen_target:
1103 		ret = vmw_kms_stdu_dma(dev_priv, NULL, &vfbd->base, NULL,
1104 				       clips, NULL, num_clips, increment,
1105 				       true, true);
1106 		break;
1107 	case vmw_du_screen_object:
1108 		ret = vmw_kms_sou_do_dmabuf_dirty(dev_priv, &vfbd->base,
1109 						  clips, NULL, num_clips,
1110 						  increment, true, NULL);
1111 		break;
1112 	case vmw_du_legacy:
1113 		ret = vmw_kms_ldu_do_dmabuf_dirty(dev_priv, &vfbd->base, 0, 0,
1114 						  clips, num_clips, increment);
1115 		break;
1116 	default:
1117 		ret = -EINVAL;
1118 		WARN_ONCE(true, "Dirty called with invalid display system.\n");
1119 		break;
1120 	}
1121 
1122 	vmw_fifo_flush(dev_priv, false);
1123 	ttm_read_unlock(&dev_priv->reservation_sem);
1124 
1125 	drm_modeset_unlock_all(dev_priv->dev);
1126 
1127 	return ret;
1128 }
1129 
1130 static const struct drm_framebuffer_funcs vmw_framebuffer_dmabuf_funcs = {
1131 	.destroy = vmw_framebuffer_dmabuf_destroy,
1132 	.dirty = vmw_framebuffer_dmabuf_dirty,
1133 };
1134 
1135 /**
1136  * Pin the dmabuffer to the start of vram.
1137  */
1138 static int vmw_framebuffer_pin(struct vmw_framebuffer *vfb)
1139 {
1140 	struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1141 	struct vmw_dma_buffer *buf;
1142 	int ret;
1143 
1144 	buf = vfb->dmabuf ?  vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1145 		vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1146 
1147 	if (!buf)
1148 		return 0;
1149 
1150 	switch (dev_priv->active_display_unit) {
1151 	case vmw_du_legacy:
1152 		vmw_overlay_pause_all(dev_priv);
1153 		ret = vmw_dmabuf_pin_in_start_of_vram(dev_priv, buf, false);
1154 		vmw_overlay_resume_all(dev_priv);
1155 		break;
1156 	case vmw_du_screen_object:
1157 	case vmw_du_screen_target:
1158 		if (vfb->dmabuf)
1159 			return vmw_dmabuf_pin_in_vram_or_gmr(dev_priv, buf,
1160 							     false);
1161 
1162 		return vmw_dmabuf_pin_in_placement(dev_priv, buf,
1163 						   &vmw_mob_placement, false);
1164 	default:
1165 		return -EINVAL;
1166 	}
1167 
1168 	return ret;
1169 }
1170 
1171 static int vmw_framebuffer_unpin(struct vmw_framebuffer *vfb)
1172 {
1173 	struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1174 	struct vmw_dma_buffer *buf;
1175 
1176 	buf = vfb->dmabuf ?  vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1177 		vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1178 
1179 	if (WARN_ON(!buf))
1180 		return 0;
1181 
1182 	return vmw_dmabuf_unpin(dev_priv, buf, false);
1183 }
1184 
1185 /**
1186  * vmw_create_dmabuf_proxy - create a proxy surface for the DMA buf
1187  *
1188  * @dev: DRM device
1189  * @mode_cmd: parameters for the new surface
1190  * @dmabuf_mob: MOB backing the DMA buf
1191  * @srf_out: newly created surface
1192  *
1193  * When the content FB is a DMA buf, we create a surface as a proxy to the
1194  * same buffer.  This way we can do a surface copy rather than a surface DMA.
1195  * This is a more efficient approach
1196  *
1197  * RETURNS:
1198  * 0 on success, error code otherwise
1199  */
1200 static int vmw_create_dmabuf_proxy(struct drm_device *dev,
1201 				   const struct drm_mode_fb_cmd2 *mode_cmd,
1202 				   struct vmw_dma_buffer *dmabuf_mob,
1203 				   struct vmw_surface **srf_out)
1204 {
1205 	uint32_t format;
1206 	struct drm_vmw_size content_base_size = {0};
1207 	struct vmw_resource *res;
1208 	unsigned int bytes_pp;
1209 	struct drm_format_name_buf format_name;
1210 	int ret;
1211 
1212 	switch (mode_cmd->pixel_format) {
1213 	case DRM_FORMAT_ARGB8888:
1214 	case DRM_FORMAT_XRGB8888:
1215 		format = SVGA3D_X8R8G8B8;
1216 		bytes_pp = 4;
1217 		break;
1218 
1219 	case DRM_FORMAT_RGB565:
1220 	case DRM_FORMAT_XRGB1555:
1221 		format = SVGA3D_R5G6B5;
1222 		bytes_pp = 2;
1223 		break;
1224 
1225 	case 8:
1226 		format = SVGA3D_P8;
1227 		bytes_pp = 1;
1228 		break;
1229 
1230 	default:
1231 		DRM_ERROR("Invalid framebuffer format %s\n",
1232 			  drm_get_format_name(mode_cmd->pixel_format, &format_name));
1233 		return -EINVAL;
1234 	}
1235 
1236 	content_base_size.width  = mode_cmd->pitches[0] / bytes_pp;
1237 	content_base_size.height = mode_cmd->height;
1238 	content_base_size.depth  = 1;
1239 
1240 	ret = vmw_surface_gb_priv_define(dev,
1241 			0, /* kernel visible only */
1242 			0, /* flags */
1243 			format,
1244 			true, /* can be a scanout buffer */
1245 			1, /* num of mip levels */
1246 			0,
1247 			0,
1248 			content_base_size,
1249 			srf_out);
1250 	if (ret) {
1251 		DRM_ERROR("Failed to allocate proxy content buffer\n");
1252 		return ret;
1253 	}
1254 
1255 	res = &(*srf_out)->res;
1256 
1257 	/* Reserve and switch the backing mob. */
1258 	mutex_lock(&res->dev_priv->cmdbuf_mutex);
1259 	(void) vmw_resource_reserve(res, false, true);
1260 	vmw_dmabuf_unreference(&res->backup);
1261 	res->backup = vmw_dmabuf_reference(dmabuf_mob);
1262 	res->backup_offset = 0;
1263 	vmw_resource_unreserve(res, false, NULL, 0);
1264 	mutex_unlock(&res->dev_priv->cmdbuf_mutex);
1265 
1266 	return 0;
1267 }
1268 
1269 
1270 
1271 static int vmw_kms_new_framebuffer_dmabuf(struct vmw_private *dev_priv,
1272 					  struct vmw_dma_buffer *dmabuf,
1273 					  struct vmw_framebuffer **out,
1274 					  const struct drm_mode_fb_cmd2
1275 					  *mode_cmd)
1276 
1277 {
1278 	struct drm_device *dev = dev_priv->dev;
1279 	struct vmw_framebuffer_dmabuf *vfbd;
1280 	unsigned int requested_size;
1281 	struct drm_format_name_buf format_name;
1282 	int ret;
1283 
1284 	requested_size = mode_cmd->height * mode_cmd->pitches[0];
1285 	if (unlikely(requested_size > dmabuf->base.num_pages * PAGE_SIZE)) {
1286 		DRM_ERROR("Screen buffer object size is too small "
1287 			  "for requested mode.\n");
1288 		return -EINVAL;
1289 	}
1290 
1291 	/* Limited framebuffer color depth support for screen objects */
1292 	if (dev_priv->active_display_unit == vmw_du_screen_object) {
1293 		switch (mode_cmd->pixel_format) {
1294 		case DRM_FORMAT_XRGB8888:
1295 		case DRM_FORMAT_ARGB8888:
1296 			break;
1297 		case DRM_FORMAT_XRGB1555:
1298 		case DRM_FORMAT_RGB565:
1299 			break;
1300 		default:
1301 			DRM_ERROR("Invalid pixel format: %s\n",
1302 				  drm_get_format_name(mode_cmd->pixel_format, &format_name));
1303 			return -EINVAL;
1304 		}
1305 	}
1306 
1307 	vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL);
1308 	if (!vfbd) {
1309 		ret = -ENOMEM;
1310 		goto out_err1;
1311 	}
1312 
1313 	drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd);
1314 	vfbd->base.dmabuf = true;
1315 	vfbd->buffer = vmw_dmabuf_reference(dmabuf);
1316 	vfbd->base.user_handle = mode_cmd->handles[0];
1317 	*out = &vfbd->base;
1318 
1319 	ret = drm_framebuffer_init(dev, &vfbd->base.base,
1320 				   &vmw_framebuffer_dmabuf_funcs);
1321 	if (ret)
1322 		goto out_err2;
1323 
1324 	return 0;
1325 
1326 out_err2:
1327 	vmw_dmabuf_unreference(&dmabuf);
1328 	kfree(vfbd);
1329 out_err1:
1330 	return ret;
1331 }
1332 
1333 
1334 /**
1335  * vmw_kms_srf_ok - check if a surface can be created
1336  *
1337  * @width: requested width
1338  * @height: requested height
1339  *
1340  * Surfaces need to be less than texture size
1341  */
1342 static bool
1343 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height)
1344 {
1345 	if (width  > dev_priv->texture_max_width ||
1346 	    height > dev_priv->texture_max_height)
1347 		return false;
1348 
1349 	return true;
1350 }
1351 
1352 /**
1353  * vmw_kms_new_framebuffer - Create a new framebuffer.
1354  *
1355  * @dev_priv: Pointer to device private struct.
1356  * @dmabuf: Pointer to dma buffer to wrap the kms framebuffer around.
1357  * Either @dmabuf or @surface must be NULL.
1358  * @surface: Pointer to a surface to wrap the kms framebuffer around.
1359  * Either @dmabuf or @surface must be NULL.
1360  * @only_2d: No presents will occur to this dma buffer based framebuffer. This
1361  * Helps the code to do some important optimizations.
1362  * @mode_cmd: Frame-buffer metadata.
1363  */
1364 struct vmw_framebuffer *
1365 vmw_kms_new_framebuffer(struct vmw_private *dev_priv,
1366 			struct vmw_dma_buffer *dmabuf,
1367 			struct vmw_surface *surface,
1368 			bool only_2d,
1369 			const struct drm_mode_fb_cmd2 *mode_cmd)
1370 {
1371 	struct vmw_framebuffer *vfb = NULL;
1372 	bool is_dmabuf_proxy = false;
1373 	int ret;
1374 
1375 	/*
1376 	 * We cannot use the SurfaceDMA command in an non-accelerated VM,
1377 	 * therefore, wrap the DMA buf in a surface so we can use the
1378 	 * SurfaceCopy command.
1379 	 */
1380 	if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)  &&
1381 	    dmabuf && only_2d &&
1382 	    mode_cmd->width > 64 &&  /* Don't create a proxy for cursor */
1383 	    dev_priv->active_display_unit == vmw_du_screen_target) {
1384 		ret = vmw_create_dmabuf_proxy(dev_priv->dev, mode_cmd,
1385 					      dmabuf, &surface);
1386 		if (ret)
1387 			return ERR_PTR(ret);
1388 
1389 		is_dmabuf_proxy = true;
1390 	}
1391 
1392 	/* Create the new framebuffer depending one what we have */
1393 	if (surface) {
1394 		ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb,
1395 						      mode_cmd,
1396 						      is_dmabuf_proxy);
1397 
1398 		/*
1399 		 * vmw_create_dmabuf_proxy() adds a reference that is no longer
1400 		 * needed
1401 		 */
1402 		if (is_dmabuf_proxy)
1403 			vmw_surface_unreference(&surface);
1404 	} else if (dmabuf) {
1405 		ret = vmw_kms_new_framebuffer_dmabuf(dev_priv, dmabuf, &vfb,
1406 						     mode_cmd);
1407 	} else {
1408 		BUG();
1409 	}
1410 
1411 	if (ret)
1412 		return ERR_PTR(ret);
1413 
1414 	vfb->pin = vmw_framebuffer_pin;
1415 	vfb->unpin = vmw_framebuffer_unpin;
1416 
1417 	return vfb;
1418 }
1419 
1420 /*
1421  * Generic Kernel modesetting functions
1422  */
1423 
1424 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev,
1425 						 struct drm_file *file_priv,
1426 						 const struct drm_mode_fb_cmd2 *mode_cmd)
1427 {
1428 	struct vmw_private *dev_priv = vmw_priv(dev);
1429 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1430 	struct vmw_framebuffer *vfb = NULL;
1431 	struct vmw_surface *surface = NULL;
1432 	struct vmw_dma_buffer *bo = NULL;
1433 	struct ttm_base_object *user_obj;
1434 	int ret;
1435 
1436 	/**
1437 	 * This code should be conditioned on Screen Objects not being used.
1438 	 * If screen objects are used, we can allocate a GMR to hold the
1439 	 * requested framebuffer.
1440 	 */
1441 
1442 	if (!vmw_kms_validate_mode_vram(dev_priv,
1443 					mode_cmd->pitches[0],
1444 					mode_cmd->height)) {
1445 		DRM_ERROR("Requested mode exceed bounding box limit.\n");
1446 		return ERR_PTR(-ENOMEM);
1447 	}
1448 
1449 	/*
1450 	 * Take a reference on the user object of the resource
1451 	 * backing the kms fb. This ensures that user-space handle
1452 	 * lookups on that resource will always work as long as
1453 	 * it's registered with a kms framebuffer. This is important,
1454 	 * since vmw_execbuf_process identifies resources in the
1455 	 * command stream using user-space handles.
1456 	 */
1457 
1458 	user_obj = ttm_base_object_lookup(tfile, mode_cmd->handles[0]);
1459 	if (unlikely(user_obj == NULL)) {
1460 		DRM_ERROR("Could not locate requested kms frame buffer.\n");
1461 		return ERR_PTR(-ENOENT);
1462 	}
1463 
1464 	/**
1465 	 * End conditioned code.
1466 	 */
1467 
1468 	/* returns either a dmabuf or surface */
1469 	ret = vmw_user_lookup_handle(dev_priv, tfile,
1470 				     mode_cmd->handles[0],
1471 				     &surface, &bo);
1472 	if (ret)
1473 		goto err_out;
1474 
1475 
1476 	if (!bo &&
1477 	    !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) {
1478 		DRM_ERROR("Surface size cannot exceed %dx%d",
1479 			dev_priv->texture_max_width,
1480 			dev_priv->texture_max_height);
1481 		goto err_out;
1482 	}
1483 
1484 
1485 	vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface,
1486 				      !(dev_priv->capabilities & SVGA_CAP_3D),
1487 				      mode_cmd);
1488 	if (IS_ERR(vfb)) {
1489 		ret = PTR_ERR(vfb);
1490 		goto err_out;
1491  	}
1492 
1493 err_out:
1494 	/* vmw_user_lookup_handle takes one ref so does new_fb */
1495 	if (bo)
1496 		vmw_dmabuf_unreference(&bo);
1497 	if (surface)
1498 		vmw_surface_unreference(&surface);
1499 
1500 	if (ret) {
1501 		DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret);
1502 		ttm_base_object_unref(&user_obj);
1503 		return ERR_PTR(ret);
1504 	} else
1505 		vfb->user_obj = user_obj;
1506 
1507 	return &vfb->base;
1508 }
1509 
1510 
1511 
1512 /**
1513  * vmw_kms_atomic_check_modeset- validate state object for modeset changes
1514  *
1515  * @dev: DRM device
1516  * @state: the driver state object
1517  *
1518  * This is a simple wrapper around drm_atomic_helper_check_modeset() for
1519  * us to assign a value to mode->crtc_clock so that
1520  * drm_calc_timestamping_constants() won't throw an error message
1521  *
1522  * RETURNS
1523  * Zero for success or -errno
1524  */
1525 static int
1526 vmw_kms_atomic_check_modeset(struct drm_device *dev,
1527 			     struct drm_atomic_state *state)
1528 {
1529 	struct drm_crtc_state *crtc_state;
1530 	struct drm_crtc *crtc;
1531 	struct vmw_private *dev_priv = vmw_priv(dev);
1532 	int i;
1533 
1534 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
1535 		unsigned long requested_bb_mem = 0;
1536 
1537 		if (dev_priv->active_display_unit == vmw_du_screen_target) {
1538 			if (crtc->primary->fb) {
1539 				int cpp = crtc->primary->fb->pitches[0] /
1540 					  crtc->primary->fb->width;
1541 
1542 				requested_bb_mem += crtc->mode.hdisplay * cpp *
1543 						    crtc->mode.vdisplay;
1544 			}
1545 
1546 			if (requested_bb_mem > dev_priv->prim_bb_mem)
1547 				return -EINVAL;
1548 		}
1549 	}
1550 
1551 	return drm_atomic_helper_check(dev, state);
1552 }
1553 
1554 
1555 /**
1556  * vmw_kms_atomic_commit - Perform an atomic state commit
1557  *
1558  * @dev: DRM device
1559  * @state: the driver state object
1560  * @nonblock: Whether nonblocking behaviour is requested
1561  *
1562  * This is a simple wrapper around drm_atomic_helper_commit() for
1563  * us to clear the nonblocking value.
1564  *
1565  * Nonblocking commits currently cause synchronization issues
1566  * for vmwgfx.
1567  *
1568  * RETURNS
1569  * Zero for success or negative error code on failure.
1570  */
1571 int vmw_kms_atomic_commit(struct drm_device *dev,
1572 			  struct drm_atomic_state *state,
1573 			  bool nonblock)
1574 {
1575 	return drm_atomic_helper_commit(dev, state, false);
1576 }
1577 
1578 
1579 static const struct drm_mode_config_funcs vmw_kms_funcs = {
1580 	.fb_create = vmw_kms_fb_create,
1581 	.atomic_check = vmw_kms_atomic_check_modeset,
1582 	.atomic_commit = vmw_kms_atomic_commit,
1583 };
1584 
1585 static int vmw_kms_generic_present(struct vmw_private *dev_priv,
1586 				   struct drm_file *file_priv,
1587 				   struct vmw_framebuffer *vfb,
1588 				   struct vmw_surface *surface,
1589 				   uint32_t sid,
1590 				   int32_t destX, int32_t destY,
1591 				   struct drm_vmw_rect *clips,
1592 				   uint32_t num_clips)
1593 {
1594 	return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips,
1595 					    &surface->res, destX, destY,
1596 					    num_clips, 1, NULL);
1597 }
1598 
1599 
1600 int vmw_kms_present(struct vmw_private *dev_priv,
1601 		    struct drm_file *file_priv,
1602 		    struct vmw_framebuffer *vfb,
1603 		    struct vmw_surface *surface,
1604 		    uint32_t sid,
1605 		    int32_t destX, int32_t destY,
1606 		    struct drm_vmw_rect *clips,
1607 		    uint32_t num_clips)
1608 {
1609 	int ret;
1610 
1611 	switch (dev_priv->active_display_unit) {
1612 	case vmw_du_screen_target:
1613 		ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips,
1614 						 &surface->res, destX, destY,
1615 						 num_clips, 1, NULL);
1616 		break;
1617 	case vmw_du_screen_object:
1618 		ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface,
1619 					      sid, destX, destY, clips,
1620 					      num_clips);
1621 		break;
1622 	default:
1623 		WARN_ONCE(true,
1624 			  "Present called with invalid display system.\n");
1625 		ret = -ENOSYS;
1626 		break;
1627 	}
1628 	if (ret)
1629 		return ret;
1630 
1631 	vmw_fifo_flush(dev_priv, false);
1632 
1633 	return 0;
1634 }
1635 
1636 static void
1637 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv)
1638 {
1639 	if (dev_priv->hotplug_mode_update_property)
1640 		return;
1641 
1642 	dev_priv->hotplug_mode_update_property =
1643 		drm_property_create_range(dev_priv->dev,
1644 					  DRM_MODE_PROP_IMMUTABLE,
1645 					  "hotplug_mode_update", 0, 1);
1646 
1647 	if (!dev_priv->hotplug_mode_update_property)
1648 		return;
1649 
1650 }
1651 
1652 int vmw_kms_init(struct vmw_private *dev_priv)
1653 {
1654 	struct drm_device *dev = dev_priv->dev;
1655 	int ret;
1656 
1657 	drm_mode_config_init(dev);
1658 	dev->mode_config.funcs = &vmw_kms_funcs;
1659 	dev->mode_config.min_width = 1;
1660 	dev->mode_config.min_height = 1;
1661 	dev->mode_config.max_width = dev_priv->texture_max_width;
1662 	dev->mode_config.max_height = dev_priv->texture_max_height;
1663 
1664 	drm_mode_create_suggested_offset_properties(dev);
1665 	vmw_kms_create_hotplug_mode_update_property(dev_priv);
1666 
1667 	ret = vmw_kms_stdu_init_display(dev_priv);
1668 	if (ret) {
1669 		ret = vmw_kms_sou_init_display(dev_priv);
1670 		if (ret) /* Fallback */
1671 			ret = vmw_kms_ldu_init_display(dev_priv);
1672 	}
1673 
1674 	return ret;
1675 }
1676 
1677 int vmw_kms_close(struct vmw_private *dev_priv)
1678 {
1679 	int ret = 0;
1680 
1681 	/*
1682 	 * Docs says we should take the lock before calling this function
1683 	 * but since it destroys encoders and our destructor calls
1684 	 * drm_encoder_cleanup which takes the lock we deadlock.
1685 	 */
1686 	drm_mode_config_cleanup(dev_priv->dev);
1687 	if (dev_priv->active_display_unit == vmw_du_legacy)
1688 		ret = vmw_kms_ldu_close_display(dev_priv);
1689 
1690 	return ret;
1691 }
1692 
1693 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data,
1694 				struct drm_file *file_priv)
1695 {
1696 	struct drm_vmw_cursor_bypass_arg *arg = data;
1697 	struct vmw_display_unit *du;
1698 	struct drm_crtc *crtc;
1699 	int ret = 0;
1700 
1701 
1702 	mutex_lock(&dev->mode_config.mutex);
1703 	if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) {
1704 
1705 		list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1706 			du = vmw_crtc_to_du(crtc);
1707 			du->hotspot_x = arg->xhot;
1708 			du->hotspot_y = arg->yhot;
1709 		}
1710 
1711 		mutex_unlock(&dev->mode_config.mutex);
1712 		return 0;
1713 	}
1714 
1715 	crtc = drm_crtc_find(dev, file_priv, arg->crtc_id);
1716 	if (!crtc) {
1717 		ret = -ENOENT;
1718 		goto out;
1719 	}
1720 
1721 	du = vmw_crtc_to_du(crtc);
1722 
1723 	du->hotspot_x = arg->xhot;
1724 	du->hotspot_y = arg->yhot;
1725 
1726 out:
1727 	mutex_unlock(&dev->mode_config.mutex);
1728 
1729 	return ret;
1730 }
1731 
1732 int vmw_kms_write_svga(struct vmw_private *vmw_priv,
1733 			unsigned width, unsigned height, unsigned pitch,
1734 			unsigned bpp, unsigned depth)
1735 {
1736 	if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1737 		vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch);
1738 	else if (vmw_fifo_have_pitchlock(vmw_priv))
1739 		vmw_mmio_write(pitch, vmw_priv->mmio_virt +
1740 			       SVGA_FIFO_PITCHLOCK);
1741 	vmw_write(vmw_priv, SVGA_REG_WIDTH, width);
1742 	vmw_write(vmw_priv, SVGA_REG_HEIGHT, height);
1743 	vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp);
1744 
1745 	if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) {
1746 		DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n",
1747 			  depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH));
1748 		return -EINVAL;
1749 	}
1750 
1751 	return 0;
1752 }
1753 
1754 int vmw_kms_save_vga(struct vmw_private *vmw_priv)
1755 {
1756 	struct vmw_vga_topology_state *save;
1757 	uint32_t i;
1758 
1759 	vmw_priv->vga_width = vmw_read(vmw_priv, SVGA_REG_WIDTH);
1760 	vmw_priv->vga_height = vmw_read(vmw_priv, SVGA_REG_HEIGHT);
1761 	vmw_priv->vga_bpp = vmw_read(vmw_priv, SVGA_REG_BITS_PER_PIXEL);
1762 	if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1763 		vmw_priv->vga_pitchlock =
1764 		  vmw_read(vmw_priv, SVGA_REG_PITCHLOCK);
1765 	else if (vmw_fifo_have_pitchlock(vmw_priv))
1766 		vmw_priv->vga_pitchlock = vmw_mmio_read(vmw_priv->mmio_virt +
1767 							SVGA_FIFO_PITCHLOCK);
1768 
1769 	if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY))
1770 		return 0;
1771 
1772 	vmw_priv->num_displays = vmw_read(vmw_priv,
1773 					  SVGA_REG_NUM_GUEST_DISPLAYS);
1774 
1775 	if (vmw_priv->num_displays == 0)
1776 		vmw_priv->num_displays = 1;
1777 
1778 	for (i = 0; i < vmw_priv->num_displays; ++i) {
1779 		save = &vmw_priv->vga_save[i];
1780 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i);
1781 		save->primary = vmw_read(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY);
1782 		save->pos_x = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_X);
1783 		save->pos_y = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y);
1784 		save->width = vmw_read(vmw_priv, SVGA_REG_DISPLAY_WIDTH);
1785 		save->height = vmw_read(vmw_priv, SVGA_REG_DISPLAY_HEIGHT);
1786 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID);
1787 		if (i == 0 && vmw_priv->num_displays == 1 &&
1788 		    save->width == 0 && save->height == 0) {
1789 
1790 			/*
1791 			 * It should be fairly safe to assume that these
1792 			 * values are uninitialized.
1793 			 */
1794 
1795 			save->width = vmw_priv->vga_width - save->pos_x;
1796 			save->height = vmw_priv->vga_height - save->pos_y;
1797 		}
1798 	}
1799 
1800 	return 0;
1801 }
1802 
1803 int vmw_kms_restore_vga(struct vmw_private *vmw_priv)
1804 {
1805 	struct vmw_vga_topology_state *save;
1806 	uint32_t i;
1807 
1808 	vmw_write(vmw_priv, SVGA_REG_WIDTH, vmw_priv->vga_width);
1809 	vmw_write(vmw_priv, SVGA_REG_HEIGHT, vmw_priv->vga_height);
1810 	vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, vmw_priv->vga_bpp);
1811 	if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1812 		vmw_write(vmw_priv, SVGA_REG_PITCHLOCK,
1813 			  vmw_priv->vga_pitchlock);
1814 	else if (vmw_fifo_have_pitchlock(vmw_priv))
1815 		vmw_mmio_write(vmw_priv->vga_pitchlock,
1816 			       vmw_priv->mmio_virt + SVGA_FIFO_PITCHLOCK);
1817 
1818 	if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY))
1819 		return 0;
1820 
1821 	for (i = 0; i < vmw_priv->num_displays; ++i) {
1822 		save = &vmw_priv->vga_save[i];
1823 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i);
1824 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY, save->primary);
1825 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_X, save->pos_x);
1826 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y, save->pos_y);
1827 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_WIDTH, save->width);
1828 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_HEIGHT, save->height);
1829 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID);
1830 	}
1831 
1832 	return 0;
1833 }
1834 
1835 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv,
1836 				uint32_t pitch,
1837 				uint32_t height)
1838 {
1839 	return ((u64) pitch * (u64) height) < (u64)
1840 		((dev_priv->active_display_unit == vmw_du_screen_target) ?
1841 		 dev_priv->prim_bb_mem : dev_priv->vram_size);
1842 }
1843 
1844 
1845 /**
1846  * Function called by DRM code called with vbl_lock held.
1847  */
1848 u32 vmw_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
1849 {
1850 	return 0;
1851 }
1852 
1853 /**
1854  * Function called by DRM code called with vbl_lock held.
1855  */
1856 int vmw_enable_vblank(struct drm_device *dev, unsigned int pipe)
1857 {
1858 	return -ENOSYS;
1859 }
1860 
1861 /**
1862  * Function called by DRM code called with vbl_lock held.
1863  */
1864 void vmw_disable_vblank(struct drm_device *dev, unsigned int pipe)
1865 {
1866 }
1867 
1868 
1869 /*
1870  * Small shared kms functions.
1871  */
1872 
1873 static int vmw_du_update_layout(struct vmw_private *dev_priv, unsigned num,
1874 			 struct drm_vmw_rect *rects)
1875 {
1876 	struct drm_device *dev = dev_priv->dev;
1877 	struct vmw_display_unit *du;
1878 	struct drm_connector *con;
1879 
1880 	mutex_lock(&dev->mode_config.mutex);
1881 
1882 #if 0
1883 	{
1884 		unsigned int i;
1885 
1886 		DRM_INFO("%s: new layout ", __func__);
1887 		for (i = 0; i < num; i++)
1888 			DRM_INFO("(%i, %i %ux%u) ", rects[i].x, rects[i].y,
1889 				 rects[i].w, rects[i].h);
1890 		DRM_INFO("\n");
1891 	}
1892 #endif
1893 
1894 	list_for_each_entry(con, &dev->mode_config.connector_list, head) {
1895 		du = vmw_connector_to_du(con);
1896 		if (num > du->unit) {
1897 			du->pref_width = rects[du->unit].w;
1898 			du->pref_height = rects[du->unit].h;
1899 			du->pref_active = true;
1900 			du->gui_x = rects[du->unit].x;
1901 			du->gui_y = rects[du->unit].y;
1902 			drm_object_property_set_value
1903 			  (&con->base, dev->mode_config.suggested_x_property,
1904 			   du->gui_x);
1905 			drm_object_property_set_value
1906 			  (&con->base, dev->mode_config.suggested_y_property,
1907 			   du->gui_y);
1908 		} else {
1909 			du->pref_width = 800;
1910 			du->pref_height = 600;
1911 			du->pref_active = false;
1912 			drm_object_property_set_value
1913 			  (&con->base, dev->mode_config.suggested_x_property,
1914 			   0);
1915 			drm_object_property_set_value
1916 			  (&con->base, dev->mode_config.suggested_y_property,
1917 			   0);
1918 		}
1919 		con->status = vmw_du_connector_detect(con, true);
1920 	}
1921 
1922 	mutex_unlock(&dev->mode_config.mutex);
1923 	drm_sysfs_hotplug_event(dev);
1924 
1925 	return 0;
1926 }
1927 
1928 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc,
1929 			  u16 *r, u16 *g, u16 *b,
1930 			  uint32_t size,
1931 			  struct drm_modeset_acquire_ctx *ctx)
1932 {
1933 	struct vmw_private *dev_priv = vmw_priv(crtc->dev);
1934 	int i;
1935 
1936 	for (i = 0; i < size; i++) {
1937 		DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i,
1938 			  r[i], g[i], b[i]);
1939 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8);
1940 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8);
1941 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8);
1942 	}
1943 
1944 	return 0;
1945 }
1946 
1947 int vmw_du_connector_dpms(struct drm_connector *connector, int mode)
1948 {
1949 	return 0;
1950 }
1951 
1952 enum drm_connector_status
1953 vmw_du_connector_detect(struct drm_connector *connector, bool force)
1954 {
1955 	uint32_t num_displays;
1956 	struct drm_device *dev = connector->dev;
1957 	struct vmw_private *dev_priv = vmw_priv(dev);
1958 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
1959 
1960 	num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS);
1961 
1962 	return ((vmw_connector_to_du(connector)->unit < num_displays &&
1963 		 du->pref_active) ?
1964 		connector_status_connected : connector_status_disconnected);
1965 }
1966 
1967 static struct drm_display_mode vmw_kms_connector_builtin[] = {
1968 	/* 640x480@60Hz */
1969 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
1970 		   752, 800, 0, 480, 489, 492, 525, 0,
1971 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1972 	/* 800x600@60Hz */
1973 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
1974 		   968, 1056, 0, 600, 601, 605, 628, 0,
1975 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1976 	/* 1024x768@60Hz */
1977 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
1978 		   1184, 1344, 0, 768, 771, 777, 806, 0,
1979 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1980 	/* 1152x864@75Hz */
1981 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
1982 		   1344, 1600, 0, 864, 865, 868, 900, 0,
1983 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1984 	/* 1280x768@60Hz */
1985 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
1986 		   1472, 1664, 0, 768, 771, 778, 798, 0,
1987 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1988 	/* 1280x800@60Hz */
1989 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
1990 		   1480, 1680, 0, 800, 803, 809, 831, 0,
1991 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1992 	/* 1280x960@60Hz */
1993 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
1994 		   1488, 1800, 0, 960, 961, 964, 1000, 0,
1995 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1996 	/* 1280x1024@60Hz */
1997 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
1998 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
1999 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2000 	/* 1360x768@60Hz */
2001 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
2002 		   1536, 1792, 0, 768, 771, 777, 795, 0,
2003 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2004 	/* 1440x1050@60Hz */
2005 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
2006 		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
2007 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2008 	/* 1440x900@60Hz */
2009 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
2010 		   1672, 1904, 0, 900, 903, 909, 934, 0,
2011 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2012 	/* 1600x1200@60Hz */
2013 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
2014 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
2015 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2016 	/* 1680x1050@60Hz */
2017 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
2018 		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
2019 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2020 	/* 1792x1344@60Hz */
2021 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
2022 		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
2023 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2024 	/* 1853x1392@60Hz */
2025 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
2026 		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
2027 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2028 	/* 1920x1200@60Hz */
2029 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
2030 		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
2031 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2032 	/* 1920x1440@60Hz */
2033 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
2034 		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
2035 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2036 	/* 2560x1600@60Hz */
2037 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
2038 		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
2039 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2040 	/* Terminate */
2041 	{ DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) },
2042 };
2043 
2044 /**
2045  * vmw_guess_mode_timing - Provide fake timings for a
2046  * 60Hz vrefresh mode.
2047  *
2048  * @mode - Pointer to a struct drm_display_mode with hdisplay and vdisplay
2049  * members filled in.
2050  */
2051 void vmw_guess_mode_timing(struct drm_display_mode *mode)
2052 {
2053 	mode->hsync_start = mode->hdisplay + 50;
2054 	mode->hsync_end = mode->hsync_start + 50;
2055 	mode->htotal = mode->hsync_end + 50;
2056 
2057 	mode->vsync_start = mode->vdisplay + 50;
2058 	mode->vsync_end = mode->vsync_start + 50;
2059 	mode->vtotal = mode->vsync_end + 50;
2060 
2061 	mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6;
2062 	mode->vrefresh = drm_mode_vrefresh(mode);
2063 }
2064 
2065 
2066 int vmw_du_connector_fill_modes(struct drm_connector *connector,
2067 				uint32_t max_width, uint32_t max_height)
2068 {
2069 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2070 	struct drm_device *dev = connector->dev;
2071 	struct vmw_private *dev_priv = vmw_priv(dev);
2072 	struct drm_display_mode *mode = NULL;
2073 	struct drm_display_mode *bmode;
2074 	struct drm_display_mode prefmode = { DRM_MODE("preferred",
2075 		DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED,
2076 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2077 		DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC)
2078 	};
2079 	int i;
2080 	u32 assumed_bpp = 4;
2081 
2082 	if (dev_priv->assume_16bpp)
2083 		assumed_bpp = 2;
2084 
2085 	if (dev_priv->active_display_unit == vmw_du_screen_target) {
2086 		max_width  = min(max_width,  dev_priv->stdu_max_width);
2087 		max_width  = min(max_width,  dev_priv->texture_max_width);
2088 
2089 		max_height = min(max_height, dev_priv->stdu_max_height);
2090 		max_height = min(max_height, dev_priv->texture_max_height);
2091 	}
2092 
2093 	/* Add preferred mode */
2094 	mode = drm_mode_duplicate(dev, &prefmode);
2095 	if (!mode)
2096 		return 0;
2097 	mode->hdisplay = du->pref_width;
2098 	mode->vdisplay = du->pref_height;
2099 	vmw_guess_mode_timing(mode);
2100 
2101 	if (vmw_kms_validate_mode_vram(dev_priv,
2102 					mode->hdisplay * assumed_bpp,
2103 					mode->vdisplay)) {
2104 		drm_mode_probed_add(connector, mode);
2105 	} else {
2106 		drm_mode_destroy(dev, mode);
2107 		mode = NULL;
2108 	}
2109 
2110 	if (du->pref_mode) {
2111 		list_del_init(&du->pref_mode->head);
2112 		drm_mode_destroy(dev, du->pref_mode);
2113 	}
2114 
2115 	/* mode might be null here, this is intended */
2116 	du->pref_mode = mode;
2117 
2118 	for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) {
2119 		bmode = &vmw_kms_connector_builtin[i];
2120 		if (bmode->hdisplay > max_width ||
2121 		    bmode->vdisplay > max_height)
2122 			continue;
2123 
2124 		if (!vmw_kms_validate_mode_vram(dev_priv,
2125 						bmode->hdisplay * assumed_bpp,
2126 						bmode->vdisplay))
2127 			continue;
2128 
2129 		mode = drm_mode_duplicate(dev, bmode);
2130 		if (!mode)
2131 			return 0;
2132 		mode->vrefresh = drm_mode_vrefresh(mode);
2133 
2134 		drm_mode_probed_add(connector, mode);
2135 	}
2136 
2137 	drm_mode_connector_list_update(connector);
2138 	/* Move the prefered mode first, help apps pick the right mode. */
2139 	drm_mode_sort(&connector->modes);
2140 
2141 	return 1;
2142 }
2143 
2144 int vmw_du_connector_set_property(struct drm_connector *connector,
2145 				  struct drm_property *property,
2146 				  uint64_t val)
2147 {
2148 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2149 	struct vmw_private *dev_priv = vmw_priv(connector->dev);
2150 
2151 	if (property == dev_priv->implicit_placement_property)
2152 		du->is_implicit = val;
2153 
2154 	return 0;
2155 }
2156 
2157 
2158 
2159 /**
2160  * vmw_du_connector_atomic_set_property - Atomic version of get property
2161  *
2162  * @crtc - crtc the property is associated with
2163  *
2164  * Returns:
2165  * Zero on success, negative errno on failure.
2166  */
2167 int
2168 vmw_du_connector_atomic_set_property(struct drm_connector *connector,
2169 				     struct drm_connector_state *state,
2170 				     struct drm_property *property,
2171 				     uint64_t val)
2172 {
2173 	struct vmw_private *dev_priv = vmw_priv(connector->dev);
2174 	struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state);
2175 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2176 
2177 
2178 	if (property == dev_priv->implicit_placement_property) {
2179 		vcs->is_implicit = val;
2180 
2181 		/*
2182 		 * We should really be doing a drm_atomic_commit() to
2183 		 * commit the new state, but since this doesn't cause
2184 		 * an immedate state change, this is probably ok
2185 		 */
2186 		du->is_implicit = vcs->is_implicit;
2187 	} else {
2188 		return -EINVAL;
2189 	}
2190 
2191 	return 0;
2192 }
2193 
2194 
2195 /**
2196  * vmw_du_connector_atomic_get_property - Atomic version of get property
2197  *
2198  * @connector - connector the property is associated with
2199  *
2200  * Returns:
2201  * Zero on success, negative errno on failure.
2202  */
2203 int
2204 vmw_du_connector_atomic_get_property(struct drm_connector *connector,
2205 				     const struct drm_connector_state *state,
2206 				     struct drm_property *property,
2207 				     uint64_t *val)
2208 {
2209 	struct vmw_private *dev_priv = vmw_priv(connector->dev);
2210 	struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state);
2211 
2212 	if (property == dev_priv->implicit_placement_property)
2213 		*val = vcs->is_implicit;
2214 	else {
2215 		DRM_ERROR("Invalid Property %s\n", property->name);
2216 		return -EINVAL;
2217 	}
2218 
2219 	return 0;
2220 }
2221 
2222 
2223 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data,
2224 				struct drm_file *file_priv)
2225 {
2226 	struct vmw_private *dev_priv = vmw_priv(dev);
2227 	struct drm_vmw_update_layout_arg *arg =
2228 		(struct drm_vmw_update_layout_arg *)data;
2229 	void __user *user_rects;
2230 	struct drm_vmw_rect *rects;
2231 	unsigned rects_size;
2232 	int ret;
2233 	int i;
2234 	u64 total_pixels = 0;
2235 	struct drm_mode_config *mode_config = &dev->mode_config;
2236 	struct drm_vmw_rect bounding_box = {0};
2237 
2238 	if (!arg->num_outputs) {
2239 		struct drm_vmw_rect def_rect = {0, 0, 800, 600};
2240 		vmw_du_update_layout(dev_priv, 1, &def_rect);
2241 		return 0;
2242 	}
2243 
2244 	rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect);
2245 	rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect),
2246 			GFP_KERNEL);
2247 	if (unlikely(!rects))
2248 		return -ENOMEM;
2249 
2250 	user_rects = (void __user *)(unsigned long)arg->rects;
2251 	ret = copy_from_user(rects, user_rects, rects_size);
2252 	if (unlikely(ret != 0)) {
2253 		DRM_ERROR("Failed to get rects.\n");
2254 		ret = -EFAULT;
2255 		goto out_free;
2256 	}
2257 
2258 	for (i = 0; i < arg->num_outputs; ++i) {
2259 		if (rects[i].x < 0 ||
2260 		    rects[i].y < 0 ||
2261 		    rects[i].x + rects[i].w > mode_config->max_width ||
2262 		    rects[i].y + rects[i].h > mode_config->max_height) {
2263 			DRM_ERROR("Invalid GUI layout.\n");
2264 			ret = -EINVAL;
2265 			goto out_free;
2266 		}
2267 
2268 		/*
2269 		 * bounding_box.w and bunding_box.h are used as
2270 		 * lower-right coordinates
2271 		 */
2272 		if (rects[i].x + rects[i].w > bounding_box.w)
2273 			bounding_box.w = rects[i].x + rects[i].w;
2274 
2275 		if (rects[i].y + rects[i].h > bounding_box.h)
2276 			bounding_box.h = rects[i].y + rects[i].h;
2277 
2278 		total_pixels += (u64) rects[i].w * (u64) rects[i].h;
2279 	}
2280 
2281 	if (dev_priv->active_display_unit == vmw_du_screen_target) {
2282 		/*
2283 		 * For Screen Targets, the limits for a toplogy are:
2284 		 *	1. Bounding box (assuming 32bpp) must be < prim_bb_mem
2285 		 *      2. Total pixels (assuming 32bpp) must be < prim_bb_mem
2286 		 */
2287 		u64 bb_mem    = (u64) bounding_box.w * bounding_box.h * 4;
2288 		u64 pixel_mem = total_pixels * 4;
2289 
2290 		if (bb_mem > dev_priv->prim_bb_mem) {
2291 			DRM_ERROR("Topology is beyond supported limits.\n");
2292 			ret = -EINVAL;
2293 			goto out_free;
2294 		}
2295 
2296 		if (pixel_mem > dev_priv->prim_bb_mem) {
2297 			DRM_ERROR("Combined output size too large\n");
2298 			ret = -EINVAL;
2299 			goto out_free;
2300 		}
2301 	}
2302 
2303 	vmw_du_update_layout(dev_priv, arg->num_outputs, rects);
2304 
2305 out_free:
2306 	kfree(rects);
2307 	return ret;
2308 }
2309 
2310 /**
2311  * vmw_kms_helper_dirty - Helper to build commands and perform actions based
2312  * on a set of cliprects and a set of display units.
2313  *
2314  * @dev_priv: Pointer to a device private structure.
2315  * @framebuffer: Pointer to the framebuffer on which to perform the actions.
2316  * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL.
2317  * Cliprects are given in framebuffer coordinates.
2318  * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must
2319  * be NULL. Cliprects are given in source coordinates.
2320  * @dest_x: X coordinate offset for the crtc / destination clip rects.
2321  * @dest_y: Y coordinate offset for the crtc / destination clip rects.
2322  * @num_clips: Number of cliprects in the @clips or @vclips array.
2323  * @increment: Integer with which to increment the clip counter when looping.
2324  * Used to skip a predetermined number of clip rects.
2325  * @dirty: Closure structure. See the description of struct vmw_kms_dirty.
2326  */
2327 int vmw_kms_helper_dirty(struct vmw_private *dev_priv,
2328 			 struct vmw_framebuffer *framebuffer,
2329 			 const struct drm_clip_rect *clips,
2330 			 const struct drm_vmw_rect *vclips,
2331 			 s32 dest_x, s32 dest_y,
2332 			 int num_clips,
2333 			 int increment,
2334 			 struct vmw_kms_dirty *dirty)
2335 {
2336 	struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS];
2337 	struct drm_crtc *crtc;
2338 	u32 num_units = 0;
2339 	u32 i, k;
2340 
2341 	dirty->dev_priv = dev_priv;
2342 
2343 	list_for_each_entry(crtc, &dev_priv->dev->mode_config.crtc_list, head) {
2344 		if (crtc->primary->fb != &framebuffer->base)
2345 			continue;
2346 		units[num_units++] = vmw_crtc_to_du(crtc);
2347 	}
2348 
2349 	for (k = 0; k < num_units; k++) {
2350 		struct vmw_display_unit *unit = units[k];
2351 		s32 crtc_x = unit->crtc.x;
2352 		s32 crtc_y = unit->crtc.y;
2353 		s32 crtc_width = unit->crtc.mode.hdisplay;
2354 		s32 crtc_height = unit->crtc.mode.vdisplay;
2355 		const struct drm_clip_rect *clips_ptr = clips;
2356 		const struct drm_vmw_rect *vclips_ptr = vclips;
2357 
2358 		dirty->unit = unit;
2359 		if (dirty->fifo_reserve_size > 0) {
2360 			dirty->cmd = vmw_fifo_reserve(dev_priv,
2361 						      dirty->fifo_reserve_size);
2362 			if (!dirty->cmd) {
2363 				DRM_ERROR("Couldn't reserve fifo space "
2364 					  "for dirty blits.\n");
2365 				return -ENOMEM;
2366 			}
2367 			memset(dirty->cmd, 0, dirty->fifo_reserve_size);
2368 		}
2369 		dirty->num_hits = 0;
2370 		for (i = 0; i < num_clips; i++, clips_ptr += increment,
2371 		       vclips_ptr += increment) {
2372 			s32 clip_left;
2373 			s32 clip_top;
2374 
2375 			/*
2376 			 * Select clip array type. Note that integer type
2377 			 * in @clips is unsigned short, whereas in @vclips
2378 			 * it's 32-bit.
2379 			 */
2380 			if (clips) {
2381 				dirty->fb_x = (s32) clips_ptr->x1;
2382 				dirty->fb_y = (s32) clips_ptr->y1;
2383 				dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x -
2384 					crtc_x;
2385 				dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y -
2386 					crtc_y;
2387 			} else {
2388 				dirty->fb_x = vclips_ptr->x;
2389 				dirty->fb_y = vclips_ptr->y;
2390 				dirty->unit_x2 = dirty->fb_x + vclips_ptr->w +
2391 					dest_x - crtc_x;
2392 				dirty->unit_y2 = dirty->fb_y + vclips_ptr->h +
2393 					dest_y - crtc_y;
2394 			}
2395 
2396 			dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x;
2397 			dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y;
2398 
2399 			/* Skip this clip if it's outside the crtc region */
2400 			if (dirty->unit_x1 >= crtc_width ||
2401 			    dirty->unit_y1 >= crtc_height ||
2402 			    dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0)
2403 				continue;
2404 
2405 			/* Clip right and bottom to crtc limits */
2406 			dirty->unit_x2 = min_t(s32, dirty->unit_x2,
2407 					       crtc_width);
2408 			dirty->unit_y2 = min_t(s32, dirty->unit_y2,
2409 					       crtc_height);
2410 
2411 			/* Clip left and top to crtc limits */
2412 			clip_left = min_t(s32, dirty->unit_x1, 0);
2413 			clip_top = min_t(s32, dirty->unit_y1, 0);
2414 			dirty->unit_x1 -= clip_left;
2415 			dirty->unit_y1 -= clip_top;
2416 			dirty->fb_x -= clip_left;
2417 			dirty->fb_y -= clip_top;
2418 
2419 			dirty->clip(dirty);
2420 		}
2421 
2422 		dirty->fifo_commit(dirty);
2423 	}
2424 
2425 	return 0;
2426 }
2427 
2428 /**
2429  * vmw_kms_helper_buffer_prepare - Reserve and validate a buffer object before
2430  * command submission.
2431  *
2432  * @dev_priv. Pointer to a device private structure.
2433  * @buf: The buffer object
2434  * @interruptible: Whether to perform waits as interruptible.
2435  * @validate_as_mob: Whether the buffer should be validated as a MOB. If false,
2436  * The buffer will be validated as a GMR. Already pinned buffers will not be
2437  * validated.
2438  *
2439  * Returns 0 on success, negative error code on failure, -ERESTARTSYS if
2440  * interrupted by a signal.
2441  */
2442 int vmw_kms_helper_buffer_prepare(struct vmw_private *dev_priv,
2443 				  struct vmw_dma_buffer *buf,
2444 				  bool interruptible,
2445 				  bool validate_as_mob)
2446 {
2447 	struct ttm_buffer_object *bo = &buf->base;
2448 	int ret;
2449 
2450 	ttm_bo_reserve(bo, false, false, NULL);
2451 	ret = vmw_validate_single_buffer(dev_priv, bo, interruptible,
2452 					 validate_as_mob);
2453 	if (ret)
2454 		ttm_bo_unreserve(bo);
2455 
2456 	return ret;
2457 }
2458 
2459 /**
2460  * vmw_kms_helper_buffer_revert - Undo the actions of
2461  * vmw_kms_helper_buffer_prepare.
2462  *
2463  * @res: Pointer to the buffer object.
2464  *
2465  * Helper to be used if an error forces the caller to undo the actions of
2466  * vmw_kms_helper_buffer_prepare.
2467  */
2468 void vmw_kms_helper_buffer_revert(struct vmw_dma_buffer *buf)
2469 {
2470 	if (buf)
2471 		ttm_bo_unreserve(&buf->base);
2472 }
2473 
2474 /**
2475  * vmw_kms_helper_buffer_finish - Unreserve and fence a buffer object after
2476  * kms command submission.
2477  *
2478  * @dev_priv: Pointer to a device private structure.
2479  * @file_priv: Pointer to a struct drm_file representing the caller's
2480  * connection. Must be set to NULL if @user_fence_rep is NULL, and conversely
2481  * if non-NULL, @user_fence_rep must be non-NULL.
2482  * @buf: The buffer object.
2483  * @out_fence:  Optional pointer to a fence pointer. If non-NULL, a
2484  * ref-counted fence pointer is returned here.
2485  * @user_fence_rep: Optional pointer to a user-space provided struct
2486  * drm_vmw_fence_rep. If provided, @file_priv must also be provided and the
2487  * function copies fence data to user-space in a fail-safe manner.
2488  */
2489 void vmw_kms_helper_buffer_finish(struct vmw_private *dev_priv,
2490 				  struct drm_file *file_priv,
2491 				  struct vmw_dma_buffer *buf,
2492 				  struct vmw_fence_obj **out_fence,
2493 				  struct drm_vmw_fence_rep __user *
2494 				  user_fence_rep)
2495 {
2496 	struct vmw_fence_obj *fence;
2497 	uint32_t handle;
2498 	int ret;
2499 
2500 	ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence,
2501 					 file_priv ? &handle : NULL);
2502 	if (buf)
2503 		vmw_fence_single_bo(&buf->base, fence);
2504 	if (file_priv)
2505 		vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv),
2506 					    ret, user_fence_rep, fence,
2507 					    handle, -1, NULL);
2508 	if (out_fence)
2509 		*out_fence = fence;
2510 	else
2511 		vmw_fence_obj_unreference(&fence);
2512 
2513 	vmw_kms_helper_buffer_revert(buf);
2514 }
2515 
2516 
2517 /**
2518  * vmw_kms_helper_resource_revert - Undo the actions of
2519  * vmw_kms_helper_resource_prepare.
2520  *
2521  * @res: Pointer to the resource. Typically a surface.
2522  *
2523  * Helper to be used if an error forces the caller to undo the actions of
2524  * vmw_kms_helper_resource_prepare.
2525  */
2526 void vmw_kms_helper_resource_revert(struct vmw_resource *res)
2527 {
2528 	vmw_kms_helper_buffer_revert(res->backup);
2529 	vmw_resource_unreserve(res, false, NULL, 0);
2530 	mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2531 }
2532 
2533 /**
2534  * vmw_kms_helper_resource_prepare - Reserve and validate a resource before
2535  * command submission.
2536  *
2537  * @res: Pointer to the resource. Typically a surface.
2538  * @interruptible: Whether to perform waits as interruptible.
2539  *
2540  * Reserves and validates also the backup buffer if a guest-backed resource.
2541  * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
2542  * interrupted by a signal.
2543  */
2544 int vmw_kms_helper_resource_prepare(struct vmw_resource *res,
2545 				    bool interruptible)
2546 {
2547 	int ret = 0;
2548 
2549 	if (interruptible)
2550 		ret = mutex_lock_interruptible(&res->dev_priv->cmdbuf_mutex);
2551 	else
2552 		mutex_lock(&res->dev_priv->cmdbuf_mutex);
2553 
2554 	if (unlikely(ret != 0))
2555 		return -ERESTARTSYS;
2556 
2557 	ret = vmw_resource_reserve(res, interruptible, false);
2558 	if (ret)
2559 		goto out_unlock;
2560 
2561 	if (res->backup) {
2562 		ret = vmw_kms_helper_buffer_prepare(res->dev_priv, res->backup,
2563 						    interruptible,
2564 						    res->dev_priv->has_mob);
2565 		if (ret)
2566 			goto out_unreserve;
2567 	}
2568 	ret = vmw_resource_validate(res);
2569 	if (ret)
2570 		goto out_revert;
2571 	return 0;
2572 
2573 out_revert:
2574 	vmw_kms_helper_buffer_revert(res->backup);
2575 out_unreserve:
2576 	vmw_resource_unreserve(res, false, NULL, 0);
2577 out_unlock:
2578 	mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2579 	return ret;
2580 }
2581 
2582 /**
2583  * vmw_kms_helper_resource_finish - Unreserve and fence a resource after
2584  * kms command submission.
2585  *
2586  * @res: Pointer to the resource. Typically a surface.
2587  * @out_fence: Optional pointer to a fence pointer. If non-NULL, a
2588  * ref-counted fence pointer is returned here.
2589  */
2590 void vmw_kms_helper_resource_finish(struct vmw_resource *res,
2591 			     struct vmw_fence_obj **out_fence)
2592 {
2593 	if (res->backup || out_fence)
2594 		vmw_kms_helper_buffer_finish(res->dev_priv, NULL, res->backup,
2595 					     out_fence, NULL);
2596 
2597 	vmw_resource_unreserve(res, false, NULL, 0);
2598 	mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2599 }
2600 
2601 /**
2602  * vmw_kms_update_proxy - Helper function to update a proxy surface from
2603  * its backing MOB.
2604  *
2605  * @res: Pointer to the surface resource
2606  * @clips: Clip rects in framebuffer (surface) space.
2607  * @num_clips: Number of clips in @clips.
2608  * @increment: Integer with which to increment the clip counter when looping.
2609  * Used to skip a predetermined number of clip rects.
2610  *
2611  * This function makes sure the proxy surface is updated from its backing MOB
2612  * using the region given by @clips. The surface resource @res and its backing
2613  * MOB needs to be reserved and validated on call.
2614  */
2615 int vmw_kms_update_proxy(struct vmw_resource *res,
2616 			 const struct drm_clip_rect *clips,
2617 			 unsigned num_clips,
2618 			 int increment)
2619 {
2620 	struct vmw_private *dev_priv = res->dev_priv;
2621 	struct drm_vmw_size *size = &vmw_res_to_srf(res)->base_size;
2622 	struct {
2623 		SVGA3dCmdHeader header;
2624 		SVGA3dCmdUpdateGBImage body;
2625 	} *cmd;
2626 	SVGA3dBox *box;
2627 	size_t copy_size = 0;
2628 	int i;
2629 
2630 	if (!clips)
2631 		return 0;
2632 
2633 	cmd = vmw_fifo_reserve(dev_priv, sizeof(*cmd) * num_clips);
2634 	if (!cmd) {
2635 		DRM_ERROR("Couldn't reserve fifo space for proxy surface "
2636 			  "update.\n");
2637 		return -ENOMEM;
2638 	}
2639 
2640 	for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) {
2641 		box = &cmd->body.box;
2642 
2643 		cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE;
2644 		cmd->header.size = sizeof(cmd->body);
2645 		cmd->body.image.sid = res->id;
2646 		cmd->body.image.face = 0;
2647 		cmd->body.image.mipmap = 0;
2648 
2649 		if (clips->x1 > size->width || clips->x2 > size->width ||
2650 		    clips->y1 > size->height || clips->y2 > size->height) {
2651 			DRM_ERROR("Invalid clips outsize of framebuffer.\n");
2652 			return -EINVAL;
2653 		}
2654 
2655 		box->x = clips->x1;
2656 		box->y = clips->y1;
2657 		box->z = 0;
2658 		box->w = clips->x2 - clips->x1;
2659 		box->h = clips->y2 - clips->y1;
2660 		box->d = 1;
2661 
2662 		copy_size += sizeof(*cmd);
2663 	}
2664 
2665 	vmw_fifo_commit(dev_priv, copy_size);
2666 
2667 	return 0;
2668 }
2669 
2670 int vmw_kms_fbdev_init_data(struct vmw_private *dev_priv,
2671 			    unsigned unit,
2672 			    u32 max_width,
2673 			    u32 max_height,
2674 			    struct drm_connector **p_con,
2675 			    struct drm_crtc **p_crtc,
2676 			    struct drm_display_mode **p_mode)
2677 {
2678 	struct drm_connector *con;
2679 	struct vmw_display_unit *du;
2680 	struct drm_display_mode *mode;
2681 	int i = 0;
2682 
2683 	list_for_each_entry(con, &dev_priv->dev->mode_config.connector_list,
2684 			    head) {
2685 		if (i == unit)
2686 			break;
2687 
2688 		++i;
2689 	}
2690 
2691 	if (i != unit) {
2692 		DRM_ERROR("Could not find initial display unit.\n");
2693 		return -EINVAL;
2694 	}
2695 
2696 	if (list_empty(&con->modes))
2697 		(void) vmw_du_connector_fill_modes(con, max_width, max_height);
2698 
2699 	if (list_empty(&con->modes)) {
2700 		DRM_ERROR("Could not find initial display mode.\n");
2701 		return -EINVAL;
2702 	}
2703 
2704 	du = vmw_connector_to_du(con);
2705 	*p_con = con;
2706 	*p_crtc = &du->crtc;
2707 
2708 	list_for_each_entry(mode, &con->modes, head) {
2709 		if (mode->type & DRM_MODE_TYPE_PREFERRED)
2710 			break;
2711 	}
2712 
2713 	if (mode->type & DRM_MODE_TYPE_PREFERRED)
2714 		*p_mode = mode;
2715 	else {
2716 		WARN_ONCE(true, "Could not find initial preferred mode.\n");
2717 		*p_mode = list_first_entry(&con->modes,
2718 					   struct drm_display_mode,
2719 					   head);
2720 	}
2721 
2722 	return 0;
2723 }
2724 
2725 /**
2726  * vmw_kms_del_active - unregister a crtc binding to the implicit framebuffer
2727  *
2728  * @dev_priv: Pointer to a device private struct.
2729  * @du: The display unit of the crtc.
2730  */
2731 void vmw_kms_del_active(struct vmw_private *dev_priv,
2732 			struct vmw_display_unit *du)
2733 {
2734 	mutex_lock(&dev_priv->global_kms_state_mutex);
2735 	if (du->active_implicit) {
2736 		if (--(dev_priv->num_implicit) == 0)
2737 			dev_priv->implicit_fb = NULL;
2738 		du->active_implicit = false;
2739 	}
2740 	mutex_unlock(&dev_priv->global_kms_state_mutex);
2741 }
2742 
2743 /**
2744  * vmw_kms_add_active - register a crtc binding to an implicit framebuffer
2745  *
2746  * @vmw_priv: Pointer to a device private struct.
2747  * @du: The display unit of the crtc.
2748  * @vfb: The implicit framebuffer
2749  *
2750  * Registers a binding to an implicit framebuffer.
2751  */
2752 void vmw_kms_add_active(struct vmw_private *dev_priv,
2753 			struct vmw_display_unit *du,
2754 			struct vmw_framebuffer *vfb)
2755 {
2756 	mutex_lock(&dev_priv->global_kms_state_mutex);
2757 	WARN_ON_ONCE(!dev_priv->num_implicit && dev_priv->implicit_fb);
2758 
2759 	if (!du->active_implicit && du->is_implicit) {
2760 		dev_priv->implicit_fb = vfb;
2761 		du->active_implicit = true;
2762 		dev_priv->num_implicit++;
2763 	}
2764 	mutex_unlock(&dev_priv->global_kms_state_mutex);
2765 }
2766 
2767 /**
2768  * vmw_kms_screen_object_flippable - Check whether we can page-flip a crtc.
2769  *
2770  * @dev_priv: Pointer to device-private struct.
2771  * @crtc: The crtc we want to flip.
2772  *
2773  * Returns true or false depending whether it's OK to flip this crtc
2774  * based on the criterion that we must not have more than one implicit
2775  * frame-buffer at any one time.
2776  */
2777 bool vmw_kms_crtc_flippable(struct vmw_private *dev_priv,
2778 			    struct drm_crtc *crtc)
2779 {
2780 	struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
2781 	bool ret;
2782 
2783 	mutex_lock(&dev_priv->global_kms_state_mutex);
2784 	ret = !du->is_implicit || dev_priv->num_implicit == 1;
2785 	mutex_unlock(&dev_priv->global_kms_state_mutex);
2786 
2787 	return ret;
2788 }
2789 
2790 /**
2791  * vmw_kms_update_implicit_fb - Update the implicit fb.
2792  *
2793  * @dev_priv: Pointer to device-private struct.
2794  * @crtc: The crtc the new implicit frame-buffer is bound to.
2795  */
2796 void vmw_kms_update_implicit_fb(struct vmw_private *dev_priv,
2797 				struct drm_crtc *crtc)
2798 {
2799 	struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
2800 	struct vmw_framebuffer *vfb;
2801 
2802 	mutex_lock(&dev_priv->global_kms_state_mutex);
2803 
2804 	if (!du->is_implicit)
2805 		goto out_unlock;
2806 
2807 	vfb = vmw_framebuffer_to_vfb(crtc->primary->fb);
2808 	WARN_ON_ONCE(dev_priv->num_implicit != 1 &&
2809 		     dev_priv->implicit_fb != vfb);
2810 
2811 	dev_priv->implicit_fb = vfb;
2812 out_unlock:
2813 	mutex_unlock(&dev_priv->global_kms_state_mutex);
2814 }
2815 
2816 /**
2817  * vmw_kms_create_implicit_placement_proparty - Set up the implicit placement
2818  * property.
2819  *
2820  * @dev_priv: Pointer to a device private struct.
2821  * @immutable: Whether the property is immutable.
2822  *
2823  * Sets up the implicit placement property unless it's already set up.
2824  */
2825 void
2826 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv,
2827 					   bool immutable)
2828 {
2829 	if (dev_priv->implicit_placement_property)
2830 		return;
2831 
2832 	dev_priv->implicit_placement_property =
2833 		drm_property_create_range(dev_priv->dev,
2834 					  immutable ?
2835 					  DRM_MODE_PROP_IMMUTABLE : 0,
2836 					  "implicit_placement", 0, 1);
2837 
2838 }
2839 
2840 
2841 /**
2842  * vmw_kms_set_config - Wrapper around drm_atomic_helper_set_config
2843  *
2844  * @set: The configuration to set.
2845  *
2846  * The vmwgfx Xorg driver doesn't assign the mode::type member, which
2847  * when drm_mode_set_crtcinfo is called as part of the configuration setting
2848  * causes it to return incorrect crtc dimensions causing severe problems in
2849  * the vmwgfx modesetting. So explicitly clear that member before calling
2850  * into drm_atomic_helper_set_config.
2851  */
2852 int vmw_kms_set_config(struct drm_mode_set *set,
2853 		       struct drm_modeset_acquire_ctx *ctx)
2854 {
2855 	if (set && set->mode)
2856 		set->mode->type = 0;
2857 
2858 	return drm_atomic_helper_set_config(set, ctx);
2859 }
2860