1 /************************************************************************** 2 * 3 * Copyright © 2009-2015 VMware, Inc., Palo Alto, CA., USA 4 * All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 28 #include "vmwgfx_kms.h" 29 #include <drm/drm_plane_helper.h> 30 #include <drm/drm_atomic.h> 31 #include <drm/drm_atomic_helper.h> 32 #include <drm/drm_rect.h> 33 34 /* Might need a hrtimer here? */ 35 #define VMWGFX_PRESENT_RATE ((HZ / 60 > 0) ? HZ / 60 : 1) 36 37 void vmw_du_cleanup(struct vmw_display_unit *du) 38 { 39 drm_plane_cleanup(&du->primary); 40 drm_plane_cleanup(&du->cursor); 41 42 drm_connector_unregister(&du->connector); 43 drm_crtc_cleanup(&du->crtc); 44 drm_encoder_cleanup(&du->encoder); 45 drm_connector_cleanup(&du->connector); 46 } 47 48 /* 49 * Display Unit Cursor functions 50 */ 51 52 static int vmw_cursor_update_image(struct vmw_private *dev_priv, 53 u32 *image, u32 width, u32 height, 54 u32 hotspotX, u32 hotspotY) 55 { 56 struct { 57 u32 cmd; 58 SVGAFifoCmdDefineAlphaCursor cursor; 59 } *cmd; 60 u32 image_size = width * height * 4; 61 u32 cmd_size = sizeof(*cmd) + image_size; 62 63 if (!image) 64 return -EINVAL; 65 66 cmd = vmw_fifo_reserve(dev_priv, cmd_size); 67 if (unlikely(cmd == NULL)) { 68 DRM_ERROR("Fifo reserve failed.\n"); 69 return -ENOMEM; 70 } 71 72 memset(cmd, 0, sizeof(*cmd)); 73 74 memcpy(&cmd[1], image, image_size); 75 76 cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR; 77 cmd->cursor.id = 0; 78 cmd->cursor.width = width; 79 cmd->cursor.height = height; 80 cmd->cursor.hotspotX = hotspotX; 81 cmd->cursor.hotspotY = hotspotY; 82 83 vmw_fifo_commit_flush(dev_priv, cmd_size); 84 85 return 0; 86 } 87 88 static int vmw_cursor_update_dmabuf(struct vmw_private *dev_priv, 89 struct vmw_dma_buffer *dmabuf, 90 u32 width, u32 height, 91 u32 hotspotX, u32 hotspotY) 92 { 93 struct ttm_bo_kmap_obj map; 94 unsigned long kmap_offset; 95 unsigned long kmap_num; 96 void *virtual; 97 bool dummy; 98 int ret; 99 100 kmap_offset = 0; 101 kmap_num = (width*height*4 + PAGE_SIZE - 1) >> PAGE_SHIFT; 102 103 ret = ttm_bo_reserve(&dmabuf->base, true, false, NULL); 104 if (unlikely(ret != 0)) { 105 DRM_ERROR("reserve failed\n"); 106 return -EINVAL; 107 } 108 109 ret = ttm_bo_kmap(&dmabuf->base, kmap_offset, kmap_num, &map); 110 if (unlikely(ret != 0)) 111 goto err_unreserve; 112 113 virtual = ttm_kmap_obj_virtual(&map, &dummy); 114 ret = vmw_cursor_update_image(dev_priv, virtual, width, height, 115 hotspotX, hotspotY); 116 117 ttm_bo_kunmap(&map); 118 err_unreserve: 119 ttm_bo_unreserve(&dmabuf->base); 120 121 return ret; 122 } 123 124 125 static void vmw_cursor_update_position(struct vmw_private *dev_priv, 126 bool show, int x, int y) 127 { 128 u32 *fifo_mem = dev_priv->mmio_virt; 129 uint32_t count; 130 131 spin_lock(&dev_priv->cursor_lock); 132 vmw_mmio_write(show ? 1 : 0, fifo_mem + SVGA_FIFO_CURSOR_ON); 133 vmw_mmio_write(x, fifo_mem + SVGA_FIFO_CURSOR_X); 134 vmw_mmio_write(y, fifo_mem + SVGA_FIFO_CURSOR_Y); 135 count = vmw_mmio_read(fifo_mem + SVGA_FIFO_CURSOR_COUNT); 136 vmw_mmio_write(++count, fifo_mem + SVGA_FIFO_CURSOR_COUNT); 137 spin_unlock(&dev_priv->cursor_lock); 138 } 139 140 141 void vmw_kms_cursor_snoop(struct vmw_surface *srf, 142 struct ttm_object_file *tfile, 143 struct ttm_buffer_object *bo, 144 SVGA3dCmdHeader *header) 145 { 146 struct ttm_bo_kmap_obj map; 147 unsigned long kmap_offset; 148 unsigned long kmap_num; 149 SVGA3dCopyBox *box; 150 unsigned box_count; 151 void *virtual; 152 bool dummy; 153 struct vmw_dma_cmd { 154 SVGA3dCmdHeader header; 155 SVGA3dCmdSurfaceDMA dma; 156 } *cmd; 157 int i, ret; 158 159 cmd = container_of(header, struct vmw_dma_cmd, header); 160 161 /* No snooper installed */ 162 if (!srf->snooper.image) 163 return; 164 165 if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) { 166 DRM_ERROR("face and mipmap for cursors should never != 0\n"); 167 return; 168 } 169 170 if (cmd->header.size < 64) { 171 DRM_ERROR("at least one full copy box must be given\n"); 172 return; 173 } 174 175 box = (SVGA3dCopyBox *)&cmd[1]; 176 box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) / 177 sizeof(SVGA3dCopyBox); 178 179 if (cmd->dma.guest.ptr.offset % PAGE_SIZE || 180 box->x != 0 || box->y != 0 || box->z != 0 || 181 box->srcx != 0 || box->srcy != 0 || box->srcz != 0 || 182 box->d != 1 || box_count != 1) { 183 /* TODO handle none page aligned offsets */ 184 /* TODO handle more dst & src != 0 */ 185 /* TODO handle more then one copy */ 186 DRM_ERROR("Cant snoop dma request for cursor!\n"); 187 DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n", 188 box->srcx, box->srcy, box->srcz, 189 box->x, box->y, box->z, 190 box->w, box->h, box->d, box_count, 191 cmd->dma.guest.ptr.offset); 192 return; 193 } 194 195 kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT; 196 kmap_num = (64*64*4) >> PAGE_SHIFT; 197 198 ret = ttm_bo_reserve(bo, true, false, NULL); 199 if (unlikely(ret != 0)) { 200 DRM_ERROR("reserve failed\n"); 201 return; 202 } 203 204 ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map); 205 if (unlikely(ret != 0)) 206 goto err_unreserve; 207 208 virtual = ttm_kmap_obj_virtual(&map, &dummy); 209 210 if (box->w == 64 && cmd->dma.guest.pitch == 64*4) { 211 memcpy(srf->snooper.image, virtual, 64*64*4); 212 } else { 213 /* Image is unsigned pointer. */ 214 for (i = 0; i < box->h; i++) 215 memcpy(srf->snooper.image + i * 64, 216 virtual + i * cmd->dma.guest.pitch, 217 box->w * 4); 218 } 219 220 srf->snooper.age++; 221 222 ttm_bo_kunmap(&map); 223 err_unreserve: 224 ttm_bo_unreserve(bo); 225 } 226 227 /** 228 * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots 229 * 230 * @dev_priv: Pointer to the device private struct. 231 * 232 * Clears all legacy hotspots. 233 */ 234 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv) 235 { 236 struct drm_device *dev = dev_priv->dev; 237 struct vmw_display_unit *du; 238 struct drm_crtc *crtc; 239 240 drm_modeset_lock_all(dev); 241 drm_for_each_crtc(crtc, dev) { 242 du = vmw_crtc_to_du(crtc); 243 244 du->hotspot_x = 0; 245 du->hotspot_y = 0; 246 } 247 drm_modeset_unlock_all(dev); 248 } 249 250 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv) 251 { 252 struct drm_device *dev = dev_priv->dev; 253 struct vmw_display_unit *du; 254 struct drm_crtc *crtc; 255 256 mutex_lock(&dev->mode_config.mutex); 257 258 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 259 du = vmw_crtc_to_du(crtc); 260 if (!du->cursor_surface || 261 du->cursor_age == du->cursor_surface->snooper.age) 262 continue; 263 264 du->cursor_age = du->cursor_surface->snooper.age; 265 vmw_cursor_update_image(dev_priv, 266 du->cursor_surface->snooper.image, 267 64, 64, 268 du->hotspot_x + du->core_hotspot_x, 269 du->hotspot_y + du->core_hotspot_y); 270 } 271 272 mutex_unlock(&dev->mode_config.mutex); 273 } 274 275 276 void vmw_du_cursor_plane_destroy(struct drm_plane *plane) 277 { 278 vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0); 279 280 drm_plane_cleanup(plane); 281 } 282 283 284 void vmw_du_primary_plane_destroy(struct drm_plane *plane) 285 { 286 drm_plane_cleanup(plane); 287 288 /* Planes are static in our case so we don't free it */ 289 } 290 291 292 /** 293 * vmw_du_vps_unpin_surf - unpins resource associated with a framebuffer surface 294 * 295 * @vps: plane state associated with the display surface 296 * @unreference: true if we also want to unreference the display. 297 */ 298 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps, 299 bool unreference) 300 { 301 if (vps->surf) { 302 if (vps->pinned) { 303 vmw_resource_unpin(&vps->surf->res); 304 vps->pinned--; 305 } 306 307 if (unreference) { 308 if (vps->pinned) 309 DRM_ERROR("Surface still pinned\n"); 310 vmw_surface_unreference(&vps->surf); 311 } 312 } 313 } 314 315 316 /** 317 * vmw_du_plane_cleanup_fb - Unpins the cursor 318 * 319 * @plane: display plane 320 * @old_state: Contains the FB to clean up 321 * 322 * Unpins the framebuffer surface 323 * 324 * Returns 0 on success 325 */ 326 void 327 vmw_du_plane_cleanup_fb(struct drm_plane *plane, 328 struct drm_plane_state *old_state) 329 { 330 struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state); 331 332 vmw_du_plane_unpin_surf(vps, false); 333 } 334 335 336 /** 337 * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it 338 * 339 * @plane: display plane 340 * @new_state: info on the new plane state, including the FB 341 * 342 * Returns 0 on success 343 */ 344 int 345 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane, 346 struct drm_plane_state *new_state) 347 { 348 struct drm_framebuffer *fb = new_state->fb; 349 struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state); 350 351 352 if (vps->surf) 353 vmw_surface_unreference(&vps->surf); 354 355 if (vps->dmabuf) 356 vmw_dmabuf_unreference(&vps->dmabuf); 357 358 if (fb) { 359 if (vmw_framebuffer_to_vfb(fb)->dmabuf) { 360 vps->dmabuf = vmw_framebuffer_to_vfbd(fb)->buffer; 361 vmw_dmabuf_reference(vps->dmabuf); 362 } else { 363 vps->surf = vmw_framebuffer_to_vfbs(fb)->surface; 364 vmw_surface_reference(vps->surf); 365 } 366 } 367 368 return 0; 369 } 370 371 372 void 373 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane, 374 struct drm_plane_state *old_state) 375 { 376 struct drm_crtc *crtc = plane->state->crtc ?: old_state->crtc; 377 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 378 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 379 struct vmw_plane_state *vps = vmw_plane_state_to_vps(plane->state); 380 s32 hotspot_x, hotspot_y; 381 int ret = 0; 382 383 384 hotspot_x = du->hotspot_x; 385 hotspot_y = du->hotspot_y; 386 387 if (plane->state->fb) { 388 hotspot_x += plane->state->fb->hot_x; 389 hotspot_y += plane->state->fb->hot_y; 390 } 391 392 du->cursor_surface = vps->surf; 393 du->cursor_dmabuf = vps->dmabuf; 394 395 if (vps->surf) { 396 du->cursor_age = du->cursor_surface->snooper.age; 397 398 ret = vmw_cursor_update_image(dev_priv, 399 vps->surf->snooper.image, 400 64, 64, hotspot_x, 401 hotspot_y); 402 } else if (vps->dmabuf) { 403 ret = vmw_cursor_update_dmabuf(dev_priv, vps->dmabuf, 404 plane->state->crtc_w, 405 plane->state->crtc_h, 406 hotspot_x, hotspot_y); 407 } else { 408 vmw_cursor_update_position(dev_priv, false, 0, 0); 409 return; 410 } 411 412 if (!ret) { 413 du->cursor_x = plane->state->crtc_x + du->set_gui_x; 414 du->cursor_y = plane->state->crtc_y + du->set_gui_y; 415 416 vmw_cursor_update_position(dev_priv, true, 417 du->cursor_x + hotspot_x, 418 du->cursor_y + hotspot_y); 419 420 du->core_hotspot_x = hotspot_x - du->hotspot_x; 421 du->core_hotspot_y = hotspot_y - du->hotspot_y; 422 } else { 423 DRM_ERROR("Failed to update cursor image\n"); 424 } 425 } 426 427 428 /** 429 * vmw_du_primary_plane_atomic_check - check if the new state is okay 430 * 431 * @plane: display plane 432 * @state: info on the new plane state, including the FB 433 * 434 * Check if the new state is settable given the current state. Other 435 * than what the atomic helper checks, we care about crtc fitting 436 * the FB and maintaining one active framebuffer. 437 * 438 * Returns 0 on success 439 */ 440 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane, 441 struct drm_plane_state *state) 442 { 443 struct drm_crtc_state *crtc_state = NULL; 444 struct drm_framebuffer *new_fb = state->fb; 445 int ret; 446 447 if (state->crtc) 448 crtc_state = drm_atomic_get_new_crtc_state(state->state, state->crtc); 449 450 ret = drm_atomic_helper_check_plane_state(state, crtc_state, 451 DRM_PLANE_HELPER_NO_SCALING, 452 DRM_PLANE_HELPER_NO_SCALING, 453 false, true); 454 455 if (!ret && new_fb) { 456 struct drm_crtc *crtc = state->crtc; 457 struct vmw_connector_state *vcs; 458 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 459 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 460 struct vmw_framebuffer *vfb = vmw_framebuffer_to_vfb(new_fb); 461 462 vcs = vmw_connector_state_to_vcs(du->connector.state); 463 464 /* Only one active implicit framebuffer at a time. */ 465 mutex_lock(&dev_priv->global_kms_state_mutex); 466 if (vcs->is_implicit && dev_priv->implicit_fb && 467 !(dev_priv->num_implicit == 1 && du->active_implicit) 468 && dev_priv->implicit_fb != vfb) { 469 DRM_ERROR("Multiple implicit framebuffers " 470 "not supported.\n"); 471 ret = -EINVAL; 472 } 473 mutex_unlock(&dev_priv->global_kms_state_mutex); 474 } 475 476 477 return ret; 478 } 479 480 481 /** 482 * vmw_du_cursor_plane_atomic_check - check if the new state is okay 483 * 484 * @plane: cursor plane 485 * @state: info on the new plane state 486 * 487 * This is a chance to fail if the new cursor state does not fit 488 * our requirements. 489 * 490 * Returns 0 on success 491 */ 492 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane, 493 struct drm_plane_state *new_state) 494 { 495 int ret = 0; 496 struct vmw_surface *surface = NULL; 497 struct drm_framebuffer *fb = new_state->fb; 498 499 struct drm_rect src = drm_plane_state_src(new_state); 500 struct drm_rect dest = drm_plane_state_dest(new_state); 501 502 /* Turning off */ 503 if (!fb) 504 return ret; 505 506 ret = drm_plane_helper_check_update(plane, new_state->crtc, fb, 507 &src, &dest, 508 DRM_MODE_ROTATE_0, 509 DRM_PLANE_HELPER_NO_SCALING, 510 DRM_PLANE_HELPER_NO_SCALING, 511 true, true, &new_state->visible); 512 if (!ret) 513 return ret; 514 515 /* A lot of the code assumes this */ 516 if (new_state->crtc_w != 64 || new_state->crtc_h != 64) { 517 DRM_ERROR("Invalid cursor dimensions (%d, %d)\n", 518 new_state->crtc_w, new_state->crtc_h); 519 ret = -EINVAL; 520 } 521 522 if (!vmw_framebuffer_to_vfb(fb)->dmabuf) 523 surface = vmw_framebuffer_to_vfbs(fb)->surface; 524 525 if (surface && !surface->snooper.image) { 526 DRM_ERROR("surface not suitable for cursor\n"); 527 ret = -EINVAL; 528 } 529 530 return ret; 531 } 532 533 534 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc, 535 struct drm_crtc_state *new_state) 536 { 537 struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc); 538 int connector_mask = 1 << drm_connector_index(&du->connector); 539 bool has_primary = new_state->plane_mask & 540 BIT(drm_plane_index(crtc->primary)); 541 542 /* We always want to have an active plane with an active CRTC */ 543 if (has_primary != new_state->enable) 544 return -EINVAL; 545 546 547 if (new_state->connector_mask != connector_mask && 548 new_state->connector_mask != 0) { 549 DRM_ERROR("Invalid connectors configuration\n"); 550 return -EINVAL; 551 } 552 553 /* 554 * Our virtual device does not have a dot clock, so use the logical 555 * clock value as the dot clock. 556 */ 557 if (new_state->mode.crtc_clock == 0) 558 new_state->adjusted_mode.crtc_clock = new_state->mode.clock; 559 560 return 0; 561 } 562 563 564 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc, 565 struct drm_crtc_state *old_crtc_state) 566 { 567 } 568 569 570 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc, 571 struct drm_crtc_state *old_crtc_state) 572 { 573 struct drm_pending_vblank_event *event = crtc->state->event; 574 575 if (event) { 576 crtc->state->event = NULL; 577 578 spin_lock_irq(&crtc->dev->event_lock); 579 drm_crtc_send_vblank_event(crtc, event); 580 spin_unlock_irq(&crtc->dev->event_lock); 581 } 582 } 583 584 585 /** 586 * vmw_du_crtc_duplicate_state - duplicate crtc state 587 * @crtc: DRM crtc 588 * 589 * Allocates and returns a copy of the crtc state (both common and 590 * vmw-specific) for the specified crtc. 591 * 592 * Returns: The newly allocated crtc state, or NULL on failure. 593 */ 594 struct drm_crtc_state * 595 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc) 596 { 597 struct drm_crtc_state *state; 598 struct vmw_crtc_state *vcs; 599 600 if (WARN_ON(!crtc->state)) 601 return NULL; 602 603 vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL); 604 605 if (!vcs) 606 return NULL; 607 608 state = &vcs->base; 609 610 __drm_atomic_helper_crtc_duplicate_state(crtc, state); 611 612 return state; 613 } 614 615 616 /** 617 * vmw_du_crtc_reset - creates a blank vmw crtc state 618 * @crtc: DRM crtc 619 * 620 * Resets the atomic state for @crtc by freeing the state pointer (which 621 * might be NULL, e.g. at driver load time) and allocating a new empty state 622 * object. 623 */ 624 void vmw_du_crtc_reset(struct drm_crtc *crtc) 625 { 626 struct vmw_crtc_state *vcs; 627 628 629 if (crtc->state) { 630 __drm_atomic_helper_crtc_destroy_state(crtc->state); 631 632 kfree(vmw_crtc_state_to_vcs(crtc->state)); 633 } 634 635 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL); 636 637 if (!vcs) { 638 DRM_ERROR("Cannot allocate vmw_crtc_state\n"); 639 return; 640 } 641 642 crtc->state = &vcs->base; 643 crtc->state->crtc = crtc; 644 } 645 646 647 /** 648 * vmw_du_crtc_destroy_state - destroy crtc state 649 * @crtc: DRM crtc 650 * @state: state object to destroy 651 * 652 * Destroys the crtc state (both common and vmw-specific) for the 653 * specified plane. 654 */ 655 void 656 vmw_du_crtc_destroy_state(struct drm_crtc *crtc, 657 struct drm_crtc_state *state) 658 { 659 drm_atomic_helper_crtc_destroy_state(crtc, state); 660 } 661 662 663 /** 664 * vmw_du_plane_duplicate_state - duplicate plane state 665 * @plane: drm plane 666 * 667 * Allocates and returns a copy of the plane state (both common and 668 * vmw-specific) for the specified plane. 669 * 670 * Returns: The newly allocated plane state, or NULL on failure. 671 */ 672 struct drm_plane_state * 673 vmw_du_plane_duplicate_state(struct drm_plane *plane) 674 { 675 struct drm_plane_state *state; 676 struct vmw_plane_state *vps; 677 678 vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL); 679 680 if (!vps) 681 return NULL; 682 683 vps->pinned = 0; 684 vps->cpp = 0; 685 686 /* Each ref counted resource needs to be acquired again */ 687 if (vps->surf) 688 (void) vmw_surface_reference(vps->surf); 689 690 if (vps->dmabuf) 691 (void) vmw_dmabuf_reference(vps->dmabuf); 692 693 state = &vps->base; 694 695 __drm_atomic_helper_plane_duplicate_state(plane, state); 696 697 return state; 698 } 699 700 701 /** 702 * vmw_du_plane_reset - creates a blank vmw plane state 703 * @plane: drm plane 704 * 705 * Resets the atomic state for @plane by freeing the state pointer (which might 706 * be NULL, e.g. at driver load time) and allocating a new empty state object. 707 */ 708 void vmw_du_plane_reset(struct drm_plane *plane) 709 { 710 struct vmw_plane_state *vps; 711 712 713 if (plane->state) 714 vmw_du_plane_destroy_state(plane, plane->state); 715 716 vps = kzalloc(sizeof(*vps), GFP_KERNEL); 717 718 if (!vps) { 719 DRM_ERROR("Cannot allocate vmw_plane_state\n"); 720 return; 721 } 722 723 plane->state = &vps->base; 724 plane->state->plane = plane; 725 plane->state->rotation = DRM_MODE_ROTATE_0; 726 } 727 728 729 /** 730 * vmw_du_plane_destroy_state - destroy plane state 731 * @plane: DRM plane 732 * @state: state object to destroy 733 * 734 * Destroys the plane state (both common and vmw-specific) for the 735 * specified plane. 736 */ 737 void 738 vmw_du_plane_destroy_state(struct drm_plane *plane, 739 struct drm_plane_state *state) 740 { 741 struct vmw_plane_state *vps = vmw_plane_state_to_vps(state); 742 743 744 /* Should have been freed by cleanup_fb */ 745 if (vps->surf) 746 vmw_surface_unreference(&vps->surf); 747 748 if (vps->dmabuf) 749 vmw_dmabuf_unreference(&vps->dmabuf); 750 751 drm_atomic_helper_plane_destroy_state(plane, state); 752 } 753 754 755 /** 756 * vmw_du_connector_duplicate_state - duplicate connector state 757 * @connector: DRM connector 758 * 759 * Allocates and returns a copy of the connector state (both common and 760 * vmw-specific) for the specified connector. 761 * 762 * Returns: The newly allocated connector state, or NULL on failure. 763 */ 764 struct drm_connector_state * 765 vmw_du_connector_duplicate_state(struct drm_connector *connector) 766 { 767 struct drm_connector_state *state; 768 struct vmw_connector_state *vcs; 769 770 if (WARN_ON(!connector->state)) 771 return NULL; 772 773 vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL); 774 775 if (!vcs) 776 return NULL; 777 778 state = &vcs->base; 779 780 __drm_atomic_helper_connector_duplicate_state(connector, state); 781 782 return state; 783 } 784 785 786 /** 787 * vmw_du_connector_reset - creates a blank vmw connector state 788 * @connector: DRM connector 789 * 790 * Resets the atomic state for @connector by freeing the state pointer (which 791 * might be NULL, e.g. at driver load time) and allocating a new empty state 792 * object. 793 */ 794 void vmw_du_connector_reset(struct drm_connector *connector) 795 { 796 struct vmw_connector_state *vcs; 797 798 799 if (connector->state) { 800 __drm_atomic_helper_connector_destroy_state(connector->state); 801 802 kfree(vmw_connector_state_to_vcs(connector->state)); 803 } 804 805 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL); 806 807 if (!vcs) { 808 DRM_ERROR("Cannot allocate vmw_connector_state\n"); 809 return; 810 } 811 812 __drm_atomic_helper_connector_reset(connector, &vcs->base); 813 } 814 815 816 /** 817 * vmw_du_connector_destroy_state - destroy connector state 818 * @connector: DRM connector 819 * @state: state object to destroy 820 * 821 * Destroys the connector state (both common and vmw-specific) for the 822 * specified plane. 823 */ 824 void 825 vmw_du_connector_destroy_state(struct drm_connector *connector, 826 struct drm_connector_state *state) 827 { 828 drm_atomic_helper_connector_destroy_state(connector, state); 829 } 830 /* 831 * Generic framebuffer code 832 */ 833 834 /* 835 * Surface framebuffer code 836 */ 837 838 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer) 839 { 840 struct vmw_framebuffer_surface *vfbs = 841 vmw_framebuffer_to_vfbs(framebuffer); 842 843 drm_framebuffer_cleanup(framebuffer); 844 vmw_surface_unreference(&vfbs->surface); 845 if (vfbs->base.user_obj) 846 ttm_base_object_unref(&vfbs->base.user_obj); 847 848 kfree(vfbs); 849 } 850 851 static int vmw_framebuffer_surface_dirty(struct drm_framebuffer *framebuffer, 852 struct drm_file *file_priv, 853 unsigned flags, unsigned color, 854 struct drm_clip_rect *clips, 855 unsigned num_clips) 856 { 857 struct vmw_private *dev_priv = vmw_priv(framebuffer->dev); 858 struct vmw_framebuffer_surface *vfbs = 859 vmw_framebuffer_to_vfbs(framebuffer); 860 struct drm_clip_rect norect; 861 int ret, inc = 1; 862 863 /* Legacy Display Unit does not support 3D */ 864 if (dev_priv->active_display_unit == vmw_du_legacy) 865 return -EINVAL; 866 867 drm_modeset_lock_all(dev_priv->dev); 868 869 ret = ttm_read_lock(&dev_priv->reservation_sem, true); 870 if (unlikely(ret != 0)) { 871 drm_modeset_unlock_all(dev_priv->dev); 872 return ret; 873 } 874 875 if (!num_clips) { 876 num_clips = 1; 877 clips = &norect; 878 norect.x1 = norect.y1 = 0; 879 norect.x2 = framebuffer->width; 880 norect.y2 = framebuffer->height; 881 } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) { 882 num_clips /= 2; 883 inc = 2; /* skip source rects */ 884 } 885 886 if (dev_priv->active_display_unit == vmw_du_screen_object) 887 ret = vmw_kms_sou_do_surface_dirty(dev_priv, &vfbs->base, 888 clips, NULL, NULL, 0, 0, 889 num_clips, inc, NULL, NULL); 890 else 891 ret = vmw_kms_stdu_surface_dirty(dev_priv, &vfbs->base, 892 clips, NULL, NULL, 0, 0, 893 num_clips, inc, NULL, NULL); 894 895 vmw_fifo_flush(dev_priv, false); 896 ttm_read_unlock(&dev_priv->reservation_sem); 897 898 drm_modeset_unlock_all(dev_priv->dev); 899 900 return 0; 901 } 902 903 /** 904 * vmw_kms_readback - Perform a readback from the screen system to 905 * a dma-buffer backed framebuffer. 906 * 907 * @dev_priv: Pointer to the device private structure. 908 * @file_priv: Pointer to a struct drm_file identifying the caller. 909 * Must be set to NULL if @user_fence_rep is NULL. 910 * @vfb: Pointer to the dma-buffer backed framebuffer. 911 * @user_fence_rep: User-space provided structure for fence information. 912 * Must be set to non-NULL if @file_priv is non-NULL. 913 * @vclips: Array of clip rects. 914 * @num_clips: Number of clip rects in @vclips. 915 * 916 * Returns 0 on success, negative error code on failure. -ERESTARTSYS if 917 * interrupted. 918 */ 919 int vmw_kms_readback(struct vmw_private *dev_priv, 920 struct drm_file *file_priv, 921 struct vmw_framebuffer *vfb, 922 struct drm_vmw_fence_rep __user *user_fence_rep, 923 struct drm_vmw_rect *vclips, 924 uint32_t num_clips) 925 { 926 switch (dev_priv->active_display_unit) { 927 case vmw_du_screen_object: 928 return vmw_kms_sou_readback(dev_priv, file_priv, vfb, 929 user_fence_rep, vclips, num_clips, 930 NULL); 931 case vmw_du_screen_target: 932 return vmw_kms_stdu_dma(dev_priv, file_priv, vfb, 933 user_fence_rep, NULL, vclips, num_clips, 934 1, false, true, NULL); 935 default: 936 WARN_ONCE(true, 937 "Readback called with invalid display system.\n"); 938 } 939 940 return -ENOSYS; 941 } 942 943 944 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = { 945 .destroy = vmw_framebuffer_surface_destroy, 946 .dirty = vmw_framebuffer_surface_dirty, 947 }; 948 949 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv, 950 struct vmw_surface *surface, 951 struct vmw_framebuffer **out, 952 const struct drm_mode_fb_cmd2 953 *mode_cmd, 954 bool is_dmabuf_proxy) 955 956 { 957 struct drm_device *dev = dev_priv->dev; 958 struct vmw_framebuffer_surface *vfbs; 959 enum SVGA3dSurfaceFormat format; 960 int ret; 961 struct drm_format_name_buf format_name; 962 963 /* 3D is only supported on HWv8 and newer hosts */ 964 if (dev_priv->active_display_unit == vmw_du_legacy) 965 return -ENOSYS; 966 967 /* 968 * Sanity checks. 969 */ 970 971 /* Surface must be marked as a scanout. */ 972 if (unlikely(!surface->scanout)) 973 return -EINVAL; 974 975 if (unlikely(surface->mip_levels[0] != 1 || 976 surface->num_sizes != 1 || 977 surface->base_size.width < mode_cmd->width || 978 surface->base_size.height < mode_cmd->height || 979 surface->base_size.depth != 1)) { 980 DRM_ERROR("Incompatible surface dimensions " 981 "for requested mode.\n"); 982 return -EINVAL; 983 } 984 985 switch (mode_cmd->pixel_format) { 986 case DRM_FORMAT_ARGB8888: 987 format = SVGA3D_A8R8G8B8; 988 break; 989 case DRM_FORMAT_XRGB8888: 990 format = SVGA3D_X8R8G8B8; 991 break; 992 case DRM_FORMAT_RGB565: 993 format = SVGA3D_R5G6B5; 994 break; 995 case DRM_FORMAT_XRGB1555: 996 format = SVGA3D_A1R5G5B5; 997 break; 998 default: 999 DRM_ERROR("Invalid pixel format: %s\n", 1000 drm_get_format_name(mode_cmd->pixel_format, &format_name)); 1001 return -EINVAL; 1002 } 1003 1004 /* 1005 * For DX, surface format validation is done when surface->scanout 1006 * is set. 1007 */ 1008 if (!dev_priv->has_dx && format != surface->format) { 1009 DRM_ERROR("Invalid surface format for requested mode.\n"); 1010 return -EINVAL; 1011 } 1012 1013 vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL); 1014 if (!vfbs) { 1015 ret = -ENOMEM; 1016 goto out_err1; 1017 } 1018 1019 drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd); 1020 vfbs->surface = vmw_surface_reference(surface); 1021 vfbs->base.user_handle = mode_cmd->handles[0]; 1022 vfbs->is_dmabuf_proxy = is_dmabuf_proxy; 1023 1024 *out = &vfbs->base; 1025 1026 ret = drm_framebuffer_init(dev, &vfbs->base.base, 1027 &vmw_framebuffer_surface_funcs); 1028 if (ret) 1029 goto out_err2; 1030 1031 return 0; 1032 1033 out_err2: 1034 vmw_surface_unreference(&surface); 1035 kfree(vfbs); 1036 out_err1: 1037 return ret; 1038 } 1039 1040 /* 1041 * Dmabuf framebuffer code 1042 */ 1043 1044 static void vmw_framebuffer_dmabuf_destroy(struct drm_framebuffer *framebuffer) 1045 { 1046 struct vmw_framebuffer_dmabuf *vfbd = 1047 vmw_framebuffer_to_vfbd(framebuffer); 1048 1049 drm_framebuffer_cleanup(framebuffer); 1050 vmw_dmabuf_unreference(&vfbd->buffer); 1051 if (vfbd->base.user_obj) 1052 ttm_base_object_unref(&vfbd->base.user_obj); 1053 1054 kfree(vfbd); 1055 } 1056 1057 static int vmw_framebuffer_dmabuf_dirty(struct drm_framebuffer *framebuffer, 1058 struct drm_file *file_priv, 1059 unsigned flags, unsigned color, 1060 struct drm_clip_rect *clips, 1061 unsigned num_clips) 1062 { 1063 struct vmw_private *dev_priv = vmw_priv(framebuffer->dev); 1064 struct vmw_framebuffer_dmabuf *vfbd = 1065 vmw_framebuffer_to_vfbd(framebuffer); 1066 struct drm_clip_rect norect; 1067 int ret, increment = 1; 1068 1069 drm_modeset_lock_all(dev_priv->dev); 1070 1071 ret = ttm_read_lock(&dev_priv->reservation_sem, true); 1072 if (unlikely(ret != 0)) { 1073 drm_modeset_unlock_all(dev_priv->dev); 1074 return ret; 1075 } 1076 1077 if (!num_clips) { 1078 num_clips = 1; 1079 clips = &norect; 1080 norect.x1 = norect.y1 = 0; 1081 norect.x2 = framebuffer->width; 1082 norect.y2 = framebuffer->height; 1083 } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) { 1084 num_clips /= 2; 1085 increment = 2; 1086 } 1087 1088 switch (dev_priv->active_display_unit) { 1089 case vmw_du_screen_target: 1090 ret = vmw_kms_stdu_dma(dev_priv, NULL, &vfbd->base, NULL, 1091 clips, NULL, num_clips, increment, 1092 true, true, NULL); 1093 break; 1094 case vmw_du_screen_object: 1095 ret = vmw_kms_sou_do_dmabuf_dirty(dev_priv, &vfbd->base, 1096 clips, NULL, num_clips, 1097 increment, true, NULL, NULL); 1098 break; 1099 case vmw_du_legacy: 1100 ret = vmw_kms_ldu_do_dmabuf_dirty(dev_priv, &vfbd->base, 0, 0, 1101 clips, num_clips, increment); 1102 break; 1103 default: 1104 ret = -EINVAL; 1105 WARN_ONCE(true, "Dirty called with invalid display system.\n"); 1106 break; 1107 } 1108 1109 vmw_fifo_flush(dev_priv, false); 1110 ttm_read_unlock(&dev_priv->reservation_sem); 1111 1112 drm_modeset_unlock_all(dev_priv->dev); 1113 1114 return ret; 1115 } 1116 1117 static const struct drm_framebuffer_funcs vmw_framebuffer_dmabuf_funcs = { 1118 .destroy = vmw_framebuffer_dmabuf_destroy, 1119 .dirty = vmw_framebuffer_dmabuf_dirty, 1120 }; 1121 1122 /** 1123 * Pin the dmabuffer in a location suitable for access by the 1124 * display system. 1125 */ 1126 static int vmw_framebuffer_pin(struct vmw_framebuffer *vfb) 1127 { 1128 struct vmw_private *dev_priv = vmw_priv(vfb->base.dev); 1129 struct vmw_dma_buffer *buf; 1130 struct ttm_placement *placement; 1131 int ret; 1132 1133 buf = vfb->dmabuf ? vmw_framebuffer_to_vfbd(&vfb->base)->buffer : 1134 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup; 1135 1136 if (!buf) 1137 return 0; 1138 1139 switch (dev_priv->active_display_unit) { 1140 case vmw_du_legacy: 1141 vmw_overlay_pause_all(dev_priv); 1142 ret = vmw_dmabuf_pin_in_start_of_vram(dev_priv, buf, false); 1143 vmw_overlay_resume_all(dev_priv); 1144 break; 1145 case vmw_du_screen_object: 1146 case vmw_du_screen_target: 1147 if (vfb->dmabuf) { 1148 if (dev_priv->capabilities & SVGA_CAP_3D) { 1149 /* 1150 * Use surface DMA to get content to 1151 * sreen target surface. 1152 */ 1153 placement = &vmw_vram_gmr_placement; 1154 } else { 1155 /* Use CPU blit. */ 1156 placement = &vmw_sys_placement; 1157 } 1158 } else { 1159 /* Use surface / image update */ 1160 placement = &vmw_mob_placement; 1161 } 1162 1163 return vmw_dmabuf_pin_in_placement(dev_priv, buf, placement, 1164 false); 1165 default: 1166 return -EINVAL; 1167 } 1168 1169 return ret; 1170 } 1171 1172 static int vmw_framebuffer_unpin(struct vmw_framebuffer *vfb) 1173 { 1174 struct vmw_private *dev_priv = vmw_priv(vfb->base.dev); 1175 struct vmw_dma_buffer *buf; 1176 1177 buf = vfb->dmabuf ? vmw_framebuffer_to_vfbd(&vfb->base)->buffer : 1178 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup; 1179 1180 if (WARN_ON(!buf)) 1181 return 0; 1182 1183 return vmw_dmabuf_unpin(dev_priv, buf, false); 1184 } 1185 1186 /** 1187 * vmw_create_dmabuf_proxy - create a proxy surface for the DMA buf 1188 * 1189 * @dev: DRM device 1190 * @mode_cmd: parameters for the new surface 1191 * @dmabuf_mob: MOB backing the DMA buf 1192 * @srf_out: newly created surface 1193 * 1194 * When the content FB is a DMA buf, we create a surface as a proxy to the 1195 * same buffer. This way we can do a surface copy rather than a surface DMA. 1196 * This is a more efficient approach 1197 * 1198 * RETURNS: 1199 * 0 on success, error code otherwise 1200 */ 1201 static int vmw_create_dmabuf_proxy(struct drm_device *dev, 1202 const struct drm_mode_fb_cmd2 *mode_cmd, 1203 struct vmw_dma_buffer *dmabuf_mob, 1204 struct vmw_surface **srf_out) 1205 { 1206 uint32_t format; 1207 struct drm_vmw_size content_base_size = {0}; 1208 struct vmw_resource *res; 1209 unsigned int bytes_pp; 1210 struct drm_format_name_buf format_name; 1211 int ret; 1212 1213 switch (mode_cmd->pixel_format) { 1214 case DRM_FORMAT_ARGB8888: 1215 case DRM_FORMAT_XRGB8888: 1216 format = SVGA3D_X8R8G8B8; 1217 bytes_pp = 4; 1218 break; 1219 1220 case DRM_FORMAT_RGB565: 1221 case DRM_FORMAT_XRGB1555: 1222 format = SVGA3D_R5G6B5; 1223 bytes_pp = 2; 1224 break; 1225 1226 case 8: 1227 format = SVGA3D_P8; 1228 bytes_pp = 1; 1229 break; 1230 1231 default: 1232 DRM_ERROR("Invalid framebuffer format %s\n", 1233 drm_get_format_name(mode_cmd->pixel_format, &format_name)); 1234 return -EINVAL; 1235 } 1236 1237 content_base_size.width = mode_cmd->pitches[0] / bytes_pp; 1238 content_base_size.height = mode_cmd->height; 1239 content_base_size.depth = 1; 1240 1241 ret = vmw_surface_gb_priv_define(dev, 1242 0, /* kernel visible only */ 1243 0, /* flags */ 1244 format, 1245 true, /* can be a scanout buffer */ 1246 1, /* num of mip levels */ 1247 0, 1248 0, 1249 content_base_size, 1250 srf_out); 1251 if (ret) { 1252 DRM_ERROR("Failed to allocate proxy content buffer\n"); 1253 return ret; 1254 } 1255 1256 res = &(*srf_out)->res; 1257 1258 /* Reserve and switch the backing mob. */ 1259 mutex_lock(&res->dev_priv->cmdbuf_mutex); 1260 (void) vmw_resource_reserve(res, false, true); 1261 vmw_dmabuf_unreference(&res->backup); 1262 res->backup = vmw_dmabuf_reference(dmabuf_mob); 1263 res->backup_offset = 0; 1264 vmw_resource_unreserve(res, false, NULL, 0); 1265 mutex_unlock(&res->dev_priv->cmdbuf_mutex); 1266 1267 return 0; 1268 } 1269 1270 1271 1272 static int vmw_kms_new_framebuffer_dmabuf(struct vmw_private *dev_priv, 1273 struct vmw_dma_buffer *dmabuf, 1274 struct vmw_framebuffer **out, 1275 const struct drm_mode_fb_cmd2 1276 *mode_cmd) 1277 1278 { 1279 struct drm_device *dev = dev_priv->dev; 1280 struct vmw_framebuffer_dmabuf *vfbd; 1281 unsigned int requested_size; 1282 struct drm_format_name_buf format_name; 1283 int ret; 1284 1285 requested_size = mode_cmd->height * mode_cmd->pitches[0]; 1286 if (unlikely(requested_size > dmabuf->base.num_pages * PAGE_SIZE)) { 1287 DRM_ERROR("Screen buffer object size is too small " 1288 "for requested mode.\n"); 1289 return -EINVAL; 1290 } 1291 1292 /* Limited framebuffer color depth support for screen objects */ 1293 if (dev_priv->active_display_unit == vmw_du_screen_object) { 1294 switch (mode_cmd->pixel_format) { 1295 case DRM_FORMAT_XRGB8888: 1296 case DRM_FORMAT_ARGB8888: 1297 break; 1298 case DRM_FORMAT_XRGB1555: 1299 case DRM_FORMAT_RGB565: 1300 break; 1301 default: 1302 DRM_ERROR("Invalid pixel format: %s\n", 1303 drm_get_format_name(mode_cmd->pixel_format, &format_name)); 1304 return -EINVAL; 1305 } 1306 } 1307 1308 vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL); 1309 if (!vfbd) { 1310 ret = -ENOMEM; 1311 goto out_err1; 1312 } 1313 1314 drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd); 1315 vfbd->base.dmabuf = true; 1316 vfbd->buffer = vmw_dmabuf_reference(dmabuf); 1317 vfbd->base.user_handle = mode_cmd->handles[0]; 1318 *out = &vfbd->base; 1319 1320 ret = drm_framebuffer_init(dev, &vfbd->base.base, 1321 &vmw_framebuffer_dmabuf_funcs); 1322 if (ret) 1323 goto out_err2; 1324 1325 return 0; 1326 1327 out_err2: 1328 vmw_dmabuf_unreference(&dmabuf); 1329 kfree(vfbd); 1330 out_err1: 1331 return ret; 1332 } 1333 1334 1335 /** 1336 * vmw_kms_srf_ok - check if a surface can be created 1337 * 1338 * @width: requested width 1339 * @height: requested height 1340 * 1341 * Surfaces need to be less than texture size 1342 */ 1343 static bool 1344 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height) 1345 { 1346 if (width > dev_priv->texture_max_width || 1347 height > dev_priv->texture_max_height) 1348 return false; 1349 1350 return true; 1351 } 1352 1353 /** 1354 * vmw_kms_new_framebuffer - Create a new framebuffer. 1355 * 1356 * @dev_priv: Pointer to device private struct. 1357 * @dmabuf: Pointer to dma buffer to wrap the kms framebuffer around. 1358 * Either @dmabuf or @surface must be NULL. 1359 * @surface: Pointer to a surface to wrap the kms framebuffer around. 1360 * Either @dmabuf or @surface must be NULL. 1361 * @only_2d: No presents will occur to this dma buffer based framebuffer. This 1362 * Helps the code to do some important optimizations. 1363 * @mode_cmd: Frame-buffer metadata. 1364 */ 1365 struct vmw_framebuffer * 1366 vmw_kms_new_framebuffer(struct vmw_private *dev_priv, 1367 struct vmw_dma_buffer *dmabuf, 1368 struct vmw_surface *surface, 1369 bool only_2d, 1370 const struct drm_mode_fb_cmd2 *mode_cmd) 1371 { 1372 struct vmw_framebuffer *vfb = NULL; 1373 bool is_dmabuf_proxy = false; 1374 int ret; 1375 1376 /* 1377 * We cannot use the SurfaceDMA command in an non-accelerated VM, 1378 * therefore, wrap the DMA buf in a surface so we can use the 1379 * SurfaceCopy command. 1380 */ 1381 if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height) && 1382 dmabuf && only_2d && 1383 mode_cmd->width > 64 && /* Don't create a proxy for cursor */ 1384 dev_priv->active_display_unit == vmw_du_screen_target) { 1385 ret = vmw_create_dmabuf_proxy(dev_priv->dev, mode_cmd, 1386 dmabuf, &surface); 1387 if (ret) 1388 return ERR_PTR(ret); 1389 1390 is_dmabuf_proxy = true; 1391 } 1392 1393 /* Create the new framebuffer depending one what we have */ 1394 if (surface) { 1395 ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb, 1396 mode_cmd, 1397 is_dmabuf_proxy); 1398 1399 /* 1400 * vmw_create_dmabuf_proxy() adds a reference that is no longer 1401 * needed 1402 */ 1403 if (is_dmabuf_proxy) 1404 vmw_surface_unreference(&surface); 1405 } else if (dmabuf) { 1406 ret = vmw_kms_new_framebuffer_dmabuf(dev_priv, dmabuf, &vfb, 1407 mode_cmd); 1408 } else { 1409 BUG(); 1410 } 1411 1412 if (ret) 1413 return ERR_PTR(ret); 1414 1415 vfb->pin = vmw_framebuffer_pin; 1416 vfb->unpin = vmw_framebuffer_unpin; 1417 1418 return vfb; 1419 } 1420 1421 /* 1422 * Generic Kernel modesetting functions 1423 */ 1424 1425 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev, 1426 struct drm_file *file_priv, 1427 const struct drm_mode_fb_cmd2 *mode_cmd) 1428 { 1429 struct vmw_private *dev_priv = vmw_priv(dev); 1430 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; 1431 struct vmw_framebuffer *vfb = NULL; 1432 struct vmw_surface *surface = NULL; 1433 struct vmw_dma_buffer *bo = NULL; 1434 struct ttm_base_object *user_obj; 1435 int ret; 1436 1437 /** 1438 * This code should be conditioned on Screen Objects not being used. 1439 * If screen objects are used, we can allocate a GMR to hold the 1440 * requested framebuffer. 1441 */ 1442 1443 if (!vmw_kms_validate_mode_vram(dev_priv, 1444 mode_cmd->pitches[0], 1445 mode_cmd->height)) { 1446 DRM_ERROR("Requested mode exceed bounding box limit.\n"); 1447 return ERR_PTR(-ENOMEM); 1448 } 1449 1450 /* 1451 * Take a reference on the user object of the resource 1452 * backing the kms fb. This ensures that user-space handle 1453 * lookups on that resource will always work as long as 1454 * it's registered with a kms framebuffer. This is important, 1455 * since vmw_execbuf_process identifies resources in the 1456 * command stream using user-space handles. 1457 */ 1458 1459 user_obj = ttm_base_object_lookup(tfile, mode_cmd->handles[0]); 1460 if (unlikely(user_obj == NULL)) { 1461 DRM_ERROR("Could not locate requested kms frame buffer.\n"); 1462 return ERR_PTR(-ENOENT); 1463 } 1464 1465 /** 1466 * End conditioned code. 1467 */ 1468 1469 /* returns either a dmabuf or surface */ 1470 ret = vmw_user_lookup_handle(dev_priv, tfile, 1471 mode_cmd->handles[0], 1472 &surface, &bo); 1473 if (ret) 1474 goto err_out; 1475 1476 1477 if (!bo && 1478 !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) { 1479 DRM_ERROR("Surface size cannot exceed %dx%d", 1480 dev_priv->texture_max_width, 1481 dev_priv->texture_max_height); 1482 goto err_out; 1483 } 1484 1485 1486 vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface, 1487 !(dev_priv->capabilities & SVGA_CAP_3D), 1488 mode_cmd); 1489 if (IS_ERR(vfb)) { 1490 ret = PTR_ERR(vfb); 1491 goto err_out; 1492 } 1493 1494 err_out: 1495 /* vmw_user_lookup_handle takes one ref so does new_fb */ 1496 if (bo) 1497 vmw_dmabuf_unreference(&bo); 1498 if (surface) 1499 vmw_surface_unreference(&surface); 1500 1501 if (ret) { 1502 DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret); 1503 ttm_base_object_unref(&user_obj); 1504 return ERR_PTR(ret); 1505 } else 1506 vfb->user_obj = user_obj; 1507 1508 return &vfb->base; 1509 } 1510 1511 1512 1513 /** 1514 * vmw_kms_atomic_check_modeset- validate state object for modeset changes 1515 * 1516 * @dev: DRM device 1517 * @state: the driver state object 1518 * 1519 * This is a simple wrapper around drm_atomic_helper_check_modeset() for 1520 * us to assign a value to mode->crtc_clock so that 1521 * drm_calc_timestamping_constants() won't throw an error message 1522 * 1523 * RETURNS 1524 * Zero for success or -errno 1525 */ 1526 static int 1527 vmw_kms_atomic_check_modeset(struct drm_device *dev, 1528 struct drm_atomic_state *state) 1529 { 1530 struct drm_crtc_state *crtc_state; 1531 struct drm_crtc *crtc; 1532 struct vmw_private *dev_priv = vmw_priv(dev); 1533 int i; 1534 1535 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 1536 unsigned long requested_bb_mem = 0; 1537 1538 if (dev_priv->active_display_unit == vmw_du_screen_target) { 1539 if (crtc->primary->fb) { 1540 int cpp = crtc->primary->fb->pitches[0] / 1541 crtc->primary->fb->width; 1542 1543 requested_bb_mem += crtc->mode.hdisplay * cpp * 1544 crtc->mode.vdisplay; 1545 } 1546 1547 if (requested_bb_mem > dev_priv->prim_bb_mem) 1548 return -EINVAL; 1549 } 1550 } 1551 1552 return drm_atomic_helper_check(dev, state); 1553 } 1554 1555 static const struct drm_mode_config_funcs vmw_kms_funcs = { 1556 .fb_create = vmw_kms_fb_create, 1557 .atomic_check = vmw_kms_atomic_check_modeset, 1558 .atomic_commit = drm_atomic_helper_commit, 1559 }; 1560 1561 static int vmw_kms_generic_present(struct vmw_private *dev_priv, 1562 struct drm_file *file_priv, 1563 struct vmw_framebuffer *vfb, 1564 struct vmw_surface *surface, 1565 uint32_t sid, 1566 int32_t destX, int32_t destY, 1567 struct drm_vmw_rect *clips, 1568 uint32_t num_clips) 1569 { 1570 return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips, 1571 &surface->res, destX, destY, 1572 num_clips, 1, NULL, NULL); 1573 } 1574 1575 1576 int vmw_kms_present(struct vmw_private *dev_priv, 1577 struct drm_file *file_priv, 1578 struct vmw_framebuffer *vfb, 1579 struct vmw_surface *surface, 1580 uint32_t sid, 1581 int32_t destX, int32_t destY, 1582 struct drm_vmw_rect *clips, 1583 uint32_t num_clips) 1584 { 1585 int ret; 1586 1587 switch (dev_priv->active_display_unit) { 1588 case vmw_du_screen_target: 1589 ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips, 1590 &surface->res, destX, destY, 1591 num_clips, 1, NULL, NULL); 1592 break; 1593 case vmw_du_screen_object: 1594 ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface, 1595 sid, destX, destY, clips, 1596 num_clips); 1597 break; 1598 default: 1599 WARN_ONCE(true, 1600 "Present called with invalid display system.\n"); 1601 ret = -ENOSYS; 1602 break; 1603 } 1604 if (ret) 1605 return ret; 1606 1607 vmw_fifo_flush(dev_priv, false); 1608 1609 return 0; 1610 } 1611 1612 static void 1613 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv) 1614 { 1615 if (dev_priv->hotplug_mode_update_property) 1616 return; 1617 1618 dev_priv->hotplug_mode_update_property = 1619 drm_property_create_range(dev_priv->dev, 1620 DRM_MODE_PROP_IMMUTABLE, 1621 "hotplug_mode_update", 0, 1); 1622 1623 if (!dev_priv->hotplug_mode_update_property) 1624 return; 1625 1626 } 1627 1628 int vmw_kms_init(struct vmw_private *dev_priv) 1629 { 1630 struct drm_device *dev = dev_priv->dev; 1631 int ret; 1632 1633 drm_mode_config_init(dev); 1634 dev->mode_config.funcs = &vmw_kms_funcs; 1635 dev->mode_config.min_width = 1; 1636 dev->mode_config.min_height = 1; 1637 dev->mode_config.max_width = dev_priv->texture_max_width; 1638 dev->mode_config.max_height = dev_priv->texture_max_height; 1639 1640 drm_mode_create_suggested_offset_properties(dev); 1641 vmw_kms_create_hotplug_mode_update_property(dev_priv); 1642 1643 ret = vmw_kms_stdu_init_display(dev_priv); 1644 if (ret) { 1645 ret = vmw_kms_sou_init_display(dev_priv); 1646 if (ret) /* Fallback */ 1647 ret = vmw_kms_ldu_init_display(dev_priv); 1648 } 1649 1650 return ret; 1651 } 1652 1653 int vmw_kms_close(struct vmw_private *dev_priv) 1654 { 1655 int ret = 0; 1656 1657 /* 1658 * Docs says we should take the lock before calling this function 1659 * but since it destroys encoders and our destructor calls 1660 * drm_encoder_cleanup which takes the lock we deadlock. 1661 */ 1662 drm_mode_config_cleanup(dev_priv->dev); 1663 if (dev_priv->active_display_unit == vmw_du_legacy) 1664 ret = vmw_kms_ldu_close_display(dev_priv); 1665 1666 return ret; 1667 } 1668 1669 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data, 1670 struct drm_file *file_priv) 1671 { 1672 struct drm_vmw_cursor_bypass_arg *arg = data; 1673 struct vmw_display_unit *du; 1674 struct drm_crtc *crtc; 1675 int ret = 0; 1676 1677 1678 mutex_lock(&dev->mode_config.mutex); 1679 if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) { 1680 1681 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 1682 du = vmw_crtc_to_du(crtc); 1683 du->hotspot_x = arg->xhot; 1684 du->hotspot_y = arg->yhot; 1685 } 1686 1687 mutex_unlock(&dev->mode_config.mutex); 1688 return 0; 1689 } 1690 1691 crtc = drm_crtc_find(dev, file_priv, arg->crtc_id); 1692 if (!crtc) { 1693 ret = -ENOENT; 1694 goto out; 1695 } 1696 1697 du = vmw_crtc_to_du(crtc); 1698 1699 du->hotspot_x = arg->xhot; 1700 du->hotspot_y = arg->yhot; 1701 1702 out: 1703 mutex_unlock(&dev->mode_config.mutex); 1704 1705 return ret; 1706 } 1707 1708 int vmw_kms_write_svga(struct vmw_private *vmw_priv, 1709 unsigned width, unsigned height, unsigned pitch, 1710 unsigned bpp, unsigned depth) 1711 { 1712 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK) 1713 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch); 1714 else if (vmw_fifo_have_pitchlock(vmw_priv)) 1715 vmw_mmio_write(pitch, vmw_priv->mmio_virt + 1716 SVGA_FIFO_PITCHLOCK); 1717 vmw_write(vmw_priv, SVGA_REG_WIDTH, width); 1718 vmw_write(vmw_priv, SVGA_REG_HEIGHT, height); 1719 vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp); 1720 1721 if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) { 1722 DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n", 1723 depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH)); 1724 return -EINVAL; 1725 } 1726 1727 return 0; 1728 } 1729 1730 int vmw_kms_save_vga(struct vmw_private *vmw_priv) 1731 { 1732 struct vmw_vga_topology_state *save; 1733 uint32_t i; 1734 1735 vmw_priv->vga_width = vmw_read(vmw_priv, SVGA_REG_WIDTH); 1736 vmw_priv->vga_height = vmw_read(vmw_priv, SVGA_REG_HEIGHT); 1737 vmw_priv->vga_bpp = vmw_read(vmw_priv, SVGA_REG_BITS_PER_PIXEL); 1738 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK) 1739 vmw_priv->vga_pitchlock = 1740 vmw_read(vmw_priv, SVGA_REG_PITCHLOCK); 1741 else if (vmw_fifo_have_pitchlock(vmw_priv)) 1742 vmw_priv->vga_pitchlock = vmw_mmio_read(vmw_priv->mmio_virt + 1743 SVGA_FIFO_PITCHLOCK); 1744 1745 if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY)) 1746 return 0; 1747 1748 vmw_priv->num_displays = vmw_read(vmw_priv, 1749 SVGA_REG_NUM_GUEST_DISPLAYS); 1750 1751 if (vmw_priv->num_displays == 0) 1752 vmw_priv->num_displays = 1; 1753 1754 for (i = 0; i < vmw_priv->num_displays; ++i) { 1755 save = &vmw_priv->vga_save[i]; 1756 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i); 1757 save->primary = vmw_read(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY); 1758 save->pos_x = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_X); 1759 save->pos_y = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y); 1760 save->width = vmw_read(vmw_priv, SVGA_REG_DISPLAY_WIDTH); 1761 save->height = vmw_read(vmw_priv, SVGA_REG_DISPLAY_HEIGHT); 1762 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID); 1763 if (i == 0 && vmw_priv->num_displays == 1 && 1764 save->width == 0 && save->height == 0) { 1765 1766 /* 1767 * It should be fairly safe to assume that these 1768 * values are uninitialized. 1769 */ 1770 1771 save->width = vmw_priv->vga_width - save->pos_x; 1772 save->height = vmw_priv->vga_height - save->pos_y; 1773 } 1774 } 1775 1776 return 0; 1777 } 1778 1779 int vmw_kms_restore_vga(struct vmw_private *vmw_priv) 1780 { 1781 struct vmw_vga_topology_state *save; 1782 uint32_t i; 1783 1784 vmw_write(vmw_priv, SVGA_REG_WIDTH, vmw_priv->vga_width); 1785 vmw_write(vmw_priv, SVGA_REG_HEIGHT, vmw_priv->vga_height); 1786 vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, vmw_priv->vga_bpp); 1787 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK) 1788 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, 1789 vmw_priv->vga_pitchlock); 1790 else if (vmw_fifo_have_pitchlock(vmw_priv)) 1791 vmw_mmio_write(vmw_priv->vga_pitchlock, 1792 vmw_priv->mmio_virt + SVGA_FIFO_PITCHLOCK); 1793 1794 if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY)) 1795 return 0; 1796 1797 for (i = 0; i < vmw_priv->num_displays; ++i) { 1798 save = &vmw_priv->vga_save[i]; 1799 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i); 1800 vmw_write(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY, save->primary); 1801 vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_X, save->pos_x); 1802 vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y, save->pos_y); 1803 vmw_write(vmw_priv, SVGA_REG_DISPLAY_WIDTH, save->width); 1804 vmw_write(vmw_priv, SVGA_REG_DISPLAY_HEIGHT, save->height); 1805 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID); 1806 } 1807 1808 return 0; 1809 } 1810 1811 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv, 1812 uint32_t pitch, 1813 uint32_t height) 1814 { 1815 return ((u64) pitch * (u64) height) < (u64) 1816 ((dev_priv->active_display_unit == vmw_du_screen_target) ? 1817 dev_priv->prim_bb_mem : dev_priv->vram_size); 1818 } 1819 1820 1821 /** 1822 * Function called by DRM code called with vbl_lock held. 1823 */ 1824 u32 vmw_get_vblank_counter(struct drm_device *dev, unsigned int pipe) 1825 { 1826 return 0; 1827 } 1828 1829 /** 1830 * Function called by DRM code called with vbl_lock held. 1831 */ 1832 int vmw_enable_vblank(struct drm_device *dev, unsigned int pipe) 1833 { 1834 return -EINVAL; 1835 } 1836 1837 /** 1838 * Function called by DRM code called with vbl_lock held. 1839 */ 1840 void vmw_disable_vblank(struct drm_device *dev, unsigned int pipe) 1841 { 1842 } 1843 1844 1845 /* 1846 * Small shared kms functions. 1847 */ 1848 1849 static int vmw_du_update_layout(struct vmw_private *dev_priv, unsigned num, 1850 struct drm_vmw_rect *rects) 1851 { 1852 struct drm_device *dev = dev_priv->dev; 1853 struct vmw_display_unit *du; 1854 struct drm_connector *con; 1855 1856 mutex_lock(&dev->mode_config.mutex); 1857 1858 #if 0 1859 { 1860 unsigned int i; 1861 1862 DRM_INFO("%s: new layout ", __func__); 1863 for (i = 0; i < num; i++) 1864 DRM_INFO("(%i, %i %ux%u) ", rects[i].x, rects[i].y, 1865 rects[i].w, rects[i].h); 1866 DRM_INFO("\n"); 1867 } 1868 #endif 1869 1870 list_for_each_entry(con, &dev->mode_config.connector_list, head) { 1871 du = vmw_connector_to_du(con); 1872 if (num > du->unit) { 1873 du->pref_width = rects[du->unit].w; 1874 du->pref_height = rects[du->unit].h; 1875 du->pref_active = true; 1876 du->gui_x = rects[du->unit].x; 1877 du->gui_y = rects[du->unit].y; 1878 drm_object_property_set_value 1879 (&con->base, dev->mode_config.suggested_x_property, 1880 du->gui_x); 1881 drm_object_property_set_value 1882 (&con->base, dev->mode_config.suggested_y_property, 1883 du->gui_y); 1884 } else { 1885 du->pref_width = 800; 1886 du->pref_height = 600; 1887 du->pref_active = false; 1888 drm_object_property_set_value 1889 (&con->base, dev->mode_config.suggested_x_property, 1890 0); 1891 drm_object_property_set_value 1892 (&con->base, dev->mode_config.suggested_y_property, 1893 0); 1894 } 1895 con->status = vmw_du_connector_detect(con, true); 1896 } 1897 1898 mutex_unlock(&dev->mode_config.mutex); 1899 drm_sysfs_hotplug_event(dev); 1900 1901 return 0; 1902 } 1903 1904 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc, 1905 u16 *r, u16 *g, u16 *b, 1906 uint32_t size, 1907 struct drm_modeset_acquire_ctx *ctx) 1908 { 1909 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 1910 int i; 1911 1912 for (i = 0; i < size; i++) { 1913 DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i, 1914 r[i], g[i], b[i]); 1915 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8); 1916 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8); 1917 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8); 1918 } 1919 1920 return 0; 1921 } 1922 1923 int vmw_du_connector_dpms(struct drm_connector *connector, int mode) 1924 { 1925 return 0; 1926 } 1927 1928 enum drm_connector_status 1929 vmw_du_connector_detect(struct drm_connector *connector, bool force) 1930 { 1931 uint32_t num_displays; 1932 struct drm_device *dev = connector->dev; 1933 struct vmw_private *dev_priv = vmw_priv(dev); 1934 struct vmw_display_unit *du = vmw_connector_to_du(connector); 1935 1936 num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS); 1937 1938 return ((vmw_connector_to_du(connector)->unit < num_displays && 1939 du->pref_active) ? 1940 connector_status_connected : connector_status_disconnected); 1941 } 1942 1943 static struct drm_display_mode vmw_kms_connector_builtin[] = { 1944 /* 640x480@60Hz */ 1945 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656, 1946 752, 800, 0, 480, 489, 492, 525, 0, 1947 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 1948 /* 800x600@60Hz */ 1949 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840, 1950 968, 1056, 0, 600, 601, 605, 628, 0, 1951 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 1952 /* 1024x768@60Hz */ 1953 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048, 1954 1184, 1344, 0, 768, 771, 777, 806, 0, 1955 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 1956 /* 1152x864@75Hz */ 1957 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216, 1958 1344, 1600, 0, 864, 865, 868, 900, 0, 1959 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 1960 /* 1280x768@60Hz */ 1961 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344, 1962 1472, 1664, 0, 768, 771, 778, 798, 0, 1963 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 1964 /* 1280x800@60Hz */ 1965 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352, 1966 1480, 1680, 0, 800, 803, 809, 831, 0, 1967 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 1968 /* 1280x960@60Hz */ 1969 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376, 1970 1488, 1800, 0, 960, 961, 964, 1000, 0, 1971 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 1972 /* 1280x1024@60Hz */ 1973 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328, 1974 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, 1975 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 1976 /* 1360x768@60Hz */ 1977 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424, 1978 1536, 1792, 0, 768, 771, 777, 795, 0, 1979 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 1980 /* 1440x1050@60Hz */ 1981 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488, 1982 1632, 1864, 0, 1050, 1053, 1057, 1089, 0, 1983 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 1984 /* 1440x900@60Hz */ 1985 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520, 1986 1672, 1904, 0, 900, 903, 909, 934, 0, 1987 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 1988 /* 1600x1200@60Hz */ 1989 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664, 1990 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 1991 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 1992 /* 1680x1050@60Hz */ 1993 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784, 1994 1960, 2240, 0, 1050, 1053, 1059, 1089, 0, 1995 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 1996 /* 1792x1344@60Hz */ 1997 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920, 1998 2120, 2448, 0, 1344, 1345, 1348, 1394, 0, 1999 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2000 /* 1853x1392@60Hz */ 2001 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952, 2002 2176, 2528, 0, 1392, 1393, 1396, 1439, 0, 2003 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2004 /* 1920x1200@60Hz */ 2005 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056, 2006 2256, 2592, 0, 1200, 1203, 1209, 1245, 0, 2007 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2008 /* 1920x1440@60Hz */ 2009 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048, 2010 2256, 2600, 0, 1440, 1441, 1444, 1500, 0, 2011 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2012 /* 2560x1600@60Hz */ 2013 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752, 2014 3032, 3504, 0, 1600, 1603, 1609, 1658, 0, 2015 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2016 /* Terminate */ 2017 { DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) }, 2018 }; 2019 2020 /** 2021 * vmw_guess_mode_timing - Provide fake timings for a 2022 * 60Hz vrefresh mode. 2023 * 2024 * @mode - Pointer to a struct drm_display_mode with hdisplay and vdisplay 2025 * members filled in. 2026 */ 2027 void vmw_guess_mode_timing(struct drm_display_mode *mode) 2028 { 2029 mode->hsync_start = mode->hdisplay + 50; 2030 mode->hsync_end = mode->hsync_start + 50; 2031 mode->htotal = mode->hsync_end + 50; 2032 2033 mode->vsync_start = mode->vdisplay + 50; 2034 mode->vsync_end = mode->vsync_start + 50; 2035 mode->vtotal = mode->vsync_end + 50; 2036 2037 mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6; 2038 mode->vrefresh = drm_mode_vrefresh(mode); 2039 } 2040 2041 2042 int vmw_du_connector_fill_modes(struct drm_connector *connector, 2043 uint32_t max_width, uint32_t max_height) 2044 { 2045 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2046 struct drm_device *dev = connector->dev; 2047 struct vmw_private *dev_priv = vmw_priv(dev); 2048 struct drm_display_mode *mode = NULL; 2049 struct drm_display_mode *bmode; 2050 struct drm_display_mode prefmode = { DRM_MODE("preferred", 2051 DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED, 2052 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2053 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) 2054 }; 2055 int i; 2056 u32 assumed_bpp = 4; 2057 2058 if (dev_priv->assume_16bpp) 2059 assumed_bpp = 2; 2060 2061 if (dev_priv->active_display_unit == vmw_du_screen_target) { 2062 max_width = min(max_width, dev_priv->stdu_max_width); 2063 max_width = min(max_width, dev_priv->texture_max_width); 2064 2065 max_height = min(max_height, dev_priv->stdu_max_height); 2066 max_height = min(max_height, dev_priv->texture_max_height); 2067 } 2068 2069 /* Add preferred mode */ 2070 mode = drm_mode_duplicate(dev, &prefmode); 2071 if (!mode) 2072 return 0; 2073 mode->hdisplay = du->pref_width; 2074 mode->vdisplay = du->pref_height; 2075 vmw_guess_mode_timing(mode); 2076 2077 if (vmw_kms_validate_mode_vram(dev_priv, 2078 mode->hdisplay * assumed_bpp, 2079 mode->vdisplay)) { 2080 drm_mode_probed_add(connector, mode); 2081 } else { 2082 drm_mode_destroy(dev, mode); 2083 mode = NULL; 2084 } 2085 2086 if (du->pref_mode) { 2087 list_del_init(&du->pref_mode->head); 2088 drm_mode_destroy(dev, du->pref_mode); 2089 } 2090 2091 /* mode might be null here, this is intended */ 2092 du->pref_mode = mode; 2093 2094 for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) { 2095 bmode = &vmw_kms_connector_builtin[i]; 2096 if (bmode->hdisplay > max_width || 2097 bmode->vdisplay > max_height) 2098 continue; 2099 2100 if (!vmw_kms_validate_mode_vram(dev_priv, 2101 bmode->hdisplay * assumed_bpp, 2102 bmode->vdisplay)) 2103 continue; 2104 2105 mode = drm_mode_duplicate(dev, bmode); 2106 if (!mode) 2107 return 0; 2108 mode->vrefresh = drm_mode_vrefresh(mode); 2109 2110 drm_mode_probed_add(connector, mode); 2111 } 2112 2113 drm_mode_connector_list_update(connector); 2114 /* Move the prefered mode first, help apps pick the right mode. */ 2115 drm_mode_sort(&connector->modes); 2116 2117 return 1; 2118 } 2119 2120 int vmw_du_connector_set_property(struct drm_connector *connector, 2121 struct drm_property *property, 2122 uint64_t val) 2123 { 2124 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2125 struct vmw_private *dev_priv = vmw_priv(connector->dev); 2126 2127 if (property == dev_priv->implicit_placement_property) 2128 du->is_implicit = val; 2129 2130 return 0; 2131 } 2132 2133 2134 2135 /** 2136 * vmw_du_connector_atomic_set_property - Atomic version of get property 2137 * 2138 * @crtc - crtc the property is associated with 2139 * 2140 * Returns: 2141 * Zero on success, negative errno on failure. 2142 */ 2143 int 2144 vmw_du_connector_atomic_set_property(struct drm_connector *connector, 2145 struct drm_connector_state *state, 2146 struct drm_property *property, 2147 uint64_t val) 2148 { 2149 struct vmw_private *dev_priv = vmw_priv(connector->dev); 2150 struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state); 2151 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2152 2153 2154 if (property == dev_priv->implicit_placement_property) { 2155 vcs->is_implicit = val; 2156 2157 /* 2158 * We should really be doing a drm_atomic_commit() to 2159 * commit the new state, but since this doesn't cause 2160 * an immedate state change, this is probably ok 2161 */ 2162 du->is_implicit = vcs->is_implicit; 2163 } else { 2164 return -EINVAL; 2165 } 2166 2167 return 0; 2168 } 2169 2170 2171 /** 2172 * vmw_du_connector_atomic_get_property - Atomic version of get property 2173 * 2174 * @connector - connector the property is associated with 2175 * 2176 * Returns: 2177 * Zero on success, negative errno on failure. 2178 */ 2179 int 2180 vmw_du_connector_atomic_get_property(struct drm_connector *connector, 2181 const struct drm_connector_state *state, 2182 struct drm_property *property, 2183 uint64_t *val) 2184 { 2185 struct vmw_private *dev_priv = vmw_priv(connector->dev); 2186 struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state); 2187 2188 if (property == dev_priv->implicit_placement_property) 2189 *val = vcs->is_implicit; 2190 else { 2191 DRM_ERROR("Invalid Property %s\n", property->name); 2192 return -EINVAL; 2193 } 2194 2195 return 0; 2196 } 2197 2198 2199 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data, 2200 struct drm_file *file_priv) 2201 { 2202 struct vmw_private *dev_priv = vmw_priv(dev); 2203 struct drm_vmw_update_layout_arg *arg = 2204 (struct drm_vmw_update_layout_arg *)data; 2205 void __user *user_rects; 2206 struct drm_vmw_rect *rects; 2207 unsigned rects_size; 2208 int ret; 2209 int i; 2210 u64 total_pixels = 0; 2211 struct drm_mode_config *mode_config = &dev->mode_config; 2212 struct drm_vmw_rect bounding_box = {0}; 2213 2214 if (!arg->num_outputs) { 2215 struct drm_vmw_rect def_rect = {0, 0, 800, 600}; 2216 vmw_du_update_layout(dev_priv, 1, &def_rect); 2217 return 0; 2218 } 2219 2220 rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect); 2221 rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect), 2222 GFP_KERNEL); 2223 if (unlikely(!rects)) 2224 return -ENOMEM; 2225 2226 user_rects = (void __user *)(unsigned long)arg->rects; 2227 ret = copy_from_user(rects, user_rects, rects_size); 2228 if (unlikely(ret != 0)) { 2229 DRM_ERROR("Failed to get rects.\n"); 2230 ret = -EFAULT; 2231 goto out_free; 2232 } 2233 2234 for (i = 0; i < arg->num_outputs; ++i) { 2235 if (rects[i].x < 0 || 2236 rects[i].y < 0 || 2237 rects[i].x + rects[i].w > mode_config->max_width || 2238 rects[i].y + rects[i].h > mode_config->max_height) { 2239 DRM_ERROR("Invalid GUI layout.\n"); 2240 ret = -EINVAL; 2241 goto out_free; 2242 } 2243 2244 /* 2245 * bounding_box.w and bunding_box.h are used as 2246 * lower-right coordinates 2247 */ 2248 if (rects[i].x + rects[i].w > bounding_box.w) 2249 bounding_box.w = rects[i].x + rects[i].w; 2250 2251 if (rects[i].y + rects[i].h > bounding_box.h) 2252 bounding_box.h = rects[i].y + rects[i].h; 2253 2254 total_pixels += (u64) rects[i].w * (u64) rects[i].h; 2255 } 2256 2257 if (dev_priv->active_display_unit == vmw_du_screen_target) { 2258 /* 2259 * For Screen Targets, the limits for a toplogy are: 2260 * 1. Bounding box (assuming 32bpp) must be < prim_bb_mem 2261 * 2. Total pixels (assuming 32bpp) must be < prim_bb_mem 2262 */ 2263 u64 bb_mem = (u64) bounding_box.w * bounding_box.h * 4; 2264 u64 pixel_mem = total_pixels * 4; 2265 2266 if (bb_mem > dev_priv->prim_bb_mem) { 2267 DRM_ERROR("Topology is beyond supported limits.\n"); 2268 ret = -EINVAL; 2269 goto out_free; 2270 } 2271 2272 if (pixel_mem > dev_priv->prim_bb_mem) { 2273 DRM_ERROR("Combined output size too large\n"); 2274 ret = -EINVAL; 2275 goto out_free; 2276 } 2277 } 2278 2279 vmw_du_update_layout(dev_priv, arg->num_outputs, rects); 2280 2281 out_free: 2282 kfree(rects); 2283 return ret; 2284 } 2285 2286 /** 2287 * vmw_kms_helper_dirty - Helper to build commands and perform actions based 2288 * on a set of cliprects and a set of display units. 2289 * 2290 * @dev_priv: Pointer to a device private structure. 2291 * @framebuffer: Pointer to the framebuffer on which to perform the actions. 2292 * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL. 2293 * Cliprects are given in framebuffer coordinates. 2294 * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must 2295 * be NULL. Cliprects are given in source coordinates. 2296 * @dest_x: X coordinate offset for the crtc / destination clip rects. 2297 * @dest_y: Y coordinate offset for the crtc / destination clip rects. 2298 * @num_clips: Number of cliprects in the @clips or @vclips array. 2299 * @increment: Integer with which to increment the clip counter when looping. 2300 * Used to skip a predetermined number of clip rects. 2301 * @dirty: Closure structure. See the description of struct vmw_kms_dirty. 2302 */ 2303 int vmw_kms_helper_dirty(struct vmw_private *dev_priv, 2304 struct vmw_framebuffer *framebuffer, 2305 const struct drm_clip_rect *clips, 2306 const struct drm_vmw_rect *vclips, 2307 s32 dest_x, s32 dest_y, 2308 int num_clips, 2309 int increment, 2310 struct vmw_kms_dirty *dirty) 2311 { 2312 struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS]; 2313 struct drm_crtc *crtc; 2314 u32 num_units = 0; 2315 u32 i, k; 2316 2317 dirty->dev_priv = dev_priv; 2318 2319 /* If crtc is passed, no need to iterate over other display units */ 2320 if (dirty->crtc) { 2321 units[num_units++] = vmw_crtc_to_du(dirty->crtc); 2322 } else { 2323 list_for_each_entry(crtc, &dev_priv->dev->mode_config.crtc_list, 2324 head) { 2325 if (crtc->primary->fb != &framebuffer->base) 2326 continue; 2327 units[num_units++] = vmw_crtc_to_du(crtc); 2328 } 2329 } 2330 2331 for (k = 0; k < num_units; k++) { 2332 struct vmw_display_unit *unit = units[k]; 2333 s32 crtc_x = unit->crtc.x; 2334 s32 crtc_y = unit->crtc.y; 2335 s32 crtc_width = unit->crtc.mode.hdisplay; 2336 s32 crtc_height = unit->crtc.mode.vdisplay; 2337 const struct drm_clip_rect *clips_ptr = clips; 2338 const struct drm_vmw_rect *vclips_ptr = vclips; 2339 2340 dirty->unit = unit; 2341 if (dirty->fifo_reserve_size > 0) { 2342 dirty->cmd = vmw_fifo_reserve(dev_priv, 2343 dirty->fifo_reserve_size); 2344 if (!dirty->cmd) { 2345 DRM_ERROR("Couldn't reserve fifo space " 2346 "for dirty blits.\n"); 2347 return -ENOMEM; 2348 } 2349 memset(dirty->cmd, 0, dirty->fifo_reserve_size); 2350 } 2351 dirty->num_hits = 0; 2352 for (i = 0; i < num_clips; i++, clips_ptr += increment, 2353 vclips_ptr += increment) { 2354 s32 clip_left; 2355 s32 clip_top; 2356 2357 /* 2358 * Select clip array type. Note that integer type 2359 * in @clips is unsigned short, whereas in @vclips 2360 * it's 32-bit. 2361 */ 2362 if (clips) { 2363 dirty->fb_x = (s32) clips_ptr->x1; 2364 dirty->fb_y = (s32) clips_ptr->y1; 2365 dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x - 2366 crtc_x; 2367 dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y - 2368 crtc_y; 2369 } else { 2370 dirty->fb_x = vclips_ptr->x; 2371 dirty->fb_y = vclips_ptr->y; 2372 dirty->unit_x2 = dirty->fb_x + vclips_ptr->w + 2373 dest_x - crtc_x; 2374 dirty->unit_y2 = dirty->fb_y + vclips_ptr->h + 2375 dest_y - crtc_y; 2376 } 2377 2378 dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x; 2379 dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y; 2380 2381 /* Skip this clip if it's outside the crtc region */ 2382 if (dirty->unit_x1 >= crtc_width || 2383 dirty->unit_y1 >= crtc_height || 2384 dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0) 2385 continue; 2386 2387 /* Clip right and bottom to crtc limits */ 2388 dirty->unit_x2 = min_t(s32, dirty->unit_x2, 2389 crtc_width); 2390 dirty->unit_y2 = min_t(s32, dirty->unit_y2, 2391 crtc_height); 2392 2393 /* Clip left and top to crtc limits */ 2394 clip_left = min_t(s32, dirty->unit_x1, 0); 2395 clip_top = min_t(s32, dirty->unit_y1, 0); 2396 dirty->unit_x1 -= clip_left; 2397 dirty->unit_y1 -= clip_top; 2398 dirty->fb_x -= clip_left; 2399 dirty->fb_y -= clip_top; 2400 2401 dirty->clip(dirty); 2402 } 2403 2404 dirty->fifo_commit(dirty); 2405 } 2406 2407 return 0; 2408 } 2409 2410 /** 2411 * vmw_kms_helper_buffer_prepare - Reserve and validate a buffer object before 2412 * command submission. 2413 * 2414 * @dev_priv. Pointer to a device private structure. 2415 * @buf: The buffer object 2416 * @interruptible: Whether to perform waits as interruptible. 2417 * @validate_as_mob: Whether the buffer should be validated as a MOB. If false, 2418 * The buffer will be validated as a GMR. Already pinned buffers will not be 2419 * validated. 2420 * 2421 * Returns 0 on success, negative error code on failure, -ERESTARTSYS if 2422 * interrupted by a signal. 2423 */ 2424 int vmw_kms_helper_buffer_prepare(struct vmw_private *dev_priv, 2425 struct vmw_dma_buffer *buf, 2426 bool interruptible, 2427 bool validate_as_mob, 2428 bool for_cpu_blit) 2429 { 2430 struct ttm_operation_ctx ctx = { 2431 .interruptible = interruptible, 2432 .no_wait_gpu = false}; 2433 struct ttm_buffer_object *bo = &buf->base; 2434 int ret; 2435 2436 ttm_bo_reserve(bo, false, false, NULL); 2437 if (for_cpu_blit) 2438 ret = ttm_bo_validate(bo, &vmw_nonfixed_placement, &ctx); 2439 else 2440 ret = vmw_validate_single_buffer(dev_priv, bo, interruptible, 2441 validate_as_mob); 2442 if (ret) 2443 ttm_bo_unreserve(bo); 2444 2445 return ret; 2446 } 2447 2448 /** 2449 * vmw_kms_helper_buffer_revert - Undo the actions of 2450 * vmw_kms_helper_buffer_prepare. 2451 * 2452 * @res: Pointer to the buffer object. 2453 * 2454 * Helper to be used if an error forces the caller to undo the actions of 2455 * vmw_kms_helper_buffer_prepare. 2456 */ 2457 void vmw_kms_helper_buffer_revert(struct vmw_dma_buffer *buf) 2458 { 2459 if (buf) 2460 ttm_bo_unreserve(&buf->base); 2461 } 2462 2463 /** 2464 * vmw_kms_helper_buffer_finish - Unreserve and fence a buffer object after 2465 * kms command submission. 2466 * 2467 * @dev_priv: Pointer to a device private structure. 2468 * @file_priv: Pointer to a struct drm_file representing the caller's 2469 * connection. Must be set to NULL if @user_fence_rep is NULL, and conversely 2470 * if non-NULL, @user_fence_rep must be non-NULL. 2471 * @buf: The buffer object. 2472 * @out_fence: Optional pointer to a fence pointer. If non-NULL, a 2473 * ref-counted fence pointer is returned here. 2474 * @user_fence_rep: Optional pointer to a user-space provided struct 2475 * drm_vmw_fence_rep. If provided, @file_priv must also be provided and the 2476 * function copies fence data to user-space in a fail-safe manner. 2477 */ 2478 void vmw_kms_helper_buffer_finish(struct vmw_private *dev_priv, 2479 struct drm_file *file_priv, 2480 struct vmw_dma_buffer *buf, 2481 struct vmw_fence_obj **out_fence, 2482 struct drm_vmw_fence_rep __user * 2483 user_fence_rep) 2484 { 2485 struct vmw_fence_obj *fence; 2486 uint32_t handle; 2487 int ret; 2488 2489 ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence, 2490 file_priv ? &handle : NULL); 2491 if (buf) 2492 vmw_fence_single_bo(&buf->base, fence); 2493 if (file_priv) 2494 vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv), 2495 ret, user_fence_rep, fence, 2496 handle, -1, NULL); 2497 if (out_fence) 2498 *out_fence = fence; 2499 else 2500 vmw_fence_obj_unreference(&fence); 2501 2502 vmw_kms_helper_buffer_revert(buf); 2503 } 2504 2505 2506 /** 2507 * vmw_kms_helper_resource_revert - Undo the actions of 2508 * vmw_kms_helper_resource_prepare. 2509 * 2510 * @res: Pointer to the resource. Typically a surface. 2511 * 2512 * Helper to be used if an error forces the caller to undo the actions of 2513 * vmw_kms_helper_resource_prepare. 2514 */ 2515 void vmw_kms_helper_resource_revert(struct vmw_validation_ctx *ctx) 2516 { 2517 struct vmw_resource *res = ctx->res; 2518 2519 vmw_kms_helper_buffer_revert(ctx->buf); 2520 vmw_dmabuf_unreference(&ctx->buf); 2521 vmw_resource_unreserve(res, false, NULL, 0); 2522 mutex_unlock(&res->dev_priv->cmdbuf_mutex); 2523 } 2524 2525 /** 2526 * vmw_kms_helper_resource_prepare - Reserve and validate a resource before 2527 * command submission. 2528 * 2529 * @res: Pointer to the resource. Typically a surface. 2530 * @interruptible: Whether to perform waits as interruptible. 2531 * 2532 * Reserves and validates also the backup buffer if a guest-backed resource. 2533 * Returns 0 on success, negative error code on failure. -ERESTARTSYS if 2534 * interrupted by a signal. 2535 */ 2536 int vmw_kms_helper_resource_prepare(struct vmw_resource *res, 2537 bool interruptible, 2538 struct vmw_validation_ctx *ctx) 2539 { 2540 int ret = 0; 2541 2542 ctx->buf = NULL; 2543 ctx->res = res; 2544 2545 if (interruptible) 2546 ret = mutex_lock_interruptible(&res->dev_priv->cmdbuf_mutex); 2547 else 2548 mutex_lock(&res->dev_priv->cmdbuf_mutex); 2549 2550 if (unlikely(ret != 0)) 2551 return -ERESTARTSYS; 2552 2553 ret = vmw_resource_reserve(res, interruptible, false); 2554 if (ret) 2555 goto out_unlock; 2556 2557 if (res->backup) { 2558 ret = vmw_kms_helper_buffer_prepare(res->dev_priv, res->backup, 2559 interruptible, 2560 res->dev_priv->has_mob, 2561 false); 2562 if (ret) 2563 goto out_unreserve; 2564 2565 ctx->buf = vmw_dmabuf_reference(res->backup); 2566 } 2567 ret = vmw_resource_validate(res); 2568 if (ret) 2569 goto out_revert; 2570 return 0; 2571 2572 out_revert: 2573 vmw_kms_helper_buffer_revert(ctx->buf); 2574 out_unreserve: 2575 vmw_resource_unreserve(res, false, NULL, 0); 2576 out_unlock: 2577 mutex_unlock(&res->dev_priv->cmdbuf_mutex); 2578 return ret; 2579 } 2580 2581 /** 2582 * vmw_kms_helper_resource_finish - Unreserve and fence a resource after 2583 * kms command submission. 2584 * 2585 * @res: Pointer to the resource. Typically a surface. 2586 * @out_fence: Optional pointer to a fence pointer. If non-NULL, a 2587 * ref-counted fence pointer is returned here. 2588 */ 2589 void vmw_kms_helper_resource_finish(struct vmw_validation_ctx *ctx, 2590 struct vmw_fence_obj **out_fence) 2591 { 2592 struct vmw_resource *res = ctx->res; 2593 2594 if (ctx->buf || out_fence) 2595 vmw_kms_helper_buffer_finish(res->dev_priv, NULL, ctx->buf, 2596 out_fence, NULL); 2597 2598 vmw_dmabuf_unreference(&ctx->buf); 2599 vmw_resource_unreserve(res, false, NULL, 0); 2600 mutex_unlock(&res->dev_priv->cmdbuf_mutex); 2601 } 2602 2603 /** 2604 * vmw_kms_update_proxy - Helper function to update a proxy surface from 2605 * its backing MOB. 2606 * 2607 * @res: Pointer to the surface resource 2608 * @clips: Clip rects in framebuffer (surface) space. 2609 * @num_clips: Number of clips in @clips. 2610 * @increment: Integer with which to increment the clip counter when looping. 2611 * Used to skip a predetermined number of clip rects. 2612 * 2613 * This function makes sure the proxy surface is updated from its backing MOB 2614 * using the region given by @clips. The surface resource @res and its backing 2615 * MOB needs to be reserved and validated on call. 2616 */ 2617 int vmw_kms_update_proxy(struct vmw_resource *res, 2618 const struct drm_clip_rect *clips, 2619 unsigned num_clips, 2620 int increment) 2621 { 2622 struct vmw_private *dev_priv = res->dev_priv; 2623 struct drm_vmw_size *size = &vmw_res_to_srf(res)->base_size; 2624 struct { 2625 SVGA3dCmdHeader header; 2626 SVGA3dCmdUpdateGBImage body; 2627 } *cmd; 2628 SVGA3dBox *box; 2629 size_t copy_size = 0; 2630 int i; 2631 2632 if (!clips) 2633 return 0; 2634 2635 cmd = vmw_fifo_reserve(dev_priv, sizeof(*cmd) * num_clips); 2636 if (!cmd) { 2637 DRM_ERROR("Couldn't reserve fifo space for proxy surface " 2638 "update.\n"); 2639 return -ENOMEM; 2640 } 2641 2642 for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) { 2643 box = &cmd->body.box; 2644 2645 cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE; 2646 cmd->header.size = sizeof(cmd->body); 2647 cmd->body.image.sid = res->id; 2648 cmd->body.image.face = 0; 2649 cmd->body.image.mipmap = 0; 2650 2651 if (clips->x1 > size->width || clips->x2 > size->width || 2652 clips->y1 > size->height || clips->y2 > size->height) { 2653 DRM_ERROR("Invalid clips outsize of framebuffer.\n"); 2654 return -EINVAL; 2655 } 2656 2657 box->x = clips->x1; 2658 box->y = clips->y1; 2659 box->z = 0; 2660 box->w = clips->x2 - clips->x1; 2661 box->h = clips->y2 - clips->y1; 2662 box->d = 1; 2663 2664 copy_size += sizeof(*cmd); 2665 } 2666 2667 vmw_fifo_commit(dev_priv, copy_size); 2668 2669 return 0; 2670 } 2671 2672 int vmw_kms_fbdev_init_data(struct vmw_private *dev_priv, 2673 unsigned unit, 2674 u32 max_width, 2675 u32 max_height, 2676 struct drm_connector **p_con, 2677 struct drm_crtc **p_crtc, 2678 struct drm_display_mode **p_mode) 2679 { 2680 struct drm_connector *con; 2681 struct vmw_display_unit *du; 2682 struct drm_display_mode *mode; 2683 int i = 0; 2684 int ret = 0; 2685 2686 mutex_lock(&dev_priv->dev->mode_config.mutex); 2687 list_for_each_entry(con, &dev_priv->dev->mode_config.connector_list, 2688 head) { 2689 if (i == unit) 2690 break; 2691 2692 ++i; 2693 } 2694 2695 if (i != unit) { 2696 DRM_ERROR("Could not find initial display unit.\n"); 2697 ret = -EINVAL; 2698 goto out_unlock; 2699 } 2700 2701 if (list_empty(&con->modes)) 2702 (void) vmw_du_connector_fill_modes(con, max_width, max_height); 2703 2704 if (list_empty(&con->modes)) { 2705 DRM_ERROR("Could not find initial display mode.\n"); 2706 ret = -EINVAL; 2707 goto out_unlock; 2708 } 2709 2710 du = vmw_connector_to_du(con); 2711 *p_con = con; 2712 *p_crtc = &du->crtc; 2713 2714 list_for_each_entry(mode, &con->modes, head) { 2715 if (mode->type & DRM_MODE_TYPE_PREFERRED) 2716 break; 2717 } 2718 2719 if (mode->type & DRM_MODE_TYPE_PREFERRED) 2720 *p_mode = mode; 2721 else { 2722 WARN_ONCE(true, "Could not find initial preferred mode.\n"); 2723 *p_mode = list_first_entry(&con->modes, 2724 struct drm_display_mode, 2725 head); 2726 } 2727 2728 out_unlock: 2729 mutex_unlock(&dev_priv->dev->mode_config.mutex); 2730 2731 return ret; 2732 } 2733 2734 /** 2735 * vmw_kms_del_active - unregister a crtc binding to the implicit framebuffer 2736 * 2737 * @dev_priv: Pointer to a device private struct. 2738 * @du: The display unit of the crtc. 2739 */ 2740 void vmw_kms_del_active(struct vmw_private *dev_priv, 2741 struct vmw_display_unit *du) 2742 { 2743 mutex_lock(&dev_priv->global_kms_state_mutex); 2744 if (du->active_implicit) { 2745 if (--(dev_priv->num_implicit) == 0) 2746 dev_priv->implicit_fb = NULL; 2747 du->active_implicit = false; 2748 } 2749 mutex_unlock(&dev_priv->global_kms_state_mutex); 2750 } 2751 2752 /** 2753 * vmw_kms_add_active - register a crtc binding to an implicit framebuffer 2754 * 2755 * @vmw_priv: Pointer to a device private struct. 2756 * @du: The display unit of the crtc. 2757 * @vfb: The implicit framebuffer 2758 * 2759 * Registers a binding to an implicit framebuffer. 2760 */ 2761 void vmw_kms_add_active(struct vmw_private *dev_priv, 2762 struct vmw_display_unit *du, 2763 struct vmw_framebuffer *vfb) 2764 { 2765 mutex_lock(&dev_priv->global_kms_state_mutex); 2766 WARN_ON_ONCE(!dev_priv->num_implicit && dev_priv->implicit_fb); 2767 2768 if (!du->active_implicit && du->is_implicit) { 2769 dev_priv->implicit_fb = vfb; 2770 du->active_implicit = true; 2771 dev_priv->num_implicit++; 2772 } 2773 mutex_unlock(&dev_priv->global_kms_state_mutex); 2774 } 2775 2776 /** 2777 * vmw_kms_screen_object_flippable - Check whether we can page-flip a crtc. 2778 * 2779 * @dev_priv: Pointer to device-private struct. 2780 * @crtc: The crtc we want to flip. 2781 * 2782 * Returns true or false depending whether it's OK to flip this crtc 2783 * based on the criterion that we must not have more than one implicit 2784 * frame-buffer at any one time. 2785 */ 2786 bool vmw_kms_crtc_flippable(struct vmw_private *dev_priv, 2787 struct drm_crtc *crtc) 2788 { 2789 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 2790 bool ret; 2791 2792 mutex_lock(&dev_priv->global_kms_state_mutex); 2793 ret = !du->is_implicit || dev_priv->num_implicit == 1; 2794 mutex_unlock(&dev_priv->global_kms_state_mutex); 2795 2796 return ret; 2797 } 2798 2799 /** 2800 * vmw_kms_update_implicit_fb - Update the implicit fb. 2801 * 2802 * @dev_priv: Pointer to device-private struct. 2803 * @crtc: The crtc the new implicit frame-buffer is bound to. 2804 */ 2805 void vmw_kms_update_implicit_fb(struct vmw_private *dev_priv, 2806 struct drm_crtc *crtc) 2807 { 2808 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 2809 struct vmw_framebuffer *vfb; 2810 2811 mutex_lock(&dev_priv->global_kms_state_mutex); 2812 2813 if (!du->is_implicit) 2814 goto out_unlock; 2815 2816 vfb = vmw_framebuffer_to_vfb(crtc->primary->fb); 2817 WARN_ON_ONCE(dev_priv->num_implicit != 1 && 2818 dev_priv->implicit_fb != vfb); 2819 2820 dev_priv->implicit_fb = vfb; 2821 out_unlock: 2822 mutex_unlock(&dev_priv->global_kms_state_mutex); 2823 } 2824 2825 /** 2826 * vmw_kms_create_implicit_placement_proparty - Set up the implicit placement 2827 * property. 2828 * 2829 * @dev_priv: Pointer to a device private struct. 2830 * @immutable: Whether the property is immutable. 2831 * 2832 * Sets up the implicit placement property unless it's already set up. 2833 */ 2834 void 2835 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv, 2836 bool immutable) 2837 { 2838 if (dev_priv->implicit_placement_property) 2839 return; 2840 2841 dev_priv->implicit_placement_property = 2842 drm_property_create_range(dev_priv->dev, 2843 immutable ? 2844 DRM_MODE_PROP_IMMUTABLE : 0, 2845 "implicit_placement", 0, 1); 2846 2847 } 2848 2849 2850 /** 2851 * vmw_kms_set_config - Wrapper around drm_atomic_helper_set_config 2852 * 2853 * @set: The configuration to set. 2854 * 2855 * The vmwgfx Xorg driver doesn't assign the mode::type member, which 2856 * when drm_mode_set_crtcinfo is called as part of the configuration setting 2857 * causes it to return incorrect crtc dimensions causing severe problems in 2858 * the vmwgfx modesetting. So explicitly clear that member before calling 2859 * into drm_atomic_helper_set_config. 2860 */ 2861 int vmw_kms_set_config(struct drm_mode_set *set, 2862 struct drm_modeset_acquire_ctx *ctx) 2863 { 2864 if (set && set->mode) 2865 set->mode->type = 0; 2866 2867 return drm_atomic_helper_set_config(set, ctx); 2868 } 2869 2870 2871 /** 2872 * vmw_kms_suspend - Save modesetting state and turn modesetting off. 2873 * 2874 * @dev: Pointer to the drm device 2875 * Return: 0 on success. Negative error code on failure. 2876 */ 2877 int vmw_kms_suspend(struct drm_device *dev) 2878 { 2879 struct vmw_private *dev_priv = vmw_priv(dev); 2880 2881 dev_priv->suspend_state = drm_atomic_helper_suspend(dev); 2882 if (IS_ERR(dev_priv->suspend_state)) { 2883 int ret = PTR_ERR(dev_priv->suspend_state); 2884 2885 DRM_ERROR("Failed kms suspend: %d\n", ret); 2886 dev_priv->suspend_state = NULL; 2887 2888 return ret; 2889 } 2890 2891 return 0; 2892 } 2893 2894 2895 /** 2896 * vmw_kms_resume - Re-enable modesetting and restore state 2897 * 2898 * @dev: Pointer to the drm device 2899 * Return: 0 on success. Negative error code on failure. 2900 * 2901 * State is resumed from a previous vmw_kms_suspend(). It's illegal 2902 * to call this function without a previous vmw_kms_suspend(). 2903 */ 2904 int vmw_kms_resume(struct drm_device *dev) 2905 { 2906 struct vmw_private *dev_priv = vmw_priv(dev); 2907 int ret; 2908 2909 if (WARN_ON(!dev_priv->suspend_state)) 2910 return 0; 2911 2912 ret = drm_atomic_helper_resume(dev, dev_priv->suspend_state); 2913 dev_priv->suspend_state = NULL; 2914 2915 return ret; 2916 } 2917 2918 /** 2919 * vmw_kms_lost_device - Notify kms that modesetting capabilities will be lost 2920 * 2921 * @dev: Pointer to the drm device 2922 */ 2923 void vmw_kms_lost_device(struct drm_device *dev) 2924 { 2925 drm_atomic_helper_shutdown(dev); 2926 } 2927