1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /************************************************************************** 3 * 4 * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 28 #include "vmwgfx_kms.h" 29 #include <drm/drm_plane_helper.h> 30 #include <drm/drm_atomic.h> 31 #include <drm/drm_atomic_helper.h> 32 #include <drm/drm_rect.h> 33 34 /* Might need a hrtimer here? */ 35 #define VMWGFX_PRESENT_RATE ((HZ / 60 > 0) ? HZ / 60 : 1) 36 37 void vmw_du_cleanup(struct vmw_display_unit *du) 38 { 39 drm_plane_cleanup(&du->primary); 40 drm_plane_cleanup(&du->cursor); 41 42 drm_connector_unregister(&du->connector); 43 drm_crtc_cleanup(&du->crtc); 44 drm_encoder_cleanup(&du->encoder); 45 drm_connector_cleanup(&du->connector); 46 } 47 48 /* 49 * Display Unit Cursor functions 50 */ 51 52 static int vmw_cursor_update_image(struct vmw_private *dev_priv, 53 u32 *image, u32 width, u32 height, 54 u32 hotspotX, u32 hotspotY) 55 { 56 struct { 57 u32 cmd; 58 SVGAFifoCmdDefineAlphaCursor cursor; 59 } *cmd; 60 u32 image_size = width * height * 4; 61 u32 cmd_size = sizeof(*cmd) + image_size; 62 63 if (!image) 64 return -EINVAL; 65 66 cmd = vmw_fifo_reserve(dev_priv, cmd_size); 67 if (unlikely(cmd == NULL)) { 68 DRM_ERROR("Fifo reserve failed.\n"); 69 return -ENOMEM; 70 } 71 72 memset(cmd, 0, sizeof(*cmd)); 73 74 memcpy(&cmd[1], image, image_size); 75 76 cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR; 77 cmd->cursor.id = 0; 78 cmd->cursor.width = width; 79 cmd->cursor.height = height; 80 cmd->cursor.hotspotX = hotspotX; 81 cmd->cursor.hotspotY = hotspotY; 82 83 vmw_fifo_commit_flush(dev_priv, cmd_size); 84 85 return 0; 86 } 87 88 static int vmw_cursor_update_bo(struct vmw_private *dev_priv, 89 struct vmw_buffer_object *bo, 90 u32 width, u32 height, 91 u32 hotspotX, u32 hotspotY) 92 { 93 struct ttm_bo_kmap_obj map; 94 unsigned long kmap_offset; 95 unsigned long kmap_num; 96 void *virtual; 97 bool dummy; 98 int ret; 99 100 kmap_offset = 0; 101 kmap_num = (width*height*4 + PAGE_SIZE - 1) >> PAGE_SHIFT; 102 103 ret = ttm_bo_reserve(&bo->base, true, false, NULL); 104 if (unlikely(ret != 0)) { 105 DRM_ERROR("reserve failed\n"); 106 return -EINVAL; 107 } 108 109 ret = ttm_bo_kmap(&bo->base, kmap_offset, kmap_num, &map); 110 if (unlikely(ret != 0)) 111 goto err_unreserve; 112 113 virtual = ttm_kmap_obj_virtual(&map, &dummy); 114 ret = vmw_cursor_update_image(dev_priv, virtual, width, height, 115 hotspotX, hotspotY); 116 117 ttm_bo_kunmap(&map); 118 err_unreserve: 119 ttm_bo_unreserve(&bo->base); 120 121 return ret; 122 } 123 124 125 static void vmw_cursor_update_position(struct vmw_private *dev_priv, 126 bool show, int x, int y) 127 { 128 u32 *fifo_mem = dev_priv->mmio_virt; 129 uint32_t count; 130 131 spin_lock(&dev_priv->cursor_lock); 132 vmw_mmio_write(show ? 1 : 0, fifo_mem + SVGA_FIFO_CURSOR_ON); 133 vmw_mmio_write(x, fifo_mem + SVGA_FIFO_CURSOR_X); 134 vmw_mmio_write(y, fifo_mem + SVGA_FIFO_CURSOR_Y); 135 count = vmw_mmio_read(fifo_mem + SVGA_FIFO_CURSOR_COUNT); 136 vmw_mmio_write(++count, fifo_mem + SVGA_FIFO_CURSOR_COUNT); 137 spin_unlock(&dev_priv->cursor_lock); 138 } 139 140 141 void vmw_kms_cursor_snoop(struct vmw_surface *srf, 142 struct ttm_object_file *tfile, 143 struct ttm_buffer_object *bo, 144 SVGA3dCmdHeader *header) 145 { 146 struct ttm_bo_kmap_obj map; 147 unsigned long kmap_offset; 148 unsigned long kmap_num; 149 SVGA3dCopyBox *box; 150 unsigned box_count; 151 void *virtual; 152 bool dummy; 153 struct vmw_dma_cmd { 154 SVGA3dCmdHeader header; 155 SVGA3dCmdSurfaceDMA dma; 156 } *cmd; 157 int i, ret; 158 159 cmd = container_of(header, struct vmw_dma_cmd, header); 160 161 /* No snooper installed */ 162 if (!srf->snooper.image) 163 return; 164 165 if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) { 166 DRM_ERROR("face and mipmap for cursors should never != 0\n"); 167 return; 168 } 169 170 if (cmd->header.size < 64) { 171 DRM_ERROR("at least one full copy box must be given\n"); 172 return; 173 } 174 175 box = (SVGA3dCopyBox *)&cmd[1]; 176 box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) / 177 sizeof(SVGA3dCopyBox); 178 179 if (cmd->dma.guest.ptr.offset % PAGE_SIZE || 180 box->x != 0 || box->y != 0 || box->z != 0 || 181 box->srcx != 0 || box->srcy != 0 || box->srcz != 0 || 182 box->d != 1 || box_count != 1) { 183 /* TODO handle none page aligned offsets */ 184 /* TODO handle more dst & src != 0 */ 185 /* TODO handle more then one copy */ 186 DRM_ERROR("Cant snoop dma request for cursor!\n"); 187 DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n", 188 box->srcx, box->srcy, box->srcz, 189 box->x, box->y, box->z, 190 box->w, box->h, box->d, box_count, 191 cmd->dma.guest.ptr.offset); 192 return; 193 } 194 195 kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT; 196 kmap_num = (64*64*4) >> PAGE_SHIFT; 197 198 ret = ttm_bo_reserve(bo, true, false, NULL); 199 if (unlikely(ret != 0)) { 200 DRM_ERROR("reserve failed\n"); 201 return; 202 } 203 204 ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map); 205 if (unlikely(ret != 0)) 206 goto err_unreserve; 207 208 virtual = ttm_kmap_obj_virtual(&map, &dummy); 209 210 if (box->w == 64 && cmd->dma.guest.pitch == 64*4) { 211 memcpy(srf->snooper.image, virtual, 64*64*4); 212 } else { 213 /* Image is unsigned pointer. */ 214 for (i = 0; i < box->h; i++) 215 memcpy(srf->snooper.image + i * 64, 216 virtual + i * cmd->dma.guest.pitch, 217 box->w * 4); 218 } 219 220 srf->snooper.age++; 221 222 ttm_bo_kunmap(&map); 223 err_unreserve: 224 ttm_bo_unreserve(bo); 225 } 226 227 /** 228 * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots 229 * 230 * @dev_priv: Pointer to the device private struct. 231 * 232 * Clears all legacy hotspots. 233 */ 234 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv) 235 { 236 struct drm_device *dev = dev_priv->dev; 237 struct vmw_display_unit *du; 238 struct drm_crtc *crtc; 239 240 drm_modeset_lock_all(dev); 241 drm_for_each_crtc(crtc, dev) { 242 du = vmw_crtc_to_du(crtc); 243 244 du->hotspot_x = 0; 245 du->hotspot_y = 0; 246 } 247 drm_modeset_unlock_all(dev); 248 } 249 250 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv) 251 { 252 struct drm_device *dev = dev_priv->dev; 253 struct vmw_display_unit *du; 254 struct drm_crtc *crtc; 255 256 mutex_lock(&dev->mode_config.mutex); 257 258 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 259 du = vmw_crtc_to_du(crtc); 260 if (!du->cursor_surface || 261 du->cursor_age == du->cursor_surface->snooper.age) 262 continue; 263 264 du->cursor_age = du->cursor_surface->snooper.age; 265 vmw_cursor_update_image(dev_priv, 266 du->cursor_surface->snooper.image, 267 64, 64, 268 du->hotspot_x + du->core_hotspot_x, 269 du->hotspot_y + du->core_hotspot_y); 270 } 271 272 mutex_unlock(&dev->mode_config.mutex); 273 } 274 275 276 void vmw_du_cursor_plane_destroy(struct drm_plane *plane) 277 { 278 vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0); 279 280 drm_plane_cleanup(plane); 281 } 282 283 284 void vmw_du_primary_plane_destroy(struct drm_plane *plane) 285 { 286 drm_plane_cleanup(plane); 287 288 /* Planes are static in our case so we don't free it */ 289 } 290 291 292 /** 293 * vmw_du_vps_unpin_surf - unpins resource associated with a framebuffer surface 294 * 295 * @vps: plane state associated with the display surface 296 * @unreference: true if we also want to unreference the display. 297 */ 298 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps, 299 bool unreference) 300 { 301 if (vps->surf) { 302 if (vps->pinned) { 303 vmw_resource_unpin(&vps->surf->res); 304 vps->pinned--; 305 } 306 307 if (unreference) { 308 if (vps->pinned) 309 DRM_ERROR("Surface still pinned\n"); 310 vmw_surface_unreference(&vps->surf); 311 } 312 } 313 } 314 315 316 /** 317 * vmw_du_plane_cleanup_fb - Unpins the cursor 318 * 319 * @plane: display plane 320 * @old_state: Contains the FB to clean up 321 * 322 * Unpins the framebuffer surface 323 * 324 * Returns 0 on success 325 */ 326 void 327 vmw_du_plane_cleanup_fb(struct drm_plane *plane, 328 struct drm_plane_state *old_state) 329 { 330 struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state); 331 332 vmw_du_plane_unpin_surf(vps, false); 333 } 334 335 336 /** 337 * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it 338 * 339 * @plane: display plane 340 * @new_state: info on the new plane state, including the FB 341 * 342 * Returns 0 on success 343 */ 344 int 345 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane, 346 struct drm_plane_state *new_state) 347 { 348 struct drm_framebuffer *fb = new_state->fb; 349 struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state); 350 351 352 if (vps->surf) 353 vmw_surface_unreference(&vps->surf); 354 355 if (vps->bo) 356 vmw_bo_unreference(&vps->bo); 357 358 if (fb) { 359 if (vmw_framebuffer_to_vfb(fb)->bo) { 360 vps->bo = vmw_framebuffer_to_vfbd(fb)->buffer; 361 vmw_bo_reference(vps->bo); 362 } else { 363 vps->surf = vmw_framebuffer_to_vfbs(fb)->surface; 364 vmw_surface_reference(vps->surf); 365 } 366 } 367 368 return 0; 369 } 370 371 372 void 373 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane, 374 struct drm_plane_state *old_state) 375 { 376 struct drm_crtc *crtc = plane->state->crtc ?: old_state->crtc; 377 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 378 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 379 struct vmw_plane_state *vps = vmw_plane_state_to_vps(plane->state); 380 s32 hotspot_x, hotspot_y; 381 int ret = 0; 382 383 384 hotspot_x = du->hotspot_x; 385 hotspot_y = du->hotspot_y; 386 387 if (plane->state->fb) { 388 hotspot_x += plane->state->fb->hot_x; 389 hotspot_y += plane->state->fb->hot_y; 390 } 391 392 du->cursor_surface = vps->surf; 393 du->cursor_bo = vps->bo; 394 395 if (vps->surf) { 396 du->cursor_age = du->cursor_surface->snooper.age; 397 398 ret = vmw_cursor_update_image(dev_priv, 399 vps->surf->snooper.image, 400 64, 64, hotspot_x, 401 hotspot_y); 402 } else if (vps->bo) { 403 ret = vmw_cursor_update_bo(dev_priv, vps->bo, 404 plane->state->crtc_w, 405 plane->state->crtc_h, 406 hotspot_x, hotspot_y); 407 } else { 408 vmw_cursor_update_position(dev_priv, false, 0, 0); 409 return; 410 } 411 412 if (!ret) { 413 du->cursor_x = plane->state->crtc_x + du->set_gui_x; 414 du->cursor_y = plane->state->crtc_y + du->set_gui_y; 415 416 vmw_cursor_update_position(dev_priv, true, 417 du->cursor_x + hotspot_x, 418 du->cursor_y + hotspot_y); 419 420 du->core_hotspot_x = hotspot_x - du->hotspot_x; 421 du->core_hotspot_y = hotspot_y - du->hotspot_y; 422 } else { 423 DRM_ERROR("Failed to update cursor image\n"); 424 } 425 } 426 427 428 /** 429 * vmw_du_primary_plane_atomic_check - check if the new state is okay 430 * 431 * @plane: display plane 432 * @state: info on the new plane state, including the FB 433 * 434 * Check if the new state is settable given the current state. Other 435 * than what the atomic helper checks, we care about crtc fitting 436 * the FB and maintaining one active framebuffer. 437 * 438 * Returns 0 on success 439 */ 440 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane, 441 struct drm_plane_state *state) 442 { 443 struct drm_crtc_state *crtc_state = NULL; 444 struct drm_framebuffer *new_fb = state->fb; 445 int ret; 446 447 if (state->crtc) 448 crtc_state = drm_atomic_get_new_crtc_state(state->state, state->crtc); 449 450 ret = drm_atomic_helper_check_plane_state(state, crtc_state, 451 DRM_PLANE_HELPER_NO_SCALING, 452 DRM_PLANE_HELPER_NO_SCALING, 453 false, true); 454 455 if (!ret && new_fb) { 456 struct drm_crtc *crtc = state->crtc; 457 struct vmw_connector_state *vcs; 458 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 459 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 460 struct vmw_framebuffer *vfb = vmw_framebuffer_to_vfb(new_fb); 461 462 vcs = vmw_connector_state_to_vcs(du->connector.state); 463 464 /* Only one active implicit framebuffer at a time. */ 465 mutex_lock(&dev_priv->global_kms_state_mutex); 466 if (vcs->is_implicit && dev_priv->implicit_fb && 467 !(dev_priv->num_implicit == 1 && du->active_implicit) 468 && dev_priv->implicit_fb != vfb) { 469 DRM_ERROR("Multiple implicit framebuffers " 470 "not supported.\n"); 471 ret = -EINVAL; 472 } 473 mutex_unlock(&dev_priv->global_kms_state_mutex); 474 } 475 476 477 return ret; 478 } 479 480 481 /** 482 * vmw_du_cursor_plane_atomic_check - check if the new state is okay 483 * 484 * @plane: cursor plane 485 * @state: info on the new plane state 486 * 487 * This is a chance to fail if the new cursor state does not fit 488 * our requirements. 489 * 490 * Returns 0 on success 491 */ 492 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane, 493 struct drm_plane_state *new_state) 494 { 495 int ret = 0; 496 struct vmw_surface *surface = NULL; 497 struct drm_framebuffer *fb = new_state->fb; 498 499 struct drm_rect src = drm_plane_state_src(new_state); 500 struct drm_rect dest = drm_plane_state_dest(new_state); 501 502 /* Turning off */ 503 if (!fb) 504 return ret; 505 506 ret = drm_plane_helper_check_update(plane, new_state->crtc, fb, 507 &src, &dest, 508 DRM_MODE_ROTATE_0, 509 DRM_PLANE_HELPER_NO_SCALING, 510 DRM_PLANE_HELPER_NO_SCALING, 511 true, true, &new_state->visible); 512 if (!ret) 513 return ret; 514 515 /* A lot of the code assumes this */ 516 if (new_state->crtc_w != 64 || new_state->crtc_h != 64) { 517 DRM_ERROR("Invalid cursor dimensions (%d, %d)\n", 518 new_state->crtc_w, new_state->crtc_h); 519 ret = -EINVAL; 520 } 521 522 if (!vmw_framebuffer_to_vfb(fb)->bo) 523 surface = vmw_framebuffer_to_vfbs(fb)->surface; 524 525 if (surface && !surface->snooper.image) { 526 DRM_ERROR("surface not suitable for cursor\n"); 527 ret = -EINVAL; 528 } 529 530 return ret; 531 } 532 533 534 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc, 535 struct drm_crtc_state *new_state) 536 { 537 struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc); 538 int connector_mask = drm_connector_mask(&du->connector); 539 bool has_primary = new_state->plane_mask & 540 drm_plane_mask(crtc->primary); 541 542 /* We always want to have an active plane with an active CRTC */ 543 if (has_primary != new_state->enable) 544 return -EINVAL; 545 546 547 if (new_state->connector_mask != connector_mask && 548 new_state->connector_mask != 0) { 549 DRM_ERROR("Invalid connectors configuration\n"); 550 return -EINVAL; 551 } 552 553 /* 554 * Our virtual device does not have a dot clock, so use the logical 555 * clock value as the dot clock. 556 */ 557 if (new_state->mode.crtc_clock == 0) 558 new_state->adjusted_mode.crtc_clock = new_state->mode.clock; 559 560 return 0; 561 } 562 563 564 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc, 565 struct drm_crtc_state *old_crtc_state) 566 { 567 } 568 569 570 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc, 571 struct drm_crtc_state *old_crtc_state) 572 { 573 struct drm_pending_vblank_event *event = crtc->state->event; 574 575 if (event) { 576 crtc->state->event = NULL; 577 578 spin_lock_irq(&crtc->dev->event_lock); 579 drm_crtc_send_vblank_event(crtc, event); 580 spin_unlock_irq(&crtc->dev->event_lock); 581 } 582 } 583 584 585 /** 586 * vmw_du_crtc_duplicate_state - duplicate crtc state 587 * @crtc: DRM crtc 588 * 589 * Allocates and returns a copy of the crtc state (both common and 590 * vmw-specific) for the specified crtc. 591 * 592 * Returns: The newly allocated crtc state, or NULL on failure. 593 */ 594 struct drm_crtc_state * 595 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc) 596 { 597 struct drm_crtc_state *state; 598 struct vmw_crtc_state *vcs; 599 600 if (WARN_ON(!crtc->state)) 601 return NULL; 602 603 vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL); 604 605 if (!vcs) 606 return NULL; 607 608 state = &vcs->base; 609 610 __drm_atomic_helper_crtc_duplicate_state(crtc, state); 611 612 return state; 613 } 614 615 616 /** 617 * vmw_du_crtc_reset - creates a blank vmw crtc state 618 * @crtc: DRM crtc 619 * 620 * Resets the atomic state for @crtc by freeing the state pointer (which 621 * might be NULL, e.g. at driver load time) and allocating a new empty state 622 * object. 623 */ 624 void vmw_du_crtc_reset(struct drm_crtc *crtc) 625 { 626 struct vmw_crtc_state *vcs; 627 628 629 if (crtc->state) { 630 __drm_atomic_helper_crtc_destroy_state(crtc->state); 631 632 kfree(vmw_crtc_state_to_vcs(crtc->state)); 633 } 634 635 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL); 636 637 if (!vcs) { 638 DRM_ERROR("Cannot allocate vmw_crtc_state\n"); 639 return; 640 } 641 642 crtc->state = &vcs->base; 643 crtc->state->crtc = crtc; 644 } 645 646 647 /** 648 * vmw_du_crtc_destroy_state - destroy crtc state 649 * @crtc: DRM crtc 650 * @state: state object to destroy 651 * 652 * Destroys the crtc state (both common and vmw-specific) for the 653 * specified plane. 654 */ 655 void 656 vmw_du_crtc_destroy_state(struct drm_crtc *crtc, 657 struct drm_crtc_state *state) 658 { 659 drm_atomic_helper_crtc_destroy_state(crtc, state); 660 } 661 662 663 /** 664 * vmw_du_plane_duplicate_state - duplicate plane state 665 * @plane: drm plane 666 * 667 * Allocates and returns a copy of the plane state (both common and 668 * vmw-specific) for the specified plane. 669 * 670 * Returns: The newly allocated plane state, or NULL on failure. 671 */ 672 struct drm_plane_state * 673 vmw_du_plane_duplicate_state(struct drm_plane *plane) 674 { 675 struct drm_plane_state *state; 676 struct vmw_plane_state *vps; 677 678 vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL); 679 680 if (!vps) 681 return NULL; 682 683 vps->pinned = 0; 684 vps->cpp = 0; 685 686 /* Each ref counted resource needs to be acquired again */ 687 if (vps->surf) 688 (void) vmw_surface_reference(vps->surf); 689 690 if (vps->bo) 691 (void) vmw_bo_reference(vps->bo); 692 693 state = &vps->base; 694 695 __drm_atomic_helper_plane_duplicate_state(plane, state); 696 697 return state; 698 } 699 700 701 /** 702 * vmw_du_plane_reset - creates a blank vmw plane state 703 * @plane: drm plane 704 * 705 * Resets the atomic state for @plane by freeing the state pointer (which might 706 * be NULL, e.g. at driver load time) and allocating a new empty state object. 707 */ 708 void vmw_du_plane_reset(struct drm_plane *plane) 709 { 710 struct vmw_plane_state *vps; 711 712 713 if (plane->state) 714 vmw_du_plane_destroy_state(plane, plane->state); 715 716 vps = kzalloc(sizeof(*vps), GFP_KERNEL); 717 718 if (!vps) { 719 DRM_ERROR("Cannot allocate vmw_plane_state\n"); 720 return; 721 } 722 723 __drm_atomic_helper_plane_reset(plane, &vps->base); 724 } 725 726 727 /** 728 * vmw_du_plane_destroy_state - destroy plane state 729 * @plane: DRM plane 730 * @state: state object to destroy 731 * 732 * Destroys the plane state (both common and vmw-specific) for the 733 * specified plane. 734 */ 735 void 736 vmw_du_plane_destroy_state(struct drm_plane *plane, 737 struct drm_plane_state *state) 738 { 739 struct vmw_plane_state *vps = vmw_plane_state_to_vps(state); 740 741 742 /* Should have been freed by cleanup_fb */ 743 if (vps->surf) 744 vmw_surface_unreference(&vps->surf); 745 746 if (vps->bo) 747 vmw_bo_unreference(&vps->bo); 748 749 drm_atomic_helper_plane_destroy_state(plane, state); 750 } 751 752 753 /** 754 * vmw_du_connector_duplicate_state - duplicate connector state 755 * @connector: DRM connector 756 * 757 * Allocates and returns a copy of the connector state (both common and 758 * vmw-specific) for the specified connector. 759 * 760 * Returns: The newly allocated connector state, or NULL on failure. 761 */ 762 struct drm_connector_state * 763 vmw_du_connector_duplicate_state(struct drm_connector *connector) 764 { 765 struct drm_connector_state *state; 766 struct vmw_connector_state *vcs; 767 768 if (WARN_ON(!connector->state)) 769 return NULL; 770 771 vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL); 772 773 if (!vcs) 774 return NULL; 775 776 state = &vcs->base; 777 778 __drm_atomic_helper_connector_duplicate_state(connector, state); 779 780 return state; 781 } 782 783 784 /** 785 * vmw_du_connector_reset - creates a blank vmw connector state 786 * @connector: DRM connector 787 * 788 * Resets the atomic state for @connector by freeing the state pointer (which 789 * might be NULL, e.g. at driver load time) and allocating a new empty state 790 * object. 791 */ 792 void vmw_du_connector_reset(struct drm_connector *connector) 793 { 794 struct vmw_connector_state *vcs; 795 796 797 if (connector->state) { 798 __drm_atomic_helper_connector_destroy_state(connector->state); 799 800 kfree(vmw_connector_state_to_vcs(connector->state)); 801 } 802 803 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL); 804 805 if (!vcs) { 806 DRM_ERROR("Cannot allocate vmw_connector_state\n"); 807 return; 808 } 809 810 __drm_atomic_helper_connector_reset(connector, &vcs->base); 811 } 812 813 814 /** 815 * vmw_du_connector_destroy_state - destroy connector state 816 * @connector: DRM connector 817 * @state: state object to destroy 818 * 819 * Destroys the connector state (both common and vmw-specific) for the 820 * specified plane. 821 */ 822 void 823 vmw_du_connector_destroy_state(struct drm_connector *connector, 824 struct drm_connector_state *state) 825 { 826 drm_atomic_helper_connector_destroy_state(connector, state); 827 } 828 /* 829 * Generic framebuffer code 830 */ 831 832 /* 833 * Surface framebuffer code 834 */ 835 836 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer) 837 { 838 struct vmw_framebuffer_surface *vfbs = 839 vmw_framebuffer_to_vfbs(framebuffer); 840 841 drm_framebuffer_cleanup(framebuffer); 842 vmw_surface_unreference(&vfbs->surface); 843 if (vfbs->base.user_obj) 844 ttm_base_object_unref(&vfbs->base.user_obj); 845 846 kfree(vfbs); 847 } 848 849 static int vmw_framebuffer_surface_dirty(struct drm_framebuffer *framebuffer, 850 struct drm_file *file_priv, 851 unsigned flags, unsigned color, 852 struct drm_clip_rect *clips, 853 unsigned num_clips) 854 { 855 struct vmw_private *dev_priv = vmw_priv(framebuffer->dev); 856 struct vmw_framebuffer_surface *vfbs = 857 vmw_framebuffer_to_vfbs(framebuffer); 858 struct drm_clip_rect norect; 859 int ret, inc = 1; 860 861 /* Legacy Display Unit does not support 3D */ 862 if (dev_priv->active_display_unit == vmw_du_legacy) 863 return -EINVAL; 864 865 drm_modeset_lock_all(dev_priv->dev); 866 867 ret = ttm_read_lock(&dev_priv->reservation_sem, true); 868 if (unlikely(ret != 0)) { 869 drm_modeset_unlock_all(dev_priv->dev); 870 return ret; 871 } 872 873 if (!num_clips) { 874 num_clips = 1; 875 clips = &norect; 876 norect.x1 = norect.y1 = 0; 877 norect.x2 = framebuffer->width; 878 norect.y2 = framebuffer->height; 879 } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) { 880 num_clips /= 2; 881 inc = 2; /* skip source rects */ 882 } 883 884 if (dev_priv->active_display_unit == vmw_du_screen_object) 885 ret = vmw_kms_sou_do_surface_dirty(dev_priv, &vfbs->base, 886 clips, NULL, NULL, 0, 0, 887 num_clips, inc, NULL, NULL); 888 else 889 ret = vmw_kms_stdu_surface_dirty(dev_priv, &vfbs->base, 890 clips, NULL, NULL, 0, 0, 891 num_clips, inc, NULL, NULL); 892 893 vmw_fifo_flush(dev_priv, false); 894 ttm_read_unlock(&dev_priv->reservation_sem); 895 896 drm_modeset_unlock_all(dev_priv->dev); 897 898 return 0; 899 } 900 901 /** 902 * vmw_kms_readback - Perform a readback from the screen system to 903 * a buffer-object backed framebuffer. 904 * 905 * @dev_priv: Pointer to the device private structure. 906 * @file_priv: Pointer to a struct drm_file identifying the caller. 907 * Must be set to NULL if @user_fence_rep is NULL. 908 * @vfb: Pointer to the buffer-object backed framebuffer. 909 * @user_fence_rep: User-space provided structure for fence information. 910 * Must be set to non-NULL if @file_priv is non-NULL. 911 * @vclips: Array of clip rects. 912 * @num_clips: Number of clip rects in @vclips. 913 * 914 * Returns 0 on success, negative error code on failure. -ERESTARTSYS if 915 * interrupted. 916 */ 917 int vmw_kms_readback(struct vmw_private *dev_priv, 918 struct drm_file *file_priv, 919 struct vmw_framebuffer *vfb, 920 struct drm_vmw_fence_rep __user *user_fence_rep, 921 struct drm_vmw_rect *vclips, 922 uint32_t num_clips) 923 { 924 switch (dev_priv->active_display_unit) { 925 case vmw_du_screen_object: 926 return vmw_kms_sou_readback(dev_priv, file_priv, vfb, 927 user_fence_rep, vclips, num_clips, 928 NULL); 929 case vmw_du_screen_target: 930 return vmw_kms_stdu_dma(dev_priv, file_priv, vfb, 931 user_fence_rep, NULL, vclips, num_clips, 932 1, false, true, NULL); 933 default: 934 WARN_ONCE(true, 935 "Readback called with invalid display system.\n"); 936 } 937 938 return -ENOSYS; 939 } 940 941 942 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = { 943 .destroy = vmw_framebuffer_surface_destroy, 944 .dirty = vmw_framebuffer_surface_dirty, 945 }; 946 947 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv, 948 struct vmw_surface *surface, 949 struct vmw_framebuffer **out, 950 const struct drm_mode_fb_cmd2 951 *mode_cmd, 952 bool is_bo_proxy) 953 954 { 955 struct drm_device *dev = dev_priv->dev; 956 struct vmw_framebuffer_surface *vfbs; 957 enum SVGA3dSurfaceFormat format; 958 int ret; 959 struct drm_format_name_buf format_name; 960 961 /* 3D is only supported on HWv8 and newer hosts */ 962 if (dev_priv->active_display_unit == vmw_du_legacy) 963 return -ENOSYS; 964 965 /* 966 * Sanity checks. 967 */ 968 969 /* Surface must be marked as a scanout. */ 970 if (unlikely(!surface->scanout)) 971 return -EINVAL; 972 973 if (unlikely(surface->mip_levels[0] != 1 || 974 surface->num_sizes != 1 || 975 surface->base_size.width < mode_cmd->width || 976 surface->base_size.height < mode_cmd->height || 977 surface->base_size.depth != 1)) { 978 DRM_ERROR("Incompatible surface dimensions " 979 "for requested mode.\n"); 980 return -EINVAL; 981 } 982 983 switch (mode_cmd->pixel_format) { 984 case DRM_FORMAT_ARGB8888: 985 format = SVGA3D_A8R8G8B8; 986 break; 987 case DRM_FORMAT_XRGB8888: 988 format = SVGA3D_X8R8G8B8; 989 break; 990 case DRM_FORMAT_RGB565: 991 format = SVGA3D_R5G6B5; 992 break; 993 case DRM_FORMAT_XRGB1555: 994 format = SVGA3D_A1R5G5B5; 995 break; 996 default: 997 DRM_ERROR("Invalid pixel format: %s\n", 998 drm_get_format_name(mode_cmd->pixel_format, &format_name)); 999 return -EINVAL; 1000 } 1001 1002 /* 1003 * For DX, surface format validation is done when surface->scanout 1004 * is set. 1005 */ 1006 if (!dev_priv->has_dx && format != surface->format) { 1007 DRM_ERROR("Invalid surface format for requested mode.\n"); 1008 return -EINVAL; 1009 } 1010 1011 vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL); 1012 if (!vfbs) { 1013 ret = -ENOMEM; 1014 goto out_err1; 1015 } 1016 1017 drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd); 1018 vfbs->surface = vmw_surface_reference(surface); 1019 vfbs->base.user_handle = mode_cmd->handles[0]; 1020 vfbs->is_bo_proxy = is_bo_proxy; 1021 1022 *out = &vfbs->base; 1023 1024 ret = drm_framebuffer_init(dev, &vfbs->base.base, 1025 &vmw_framebuffer_surface_funcs); 1026 if (ret) 1027 goto out_err2; 1028 1029 return 0; 1030 1031 out_err2: 1032 vmw_surface_unreference(&surface); 1033 kfree(vfbs); 1034 out_err1: 1035 return ret; 1036 } 1037 1038 /* 1039 * Buffer-object framebuffer code 1040 */ 1041 1042 static void vmw_framebuffer_bo_destroy(struct drm_framebuffer *framebuffer) 1043 { 1044 struct vmw_framebuffer_bo *vfbd = 1045 vmw_framebuffer_to_vfbd(framebuffer); 1046 1047 drm_framebuffer_cleanup(framebuffer); 1048 vmw_bo_unreference(&vfbd->buffer); 1049 if (vfbd->base.user_obj) 1050 ttm_base_object_unref(&vfbd->base.user_obj); 1051 1052 kfree(vfbd); 1053 } 1054 1055 static int vmw_framebuffer_bo_dirty(struct drm_framebuffer *framebuffer, 1056 struct drm_file *file_priv, 1057 unsigned int flags, unsigned int color, 1058 struct drm_clip_rect *clips, 1059 unsigned int num_clips) 1060 { 1061 struct vmw_private *dev_priv = vmw_priv(framebuffer->dev); 1062 struct vmw_framebuffer_bo *vfbd = 1063 vmw_framebuffer_to_vfbd(framebuffer); 1064 struct drm_clip_rect norect; 1065 int ret, increment = 1; 1066 1067 drm_modeset_lock_all(dev_priv->dev); 1068 1069 ret = ttm_read_lock(&dev_priv->reservation_sem, true); 1070 if (unlikely(ret != 0)) { 1071 drm_modeset_unlock_all(dev_priv->dev); 1072 return ret; 1073 } 1074 1075 if (!num_clips) { 1076 num_clips = 1; 1077 clips = &norect; 1078 norect.x1 = norect.y1 = 0; 1079 norect.x2 = framebuffer->width; 1080 norect.y2 = framebuffer->height; 1081 } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) { 1082 num_clips /= 2; 1083 increment = 2; 1084 } 1085 1086 switch (dev_priv->active_display_unit) { 1087 case vmw_du_screen_target: 1088 ret = vmw_kms_stdu_dma(dev_priv, NULL, &vfbd->base, NULL, 1089 clips, NULL, num_clips, increment, 1090 true, true, NULL); 1091 break; 1092 case vmw_du_screen_object: 1093 ret = vmw_kms_sou_do_bo_dirty(dev_priv, &vfbd->base, 1094 clips, NULL, num_clips, 1095 increment, true, NULL, NULL); 1096 break; 1097 case vmw_du_legacy: 1098 ret = vmw_kms_ldu_do_bo_dirty(dev_priv, &vfbd->base, 0, 0, 1099 clips, num_clips, increment); 1100 break; 1101 default: 1102 ret = -EINVAL; 1103 WARN_ONCE(true, "Dirty called with invalid display system.\n"); 1104 break; 1105 } 1106 1107 vmw_fifo_flush(dev_priv, false); 1108 ttm_read_unlock(&dev_priv->reservation_sem); 1109 1110 drm_modeset_unlock_all(dev_priv->dev); 1111 1112 return ret; 1113 } 1114 1115 static const struct drm_framebuffer_funcs vmw_framebuffer_bo_funcs = { 1116 .destroy = vmw_framebuffer_bo_destroy, 1117 .dirty = vmw_framebuffer_bo_dirty, 1118 }; 1119 1120 /** 1121 * Pin the bofer in a location suitable for access by the 1122 * display system. 1123 */ 1124 static int vmw_framebuffer_pin(struct vmw_framebuffer *vfb) 1125 { 1126 struct vmw_private *dev_priv = vmw_priv(vfb->base.dev); 1127 struct vmw_buffer_object *buf; 1128 struct ttm_placement *placement; 1129 int ret; 1130 1131 buf = vfb->bo ? vmw_framebuffer_to_vfbd(&vfb->base)->buffer : 1132 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup; 1133 1134 if (!buf) 1135 return 0; 1136 1137 switch (dev_priv->active_display_unit) { 1138 case vmw_du_legacy: 1139 vmw_overlay_pause_all(dev_priv); 1140 ret = vmw_bo_pin_in_start_of_vram(dev_priv, buf, false); 1141 vmw_overlay_resume_all(dev_priv); 1142 break; 1143 case vmw_du_screen_object: 1144 case vmw_du_screen_target: 1145 if (vfb->bo) { 1146 if (dev_priv->capabilities & SVGA_CAP_3D) { 1147 /* 1148 * Use surface DMA to get content to 1149 * sreen target surface. 1150 */ 1151 placement = &vmw_vram_gmr_placement; 1152 } else { 1153 /* Use CPU blit. */ 1154 placement = &vmw_sys_placement; 1155 } 1156 } else { 1157 /* Use surface / image update */ 1158 placement = &vmw_mob_placement; 1159 } 1160 1161 return vmw_bo_pin_in_placement(dev_priv, buf, placement, false); 1162 default: 1163 return -EINVAL; 1164 } 1165 1166 return ret; 1167 } 1168 1169 static int vmw_framebuffer_unpin(struct vmw_framebuffer *vfb) 1170 { 1171 struct vmw_private *dev_priv = vmw_priv(vfb->base.dev); 1172 struct vmw_buffer_object *buf; 1173 1174 buf = vfb->bo ? vmw_framebuffer_to_vfbd(&vfb->base)->buffer : 1175 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup; 1176 1177 if (WARN_ON(!buf)) 1178 return 0; 1179 1180 return vmw_bo_unpin(dev_priv, buf, false); 1181 } 1182 1183 /** 1184 * vmw_create_bo_proxy - create a proxy surface for the buffer object 1185 * 1186 * @dev: DRM device 1187 * @mode_cmd: parameters for the new surface 1188 * @bo_mob: MOB backing the buffer object 1189 * @srf_out: newly created surface 1190 * 1191 * When the content FB is a buffer object, we create a surface as a proxy to the 1192 * same buffer. This way we can do a surface copy rather than a surface DMA. 1193 * This is a more efficient approach 1194 * 1195 * RETURNS: 1196 * 0 on success, error code otherwise 1197 */ 1198 static int vmw_create_bo_proxy(struct drm_device *dev, 1199 const struct drm_mode_fb_cmd2 *mode_cmd, 1200 struct vmw_buffer_object *bo_mob, 1201 struct vmw_surface **srf_out) 1202 { 1203 uint32_t format; 1204 struct drm_vmw_size content_base_size = {0}; 1205 struct vmw_resource *res; 1206 unsigned int bytes_pp; 1207 struct drm_format_name_buf format_name; 1208 int ret; 1209 1210 switch (mode_cmd->pixel_format) { 1211 case DRM_FORMAT_ARGB8888: 1212 case DRM_FORMAT_XRGB8888: 1213 format = SVGA3D_X8R8G8B8; 1214 bytes_pp = 4; 1215 break; 1216 1217 case DRM_FORMAT_RGB565: 1218 case DRM_FORMAT_XRGB1555: 1219 format = SVGA3D_R5G6B5; 1220 bytes_pp = 2; 1221 break; 1222 1223 case 8: 1224 format = SVGA3D_P8; 1225 bytes_pp = 1; 1226 break; 1227 1228 default: 1229 DRM_ERROR("Invalid framebuffer format %s\n", 1230 drm_get_format_name(mode_cmd->pixel_format, &format_name)); 1231 return -EINVAL; 1232 } 1233 1234 content_base_size.width = mode_cmd->pitches[0] / bytes_pp; 1235 content_base_size.height = mode_cmd->height; 1236 content_base_size.depth = 1; 1237 1238 ret = vmw_surface_gb_priv_define(dev, 1239 0, /* kernel visible only */ 1240 0, /* flags */ 1241 format, 1242 true, /* can be a scanout buffer */ 1243 1, /* num of mip levels */ 1244 0, 1245 0, 1246 content_base_size, 1247 SVGA3D_MS_PATTERN_NONE, 1248 SVGA3D_MS_QUALITY_NONE, 1249 srf_out); 1250 if (ret) { 1251 DRM_ERROR("Failed to allocate proxy content buffer\n"); 1252 return ret; 1253 } 1254 1255 res = &(*srf_out)->res; 1256 1257 /* Reserve and switch the backing mob. */ 1258 mutex_lock(&res->dev_priv->cmdbuf_mutex); 1259 (void) vmw_resource_reserve(res, false, true); 1260 vmw_bo_unreference(&res->backup); 1261 res->backup = vmw_bo_reference(bo_mob); 1262 res->backup_offset = 0; 1263 vmw_resource_unreserve(res, false, NULL, 0); 1264 mutex_unlock(&res->dev_priv->cmdbuf_mutex); 1265 1266 return 0; 1267 } 1268 1269 1270 1271 static int vmw_kms_new_framebuffer_bo(struct vmw_private *dev_priv, 1272 struct vmw_buffer_object *bo, 1273 struct vmw_framebuffer **out, 1274 const struct drm_mode_fb_cmd2 1275 *mode_cmd) 1276 1277 { 1278 struct drm_device *dev = dev_priv->dev; 1279 struct vmw_framebuffer_bo *vfbd; 1280 unsigned int requested_size; 1281 struct drm_format_name_buf format_name; 1282 int ret; 1283 1284 requested_size = mode_cmd->height * mode_cmd->pitches[0]; 1285 if (unlikely(requested_size > bo->base.num_pages * PAGE_SIZE)) { 1286 DRM_ERROR("Screen buffer object size is too small " 1287 "for requested mode.\n"); 1288 return -EINVAL; 1289 } 1290 1291 /* Limited framebuffer color depth support for screen objects */ 1292 if (dev_priv->active_display_unit == vmw_du_screen_object) { 1293 switch (mode_cmd->pixel_format) { 1294 case DRM_FORMAT_XRGB8888: 1295 case DRM_FORMAT_ARGB8888: 1296 break; 1297 case DRM_FORMAT_XRGB1555: 1298 case DRM_FORMAT_RGB565: 1299 break; 1300 default: 1301 DRM_ERROR("Invalid pixel format: %s\n", 1302 drm_get_format_name(mode_cmd->pixel_format, &format_name)); 1303 return -EINVAL; 1304 } 1305 } 1306 1307 vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL); 1308 if (!vfbd) { 1309 ret = -ENOMEM; 1310 goto out_err1; 1311 } 1312 1313 drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd); 1314 vfbd->base.bo = true; 1315 vfbd->buffer = vmw_bo_reference(bo); 1316 vfbd->base.user_handle = mode_cmd->handles[0]; 1317 *out = &vfbd->base; 1318 1319 ret = drm_framebuffer_init(dev, &vfbd->base.base, 1320 &vmw_framebuffer_bo_funcs); 1321 if (ret) 1322 goto out_err2; 1323 1324 return 0; 1325 1326 out_err2: 1327 vmw_bo_unreference(&bo); 1328 kfree(vfbd); 1329 out_err1: 1330 return ret; 1331 } 1332 1333 1334 /** 1335 * vmw_kms_srf_ok - check if a surface can be created 1336 * 1337 * @width: requested width 1338 * @height: requested height 1339 * 1340 * Surfaces need to be less than texture size 1341 */ 1342 static bool 1343 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height) 1344 { 1345 if (width > dev_priv->texture_max_width || 1346 height > dev_priv->texture_max_height) 1347 return false; 1348 1349 return true; 1350 } 1351 1352 /** 1353 * vmw_kms_new_framebuffer - Create a new framebuffer. 1354 * 1355 * @dev_priv: Pointer to device private struct. 1356 * @bo: Pointer to buffer object to wrap the kms framebuffer around. 1357 * Either @bo or @surface must be NULL. 1358 * @surface: Pointer to a surface to wrap the kms framebuffer around. 1359 * Either @bo or @surface must be NULL. 1360 * @only_2d: No presents will occur to this buffer object based framebuffer. 1361 * This helps the code to do some important optimizations. 1362 * @mode_cmd: Frame-buffer metadata. 1363 */ 1364 struct vmw_framebuffer * 1365 vmw_kms_new_framebuffer(struct vmw_private *dev_priv, 1366 struct vmw_buffer_object *bo, 1367 struct vmw_surface *surface, 1368 bool only_2d, 1369 const struct drm_mode_fb_cmd2 *mode_cmd) 1370 { 1371 struct vmw_framebuffer *vfb = NULL; 1372 bool is_bo_proxy = false; 1373 int ret; 1374 1375 /* 1376 * We cannot use the SurfaceDMA command in an non-accelerated VM, 1377 * therefore, wrap the buffer object in a surface so we can use the 1378 * SurfaceCopy command. 1379 */ 1380 if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height) && 1381 bo && only_2d && 1382 mode_cmd->width > 64 && /* Don't create a proxy for cursor */ 1383 dev_priv->active_display_unit == vmw_du_screen_target) { 1384 ret = vmw_create_bo_proxy(dev_priv->dev, mode_cmd, 1385 bo, &surface); 1386 if (ret) 1387 return ERR_PTR(ret); 1388 1389 is_bo_proxy = true; 1390 } 1391 1392 /* Create the new framebuffer depending one what we have */ 1393 if (surface) { 1394 ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb, 1395 mode_cmd, 1396 is_bo_proxy); 1397 1398 /* 1399 * vmw_create_bo_proxy() adds a reference that is no longer 1400 * needed 1401 */ 1402 if (is_bo_proxy) 1403 vmw_surface_unreference(&surface); 1404 } else if (bo) { 1405 ret = vmw_kms_new_framebuffer_bo(dev_priv, bo, &vfb, 1406 mode_cmd); 1407 } else { 1408 BUG(); 1409 } 1410 1411 if (ret) 1412 return ERR_PTR(ret); 1413 1414 vfb->pin = vmw_framebuffer_pin; 1415 vfb->unpin = vmw_framebuffer_unpin; 1416 1417 return vfb; 1418 } 1419 1420 /* 1421 * Generic Kernel modesetting functions 1422 */ 1423 1424 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev, 1425 struct drm_file *file_priv, 1426 const struct drm_mode_fb_cmd2 *mode_cmd) 1427 { 1428 struct vmw_private *dev_priv = vmw_priv(dev); 1429 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; 1430 struct vmw_framebuffer *vfb = NULL; 1431 struct vmw_surface *surface = NULL; 1432 struct vmw_buffer_object *bo = NULL; 1433 struct ttm_base_object *user_obj; 1434 int ret; 1435 1436 /* 1437 * Take a reference on the user object of the resource 1438 * backing the kms fb. This ensures that user-space handle 1439 * lookups on that resource will always work as long as 1440 * it's registered with a kms framebuffer. This is important, 1441 * since vmw_execbuf_process identifies resources in the 1442 * command stream using user-space handles. 1443 */ 1444 1445 user_obj = ttm_base_object_lookup(tfile, mode_cmd->handles[0]); 1446 if (unlikely(user_obj == NULL)) { 1447 DRM_ERROR("Could not locate requested kms frame buffer.\n"); 1448 return ERR_PTR(-ENOENT); 1449 } 1450 1451 /** 1452 * End conditioned code. 1453 */ 1454 1455 /* returns either a bo or surface */ 1456 ret = vmw_user_lookup_handle(dev_priv, tfile, 1457 mode_cmd->handles[0], 1458 &surface, &bo); 1459 if (ret) 1460 goto err_out; 1461 1462 1463 if (!bo && 1464 !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) { 1465 DRM_ERROR("Surface size cannot exceed %dx%d", 1466 dev_priv->texture_max_width, 1467 dev_priv->texture_max_height); 1468 goto err_out; 1469 } 1470 1471 1472 vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface, 1473 !(dev_priv->capabilities & SVGA_CAP_3D), 1474 mode_cmd); 1475 if (IS_ERR(vfb)) { 1476 ret = PTR_ERR(vfb); 1477 goto err_out; 1478 } 1479 1480 err_out: 1481 /* vmw_user_lookup_handle takes one ref so does new_fb */ 1482 if (bo) 1483 vmw_bo_unreference(&bo); 1484 if (surface) 1485 vmw_surface_unreference(&surface); 1486 1487 if (ret) { 1488 DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret); 1489 ttm_base_object_unref(&user_obj); 1490 return ERR_PTR(ret); 1491 } else 1492 vfb->user_obj = user_obj; 1493 1494 return &vfb->base; 1495 } 1496 1497 /** 1498 * vmw_kms_check_display_memory - Validates display memory required for a 1499 * topology 1500 * @dev: DRM device 1501 * @num_rects: number of drm_rect in rects 1502 * @rects: array of drm_rect representing the topology to validate indexed by 1503 * crtc index. 1504 * 1505 * Returns: 1506 * 0 on success otherwise negative error code 1507 */ 1508 static int vmw_kms_check_display_memory(struct drm_device *dev, 1509 uint32_t num_rects, 1510 struct drm_rect *rects) 1511 { 1512 struct vmw_private *dev_priv = vmw_priv(dev); 1513 struct drm_rect bounding_box = {0}; 1514 u64 total_pixels = 0, pixel_mem, bb_mem; 1515 int i; 1516 1517 for (i = 0; i < num_rects; i++) { 1518 /* 1519 * For STDU only individual screen (screen target) is limited by 1520 * SCREENTARGET_MAX_WIDTH/HEIGHT registers. 1521 */ 1522 if (dev_priv->active_display_unit == vmw_du_screen_target && 1523 (drm_rect_width(&rects[i]) > dev_priv->stdu_max_width || 1524 drm_rect_height(&rects[i]) > dev_priv->stdu_max_height)) { 1525 DRM_ERROR("Screen size not supported.\n"); 1526 return -EINVAL; 1527 } 1528 1529 /* Bounding box upper left is at (0,0). */ 1530 if (rects[i].x2 > bounding_box.x2) 1531 bounding_box.x2 = rects[i].x2; 1532 1533 if (rects[i].y2 > bounding_box.y2) 1534 bounding_box.y2 = rects[i].y2; 1535 1536 total_pixels += (u64) drm_rect_width(&rects[i]) * 1537 (u64) drm_rect_height(&rects[i]); 1538 } 1539 1540 /* Virtual svga device primary limits are always in 32-bpp. */ 1541 pixel_mem = total_pixels * 4; 1542 1543 /* 1544 * For HV10 and below prim_bb_mem is vram size. When 1545 * SVGA_REG_MAX_PRIMARY_BOUNDING_BOX_MEM is not present vram size is 1546 * limit on primary bounding box 1547 */ 1548 if (pixel_mem > dev_priv->prim_bb_mem) { 1549 DRM_ERROR("Combined output size too large.\n"); 1550 return -EINVAL; 1551 } 1552 1553 /* SVGA_CAP_NO_BB_RESTRICTION is available for STDU only. */ 1554 if (dev_priv->active_display_unit != vmw_du_screen_target || 1555 !(dev_priv->capabilities & SVGA_CAP_NO_BB_RESTRICTION)) { 1556 bb_mem = (u64) bounding_box.x2 * bounding_box.y2 * 4; 1557 1558 if (bb_mem > dev_priv->prim_bb_mem) { 1559 DRM_ERROR("Topology is beyond supported limits.\n"); 1560 return -EINVAL; 1561 } 1562 } 1563 1564 return 0; 1565 } 1566 1567 /** 1568 * vmw_kms_check_topology - Validates topology in drm_atomic_state 1569 * @dev: DRM device 1570 * @state: the driver state object 1571 * 1572 * Returns: 1573 * 0 on success otherwise negative error code 1574 */ 1575 static int vmw_kms_check_topology(struct drm_device *dev, 1576 struct drm_atomic_state *state) 1577 { 1578 struct vmw_private *dev_priv = vmw_priv(dev); 1579 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 1580 struct drm_rect *rects; 1581 struct drm_crtc *crtc; 1582 uint32_t i; 1583 int ret = 0; 1584 1585 rects = kcalloc(dev->mode_config.num_crtc, sizeof(struct drm_rect), 1586 GFP_KERNEL); 1587 if (!rects) 1588 return -ENOMEM; 1589 1590 mutex_lock(&dev_priv->requested_layout_mutex); 1591 1592 drm_for_each_crtc(crtc, dev) { 1593 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 1594 struct drm_crtc_state *crtc_state = crtc->state; 1595 1596 i = drm_crtc_index(crtc); 1597 1598 if (crtc_state && crtc_state->enable) { 1599 rects[i].x1 = du->gui_x; 1600 rects[i].y1 = du->gui_y; 1601 rects[i].x2 = du->gui_x + crtc_state->mode.hdisplay; 1602 rects[i].y2 = du->gui_y + crtc_state->mode.vdisplay; 1603 } 1604 } 1605 1606 /* Determine change to topology due to new atomic state */ 1607 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, 1608 new_crtc_state, i) { 1609 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 1610 struct drm_connector *connector; 1611 struct drm_connector_state *conn_state; 1612 struct vmw_connector_state *vmw_conn_state; 1613 1614 if (!new_crtc_state->enable) { 1615 rects[i].x1 = 0; 1616 rects[i].y1 = 0; 1617 rects[i].x2 = 0; 1618 rects[i].y2 = 0; 1619 continue; 1620 } 1621 1622 if (!du->pref_active) { 1623 ret = -EINVAL; 1624 goto clean; 1625 } 1626 1627 /* 1628 * For vmwgfx each crtc has only one connector attached and it 1629 * is not changed so don't really need to check the 1630 * crtc->connector_mask and iterate over it. 1631 */ 1632 connector = &du->connector; 1633 conn_state = drm_atomic_get_connector_state(state, connector); 1634 if (IS_ERR(conn_state)) { 1635 ret = PTR_ERR(conn_state); 1636 goto clean; 1637 } 1638 1639 vmw_conn_state = vmw_connector_state_to_vcs(conn_state); 1640 vmw_conn_state->gui_x = du->gui_x; 1641 vmw_conn_state->gui_y = du->gui_y; 1642 1643 rects[i].x1 = du->gui_x; 1644 rects[i].y1 = du->gui_y; 1645 rects[i].x2 = du->gui_x + new_crtc_state->mode.hdisplay; 1646 rects[i].y2 = du->gui_y + new_crtc_state->mode.vdisplay; 1647 } 1648 1649 ret = vmw_kms_check_display_memory(dev, dev->mode_config.num_crtc, 1650 rects); 1651 1652 clean: 1653 mutex_unlock(&dev_priv->requested_layout_mutex); 1654 kfree(rects); 1655 return ret; 1656 } 1657 1658 /** 1659 * vmw_kms_atomic_check_modeset- validate state object for modeset changes 1660 * 1661 * @dev: DRM device 1662 * @state: the driver state object 1663 * 1664 * This is a simple wrapper around drm_atomic_helper_check_modeset() for 1665 * us to assign a value to mode->crtc_clock so that 1666 * drm_calc_timestamping_constants() won't throw an error message 1667 * 1668 * Returns: 1669 * Zero for success or -errno 1670 */ 1671 static int 1672 vmw_kms_atomic_check_modeset(struct drm_device *dev, 1673 struct drm_atomic_state *state) 1674 { 1675 struct drm_crtc *crtc; 1676 struct drm_crtc_state *crtc_state; 1677 bool need_modeset = false; 1678 int i, ret; 1679 1680 ret = drm_atomic_helper_check(dev, state); 1681 if (ret) 1682 return ret; 1683 1684 if (!state->allow_modeset) 1685 return ret; 1686 1687 /* 1688 * Legacy path do not set allow_modeset properly like 1689 * @drm_atomic_helper_update_plane, This will result in unnecessary call 1690 * to vmw_kms_check_topology. So extra set of check. 1691 */ 1692 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 1693 if (drm_atomic_crtc_needs_modeset(crtc_state)) 1694 need_modeset = true; 1695 } 1696 1697 if (need_modeset) 1698 return vmw_kms_check_topology(dev, state); 1699 1700 return ret; 1701 } 1702 1703 static const struct drm_mode_config_funcs vmw_kms_funcs = { 1704 .fb_create = vmw_kms_fb_create, 1705 .atomic_check = vmw_kms_atomic_check_modeset, 1706 .atomic_commit = drm_atomic_helper_commit, 1707 }; 1708 1709 static int vmw_kms_generic_present(struct vmw_private *dev_priv, 1710 struct drm_file *file_priv, 1711 struct vmw_framebuffer *vfb, 1712 struct vmw_surface *surface, 1713 uint32_t sid, 1714 int32_t destX, int32_t destY, 1715 struct drm_vmw_rect *clips, 1716 uint32_t num_clips) 1717 { 1718 return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips, 1719 &surface->res, destX, destY, 1720 num_clips, 1, NULL, NULL); 1721 } 1722 1723 1724 int vmw_kms_present(struct vmw_private *dev_priv, 1725 struct drm_file *file_priv, 1726 struct vmw_framebuffer *vfb, 1727 struct vmw_surface *surface, 1728 uint32_t sid, 1729 int32_t destX, int32_t destY, 1730 struct drm_vmw_rect *clips, 1731 uint32_t num_clips) 1732 { 1733 int ret; 1734 1735 switch (dev_priv->active_display_unit) { 1736 case vmw_du_screen_target: 1737 ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips, 1738 &surface->res, destX, destY, 1739 num_clips, 1, NULL, NULL); 1740 break; 1741 case vmw_du_screen_object: 1742 ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface, 1743 sid, destX, destY, clips, 1744 num_clips); 1745 break; 1746 default: 1747 WARN_ONCE(true, 1748 "Present called with invalid display system.\n"); 1749 ret = -ENOSYS; 1750 break; 1751 } 1752 if (ret) 1753 return ret; 1754 1755 vmw_fifo_flush(dev_priv, false); 1756 1757 return 0; 1758 } 1759 1760 static void 1761 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv) 1762 { 1763 if (dev_priv->hotplug_mode_update_property) 1764 return; 1765 1766 dev_priv->hotplug_mode_update_property = 1767 drm_property_create_range(dev_priv->dev, 1768 DRM_MODE_PROP_IMMUTABLE, 1769 "hotplug_mode_update", 0, 1); 1770 1771 if (!dev_priv->hotplug_mode_update_property) 1772 return; 1773 1774 } 1775 1776 int vmw_kms_init(struct vmw_private *dev_priv) 1777 { 1778 struct drm_device *dev = dev_priv->dev; 1779 int ret; 1780 1781 drm_mode_config_init(dev); 1782 dev->mode_config.funcs = &vmw_kms_funcs; 1783 dev->mode_config.min_width = 1; 1784 dev->mode_config.min_height = 1; 1785 dev->mode_config.max_width = dev_priv->texture_max_width; 1786 dev->mode_config.max_height = dev_priv->texture_max_height; 1787 1788 drm_mode_create_suggested_offset_properties(dev); 1789 vmw_kms_create_hotplug_mode_update_property(dev_priv); 1790 1791 ret = vmw_kms_stdu_init_display(dev_priv); 1792 if (ret) { 1793 ret = vmw_kms_sou_init_display(dev_priv); 1794 if (ret) /* Fallback */ 1795 ret = vmw_kms_ldu_init_display(dev_priv); 1796 } 1797 1798 return ret; 1799 } 1800 1801 int vmw_kms_close(struct vmw_private *dev_priv) 1802 { 1803 int ret = 0; 1804 1805 /* 1806 * Docs says we should take the lock before calling this function 1807 * but since it destroys encoders and our destructor calls 1808 * drm_encoder_cleanup which takes the lock we deadlock. 1809 */ 1810 drm_mode_config_cleanup(dev_priv->dev); 1811 if (dev_priv->active_display_unit == vmw_du_legacy) 1812 ret = vmw_kms_ldu_close_display(dev_priv); 1813 1814 return ret; 1815 } 1816 1817 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data, 1818 struct drm_file *file_priv) 1819 { 1820 struct drm_vmw_cursor_bypass_arg *arg = data; 1821 struct vmw_display_unit *du; 1822 struct drm_crtc *crtc; 1823 int ret = 0; 1824 1825 1826 mutex_lock(&dev->mode_config.mutex); 1827 if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) { 1828 1829 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 1830 du = vmw_crtc_to_du(crtc); 1831 du->hotspot_x = arg->xhot; 1832 du->hotspot_y = arg->yhot; 1833 } 1834 1835 mutex_unlock(&dev->mode_config.mutex); 1836 return 0; 1837 } 1838 1839 crtc = drm_crtc_find(dev, file_priv, arg->crtc_id); 1840 if (!crtc) { 1841 ret = -ENOENT; 1842 goto out; 1843 } 1844 1845 du = vmw_crtc_to_du(crtc); 1846 1847 du->hotspot_x = arg->xhot; 1848 du->hotspot_y = arg->yhot; 1849 1850 out: 1851 mutex_unlock(&dev->mode_config.mutex); 1852 1853 return ret; 1854 } 1855 1856 int vmw_kms_write_svga(struct vmw_private *vmw_priv, 1857 unsigned width, unsigned height, unsigned pitch, 1858 unsigned bpp, unsigned depth) 1859 { 1860 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK) 1861 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch); 1862 else if (vmw_fifo_have_pitchlock(vmw_priv)) 1863 vmw_mmio_write(pitch, vmw_priv->mmio_virt + 1864 SVGA_FIFO_PITCHLOCK); 1865 vmw_write(vmw_priv, SVGA_REG_WIDTH, width); 1866 vmw_write(vmw_priv, SVGA_REG_HEIGHT, height); 1867 vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp); 1868 1869 if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) { 1870 DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n", 1871 depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH)); 1872 return -EINVAL; 1873 } 1874 1875 return 0; 1876 } 1877 1878 int vmw_kms_save_vga(struct vmw_private *vmw_priv) 1879 { 1880 struct vmw_vga_topology_state *save; 1881 uint32_t i; 1882 1883 vmw_priv->vga_width = vmw_read(vmw_priv, SVGA_REG_WIDTH); 1884 vmw_priv->vga_height = vmw_read(vmw_priv, SVGA_REG_HEIGHT); 1885 vmw_priv->vga_bpp = vmw_read(vmw_priv, SVGA_REG_BITS_PER_PIXEL); 1886 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK) 1887 vmw_priv->vga_pitchlock = 1888 vmw_read(vmw_priv, SVGA_REG_PITCHLOCK); 1889 else if (vmw_fifo_have_pitchlock(vmw_priv)) 1890 vmw_priv->vga_pitchlock = vmw_mmio_read(vmw_priv->mmio_virt + 1891 SVGA_FIFO_PITCHLOCK); 1892 1893 if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY)) 1894 return 0; 1895 1896 vmw_priv->num_displays = vmw_read(vmw_priv, 1897 SVGA_REG_NUM_GUEST_DISPLAYS); 1898 1899 if (vmw_priv->num_displays == 0) 1900 vmw_priv->num_displays = 1; 1901 1902 for (i = 0; i < vmw_priv->num_displays; ++i) { 1903 save = &vmw_priv->vga_save[i]; 1904 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i); 1905 save->primary = vmw_read(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY); 1906 save->pos_x = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_X); 1907 save->pos_y = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y); 1908 save->width = vmw_read(vmw_priv, SVGA_REG_DISPLAY_WIDTH); 1909 save->height = vmw_read(vmw_priv, SVGA_REG_DISPLAY_HEIGHT); 1910 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID); 1911 if (i == 0 && vmw_priv->num_displays == 1 && 1912 save->width == 0 && save->height == 0) { 1913 1914 /* 1915 * It should be fairly safe to assume that these 1916 * values are uninitialized. 1917 */ 1918 1919 save->width = vmw_priv->vga_width - save->pos_x; 1920 save->height = vmw_priv->vga_height - save->pos_y; 1921 } 1922 } 1923 1924 return 0; 1925 } 1926 1927 int vmw_kms_restore_vga(struct vmw_private *vmw_priv) 1928 { 1929 struct vmw_vga_topology_state *save; 1930 uint32_t i; 1931 1932 vmw_write(vmw_priv, SVGA_REG_WIDTH, vmw_priv->vga_width); 1933 vmw_write(vmw_priv, SVGA_REG_HEIGHT, vmw_priv->vga_height); 1934 vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, vmw_priv->vga_bpp); 1935 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK) 1936 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, 1937 vmw_priv->vga_pitchlock); 1938 else if (vmw_fifo_have_pitchlock(vmw_priv)) 1939 vmw_mmio_write(vmw_priv->vga_pitchlock, 1940 vmw_priv->mmio_virt + SVGA_FIFO_PITCHLOCK); 1941 1942 if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY)) 1943 return 0; 1944 1945 for (i = 0; i < vmw_priv->num_displays; ++i) { 1946 save = &vmw_priv->vga_save[i]; 1947 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i); 1948 vmw_write(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY, save->primary); 1949 vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_X, save->pos_x); 1950 vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y, save->pos_y); 1951 vmw_write(vmw_priv, SVGA_REG_DISPLAY_WIDTH, save->width); 1952 vmw_write(vmw_priv, SVGA_REG_DISPLAY_HEIGHT, save->height); 1953 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID); 1954 } 1955 1956 return 0; 1957 } 1958 1959 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv, 1960 uint32_t pitch, 1961 uint32_t height) 1962 { 1963 return ((u64) pitch * (u64) height) < (u64) 1964 ((dev_priv->active_display_unit == vmw_du_screen_target) ? 1965 dev_priv->prim_bb_mem : dev_priv->vram_size); 1966 } 1967 1968 1969 /** 1970 * Function called by DRM code called with vbl_lock held. 1971 */ 1972 u32 vmw_get_vblank_counter(struct drm_device *dev, unsigned int pipe) 1973 { 1974 return 0; 1975 } 1976 1977 /** 1978 * Function called by DRM code called with vbl_lock held. 1979 */ 1980 int vmw_enable_vblank(struct drm_device *dev, unsigned int pipe) 1981 { 1982 return -EINVAL; 1983 } 1984 1985 /** 1986 * Function called by DRM code called with vbl_lock held. 1987 */ 1988 void vmw_disable_vblank(struct drm_device *dev, unsigned int pipe) 1989 { 1990 } 1991 1992 /** 1993 * vmw_du_update_layout - Update the display unit with topology from resolution 1994 * plugin and generate DRM uevent 1995 * @dev_priv: device private 1996 * @num_rects: number of drm_rect in rects 1997 * @rects: toplogy to update 1998 */ 1999 static int vmw_du_update_layout(struct vmw_private *dev_priv, 2000 unsigned int num_rects, struct drm_rect *rects) 2001 { 2002 struct drm_device *dev = dev_priv->dev; 2003 struct vmw_display_unit *du; 2004 struct drm_connector *con; 2005 struct drm_connector_list_iter conn_iter; 2006 2007 /* 2008 * Currently only gui_x/y is protected with requested_layout_mutex. 2009 */ 2010 mutex_lock(&dev_priv->requested_layout_mutex); 2011 drm_connector_list_iter_begin(dev, &conn_iter); 2012 drm_for_each_connector_iter(con, &conn_iter) { 2013 du = vmw_connector_to_du(con); 2014 if (num_rects > du->unit) { 2015 du->pref_width = drm_rect_width(&rects[du->unit]); 2016 du->pref_height = drm_rect_height(&rects[du->unit]); 2017 du->pref_active = true; 2018 du->gui_x = rects[du->unit].x1; 2019 du->gui_y = rects[du->unit].y1; 2020 } else { 2021 du->pref_width = 800; 2022 du->pref_height = 600; 2023 du->pref_active = false; 2024 du->gui_x = 0; 2025 du->gui_y = 0; 2026 } 2027 } 2028 drm_connector_list_iter_end(&conn_iter); 2029 mutex_unlock(&dev_priv->requested_layout_mutex); 2030 2031 mutex_lock(&dev->mode_config.mutex); 2032 list_for_each_entry(con, &dev->mode_config.connector_list, head) { 2033 du = vmw_connector_to_du(con); 2034 if (num_rects > du->unit) { 2035 drm_object_property_set_value 2036 (&con->base, dev->mode_config.suggested_x_property, 2037 du->gui_x); 2038 drm_object_property_set_value 2039 (&con->base, dev->mode_config.suggested_y_property, 2040 du->gui_y); 2041 } else { 2042 drm_object_property_set_value 2043 (&con->base, dev->mode_config.suggested_x_property, 2044 0); 2045 drm_object_property_set_value 2046 (&con->base, dev->mode_config.suggested_y_property, 2047 0); 2048 } 2049 con->status = vmw_du_connector_detect(con, true); 2050 } 2051 mutex_unlock(&dev->mode_config.mutex); 2052 2053 drm_sysfs_hotplug_event(dev); 2054 2055 return 0; 2056 } 2057 2058 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc, 2059 u16 *r, u16 *g, u16 *b, 2060 uint32_t size, 2061 struct drm_modeset_acquire_ctx *ctx) 2062 { 2063 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 2064 int i; 2065 2066 for (i = 0; i < size; i++) { 2067 DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i, 2068 r[i], g[i], b[i]); 2069 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8); 2070 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8); 2071 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8); 2072 } 2073 2074 return 0; 2075 } 2076 2077 int vmw_du_connector_dpms(struct drm_connector *connector, int mode) 2078 { 2079 return 0; 2080 } 2081 2082 enum drm_connector_status 2083 vmw_du_connector_detect(struct drm_connector *connector, bool force) 2084 { 2085 uint32_t num_displays; 2086 struct drm_device *dev = connector->dev; 2087 struct vmw_private *dev_priv = vmw_priv(dev); 2088 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2089 2090 num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS); 2091 2092 return ((vmw_connector_to_du(connector)->unit < num_displays && 2093 du->pref_active) ? 2094 connector_status_connected : connector_status_disconnected); 2095 } 2096 2097 static struct drm_display_mode vmw_kms_connector_builtin[] = { 2098 /* 640x480@60Hz */ 2099 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656, 2100 752, 800, 0, 480, 489, 492, 525, 0, 2101 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 2102 /* 800x600@60Hz */ 2103 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840, 2104 968, 1056, 0, 600, 601, 605, 628, 0, 2105 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2106 /* 1024x768@60Hz */ 2107 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048, 2108 1184, 1344, 0, 768, 771, 777, 806, 0, 2109 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 2110 /* 1152x864@75Hz */ 2111 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216, 2112 1344, 1600, 0, 864, 865, 868, 900, 0, 2113 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2114 /* 1280x768@60Hz */ 2115 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344, 2116 1472, 1664, 0, 768, 771, 778, 798, 0, 2117 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2118 /* 1280x800@60Hz */ 2119 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352, 2120 1480, 1680, 0, 800, 803, 809, 831, 0, 2121 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 2122 /* 1280x960@60Hz */ 2123 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376, 2124 1488, 1800, 0, 960, 961, 964, 1000, 0, 2125 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2126 /* 1280x1024@60Hz */ 2127 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328, 2128 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, 2129 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2130 /* 1360x768@60Hz */ 2131 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424, 2132 1536, 1792, 0, 768, 771, 777, 795, 0, 2133 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2134 /* 1440x1050@60Hz */ 2135 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488, 2136 1632, 1864, 0, 1050, 1053, 1057, 1089, 0, 2137 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2138 /* 1440x900@60Hz */ 2139 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520, 2140 1672, 1904, 0, 900, 903, 909, 934, 0, 2141 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2142 /* 1600x1200@60Hz */ 2143 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664, 2144 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 2145 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2146 /* 1680x1050@60Hz */ 2147 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784, 2148 1960, 2240, 0, 1050, 1053, 1059, 1089, 0, 2149 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2150 /* 1792x1344@60Hz */ 2151 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920, 2152 2120, 2448, 0, 1344, 1345, 1348, 1394, 0, 2153 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2154 /* 1853x1392@60Hz */ 2155 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952, 2156 2176, 2528, 0, 1392, 1393, 1396, 1439, 0, 2157 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2158 /* 1920x1200@60Hz */ 2159 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056, 2160 2256, 2592, 0, 1200, 1203, 1209, 1245, 0, 2161 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2162 /* 1920x1440@60Hz */ 2163 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048, 2164 2256, 2600, 0, 1440, 1441, 1444, 1500, 0, 2165 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2166 /* 2560x1600@60Hz */ 2167 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752, 2168 3032, 3504, 0, 1600, 1603, 1609, 1658, 0, 2169 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2170 /* Terminate */ 2171 { DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) }, 2172 }; 2173 2174 /** 2175 * vmw_guess_mode_timing - Provide fake timings for a 2176 * 60Hz vrefresh mode. 2177 * 2178 * @mode - Pointer to a struct drm_display_mode with hdisplay and vdisplay 2179 * members filled in. 2180 */ 2181 void vmw_guess_mode_timing(struct drm_display_mode *mode) 2182 { 2183 mode->hsync_start = mode->hdisplay + 50; 2184 mode->hsync_end = mode->hsync_start + 50; 2185 mode->htotal = mode->hsync_end + 50; 2186 2187 mode->vsync_start = mode->vdisplay + 50; 2188 mode->vsync_end = mode->vsync_start + 50; 2189 mode->vtotal = mode->vsync_end + 50; 2190 2191 mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6; 2192 mode->vrefresh = drm_mode_vrefresh(mode); 2193 } 2194 2195 2196 int vmw_du_connector_fill_modes(struct drm_connector *connector, 2197 uint32_t max_width, uint32_t max_height) 2198 { 2199 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2200 struct drm_device *dev = connector->dev; 2201 struct vmw_private *dev_priv = vmw_priv(dev); 2202 struct drm_display_mode *mode = NULL; 2203 struct drm_display_mode *bmode; 2204 struct drm_display_mode prefmode = { DRM_MODE("preferred", 2205 DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED, 2206 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2207 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) 2208 }; 2209 int i; 2210 u32 assumed_bpp = 4; 2211 2212 if (dev_priv->assume_16bpp) 2213 assumed_bpp = 2; 2214 2215 max_width = min(max_width, dev_priv->texture_max_width); 2216 max_height = min(max_height, dev_priv->texture_max_height); 2217 2218 /* 2219 * For STDU extra limit for a mode on SVGA_REG_SCREENTARGET_MAX_WIDTH/ 2220 * HEIGHT registers. 2221 */ 2222 if (dev_priv->active_display_unit == vmw_du_screen_target) { 2223 max_width = min(max_width, dev_priv->stdu_max_width); 2224 max_height = min(max_height, dev_priv->stdu_max_height); 2225 } 2226 2227 /* Add preferred mode */ 2228 mode = drm_mode_duplicate(dev, &prefmode); 2229 if (!mode) 2230 return 0; 2231 mode->hdisplay = du->pref_width; 2232 mode->vdisplay = du->pref_height; 2233 vmw_guess_mode_timing(mode); 2234 2235 if (vmw_kms_validate_mode_vram(dev_priv, 2236 mode->hdisplay * assumed_bpp, 2237 mode->vdisplay)) { 2238 drm_mode_probed_add(connector, mode); 2239 } else { 2240 drm_mode_destroy(dev, mode); 2241 mode = NULL; 2242 } 2243 2244 if (du->pref_mode) { 2245 list_del_init(&du->pref_mode->head); 2246 drm_mode_destroy(dev, du->pref_mode); 2247 } 2248 2249 /* mode might be null here, this is intended */ 2250 du->pref_mode = mode; 2251 2252 for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) { 2253 bmode = &vmw_kms_connector_builtin[i]; 2254 if (bmode->hdisplay > max_width || 2255 bmode->vdisplay > max_height) 2256 continue; 2257 2258 if (!vmw_kms_validate_mode_vram(dev_priv, 2259 bmode->hdisplay * assumed_bpp, 2260 bmode->vdisplay)) 2261 continue; 2262 2263 mode = drm_mode_duplicate(dev, bmode); 2264 if (!mode) 2265 return 0; 2266 mode->vrefresh = drm_mode_vrefresh(mode); 2267 2268 drm_mode_probed_add(connector, mode); 2269 } 2270 2271 drm_connector_list_update(connector); 2272 /* Move the prefered mode first, help apps pick the right mode. */ 2273 drm_mode_sort(&connector->modes); 2274 2275 return 1; 2276 } 2277 2278 int vmw_du_connector_set_property(struct drm_connector *connector, 2279 struct drm_property *property, 2280 uint64_t val) 2281 { 2282 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2283 struct vmw_private *dev_priv = vmw_priv(connector->dev); 2284 2285 if (property == dev_priv->implicit_placement_property) 2286 du->is_implicit = val; 2287 2288 return 0; 2289 } 2290 2291 2292 2293 /** 2294 * vmw_du_connector_atomic_set_property - Atomic version of get property 2295 * 2296 * @crtc - crtc the property is associated with 2297 * 2298 * Returns: 2299 * Zero on success, negative errno on failure. 2300 */ 2301 int 2302 vmw_du_connector_atomic_set_property(struct drm_connector *connector, 2303 struct drm_connector_state *state, 2304 struct drm_property *property, 2305 uint64_t val) 2306 { 2307 struct vmw_private *dev_priv = vmw_priv(connector->dev); 2308 struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state); 2309 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2310 2311 2312 if (property == dev_priv->implicit_placement_property) { 2313 vcs->is_implicit = val; 2314 2315 /* 2316 * We should really be doing a drm_atomic_commit() to 2317 * commit the new state, but since this doesn't cause 2318 * an immedate state change, this is probably ok 2319 */ 2320 du->is_implicit = vcs->is_implicit; 2321 } else { 2322 return -EINVAL; 2323 } 2324 2325 return 0; 2326 } 2327 2328 2329 /** 2330 * vmw_du_connector_atomic_get_property - Atomic version of get property 2331 * 2332 * @connector - connector the property is associated with 2333 * 2334 * Returns: 2335 * Zero on success, negative errno on failure. 2336 */ 2337 int 2338 vmw_du_connector_atomic_get_property(struct drm_connector *connector, 2339 const struct drm_connector_state *state, 2340 struct drm_property *property, 2341 uint64_t *val) 2342 { 2343 struct vmw_private *dev_priv = vmw_priv(connector->dev); 2344 struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state); 2345 2346 if (property == dev_priv->implicit_placement_property) 2347 *val = vcs->is_implicit; 2348 else { 2349 DRM_ERROR("Invalid Property %s\n", property->name); 2350 return -EINVAL; 2351 } 2352 2353 return 0; 2354 } 2355 2356 /** 2357 * vmw_kms_update_layout_ioctl - Handler for DRM_VMW_UPDATE_LAYOUT ioctl 2358 * @dev: drm device for the ioctl 2359 * @data: data pointer for the ioctl 2360 * @file_priv: drm file for the ioctl call 2361 * 2362 * Update preferred topology of display unit as per ioctl request. The topology 2363 * is expressed as array of drm_vmw_rect. 2364 * e.g. 2365 * [0 0 640 480] [640 0 800 600] [0 480 640 480] 2366 * 2367 * NOTE: 2368 * The x and y offset (upper left) in drm_vmw_rect cannot be less than 0. Beside 2369 * device limit on topology, x + w and y + h (lower right) cannot be greater 2370 * than INT_MAX. So topology beyond these limits will return with error. 2371 * 2372 * Returns: 2373 * Zero on success, negative errno on failure. 2374 */ 2375 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data, 2376 struct drm_file *file_priv) 2377 { 2378 struct vmw_private *dev_priv = vmw_priv(dev); 2379 struct drm_mode_config *mode_config = &dev->mode_config; 2380 struct drm_vmw_update_layout_arg *arg = 2381 (struct drm_vmw_update_layout_arg *)data; 2382 void __user *user_rects; 2383 struct drm_vmw_rect *rects; 2384 struct drm_rect *drm_rects; 2385 unsigned rects_size; 2386 int ret, i; 2387 2388 if (!arg->num_outputs) { 2389 struct drm_rect def_rect = {0, 0, 800, 600}; 2390 vmw_du_update_layout(dev_priv, 1, &def_rect); 2391 return 0; 2392 } 2393 2394 rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect); 2395 rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect), 2396 GFP_KERNEL); 2397 if (unlikely(!rects)) 2398 return -ENOMEM; 2399 2400 user_rects = (void __user *)(unsigned long)arg->rects; 2401 ret = copy_from_user(rects, user_rects, rects_size); 2402 if (unlikely(ret != 0)) { 2403 DRM_ERROR("Failed to get rects.\n"); 2404 ret = -EFAULT; 2405 goto out_free; 2406 } 2407 2408 drm_rects = (struct drm_rect *)rects; 2409 2410 for (i = 0; i < arg->num_outputs; i++) { 2411 struct drm_vmw_rect curr_rect; 2412 2413 /* Verify user-space for overflow as kernel use drm_rect */ 2414 if ((rects[i].x + rects[i].w > INT_MAX) || 2415 (rects[i].y + rects[i].h > INT_MAX)) { 2416 ret = -ERANGE; 2417 goto out_free; 2418 } 2419 2420 curr_rect = rects[i]; 2421 drm_rects[i].x1 = curr_rect.x; 2422 drm_rects[i].y1 = curr_rect.y; 2423 drm_rects[i].x2 = curr_rect.x + curr_rect.w; 2424 drm_rects[i].y2 = curr_rect.y + curr_rect.h; 2425 2426 /* 2427 * Currently this check is limiting the topology within 2428 * mode_config->max (which actually is max texture size 2429 * supported by virtual device). This limit is here to address 2430 * window managers that create a big framebuffer for whole 2431 * topology. 2432 */ 2433 if (drm_rects[i].x1 < 0 || drm_rects[i].y1 < 0 || 2434 drm_rects[i].x2 > mode_config->max_width || 2435 drm_rects[i].y2 > mode_config->max_height) { 2436 DRM_ERROR("Invalid GUI layout.\n"); 2437 ret = -EINVAL; 2438 goto out_free; 2439 } 2440 } 2441 2442 ret = vmw_kms_check_display_memory(dev, arg->num_outputs, drm_rects); 2443 2444 if (ret == 0) 2445 vmw_du_update_layout(dev_priv, arg->num_outputs, drm_rects); 2446 2447 out_free: 2448 kfree(rects); 2449 return ret; 2450 } 2451 2452 /** 2453 * vmw_kms_helper_dirty - Helper to build commands and perform actions based 2454 * on a set of cliprects and a set of display units. 2455 * 2456 * @dev_priv: Pointer to a device private structure. 2457 * @framebuffer: Pointer to the framebuffer on which to perform the actions. 2458 * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL. 2459 * Cliprects are given in framebuffer coordinates. 2460 * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must 2461 * be NULL. Cliprects are given in source coordinates. 2462 * @dest_x: X coordinate offset for the crtc / destination clip rects. 2463 * @dest_y: Y coordinate offset for the crtc / destination clip rects. 2464 * @num_clips: Number of cliprects in the @clips or @vclips array. 2465 * @increment: Integer with which to increment the clip counter when looping. 2466 * Used to skip a predetermined number of clip rects. 2467 * @dirty: Closure structure. See the description of struct vmw_kms_dirty. 2468 */ 2469 int vmw_kms_helper_dirty(struct vmw_private *dev_priv, 2470 struct vmw_framebuffer *framebuffer, 2471 const struct drm_clip_rect *clips, 2472 const struct drm_vmw_rect *vclips, 2473 s32 dest_x, s32 dest_y, 2474 int num_clips, 2475 int increment, 2476 struct vmw_kms_dirty *dirty) 2477 { 2478 struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS]; 2479 struct drm_crtc *crtc; 2480 u32 num_units = 0; 2481 u32 i, k; 2482 2483 dirty->dev_priv = dev_priv; 2484 2485 /* If crtc is passed, no need to iterate over other display units */ 2486 if (dirty->crtc) { 2487 units[num_units++] = vmw_crtc_to_du(dirty->crtc); 2488 } else { 2489 list_for_each_entry(crtc, &dev_priv->dev->mode_config.crtc_list, 2490 head) { 2491 struct drm_plane *plane = crtc->primary; 2492 2493 if (plane->state->fb == &framebuffer->base) 2494 units[num_units++] = vmw_crtc_to_du(crtc); 2495 } 2496 } 2497 2498 for (k = 0; k < num_units; k++) { 2499 struct vmw_display_unit *unit = units[k]; 2500 s32 crtc_x = unit->crtc.x; 2501 s32 crtc_y = unit->crtc.y; 2502 s32 crtc_width = unit->crtc.mode.hdisplay; 2503 s32 crtc_height = unit->crtc.mode.vdisplay; 2504 const struct drm_clip_rect *clips_ptr = clips; 2505 const struct drm_vmw_rect *vclips_ptr = vclips; 2506 2507 dirty->unit = unit; 2508 if (dirty->fifo_reserve_size > 0) { 2509 dirty->cmd = vmw_fifo_reserve(dev_priv, 2510 dirty->fifo_reserve_size); 2511 if (!dirty->cmd) { 2512 DRM_ERROR("Couldn't reserve fifo space " 2513 "for dirty blits.\n"); 2514 return -ENOMEM; 2515 } 2516 memset(dirty->cmd, 0, dirty->fifo_reserve_size); 2517 } 2518 dirty->num_hits = 0; 2519 for (i = 0; i < num_clips; i++, clips_ptr += increment, 2520 vclips_ptr += increment) { 2521 s32 clip_left; 2522 s32 clip_top; 2523 2524 /* 2525 * Select clip array type. Note that integer type 2526 * in @clips is unsigned short, whereas in @vclips 2527 * it's 32-bit. 2528 */ 2529 if (clips) { 2530 dirty->fb_x = (s32) clips_ptr->x1; 2531 dirty->fb_y = (s32) clips_ptr->y1; 2532 dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x - 2533 crtc_x; 2534 dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y - 2535 crtc_y; 2536 } else { 2537 dirty->fb_x = vclips_ptr->x; 2538 dirty->fb_y = vclips_ptr->y; 2539 dirty->unit_x2 = dirty->fb_x + vclips_ptr->w + 2540 dest_x - crtc_x; 2541 dirty->unit_y2 = dirty->fb_y + vclips_ptr->h + 2542 dest_y - crtc_y; 2543 } 2544 2545 dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x; 2546 dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y; 2547 2548 /* Skip this clip if it's outside the crtc region */ 2549 if (dirty->unit_x1 >= crtc_width || 2550 dirty->unit_y1 >= crtc_height || 2551 dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0) 2552 continue; 2553 2554 /* Clip right and bottom to crtc limits */ 2555 dirty->unit_x2 = min_t(s32, dirty->unit_x2, 2556 crtc_width); 2557 dirty->unit_y2 = min_t(s32, dirty->unit_y2, 2558 crtc_height); 2559 2560 /* Clip left and top to crtc limits */ 2561 clip_left = min_t(s32, dirty->unit_x1, 0); 2562 clip_top = min_t(s32, dirty->unit_y1, 0); 2563 dirty->unit_x1 -= clip_left; 2564 dirty->unit_y1 -= clip_top; 2565 dirty->fb_x -= clip_left; 2566 dirty->fb_y -= clip_top; 2567 2568 dirty->clip(dirty); 2569 } 2570 2571 dirty->fifo_commit(dirty); 2572 } 2573 2574 return 0; 2575 } 2576 2577 /** 2578 * vmw_kms_helper_validation_finish - Helper for post KMS command submission 2579 * cleanup and fencing 2580 * @dev_priv: Pointer to the device-private struct 2581 * @file_priv: Pointer identifying the client when user-space fencing is used 2582 * @ctx: Pointer to the validation context 2583 * @out_fence: If non-NULL, returned refcounted fence-pointer 2584 * @user_fence_rep: If non-NULL, pointer to user-space address area 2585 * in which to copy user-space fence info 2586 */ 2587 void vmw_kms_helper_validation_finish(struct vmw_private *dev_priv, 2588 struct drm_file *file_priv, 2589 struct vmw_validation_context *ctx, 2590 struct vmw_fence_obj **out_fence, 2591 struct drm_vmw_fence_rep __user * 2592 user_fence_rep) 2593 { 2594 struct vmw_fence_obj *fence = NULL; 2595 uint32_t handle; 2596 int ret; 2597 2598 if (file_priv || user_fence_rep || vmw_validation_has_bos(ctx) || 2599 out_fence) 2600 ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence, 2601 file_priv ? &handle : NULL); 2602 vmw_validation_done(ctx, fence); 2603 if (file_priv) 2604 vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv), 2605 ret, user_fence_rep, fence, 2606 handle, -1, NULL); 2607 if (out_fence) 2608 *out_fence = fence; 2609 else 2610 vmw_fence_obj_unreference(&fence); 2611 } 2612 2613 /** 2614 * vmw_kms_update_proxy - Helper function to update a proxy surface from 2615 * its backing MOB. 2616 * 2617 * @res: Pointer to the surface resource 2618 * @clips: Clip rects in framebuffer (surface) space. 2619 * @num_clips: Number of clips in @clips. 2620 * @increment: Integer with which to increment the clip counter when looping. 2621 * Used to skip a predetermined number of clip rects. 2622 * 2623 * This function makes sure the proxy surface is updated from its backing MOB 2624 * using the region given by @clips. The surface resource @res and its backing 2625 * MOB needs to be reserved and validated on call. 2626 */ 2627 int vmw_kms_update_proxy(struct vmw_resource *res, 2628 const struct drm_clip_rect *clips, 2629 unsigned num_clips, 2630 int increment) 2631 { 2632 struct vmw_private *dev_priv = res->dev_priv; 2633 struct drm_vmw_size *size = &vmw_res_to_srf(res)->base_size; 2634 struct { 2635 SVGA3dCmdHeader header; 2636 SVGA3dCmdUpdateGBImage body; 2637 } *cmd; 2638 SVGA3dBox *box; 2639 size_t copy_size = 0; 2640 int i; 2641 2642 if (!clips) 2643 return 0; 2644 2645 cmd = vmw_fifo_reserve(dev_priv, sizeof(*cmd) * num_clips); 2646 if (!cmd) { 2647 DRM_ERROR("Couldn't reserve fifo space for proxy surface " 2648 "update.\n"); 2649 return -ENOMEM; 2650 } 2651 2652 for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) { 2653 box = &cmd->body.box; 2654 2655 cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE; 2656 cmd->header.size = sizeof(cmd->body); 2657 cmd->body.image.sid = res->id; 2658 cmd->body.image.face = 0; 2659 cmd->body.image.mipmap = 0; 2660 2661 if (clips->x1 > size->width || clips->x2 > size->width || 2662 clips->y1 > size->height || clips->y2 > size->height) { 2663 DRM_ERROR("Invalid clips outsize of framebuffer.\n"); 2664 return -EINVAL; 2665 } 2666 2667 box->x = clips->x1; 2668 box->y = clips->y1; 2669 box->z = 0; 2670 box->w = clips->x2 - clips->x1; 2671 box->h = clips->y2 - clips->y1; 2672 box->d = 1; 2673 2674 copy_size += sizeof(*cmd); 2675 } 2676 2677 vmw_fifo_commit(dev_priv, copy_size); 2678 2679 return 0; 2680 } 2681 2682 int vmw_kms_fbdev_init_data(struct vmw_private *dev_priv, 2683 unsigned unit, 2684 u32 max_width, 2685 u32 max_height, 2686 struct drm_connector **p_con, 2687 struct drm_crtc **p_crtc, 2688 struct drm_display_mode **p_mode) 2689 { 2690 struct drm_connector *con; 2691 struct vmw_display_unit *du; 2692 struct drm_display_mode *mode; 2693 int i = 0; 2694 int ret = 0; 2695 2696 mutex_lock(&dev_priv->dev->mode_config.mutex); 2697 list_for_each_entry(con, &dev_priv->dev->mode_config.connector_list, 2698 head) { 2699 if (i == unit) 2700 break; 2701 2702 ++i; 2703 } 2704 2705 if (i != unit) { 2706 DRM_ERROR("Could not find initial display unit.\n"); 2707 ret = -EINVAL; 2708 goto out_unlock; 2709 } 2710 2711 if (list_empty(&con->modes)) 2712 (void) vmw_du_connector_fill_modes(con, max_width, max_height); 2713 2714 if (list_empty(&con->modes)) { 2715 DRM_ERROR("Could not find initial display mode.\n"); 2716 ret = -EINVAL; 2717 goto out_unlock; 2718 } 2719 2720 du = vmw_connector_to_du(con); 2721 *p_con = con; 2722 *p_crtc = &du->crtc; 2723 2724 list_for_each_entry(mode, &con->modes, head) { 2725 if (mode->type & DRM_MODE_TYPE_PREFERRED) 2726 break; 2727 } 2728 2729 if (mode->type & DRM_MODE_TYPE_PREFERRED) 2730 *p_mode = mode; 2731 else { 2732 WARN_ONCE(true, "Could not find initial preferred mode.\n"); 2733 *p_mode = list_first_entry(&con->modes, 2734 struct drm_display_mode, 2735 head); 2736 } 2737 2738 out_unlock: 2739 mutex_unlock(&dev_priv->dev->mode_config.mutex); 2740 2741 return ret; 2742 } 2743 2744 /** 2745 * vmw_kms_del_active - unregister a crtc binding to the implicit framebuffer 2746 * 2747 * @dev_priv: Pointer to a device private struct. 2748 * @du: The display unit of the crtc. 2749 */ 2750 void vmw_kms_del_active(struct vmw_private *dev_priv, 2751 struct vmw_display_unit *du) 2752 { 2753 mutex_lock(&dev_priv->global_kms_state_mutex); 2754 if (du->active_implicit) { 2755 if (--(dev_priv->num_implicit) == 0) 2756 dev_priv->implicit_fb = NULL; 2757 du->active_implicit = false; 2758 } 2759 mutex_unlock(&dev_priv->global_kms_state_mutex); 2760 } 2761 2762 /** 2763 * vmw_kms_add_active - register a crtc binding to an implicit framebuffer 2764 * 2765 * @vmw_priv: Pointer to a device private struct. 2766 * @du: The display unit of the crtc. 2767 * @vfb: The implicit framebuffer 2768 * 2769 * Registers a binding to an implicit framebuffer. 2770 */ 2771 void vmw_kms_add_active(struct vmw_private *dev_priv, 2772 struct vmw_display_unit *du, 2773 struct vmw_framebuffer *vfb) 2774 { 2775 mutex_lock(&dev_priv->global_kms_state_mutex); 2776 WARN_ON_ONCE(!dev_priv->num_implicit && dev_priv->implicit_fb); 2777 2778 if (!du->active_implicit && du->is_implicit) { 2779 dev_priv->implicit_fb = vfb; 2780 du->active_implicit = true; 2781 dev_priv->num_implicit++; 2782 } 2783 mutex_unlock(&dev_priv->global_kms_state_mutex); 2784 } 2785 2786 /** 2787 * vmw_kms_screen_object_flippable - Check whether we can page-flip a crtc. 2788 * 2789 * @dev_priv: Pointer to device-private struct. 2790 * @crtc: The crtc we want to flip. 2791 * 2792 * Returns true or false depending whether it's OK to flip this crtc 2793 * based on the criterion that we must not have more than one implicit 2794 * frame-buffer at any one time. 2795 */ 2796 bool vmw_kms_crtc_flippable(struct vmw_private *dev_priv, 2797 struct drm_crtc *crtc) 2798 { 2799 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 2800 bool ret; 2801 2802 mutex_lock(&dev_priv->global_kms_state_mutex); 2803 ret = !du->is_implicit || dev_priv->num_implicit == 1; 2804 mutex_unlock(&dev_priv->global_kms_state_mutex); 2805 2806 return ret; 2807 } 2808 2809 /** 2810 * vmw_kms_update_implicit_fb - Update the implicit fb. 2811 * 2812 * @dev_priv: Pointer to device-private struct. 2813 * @crtc: The crtc the new implicit frame-buffer is bound to. 2814 */ 2815 void vmw_kms_update_implicit_fb(struct vmw_private *dev_priv, 2816 struct drm_crtc *crtc) 2817 { 2818 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 2819 struct drm_plane *plane = crtc->primary; 2820 struct vmw_framebuffer *vfb; 2821 2822 mutex_lock(&dev_priv->global_kms_state_mutex); 2823 2824 if (!du->is_implicit) 2825 goto out_unlock; 2826 2827 vfb = vmw_framebuffer_to_vfb(plane->state->fb); 2828 WARN_ON_ONCE(dev_priv->num_implicit != 1 && 2829 dev_priv->implicit_fb != vfb); 2830 2831 dev_priv->implicit_fb = vfb; 2832 out_unlock: 2833 mutex_unlock(&dev_priv->global_kms_state_mutex); 2834 } 2835 2836 /** 2837 * vmw_kms_create_implicit_placement_proparty - Set up the implicit placement 2838 * property. 2839 * 2840 * @dev_priv: Pointer to a device private struct. 2841 * @immutable: Whether the property is immutable. 2842 * 2843 * Sets up the implicit placement property unless it's already set up. 2844 */ 2845 void 2846 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv, 2847 bool immutable) 2848 { 2849 if (dev_priv->implicit_placement_property) 2850 return; 2851 2852 dev_priv->implicit_placement_property = 2853 drm_property_create_range(dev_priv->dev, 2854 immutable ? 2855 DRM_MODE_PROP_IMMUTABLE : 0, 2856 "implicit_placement", 0, 1); 2857 2858 } 2859 2860 2861 /** 2862 * vmw_kms_set_config - Wrapper around drm_atomic_helper_set_config 2863 * 2864 * @set: The configuration to set. 2865 * 2866 * The vmwgfx Xorg driver doesn't assign the mode::type member, which 2867 * when drm_mode_set_crtcinfo is called as part of the configuration setting 2868 * causes it to return incorrect crtc dimensions causing severe problems in 2869 * the vmwgfx modesetting. So explicitly clear that member before calling 2870 * into drm_atomic_helper_set_config. 2871 */ 2872 int vmw_kms_set_config(struct drm_mode_set *set, 2873 struct drm_modeset_acquire_ctx *ctx) 2874 { 2875 if (set && set->mode) 2876 set->mode->type = 0; 2877 2878 return drm_atomic_helper_set_config(set, ctx); 2879 } 2880 2881 2882 /** 2883 * vmw_kms_suspend - Save modesetting state and turn modesetting off. 2884 * 2885 * @dev: Pointer to the drm device 2886 * Return: 0 on success. Negative error code on failure. 2887 */ 2888 int vmw_kms_suspend(struct drm_device *dev) 2889 { 2890 struct vmw_private *dev_priv = vmw_priv(dev); 2891 2892 dev_priv->suspend_state = drm_atomic_helper_suspend(dev); 2893 if (IS_ERR(dev_priv->suspend_state)) { 2894 int ret = PTR_ERR(dev_priv->suspend_state); 2895 2896 DRM_ERROR("Failed kms suspend: %d\n", ret); 2897 dev_priv->suspend_state = NULL; 2898 2899 return ret; 2900 } 2901 2902 return 0; 2903 } 2904 2905 2906 /** 2907 * vmw_kms_resume - Re-enable modesetting and restore state 2908 * 2909 * @dev: Pointer to the drm device 2910 * Return: 0 on success. Negative error code on failure. 2911 * 2912 * State is resumed from a previous vmw_kms_suspend(). It's illegal 2913 * to call this function without a previous vmw_kms_suspend(). 2914 */ 2915 int vmw_kms_resume(struct drm_device *dev) 2916 { 2917 struct vmw_private *dev_priv = vmw_priv(dev); 2918 int ret; 2919 2920 if (WARN_ON(!dev_priv->suspend_state)) 2921 return 0; 2922 2923 ret = drm_atomic_helper_resume(dev, dev_priv->suspend_state); 2924 dev_priv->suspend_state = NULL; 2925 2926 return ret; 2927 } 2928 2929 /** 2930 * vmw_kms_lost_device - Notify kms that modesetting capabilities will be lost 2931 * 2932 * @dev: Pointer to the drm device 2933 */ 2934 void vmw_kms_lost_device(struct drm_device *dev) 2935 { 2936 drm_atomic_helper_shutdown(dev); 2937 } 2938