1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3  *
4  * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 #include "vmwgfx_kms.h"
29 #include <drm/drm_plane_helper.h>
30 #include <drm/drm_atomic.h>
31 #include <drm/drm_atomic_helper.h>
32 #include <drm/drm_rect.h>
33 
34 /* Might need a hrtimer here? */
35 #define VMWGFX_PRESENT_RATE ((HZ / 60 > 0) ? HZ / 60 : 1)
36 
37 void vmw_du_cleanup(struct vmw_display_unit *du)
38 {
39 	drm_plane_cleanup(&du->primary);
40 	drm_plane_cleanup(&du->cursor);
41 
42 	drm_connector_unregister(&du->connector);
43 	drm_crtc_cleanup(&du->crtc);
44 	drm_encoder_cleanup(&du->encoder);
45 	drm_connector_cleanup(&du->connector);
46 }
47 
48 /*
49  * Display Unit Cursor functions
50  */
51 
52 static int vmw_cursor_update_image(struct vmw_private *dev_priv,
53 				   u32 *image, u32 width, u32 height,
54 				   u32 hotspotX, u32 hotspotY)
55 {
56 	struct {
57 		u32 cmd;
58 		SVGAFifoCmdDefineAlphaCursor cursor;
59 	} *cmd;
60 	u32 image_size = width * height * 4;
61 	u32 cmd_size = sizeof(*cmd) + image_size;
62 
63 	if (!image)
64 		return -EINVAL;
65 
66 	cmd = vmw_fifo_reserve(dev_priv, cmd_size);
67 	if (unlikely(cmd == NULL)) {
68 		DRM_ERROR("Fifo reserve failed.\n");
69 		return -ENOMEM;
70 	}
71 
72 	memset(cmd, 0, sizeof(*cmd));
73 
74 	memcpy(&cmd[1], image, image_size);
75 
76 	cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR;
77 	cmd->cursor.id = 0;
78 	cmd->cursor.width = width;
79 	cmd->cursor.height = height;
80 	cmd->cursor.hotspotX = hotspotX;
81 	cmd->cursor.hotspotY = hotspotY;
82 
83 	vmw_fifo_commit_flush(dev_priv, cmd_size);
84 
85 	return 0;
86 }
87 
88 static int vmw_cursor_update_bo(struct vmw_private *dev_priv,
89 				struct vmw_buffer_object *bo,
90 				u32 width, u32 height,
91 				u32 hotspotX, u32 hotspotY)
92 {
93 	struct ttm_bo_kmap_obj map;
94 	unsigned long kmap_offset;
95 	unsigned long kmap_num;
96 	void *virtual;
97 	bool dummy;
98 	int ret;
99 
100 	kmap_offset = 0;
101 	kmap_num = (width*height*4 + PAGE_SIZE - 1) >> PAGE_SHIFT;
102 
103 	ret = ttm_bo_reserve(&bo->base, true, false, NULL);
104 	if (unlikely(ret != 0)) {
105 		DRM_ERROR("reserve failed\n");
106 		return -EINVAL;
107 	}
108 
109 	ret = ttm_bo_kmap(&bo->base, kmap_offset, kmap_num, &map);
110 	if (unlikely(ret != 0))
111 		goto err_unreserve;
112 
113 	virtual = ttm_kmap_obj_virtual(&map, &dummy);
114 	ret = vmw_cursor_update_image(dev_priv, virtual, width, height,
115 				      hotspotX, hotspotY);
116 
117 	ttm_bo_kunmap(&map);
118 err_unreserve:
119 	ttm_bo_unreserve(&bo->base);
120 
121 	return ret;
122 }
123 
124 
125 static void vmw_cursor_update_position(struct vmw_private *dev_priv,
126 				       bool show, int x, int y)
127 {
128 	u32 *fifo_mem = dev_priv->mmio_virt;
129 	uint32_t count;
130 
131 	spin_lock(&dev_priv->cursor_lock);
132 	vmw_mmio_write(show ? 1 : 0, fifo_mem + SVGA_FIFO_CURSOR_ON);
133 	vmw_mmio_write(x, fifo_mem + SVGA_FIFO_CURSOR_X);
134 	vmw_mmio_write(y, fifo_mem + SVGA_FIFO_CURSOR_Y);
135 	count = vmw_mmio_read(fifo_mem + SVGA_FIFO_CURSOR_COUNT);
136 	vmw_mmio_write(++count, fifo_mem + SVGA_FIFO_CURSOR_COUNT);
137 	spin_unlock(&dev_priv->cursor_lock);
138 }
139 
140 
141 void vmw_kms_cursor_snoop(struct vmw_surface *srf,
142 			  struct ttm_object_file *tfile,
143 			  struct ttm_buffer_object *bo,
144 			  SVGA3dCmdHeader *header)
145 {
146 	struct ttm_bo_kmap_obj map;
147 	unsigned long kmap_offset;
148 	unsigned long kmap_num;
149 	SVGA3dCopyBox *box;
150 	unsigned box_count;
151 	void *virtual;
152 	bool dummy;
153 	struct vmw_dma_cmd {
154 		SVGA3dCmdHeader header;
155 		SVGA3dCmdSurfaceDMA dma;
156 	} *cmd;
157 	int i, ret;
158 
159 	cmd = container_of(header, struct vmw_dma_cmd, header);
160 
161 	/* No snooper installed */
162 	if (!srf->snooper.image)
163 		return;
164 
165 	if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) {
166 		DRM_ERROR("face and mipmap for cursors should never != 0\n");
167 		return;
168 	}
169 
170 	if (cmd->header.size < 64) {
171 		DRM_ERROR("at least one full copy box must be given\n");
172 		return;
173 	}
174 
175 	box = (SVGA3dCopyBox *)&cmd[1];
176 	box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) /
177 			sizeof(SVGA3dCopyBox);
178 
179 	if (cmd->dma.guest.ptr.offset % PAGE_SIZE ||
180 	    box->x != 0    || box->y != 0    || box->z != 0    ||
181 	    box->srcx != 0 || box->srcy != 0 || box->srcz != 0 ||
182 	    box->d != 1    || box_count != 1) {
183 		/* TODO handle none page aligned offsets */
184 		/* TODO handle more dst & src != 0 */
185 		/* TODO handle more then one copy */
186 		DRM_ERROR("Cant snoop dma request for cursor!\n");
187 		DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n",
188 			  box->srcx, box->srcy, box->srcz,
189 			  box->x, box->y, box->z,
190 			  box->w, box->h, box->d, box_count,
191 			  cmd->dma.guest.ptr.offset);
192 		return;
193 	}
194 
195 	kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT;
196 	kmap_num = (64*64*4) >> PAGE_SHIFT;
197 
198 	ret = ttm_bo_reserve(bo, true, false, NULL);
199 	if (unlikely(ret != 0)) {
200 		DRM_ERROR("reserve failed\n");
201 		return;
202 	}
203 
204 	ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map);
205 	if (unlikely(ret != 0))
206 		goto err_unreserve;
207 
208 	virtual = ttm_kmap_obj_virtual(&map, &dummy);
209 
210 	if (box->w == 64 && cmd->dma.guest.pitch == 64*4) {
211 		memcpy(srf->snooper.image, virtual, 64*64*4);
212 	} else {
213 		/* Image is unsigned pointer. */
214 		for (i = 0; i < box->h; i++)
215 			memcpy(srf->snooper.image + i * 64,
216 			       virtual + i * cmd->dma.guest.pitch,
217 			       box->w * 4);
218 	}
219 
220 	srf->snooper.age++;
221 
222 	ttm_bo_kunmap(&map);
223 err_unreserve:
224 	ttm_bo_unreserve(bo);
225 }
226 
227 /**
228  * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots
229  *
230  * @dev_priv: Pointer to the device private struct.
231  *
232  * Clears all legacy hotspots.
233  */
234 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv)
235 {
236 	struct drm_device *dev = dev_priv->dev;
237 	struct vmw_display_unit *du;
238 	struct drm_crtc *crtc;
239 
240 	drm_modeset_lock_all(dev);
241 	drm_for_each_crtc(crtc, dev) {
242 		du = vmw_crtc_to_du(crtc);
243 
244 		du->hotspot_x = 0;
245 		du->hotspot_y = 0;
246 	}
247 	drm_modeset_unlock_all(dev);
248 }
249 
250 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv)
251 {
252 	struct drm_device *dev = dev_priv->dev;
253 	struct vmw_display_unit *du;
254 	struct drm_crtc *crtc;
255 
256 	mutex_lock(&dev->mode_config.mutex);
257 
258 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
259 		du = vmw_crtc_to_du(crtc);
260 		if (!du->cursor_surface ||
261 		    du->cursor_age == du->cursor_surface->snooper.age)
262 			continue;
263 
264 		du->cursor_age = du->cursor_surface->snooper.age;
265 		vmw_cursor_update_image(dev_priv,
266 					du->cursor_surface->snooper.image,
267 					64, 64,
268 					du->hotspot_x + du->core_hotspot_x,
269 					du->hotspot_y + du->core_hotspot_y);
270 	}
271 
272 	mutex_unlock(&dev->mode_config.mutex);
273 }
274 
275 
276 void vmw_du_cursor_plane_destroy(struct drm_plane *plane)
277 {
278 	vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0);
279 
280 	drm_plane_cleanup(plane);
281 }
282 
283 
284 void vmw_du_primary_plane_destroy(struct drm_plane *plane)
285 {
286 	drm_plane_cleanup(plane);
287 
288 	/* Planes are static in our case so we don't free it */
289 }
290 
291 
292 /**
293  * vmw_du_vps_unpin_surf - unpins resource associated with a framebuffer surface
294  *
295  * @vps: plane state associated with the display surface
296  * @unreference: true if we also want to unreference the display.
297  */
298 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps,
299 			     bool unreference)
300 {
301 	if (vps->surf) {
302 		if (vps->pinned) {
303 			vmw_resource_unpin(&vps->surf->res);
304 			vps->pinned--;
305 		}
306 
307 		if (unreference) {
308 			if (vps->pinned)
309 				DRM_ERROR("Surface still pinned\n");
310 			vmw_surface_unreference(&vps->surf);
311 		}
312 	}
313 }
314 
315 
316 /**
317  * vmw_du_plane_cleanup_fb - Unpins the cursor
318  *
319  * @plane:  display plane
320  * @old_state: Contains the FB to clean up
321  *
322  * Unpins the framebuffer surface
323  *
324  * Returns 0 on success
325  */
326 void
327 vmw_du_plane_cleanup_fb(struct drm_plane *plane,
328 			struct drm_plane_state *old_state)
329 {
330 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state);
331 
332 	vmw_du_plane_unpin_surf(vps, false);
333 }
334 
335 
336 /**
337  * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it
338  *
339  * @plane:  display plane
340  * @new_state: info on the new plane state, including the FB
341  *
342  * Returns 0 on success
343  */
344 int
345 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane,
346 			       struct drm_plane_state *new_state)
347 {
348 	struct drm_framebuffer *fb = new_state->fb;
349 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state);
350 
351 
352 	if (vps->surf)
353 		vmw_surface_unreference(&vps->surf);
354 
355 	if (vps->bo)
356 		vmw_bo_unreference(&vps->bo);
357 
358 	if (fb) {
359 		if (vmw_framebuffer_to_vfb(fb)->bo) {
360 			vps->bo = vmw_framebuffer_to_vfbd(fb)->buffer;
361 			vmw_bo_reference(vps->bo);
362 		} else {
363 			vps->surf = vmw_framebuffer_to_vfbs(fb)->surface;
364 			vmw_surface_reference(vps->surf);
365 		}
366 	}
367 
368 	return 0;
369 }
370 
371 
372 void
373 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane,
374 				  struct drm_plane_state *old_state)
375 {
376 	struct drm_crtc *crtc = plane->state->crtc ?: old_state->crtc;
377 	struct vmw_private *dev_priv = vmw_priv(crtc->dev);
378 	struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
379 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(plane->state);
380 	s32 hotspot_x, hotspot_y;
381 	int ret = 0;
382 
383 
384 	hotspot_x = du->hotspot_x;
385 	hotspot_y = du->hotspot_y;
386 
387 	if (plane->state->fb) {
388 		hotspot_x += plane->state->fb->hot_x;
389 		hotspot_y += plane->state->fb->hot_y;
390 	}
391 
392 	du->cursor_surface = vps->surf;
393 	du->cursor_bo = vps->bo;
394 
395 	if (vps->surf) {
396 		du->cursor_age = du->cursor_surface->snooper.age;
397 
398 		ret = vmw_cursor_update_image(dev_priv,
399 					      vps->surf->snooper.image,
400 					      64, 64, hotspot_x,
401 					      hotspot_y);
402 	} else if (vps->bo) {
403 		ret = vmw_cursor_update_bo(dev_priv, vps->bo,
404 					   plane->state->crtc_w,
405 					   plane->state->crtc_h,
406 					   hotspot_x, hotspot_y);
407 	} else {
408 		vmw_cursor_update_position(dev_priv, false, 0, 0);
409 		return;
410 	}
411 
412 	if (!ret) {
413 		du->cursor_x = plane->state->crtc_x + du->set_gui_x;
414 		du->cursor_y = plane->state->crtc_y + du->set_gui_y;
415 
416 		vmw_cursor_update_position(dev_priv, true,
417 					   du->cursor_x + hotspot_x,
418 					   du->cursor_y + hotspot_y);
419 
420 		du->core_hotspot_x = hotspot_x - du->hotspot_x;
421 		du->core_hotspot_y = hotspot_y - du->hotspot_y;
422 	} else {
423 		DRM_ERROR("Failed to update cursor image\n");
424 	}
425 }
426 
427 
428 /**
429  * vmw_du_primary_plane_atomic_check - check if the new state is okay
430  *
431  * @plane: display plane
432  * @state: info on the new plane state, including the FB
433  *
434  * Check if the new state is settable given the current state.  Other
435  * than what the atomic helper checks, we care about crtc fitting
436  * the FB and maintaining one active framebuffer.
437  *
438  * Returns 0 on success
439  */
440 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane,
441 				      struct drm_plane_state *state)
442 {
443 	struct drm_crtc_state *crtc_state = NULL;
444 	struct drm_framebuffer *new_fb = state->fb;
445 	int ret;
446 
447 	if (state->crtc)
448 		crtc_state = drm_atomic_get_new_crtc_state(state->state, state->crtc);
449 
450 	ret = drm_atomic_helper_check_plane_state(state, crtc_state,
451 						  DRM_PLANE_HELPER_NO_SCALING,
452 						  DRM_PLANE_HELPER_NO_SCALING,
453 						  false, true);
454 
455 	if (!ret && new_fb) {
456 		struct drm_crtc *crtc = state->crtc;
457 		struct vmw_connector_state *vcs;
458 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
459 		struct vmw_private *dev_priv = vmw_priv(crtc->dev);
460 		struct vmw_framebuffer *vfb = vmw_framebuffer_to_vfb(new_fb);
461 
462 		vcs = vmw_connector_state_to_vcs(du->connector.state);
463 
464 		/* Only one active implicit framebuffer at a time. */
465 		mutex_lock(&dev_priv->global_kms_state_mutex);
466 		if (vcs->is_implicit && dev_priv->implicit_fb &&
467 		    !(dev_priv->num_implicit == 1 && du->active_implicit)
468 		    && dev_priv->implicit_fb != vfb) {
469 			DRM_ERROR("Multiple implicit framebuffers "
470 				  "not supported.\n");
471 			ret = -EINVAL;
472 		}
473 		mutex_unlock(&dev_priv->global_kms_state_mutex);
474 	}
475 
476 
477 	return ret;
478 }
479 
480 
481 /**
482  * vmw_du_cursor_plane_atomic_check - check if the new state is okay
483  *
484  * @plane: cursor plane
485  * @state: info on the new plane state
486  *
487  * This is a chance to fail if the new cursor state does not fit
488  * our requirements.
489  *
490  * Returns 0 on success
491  */
492 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane,
493 				     struct drm_plane_state *new_state)
494 {
495 	int ret = 0;
496 	struct vmw_surface *surface = NULL;
497 	struct drm_framebuffer *fb = new_state->fb;
498 
499 	struct drm_rect src = drm_plane_state_src(new_state);
500 	struct drm_rect dest = drm_plane_state_dest(new_state);
501 
502 	/* Turning off */
503 	if (!fb)
504 		return ret;
505 
506 	ret = drm_plane_helper_check_update(plane, new_state->crtc, fb,
507 					    &src, &dest,
508 					    DRM_MODE_ROTATE_0,
509 					    DRM_PLANE_HELPER_NO_SCALING,
510 					    DRM_PLANE_HELPER_NO_SCALING,
511 					    true, true, &new_state->visible);
512 	if (!ret)
513 		return ret;
514 
515 	/* A lot of the code assumes this */
516 	if (new_state->crtc_w != 64 || new_state->crtc_h != 64) {
517 		DRM_ERROR("Invalid cursor dimensions (%d, %d)\n",
518 			  new_state->crtc_w, new_state->crtc_h);
519 		ret = -EINVAL;
520 	}
521 
522 	if (!vmw_framebuffer_to_vfb(fb)->bo)
523 		surface = vmw_framebuffer_to_vfbs(fb)->surface;
524 
525 	if (surface && !surface->snooper.image) {
526 		DRM_ERROR("surface not suitable for cursor\n");
527 		ret = -EINVAL;
528 	}
529 
530 	return ret;
531 }
532 
533 
534 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc,
535 			     struct drm_crtc_state *new_state)
536 {
537 	struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc);
538 	int connector_mask = drm_connector_mask(&du->connector);
539 	bool has_primary = new_state->plane_mask &
540 			   drm_plane_mask(crtc->primary);
541 
542 	/* We always want to have an active plane with an active CRTC */
543 	if (has_primary != new_state->enable)
544 		return -EINVAL;
545 
546 
547 	if (new_state->connector_mask != connector_mask &&
548 	    new_state->connector_mask != 0) {
549 		DRM_ERROR("Invalid connectors configuration\n");
550 		return -EINVAL;
551 	}
552 
553 	/*
554 	 * Our virtual device does not have a dot clock, so use the logical
555 	 * clock value as the dot clock.
556 	 */
557 	if (new_state->mode.crtc_clock == 0)
558 		new_state->adjusted_mode.crtc_clock = new_state->mode.clock;
559 
560 	return 0;
561 }
562 
563 
564 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc,
565 			      struct drm_crtc_state *old_crtc_state)
566 {
567 }
568 
569 
570 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc,
571 			      struct drm_crtc_state *old_crtc_state)
572 {
573 	struct drm_pending_vblank_event *event = crtc->state->event;
574 
575 	if (event) {
576 		crtc->state->event = NULL;
577 
578 		spin_lock_irq(&crtc->dev->event_lock);
579 		drm_crtc_send_vblank_event(crtc, event);
580 		spin_unlock_irq(&crtc->dev->event_lock);
581 	}
582 }
583 
584 
585 /**
586  * vmw_du_crtc_duplicate_state - duplicate crtc state
587  * @crtc: DRM crtc
588  *
589  * Allocates and returns a copy of the crtc state (both common and
590  * vmw-specific) for the specified crtc.
591  *
592  * Returns: The newly allocated crtc state, or NULL on failure.
593  */
594 struct drm_crtc_state *
595 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc)
596 {
597 	struct drm_crtc_state *state;
598 	struct vmw_crtc_state *vcs;
599 
600 	if (WARN_ON(!crtc->state))
601 		return NULL;
602 
603 	vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL);
604 
605 	if (!vcs)
606 		return NULL;
607 
608 	state = &vcs->base;
609 
610 	__drm_atomic_helper_crtc_duplicate_state(crtc, state);
611 
612 	return state;
613 }
614 
615 
616 /**
617  * vmw_du_crtc_reset - creates a blank vmw crtc state
618  * @crtc: DRM crtc
619  *
620  * Resets the atomic state for @crtc by freeing the state pointer (which
621  * might be NULL, e.g. at driver load time) and allocating a new empty state
622  * object.
623  */
624 void vmw_du_crtc_reset(struct drm_crtc *crtc)
625 {
626 	struct vmw_crtc_state *vcs;
627 
628 
629 	if (crtc->state) {
630 		__drm_atomic_helper_crtc_destroy_state(crtc->state);
631 
632 		kfree(vmw_crtc_state_to_vcs(crtc->state));
633 	}
634 
635 	vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
636 
637 	if (!vcs) {
638 		DRM_ERROR("Cannot allocate vmw_crtc_state\n");
639 		return;
640 	}
641 
642 	crtc->state = &vcs->base;
643 	crtc->state->crtc = crtc;
644 }
645 
646 
647 /**
648  * vmw_du_crtc_destroy_state - destroy crtc state
649  * @crtc: DRM crtc
650  * @state: state object to destroy
651  *
652  * Destroys the crtc state (both common and vmw-specific) for the
653  * specified plane.
654  */
655 void
656 vmw_du_crtc_destroy_state(struct drm_crtc *crtc,
657 			  struct drm_crtc_state *state)
658 {
659 	drm_atomic_helper_crtc_destroy_state(crtc, state);
660 }
661 
662 
663 /**
664  * vmw_du_plane_duplicate_state - duplicate plane state
665  * @plane: drm plane
666  *
667  * Allocates and returns a copy of the plane state (both common and
668  * vmw-specific) for the specified plane.
669  *
670  * Returns: The newly allocated plane state, or NULL on failure.
671  */
672 struct drm_plane_state *
673 vmw_du_plane_duplicate_state(struct drm_plane *plane)
674 {
675 	struct drm_plane_state *state;
676 	struct vmw_plane_state *vps;
677 
678 	vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL);
679 
680 	if (!vps)
681 		return NULL;
682 
683 	vps->pinned = 0;
684 	vps->cpp = 0;
685 
686 	/* Each ref counted resource needs to be acquired again */
687 	if (vps->surf)
688 		(void) vmw_surface_reference(vps->surf);
689 
690 	if (vps->bo)
691 		(void) vmw_bo_reference(vps->bo);
692 
693 	state = &vps->base;
694 
695 	__drm_atomic_helper_plane_duplicate_state(plane, state);
696 
697 	return state;
698 }
699 
700 
701 /**
702  * vmw_du_plane_reset - creates a blank vmw plane state
703  * @plane: drm plane
704  *
705  * Resets the atomic state for @plane by freeing the state pointer (which might
706  * be NULL, e.g. at driver load time) and allocating a new empty state object.
707  */
708 void vmw_du_plane_reset(struct drm_plane *plane)
709 {
710 	struct vmw_plane_state *vps;
711 
712 
713 	if (plane->state)
714 		vmw_du_plane_destroy_state(plane, plane->state);
715 
716 	vps = kzalloc(sizeof(*vps), GFP_KERNEL);
717 
718 	if (!vps) {
719 		DRM_ERROR("Cannot allocate vmw_plane_state\n");
720 		return;
721 	}
722 
723 	__drm_atomic_helper_plane_reset(plane, &vps->base);
724 }
725 
726 
727 /**
728  * vmw_du_plane_destroy_state - destroy plane state
729  * @plane: DRM plane
730  * @state: state object to destroy
731  *
732  * Destroys the plane state (both common and vmw-specific) for the
733  * specified plane.
734  */
735 void
736 vmw_du_plane_destroy_state(struct drm_plane *plane,
737 			   struct drm_plane_state *state)
738 {
739 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(state);
740 
741 
742 	/* Should have been freed by cleanup_fb */
743 	if (vps->surf)
744 		vmw_surface_unreference(&vps->surf);
745 
746 	if (vps->bo)
747 		vmw_bo_unreference(&vps->bo);
748 
749 	drm_atomic_helper_plane_destroy_state(plane, state);
750 }
751 
752 
753 /**
754  * vmw_du_connector_duplicate_state - duplicate connector state
755  * @connector: DRM connector
756  *
757  * Allocates and returns a copy of the connector state (both common and
758  * vmw-specific) for the specified connector.
759  *
760  * Returns: The newly allocated connector state, or NULL on failure.
761  */
762 struct drm_connector_state *
763 vmw_du_connector_duplicate_state(struct drm_connector *connector)
764 {
765 	struct drm_connector_state *state;
766 	struct vmw_connector_state *vcs;
767 
768 	if (WARN_ON(!connector->state))
769 		return NULL;
770 
771 	vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL);
772 
773 	if (!vcs)
774 		return NULL;
775 
776 	state = &vcs->base;
777 
778 	__drm_atomic_helper_connector_duplicate_state(connector, state);
779 
780 	return state;
781 }
782 
783 
784 /**
785  * vmw_du_connector_reset - creates a blank vmw connector state
786  * @connector: DRM connector
787  *
788  * Resets the atomic state for @connector by freeing the state pointer (which
789  * might be NULL, e.g. at driver load time) and allocating a new empty state
790  * object.
791  */
792 void vmw_du_connector_reset(struct drm_connector *connector)
793 {
794 	struct vmw_connector_state *vcs;
795 
796 
797 	if (connector->state) {
798 		__drm_atomic_helper_connector_destroy_state(connector->state);
799 
800 		kfree(vmw_connector_state_to_vcs(connector->state));
801 	}
802 
803 	vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
804 
805 	if (!vcs) {
806 		DRM_ERROR("Cannot allocate vmw_connector_state\n");
807 		return;
808 	}
809 
810 	__drm_atomic_helper_connector_reset(connector, &vcs->base);
811 }
812 
813 
814 /**
815  * vmw_du_connector_destroy_state - destroy connector state
816  * @connector: DRM connector
817  * @state: state object to destroy
818  *
819  * Destroys the connector state (both common and vmw-specific) for the
820  * specified plane.
821  */
822 void
823 vmw_du_connector_destroy_state(struct drm_connector *connector,
824 			  struct drm_connector_state *state)
825 {
826 	drm_atomic_helper_connector_destroy_state(connector, state);
827 }
828 /*
829  * Generic framebuffer code
830  */
831 
832 /*
833  * Surface framebuffer code
834  */
835 
836 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer)
837 {
838 	struct vmw_framebuffer_surface *vfbs =
839 		vmw_framebuffer_to_vfbs(framebuffer);
840 
841 	drm_framebuffer_cleanup(framebuffer);
842 	vmw_surface_unreference(&vfbs->surface);
843 	if (vfbs->base.user_obj)
844 		ttm_base_object_unref(&vfbs->base.user_obj);
845 
846 	kfree(vfbs);
847 }
848 
849 static int vmw_framebuffer_surface_dirty(struct drm_framebuffer *framebuffer,
850 				  struct drm_file *file_priv,
851 				  unsigned flags, unsigned color,
852 				  struct drm_clip_rect *clips,
853 				  unsigned num_clips)
854 {
855 	struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
856 	struct vmw_framebuffer_surface *vfbs =
857 		vmw_framebuffer_to_vfbs(framebuffer);
858 	struct drm_clip_rect norect;
859 	int ret, inc = 1;
860 
861 	/* Legacy Display Unit does not support 3D */
862 	if (dev_priv->active_display_unit == vmw_du_legacy)
863 		return -EINVAL;
864 
865 	drm_modeset_lock_all(dev_priv->dev);
866 
867 	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
868 	if (unlikely(ret != 0)) {
869 		drm_modeset_unlock_all(dev_priv->dev);
870 		return ret;
871 	}
872 
873 	if (!num_clips) {
874 		num_clips = 1;
875 		clips = &norect;
876 		norect.x1 = norect.y1 = 0;
877 		norect.x2 = framebuffer->width;
878 		norect.y2 = framebuffer->height;
879 	} else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
880 		num_clips /= 2;
881 		inc = 2; /* skip source rects */
882 	}
883 
884 	if (dev_priv->active_display_unit == vmw_du_screen_object)
885 		ret = vmw_kms_sou_do_surface_dirty(dev_priv, &vfbs->base,
886 						   clips, NULL, NULL, 0, 0,
887 						   num_clips, inc, NULL, NULL);
888 	else
889 		ret = vmw_kms_stdu_surface_dirty(dev_priv, &vfbs->base,
890 						 clips, NULL, NULL, 0, 0,
891 						 num_clips, inc, NULL, NULL);
892 
893 	vmw_fifo_flush(dev_priv, false);
894 	ttm_read_unlock(&dev_priv->reservation_sem);
895 
896 	drm_modeset_unlock_all(dev_priv->dev);
897 
898 	return 0;
899 }
900 
901 /**
902  * vmw_kms_readback - Perform a readback from the screen system to
903  * a buffer-object backed framebuffer.
904  *
905  * @dev_priv: Pointer to the device private structure.
906  * @file_priv: Pointer to a struct drm_file identifying the caller.
907  * Must be set to NULL if @user_fence_rep is NULL.
908  * @vfb: Pointer to the buffer-object backed framebuffer.
909  * @user_fence_rep: User-space provided structure for fence information.
910  * Must be set to non-NULL if @file_priv is non-NULL.
911  * @vclips: Array of clip rects.
912  * @num_clips: Number of clip rects in @vclips.
913  *
914  * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
915  * interrupted.
916  */
917 int vmw_kms_readback(struct vmw_private *dev_priv,
918 		     struct drm_file *file_priv,
919 		     struct vmw_framebuffer *vfb,
920 		     struct drm_vmw_fence_rep __user *user_fence_rep,
921 		     struct drm_vmw_rect *vclips,
922 		     uint32_t num_clips)
923 {
924 	switch (dev_priv->active_display_unit) {
925 	case vmw_du_screen_object:
926 		return vmw_kms_sou_readback(dev_priv, file_priv, vfb,
927 					    user_fence_rep, vclips, num_clips,
928 					    NULL);
929 	case vmw_du_screen_target:
930 		return vmw_kms_stdu_dma(dev_priv, file_priv, vfb,
931 					user_fence_rep, NULL, vclips, num_clips,
932 					1, false, true, NULL);
933 	default:
934 		WARN_ONCE(true,
935 			  "Readback called with invalid display system.\n");
936 }
937 
938 	return -ENOSYS;
939 }
940 
941 
942 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = {
943 	.destroy = vmw_framebuffer_surface_destroy,
944 	.dirty = vmw_framebuffer_surface_dirty,
945 };
946 
947 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv,
948 					   struct vmw_surface *surface,
949 					   struct vmw_framebuffer **out,
950 					   const struct drm_mode_fb_cmd2
951 					   *mode_cmd,
952 					   bool is_bo_proxy)
953 
954 {
955 	struct drm_device *dev = dev_priv->dev;
956 	struct vmw_framebuffer_surface *vfbs;
957 	enum SVGA3dSurfaceFormat format;
958 	int ret;
959 	struct drm_format_name_buf format_name;
960 
961 	/* 3D is only supported on HWv8 and newer hosts */
962 	if (dev_priv->active_display_unit == vmw_du_legacy)
963 		return -ENOSYS;
964 
965 	/*
966 	 * Sanity checks.
967 	 */
968 
969 	/* Surface must be marked as a scanout. */
970 	if (unlikely(!surface->scanout))
971 		return -EINVAL;
972 
973 	if (unlikely(surface->mip_levels[0] != 1 ||
974 		     surface->num_sizes != 1 ||
975 		     surface->base_size.width < mode_cmd->width ||
976 		     surface->base_size.height < mode_cmd->height ||
977 		     surface->base_size.depth != 1)) {
978 		DRM_ERROR("Incompatible surface dimensions "
979 			  "for requested mode.\n");
980 		return -EINVAL;
981 	}
982 
983 	switch (mode_cmd->pixel_format) {
984 	case DRM_FORMAT_ARGB8888:
985 		format = SVGA3D_A8R8G8B8;
986 		break;
987 	case DRM_FORMAT_XRGB8888:
988 		format = SVGA3D_X8R8G8B8;
989 		break;
990 	case DRM_FORMAT_RGB565:
991 		format = SVGA3D_R5G6B5;
992 		break;
993 	case DRM_FORMAT_XRGB1555:
994 		format = SVGA3D_A1R5G5B5;
995 		break;
996 	default:
997 		DRM_ERROR("Invalid pixel format: %s\n",
998 			  drm_get_format_name(mode_cmd->pixel_format, &format_name));
999 		return -EINVAL;
1000 	}
1001 
1002 	/*
1003 	 * For DX, surface format validation is done when surface->scanout
1004 	 * is set.
1005 	 */
1006 	if (!dev_priv->has_dx && format != surface->format) {
1007 		DRM_ERROR("Invalid surface format for requested mode.\n");
1008 		return -EINVAL;
1009 	}
1010 
1011 	vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL);
1012 	if (!vfbs) {
1013 		ret = -ENOMEM;
1014 		goto out_err1;
1015 	}
1016 
1017 	drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd);
1018 	vfbs->surface = vmw_surface_reference(surface);
1019 	vfbs->base.user_handle = mode_cmd->handles[0];
1020 	vfbs->is_bo_proxy = is_bo_proxy;
1021 
1022 	*out = &vfbs->base;
1023 
1024 	ret = drm_framebuffer_init(dev, &vfbs->base.base,
1025 				   &vmw_framebuffer_surface_funcs);
1026 	if (ret)
1027 		goto out_err2;
1028 
1029 	return 0;
1030 
1031 out_err2:
1032 	vmw_surface_unreference(&surface);
1033 	kfree(vfbs);
1034 out_err1:
1035 	return ret;
1036 }
1037 
1038 /*
1039  * Buffer-object framebuffer code
1040  */
1041 
1042 static void vmw_framebuffer_bo_destroy(struct drm_framebuffer *framebuffer)
1043 {
1044 	struct vmw_framebuffer_bo *vfbd =
1045 		vmw_framebuffer_to_vfbd(framebuffer);
1046 
1047 	drm_framebuffer_cleanup(framebuffer);
1048 	vmw_bo_unreference(&vfbd->buffer);
1049 	if (vfbd->base.user_obj)
1050 		ttm_base_object_unref(&vfbd->base.user_obj);
1051 
1052 	kfree(vfbd);
1053 }
1054 
1055 static int vmw_framebuffer_bo_dirty(struct drm_framebuffer *framebuffer,
1056 				    struct drm_file *file_priv,
1057 				    unsigned int flags, unsigned int color,
1058 				    struct drm_clip_rect *clips,
1059 				    unsigned int num_clips)
1060 {
1061 	struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
1062 	struct vmw_framebuffer_bo *vfbd =
1063 		vmw_framebuffer_to_vfbd(framebuffer);
1064 	struct drm_clip_rect norect;
1065 	int ret, increment = 1;
1066 
1067 	drm_modeset_lock_all(dev_priv->dev);
1068 
1069 	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
1070 	if (unlikely(ret != 0)) {
1071 		drm_modeset_unlock_all(dev_priv->dev);
1072 		return ret;
1073 	}
1074 
1075 	if (!num_clips) {
1076 		num_clips = 1;
1077 		clips = &norect;
1078 		norect.x1 = norect.y1 = 0;
1079 		norect.x2 = framebuffer->width;
1080 		norect.y2 = framebuffer->height;
1081 	} else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
1082 		num_clips /= 2;
1083 		increment = 2;
1084 	}
1085 
1086 	switch (dev_priv->active_display_unit) {
1087 	case vmw_du_screen_target:
1088 		ret = vmw_kms_stdu_dma(dev_priv, NULL, &vfbd->base, NULL,
1089 				       clips, NULL, num_clips, increment,
1090 				       true, true, NULL);
1091 		break;
1092 	case vmw_du_screen_object:
1093 		ret = vmw_kms_sou_do_bo_dirty(dev_priv, &vfbd->base,
1094 					      clips, NULL, num_clips,
1095 					      increment, true, NULL, NULL);
1096 		break;
1097 	case vmw_du_legacy:
1098 		ret = vmw_kms_ldu_do_bo_dirty(dev_priv, &vfbd->base, 0, 0,
1099 					      clips, num_clips, increment);
1100 		break;
1101 	default:
1102 		ret = -EINVAL;
1103 		WARN_ONCE(true, "Dirty called with invalid display system.\n");
1104 		break;
1105 	}
1106 
1107 	vmw_fifo_flush(dev_priv, false);
1108 	ttm_read_unlock(&dev_priv->reservation_sem);
1109 
1110 	drm_modeset_unlock_all(dev_priv->dev);
1111 
1112 	return ret;
1113 }
1114 
1115 static const struct drm_framebuffer_funcs vmw_framebuffer_bo_funcs = {
1116 	.destroy = vmw_framebuffer_bo_destroy,
1117 	.dirty = vmw_framebuffer_bo_dirty,
1118 };
1119 
1120 /**
1121  * Pin the bofer in a location suitable for access by the
1122  * display system.
1123  */
1124 static int vmw_framebuffer_pin(struct vmw_framebuffer *vfb)
1125 {
1126 	struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1127 	struct vmw_buffer_object *buf;
1128 	struct ttm_placement *placement;
1129 	int ret;
1130 
1131 	buf = vfb->bo ?  vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1132 		vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1133 
1134 	if (!buf)
1135 		return 0;
1136 
1137 	switch (dev_priv->active_display_unit) {
1138 	case vmw_du_legacy:
1139 		vmw_overlay_pause_all(dev_priv);
1140 		ret = vmw_bo_pin_in_start_of_vram(dev_priv, buf, false);
1141 		vmw_overlay_resume_all(dev_priv);
1142 		break;
1143 	case vmw_du_screen_object:
1144 	case vmw_du_screen_target:
1145 		if (vfb->bo) {
1146 			if (dev_priv->capabilities & SVGA_CAP_3D) {
1147 				/*
1148 				 * Use surface DMA to get content to
1149 				 * sreen target surface.
1150 				 */
1151 				placement = &vmw_vram_gmr_placement;
1152 			} else {
1153 				/* Use CPU blit. */
1154 				placement = &vmw_sys_placement;
1155 			}
1156 		} else {
1157 			/* Use surface / image update */
1158 			placement = &vmw_mob_placement;
1159 		}
1160 
1161 		return vmw_bo_pin_in_placement(dev_priv, buf, placement, false);
1162 	default:
1163 		return -EINVAL;
1164 	}
1165 
1166 	return ret;
1167 }
1168 
1169 static int vmw_framebuffer_unpin(struct vmw_framebuffer *vfb)
1170 {
1171 	struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1172 	struct vmw_buffer_object *buf;
1173 
1174 	buf = vfb->bo ?  vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1175 		vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1176 
1177 	if (WARN_ON(!buf))
1178 		return 0;
1179 
1180 	return vmw_bo_unpin(dev_priv, buf, false);
1181 }
1182 
1183 /**
1184  * vmw_create_bo_proxy - create a proxy surface for the buffer object
1185  *
1186  * @dev: DRM device
1187  * @mode_cmd: parameters for the new surface
1188  * @bo_mob: MOB backing the buffer object
1189  * @srf_out: newly created surface
1190  *
1191  * When the content FB is a buffer object, we create a surface as a proxy to the
1192  * same buffer.  This way we can do a surface copy rather than a surface DMA.
1193  * This is a more efficient approach
1194  *
1195  * RETURNS:
1196  * 0 on success, error code otherwise
1197  */
1198 static int vmw_create_bo_proxy(struct drm_device *dev,
1199 			       const struct drm_mode_fb_cmd2 *mode_cmd,
1200 			       struct vmw_buffer_object *bo_mob,
1201 			       struct vmw_surface **srf_out)
1202 {
1203 	uint32_t format;
1204 	struct drm_vmw_size content_base_size = {0};
1205 	struct vmw_resource *res;
1206 	unsigned int bytes_pp;
1207 	struct drm_format_name_buf format_name;
1208 	int ret;
1209 
1210 	switch (mode_cmd->pixel_format) {
1211 	case DRM_FORMAT_ARGB8888:
1212 	case DRM_FORMAT_XRGB8888:
1213 		format = SVGA3D_X8R8G8B8;
1214 		bytes_pp = 4;
1215 		break;
1216 
1217 	case DRM_FORMAT_RGB565:
1218 	case DRM_FORMAT_XRGB1555:
1219 		format = SVGA3D_R5G6B5;
1220 		bytes_pp = 2;
1221 		break;
1222 
1223 	case 8:
1224 		format = SVGA3D_P8;
1225 		bytes_pp = 1;
1226 		break;
1227 
1228 	default:
1229 		DRM_ERROR("Invalid framebuffer format %s\n",
1230 			  drm_get_format_name(mode_cmd->pixel_format, &format_name));
1231 		return -EINVAL;
1232 	}
1233 
1234 	content_base_size.width  = mode_cmd->pitches[0] / bytes_pp;
1235 	content_base_size.height = mode_cmd->height;
1236 	content_base_size.depth  = 1;
1237 
1238 	ret = vmw_surface_gb_priv_define(dev,
1239 					 0, /* kernel visible only */
1240 					 0, /* flags */
1241 					 format,
1242 					 true, /* can be a scanout buffer */
1243 					 1, /* num of mip levels */
1244 					 0,
1245 					 0,
1246 					 content_base_size,
1247 					 SVGA3D_MS_PATTERN_NONE,
1248 					 SVGA3D_MS_QUALITY_NONE,
1249 					 srf_out);
1250 	if (ret) {
1251 		DRM_ERROR("Failed to allocate proxy content buffer\n");
1252 		return ret;
1253 	}
1254 
1255 	res = &(*srf_out)->res;
1256 
1257 	/* Reserve and switch the backing mob. */
1258 	mutex_lock(&res->dev_priv->cmdbuf_mutex);
1259 	(void) vmw_resource_reserve(res, false, true);
1260 	vmw_bo_unreference(&res->backup);
1261 	res->backup = vmw_bo_reference(bo_mob);
1262 	res->backup_offset = 0;
1263 	vmw_resource_unreserve(res, false, NULL, 0);
1264 	mutex_unlock(&res->dev_priv->cmdbuf_mutex);
1265 
1266 	return 0;
1267 }
1268 
1269 
1270 
1271 static int vmw_kms_new_framebuffer_bo(struct vmw_private *dev_priv,
1272 				      struct vmw_buffer_object *bo,
1273 				      struct vmw_framebuffer **out,
1274 				      const struct drm_mode_fb_cmd2
1275 				      *mode_cmd)
1276 
1277 {
1278 	struct drm_device *dev = dev_priv->dev;
1279 	struct vmw_framebuffer_bo *vfbd;
1280 	unsigned int requested_size;
1281 	struct drm_format_name_buf format_name;
1282 	int ret;
1283 
1284 	requested_size = mode_cmd->height * mode_cmd->pitches[0];
1285 	if (unlikely(requested_size > bo->base.num_pages * PAGE_SIZE)) {
1286 		DRM_ERROR("Screen buffer object size is too small "
1287 			  "for requested mode.\n");
1288 		return -EINVAL;
1289 	}
1290 
1291 	/* Limited framebuffer color depth support for screen objects */
1292 	if (dev_priv->active_display_unit == vmw_du_screen_object) {
1293 		switch (mode_cmd->pixel_format) {
1294 		case DRM_FORMAT_XRGB8888:
1295 		case DRM_FORMAT_ARGB8888:
1296 			break;
1297 		case DRM_FORMAT_XRGB1555:
1298 		case DRM_FORMAT_RGB565:
1299 			break;
1300 		default:
1301 			DRM_ERROR("Invalid pixel format: %s\n",
1302 				  drm_get_format_name(mode_cmd->pixel_format, &format_name));
1303 			return -EINVAL;
1304 		}
1305 	}
1306 
1307 	vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL);
1308 	if (!vfbd) {
1309 		ret = -ENOMEM;
1310 		goto out_err1;
1311 	}
1312 
1313 	drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd);
1314 	vfbd->base.bo = true;
1315 	vfbd->buffer = vmw_bo_reference(bo);
1316 	vfbd->base.user_handle = mode_cmd->handles[0];
1317 	*out = &vfbd->base;
1318 
1319 	ret = drm_framebuffer_init(dev, &vfbd->base.base,
1320 				   &vmw_framebuffer_bo_funcs);
1321 	if (ret)
1322 		goto out_err2;
1323 
1324 	return 0;
1325 
1326 out_err2:
1327 	vmw_bo_unreference(&bo);
1328 	kfree(vfbd);
1329 out_err1:
1330 	return ret;
1331 }
1332 
1333 
1334 /**
1335  * vmw_kms_srf_ok - check if a surface can be created
1336  *
1337  * @width: requested width
1338  * @height: requested height
1339  *
1340  * Surfaces need to be less than texture size
1341  */
1342 static bool
1343 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height)
1344 {
1345 	if (width  > dev_priv->texture_max_width ||
1346 	    height > dev_priv->texture_max_height)
1347 		return false;
1348 
1349 	return true;
1350 }
1351 
1352 /**
1353  * vmw_kms_new_framebuffer - Create a new framebuffer.
1354  *
1355  * @dev_priv: Pointer to device private struct.
1356  * @bo: Pointer to buffer object to wrap the kms framebuffer around.
1357  * Either @bo or @surface must be NULL.
1358  * @surface: Pointer to a surface to wrap the kms framebuffer around.
1359  * Either @bo or @surface must be NULL.
1360  * @only_2d: No presents will occur to this buffer object based framebuffer.
1361  * This helps the code to do some important optimizations.
1362  * @mode_cmd: Frame-buffer metadata.
1363  */
1364 struct vmw_framebuffer *
1365 vmw_kms_new_framebuffer(struct vmw_private *dev_priv,
1366 			struct vmw_buffer_object *bo,
1367 			struct vmw_surface *surface,
1368 			bool only_2d,
1369 			const struct drm_mode_fb_cmd2 *mode_cmd)
1370 {
1371 	struct vmw_framebuffer *vfb = NULL;
1372 	bool is_bo_proxy = false;
1373 	int ret;
1374 
1375 	/*
1376 	 * We cannot use the SurfaceDMA command in an non-accelerated VM,
1377 	 * therefore, wrap the buffer object in a surface so we can use the
1378 	 * SurfaceCopy command.
1379 	 */
1380 	if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)  &&
1381 	    bo && only_2d &&
1382 	    mode_cmd->width > 64 &&  /* Don't create a proxy for cursor */
1383 	    dev_priv->active_display_unit == vmw_du_screen_target) {
1384 		ret = vmw_create_bo_proxy(dev_priv->dev, mode_cmd,
1385 					  bo, &surface);
1386 		if (ret)
1387 			return ERR_PTR(ret);
1388 
1389 		is_bo_proxy = true;
1390 	}
1391 
1392 	/* Create the new framebuffer depending one what we have */
1393 	if (surface) {
1394 		ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb,
1395 						      mode_cmd,
1396 						      is_bo_proxy);
1397 
1398 		/*
1399 		 * vmw_create_bo_proxy() adds a reference that is no longer
1400 		 * needed
1401 		 */
1402 		if (is_bo_proxy)
1403 			vmw_surface_unreference(&surface);
1404 	} else if (bo) {
1405 		ret = vmw_kms_new_framebuffer_bo(dev_priv, bo, &vfb,
1406 						 mode_cmd);
1407 	} else {
1408 		BUG();
1409 	}
1410 
1411 	if (ret)
1412 		return ERR_PTR(ret);
1413 
1414 	vfb->pin = vmw_framebuffer_pin;
1415 	vfb->unpin = vmw_framebuffer_unpin;
1416 
1417 	return vfb;
1418 }
1419 
1420 /*
1421  * Generic Kernel modesetting functions
1422  */
1423 
1424 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev,
1425 						 struct drm_file *file_priv,
1426 						 const struct drm_mode_fb_cmd2 *mode_cmd)
1427 {
1428 	struct vmw_private *dev_priv = vmw_priv(dev);
1429 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1430 	struct vmw_framebuffer *vfb = NULL;
1431 	struct vmw_surface *surface = NULL;
1432 	struct vmw_buffer_object *bo = NULL;
1433 	struct ttm_base_object *user_obj;
1434 	int ret;
1435 
1436 	/*
1437 	 * Take a reference on the user object of the resource
1438 	 * backing the kms fb. This ensures that user-space handle
1439 	 * lookups on that resource will always work as long as
1440 	 * it's registered with a kms framebuffer. This is important,
1441 	 * since vmw_execbuf_process identifies resources in the
1442 	 * command stream using user-space handles.
1443 	 */
1444 
1445 	user_obj = ttm_base_object_lookup(tfile, mode_cmd->handles[0]);
1446 	if (unlikely(user_obj == NULL)) {
1447 		DRM_ERROR("Could not locate requested kms frame buffer.\n");
1448 		return ERR_PTR(-ENOENT);
1449 	}
1450 
1451 	/**
1452 	 * End conditioned code.
1453 	 */
1454 
1455 	/* returns either a bo or surface */
1456 	ret = vmw_user_lookup_handle(dev_priv, tfile,
1457 				     mode_cmd->handles[0],
1458 				     &surface, &bo);
1459 	if (ret)
1460 		goto err_out;
1461 
1462 
1463 	if (!bo &&
1464 	    !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) {
1465 		DRM_ERROR("Surface size cannot exceed %dx%d",
1466 			dev_priv->texture_max_width,
1467 			dev_priv->texture_max_height);
1468 		goto err_out;
1469 	}
1470 
1471 
1472 	vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface,
1473 				      !(dev_priv->capabilities & SVGA_CAP_3D),
1474 				      mode_cmd);
1475 	if (IS_ERR(vfb)) {
1476 		ret = PTR_ERR(vfb);
1477 		goto err_out;
1478  	}
1479 
1480 err_out:
1481 	/* vmw_user_lookup_handle takes one ref so does new_fb */
1482 	if (bo)
1483 		vmw_bo_unreference(&bo);
1484 	if (surface)
1485 		vmw_surface_unreference(&surface);
1486 
1487 	if (ret) {
1488 		DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret);
1489 		ttm_base_object_unref(&user_obj);
1490 		return ERR_PTR(ret);
1491 	} else
1492 		vfb->user_obj = user_obj;
1493 
1494 	return &vfb->base;
1495 }
1496 
1497 /**
1498  * vmw_kms_check_display_memory - Validates display memory required for a
1499  * topology
1500  * @dev: DRM device
1501  * @num_rects: number of drm_rect in rects
1502  * @rects: array of drm_rect representing the topology to validate indexed by
1503  * crtc index.
1504  *
1505  * Returns:
1506  * 0 on success otherwise negative error code
1507  */
1508 static int vmw_kms_check_display_memory(struct drm_device *dev,
1509 					uint32_t num_rects,
1510 					struct drm_rect *rects)
1511 {
1512 	struct vmw_private *dev_priv = vmw_priv(dev);
1513 	struct drm_rect bounding_box = {0};
1514 	u64 total_pixels = 0, pixel_mem, bb_mem;
1515 	int i;
1516 
1517 	for (i = 0; i < num_rects; i++) {
1518 		/*
1519 		 * For STDU only individual screen (screen target) is limited by
1520 		 * SCREENTARGET_MAX_WIDTH/HEIGHT registers.
1521 		 */
1522 		if (dev_priv->active_display_unit == vmw_du_screen_target &&
1523 		    (drm_rect_width(&rects[i]) > dev_priv->stdu_max_width ||
1524 		     drm_rect_height(&rects[i]) > dev_priv->stdu_max_height)) {
1525 			DRM_ERROR("Screen size not supported.\n");
1526 			return -EINVAL;
1527 		}
1528 
1529 		/* Bounding box upper left is at (0,0). */
1530 		if (rects[i].x2 > bounding_box.x2)
1531 			bounding_box.x2 = rects[i].x2;
1532 
1533 		if (rects[i].y2 > bounding_box.y2)
1534 			bounding_box.y2 = rects[i].y2;
1535 
1536 		total_pixels += (u64) drm_rect_width(&rects[i]) *
1537 			(u64) drm_rect_height(&rects[i]);
1538 	}
1539 
1540 	/* Virtual svga device primary limits are always in 32-bpp. */
1541 	pixel_mem = total_pixels * 4;
1542 
1543 	/*
1544 	 * For HV10 and below prim_bb_mem is vram size. When
1545 	 * SVGA_REG_MAX_PRIMARY_BOUNDING_BOX_MEM is not present vram size is
1546 	 * limit on primary bounding box
1547 	 */
1548 	if (pixel_mem > dev_priv->prim_bb_mem) {
1549 		DRM_ERROR("Combined output size too large.\n");
1550 		return -EINVAL;
1551 	}
1552 
1553 	/* SVGA_CAP_NO_BB_RESTRICTION is available for STDU only. */
1554 	if (dev_priv->active_display_unit != vmw_du_screen_target ||
1555 	    !(dev_priv->capabilities & SVGA_CAP_NO_BB_RESTRICTION)) {
1556 		bb_mem = (u64) bounding_box.x2 * bounding_box.y2 * 4;
1557 
1558 		if (bb_mem > dev_priv->prim_bb_mem) {
1559 			DRM_ERROR("Topology is beyond supported limits.\n");
1560 			return -EINVAL;
1561 		}
1562 	}
1563 
1564 	return 0;
1565 }
1566 
1567 /**
1568  * vmw_kms_check_topology - Validates topology in drm_atomic_state
1569  * @dev: DRM device
1570  * @state: the driver state object
1571  *
1572  * Returns:
1573  * 0 on success otherwise negative error code
1574  */
1575 static int vmw_kms_check_topology(struct drm_device *dev,
1576 				  struct drm_atomic_state *state)
1577 {
1578 	struct vmw_private *dev_priv = vmw_priv(dev);
1579 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
1580 	struct drm_rect *rects;
1581 	struct drm_crtc *crtc;
1582 	uint32_t i;
1583 	int ret = 0;
1584 
1585 	rects = kcalloc(dev->mode_config.num_crtc, sizeof(struct drm_rect),
1586 			GFP_KERNEL);
1587 	if (!rects)
1588 		return -ENOMEM;
1589 
1590 	mutex_lock(&dev_priv->requested_layout_mutex);
1591 
1592 	drm_for_each_crtc(crtc, dev) {
1593 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1594 		struct drm_crtc_state *crtc_state = crtc->state;
1595 
1596 		i = drm_crtc_index(crtc);
1597 
1598 		if (crtc_state && crtc_state->enable) {
1599 			rects[i].x1 = du->gui_x;
1600 			rects[i].y1 = du->gui_y;
1601 			rects[i].x2 = du->gui_x + crtc_state->mode.hdisplay;
1602 			rects[i].y2 = du->gui_y + crtc_state->mode.vdisplay;
1603 		}
1604 	}
1605 
1606 	/* Determine change to topology due to new atomic state */
1607 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state,
1608 				      new_crtc_state, i) {
1609 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1610 		struct drm_connector *connector;
1611 		struct drm_connector_state *conn_state;
1612 		struct vmw_connector_state *vmw_conn_state;
1613 
1614 		if (!new_crtc_state->enable) {
1615 			rects[i].x1 = 0;
1616 			rects[i].y1 = 0;
1617 			rects[i].x2 = 0;
1618 			rects[i].y2 = 0;
1619 			continue;
1620 		}
1621 
1622 		if (!du->pref_active) {
1623 			ret = -EINVAL;
1624 			goto clean;
1625 		}
1626 
1627 		/*
1628 		 * For vmwgfx each crtc has only one connector attached and it
1629 		 * is not changed so don't really need to check the
1630 		 * crtc->connector_mask and iterate over it.
1631 		 */
1632 		connector = &du->connector;
1633 		conn_state = drm_atomic_get_connector_state(state, connector);
1634 		if (IS_ERR(conn_state)) {
1635 			ret = PTR_ERR(conn_state);
1636 			goto clean;
1637 		}
1638 
1639 		vmw_conn_state = vmw_connector_state_to_vcs(conn_state);
1640 		vmw_conn_state->gui_x = du->gui_x;
1641 		vmw_conn_state->gui_y = du->gui_y;
1642 
1643 		rects[i].x1 = du->gui_x;
1644 		rects[i].y1 = du->gui_y;
1645 		rects[i].x2 = du->gui_x + new_crtc_state->mode.hdisplay;
1646 		rects[i].y2 = du->gui_y + new_crtc_state->mode.vdisplay;
1647 	}
1648 
1649 	ret = vmw_kms_check_display_memory(dev, dev->mode_config.num_crtc,
1650 					   rects);
1651 
1652 clean:
1653 	mutex_unlock(&dev_priv->requested_layout_mutex);
1654 	kfree(rects);
1655 	return ret;
1656 }
1657 
1658 /**
1659  * vmw_kms_atomic_check_modeset- validate state object for modeset changes
1660  *
1661  * @dev: DRM device
1662  * @state: the driver state object
1663  *
1664  * This is a simple wrapper around drm_atomic_helper_check_modeset() for
1665  * us to assign a value to mode->crtc_clock so that
1666  * drm_calc_timestamping_constants() won't throw an error message
1667  *
1668  * Returns:
1669  * Zero for success or -errno
1670  */
1671 static int
1672 vmw_kms_atomic_check_modeset(struct drm_device *dev,
1673 			     struct drm_atomic_state *state)
1674 {
1675 	struct drm_crtc *crtc;
1676 	struct drm_crtc_state *crtc_state;
1677 	bool need_modeset = false;
1678 	int i, ret;
1679 
1680 	ret = drm_atomic_helper_check(dev, state);
1681 	if (ret)
1682 		return ret;
1683 
1684 	if (!state->allow_modeset)
1685 		return ret;
1686 
1687 	/*
1688 	 * Legacy path do not set allow_modeset properly like
1689 	 * @drm_atomic_helper_update_plane, This will result in unnecessary call
1690 	 * to vmw_kms_check_topology. So extra set of check.
1691 	 */
1692 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
1693 		if (drm_atomic_crtc_needs_modeset(crtc_state))
1694 			need_modeset = true;
1695 	}
1696 
1697 	if (need_modeset)
1698 		return vmw_kms_check_topology(dev, state);
1699 
1700 	return ret;
1701 }
1702 
1703 static const struct drm_mode_config_funcs vmw_kms_funcs = {
1704 	.fb_create = vmw_kms_fb_create,
1705 	.atomic_check = vmw_kms_atomic_check_modeset,
1706 	.atomic_commit = drm_atomic_helper_commit,
1707 };
1708 
1709 static int vmw_kms_generic_present(struct vmw_private *dev_priv,
1710 				   struct drm_file *file_priv,
1711 				   struct vmw_framebuffer *vfb,
1712 				   struct vmw_surface *surface,
1713 				   uint32_t sid,
1714 				   int32_t destX, int32_t destY,
1715 				   struct drm_vmw_rect *clips,
1716 				   uint32_t num_clips)
1717 {
1718 	return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips,
1719 					    &surface->res, destX, destY,
1720 					    num_clips, 1, NULL, NULL);
1721 }
1722 
1723 
1724 int vmw_kms_present(struct vmw_private *dev_priv,
1725 		    struct drm_file *file_priv,
1726 		    struct vmw_framebuffer *vfb,
1727 		    struct vmw_surface *surface,
1728 		    uint32_t sid,
1729 		    int32_t destX, int32_t destY,
1730 		    struct drm_vmw_rect *clips,
1731 		    uint32_t num_clips)
1732 {
1733 	int ret;
1734 
1735 	switch (dev_priv->active_display_unit) {
1736 	case vmw_du_screen_target:
1737 		ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips,
1738 						 &surface->res, destX, destY,
1739 						 num_clips, 1, NULL, NULL);
1740 		break;
1741 	case vmw_du_screen_object:
1742 		ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface,
1743 					      sid, destX, destY, clips,
1744 					      num_clips);
1745 		break;
1746 	default:
1747 		WARN_ONCE(true,
1748 			  "Present called with invalid display system.\n");
1749 		ret = -ENOSYS;
1750 		break;
1751 	}
1752 	if (ret)
1753 		return ret;
1754 
1755 	vmw_fifo_flush(dev_priv, false);
1756 
1757 	return 0;
1758 }
1759 
1760 static void
1761 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv)
1762 {
1763 	if (dev_priv->hotplug_mode_update_property)
1764 		return;
1765 
1766 	dev_priv->hotplug_mode_update_property =
1767 		drm_property_create_range(dev_priv->dev,
1768 					  DRM_MODE_PROP_IMMUTABLE,
1769 					  "hotplug_mode_update", 0, 1);
1770 
1771 	if (!dev_priv->hotplug_mode_update_property)
1772 		return;
1773 
1774 }
1775 
1776 int vmw_kms_init(struct vmw_private *dev_priv)
1777 {
1778 	struct drm_device *dev = dev_priv->dev;
1779 	int ret;
1780 
1781 	drm_mode_config_init(dev);
1782 	dev->mode_config.funcs = &vmw_kms_funcs;
1783 	dev->mode_config.min_width = 1;
1784 	dev->mode_config.min_height = 1;
1785 	dev->mode_config.max_width = dev_priv->texture_max_width;
1786 	dev->mode_config.max_height = dev_priv->texture_max_height;
1787 
1788 	drm_mode_create_suggested_offset_properties(dev);
1789 	vmw_kms_create_hotplug_mode_update_property(dev_priv);
1790 
1791 	ret = vmw_kms_stdu_init_display(dev_priv);
1792 	if (ret) {
1793 		ret = vmw_kms_sou_init_display(dev_priv);
1794 		if (ret) /* Fallback */
1795 			ret = vmw_kms_ldu_init_display(dev_priv);
1796 	}
1797 
1798 	return ret;
1799 }
1800 
1801 int vmw_kms_close(struct vmw_private *dev_priv)
1802 {
1803 	int ret = 0;
1804 
1805 	/*
1806 	 * Docs says we should take the lock before calling this function
1807 	 * but since it destroys encoders and our destructor calls
1808 	 * drm_encoder_cleanup which takes the lock we deadlock.
1809 	 */
1810 	drm_mode_config_cleanup(dev_priv->dev);
1811 	if (dev_priv->active_display_unit == vmw_du_legacy)
1812 		ret = vmw_kms_ldu_close_display(dev_priv);
1813 
1814 	return ret;
1815 }
1816 
1817 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data,
1818 				struct drm_file *file_priv)
1819 {
1820 	struct drm_vmw_cursor_bypass_arg *arg = data;
1821 	struct vmw_display_unit *du;
1822 	struct drm_crtc *crtc;
1823 	int ret = 0;
1824 
1825 
1826 	mutex_lock(&dev->mode_config.mutex);
1827 	if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) {
1828 
1829 		list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1830 			du = vmw_crtc_to_du(crtc);
1831 			du->hotspot_x = arg->xhot;
1832 			du->hotspot_y = arg->yhot;
1833 		}
1834 
1835 		mutex_unlock(&dev->mode_config.mutex);
1836 		return 0;
1837 	}
1838 
1839 	crtc = drm_crtc_find(dev, file_priv, arg->crtc_id);
1840 	if (!crtc) {
1841 		ret = -ENOENT;
1842 		goto out;
1843 	}
1844 
1845 	du = vmw_crtc_to_du(crtc);
1846 
1847 	du->hotspot_x = arg->xhot;
1848 	du->hotspot_y = arg->yhot;
1849 
1850 out:
1851 	mutex_unlock(&dev->mode_config.mutex);
1852 
1853 	return ret;
1854 }
1855 
1856 int vmw_kms_write_svga(struct vmw_private *vmw_priv,
1857 			unsigned width, unsigned height, unsigned pitch,
1858 			unsigned bpp, unsigned depth)
1859 {
1860 	if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1861 		vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch);
1862 	else if (vmw_fifo_have_pitchlock(vmw_priv))
1863 		vmw_mmio_write(pitch, vmw_priv->mmio_virt +
1864 			       SVGA_FIFO_PITCHLOCK);
1865 	vmw_write(vmw_priv, SVGA_REG_WIDTH, width);
1866 	vmw_write(vmw_priv, SVGA_REG_HEIGHT, height);
1867 	vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp);
1868 
1869 	if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) {
1870 		DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n",
1871 			  depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH));
1872 		return -EINVAL;
1873 	}
1874 
1875 	return 0;
1876 }
1877 
1878 int vmw_kms_save_vga(struct vmw_private *vmw_priv)
1879 {
1880 	struct vmw_vga_topology_state *save;
1881 	uint32_t i;
1882 
1883 	vmw_priv->vga_width = vmw_read(vmw_priv, SVGA_REG_WIDTH);
1884 	vmw_priv->vga_height = vmw_read(vmw_priv, SVGA_REG_HEIGHT);
1885 	vmw_priv->vga_bpp = vmw_read(vmw_priv, SVGA_REG_BITS_PER_PIXEL);
1886 	if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1887 		vmw_priv->vga_pitchlock =
1888 		  vmw_read(vmw_priv, SVGA_REG_PITCHLOCK);
1889 	else if (vmw_fifo_have_pitchlock(vmw_priv))
1890 		vmw_priv->vga_pitchlock = vmw_mmio_read(vmw_priv->mmio_virt +
1891 							SVGA_FIFO_PITCHLOCK);
1892 
1893 	if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY))
1894 		return 0;
1895 
1896 	vmw_priv->num_displays = vmw_read(vmw_priv,
1897 					  SVGA_REG_NUM_GUEST_DISPLAYS);
1898 
1899 	if (vmw_priv->num_displays == 0)
1900 		vmw_priv->num_displays = 1;
1901 
1902 	for (i = 0; i < vmw_priv->num_displays; ++i) {
1903 		save = &vmw_priv->vga_save[i];
1904 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i);
1905 		save->primary = vmw_read(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY);
1906 		save->pos_x = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_X);
1907 		save->pos_y = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y);
1908 		save->width = vmw_read(vmw_priv, SVGA_REG_DISPLAY_WIDTH);
1909 		save->height = vmw_read(vmw_priv, SVGA_REG_DISPLAY_HEIGHT);
1910 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID);
1911 		if (i == 0 && vmw_priv->num_displays == 1 &&
1912 		    save->width == 0 && save->height == 0) {
1913 
1914 			/*
1915 			 * It should be fairly safe to assume that these
1916 			 * values are uninitialized.
1917 			 */
1918 
1919 			save->width = vmw_priv->vga_width - save->pos_x;
1920 			save->height = vmw_priv->vga_height - save->pos_y;
1921 		}
1922 	}
1923 
1924 	return 0;
1925 }
1926 
1927 int vmw_kms_restore_vga(struct vmw_private *vmw_priv)
1928 {
1929 	struct vmw_vga_topology_state *save;
1930 	uint32_t i;
1931 
1932 	vmw_write(vmw_priv, SVGA_REG_WIDTH, vmw_priv->vga_width);
1933 	vmw_write(vmw_priv, SVGA_REG_HEIGHT, vmw_priv->vga_height);
1934 	vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, vmw_priv->vga_bpp);
1935 	if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1936 		vmw_write(vmw_priv, SVGA_REG_PITCHLOCK,
1937 			  vmw_priv->vga_pitchlock);
1938 	else if (vmw_fifo_have_pitchlock(vmw_priv))
1939 		vmw_mmio_write(vmw_priv->vga_pitchlock,
1940 			       vmw_priv->mmio_virt + SVGA_FIFO_PITCHLOCK);
1941 
1942 	if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY))
1943 		return 0;
1944 
1945 	for (i = 0; i < vmw_priv->num_displays; ++i) {
1946 		save = &vmw_priv->vga_save[i];
1947 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i);
1948 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY, save->primary);
1949 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_X, save->pos_x);
1950 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y, save->pos_y);
1951 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_WIDTH, save->width);
1952 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_HEIGHT, save->height);
1953 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID);
1954 	}
1955 
1956 	return 0;
1957 }
1958 
1959 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv,
1960 				uint32_t pitch,
1961 				uint32_t height)
1962 {
1963 	return ((u64) pitch * (u64) height) < (u64)
1964 		((dev_priv->active_display_unit == vmw_du_screen_target) ?
1965 		 dev_priv->prim_bb_mem : dev_priv->vram_size);
1966 }
1967 
1968 
1969 /**
1970  * Function called by DRM code called with vbl_lock held.
1971  */
1972 u32 vmw_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
1973 {
1974 	return 0;
1975 }
1976 
1977 /**
1978  * Function called by DRM code called with vbl_lock held.
1979  */
1980 int vmw_enable_vblank(struct drm_device *dev, unsigned int pipe)
1981 {
1982 	return -EINVAL;
1983 }
1984 
1985 /**
1986  * Function called by DRM code called with vbl_lock held.
1987  */
1988 void vmw_disable_vblank(struct drm_device *dev, unsigned int pipe)
1989 {
1990 }
1991 
1992 /**
1993  * vmw_du_update_layout - Update the display unit with topology from resolution
1994  * plugin and generate DRM uevent
1995  * @dev_priv: device private
1996  * @num_rects: number of drm_rect in rects
1997  * @rects: toplogy to update
1998  */
1999 static int vmw_du_update_layout(struct vmw_private *dev_priv,
2000 				unsigned int num_rects, struct drm_rect *rects)
2001 {
2002 	struct drm_device *dev = dev_priv->dev;
2003 	struct vmw_display_unit *du;
2004 	struct drm_connector *con;
2005 	struct drm_connector_list_iter conn_iter;
2006 
2007 	/*
2008 	 * Currently only gui_x/y is protected with requested_layout_mutex.
2009 	 */
2010 	mutex_lock(&dev_priv->requested_layout_mutex);
2011 	drm_connector_list_iter_begin(dev, &conn_iter);
2012 	drm_for_each_connector_iter(con, &conn_iter) {
2013 		du = vmw_connector_to_du(con);
2014 		if (num_rects > du->unit) {
2015 			du->pref_width = drm_rect_width(&rects[du->unit]);
2016 			du->pref_height = drm_rect_height(&rects[du->unit]);
2017 			du->pref_active = true;
2018 			du->gui_x = rects[du->unit].x1;
2019 			du->gui_y = rects[du->unit].y1;
2020 		} else {
2021 			du->pref_width = 800;
2022 			du->pref_height = 600;
2023 			du->pref_active = false;
2024 			du->gui_x = 0;
2025 			du->gui_y = 0;
2026 		}
2027 	}
2028 	drm_connector_list_iter_end(&conn_iter);
2029 	mutex_unlock(&dev_priv->requested_layout_mutex);
2030 
2031 	mutex_lock(&dev->mode_config.mutex);
2032 	list_for_each_entry(con, &dev->mode_config.connector_list, head) {
2033 		du = vmw_connector_to_du(con);
2034 		if (num_rects > du->unit) {
2035 			drm_object_property_set_value
2036 			  (&con->base, dev->mode_config.suggested_x_property,
2037 			   du->gui_x);
2038 			drm_object_property_set_value
2039 			  (&con->base, dev->mode_config.suggested_y_property,
2040 			   du->gui_y);
2041 		} else {
2042 			drm_object_property_set_value
2043 			  (&con->base, dev->mode_config.suggested_x_property,
2044 			   0);
2045 			drm_object_property_set_value
2046 			  (&con->base, dev->mode_config.suggested_y_property,
2047 			   0);
2048 		}
2049 		con->status = vmw_du_connector_detect(con, true);
2050 	}
2051 	mutex_unlock(&dev->mode_config.mutex);
2052 
2053 	drm_sysfs_hotplug_event(dev);
2054 
2055 	return 0;
2056 }
2057 
2058 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc,
2059 			  u16 *r, u16 *g, u16 *b,
2060 			  uint32_t size,
2061 			  struct drm_modeset_acquire_ctx *ctx)
2062 {
2063 	struct vmw_private *dev_priv = vmw_priv(crtc->dev);
2064 	int i;
2065 
2066 	for (i = 0; i < size; i++) {
2067 		DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i,
2068 			  r[i], g[i], b[i]);
2069 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8);
2070 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8);
2071 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8);
2072 	}
2073 
2074 	return 0;
2075 }
2076 
2077 int vmw_du_connector_dpms(struct drm_connector *connector, int mode)
2078 {
2079 	return 0;
2080 }
2081 
2082 enum drm_connector_status
2083 vmw_du_connector_detect(struct drm_connector *connector, bool force)
2084 {
2085 	uint32_t num_displays;
2086 	struct drm_device *dev = connector->dev;
2087 	struct vmw_private *dev_priv = vmw_priv(dev);
2088 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2089 
2090 	num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS);
2091 
2092 	return ((vmw_connector_to_du(connector)->unit < num_displays &&
2093 		 du->pref_active) ?
2094 		connector_status_connected : connector_status_disconnected);
2095 }
2096 
2097 static struct drm_display_mode vmw_kms_connector_builtin[] = {
2098 	/* 640x480@60Hz */
2099 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
2100 		   752, 800, 0, 480, 489, 492, 525, 0,
2101 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
2102 	/* 800x600@60Hz */
2103 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
2104 		   968, 1056, 0, 600, 601, 605, 628, 0,
2105 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2106 	/* 1024x768@60Hz */
2107 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
2108 		   1184, 1344, 0, 768, 771, 777, 806, 0,
2109 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
2110 	/* 1152x864@75Hz */
2111 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
2112 		   1344, 1600, 0, 864, 865, 868, 900, 0,
2113 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2114 	/* 1280x768@60Hz */
2115 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
2116 		   1472, 1664, 0, 768, 771, 778, 798, 0,
2117 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2118 	/* 1280x800@60Hz */
2119 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
2120 		   1480, 1680, 0, 800, 803, 809, 831, 0,
2121 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
2122 	/* 1280x960@60Hz */
2123 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
2124 		   1488, 1800, 0, 960, 961, 964, 1000, 0,
2125 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2126 	/* 1280x1024@60Hz */
2127 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
2128 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
2129 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2130 	/* 1360x768@60Hz */
2131 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
2132 		   1536, 1792, 0, 768, 771, 777, 795, 0,
2133 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2134 	/* 1440x1050@60Hz */
2135 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
2136 		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
2137 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2138 	/* 1440x900@60Hz */
2139 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
2140 		   1672, 1904, 0, 900, 903, 909, 934, 0,
2141 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2142 	/* 1600x1200@60Hz */
2143 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
2144 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
2145 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2146 	/* 1680x1050@60Hz */
2147 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
2148 		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
2149 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2150 	/* 1792x1344@60Hz */
2151 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
2152 		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
2153 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2154 	/* 1853x1392@60Hz */
2155 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
2156 		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
2157 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2158 	/* 1920x1200@60Hz */
2159 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
2160 		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
2161 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2162 	/* 1920x1440@60Hz */
2163 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
2164 		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
2165 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2166 	/* 2560x1600@60Hz */
2167 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
2168 		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
2169 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2170 	/* Terminate */
2171 	{ DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) },
2172 };
2173 
2174 /**
2175  * vmw_guess_mode_timing - Provide fake timings for a
2176  * 60Hz vrefresh mode.
2177  *
2178  * @mode - Pointer to a struct drm_display_mode with hdisplay and vdisplay
2179  * members filled in.
2180  */
2181 void vmw_guess_mode_timing(struct drm_display_mode *mode)
2182 {
2183 	mode->hsync_start = mode->hdisplay + 50;
2184 	mode->hsync_end = mode->hsync_start + 50;
2185 	mode->htotal = mode->hsync_end + 50;
2186 
2187 	mode->vsync_start = mode->vdisplay + 50;
2188 	mode->vsync_end = mode->vsync_start + 50;
2189 	mode->vtotal = mode->vsync_end + 50;
2190 
2191 	mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6;
2192 	mode->vrefresh = drm_mode_vrefresh(mode);
2193 }
2194 
2195 
2196 int vmw_du_connector_fill_modes(struct drm_connector *connector,
2197 				uint32_t max_width, uint32_t max_height)
2198 {
2199 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2200 	struct drm_device *dev = connector->dev;
2201 	struct vmw_private *dev_priv = vmw_priv(dev);
2202 	struct drm_display_mode *mode = NULL;
2203 	struct drm_display_mode *bmode;
2204 	struct drm_display_mode prefmode = { DRM_MODE("preferred",
2205 		DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED,
2206 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2207 		DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC)
2208 	};
2209 	int i;
2210 	u32 assumed_bpp = 4;
2211 
2212 	if (dev_priv->assume_16bpp)
2213 		assumed_bpp = 2;
2214 
2215 	max_width  = min(max_width,  dev_priv->texture_max_width);
2216 	max_height = min(max_height, dev_priv->texture_max_height);
2217 
2218 	/*
2219 	 * For STDU extra limit for a mode on SVGA_REG_SCREENTARGET_MAX_WIDTH/
2220 	 * HEIGHT registers.
2221 	 */
2222 	if (dev_priv->active_display_unit == vmw_du_screen_target) {
2223 		max_width  = min(max_width,  dev_priv->stdu_max_width);
2224 		max_height = min(max_height, dev_priv->stdu_max_height);
2225 	}
2226 
2227 	/* Add preferred mode */
2228 	mode = drm_mode_duplicate(dev, &prefmode);
2229 	if (!mode)
2230 		return 0;
2231 	mode->hdisplay = du->pref_width;
2232 	mode->vdisplay = du->pref_height;
2233 	vmw_guess_mode_timing(mode);
2234 
2235 	if (vmw_kms_validate_mode_vram(dev_priv,
2236 					mode->hdisplay * assumed_bpp,
2237 					mode->vdisplay)) {
2238 		drm_mode_probed_add(connector, mode);
2239 	} else {
2240 		drm_mode_destroy(dev, mode);
2241 		mode = NULL;
2242 	}
2243 
2244 	if (du->pref_mode) {
2245 		list_del_init(&du->pref_mode->head);
2246 		drm_mode_destroy(dev, du->pref_mode);
2247 	}
2248 
2249 	/* mode might be null here, this is intended */
2250 	du->pref_mode = mode;
2251 
2252 	for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) {
2253 		bmode = &vmw_kms_connector_builtin[i];
2254 		if (bmode->hdisplay > max_width ||
2255 		    bmode->vdisplay > max_height)
2256 			continue;
2257 
2258 		if (!vmw_kms_validate_mode_vram(dev_priv,
2259 						bmode->hdisplay * assumed_bpp,
2260 						bmode->vdisplay))
2261 			continue;
2262 
2263 		mode = drm_mode_duplicate(dev, bmode);
2264 		if (!mode)
2265 			return 0;
2266 		mode->vrefresh = drm_mode_vrefresh(mode);
2267 
2268 		drm_mode_probed_add(connector, mode);
2269 	}
2270 
2271 	drm_connector_list_update(connector);
2272 	/* Move the prefered mode first, help apps pick the right mode. */
2273 	drm_mode_sort(&connector->modes);
2274 
2275 	return 1;
2276 }
2277 
2278 int vmw_du_connector_set_property(struct drm_connector *connector,
2279 				  struct drm_property *property,
2280 				  uint64_t val)
2281 {
2282 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2283 	struct vmw_private *dev_priv = vmw_priv(connector->dev);
2284 
2285 	if (property == dev_priv->implicit_placement_property)
2286 		du->is_implicit = val;
2287 
2288 	return 0;
2289 }
2290 
2291 
2292 
2293 /**
2294  * vmw_du_connector_atomic_set_property - Atomic version of get property
2295  *
2296  * @crtc - crtc the property is associated with
2297  *
2298  * Returns:
2299  * Zero on success, negative errno on failure.
2300  */
2301 int
2302 vmw_du_connector_atomic_set_property(struct drm_connector *connector,
2303 				     struct drm_connector_state *state,
2304 				     struct drm_property *property,
2305 				     uint64_t val)
2306 {
2307 	struct vmw_private *dev_priv = vmw_priv(connector->dev);
2308 	struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state);
2309 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2310 
2311 
2312 	if (property == dev_priv->implicit_placement_property) {
2313 		vcs->is_implicit = val;
2314 
2315 		/*
2316 		 * We should really be doing a drm_atomic_commit() to
2317 		 * commit the new state, but since this doesn't cause
2318 		 * an immedate state change, this is probably ok
2319 		 */
2320 		du->is_implicit = vcs->is_implicit;
2321 	} else {
2322 		return -EINVAL;
2323 	}
2324 
2325 	return 0;
2326 }
2327 
2328 
2329 /**
2330  * vmw_du_connector_atomic_get_property - Atomic version of get property
2331  *
2332  * @connector - connector the property is associated with
2333  *
2334  * Returns:
2335  * Zero on success, negative errno on failure.
2336  */
2337 int
2338 vmw_du_connector_atomic_get_property(struct drm_connector *connector,
2339 				     const struct drm_connector_state *state,
2340 				     struct drm_property *property,
2341 				     uint64_t *val)
2342 {
2343 	struct vmw_private *dev_priv = vmw_priv(connector->dev);
2344 	struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state);
2345 
2346 	if (property == dev_priv->implicit_placement_property)
2347 		*val = vcs->is_implicit;
2348 	else {
2349 		DRM_ERROR("Invalid Property %s\n", property->name);
2350 		return -EINVAL;
2351 	}
2352 
2353 	return 0;
2354 }
2355 
2356 /**
2357  * vmw_kms_update_layout_ioctl - Handler for DRM_VMW_UPDATE_LAYOUT ioctl
2358  * @dev: drm device for the ioctl
2359  * @data: data pointer for the ioctl
2360  * @file_priv: drm file for the ioctl call
2361  *
2362  * Update preferred topology of display unit as per ioctl request. The topology
2363  * is expressed as array of drm_vmw_rect.
2364  * e.g.
2365  * [0 0 640 480] [640 0 800 600] [0 480 640 480]
2366  *
2367  * NOTE:
2368  * The x and y offset (upper left) in drm_vmw_rect cannot be less than 0. Beside
2369  * device limit on topology, x + w and y + h (lower right) cannot be greater
2370  * than INT_MAX. So topology beyond these limits will return with error.
2371  *
2372  * Returns:
2373  * Zero on success, negative errno on failure.
2374  */
2375 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data,
2376 				struct drm_file *file_priv)
2377 {
2378 	struct vmw_private *dev_priv = vmw_priv(dev);
2379 	struct drm_mode_config *mode_config = &dev->mode_config;
2380 	struct drm_vmw_update_layout_arg *arg =
2381 		(struct drm_vmw_update_layout_arg *)data;
2382 	void __user *user_rects;
2383 	struct drm_vmw_rect *rects;
2384 	struct drm_rect *drm_rects;
2385 	unsigned rects_size;
2386 	int ret, i;
2387 
2388 	if (!arg->num_outputs) {
2389 		struct drm_rect def_rect = {0, 0, 800, 600};
2390 		vmw_du_update_layout(dev_priv, 1, &def_rect);
2391 		return 0;
2392 	}
2393 
2394 	rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect);
2395 	rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect),
2396 			GFP_KERNEL);
2397 	if (unlikely(!rects))
2398 		return -ENOMEM;
2399 
2400 	user_rects = (void __user *)(unsigned long)arg->rects;
2401 	ret = copy_from_user(rects, user_rects, rects_size);
2402 	if (unlikely(ret != 0)) {
2403 		DRM_ERROR("Failed to get rects.\n");
2404 		ret = -EFAULT;
2405 		goto out_free;
2406 	}
2407 
2408 	drm_rects = (struct drm_rect *)rects;
2409 
2410 	for (i = 0; i < arg->num_outputs; i++) {
2411 		struct drm_vmw_rect curr_rect;
2412 
2413 		/* Verify user-space for overflow as kernel use drm_rect */
2414 		if ((rects[i].x + rects[i].w > INT_MAX) ||
2415 		    (rects[i].y + rects[i].h > INT_MAX)) {
2416 			ret = -ERANGE;
2417 			goto out_free;
2418 		}
2419 
2420 		curr_rect = rects[i];
2421 		drm_rects[i].x1 = curr_rect.x;
2422 		drm_rects[i].y1 = curr_rect.y;
2423 		drm_rects[i].x2 = curr_rect.x + curr_rect.w;
2424 		drm_rects[i].y2 = curr_rect.y + curr_rect.h;
2425 
2426 		/*
2427 		 * Currently this check is limiting the topology within
2428 		 * mode_config->max (which actually is max texture size
2429 		 * supported by virtual device). This limit is here to address
2430 		 * window managers that create a big framebuffer for whole
2431 		 * topology.
2432 		 */
2433 		if (drm_rects[i].x1 < 0 ||  drm_rects[i].y1 < 0 ||
2434 		    drm_rects[i].x2 > mode_config->max_width ||
2435 		    drm_rects[i].y2 > mode_config->max_height) {
2436 			DRM_ERROR("Invalid GUI layout.\n");
2437 			ret = -EINVAL;
2438 			goto out_free;
2439 		}
2440 	}
2441 
2442 	ret = vmw_kms_check_display_memory(dev, arg->num_outputs, drm_rects);
2443 
2444 	if (ret == 0)
2445 		vmw_du_update_layout(dev_priv, arg->num_outputs, drm_rects);
2446 
2447 out_free:
2448 	kfree(rects);
2449 	return ret;
2450 }
2451 
2452 /**
2453  * vmw_kms_helper_dirty - Helper to build commands and perform actions based
2454  * on a set of cliprects and a set of display units.
2455  *
2456  * @dev_priv: Pointer to a device private structure.
2457  * @framebuffer: Pointer to the framebuffer on which to perform the actions.
2458  * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL.
2459  * Cliprects are given in framebuffer coordinates.
2460  * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must
2461  * be NULL. Cliprects are given in source coordinates.
2462  * @dest_x: X coordinate offset for the crtc / destination clip rects.
2463  * @dest_y: Y coordinate offset for the crtc / destination clip rects.
2464  * @num_clips: Number of cliprects in the @clips or @vclips array.
2465  * @increment: Integer with which to increment the clip counter when looping.
2466  * Used to skip a predetermined number of clip rects.
2467  * @dirty: Closure structure. See the description of struct vmw_kms_dirty.
2468  */
2469 int vmw_kms_helper_dirty(struct vmw_private *dev_priv,
2470 			 struct vmw_framebuffer *framebuffer,
2471 			 const struct drm_clip_rect *clips,
2472 			 const struct drm_vmw_rect *vclips,
2473 			 s32 dest_x, s32 dest_y,
2474 			 int num_clips,
2475 			 int increment,
2476 			 struct vmw_kms_dirty *dirty)
2477 {
2478 	struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS];
2479 	struct drm_crtc *crtc;
2480 	u32 num_units = 0;
2481 	u32 i, k;
2482 
2483 	dirty->dev_priv = dev_priv;
2484 
2485 	/* If crtc is passed, no need to iterate over other display units */
2486 	if (dirty->crtc) {
2487 		units[num_units++] = vmw_crtc_to_du(dirty->crtc);
2488 	} else {
2489 		list_for_each_entry(crtc, &dev_priv->dev->mode_config.crtc_list,
2490 				    head) {
2491 			struct drm_plane *plane = crtc->primary;
2492 
2493 			if (plane->state->fb == &framebuffer->base)
2494 				units[num_units++] = vmw_crtc_to_du(crtc);
2495 		}
2496 	}
2497 
2498 	for (k = 0; k < num_units; k++) {
2499 		struct vmw_display_unit *unit = units[k];
2500 		s32 crtc_x = unit->crtc.x;
2501 		s32 crtc_y = unit->crtc.y;
2502 		s32 crtc_width = unit->crtc.mode.hdisplay;
2503 		s32 crtc_height = unit->crtc.mode.vdisplay;
2504 		const struct drm_clip_rect *clips_ptr = clips;
2505 		const struct drm_vmw_rect *vclips_ptr = vclips;
2506 
2507 		dirty->unit = unit;
2508 		if (dirty->fifo_reserve_size > 0) {
2509 			dirty->cmd = vmw_fifo_reserve(dev_priv,
2510 						      dirty->fifo_reserve_size);
2511 			if (!dirty->cmd) {
2512 				DRM_ERROR("Couldn't reserve fifo space "
2513 					  "for dirty blits.\n");
2514 				return -ENOMEM;
2515 			}
2516 			memset(dirty->cmd, 0, dirty->fifo_reserve_size);
2517 		}
2518 		dirty->num_hits = 0;
2519 		for (i = 0; i < num_clips; i++, clips_ptr += increment,
2520 		       vclips_ptr += increment) {
2521 			s32 clip_left;
2522 			s32 clip_top;
2523 
2524 			/*
2525 			 * Select clip array type. Note that integer type
2526 			 * in @clips is unsigned short, whereas in @vclips
2527 			 * it's 32-bit.
2528 			 */
2529 			if (clips) {
2530 				dirty->fb_x = (s32) clips_ptr->x1;
2531 				dirty->fb_y = (s32) clips_ptr->y1;
2532 				dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x -
2533 					crtc_x;
2534 				dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y -
2535 					crtc_y;
2536 			} else {
2537 				dirty->fb_x = vclips_ptr->x;
2538 				dirty->fb_y = vclips_ptr->y;
2539 				dirty->unit_x2 = dirty->fb_x + vclips_ptr->w +
2540 					dest_x - crtc_x;
2541 				dirty->unit_y2 = dirty->fb_y + vclips_ptr->h +
2542 					dest_y - crtc_y;
2543 			}
2544 
2545 			dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x;
2546 			dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y;
2547 
2548 			/* Skip this clip if it's outside the crtc region */
2549 			if (dirty->unit_x1 >= crtc_width ||
2550 			    dirty->unit_y1 >= crtc_height ||
2551 			    dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0)
2552 				continue;
2553 
2554 			/* Clip right and bottom to crtc limits */
2555 			dirty->unit_x2 = min_t(s32, dirty->unit_x2,
2556 					       crtc_width);
2557 			dirty->unit_y2 = min_t(s32, dirty->unit_y2,
2558 					       crtc_height);
2559 
2560 			/* Clip left and top to crtc limits */
2561 			clip_left = min_t(s32, dirty->unit_x1, 0);
2562 			clip_top = min_t(s32, dirty->unit_y1, 0);
2563 			dirty->unit_x1 -= clip_left;
2564 			dirty->unit_y1 -= clip_top;
2565 			dirty->fb_x -= clip_left;
2566 			dirty->fb_y -= clip_top;
2567 
2568 			dirty->clip(dirty);
2569 		}
2570 
2571 		dirty->fifo_commit(dirty);
2572 	}
2573 
2574 	return 0;
2575 }
2576 
2577 /**
2578  * vmw_kms_helper_validation_finish - Helper for post KMS command submission
2579  * cleanup and fencing
2580  * @dev_priv: Pointer to the device-private struct
2581  * @file_priv: Pointer identifying the client when user-space fencing is used
2582  * @ctx: Pointer to the validation context
2583  * @out_fence: If non-NULL, returned refcounted fence-pointer
2584  * @user_fence_rep: If non-NULL, pointer to user-space address area
2585  * in which to copy user-space fence info
2586  */
2587 void vmw_kms_helper_validation_finish(struct vmw_private *dev_priv,
2588 				      struct drm_file *file_priv,
2589 				      struct vmw_validation_context *ctx,
2590 				      struct vmw_fence_obj **out_fence,
2591 				      struct drm_vmw_fence_rep __user *
2592 				      user_fence_rep)
2593 {
2594 	struct vmw_fence_obj *fence = NULL;
2595 	uint32_t handle;
2596 	int ret;
2597 
2598 	if (file_priv || user_fence_rep || vmw_validation_has_bos(ctx) ||
2599 	    out_fence)
2600 		ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence,
2601 						 file_priv ? &handle : NULL);
2602 	vmw_validation_done(ctx, fence);
2603 	if (file_priv)
2604 		vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv),
2605 					    ret, user_fence_rep, fence,
2606 					    handle, -1, NULL);
2607 	if (out_fence)
2608 		*out_fence = fence;
2609 	else
2610 		vmw_fence_obj_unreference(&fence);
2611 }
2612 
2613 /**
2614  * vmw_kms_update_proxy - Helper function to update a proxy surface from
2615  * its backing MOB.
2616  *
2617  * @res: Pointer to the surface resource
2618  * @clips: Clip rects in framebuffer (surface) space.
2619  * @num_clips: Number of clips in @clips.
2620  * @increment: Integer with which to increment the clip counter when looping.
2621  * Used to skip a predetermined number of clip rects.
2622  *
2623  * This function makes sure the proxy surface is updated from its backing MOB
2624  * using the region given by @clips. The surface resource @res and its backing
2625  * MOB needs to be reserved and validated on call.
2626  */
2627 int vmw_kms_update_proxy(struct vmw_resource *res,
2628 			 const struct drm_clip_rect *clips,
2629 			 unsigned num_clips,
2630 			 int increment)
2631 {
2632 	struct vmw_private *dev_priv = res->dev_priv;
2633 	struct drm_vmw_size *size = &vmw_res_to_srf(res)->base_size;
2634 	struct {
2635 		SVGA3dCmdHeader header;
2636 		SVGA3dCmdUpdateGBImage body;
2637 	} *cmd;
2638 	SVGA3dBox *box;
2639 	size_t copy_size = 0;
2640 	int i;
2641 
2642 	if (!clips)
2643 		return 0;
2644 
2645 	cmd = vmw_fifo_reserve(dev_priv, sizeof(*cmd) * num_clips);
2646 	if (!cmd) {
2647 		DRM_ERROR("Couldn't reserve fifo space for proxy surface "
2648 			  "update.\n");
2649 		return -ENOMEM;
2650 	}
2651 
2652 	for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) {
2653 		box = &cmd->body.box;
2654 
2655 		cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE;
2656 		cmd->header.size = sizeof(cmd->body);
2657 		cmd->body.image.sid = res->id;
2658 		cmd->body.image.face = 0;
2659 		cmd->body.image.mipmap = 0;
2660 
2661 		if (clips->x1 > size->width || clips->x2 > size->width ||
2662 		    clips->y1 > size->height || clips->y2 > size->height) {
2663 			DRM_ERROR("Invalid clips outsize of framebuffer.\n");
2664 			return -EINVAL;
2665 		}
2666 
2667 		box->x = clips->x1;
2668 		box->y = clips->y1;
2669 		box->z = 0;
2670 		box->w = clips->x2 - clips->x1;
2671 		box->h = clips->y2 - clips->y1;
2672 		box->d = 1;
2673 
2674 		copy_size += sizeof(*cmd);
2675 	}
2676 
2677 	vmw_fifo_commit(dev_priv, copy_size);
2678 
2679 	return 0;
2680 }
2681 
2682 int vmw_kms_fbdev_init_data(struct vmw_private *dev_priv,
2683 			    unsigned unit,
2684 			    u32 max_width,
2685 			    u32 max_height,
2686 			    struct drm_connector **p_con,
2687 			    struct drm_crtc **p_crtc,
2688 			    struct drm_display_mode **p_mode)
2689 {
2690 	struct drm_connector *con;
2691 	struct vmw_display_unit *du;
2692 	struct drm_display_mode *mode;
2693 	int i = 0;
2694 	int ret = 0;
2695 
2696 	mutex_lock(&dev_priv->dev->mode_config.mutex);
2697 	list_for_each_entry(con, &dev_priv->dev->mode_config.connector_list,
2698 			    head) {
2699 		if (i == unit)
2700 			break;
2701 
2702 		++i;
2703 	}
2704 
2705 	if (i != unit) {
2706 		DRM_ERROR("Could not find initial display unit.\n");
2707 		ret = -EINVAL;
2708 		goto out_unlock;
2709 	}
2710 
2711 	if (list_empty(&con->modes))
2712 		(void) vmw_du_connector_fill_modes(con, max_width, max_height);
2713 
2714 	if (list_empty(&con->modes)) {
2715 		DRM_ERROR("Could not find initial display mode.\n");
2716 		ret = -EINVAL;
2717 		goto out_unlock;
2718 	}
2719 
2720 	du = vmw_connector_to_du(con);
2721 	*p_con = con;
2722 	*p_crtc = &du->crtc;
2723 
2724 	list_for_each_entry(mode, &con->modes, head) {
2725 		if (mode->type & DRM_MODE_TYPE_PREFERRED)
2726 			break;
2727 	}
2728 
2729 	if (mode->type & DRM_MODE_TYPE_PREFERRED)
2730 		*p_mode = mode;
2731 	else {
2732 		WARN_ONCE(true, "Could not find initial preferred mode.\n");
2733 		*p_mode = list_first_entry(&con->modes,
2734 					   struct drm_display_mode,
2735 					   head);
2736 	}
2737 
2738  out_unlock:
2739 	mutex_unlock(&dev_priv->dev->mode_config.mutex);
2740 
2741 	return ret;
2742 }
2743 
2744 /**
2745  * vmw_kms_del_active - unregister a crtc binding to the implicit framebuffer
2746  *
2747  * @dev_priv: Pointer to a device private struct.
2748  * @du: The display unit of the crtc.
2749  */
2750 void vmw_kms_del_active(struct vmw_private *dev_priv,
2751 			struct vmw_display_unit *du)
2752 {
2753 	mutex_lock(&dev_priv->global_kms_state_mutex);
2754 	if (du->active_implicit) {
2755 		if (--(dev_priv->num_implicit) == 0)
2756 			dev_priv->implicit_fb = NULL;
2757 		du->active_implicit = false;
2758 	}
2759 	mutex_unlock(&dev_priv->global_kms_state_mutex);
2760 }
2761 
2762 /**
2763  * vmw_kms_add_active - register a crtc binding to an implicit framebuffer
2764  *
2765  * @vmw_priv: Pointer to a device private struct.
2766  * @du: The display unit of the crtc.
2767  * @vfb: The implicit framebuffer
2768  *
2769  * Registers a binding to an implicit framebuffer.
2770  */
2771 void vmw_kms_add_active(struct vmw_private *dev_priv,
2772 			struct vmw_display_unit *du,
2773 			struct vmw_framebuffer *vfb)
2774 {
2775 	mutex_lock(&dev_priv->global_kms_state_mutex);
2776 	WARN_ON_ONCE(!dev_priv->num_implicit && dev_priv->implicit_fb);
2777 
2778 	if (!du->active_implicit && du->is_implicit) {
2779 		dev_priv->implicit_fb = vfb;
2780 		du->active_implicit = true;
2781 		dev_priv->num_implicit++;
2782 	}
2783 	mutex_unlock(&dev_priv->global_kms_state_mutex);
2784 }
2785 
2786 /**
2787  * vmw_kms_screen_object_flippable - Check whether we can page-flip a crtc.
2788  *
2789  * @dev_priv: Pointer to device-private struct.
2790  * @crtc: The crtc we want to flip.
2791  *
2792  * Returns true or false depending whether it's OK to flip this crtc
2793  * based on the criterion that we must not have more than one implicit
2794  * frame-buffer at any one time.
2795  */
2796 bool vmw_kms_crtc_flippable(struct vmw_private *dev_priv,
2797 			    struct drm_crtc *crtc)
2798 {
2799 	struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
2800 	bool ret;
2801 
2802 	mutex_lock(&dev_priv->global_kms_state_mutex);
2803 	ret = !du->is_implicit || dev_priv->num_implicit == 1;
2804 	mutex_unlock(&dev_priv->global_kms_state_mutex);
2805 
2806 	return ret;
2807 }
2808 
2809 /**
2810  * vmw_kms_update_implicit_fb - Update the implicit fb.
2811  *
2812  * @dev_priv: Pointer to device-private struct.
2813  * @crtc: The crtc the new implicit frame-buffer is bound to.
2814  */
2815 void vmw_kms_update_implicit_fb(struct vmw_private *dev_priv,
2816 				struct drm_crtc *crtc)
2817 {
2818 	struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
2819 	struct drm_plane *plane = crtc->primary;
2820 	struct vmw_framebuffer *vfb;
2821 
2822 	mutex_lock(&dev_priv->global_kms_state_mutex);
2823 
2824 	if (!du->is_implicit)
2825 		goto out_unlock;
2826 
2827 	vfb = vmw_framebuffer_to_vfb(plane->state->fb);
2828 	WARN_ON_ONCE(dev_priv->num_implicit != 1 &&
2829 		     dev_priv->implicit_fb != vfb);
2830 
2831 	dev_priv->implicit_fb = vfb;
2832 out_unlock:
2833 	mutex_unlock(&dev_priv->global_kms_state_mutex);
2834 }
2835 
2836 /**
2837  * vmw_kms_create_implicit_placement_proparty - Set up the implicit placement
2838  * property.
2839  *
2840  * @dev_priv: Pointer to a device private struct.
2841  * @immutable: Whether the property is immutable.
2842  *
2843  * Sets up the implicit placement property unless it's already set up.
2844  */
2845 void
2846 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv,
2847 					   bool immutable)
2848 {
2849 	if (dev_priv->implicit_placement_property)
2850 		return;
2851 
2852 	dev_priv->implicit_placement_property =
2853 		drm_property_create_range(dev_priv->dev,
2854 					  immutable ?
2855 					  DRM_MODE_PROP_IMMUTABLE : 0,
2856 					  "implicit_placement", 0, 1);
2857 
2858 }
2859 
2860 
2861 /**
2862  * vmw_kms_set_config - Wrapper around drm_atomic_helper_set_config
2863  *
2864  * @set: The configuration to set.
2865  *
2866  * The vmwgfx Xorg driver doesn't assign the mode::type member, which
2867  * when drm_mode_set_crtcinfo is called as part of the configuration setting
2868  * causes it to return incorrect crtc dimensions causing severe problems in
2869  * the vmwgfx modesetting. So explicitly clear that member before calling
2870  * into drm_atomic_helper_set_config.
2871  */
2872 int vmw_kms_set_config(struct drm_mode_set *set,
2873 		       struct drm_modeset_acquire_ctx *ctx)
2874 {
2875 	if (set && set->mode)
2876 		set->mode->type = 0;
2877 
2878 	return drm_atomic_helper_set_config(set, ctx);
2879 }
2880 
2881 
2882 /**
2883  * vmw_kms_suspend - Save modesetting state and turn modesetting off.
2884  *
2885  * @dev: Pointer to the drm device
2886  * Return: 0 on success. Negative error code on failure.
2887  */
2888 int vmw_kms_suspend(struct drm_device *dev)
2889 {
2890 	struct vmw_private *dev_priv = vmw_priv(dev);
2891 
2892 	dev_priv->suspend_state = drm_atomic_helper_suspend(dev);
2893 	if (IS_ERR(dev_priv->suspend_state)) {
2894 		int ret = PTR_ERR(dev_priv->suspend_state);
2895 
2896 		DRM_ERROR("Failed kms suspend: %d\n", ret);
2897 		dev_priv->suspend_state = NULL;
2898 
2899 		return ret;
2900 	}
2901 
2902 	return 0;
2903 }
2904 
2905 
2906 /**
2907  * vmw_kms_resume - Re-enable modesetting and restore state
2908  *
2909  * @dev: Pointer to the drm device
2910  * Return: 0 on success. Negative error code on failure.
2911  *
2912  * State is resumed from a previous vmw_kms_suspend(). It's illegal
2913  * to call this function without a previous vmw_kms_suspend().
2914  */
2915 int vmw_kms_resume(struct drm_device *dev)
2916 {
2917 	struct vmw_private *dev_priv = vmw_priv(dev);
2918 	int ret;
2919 
2920 	if (WARN_ON(!dev_priv->suspend_state))
2921 		return 0;
2922 
2923 	ret = drm_atomic_helper_resume(dev, dev_priv->suspend_state);
2924 	dev_priv->suspend_state = NULL;
2925 
2926 	return ret;
2927 }
2928 
2929 /**
2930  * vmw_kms_lost_device - Notify kms that modesetting capabilities will be lost
2931  *
2932  * @dev: Pointer to the drm device
2933  */
2934 void vmw_kms_lost_device(struct drm_device *dev)
2935 {
2936 	drm_atomic_helper_shutdown(dev);
2937 }
2938