1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /************************************************************************** 3 * 4 * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 28 #include "vmwgfx_kms.h" 29 #include <drm/drm_plane_helper.h> 30 #include <drm/drm_atomic.h> 31 #include <drm/drm_atomic_helper.h> 32 #include <drm/drm_rect.h> 33 34 /* Might need a hrtimer here? */ 35 #define VMWGFX_PRESENT_RATE ((HZ / 60 > 0) ? HZ / 60 : 1) 36 37 void vmw_du_cleanup(struct vmw_display_unit *du) 38 { 39 drm_plane_cleanup(&du->primary); 40 drm_plane_cleanup(&du->cursor); 41 42 drm_connector_unregister(&du->connector); 43 drm_crtc_cleanup(&du->crtc); 44 drm_encoder_cleanup(&du->encoder); 45 drm_connector_cleanup(&du->connector); 46 } 47 48 /* 49 * Display Unit Cursor functions 50 */ 51 52 static int vmw_cursor_update_image(struct vmw_private *dev_priv, 53 u32 *image, u32 width, u32 height, 54 u32 hotspotX, u32 hotspotY) 55 { 56 struct { 57 u32 cmd; 58 SVGAFifoCmdDefineAlphaCursor cursor; 59 } *cmd; 60 u32 image_size = width * height * 4; 61 u32 cmd_size = sizeof(*cmd) + image_size; 62 63 if (!image) 64 return -EINVAL; 65 66 cmd = vmw_fifo_reserve(dev_priv, cmd_size); 67 if (unlikely(cmd == NULL)) { 68 DRM_ERROR("Fifo reserve failed.\n"); 69 return -ENOMEM; 70 } 71 72 memset(cmd, 0, sizeof(*cmd)); 73 74 memcpy(&cmd[1], image, image_size); 75 76 cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR; 77 cmd->cursor.id = 0; 78 cmd->cursor.width = width; 79 cmd->cursor.height = height; 80 cmd->cursor.hotspotX = hotspotX; 81 cmd->cursor.hotspotY = hotspotY; 82 83 vmw_fifo_commit_flush(dev_priv, cmd_size); 84 85 return 0; 86 } 87 88 static int vmw_cursor_update_bo(struct vmw_private *dev_priv, 89 struct vmw_buffer_object *bo, 90 u32 width, u32 height, 91 u32 hotspotX, u32 hotspotY) 92 { 93 struct ttm_bo_kmap_obj map; 94 unsigned long kmap_offset; 95 unsigned long kmap_num; 96 void *virtual; 97 bool dummy; 98 int ret; 99 100 kmap_offset = 0; 101 kmap_num = (width*height*4 + PAGE_SIZE - 1) >> PAGE_SHIFT; 102 103 ret = ttm_bo_reserve(&bo->base, true, false, NULL); 104 if (unlikely(ret != 0)) { 105 DRM_ERROR("reserve failed\n"); 106 return -EINVAL; 107 } 108 109 ret = ttm_bo_kmap(&bo->base, kmap_offset, kmap_num, &map); 110 if (unlikely(ret != 0)) 111 goto err_unreserve; 112 113 virtual = ttm_kmap_obj_virtual(&map, &dummy); 114 ret = vmw_cursor_update_image(dev_priv, virtual, width, height, 115 hotspotX, hotspotY); 116 117 ttm_bo_kunmap(&map); 118 err_unreserve: 119 ttm_bo_unreserve(&bo->base); 120 121 return ret; 122 } 123 124 125 static void vmw_cursor_update_position(struct vmw_private *dev_priv, 126 bool show, int x, int y) 127 { 128 u32 *fifo_mem = dev_priv->mmio_virt; 129 uint32_t count; 130 131 spin_lock(&dev_priv->cursor_lock); 132 vmw_mmio_write(show ? 1 : 0, fifo_mem + SVGA_FIFO_CURSOR_ON); 133 vmw_mmio_write(x, fifo_mem + SVGA_FIFO_CURSOR_X); 134 vmw_mmio_write(y, fifo_mem + SVGA_FIFO_CURSOR_Y); 135 count = vmw_mmio_read(fifo_mem + SVGA_FIFO_CURSOR_COUNT); 136 vmw_mmio_write(++count, fifo_mem + SVGA_FIFO_CURSOR_COUNT); 137 spin_unlock(&dev_priv->cursor_lock); 138 } 139 140 141 void vmw_kms_cursor_snoop(struct vmw_surface *srf, 142 struct ttm_object_file *tfile, 143 struct ttm_buffer_object *bo, 144 SVGA3dCmdHeader *header) 145 { 146 struct ttm_bo_kmap_obj map; 147 unsigned long kmap_offset; 148 unsigned long kmap_num; 149 SVGA3dCopyBox *box; 150 unsigned box_count; 151 void *virtual; 152 bool dummy; 153 struct vmw_dma_cmd { 154 SVGA3dCmdHeader header; 155 SVGA3dCmdSurfaceDMA dma; 156 } *cmd; 157 int i, ret; 158 159 cmd = container_of(header, struct vmw_dma_cmd, header); 160 161 /* No snooper installed */ 162 if (!srf->snooper.image) 163 return; 164 165 if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) { 166 DRM_ERROR("face and mipmap for cursors should never != 0\n"); 167 return; 168 } 169 170 if (cmd->header.size < 64) { 171 DRM_ERROR("at least one full copy box must be given\n"); 172 return; 173 } 174 175 box = (SVGA3dCopyBox *)&cmd[1]; 176 box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) / 177 sizeof(SVGA3dCopyBox); 178 179 if (cmd->dma.guest.ptr.offset % PAGE_SIZE || 180 box->x != 0 || box->y != 0 || box->z != 0 || 181 box->srcx != 0 || box->srcy != 0 || box->srcz != 0 || 182 box->d != 1 || box_count != 1) { 183 /* TODO handle none page aligned offsets */ 184 /* TODO handle more dst & src != 0 */ 185 /* TODO handle more then one copy */ 186 DRM_ERROR("Cant snoop dma request for cursor!\n"); 187 DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n", 188 box->srcx, box->srcy, box->srcz, 189 box->x, box->y, box->z, 190 box->w, box->h, box->d, box_count, 191 cmd->dma.guest.ptr.offset); 192 return; 193 } 194 195 kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT; 196 kmap_num = (64*64*4) >> PAGE_SHIFT; 197 198 ret = ttm_bo_reserve(bo, true, false, NULL); 199 if (unlikely(ret != 0)) { 200 DRM_ERROR("reserve failed\n"); 201 return; 202 } 203 204 ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map); 205 if (unlikely(ret != 0)) 206 goto err_unreserve; 207 208 virtual = ttm_kmap_obj_virtual(&map, &dummy); 209 210 if (box->w == 64 && cmd->dma.guest.pitch == 64*4) { 211 memcpy(srf->snooper.image, virtual, 64*64*4); 212 } else { 213 /* Image is unsigned pointer. */ 214 for (i = 0; i < box->h; i++) 215 memcpy(srf->snooper.image + i * 64, 216 virtual + i * cmd->dma.guest.pitch, 217 box->w * 4); 218 } 219 220 srf->snooper.age++; 221 222 ttm_bo_kunmap(&map); 223 err_unreserve: 224 ttm_bo_unreserve(bo); 225 } 226 227 /** 228 * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots 229 * 230 * @dev_priv: Pointer to the device private struct. 231 * 232 * Clears all legacy hotspots. 233 */ 234 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv) 235 { 236 struct drm_device *dev = dev_priv->dev; 237 struct vmw_display_unit *du; 238 struct drm_crtc *crtc; 239 240 drm_modeset_lock_all(dev); 241 drm_for_each_crtc(crtc, dev) { 242 du = vmw_crtc_to_du(crtc); 243 244 du->hotspot_x = 0; 245 du->hotspot_y = 0; 246 } 247 drm_modeset_unlock_all(dev); 248 } 249 250 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv) 251 { 252 struct drm_device *dev = dev_priv->dev; 253 struct vmw_display_unit *du; 254 struct drm_crtc *crtc; 255 256 mutex_lock(&dev->mode_config.mutex); 257 258 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 259 du = vmw_crtc_to_du(crtc); 260 if (!du->cursor_surface || 261 du->cursor_age == du->cursor_surface->snooper.age) 262 continue; 263 264 du->cursor_age = du->cursor_surface->snooper.age; 265 vmw_cursor_update_image(dev_priv, 266 du->cursor_surface->snooper.image, 267 64, 64, 268 du->hotspot_x + du->core_hotspot_x, 269 du->hotspot_y + du->core_hotspot_y); 270 } 271 272 mutex_unlock(&dev->mode_config.mutex); 273 } 274 275 276 void vmw_du_cursor_plane_destroy(struct drm_plane *plane) 277 { 278 vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0); 279 280 drm_plane_cleanup(plane); 281 } 282 283 284 void vmw_du_primary_plane_destroy(struct drm_plane *plane) 285 { 286 drm_plane_cleanup(plane); 287 288 /* Planes are static in our case so we don't free it */ 289 } 290 291 292 /** 293 * vmw_du_vps_unpin_surf - unpins resource associated with a framebuffer surface 294 * 295 * @vps: plane state associated with the display surface 296 * @unreference: true if we also want to unreference the display. 297 */ 298 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps, 299 bool unreference) 300 { 301 if (vps->surf) { 302 if (vps->pinned) { 303 vmw_resource_unpin(&vps->surf->res); 304 vps->pinned--; 305 } 306 307 if (unreference) { 308 if (vps->pinned) 309 DRM_ERROR("Surface still pinned\n"); 310 vmw_surface_unreference(&vps->surf); 311 } 312 } 313 } 314 315 316 /** 317 * vmw_du_plane_cleanup_fb - Unpins the cursor 318 * 319 * @plane: display plane 320 * @old_state: Contains the FB to clean up 321 * 322 * Unpins the framebuffer surface 323 * 324 * Returns 0 on success 325 */ 326 void 327 vmw_du_plane_cleanup_fb(struct drm_plane *plane, 328 struct drm_plane_state *old_state) 329 { 330 struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state); 331 332 vmw_du_plane_unpin_surf(vps, false); 333 } 334 335 336 /** 337 * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it 338 * 339 * @plane: display plane 340 * @new_state: info on the new plane state, including the FB 341 * 342 * Returns 0 on success 343 */ 344 int 345 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane, 346 struct drm_plane_state *new_state) 347 { 348 struct drm_framebuffer *fb = new_state->fb; 349 struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state); 350 351 352 if (vps->surf) 353 vmw_surface_unreference(&vps->surf); 354 355 if (vps->bo) 356 vmw_bo_unreference(&vps->bo); 357 358 if (fb) { 359 if (vmw_framebuffer_to_vfb(fb)->bo) { 360 vps->bo = vmw_framebuffer_to_vfbd(fb)->buffer; 361 vmw_bo_reference(vps->bo); 362 } else { 363 vps->surf = vmw_framebuffer_to_vfbs(fb)->surface; 364 vmw_surface_reference(vps->surf); 365 } 366 } 367 368 return 0; 369 } 370 371 372 void 373 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane, 374 struct drm_plane_state *old_state) 375 { 376 struct drm_crtc *crtc = plane->state->crtc ?: old_state->crtc; 377 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 378 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 379 struct vmw_plane_state *vps = vmw_plane_state_to_vps(plane->state); 380 s32 hotspot_x, hotspot_y; 381 int ret = 0; 382 383 384 hotspot_x = du->hotspot_x; 385 hotspot_y = du->hotspot_y; 386 387 if (plane->state->fb) { 388 hotspot_x += plane->state->fb->hot_x; 389 hotspot_y += plane->state->fb->hot_y; 390 } 391 392 du->cursor_surface = vps->surf; 393 du->cursor_bo = vps->bo; 394 395 if (vps->surf) { 396 du->cursor_age = du->cursor_surface->snooper.age; 397 398 ret = vmw_cursor_update_image(dev_priv, 399 vps->surf->snooper.image, 400 64, 64, hotspot_x, 401 hotspot_y); 402 } else if (vps->bo) { 403 ret = vmw_cursor_update_bo(dev_priv, vps->bo, 404 plane->state->crtc_w, 405 plane->state->crtc_h, 406 hotspot_x, hotspot_y); 407 } else { 408 vmw_cursor_update_position(dev_priv, false, 0, 0); 409 return; 410 } 411 412 if (!ret) { 413 du->cursor_x = plane->state->crtc_x + du->set_gui_x; 414 du->cursor_y = plane->state->crtc_y + du->set_gui_y; 415 416 vmw_cursor_update_position(dev_priv, true, 417 du->cursor_x + hotspot_x, 418 du->cursor_y + hotspot_y); 419 420 du->core_hotspot_x = hotspot_x - du->hotspot_x; 421 du->core_hotspot_y = hotspot_y - du->hotspot_y; 422 } else { 423 DRM_ERROR("Failed to update cursor image\n"); 424 } 425 } 426 427 428 /** 429 * vmw_du_primary_plane_atomic_check - check if the new state is okay 430 * 431 * @plane: display plane 432 * @state: info on the new plane state, including the FB 433 * 434 * Check if the new state is settable given the current state. Other 435 * than what the atomic helper checks, we care about crtc fitting 436 * the FB and maintaining one active framebuffer. 437 * 438 * Returns 0 on success 439 */ 440 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane, 441 struct drm_plane_state *state) 442 { 443 struct drm_crtc_state *crtc_state = NULL; 444 struct drm_framebuffer *new_fb = state->fb; 445 int ret; 446 447 if (state->crtc) 448 crtc_state = drm_atomic_get_new_crtc_state(state->state, state->crtc); 449 450 ret = drm_atomic_helper_check_plane_state(state, crtc_state, 451 DRM_PLANE_HELPER_NO_SCALING, 452 DRM_PLANE_HELPER_NO_SCALING, 453 false, true); 454 455 if (!ret && new_fb) { 456 struct drm_crtc *crtc = state->crtc; 457 struct vmw_connector_state *vcs; 458 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 459 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 460 struct vmw_framebuffer *vfb = vmw_framebuffer_to_vfb(new_fb); 461 462 vcs = vmw_connector_state_to_vcs(du->connector.state); 463 464 /* Only one active implicit framebuffer at a time. */ 465 mutex_lock(&dev_priv->global_kms_state_mutex); 466 if (vcs->is_implicit && dev_priv->implicit_fb && 467 !(dev_priv->num_implicit == 1 && du->active_implicit) 468 && dev_priv->implicit_fb != vfb) { 469 DRM_ERROR("Multiple implicit framebuffers " 470 "not supported.\n"); 471 ret = -EINVAL; 472 } 473 mutex_unlock(&dev_priv->global_kms_state_mutex); 474 } 475 476 477 return ret; 478 } 479 480 481 /** 482 * vmw_du_cursor_plane_atomic_check - check if the new state is okay 483 * 484 * @plane: cursor plane 485 * @state: info on the new plane state 486 * 487 * This is a chance to fail if the new cursor state does not fit 488 * our requirements. 489 * 490 * Returns 0 on success 491 */ 492 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane, 493 struct drm_plane_state *new_state) 494 { 495 int ret = 0; 496 struct vmw_surface *surface = NULL; 497 struct drm_framebuffer *fb = new_state->fb; 498 499 struct drm_rect src = drm_plane_state_src(new_state); 500 struct drm_rect dest = drm_plane_state_dest(new_state); 501 502 /* Turning off */ 503 if (!fb) 504 return ret; 505 506 ret = drm_plane_helper_check_update(plane, new_state->crtc, fb, 507 &src, &dest, 508 DRM_MODE_ROTATE_0, 509 DRM_PLANE_HELPER_NO_SCALING, 510 DRM_PLANE_HELPER_NO_SCALING, 511 true, true, &new_state->visible); 512 if (!ret) 513 return ret; 514 515 /* A lot of the code assumes this */ 516 if (new_state->crtc_w != 64 || new_state->crtc_h != 64) { 517 DRM_ERROR("Invalid cursor dimensions (%d, %d)\n", 518 new_state->crtc_w, new_state->crtc_h); 519 ret = -EINVAL; 520 } 521 522 if (!vmw_framebuffer_to_vfb(fb)->bo) 523 surface = vmw_framebuffer_to_vfbs(fb)->surface; 524 525 if (surface && !surface->snooper.image) { 526 DRM_ERROR("surface not suitable for cursor\n"); 527 ret = -EINVAL; 528 } 529 530 return ret; 531 } 532 533 534 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc, 535 struct drm_crtc_state *new_state) 536 { 537 struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc); 538 int connector_mask = drm_connector_mask(&du->connector); 539 bool has_primary = new_state->plane_mask & 540 drm_plane_mask(crtc->primary); 541 542 /* We always want to have an active plane with an active CRTC */ 543 if (has_primary != new_state->enable) 544 return -EINVAL; 545 546 547 if (new_state->connector_mask != connector_mask && 548 new_state->connector_mask != 0) { 549 DRM_ERROR("Invalid connectors configuration\n"); 550 return -EINVAL; 551 } 552 553 /* 554 * Our virtual device does not have a dot clock, so use the logical 555 * clock value as the dot clock. 556 */ 557 if (new_state->mode.crtc_clock == 0) 558 new_state->adjusted_mode.crtc_clock = new_state->mode.clock; 559 560 return 0; 561 } 562 563 564 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc, 565 struct drm_crtc_state *old_crtc_state) 566 { 567 } 568 569 570 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc, 571 struct drm_crtc_state *old_crtc_state) 572 { 573 struct drm_pending_vblank_event *event = crtc->state->event; 574 575 if (event) { 576 crtc->state->event = NULL; 577 578 spin_lock_irq(&crtc->dev->event_lock); 579 drm_crtc_send_vblank_event(crtc, event); 580 spin_unlock_irq(&crtc->dev->event_lock); 581 } 582 } 583 584 585 /** 586 * vmw_du_crtc_duplicate_state - duplicate crtc state 587 * @crtc: DRM crtc 588 * 589 * Allocates and returns a copy of the crtc state (both common and 590 * vmw-specific) for the specified crtc. 591 * 592 * Returns: The newly allocated crtc state, or NULL on failure. 593 */ 594 struct drm_crtc_state * 595 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc) 596 { 597 struct drm_crtc_state *state; 598 struct vmw_crtc_state *vcs; 599 600 if (WARN_ON(!crtc->state)) 601 return NULL; 602 603 vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL); 604 605 if (!vcs) 606 return NULL; 607 608 state = &vcs->base; 609 610 __drm_atomic_helper_crtc_duplicate_state(crtc, state); 611 612 return state; 613 } 614 615 616 /** 617 * vmw_du_crtc_reset - creates a blank vmw crtc state 618 * @crtc: DRM crtc 619 * 620 * Resets the atomic state for @crtc by freeing the state pointer (which 621 * might be NULL, e.g. at driver load time) and allocating a new empty state 622 * object. 623 */ 624 void vmw_du_crtc_reset(struct drm_crtc *crtc) 625 { 626 struct vmw_crtc_state *vcs; 627 628 629 if (crtc->state) { 630 __drm_atomic_helper_crtc_destroy_state(crtc->state); 631 632 kfree(vmw_crtc_state_to_vcs(crtc->state)); 633 } 634 635 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL); 636 637 if (!vcs) { 638 DRM_ERROR("Cannot allocate vmw_crtc_state\n"); 639 return; 640 } 641 642 crtc->state = &vcs->base; 643 crtc->state->crtc = crtc; 644 } 645 646 647 /** 648 * vmw_du_crtc_destroy_state - destroy crtc state 649 * @crtc: DRM crtc 650 * @state: state object to destroy 651 * 652 * Destroys the crtc state (both common and vmw-specific) for the 653 * specified plane. 654 */ 655 void 656 vmw_du_crtc_destroy_state(struct drm_crtc *crtc, 657 struct drm_crtc_state *state) 658 { 659 drm_atomic_helper_crtc_destroy_state(crtc, state); 660 } 661 662 663 /** 664 * vmw_du_plane_duplicate_state - duplicate plane state 665 * @plane: drm plane 666 * 667 * Allocates and returns a copy of the plane state (both common and 668 * vmw-specific) for the specified plane. 669 * 670 * Returns: The newly allocated plane state, or NULL on failure. 671 */ 672 struct drm_plane_state * 673 vmw_du_plane_duplicate_state(struct drm_plane *plane) 674 { 675 struct drm_plane_state *state; 676 struct vmw_plane_state *vps; 677 678 vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL); 679 680 if (!vps) 681 return NULL; 682 683 vps->pinned = 0; 684 vps->cpp = 0; 685 686 /* Each ref counted resource needs to be acquired again */ 687 if (vps->surf) 688 (void) vmw_surface_reference(vps->surf); 689 690 if (vps->bo) 691 (void) vmw_bo_reference(vps->bo); 692 693 state = &vps->base; 694 695 __drm_atomic_helper_plane_duplicate_state(plane, state); 696 697 return state; 698 } 699 700 701 /** 702 * vmw_du_plane_reset - creates a blank vmw plane state 703 * @plane: drm plane 704 * 705 * Resets the atomic state for @plane by freeing the state pointer (which might 706 * be NULL, e.g. at driver load time) and allocating a new empty state object. 707 */ 708 void vmw_du_plane_reset(struct drm_plane *plane) 709 { 710 struct vmw_plane_state *vps; 711 712 713 if (plane->state) 714 vmw_du_plane_destroy_state(plane, plane->state); 715 716 vps = kzalloc(sizeof(*vps), GFP_KERNEL); 717 718 if (!vps) { 719 DRM_ERROR("Cannot allocate vmw_plane_state\n"); 720 return; 721 } 722 723 plane->state = &vps->base; 724 plane->state->plane = plane; 725 plane->state->rotation = DRM_MODE_ROTATE_0; 726 } 727 728 729 /** 730 * vmw_du_plane_destroy_state - destroy plane state 731 * @plane: DRM plane 732 * @state: state object to destroy 733 * 734 * Destroys the plane state (both common and vmw-specific) for the 735 * specified plane. 736 */ 737 void 738 vmw_du_plane_destroy_state(struct drm_plane *plane, 739 struct drm_plane_state *state) 740 { 741 struct vmw_plane_state *vps = vmw_plane_state_to_vps(state); 742 743 744 /* Should have been freed by cleanup_fb */ 745 if (vps->surf) 746 vmw_surface_unreference(&vps->surf); 747 748 if (vps->bo) 749 vmw_bo_unreference(&vps->bo); 750 751 drm_atomic_helper_plane_destroy_state(plane, state); 752 } 753 754 755 /** 756 * vmw_du_connector_duplicate_state - duplicate connector state 757 * @connector: DRM connector 758 * 759 * Allocates and returns a copy of the connector state (both common and 760 * vmw-specific) for the specified connector. 761 * 762 * Returns: The newly allocated connector state, or NULL on failure. 763 */ 764 struct drm_connector_state * 765 vmw_du_connector_duplicate_state(struct drm_connector *connector) 766 { 767 struct drm_connector_state *state; 768 struct vmw_connector_state *vcs; 769 770 if (WARN_ON(!connector->state)) 771 return NULL; 772 773 vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL); 774 775 if (!vcs) 776 return NULL; 777 778 state = &vcs->base; 779 780 __drm_atomic_helper_connector_duplicate_state(connector, state); 781 782 return state; 783 } 784 785 786 /** 787 * vmw_du_connector_reset - creates a blank vmw connector state 788 * @connector: DRM connector 789 * 790 * Resets the atomic state for @connector by freeing the state pointer (which 791 * might be NULL, e.g. at driver load time) and allocating a new empty state 792 * object. 793 */ 794 void vmw_du_connector_reset(struct drm_connector *connector) 795 { 796 struct vmw_connector_state *vcs; 797 798 799 if (connector->state) { 800 __drm_atomic_helper_connector_destroy_state(connector->state); 801 802 kfree(vmw_connector_state_to_vcs(connector->state)); 803 } 804 805 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL); 806 807 if (!vcs) { 808 DRM_ERROR("Cannot allocate vmw_connector_state\n"); 809 return; 810 } 811 812 __drm_atomic_helper_connector_reset(connector, &vcs->base); 813 } 814 815 816 /** 817 * vmw_du_connector_destroy_state - destroy connector state 818 * @connector: DRM connector 819 * @state: state object to destroy 820 * 821 * Destroys the connector state (both common and vmw-specific) for the 822 * specified plane. 823 */ 824 void 825 vmw_du_connector_destroy_state(struct drm_connector *connector, 826 struct drm_connector_state *state) 827 { 828 drm_atomic_helper_connector_destroy_state(connector, state); 829 } 830 /* 831 * Generic framebuffer code 832 */ 833 834 /* 835 * Surface framebuffer code 836 */ 837 838 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer) 839 { 840 struct vmw_framebuffer_surface *vfbs = 841 vmw_framebuffer_to_vfbs(framebuffer); 842 843 drm_framebuffer_cleanup(framebuffer); 844 vmw_surface_unreference(&vfbs->surface); 845 if (vfbs->base.user_obj) 846 ttm_base_object_unref(&vfbs->base.user_obj); 847 848 kfree(vfbs); 849 } 850 851 static int vmw_framebuffer_surface_dirty(struct drm_framebuffer *framebuffer, 852 struct drm_file *file_priv, 853 unsigned flags, unsigned color, 854 struct drm_clip_rect *clips, 855 unsigned num_clips) 856 { 857 struct vmw_private *dev_priv = vmw_priv(framebuffer->dev); 858 struct vmw_framebuffer_surface *vfbs = 859 vmw_framebuffer_to_vfbs(framebuffer); 860 struct drm_clip_rect norect; 861 int ret, inc = 1; 862 863 /* Legacy Display Unit does not support 3D */ 864 if (dev_priv->active_display_unit == vmw_du_legacy) 865 return -EINVAL; 866 867 drm_modeset_lock_all(dev_priv->dev); 868 869 ret = ttm_read_lock(&dev_priv->reservation_sem, true); 870 if (unlikely(ret != 0)) { 871 drm_modeset_unlock_all(dev_priv->dev); 872 return ret; 873 } 874 875 if (!num_clips) { 876 num_clips = 1; 877 clips = &norect; 878 norect.x1 = norect.y1 = 0; 879 norect.x2 = framebuffer->width; 880 norect.y2 = framebuffer->height; 881 } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) { 882 num_clips /= 2; 883 inc = 2; /* skip source rects */ 884 } 885 886 if (dev_priv->active_display_unit == vmw_du_screen_object) 887 ret = vmw_kms_sou_do_surface_dirty(dev_priv, &vfbs->base, 888 clips, NULL, NULL, 0, 0, 889 num_clips, inc, NULL, NULL); 890 else 891 ret = vmw_kms_stdu_surface_dirty(dev_priv, &vfbs->base, 892 clips, NULL, NULL, 0, 0, 893 num_clips, inc, NULL, NULL); 894 895 vmw_fifo_flush(dev_priv, false); 896 ttm_read_unlock(&dev_priv->reservation_sem); 897 898 drm_modeset_unlock_all(dev_priv->dev); 899 900 return 0; 901 } 902 903 /** 904 * vmw_kms_readback - Perform a readback from the screen system to 905 * a buffer-object backed framebuffer. 906 * 907 * @dev_priv: Pointer to the device private structure. 908 * @file_priv: Pointer to a struct drm_file identifying the caller. 909 * Must be set to NULL if @user_fence_rep is NULL. 910 * @vfb: Pointer to the buffer-object backed framebuffer. 911 * @user_fence_rep: User-space provided structure for fence information. 912 * Must be set to non-NULL if @file_priv is non-NULL. 913 * @vclips: Array of clip rects. 914 * @num_clips: Number of clip rects in @vclips. 915 * 916 * Returns 0 on success, negative error code on failure. -ERESTARTSYS if 917 * interrupted. 918 */ 919 int vmw_kms_readback(struct vmw_private *dev_priv, 920 struct drm_file *file_priv, 921 struct vmw_framebuffer *vfb, 922 struct drm_vmw_fence_rep __user *user_fence_rep, 923 struct drm_vmw_rect *vclips, 924 uint32_t num_clips) 925 { 926 switch (dev_priv->active_display_unit) { 927 case vmw_du_screen_object: 928 return vmw_kms_sou_readback(dev_priv, file_priv, vfb, 929 user_fence_rep, vclips, num_clips, 930 NULL); 931 case vmw_du_screen_target: 932 return vmw_kms_stdu_dma(dev_priv, file_priv, vfb, 933 user_fence_rep, NULL, vclips, num_clips, 934 1, false, true, NULL); 935 default: 936 WARN_ONCE(true, 937 "Readback called with invalid display system.\n"); 938 } 939 940 return -ENOSYS; 941 } 942 943 944 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = { 945 .destroy = vmw_framebuffer_surface_destroy, 946 .dirty = vmw_framebuffer_surface_dirty, 947 }; 948 949 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv, 950 struct vmw_surface *surface, 951 struct vmw_framebuffer **out, 952 const struct drm_mode_fb_cmd2 953 *mode_cmd, 954 bool is_bo_proxy) 955 956 { 957 struct drm_device *dev = dev_priv->dev; 958 struct vmw_framebuffer_surface *vfbs; 959 enum SVGA3dSurfaceFormat format; 960 int ret; 961 struct drm_format_name_buf format_name; 962 963 /* 3D is only supported on HWv8 and newer hosts */ 964 if (dev_priv->active_display_unit == vmw_du_legacy) 965 return -ENOSYS; 966 967 /* 968 * Sanity checks. 969 */ 970 971 /* Surface must be marked as a scanout. */ 972 if (unlikely(!surface->scanout)) 973 return -EINVAL; 974 975 if (unlikely(surface->mip_levels[0] != 1 || 976 surface->num_sizes != 1 || 977 surface->base_size.width < mode_cmd->width || 978 surface->base_size.height < mode_cmd->height || 979 surface->base_size.depth != 1)) { 980 DRM_ERROR("Incompatible surface dimensions " 981 "for requested mode.\n"); 982 return -EINVAL; 983 } 984 985 switch (mode_cmd->pixel_format) { 986 case DRM_FORMAT_ARGB8888: 987 format = SVGA3D_A8R8G8B8; 988 break; 989 case DRM_FORMAT_XRGB8888: 990 format = SVGA3D_X8R8G8B8; 991 break; 992 case DRM_FORMAT_RGB565: 993 format = SVGA3D_R5G6B5; 994 break; 995 case DRM_FORMAT_XRGB1555: 996 format = SVGA3D_A1R5G5B5; 997 break; 998 default: 999 DRM_ERROR("Invalid pixel format: %s\n", 1000 drm_get_format_name(mode_cmd->pixel_format, &format_name)); 1001 return -EINVAL; 1002 } 1003 1004 /* 1005 * For DX, surface format validation is done when surface->scanout 1006 * is set. 1007 */ 1008 if (!dev_priv->has_dx && format != surface->format) { 1009 DRM_ERROR("Invalid surface format for requested mode.\n"); 1010 return -EINVAL; 1011 } 1012 1013 vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL); 1014 if (!vfbs) { 1015 ret = -ENOMEM; 1016 goto out_err1; 1017 } 1018 1019 drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd); 1020 vfbs->surface = vmw_surface_reference(surface); 1021 vfbs->base.user_handle = mode_cmd->handles[0]; 1022 vfbs->is_bo_proxy = is_bo_proxy; 1023 1024 *out = &vfbs->base; 1025 1026 ret = drm_framebuffer_init(dev, &vfbs->base.base, 1027 &vmw_framebuffer_surface_funcs); 1028 if (ret) 1029 goto out_err2; 1030 1031 return 0; 1032 1033 out_err2: 1034 vmw_surface_unreference(&surface); 1035 kfree(vfbs); 1036 out_err1: 1037 return ret; 1038 } 1039 1040 /* 1041 * Buffer-object framebuffer code 1042 */ 1043 1044 static void vmw_framebuffer_bo_destroy(struct drm_framebuffer *framebuffer) 1045 { 1046 struct vmw_framebuffer_bo *vfbd = 1047 vmw_framebuffer_to_vfbd(framebuffer); 1048 1049 drm_framebuffer_cleanup(framebuffer); 1050 vmw_bo_unreference(&vfbd->buffer); 1051 if (vfbd->base.user_obj) 1052 ttm_base_object_unref(&vfbd->base.user_obj); 1053 1054 kfree(vfbd); 1055 } 1056 1057 static int vmw_framebuffer_bo_dirty(struct drm_framebuffer *framebuffer, 1058 struct drm_file *file_priv, 1059 unsigned int flags, unsigned int color, 1060 struct drm_clip_rect *clips, 1061 unsigned int num_clips) 1062 { 1063 struct vmw_private *dev_priv = vmw_priv(framebuffer->dev); 1064 struct vmw_framebuffer_bo *vfbd = 1065 vmw_framebuffer_to_vfbd(framebuffer); 1066 struct drm_clip_rect norect; 1067 int ret, increment = 1; 1068 1069 drm_modeset_lock_all(dev_priv->dev); 1070 1071 ret = ttm_read_lock(&dev_priv->reservation_sem, true); 1072 if (unlikely(ret != 0)) { 1073 drm_modeset_unlock_all(dev_priv->dev); 1074 return ret; 1075 } 1076 1077 if (!num_clips) { 1078 num_clips = 1; 1079 clips = &norect; 1080 norect.x1 = norect.y1 = 0; 1081 norect.x2 = framebuffer->width; 1082 norect.y2 = framebuffer->height; 1083 } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) { 1084 num_clips /= 2; 1085 increment = 2; 1086 } 1087 1088 switch (dev_priv->active_display_unit) { 1089 case vmw_du_screen_target: 1090 ret = vmw_kms_stdu_dma(dev_priv, NULL, &vfbd->base, NULL, 1091 clips, NULL, num_clips, increment, 1092 true, true, NULL); 1093 break; 1094 case vmw_du_screen_object: 1095 ret = vmw_kms_sou_do_bo_dirty(dev_priv, &vfbd->base, 1096 clips, NULL, num_clips, 1097 increment, true, NULL, NULL); 1098 break; 1099 case vmw_du_legacy: 1100 ret = vmw_kms_ldu_do_bo_dirty(dev_priv, &vfbd->base, 0, 0, 1101 clips, num_clips, increment); 1102 break; 1103 default: 1104 ret = -EINVAL; 1105 WARN_ONCE(true, "Dirty called with invalid display system.\n"); 1106 break; 1107 } 1108 1109 vmw_fifo_flush(dev_priv, false); 1110 ttm_read_unlock(&dev_priv->reservation_sem); 1111 1112 drm_modeset_unlock_all(dev_priv->dev); 1113 1114 return ret; 1115 } 1116 1117 static const struct drm_framebuffer_funcs vmw_framebuffer_bo_funcs = { 1118 .destroy = vmw_framebuffer_bo_destroy, 1119 .dirty = vmw_framebuffer_bo_dirty, 1120 }; 1121 1122 /** 1123 * Pin the bofer in a location suitable for access by the 1124 * display system. 1125 */ 1126 static int vmw_framebuffer_pin(struct vmw_framebuffer *vfb) 1127 { 1128 struct vmw_private *dev_priv = vmw_priv(vfb->base.dev); 1129 struct vmw_buffer_object *buf; 1130 struct ttm_placement *placement; 1131 int ret; 1132 1133 buf = vfb->bo ? vmw_framebuffer_to_vfbd(&vfb->base)->buffer : 1134 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup; 1135 1136 if (!buf) 1137 return 0; 1138 1139 switch (dev_priv->active_display_unit) { 1140 case vmw_du_legacy: 1141 vmw_overlay_pause_all(dev_priv); 1142 ret = vmw_bo_pin_in_start_of_vram(dev_priv, buf, false); 1143 vmw_overlay_resume_all(dev_priv); 1144 break; 1145 case vmw_du_screen_object: 1146 case vmw_du_screen_target: 1147 if (vfb->bo) { 1148 if (dev_priv->capabilities & SVGA_CAP_3D) { 1149 /* 1150 * Use surface DMA to get content to 1151 * sreen target surface. 1152 */ 1153 placement = &vmw_vram_gmr_placement; 1154 } else { 1155 /* Use CPU blit. */ 1156 placement = &vmw_sys_placement; 1157 } 1158 } else { 1159 /* Use surface / image update */ 1160 placement = &vmw_mob_placement; 1161 } 1162 1163 return vmw_bo_pin_in_placement(dev_priv, buf, placement, false); 1164 default: 1165 return -EINVAL; 1166 } 1167 1168 return ret; 1169 } 1170 1171 static int vmw_framebuffer_unpin(struct vmw_framebuffer *vfb) 1172 { 1173 struct vmw_private *dev_priv = vmw_priv(vfb->base.dev); 1174 struct vmw_buffer_object *buf; 1175 1176 buf = vfb->bo ? vmw_framebuffer_to_vfbd(&vfb->base)->buffer : 1177 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup; 1178 1179 if (WARN_ON(!buf)) 1180 return 0; 1181 1182 return vmw_bo_unpin(dev_priv, buf, false); 1183 } 1184 1185 /** 1186 * vmw_create_bo_proxy - create a proxy surface for the buffer object 1187 * 1188 * @dev: DRM device 1189 * @mode_cmd: parameters for the new surface 1190 * @bo_mob: MOB backing the buffer object 1191 * @srf_out: newly created surface 1192 * 1193 * When the content FB is a buffer object, we create a surface as a proxy to the 1194 * same buffer. This way we can do a surface copy rather than a surface DMA. 1195 * This is a more efficient approach 1196 * 1197 * RETURNS: 1198 * 0 on success, error code otherwise 1199 */ 1200 static int vmw_create_bo_proxy(struct drm_device *dev, 1201 const struct drm_mode_fb_cmd2 *mode_cmd, 1202 struct vmw_buffer_object *bo_mob, 1203 struct vmw_surface **srf_out) 1204 { 1205 uint32_t format; 1206 struct drm_vmw_size content_base_size = {0}; 1207 struct vmw_resource *res; 1208 unsigned int bytes_pp; 1209 struct drm_format_name_buf format_name; 1210 int ret; 1211 1212 switch (mode_cmd->pixel_format) { 1213 case DRM_FORMAT_ARGB8888: 1214 case DRM_FORMAT_XRGB8888: 1215 format = SVGA3D_X8R8G8B8; 1216 bytes_pp = 4; 1217 break; 1218 1219 case DRM_FORMAT_RGB565: 1220 case DRM_FORMAT_XRGB1555: 1221 format = SVGA3D_R5G6B5; 1222 bytes_pp = 2; 1223 break; 1224 1225 case 8: 1226 format = SVGA3D_P8; 1227 bytes_pp = 1; 1228 break; 1229 1230 default: 1231 DRM_ERROR("Invalid framebuffer format %s\n", 1232 drm_get_format_name(mode_cmd->pixel_format, &format_name)); 1233 return -EINVAL; 1234 } 1235 1236 content_base_size.width = mode_cmd->pitches[0] / bytes_pp; 1237 content_base_size.height = mode_cmd->height; 1238 content_base_size.depth = 1; 1239 1240 ret = vmw_surface_gb_priv_define(dev, 1241 0, /* kernel visible only */ 1242 0, /* flags */ 1243 format, 1244 true, /* can be a scanout buffer */ 1245 1, /* num of mip levels */ 1246 0, 1247 0, 1248 content_base_size, 1249 SVGA3D_MS_PATTERN_NONE, 1250 SVGA3D_MS_QUALITY_NONE, 1251 srf_out); 1252 if (ret) { 1253 DRM_ERROR("Failed to allocate proxy content buffer\n"); 1254 return ret; 1255 } 1256 1257 res = &(*srf_out)->res; 1258 1259 /* Reserve and switch the backing mob. */ 1260 mutex_lock(&res->dev_priv->cmdbuf_mutex); 1261 (void) vmw_resource_reserve(res, false, true); 1262 vmw_bo_unreference(&res->backup); 1263 res->backup = vmw_bo_reference(bo_mob); 1264 res->backup_offset = 0; 1265 vmw_resource_unreserve(res, false, NULL, 0); 1266 mutex_unlock(&res->dev_priv->cmdbuf_mutex); 1267 1268 return 0; 1269 } 1270 1271 1272 1273 static int vmw_kms_new_framebuffer_bo(struct vmw_private *dev_priv, 1274 struct vmw_buffer_object *bo, 1275 struct vmw_framebuffer **out, 1276 const struct drm_mode_fb_cmd2 1277 *mode_cmd) 1278 1279 { 1280 struct drm_device *dev = dev_priv->dev; 1281 struct vmw_framebuffer_bo *vfbd; 1282 unsigned int requested_size; 1283 struct drm_format_name_buf format_name; 1284 int ret; 1285 1286 requested_size = mode_cmd->height * mode_cmd->pitches[0]; 1287 if (unlikely(requested_size > bo->base.num_pages * PAGE_SIZE)) { 1288 DRM_ERROR("Screen buffer object size is too small " 1289 "for requested mode.\n"); 1290 return -EINVAL; 1291 } 1292 1293 /* Limited framebuffer color depth support for screen objects */ 1294 if (dev_priv->active_display_unit == vmw_du_screen_object) { 1295 switch (mode_cmd->pixel_format) { 1296 case DRM_FORMAT_XRGB8888: 1297 case DRM_FORMAT_ARGB8888: 1298 break; 1299 case DRM_FORMAT_XRGB1555: 1300 case DRM_FORMAT_RGB565: 1301 break; 1302 default: 1303 DRM_ERROR("Invalid pixel format: %s\n", 1304 drm_get_format_name(mode_cmd->pixel_format, &format_name)); 1305 return -EINVAL; 1306 } 1307 } 1308 1309 vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL); 1310 if (!vfbd) { 1311 ret = -ENOMEM; 1312 goto out_err1; 1313 } 1314 1315 drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd); 1316 vfbd->base.bo = true; 1317 vfbd->buffer = vmw_bo_reference(bo); 1318 vfbd->base.user_handle = mode_cmd->handles[0]; 1319 *out = &vfbd->base; 1320 1321 ret = drm_framebuffer_init(dev, &vfbd->base.base, 1322 &vmw_framebuffer_bo_funcs); 1323 if (ret) 1324 goto out_err2; 1325 1326 return 0; 1327 1328 out_err2: 1329 vmw_bo_unreference(&bo); 1330 kfree(vfbd); 1331 out_err1: 1332 return ret; 1333 } 1334 1335 1336 /** 1337 * vmw_kms_srf_ok - check if a surface can be created 1338 * 1339 * @width: requested width 1340 * @height: requested height 1341 * 1342 * Surfaces need to be less than texture size 1343 */ 1344 static bool 1345 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height) 1346 { 1347 if (width > dev_priv->texture_max_width || 1348 height > dev_priv->texture_max_height) 1349 return false; 1350 1351 return true; 1352 } 1353 1354 /** 1355 * vmw_kms_new_framebuffer - Create a new framebuffer. 1356 * 1357 * @dev_priv: Pointer to device private struct. 1358 * @bo: Pointer to buffer object to wrap the kms framebuffer around. 1359 * Either @bo or @surface must be NULL. 1360 * @surface: Pointer to a surface to wrap the kms framebuffer around. 1361 * Either @bo or @surface must be NULL. 1362 * @only_2d: No presents will occur to this buffer object based framebuffer. 1363 * This helps the code to do some important optimizations. 1364 * @mode_cmd: Frame-buffer metadata. 1365 */ 1366 struct vmw_framebuffer * 1367 vmw_kms_new_framebuffer(struct vmw_private *dev_priv, 1368 struct vmw_buffer_object *bo, 1369 struct vmw_surface *surface, 1370 bool only_2d, 1371 const struct drm_mode_fb_cmd2 *mode_cmd) 1372 { 1373 struct vmw_framebuffer *vfb = NULL; 1374 bool is_bo_proxy = false; 1375 int ret; 1376 1377 /* 1378 * We cannot use the SurfaceDMA command in an non-accelerated VM, 1379 * therefore, wrap the buffer object in a surface so we can use the 1380 * SurfaceCopy command. 1381 */ 1382 if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height) && 1383 bo && only_2d && 1384 mode_cmd->width > 64 && /* Don't create a proxy for cursor */ 1385 dev_priv->active_display_unit == vmw_du_screen_target) { 1386 ret = vmw_create_bo_proxy(dev_priv->dev, mode_cmd, 1387 bo, &surface); 1388 if (ret) 1389 return ERR_PTR(ret); 1390 1391 is_bo_proxy = true; 1392 } 1393 1394 /* Create the new framebuffer depending one what we have */ 1395 if (surface) { 1396 ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb, 1397 mode_cmd, 1398 is_bo_proxy); 1399 1400 /* 1401 * vmw_create_bo_proxy() adds a reference that is no longer 1402 * needed 1403 */ 1404 if (is_bo_proxy) 1405 vmw_surface_unreference(&surface); 1406 } else if (bo) { 1407 ret = vmw_kms_new_framebuffer_bo(dev_priv, bo, &vfb, 1408 mode_cmd); 1409 } else { 1410 BUG(); 1411 } 1412 1413 if (ret) 1414 return ERR_PTR(ret); 1415 1416 vfb->pin = vmw_framebuffer_pin; 1417 vfb->unpin = vmw_framebuffer_unpin; 1418 1419 return vfb; 1420 } 1421 1422 /* 1423 * Generic Kernel modesetting functions 1424 */ 1425 1426 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev, 1427 struct drm_file *file_priv, 1428 const struct drm_mode_fb_cmd2 *mode_cmd) 1429 { 1430 struct vmw_private *dev_priv = vmw_priv(dev); 1431 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; 1432 struct vmw_framebuffer *vfb = NULL; 1433 struct vmw_surface *surface = NULL; 1434 struct vmw_buffer_object *bo = NULL; 1435 struct ttm_base_object *user_obj; 1436 int ret; 1437 1438 /* 1439 * Take a reference on the user object of the resource 1440 * backing the kms fb. This ensures that user-space handle 1441 * lookups on that resource will always work as long as 1442 * it's registered with a kms framebuffer. This is important, 1443 * since vmw_execbuf_process identifies resources in the 1444 * command stream using user-space handles. 1445 */ 1446 1447 user_obj = ttm_base_object_lookup(tfile, mode_cmd->handles[0]); 1448 if (unlikely(user_obj == NULL)) { 1449 DRM_ERROR("Could not locate requested kms frame buffer.\n"); 1450 return ERR_PTR(-ENOENT); 1451 } 1452 1453 /** 1454 * End conditioned code. 1455 */ 1456 1457 /* returns either a bo or surface */ 1458 ret = vmw_user_lookup_handle(dev_priv, tfile, 1459 mode_cmd->handles[0], 1460 &surface, &bo); 1461 if (ret) 1462 goto err_out; 1463 1464 1465 if (!bo && 1466 !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) { 1467 DRM_ERROR("Surface size cannot exceed %dx%d", 1468 dev_priv->texture_max_width, 1469 dev_priv->texture_max_height); 1470 goto err_out; 1471 } 1472 1473 1474 vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface, 1475 !(dev_priv->capabilities & SVGA_CAP_3D), 1476 mode_cmd); 1477 if (IS_ERR(vfb)) { 1478 ret = PTR_ERR(vfb); 1479 goto err_out; 1480 } 1481 1482 err_out: 1483 /* vmw_user_lookup_handle takes one ref so does new_fb */ 1484 if (bo) 1485 vmw_bo_unreference(&bo); 1486 if (surface) 1487 vmw_surface_unreference(&surface); 1488 1489 if (ret) { 1490 DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret); 1491 ttm_base_object_unref(&user_obj); 1492 return ERR_PTR(ret); 1493 } else 1494 vfb->user_obj = user_obj; 1495 1496 return &vfb->base; 1497 } 1498 1499 /** 1500 * vmw_kms_check_display_memory - Validates display memory required for a 1501 * topology 1502 * @dev: DRM device 1503 * @num_rects: number of drm_rect in rects 1504 * @rects: array of drm_rect representing the topology to validate indexed by 1505 * crtc index. 1506 * 1507 * Returns: 1508 * 0 on success otherwise negative error code 1509 */ 1510 static int vmw_kms_check_display_memory(struct drm_device *dev, 1511 uint32_t num_rects, 1512 struct drm_rect *rects) 1513 { 1514 struct vmw_private *dev_priv = vmw_priv(dev); 1515 struct drm_mode_config *mode_config = &dev->mode_config; 1516 struct drm_rect bounding_box = {0}; 1517 u64 total_pixels = 0, pixel_mem, bb_mem; 1518 int i; 1519 1520 for (i = 0; i < num_rects; i++) { 1521 /* 1522 * Currently this check is limiting the topology within max 1523 * texture/screentarget size. This should change in future when 1524 * user-space support multiple fb with topology. 1525 */ 1526 if (rects[i].x1 < 0 || rects[i].y1 < 0 || 1527 rects[i].x2 > mode_config->max_width || 1528 rects[i].y2 > mode_config->max_height) { 1529 DRM_ERROR("Invalid GUI layout.\n"); 1530 return -EINVAL; 1531 } 1532 1533 /* Bounding box upper left is at (0,0). */ 1534 if (rects[i].x2 > bounding_box.x2) 1535 bounding_box.x2 = rects[i].x2; 1536 1537 if (rects[i].y2 > bounding_box.y2) 1538 bounding_box.y2 = rects[i].y2; 1539 1540 total_pixels += (u64) drm_rect_width(&rects[i]) * 1541 (u64) drm_rect_height(&rects[i]); 1542 } 1543 1544 /* Virtual svga device primary limits are always in 32-bpp. */ 1545 pixel_mem = total_pixels * 4; 1546 1547 /* 1548 * For HV10 and below prim_bb_mem is vram size. When 1549 * SVGA_REG_MAX_PRIMARY_BOUNDING_BOX_MEM is not present vram size is 1550 * limit on primary bounding box 1551 */ 1552 if (pixel_mem > dev_priv->prim_bb_mem) { 1553 DRM_ERROR("Combined output size too large.\n"); 1554 return -EINVAL; 1555 } 1556 1557 /* SVGA_CAP_NO_BB_RESTRICTION is available for STDU only. */ 1558 if (dev_priv->active_display_unit != vmw_du_screen_target || 1559 !(dev_priv->capabilities & SVGA_CAP_NO_BB_RESTRICTION)) { 1560 bb_mem = (u64) bounding_box.x2 * bounding_box.y2 * 4; 1561 1562 if (bb_mem > dev_priv->prim_bb_mem) { 1563 DRM_ERROR("Topology is beyond supported limits.\n"); 1564 return -EINVAL; 1565 } 1566 } 1567 1568 return 0; 1569 } 1570 1571 /** 1572 * vmw_kms_check_topology - Validates topology in drm_atomic_state 1573 * @dev: DRM device 1574 * @state: the driver state object 1575 * 1576 * Returns: 1577 * 0 on success otherwise negative error code 1578 */ 1579 static int vmw_kms_check_topology(struct drm_device *dev, 1580 struct drm_atomic_state *state) 1581 { 1582 struct vmw_private *dev_priv = vmw_priv(dev); 1583 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 1584 struct drm_rect *rects; 1585 struct drm_crtc *crtc; 1586 uint32_t i; 1587 int ret = 0; 1588 1589 rects = kcalloc(dev->mode_config.num_crtc, sizeof(struct drm_rect), 1590 GFP_KERNEL); 1591 if (!rects) 1592 return -ENOMEM; 1593 1594 mutex_lock(&dev_priv->requested_layout_mutex); 1595 1596 drm_for_each_crtc(crtc, dev) { 1597 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 1598 struct drm_crtc_state *crtc_state = crtc->state; 1599 1600 i = drm_crtc_index(crtc); 1601 1602 if (crtc_state && crtc_state->enable) { 1603 rects[i].x1 = du->gui_x; 1604 rects[i].y1 = du->gui_y; 1605 rects[i].x2 = du->gui_x + crtc_state->mode.hdisplay; 1606 rects[i].y2 = du->gui_y + crtc_state->mode.vdisplay; 1607 } 1608 } 1609 1610 /* Determine change to topology due to new atomic state */ 1611 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, 1612 new_crtc_state, i) { 1613 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 1614 struct drm_connector *connector; 1615 struct drm_connector_state *conn_state; 1616 struct vmw_connector_state *vmw_conn_state; 1617 1618 if (!new_crtc_state->enable && old_crtc_state->enable) { 1619 rects[i].x1 = 0; 1620 rects[i].y1 = 0; 1621 rects[i].x2 = 0; 1622 rects[i].y2 = 0; 1623 continue; 1624 } 1625 1626 if (!du->pref_active) { 1627 ret = -EINVAL; 1628 goto clean; 1629 } 1630 1631 /* 1632 * For vmwgfx each crtc has only one connector attached and it 1633 * is not changed so don't really need to check the 1634 * crtc->connector_mask and iterate over it. 1635 */ 1636 connector = &du->connector; 1637 conn_state = drm_atomic_get_connector_state(state, connector); 1638 if (IS_ERR(conn_state)) { 1639 ret = PTR_ERR(conn_state); 1640 goto clean; 1641 } 1642 1643 vmw_conn_state = vmw_connector_state_to_vcs(conn_state); 1644 vmw_conn_state->gui_x = du->gui_x; 1645 vmw_conn_state->gui_y = du->gui_y; 1646 1647 rects[i].x1 = du->gui_x; 1648 rects[i].y1 = du->gui_y; 1649 rects[i].x2 = du->gui_x + new_crtc_state->mode.hdisplay; 1650 rects[i].y2 = du->gui_y + new_crtc_state->mode.vdisplay; 1651 } 1652 1653 ret = vmw_kms_check_display_memory(dev, dev->mode_config.num_crtc, 1654 rects); 1655 1656 clean: 1657 mutex_unlock(&dev_priv->requested_layout_mutex); 1658 kfree(rects); 1659 return ret; 1660 } 1661 1662 /** 1663 * vmw_kms_atomic_check_modeset- validate state object for modeset changes 1664 * 1665 * @dev: DRM device 1666 * @state: the driver state object 1667 * 1668 * This is a simple wrapper around drm_atomic_helper_check_modeset() for 1669 * us to assign a value to mode->crtc_clock so that 1670 * drm_calc_timestamping_constants() won't throw an error message 1671 * 1672 * Returns: 1673 * Zero for success or -errno 1674 */ 1675 static int 1676 vmw_kms_atomic_check_modeset(struct drm_device *dev, 1677 struct drm_atomic_state *state) 1678 { 1679 struct drm_crtc *crtc; 1680 struct drm_crtc_state *crtc_state; 1681 bool need_modeset = false; 1682 int i, ret; 1683 1684 ret = drm_atomic_helper_check(dev, state); 1685 if (ret) 1686 return ret; 1687 1688 if (!state->allow_modeset) 1689 return ret; 1690 1691 /* 1692 * Legacy path do not set allow_modeset properly like 1693 * @drm_atomic_helper_update_plane, This will result in unnecessary call 1694 * to vmw_kms_check_topology. So extra set of check. 1695 */ 1696 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 1697 if (drm_atomic_crtc_needs_modeset(crtc_state)) 1698 need_modeset = true; 1699 } 1700 1701 if (need_modeset) 1702 return vmw_kms_check_topology(dev, state); 1703 1704 return ret; 1705 } 1706 1707 static const struct drm_mode_config_funcs vmw_kms_funcs = { 1708 .fb_create = vmw_kms_fb_create, 1709 .atomic_check = vmw_kms_atomic_check_modeset, 1710 .atomic_commit = drm_atomic_helper_commit, 1711 }; 1712 1713 static int vmw_kms_generic_present(struct vmw_private *dev_priv, 1714 struct drm_file *file_priv, 1715 struct vmw_framebuffer *vfb, 1716 struct vmw_surface *surface, 1717 uint32_t sid, 1718 int32_t destX, int32_t destY, 1719 struct drm_vmw_rect *clips, 1720 uint32_t num_clips) 1721 { 1722 return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips, 1723 &surface->res, destX, destY, 1724 num_clips, 1, NULL, NULL); 1725 } 1726 1727 1728 int vmw_kms_present(struct vmw_private *dev_priv, 1729 struct drm_file *file_priv, 1730 struct vmw_framebuffer *vfb, 1731 struct vmw_surface *surface, 1732 uint32_t sid, 1733 int32_t destX, int32_t destY, 1734 struct drm_vmw_rect *clips, 1735 uint32_t num_clips) 1736 { 1737 int ret; 1738 1739 switch (dev_priv->active_display_unit) { 1740 case vmw_du_screen_target: 1741 ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips, 1742 &surface->res, destX, destY, 1743 num_clips, 1, NULL, NULL); 1744 break; 1745 case vmw_du_screen_object: 1746 ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface, 1747 sid, destX, destY, clips, 1748 num_clips); 1749 break; 1750 default: 1751 WARN_ONCE(true, 1752 "Present called with invalid display system.\n"); 1753 ret = -ENOSYS; 1754 break; 1755 } 1756 if (ret) 1757 return ret; 1758 1759 vmw_fifo_flush(dev_priv, false); 1760 1761 return 0; 1762 } 1763 1764 static void 1765 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv) 1766 { 1767 if (dev_priv->hotplug_mode_update_property) 1768 return; 1769 1770 dev_priv->hotplug_mode_update_property = 1771 drm_property_create_range(dev_priv->dev, 1772 DRM_MODE_PROP_IMMUTABLE, 1773 "hotplug_mode_update", 0, 1); 1774 1775 if (!dev_priv->hotplug_mode_update_property) 1776 return; 1777 1778 } 1779 1780 int vmw_kms_init(struct vmw_private *dev_priv) 1781 { 1782 struct drm_device *dev = dev_priv->dev; 1783 int ret; 1784 1785 drm_mode_config_init(dev); 1786 dev->mode_config.funcs = &vmw_kms_funcs; 1787 dev->mode_config.min_width = 1; 1788 dev->mode_config.min_height = 1; 1789 dev->mode_config.max_width = dev_priv->texture_max_width; 1790 dev->mode_config.max_height = dev_priv->texture_max_height; 1791 1792 drm_mode_create_suggested_offset_properties(dev); 1793 vmw_kms_create_hotplug_mode_update_property(dev_priv); 1794 1795 ret = vmw_kms_stdu_init_display(dev_priv); 1796 if (ret) { 1797 ret = vmw_kms_sou_init_display(dev_priv); 1798 if (ret) /* Fallback */ 1799 ret = vmw_kms_ldu_init_display(dev_priv); 1800 } 1801 1802 return ret; 1803 } 1804 1805 int vmw_kms_close(struct vmw_private *dev_priv) 1806 { 1807 int ret = 0; 1808 1809 /* 1810 * Docs says we should take the lock before calling this function 1811 * but since it destroys encoders and our destructor calls 1812 * drm_encoder_cleanup which takes the lock we deadlock. 1813 */ 1814 drm_mode_config_cleanup(dev_priv->dev); 1815 if (dev_priv->active_display_unit == vmw_du_legacy) 1816 ret = vmw_kms_ldu_close_display(dev_priv); 1817 1818 return ret; 1819 } 1820 1821 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data, 1822 struct drm_file *file_priv) 1823 { 1824 struct drm_vmw_cursor_bypass_arg *arg = data; 1825 struct vmw_display_unit *du; 1826 struct drm_crtc *crtc; 1827 int ret = 0; 1828 1829 1830 mutex_lock(&dev->mode_config.mutex); 1831 if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) { 1832 1833 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 1834 du = vmw_crtc_to_du(crtc); 1835 du->hotspot_x = arg->xhot; 1836 du->hotspot_y = arg->yhot; 1837 } 1838 1839 mutex_unlock(&dev->mode_config.mutex); 1840 return 0; 1841 } 1842 1843 crtc = drm_crtc_find(dev, file_priv, arg->crtc_id); 1844 if (!crtc) { 1845 ret = -ENOENT; 1846 goto out; 1847 } 1848 1849 du = vmw_crtc_to_du(crtc); 1850 1851 du->hotspot_x = arg->xhot; 1852 du->hotspot_y = arg->yhot; 1853 1854 out: 1855 mutex_unlock(&dev->mode_config.mutex); 1856 1857 return ret; 1858 } 1859 1860 int vmw_kms_write_svga(struct vmw_private *vmw_priv, 1861 unsigned width, unsigned height, unsigned pitch, 1862 unsigned bpp, unsigned depth) 1863 { 1864 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK) 1865 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch); 1866 else if (vmw_fifo_have_pitchlock(vmw_priv)) 1867 vmw_mmio_write(pitch, vmw_priv->mmio_virt + 1868 SVGA_FIFO_PITCHLOCK); 1869 vmw_write(vmw_priv, SVGA_REG_WIDTH, width); 1870 vmw_write(vmw_priv, SVGA_REG_HEIGHT, height); 1871 vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp); 1872 1873 if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) { 1874 DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n", 1875 depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH)); 1876 return -EINVAL; 1877 } 1878 1879 return 0; 1880 } 1881 1882 int vmw_kms_save_vga(struct vmw_private *vmw_priv) 1883 { 1884 struct vmw_vga_topology_state *save; 1885 uint32_t i; 1886 1887 vmw_priv->vga_width = vmw_read(vmw_priv, SVGA_REG_WIDTH); 1888 vmw_priv->vga_height = vmw_read(vmw_priv, SVGA_REG_HEIGHT); 1889 vmw_priv->vga_bpp = vmw_read(vmw_priv, SVGA_REG_BITS_PER_PIXEL); 1890 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK) 1891 vmw_priv->vga_pitchlock = 1892 vmw_read(vmw_priv, SVGA_REG_PITCHLOCK); 1893 else if (vmw_fifo_have_pitchlock(vmw_priv)) 1894 vmw_priv->vga_pitchlock = vmw_mmio_read(vmw_priv->mmio_virt + 1895 SVGA_FIFO_PITCHLOCK); 1896 1897 if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY)) 1898 return 0; 1899 1900 vmw_priv->num_displays = vmw_read(vmw_priv, 1901 SVGA_REG_NUM_GUEST_DISPLAYS); 1902 1903 if (vmw_priv->num_displays == 0) 1904 vmw_priv->num_displays = 1; 1905 1906 for (i = 0; i < vmw_priv->num_displays; ++i) { 1907 save = &vmw_priv->vga_save[i]; 1908 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i); 1909 save->primary = vmw_read(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY); 1910 save->pos_x = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_X); 1911 save->pos_y = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y); 1912 save->width = vmw_read(vmw_priv, SVGA_REG_DISPLAY_WIDTH); 1913 save->height = vmw_read(vmw_priv, SVGA_REG_DISPLAY_HEIGHT); 1914 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID); 1915 if (i == 0 && vmw_priv->num_displays == 1 && 1916 save->width == 0 && save->height == 0) { 1917 1918 /* 1919 * It should be fairly safe to assume that these 1920 * values are uninitialized. 1921 */ 1922 1923 save->width = vmw_priv->vga_width - save->pos_x; 1924 save->height = vmw_priv->vga_height - save->pos_y; 1925 } 1926 } 1927 1928 return 0; 1929 } 1930 1931 int vmw_kms_restore_vga(struct vmw_private *vmw_priv) 1932 { 1933 struct vmw_vga_topology_state *save; 1934 uint32_t i; 1935 1936 vmw_write(vmw_priv, SVGA_REG_WIDTH, vmw_priv->vga_width); 1937 vmw_write(vmw_priv, SVGA_REG_HEIGHT, vmw_priv->vga_height); 1938 vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, vmw_priv->vga_bpp); 1939 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK) 1940 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, 1941 vmw_priv->vga_pitchlock); 1942 else if (vmw_fifo_have_pitchlock(vmw_priv)) 1943 vmw_mmio_write(vmw_priv->vga_pitchlock, 1944 vmw_priv->mmio_virt + SVGA_FIFO_PITCHLOCK); 1945 1946 if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY)) 1947 return 0; 1948 1949 for (i = 0; i < vmw_priv->num_displays; ++i) { 1950 save = &vmw_priv->vga_save[i]; 1951 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i); 1952 vmw_write(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY, save->primary); 1953 vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_X, save->pos_x); 1954 vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y, save->pos_y); 1955 vmw_write(vmw_priv, SVGA_REG_DISPLAY_WIDTH, save->width); 1956 vmw_write(vmw_priv, SVGA_REG_DISPLAY_HEIGHT, save->height); 1957 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID); 1958 } 1959 1960 return 0; 1961 } 1962 1963 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv, 1964 uint32_t pitch, 1965 uint32_t height) 1966 { 1967 return ((u64) pitch * (u64) height) < (u64) 1968 ((dev_priv->active_display_unit == vmw_du_screen_target) ? 1969 dev_priv->prim_bb_mem : dev_priv->vram_size); 1970 } 1971 1972 1973 /** 1974 * Function called by DRM code called with vbl_lock held. 1975 */ 1976 u32 vmw_get_vblank_counter(struct drm_device *dev, unsigned int pipe) 1977 { 1978 return 0; 1979 } 1980 1981 /** 1982 * Function called by DRM code called with vbl_lock held. 1983 */ 1984 int vmw_enable_vblank(struct drm_device *dev, unsigned int pipe) 1985 { 1986 return -EINVAL; 1987 } 1988 1989 /** 1990 * Function called by DRM code called with vbl_lock held. 1991 */ 1992 void vmw_disable_vblank(struct drm_device *dev, unsigned int pipe) 1993 { 1994 } 1995 1996 /** 1997 * vmw_du_update_layout - Update the display unit with topology from resolution 1998 * plugin and generate DRM uevent 1999 * @dev_priv: device private 2000 * @num_rects: number of drm_rect in rects 2001 * @rects: toplogy to update 2002 */ 2003 static int vmw_du_update_layout(struct vmw_private *dev_priv, 2004 unsigned int num_rects, struct drm_rect *rects) 2005 { 2006 struct drm_device *dev = dev_priv->dev; 2007 struct vmw_display_unit *du; 2008 struct drm_connector *con; 2009 struct drm_connector_list_iter conn_iter; 2010 2011 /* 2012 * Currently only gui_x/y is protected with requested_layout_mutex. 2013 */ 2014 mutex_lock(&dev_priv->requested_layout_mutex); 2015 drm_connector_list_iter_begin(dev, &conn_iter); 2016 drm_for_each_connector_iter(con, &conn_iter) { 2017 du = vmw_connector_to_du(con); 2018 if (num_rects > du->unit) { 2019 du->pref_width = drm_rect_width(&rects[du->unit]); 2020 du->pref_height = drm_rect_height(&rects[du->unit]); 2021 du->pref_active = true; 2022 du->gui_x = rects[du->unit].x1; 2023 du->gui_y = rects[du->unit].y1; 2024 } else { 2025 du->pref_width = 800; 2026 du->pref_height = 600; 2027 du->pref_active = false; 2028 du->gui_x = 0; 2029 du->gui_y = 0; 2030 } 2031 } 2032 drm_connector_list_iter_end(&conn_iter); 2033 mutex_unlock(&dev_priv->requested_layout_mutex); 2034 2035 mutex_lock(&dev->mode_config.mutex); 2036 list_for_each_entry(con, &dev->mode_config.connector_list, head) { 2037 du = vmw_connector_to_du(con); 2038 if (num_rects > du->unit) { 2039 drm_object_property_set_value 2040 (&con->base, dev->mode_config.suggested_x_property, 2041 du->gui_x); 2042 drm_object_property_set_value 2043 (&con->base, dev->mode_config.suggested_y_property, 2044 du->gui_y); 2045 } else { 2046 drm_object_property_set_value 2047 (&con->base, dev->mode_config.suggested_x_property, 2048 0); 2049 drm_object_property_set_value 2050 (&con->base, dev->mode_config.suggested_y_property, 2051 0); 2052 } 2053 con->status = vmw_du_connector_detect(con, true); 2054 } 2055 mutex_unlock(&dev->mode_config.mutex); 2056 2057 drm_sysfs_hotplug_event(dev); 2058 2059 return 0; 2060 } 2061 2062 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc, 2063 u16 *r, u16 *g, u16 *b, 2064 uint32_t size, 2065 struct drm_modeset_acquire_ctx *ctx) 2066 { 2067 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 2068 int i; 2069 2070 for (i = 0; i < size; i++) { 2071 DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i, 2072 r[i], g[i], b[i]); 2073 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8); 2074 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8); 2075 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8); 2076 } 2077 2078 return 0; 2079 } 2080 2081 int vmw_du_connector_dpms(struct drm_connector *connector, int mode) 2082 { 2083 return 0; 2084 } 2085 2086 enum drm_connector_status 2087 vmw_du_connector_detect(struct drm_connector *connector, bool force) 2088 { 2089 uint32_t num_displays; 2090 struct drm_device *dev = connector->dev; 2091 struct vmw_private *dev_priv = vmw_priv(dev); 2092 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2093 2094 num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS); 2095 2096 return ((vmw_connector_to_du(connector)->unit < num_displays && 2097 du->pref_active) ? 2098 connector_status_connected : connector_status_disconnected); 2099 } 2100 2101 static struct drm_display_mode vmw_kms_connector_builtin[] = { 2102 /* 640x480@60Hz */ 2103 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656, 2104 752, 800, 0, 480, 489, 492, 525, 0, 2105 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 2106 /* 800x600@60Hz */ 2107 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840, 2108 968, 1056, 0, 600, 601, 605, 628, 0, 2109 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2110 /* 1024x768@60Hz */ 2111 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048, 2112 1184, 1344, 0, 768, 771, 777, 806, 0, 2113 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 2114 /* 1152x864@75Hz */ 2115 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216, 2116 1344, 1600, 0, 864, 865, 868, 900, 0, 2117 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2118 /* 1280x768@60Hz */ 2119 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344, 2120 1472, 1664, 0, 768, 771, 778, 798, 0, 2121 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2122 /* 1280x800@60Hz */ 2123 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352, 2124 1480, 1680, 0, 800, 803, 809, 831, 0, 2125 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 2126 /* 1280x960@60Hz */ 2127 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376, 2128 1488, 1800, 0, 960, 961, 964, 1000, 0, 2129 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2130 /* 1280x1024@60Hz */ 2131 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328, 2132 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, 2133 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2134 /* 1360x768@60Hz */ 2135 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424, 2136 1536, 1792, 0, 768, 771, 777, 795, 0, 2137 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2138 /* 1440x1050@60Hz */ 2139 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488, 2140 1632, 1864, 0, 1050, 1053, 1057, 1089, 0, 2141 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2142 /* 1440x900@60Hz */ 2143 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520, 2144 1672, 1904, 0, 900, 903, 909, 934, 0, 2145 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2146 /* 1600x1200@60Hz */ 2147 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664, 2148 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 2149 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2150 /* 1680x1050@60Hz */ 2151 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784, 2152 1960, 2240, 0, 1050, 1053, 1059, 1089, 0, 2153 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2154 /* 1792x1344@60Hz */ 2155 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920, 2156 2120, 2448, 0, 1344, 1345, 1348, 1394, 0, 2157 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2158 /* 1853x1392@60Hz */ 2159 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952, 2160 2176, 2528, 0, 1392, 1393, 1396, 1439, 0, 2161 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2162 /* 1920x1200@60Hz */ 2163 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056, 2164 2256, 2592, 0, 1200, 1203, 1209, 1245, 0, 2165 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2166 /* 1920x1440@60Hz */ 2167 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048, 2168 2256, 2600, 0, 1440, 1441, 1444, 1500, 0, 2169 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2170 /* 2560x1600@60Hz */ 2171 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752, 2172 3032, 3504, 0, 1600, 1603, 1609, 1658, 0, 2173 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2174 /* Terminate */ 2175 { DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) }, 2176 }; 2177 2178 /** 2179 * vmw_guess_mode_timing - Provide fake timings for a 2180 * 60Hz vrefresh mode. 2181 * 2182 * @mode - Pointer to a struct drm_display_mode with hdisplay and vdisplay 2183 * members filled in. 2184 */ 2185 void vmw_guess_mode_timing(struct drm_display_mode *mode) 2186 { 2187 mode->hsync_start = mode->hdisplay + 50; 2188 mode->hsync_end = mode->hsync_start + 50; 2189 mode->htotal = mode->hsync_end + 50; 2190 2191 mode->vsync_start = mode->vdisplay + 50; 2192 mode->vsync_end = mode->vsync_start + 50; 2193 mode->vtotal = mode->vsync_end + 50; 2194 2195 mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6; 2196 mode->vrefresh = drm_mode_vrefresh(mode); 2197 } 2198 2199 2200 int vmw_du_connector_fill_modes(struct drm_connector *connector, 2201 uint32_t max_width, uint32_t max_height) 2202 { 2203 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2204 struct drm_device *dev = connector->dev; 2205 struct vmw_private *dev_priv = vmw_priv(dev); 2206 struct drm_display_mode *mode = NULL; 2207 struct drm_display_mode *bmode; 2208 struct drm_display_mode prefmode = { DRM_MODE("preferred", 2209 DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED, 2210 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2211 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) 2212 }; 2213 int i; 2214 u32 assumed_bpp = 4; 2215 2216 if (dev_priv->assume_16bpp) 2217 assumed_bpp = 2; 2218 2219 if (dev_priv->active_display_unit == vmw_du_screen_target) { 2220 max_width = min(max_width, dev_priv->stdu_max_width); 2221 max_width = min(max_width, dev_priv->texture_max_width); 2222 2223 max_height = min(max_height, dev_priv->stdu_max_height); 2224 max_height = min(max_height, dev_priv->texture_max_height); 2225 } 2226 2227 /* Add preferred mode */ 2228 mode = drm_mode_duplicate(dev, &prefmode); 2229 if (!mode) 2230 return 0; 2231 mode->hdisplay = du->pref_width; 2232 mode->vdisplay = du->pref_height; 2233 vmw_guess_mode_timing(mode); 2234 2235 if (vmw_kms_validate_mode_vram(dev_priv, 2236 mode->hdisplay * assumed_bpp, 2237 mode->vdisplay)) { 2238 drm_mode_probed_add(connector, mode); 2239 } else { 2240 drm_mode_destroy(dev, mode); 2241 mode = NULL; 2242 } 2243 2244 if (du->pref_mode) { 2245 list_del_init(&du->pref_mode->head); 2246 drm_mode_destroy(dev, du->pref_mode); 2247 } 2248 2249 /* mode might be null here, this is intended */ 2250 du->pref_mode = mode; 2251 2252 for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) { 2253 bmode = &vmw_kms_connector_builtin[i]; 2254 if (bmode->hdisplay > max_width || 2255 bmode->vdisplay > max_height) 2256 continue; 2257 2258 if (!vmw_kms_validate_mode_vram(dev_priv, 2259 bmode->hdisplay * assumed_bpp, 2260 bmode->vdisplay)) 2261 continue; 2262 2263 mode = drm_mode_duplicate(dev, bmode); 2264 if (!mode) 2265 return 0; 2266 mode->vrefresh = drm_mode_vrefresh(mode); 2267 2268 drm_mode_probed_add(connector, mode); 2269 } 2270 2271 drm_connector_list_update(connector); 2272 /* Move the prefered mode first, help apps pick the right mode. */ 2273 drm_mode_sort(&connector->modes); 2274 2275 return 1; 2276 } 2277 2278 int vmw_du_connector_set_property(struct drm_connector *connector, 2279 struct drm_property *property, 2280 uint64_t val) 2281 { 2282 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2283 struct vmw_private *dev_priv = vmw_priv(connector->dev); 2284 2285 if (property == dev_priv->implicit_placement_property) 2286 du->is_implicit = val; 2287 2288 return 0; 2289 } 2290 2291 2292 2293 /** 2294 * vmw_du_connector_atomic_set_property - Atomic version of get property 2295 * 2296 * @crtc - crtc the property is associated with 2297 * 2298 * Returns: 2299 * Zero on success, negative errno on failure. 2300 */ 2301 int 2302 vmw_du_connector_atomic_set_property(struct drm_connector *connector, 2303 struct drm_connector_state *state, 2304 struct drm_property *property, 2305 uint64_t val) 2306 { 2307 struct vmw_private *dev_priv = vmw_priv(connector->dev); 2308 struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state); 2309 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2310 2311 2312 if (property == dev_priv->implicit_placement_property) { 2313 vcs->is_implicit = val; 2314 2315 /* 2316 * We should really be doing a drm_atomic_commit() to 2317 * commit the new state, but since this doesn't cause 2318 * an immedate state change, this is probably ok 2319 */ 2320 du->is_implicit = vcs->is_implicit; 2321 } else { 2322 return -EINVAL; 2323 } 2324 2325 return 0; 2326 } 2327 2328 2329 /** 2330 * vmw_du_connector_atomic_get_property - Atomic version of get property 2331 * 2332 * @connector - connector the property is associated with 2333 * 2334 * Returns: 2335 * Zero on success, negative errno on failure. 2336 */ 2337 int 2338 vmw_du_connector_atomic_get_property(struct drm_connector *connector, 2339 const struct drm_connector_state *state, 2340 struct drm_property *property, 2341 uint64_t *val) 2342 { 2343 struct vmw_private *dev_priv = vmw_priv(connector->dev); 2344 struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state); 2345 2346 if (property == dev_priv->implicit_placement_property) 2347 *val = vcs->is_implicit; 2348 else { 2349 DRM_ERROR("Invalid Property %s\n", property->name); 2350 return -EINVAL; 2351 } 2352 2353 return 0; 2354 } 2355 2356 /** 2357 * vmw_kms_update_layout_ioctl - Handler for DRM_VMW_UPDATE_LAYOUT ioctl 2358 * @dev: drm device for the ioctl 2359 * @data: data pointer for the ioctl 2360 * @file_priv: drm file for the ioctl call 2361 * 2362 * Update preferred topology of display unit as per ioctl request. The topology 2363 * is expressed as array of drm_vmw_rect. 2364 * e.g. 2365 * [0 0 640 480] [640 0 800 600] [0 480 640 480] 2366 * 2367 * NOTE: 2368 * The x and y offset (upper left) in drm_vmw_rect cannot be less than 0. Beside 2369 * device limit on topology, x + w and y + h (lower right) cannot be greater 2370 * than INT_MAX. So topology beyond these limits will return with error. 2371 * 2372 * Returns: 2373 * Zero on success, negative errno on failure. 2374 */ 2375 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data, 2376 struct drm_file *file_priv) 2377 { 2378 struct vmw_private *dev_priv = vmw_priv(dev); 2379 struct drm_vmw_update_layout_arg *arg = 2380 (struct drm_vmw_update_layout_arg *)data; 2381 void __user *user_rects; 2382 struct drm_vmw_rect *rects; 2383 struct drm_rect *drm_rects; 2384 unsigned rects_size; 2385 int ret, i; 2386 2387 if (!arg->num_outputs) { 2388 struct drm_rect def_rect = {0, 0, 800, 600}; 2389 vmw_du_update_layout(dev_priv, 1, &def_rect); 2390 return 0; 2391 } 2392 2393 rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect); 2394 rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect), 2395 GFP_KERNEL); 2396 if (unlikely(!rects)) 2397 return -ENOMEM; 2398 2399 user_rects = (void __user *)(unsigned long)arg->rects; 2400 ret = copy_from_user(rects, user_rects, rects_size); 2401 if (unlikely(ret != 0)) { 2402 DRM_ERROR("Failed to get rects.\n"); 2403 ret = -EFAULT; 2404 goto out_free; 2405 } 2406 2407 drm_rects = (struct drm_rect *)rects; 2408 2409 for (i = 0; i < arg->num_outputs; i++) { 2410 struct drm_vmw_rect curr_rect; 2411 2412 /* Verify user-space for overflow as kernel use drm_rect */ 2413 if ((rects[i].x + rects[i].w > INT_MAX) || 2414 (rects[i].y + rects[i].h > INT_MAX)) { 2415 ret = -ERANGE; 2416 goto out_free; 2417 } 2418 2419 curr_rect = rects[i]; 2420 drm_rects[i].x1 = curr_rect.x; 2421 drm_rects[i].y1 = curr_rect.y; 2422 drm_rects[i].x2 = curr_rect.x + curr_rect.w; 2423 drm_rects[i].y2 = curr_rect.y + curr_rect.h; 2424 } 2425 2426 ret = vmw_kms_check_display_memory(dev, arg->num_outputs, drm_rects); 2427 2428 if (ret == 0) 2429 vmw_du_update_layout(dev_priv, arg->num_outputs, drm_rects); 2430 2431 out_free: 2432 kfree(rects); 2433 return ret; 2434 } 2435 2436 /** 2437 * vmw_kms_helper_dirty - Helper to build commands and perform actions based 2438 * on a set of cliprects and a set of display units. 2439 * 2440 * @dev_priv: Pointer to a device private structure. 2441 * @framebuffer: Pointer to the framebuffer on which to perform the actions. 2442 * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL. 2443 * Cliprects are given in framebuffer coordinates. 2444 * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must 2445 * be NULL. Cliprects are given in source coordinates. 2446 * @dest_x: X coordinate offset for the crtc / destination clip rects. 2447 * @dest_y: Y coordinate offset for the crtc / destination clip rects. 2448 * @num_clips: Number of cliprects in the @clips or @vclips array. 2449 * @increment: Integer with which to increment the clip counter when looping. 2450 * Used to skip a predetermined number of clip rects. 2451 * @dirty: Closure structure. See the description of struct vmw_kms_dirty. 2452 */ 2453 int vmw_kms_helper_dirty(struct vmw_private *dev_priv, 2454 struct vmw_framebuffer *framebuffer, 2455 const struct drm_clip_rect *clips, 2456 const struct drm_vmw_rect *vclips, 2457 s32 dest_x, s32 dest_y, 2458 int num_clips, 2459 int increment, 2460 struct vmw_kms_dirty *dirty) 2461 { 2462 struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS]; 2463 struct drm_crtc *crtc; 2464 u32 num_units = 0; 2465 u32 i, k; 2466 2467 dirty->dev_priv = dev_priv; 2468 2469 /* If crtc is passed, no need to iterate over other display units */ 2470 if (dirty->crtc) { 2471 units[num_units++] = vmw_crtc_to_du(dirty->crtc); 2472 } else { 2473 list_for_each_entry(crtc, &dev_priv->dev->mode_config.crtc_list, 2474 head) { 2475 struct drm_plane *plane = crtc->primary; 2476 2477 if (plane->state->fb == &framebuffer->base) 2478 units[num_units++] = vmw_crtc_to_du(crtc); 2479 } 2480 } 2481 2482 for (k = 0; k < num_units; k++) { 2483 struct vmw_display_unit *unit = units[k]; 2484 s32 crtc_x = unit->crtc.x; 2485 s32 crtc_y = unit->crtc.y; 2486 s32 crtc_width = unit->crtc.mode.hdisplay; 2487 s32 crtc_height = unit->crtc.mode.vdisplay; 2488 const struct drm_clip_rect *clips_ptr = clips; 2489 const struct drm_vmw_rect *vclips_ptr = vclips; 2490 2491 dirty->unit = unit; 2492 if (dirty->fifo_reserve_size > 0) { 2493 dirty->cmd = vmw_fifo_reserve(dev_priv, 2494 dirty->fifo_reserve_size); 2495 if (!dirty->cmd) { 2496 DRM_ERROR("Couldn't reserve fifo space " 2497 "for dirty blits.\n"); 2498 return -ENOMEM; 2499 } 2500 memset(dirty->cmd, 0, dirty->fifo_reserve_size); 2501 } 2502 dirty->num_hits = 0; 2503 for (i = 0; i < num_clips; i++, clips_ptr += increment, 2504 vclips_ptr += increment) { 2505 s32 clip_left; 2506 s32 clip_top; 2507 2508 /* 2509 * Select clip array type. Note that integer type 2510 * in @clips is unsigned short, whereas in @vclips 2511 * it's 32-bit. 2512 */ 2513 if (clips) { 2514 dirty->fb_x = (s32) clips_ptr->x1; 2515 dirty->fb_y = (s32) clips_ptr->y1; 2516 dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x - 2517 crtc_x; 2518 dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y - 2519 crtc_y; 2520 } else { 2521 dirty->fb_x = vclips_ptr->x; 2522 dirty->fb_y = vclips_ptr->y; 2523 dirty->unit_x2 = dirty->fb_x + vclips_ptr->w + 2524 dest_x - crtc_x; 2525 dirty->unit_y2 = dirty->fb_y + vclips_ptr->h + 2526 dest_y - crtc_y; 2527 } 2528 2529 dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x; 2530 dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y; 2531 2532 /* Skip this clip if it's outside the crtc region */ 2533 if (dirty->unit_x1 >= crtc_width || 2534 dirty->unit_y1 >= crtc_height || 2535 dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0) 2536 continue; 2537 2538 /* Clip right and bottom to crtc limits */ 2539 dirty->unit_x2 = min_t(s32, dirty->unit_x2, 2540 crtc_width); 2541 dirty->unit_y2 = min_t(s32, dirty->unit_y2, 2542 crtc_height); 2543 2544 /* Clip left and top to crtc limits */ 2545 clip_left = min_t(s32, dirty->unit_x1, 0); 2546 clip_top = min_t(s32, dirty->unit_y1, 0); 2547 dirty->unit_x1 -= clip_left; 2548 dirty->unit_y1 -= clip_top; 2549 dirty->fb_x -= clip_left; 2550 dirty->fb_y -= clip_top; 2551 2552 dirty->clip(dirty); 2553 } 2554 2555 dirty->fifo_commit(dirty); 2556 } 2557 2558 return 0; 2559 } 2560 2561 /** 2562 * vmw_kms_helper_buffer_prepare - Reserve and validate a buffer object before 2563 * command submission. 2564 * 2565 * @dev_priv. Pointer to a device private structure. 2566 * @buf: The buffer object 2567 * @interruptible: Whether to perform waits as interruptible. 2568 * @validate_as_mob: Whether the buffer should be validated as a MOB. If false, 2569 * The buffer will be validated as a GMR. Already pinned buffers will not be 2570 * validated. 2571 * 2572 * Returns 0 on success, negative error code on failure, -ERESTARTSYS if 2573 * interrupted by a signal. 2574 */ 2575 int vmw_kms_helper_buffer_prepare(struct vmw_private *dev_priv, 2576 struct vmw_buffer_object *buf, 2577 bool interruptible, 2578 bool validate_as_mob, 2579 bool for_cpu_blit) 2580 { 2581 struct ttm_operation_ctx ctx = { 2582 .interruptible = interruptible, 2583 .no_wait_gpu = false}; 2584 struct ttm_buffer_object *bo = &buf->base; 2585 int ret; 2586 2587 ttm_bo_reserve(bo, false, false, NULL); 2588 if (for_cpu_blit) 2589 ret = ttm_bo_validate(bo, &vmw_nonfixed_placement, &ctx); 2590 else 2591 ret = vmw_validate_single_buffer(dev_priv, bo, interruptible, 2592 validate_as_mob); 2593 if (ret) 2594 ttm_bo_unreserve(bo); 2595 2596 return ret; 2597 } 2598 2599 /** 2600 * vmw_kms_helper_buffer_revert - Undo the actions of 2601 * vmw_kms_helper_buffer_prepare. 2602 * 2603 * @res: Pointer to the buffer object. 2604 * 2605 * Helper to be used if an error forces the caller to undo the actions of 2606 * vmw_kms_helper_buffer_prepare. 2607 */ 2608 void vmw_kms_helper_buffer_revert(struct vmw_buffer_object *buf) 2609 { 2610 if (buf) 2611 ttm_bo_unreserve(&buf->base); 2612 } 2613 2614 /** 2615 * vmw_kms_helper_buffer_finish - Unreserve and fence a buffer object after 2616 * kms command submission. 2617 * 2618 * @dev_priv: Pointer to a device private structure. 2619 * @file_priv: Pointer to a struct drm_file representing the caller's 2620 * connection. Must be set to NULL if @user_fence_rep is NULL, and conversely 2621 * if non-NULL, @user_fence_rep must be non-NULL. 2622 * @buf: The buffer object. 2623 * @out_fence: Optional pointer to a fence pointer. If non-NULL, a 2624 * ref-counted fence pointer is returned here. 2625 * @user_fence_rep: Optional pointer to a user-space provided struct 2626 * drm_vmw_fence_rep. If provided, @file_priv must also be provided and the 2627 * function copies fence data to user-space in a fail-safe manner. 2628 */ 2629 void vmw_kms_helper_buffer_finish(struct vmw_private *dev_priv, 2630 struct drm_file *file_priv, 2631 struct vmw_buffer_object *buf, 2632 struct vmw_fence_obj **out_fence, 2633 struct drm_vmw_fence_rep __user * 2634 user_fence_rep) 2635 { 2636 struct vmw_fence_obj *fence; 2637 uint32_t handle; 2638 int ret; 2639 2640 ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence, 2641 file_priv ? &handle : NULL); 2642 if (buf) 2643 vmw_bo_fence_single(&buf->base, fence); 2644 if (file_priv) 2645 vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv), 2646 ret, user_fence_rep, fence, 2647 handle, -1, NULL); 2648 if (out_fence) 2649 *out_fence = fence; 2650 else 2651 vmw_fence_obj_unreference(&fence); 2652 2653 vmw_kms_helper_buffer_revert(buf); 2654 } 2655 2656 2657 /** 2658 * vmw_kms_helper_resource_revert - Undo the actions of 2659 * vmw_kms_helper_resource_prepare. 2660 * 2661 * @res: Pointer to the resource. Typically a surface. 2662 * 2663 * Helper to be used if an error forces the caller to undo the actions of 2664 * vmw_kms_helper_resource_prepare. 2665 */ 2666 void vmw_kms_helper_resource_revert(struct vmw_validation_ctx *ctx) 2667 { 2668 struct vmw_resource *res = ctx->res; 2669 2670 vmw_kms_helper_buffer_revert(ctx->buf); 2671 vmw_bo_unreference(&ctx->buf); 2672 vmw_resource_unreserve(res, false, NULL, 0); 2673 mutex_unlock(&res->dev_priv->cmdbuf_mutex); 2674 } 2675 2676 /** 2677 * vmw_kms_helper_resource_prepare - Reserve and validate a resource before 2678 * command submission. 2679 * 2680 * @res: Pointer to the resource. Typically a surface. 2681 * @interruptible: Whether to perform waits as interruptible. 2682 * 2683 * Reserves and validates also the backup buffer if a guest-backed resource. 2684 * Returns 0 on success, negative error code on failure. -ERESTARTSYS if 2685 * interrupted by a signal. 2686 */ 2687 int vmw_kms_helper_resource_prepare(struct vmw_resource *res, 2688 bool interruptible, 2689 struct vmw_validation_ctx *ctx) 2690 { 2691 int ret = 0; 2692 2693 ctx->buf = NULL; 2694 ctx->res = res; 2695 2696 if (interruptible) 2697 ret = mutex_lock_interruptible(&res->dev_priv->cmdbuf_mutex); 2698 else 2699 mutex_lock(&res->dev_priv->cmdbuf_mutex); 2700 2701 if (unlikely(ret != 0)) 2702 return -ERESTARTSYS; 2703 2704 ret = vmw_resource_reserve(res, interruptible, false); 2705 if (ret) 2706 goto out_unlock; 2707 2708 if (res->backup) { 2709 ret = vmw_kms_helper_buffer_prepare(res->dev_priv, res->backup, 2710 interruptible, 2711 res->dev_priv->has_mob, 2712 false); 2713 if (ret) 2714 goto out_unreserve; 2715 2716 ctx->buf = vmw_bo_reference(res->backup); 2717 } 2718 ret = vmw_resource_validate(res); 2719 if (ret) 2720 goto out_revert; 2721 return 0; 2722 2723 out_revert: 2724 vmw_kms_helper_buffer_revert(ctx->buf); 2725 out_unreserve: 2726 vmw_resource_unreserve(res, false, NULL, 0); 2727 out_unlock: 2728 mutex_unlock(&res->dev_priv->cmdbuf_mutex); 2729 return ret; 2730 } 2731 2732 /** 2733 * vmw_kms_helper_resource_finish - Unreserve and fence a resource after 2734 * kms command submission. 2735 * 2736 * @res: Pointer to the resource. Typically a surface. 2737 * @out_fence: Optional pointer to a fence pointer. If non-NULL, a 2738 * ref-counted fence pointer is returned here. 2739 */ 2740 void vmw_kms_helper_resource_finish(struct vmw_validation_ctx *ctx, 2741 struct vmw_fence_obj **out_fence) 2742 { 2743 struct vmw_resource *res = ctx->res; 2744 2745 if (ctx->buf || out_fence) 2746 vmw_kms_helper_buffer_finish(res->dev_priv, NULL, ctx->buf, 2747 out_fence, NULL); 2748 2749 vmw_bo_unreference(&ctx->buf); 2750 vmw_resource_unreserve(res, false, NULL, 0); 2751 mutex_unlock(&res->dev_priv->cmdbuf_mutex); 2752 } 2753 2754 /** 2755 * vmw_kms_update_proxy - Helper function to update a proxy surface from 2756 * its backing MOB. 2757 * 2758 * @res: Pointer to the surface resource 2759 * @clips: Clip rects in framebuffer (surface) space. 2760 * @num_clips: Number of clips in @clips. 2761 * @increment: Integer with which to increment the clip counter when looping. 2762 * Used to skip a predetermined number of clip rects. 2763 * 2764 * This function makes sure the proxy surface is updated from its backing MOB 2765 * using the region given by @clips. The surface resource @res and its backing 2766 * MOB needs to be reserved and validated on call. 2767 */ 2768 int vmw_kms_update_proxy(struct vmw_resource *res, 2769 const struct drm_clip_rect *clips, 2770 unsigned num_clips, 2771 int increment) 2772 { 2773 struct vmw_private *dev_priv = res->dev_priv; 2774 struct drm_vmw_size *size = &vmw_res_to_srf(res)->base_size; 2775 struct { 2776 SVGA3dCmdHeader header; 2777 SVGA3dCmdUpdateGBImage body; 2778 } *cmd; 2779 SVGA3dBox *box; 2780 size_t copy_size = 0; 2781 int i; 2782 2783 if (!clips) 2784 return 0; 2785 2786 cmd = vmw_fifo_reserve(dev_priv, sizeof(*cmd) * num_clips); 2787 if (!cmd) { 2788 DRM_ERROR("Couldn't reserve fifo space for proxy surface " 2789 "update.\n"); 2790 return -ENOMEM; 2791 } 2792 2793 for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) { 2794 box = &cmd->body.box; 2795 2796 cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE; 2797 cmd->header.size = sizeof(cmd->body); 2798 cmd->body.image.sid = res->id; 2799 cmd->body.image.face = 0; 2800 cmd->body.image.mipmap = 0; 2801 2802 if (clips->x1 > size->width || clips->x2 > size->width || 2803 clips->y1 > size->height || clips->y2 > size->height) { 2804 DRM_ERROR("Invalid clips outsize of framebuffer.\n"); 2805 return -EINVAL; 2806 } 2807 2808 box->x = clips->x1; 2809 box->y = clips->y1; 2810 box->z = 0; 2811 box->w = clips->x2 - clips->x1; 2812 box->h = clips->y2 - clips->y1; 2813 box->d = 1; 2814 2815 copy_size += sizeof(*cmd); 2816 } 2817 2818 vmw_fifo_commit(dev_priv, copy_size); 2819 2820 return 0; 2821 } 2822 2823 int vmw_kms_fbdev_init_data(struct vmw_private *dev_priv, 2824 unsigned unit, 2825 u32 max_width, 2826 u32 max_height, 2827 struct drm_connector **p_con, 2828 struct drm_crtc **p_crtc, 2829 struct drm_display_mode **p_mode) 2830 { 2831 struct drm_connector *con; 2832 struct vmw_display_unit *du; 2833 struct drm_display_mode *mode; 2834 int i = 0; 2835 int ret = 0; 2836 2837 mutex_lock(&dev_priv->dev->mode_config.mutex); 2838 list_for_each_entry(con, &dev_priv->dev->mode_config.connector_list, 2839 head) { 2840 if (i == unit) 2841 break; 2842 2843 ++i; 2844 } 2845 2846 if (i != unit) { 2847 DRM_ERROR("Could not find initial display unit.\n"); 2848 ret = -EINVAL; 2849 goto out_unlock; 2850 } 2851 2852 if (list_empty(&con->modes)) 2853 (void) vmw_du_connector_fill_modes(con, max_width, max_height); 2854 2855 if (list_empty(&con->modes)) { 2856 DRM_ERROR("Could not find initial display mode.\n"); 2857 ret = -EINVAL; 2858 goto out_unlock; 2859 } 2860 2861 du = vmw_connector_to_du(con); 2862 *p_con = con; 2863 *p_crtc = &du->crtc; 2864 2865 list_for_each_entry(mode, &con->modes, head) { 2866 if (mode->type & DRM_MODE_TYPE_PREFERRED) 2867 break; 2868 } 2869 2870 if (mode->type & DRM_MODE_TYPE_PREFERRED) 2871 *p_mode = mode; 2872 else { 2873 WARN_ONCE(true, "Could not find initial preferred mode.\n"); 2874 *p_mode = list_first_entry(&con->modes, 2875 struct drm_display_mode, 2876 head); 2877 } 2878 2879 out_unlock: 2880 mutex_unlock(&dev_priv->dev->mode_config.mutex); 2881 2882 return ret; 2883 } 2884 2885 /** 2886 * vmw_kms_del_active - unregister a crtc binding to the implicit framebuffer 2887 * 2888 * @dev_priv: Pointer to a device private struct. 2889 * @du: The display unit of the crtc. 2890 */ 2891 void vmw_kms_del_active(struct vmw_private *dev_priv, 2892 struct vmw_display_unit *du) 2893 { 2894 mutex_lock(&dev_priv->global_kms_state_mutex); 2895 if (du->active_implicit) { 2896 if (--(dev_priv->num_implicit) == 0) 2897 dev_priv->implicit_fb = NULL; 2898 du->active_implicit = false; 2899 } 2900 mutex_unlock(&dev_priv->global_kms_state_mutex); 2901 } 2902 2903 /** 2904 * vmw_kms_add_active - register a crtc binding to an implicit framebuffer 2905 * 2906 * @vmw_priv: Pointer to a device private struct. 2907 * @du: The display unit of the crtc. 2908 * @vfb: The implicit framebuffer 2909 * 2910 * Registers a binding to an implicit framebuffer. 2911 */ 2912 void vmw_kms_add_active(struct vmw_private *dev_priv, 2913 struct vmw_display_unit *du, 2914 struct vmw_framebuffer *vfb) 2915 { 2916 mutex_lock(&dev_priv->global_kms_state_mutex); 2917 WARN_ON_ONCE(!dev_priv->num_implicit && dev_priv->implicit_fb); 2918 2919 if (!du->active_implicit && du->is_implicit) { 2920 dev_priv->implicit_fb = vfb; 2921 du->active_implicit = true; 2922 dev_priv->num_implicit++; 2923 } 2924 mutex_unlock(&dev_priv->global_kms_state_mutex); 2925 } 2926 2927 /** 2928 * vmw_kms_screen_object_flippable - Check whether we can page-flip a crtc. 2929 * 2930 * @dev_priv: Pointer to device-private struct. 2931 * @crtc: The crtc we want to flip. 2932 * 2933 * Returns true or false depending whether it's OK to flip this crtc 2934 * based on the criterion that we must not have more than one implicit 2935 * frame-buffer at any one time. 2936 */ 2937 bool vmw_kms_crtc_flippable(struct vmw_private *dev_priv, 2938 struct drm_crtc *crtc) 2939 { 2940 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 2941 bool ret; 2942 2943 mutex_lock(&dev_priv->global_kms_state_mutex); 2944 ret = !du->is_implicit || dev_priv->num_implicit == 1; 2945 mutex_unlock(&dev_priv->global_kms_state_mutex); 2946 2947 return ret; 2948 } 2949 2950 /** 2951 * vmw_kms_update_implicit_fb - Update the implicit fb. 2952 * 2953 * @dev_priv: Pointer to device-private struct. 2954 * @crtc: The crtc the new implicit frame-buffer is bound to. 2955 */ 2956 void vmw_kms_update_implicit_fb(struct vmw_private *dev_priv, 2957 struct drm_crtc *crtc) 2958 { 2959 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 2960 struct drm_plane *plane = crtc->primary; 2961 struct vmw_framebuffer *vfb; 2962 2963 mutex_lock(&dev_priv->global_kms_state_mutex); 2964 2965 if (!du->is_implicit) 2966 goto out_unlock; 2967 2968 vfb = vmw_framebuffer_to_vfb(plane->state->fb); 2969 WARN_ON_ONCE(dev_priv->num_implicit != 1 && 2970 dev_priv->implicit_fb != vfb); 2971 2972 dev_priv->implicit_fb = vfb; 2973 out_unlock: 2974 mutex_unlock(&dev_priv->global_kms_state_mutex); 2975 } 2976 2977 /** 2978 * vmw_kms_create_implicit_placement_proparty - Set up the implicit placement 2979 * property. 2980 * 2981 * @dev_priv: Pointer to a device private struct. 2982 * @immutable: Whether the property is immutable. 2983 * 2984 * Sets up the implicit placement property unless it's already set up. 2985 */ 2986 void 2987 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv, 2988 bool immutable) 2989 { 2990 if (dev_priv->implicit_placement_property) 2991 return; 2992 2993 dev_priv->implicit_placement_property = 2994 drm_property_create_range(dev_priv->dev, 2995 immutable ? 2996 DRM_MODE_PROP_IMMUTABLE : 0, 2997 "implicit_placement", 0, 1); 2998 2999 } 3000 3001 3002 /** 3003 * vmw_kms_set_config - Wrapper around drm_atomic_helper_set_config 3004 * 3005 * @set: The configuration to set. 3006 * 3007 * The vmwgfx Xorg driver doesn't assign the mode::type member, which 3008 * when drm_mode_set_crtcinfo is called as part of the configuration setting 3009 * causes it to return incorrect crtc dimensions causing severe problems in 3010 * the vmwgfx modesetting. So explicitly clear that member before calling 3011 * into drm_atomic_helper_set_config. 3012 */ 3013 int vmw_kms_set_config(struct drm_mode_set *set, 3014 struct drm_modeset_acquire_ctx *ctx) 3015 { 3016 if (set && set->mode) 3017 set->mode->type = 0; 3018 3019 return drm_atomic_helper_set_config(set, ctx); 3020 } 3021 3022 3023 /** 3024 * vmw_kms_suspend - Save modesetting state and turn modesetting off. 3025 * 3026 * @dev: Pointer to the drm device 3027 * Return: 0 on success. Negative error code on failure. 3028 */ 3029 int vmw_kms_suspend(struct drm_device *dev) 3030 { 3031 struct vmw_private *dev_priv = vmw_priv(dev); 3032 3033 dev_priv->suspend_state = drm_atomic_helper_suspend(dev); 3034 if (IS_ERR(dev_priv->suspend_state)) { 3035 int ret = PTR_ERR(dev_priv->suspend_state); 3036 3037 DRM_ERROR("Failed kms suspend: %d\n", ret); 3038 dev_priv->suspend_state = NULL; 3039 3040 return ret; 3041 } 3042 3043 return 0; 3044 } 3045 3046 3047 /** 3048 * vmw_kms_resume - Re-enable modesetting and restore state 3049 * 3050 * @dev: Pointer to the drm device 3051 * Return: 0 on success. Negative error code on failure. 3052 * 3053 * State is resumed from a previous vmw_kms_suspend(). It's illegal 3054 * to call this function without a previous vmw_kms_suspend(). 3055 */ 3056 int vmw_kms_resume(struct drm_device *dev) 3057 { 3058 struct vmw_private *dev_priv = vmw_priv(dev); 3059 int ret; 3060 3061 if (WARN_ON(!dev_priv->suspend_state)) 3062 return 0; 3063 3064 ret = drm_atomic_helper_resume(dev, dev_priv->suspend_state); 3065 dev_priv->suspend_state = NULL; 3066 3067 return ret; 3068 } 3069 3070 /** 3071 * vmw_kms_lost_device - Notify kms that modesetting capabilities will be lost 3072 * 3073 * @dev: Pointer to the drm device 3074 */ 3075 void vmw_kms_lost_device(struct drm_device *dev) 3076 { 3077 drm_atomic_helper_shutdown(dev); 3078 } 3079