1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /************************************************************************** 3 * 4 * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 28 #include <drm/drm_atomic.h> 29 #include <drm/drm_atomic_helper.h> 30 #include <drm/drm_damage_helper.h> 31 #include <drm/drm_fourcc.h> 32 #include <drm/drm_plane_helper.h> 33 #include <drm/drm_rect.h> 34 #include <drm/drm_sysfs.h> 35 #include <drm/drm_vblank.h> 36 37 #include "vmwgfx_kms.h" 38 39 void vmw_du_cleanup(struct vmw_display_unit *du) 40 { 41 struct vmw_private *dev_priv = vmw_priv(du->primary.dev); 42 drm_plane_cleanup(&du->primary); 43 if (vmw_cmd_supported(dev_priv)) 44 drm_plane_cleanup(&du->cursor); 45 46 drm_connector_unregister(&du->connector); 47 drm_crtc_cleanup(&du->crtc); 48 drm_encoder_cleanup(&du->encoder); 49 drm_connector_cleanup(&du->connector); 50 } 51 52 /* 53 * Display Unit Cursor functions 54 */ 55 56 static int vmw_cursor_update_image(struct vmw_private *dev_priv, 57 u32 *image, u32 width, u32 height, 58 u32 hotspotX, u32 hotspotY) 59 { 60 struct { 61 u32 cmd; 62 SVGAFifoCmdDefineAlphaCursor cursor; 63 } *cmd; 64 u32 image_size = width * height * 4; 65 u32 cmd_size = sizeof(*cmd) + image_size; 66 67 if (!image) 68 return -EINVAL; 69 70 cmd = VMW_CMD_RESERVE(dev_priv, cmd_size); 71 if (unlikely(cmd == NULL)) 72 return -ENOMEM; 73 74 memset(cmd, 0, sizeof(*cmd)); 75 76 memcpy(&cmd[1], image, image_size); 77 78 cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR; 79 cmd->cursor.id = 0; 80 cmd->cursor.width = width; 81 cmd->cursor.height = height; 82 cmd->cursor.hotspotX = hotspotX; 83 cmd->cursor.hotspotY = hotspotY; 84 85 vmw_cmd_commit_flush(dev_priv, cmd_size); 86 87 return 0; 88 } 89 90 static int vmw_cursor_update_bo(struct vmw_private *dev_priv, 91 struct vmw_buffer_object *bo, 92 u32 width, u32 height, 93 u32 hotspotX, u32 hotspotY) 94 { 95 struct ttm_bo_kmap_obj map; 96 unsigned long kmap_offset; 97 unsigned long kmap_num; 98 void *virtual; 99 bool dummy; 100 int ret; 101 102 kmap_offset = 0; 103 kmap_num = PFN_UP(width*height*4); 104 105 ret = ttm_bo_reserve(&bo->base, true, false, NULL); 106 if (unlikely(ret != 0)) { 107 DRM_ERROR("reserve failed\n"); 108 return -EINVAL; 109 } 110 111 ret = ttm_bo_kmap(&bo->base, kmap_offset, kmap_num, &map); 112 if (unlikely(ret != 0)) 113 goto err_unreserve; 114 115 virtual = ttm_kmap_obj_virtual(&map, &dummy); 116 ret = vmw_cursor_update_image(dev_priv, virtual, width, height, 117 hotspotX, hotspotY); 118 119 ttm_bo_kunmap(&map); 120 err_unreserve: 121 ttm_bo_unreserve(&bo->base); 122 123 return ret; 124 } 125 126 127 static void vmw_cursor_update_position(struct vmw_private *dev_priv, 128 bool show, int x, int y) 129 { 130 uint32_t count; 131 132 spin_lock(&dev_priv->cursor_lock); 133 if (vmw_is_cursor_bypass3_enabled(dev_priv)) { 134 vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_ON, show ? 1 : 0); 135 vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_X, x); 136 vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_Y, y); 137 count = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_CURSOR_COUNT); 138 vmw_fifo_mem_write(dev_priv, SVGA_FIFO_CURSOR_COUNT, ++count); 139 } else { 140 vmw_write(dev_priv, SVGA_REG_CURSOR_X, x); 141 vmw_write(dev_priv, SVGA_REG_CURSOR_Y, y); 142 vmw_write(dev_priv, SVGA_REG_CURSOR_ON, show ? 1 : 0); 143 } 144 spin_unlock(&dev_priv->cursor_lock); 145 } 146 147 148 void vmw_kms_cursor_snoop(struct vmw_surface *srf, 149 struct ttm_object_file *tfile, 150 struct ttm_buffer_object *bo, 151 SVGA3dCmdHeader *header) 152 { 153 struct ttm_bo_kmap_obj map; 154 unsigned long kmap_offset; 155 unsigned long kmap_num; 156 SVGA3dCopyBox *box; 157 unsigned box_count; 158 void *virtual; 159 bool dummy; 160 struct vmw_dma_cmd { 161 SVGA3dCmdHeader header; 162 SVGA3dCmdSurfaceDMA dma; 163 } *cmd; 164 int i, ret; 165 166 cmd = container_of(header, struct vmw_dma_cmd, header); 167 168 /* No snooper installed */ 169 if (!srf->snooper.image) 170 return; 171 172 if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) { 173 DRM_ERROR("face and mipmap for cursors should never != 0\n"); 174 return; 175 } 176 177 if (cmd->header.size < 64) { 178 DRM_ERROR("at least one full copy box must be given\n"); 179 return; 180 } 181 182 box = (SVGA3dCopyBox *)&cmd[1]; 183 box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) / 184 sizeof(SVGA3dCopyBox); 185 186 if (cmd->dma.guest.ptr.offset % PAGE_SIZE || 187 box->x != 0 || box->y != 0 || box->z != 0 || 188 box->srcx != 0 || box->srcy != 0 || box->srcz != 0 || 189 box->d != 1 || box_count != 1) { 190 /* TODO handle none page aligned offsets */ 191 /* TODO handle more dst & src != 0 */ 192 /* TODO handle more then one copy */ 193 DRM_ERROR("Can't snoop dma request for cursor!\n"); 194 DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n", 195 box->srcx, box->srcy, box->srcz, 196 box->x, box->y, box->z, 197 box->w, box->h, box->d, box_count, 198 cmd->dma.guest.ptr.offset); 199 return; 200 } 201 202 kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT; 203 kmap_num = (64*64*4) >> PAGE_SHIFT; 204 205 ret = ttm_bo_reserve(bo, true, false, NULL); 206 if (unlikely(ret != 0)) { 207 DRM_ERROR("reserve failed\n"); 208 return; 209 } 210 211 ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map); 212 if (unlikely(ret != 0)) 213 goto err_unreserve; 214 215 virtual = ttm_kmap_obj_virtual(&map, &dummy); 216 217 if (box->w == 64 && cmd->dma.guest.pitch == 64*4) { 218 memcpy(srf->snooper.image, virtual, 64*64*4); 219 } else { 220 /* Image is unsigned pointer. */ 221 for (i = 0; i < box->h; i++) 222 memcpy(srf->snooper.image + i * 64, 223 virtual + i * cmd->dma.guest.pitch, 224 box->w * 4); 225 } 226 227 srf->snooper.age++; 228 229 ttm_bo_kunmap(&map); 230 err_unreserve: 231 ttm_bo_unreserve(bo); 232 } 233 234 /** 235 * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots 236 * 237 * @dev_priv: Pointer to the device private struct. 238 * 239 * Clears all legacy hotspots. 240 */ 241 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv) 242 { 243 struct drm_device *dev = &dev_priv->drm; 244 struct vmw_display_unit *du; 245 struct drm_crtc *crtc; 246 247 drm_modeset_lock_all(dev); 248 drm_for_each_crtc(crtc, dev) { 249 du = vmw_crtc_to_du(crtc); 250 251 du->hotspot_x = 0; 252 du->hotspot_y = 0; 253 } 254 drm_modeset_unlock_all(dev); 255 } 256 257 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv) 258 { 259 struct drm_device *dev = &dev_priv->drm; 260 struct vmw_display_unit *du; 261 struct drm_crtc *crtc; 262 263 mutex_lock(&dev->mode_config.mutex); 264 265 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 266 du = vmw_crtc_to_du(crtc); 267 if (!du->cursor_surface || 268 du->cursor_age == du->cursor_surface->snooper.age) 269 continue; 270 271 du->cursor_age = du->cursor_surface->snooper.age; 272 vmw_cursor_update_image(dev_priv, 273 du->cursor_surface->snooper.image, 274 64, 64, 275 du->hotspot_x + du->core_hotspot_x, 276 du->hotspot_y + du->core_hotspot_y); 277 } 278 279 mutex_unlock(&dev->mode_config.mutex); 280 } 281 282 283 void vmw_du_cursor_plane_destroy(struct drm_plane *plane) 284 { 285 vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0); 286 287 drm_plane_cleanup(plane); 288 } 289 290 291 void vmw_du_primary_plane_destroy(struct drm_plane *plane) 292 { 293 drm_plane_cleanup(plane); 294 295 /* Planes are static in our case so we don't free it */ 296 } 297 298 299 /** 300 * vmw_du_plane_unpin_surf - unpins resource associated with a framebuffer surface 301 * 302 * @vps: plane state associated with the display surface 303 * @unreference: true if we also want to unreference the display. 304 */ 305 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps, 306 bool unreference) 307 { 308 if (vps->surf) { 309 if (vps->pinned) { 310 vmw_resource_unpin(&vps->surf->res); 311 vps->pinned--; 312 } 313 314 if (unreference) { 315 if (vps->pinned) 316 DRM_ERROR("Surface still pinned\n"); 317 vmw_surface_unreference(&vps->surf); 318 } 319 } 320 } 321 322 323 /** 324 * vmw_du_plane_cleanup_fb - Unpins the cursor 325 * 326 * @plane: display plane 327 * @old_state: Contains the FB to clean up 328 * 329 * Unpins the framebuffer surface 330 * 331 * Returns 0 on success 332 */ 333 void 334 vmw_du_plane_cleanup_fb(struct drm_plane *plane, 335 struct drm_plane_state *old_state) 336 { 337 struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state); 338 339 vmw_du_plane_unpin_surf(vps, false); 340 } 341 342 343 /** 344 * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it 345 * 346 * @plane: display plane 347 * @new_state: info on the new plane state, including the FB 348 * 349 * Returns 0 on success 350 */ 351 int 352 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane, 353 struct drm_plane_state *new_state) 354 { 355 struct drm_framebuffer *fb = new_state->fb; 356 struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state); 357 358 359 if (vps->surf) 360 vmw_surface_unreference(&vps->surf); 361 362 if (vps->bo) 363 vmw_bo_unreference(&vps->bo); 364 365 if (fb) { 366 if (vmw_framebuffer_to_vfb(fb)->bo) { 367 vps->bo = vmw_framebuffer_to_vfbd(fb)->buffer; 368 vmw_bo_reference(vps->bo); 369 } else { 370 vps->surf = vmw_framebuffer_to_vfbs(fb)->surface; 371 vmw_surface_reference(vps->surf); 372 } 373 } 374 375 return 0; 376 } 377 378 379 void 380 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane, 381 struct drm_atomic_state *state) 382 { 383 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, 384 plane); 385 struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state, 386 plane); 387 struct drm_crtc *crtc = new_state->crtc ?: old_state->crtc; 388 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 389 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 390 struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state); 391 s32 hotspot_x, hotspot_y; 392 int ret = 0; 393 394 395 hotspot_x = du->hotspot_x; 396 hotspot_y = du->hotspot_y; 397 398 if (new_state->fb) { 399 hotspot_x += new_state->fb->hot_x; 400 hotspot_y += new_state->fb->hot_y; 401 } 402 403 du->cursor_surface = vps->surf; 404 du->cursor_bo = vps->bo; 405 406 if (vps->surf) { 407 du->cursor_age = du->cursor_surface->snooper.age; 408 409 ret = vmw_cursor_update_image(dev_priv, 410 vps->surf->snooper.image, 411 64, 64, hotspot_x, 412 hotspot_y); 413 } else if (vps->bo) { 414 ret = vmw_cursor_update_bo(dev_priv, vps->bo, 415 new_state->crtc_w, 416 new_state->crtc_h, 417 hotspot_x, hotspot_y); 418 } else { 419 vmw_cursor_update_position(dev_priv, false, 0, 0); 420 return; 421 } 422 423 if (!ret) { 424 du->cursor_x = new_state->crtc_x + du->set_gui_x; 425 du->cursor_y = new_state->crtc_y + du->set_gui_y; 426 427 vmw_cursor_update_position(dev_priv, true, 428 du->cursor_x + hotspot_x, 429 du->cursor_y + hotspot_y); 430 431 du->core_hotspot_x = hotspot_x - du->hotspot_x; 432 du->core_hotspot_y = hotspot_y - du->hotspot_y; 433 } else { 434 DRM_ERROR("Failed to update cursor image\n"); 435 } 436 } 437 438 439 /** 440 * vmw_du_primary_plane_atomic_check - check if the new state is okay 441 * 442 * @plane: display plane 443 * @state: info on the new plane state, including the FB 444 * 445 * Check if the new state is settable given the current state. Other 446 * than what the atomic helper checks, we care about crtc fitting 447 * the FB and maintaining one active framebuffer. 448 * 449 * Returns 0 on success 450 */ 451 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane, 452 struct drm_atomic_state *state) 453 { 454 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, 455 plane); 456 struct drm_crtc_state *crtc_state = NULL; 457 struct drm_framebuffer *new_fb = new_state->fb; 458 int ret; 459 460 if (new_state->crtc) 461 crtc_state = drm_atomic_get_new_crtc_state(state, 462 new_state->crtc); 463 464 ret = drm_atomic_helper_check_plane_state(new_state, crtc_state, 465 DRM_PLANE_HELPER_NO_SCALING, 466 DRM_PLANE_HELPER_NO_SCALING, 467 false, true); 468 469 if (!ret && new_fb) { 470 struct drm_crtc *crtc = new_state->crtc; 471 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 472 473 vmw_connector_state_to_vcs(du->connector.state); 474 } 475 476 477 return ret; 478 } 479 480 481 /** 482 * vmw_du_cursor_plane_atomic_check - check if the new state is okay 483 * 484 * @plane: cursor plane 485 * @state: info on the new plane state 486 * 487 * This is a chance to fail if the new cursor state does not fit 488 * our requirements. 489 * 490 * Returns 0 on success 491 */ 492 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane, 493 struct drm_atomic_state *state) 494 { 495 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, 496 plane); 497 int ret = 0; 498 struct drm_crtc_state *crtc_state = NULL; 499 struct vmw_surface *surface = NULL; 500 struct drm_framebuffer *fb = new_state->fb; 501 502 if (new_state->crtc) 503 crtc_state = drm_atomic_get_new_crtc_state(new_state->state, 504 new_state->crtc); 505 506 ret = drm_atomic_helper_check_plane_state(new_state, crtc_state, 507 DRM_PLANE_HELPER_NO_SCALING, 508 DRM_PLANE_HELPER_NO_SCALING, 509 true, true); 510 if (ret) 511 return ret; 512 513 /* Turning off */ 514 if (!fb) 515 return 0; 516 517 /* A lot of the code assumes this */ 518 if (new_state->crtc_w != 64 || new_state->crtc_h != 64) { 519 DRM_ERROR("Invalid cursor dimensions (%d, %d)\n", 520 new_state->crtc_w, new_state->crtc_h); 521 ret = -EINVAL; 522 } 523 524 if (!vmw_framebuffer_to_vfb(fb)->bo) 525 surface = vmw_framebuffer_to_vfbs(fb)->surface; 526 527 if (surface && !surface->snooper.image) { 528 DRM_ERROR("surface not suitable for cursor\n"); 529 ret = -EINVAL; 530 } 531 532 return ret; 533 } 534 535 536 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc, 537 struct drm_atomic_state *state) 538 { 539 struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state, 540 crtc); 541 struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc); 542 int connector_mask = drm_connector_mask(&du->connector); 543 bool has_primary = new_state->plane_mask & 544 drm_plane_mask(crtc->primary); 545 546 /* We always want to have an active plane with an active CRTC */ 547 if (has_primary != new_state->enable) 548 return -EINVAL; 549 550 551 if (new_state->connector_mask != connector_mask && 552 new_state->connector_mask != 0) { 553 DRM_ERROR("Invalid connectors configuration\n"); 554 return -EINVAL; 555 } 556 557 /* 558 * Our virtual device does not have a dot clock, so use the logical 559 * clock value as the dot clock. 560 */ 561 if (new_state->mode.crtc_clock == 0) 562 new_state->adjusted_mode.crtc_clock = new_state->mode.clock; 563 564 return 0; 565 } 566 567 568 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc, 569 struct drm_atomic_state *state) 570 { 571 } 572 573 574 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc, 575 struct drm_atomic_state *state) 576 { 577 struct drm_pending_vblank_event *event = crtc->state->event; 578 579 if (event) { 580 crtc->state->event = NULL; 581 582 spin_lock_irq(&crtc->dev->event_lock); 583 drm_crtc_send_vblank_event(crtc, event); 584 spin_unlock_irq(&crtc->dev->event_lock); 585 } 586 } 587 588 589 /** 590 * vmw_du_crtc_duplicate_state - duplicate crtc state 591 * @crtc: DRM crtc 592 * 593 * Allocates and returns a copy of the crtc state (both common and 594 * vmw-specific) for the specified crtc. 595 * 596 * Returns: The newly allocated crtc state, or NULL on failure. 597 */ 598 struct drm_crtc_state * 599 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc) 600 { 601 struct drm_crtc_state *state; 602 struct vmw_crtc_state *vcs; 603 604 if (WARN_ON(!crtc->state)) 605 return NULL; 606 607 vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL); 608 609 if (!vcs) 610 return NULL; 611 612 state = &vcs->base; 613 614 __drm_atomic_helper_crtc_duplicate_state(crtc, state); 615 616 return state; 617 } 618 619 620 /** 621 * vmw_du_crtc_reset - creates a blank vmw crtc state 622 * @crtc: DRM crtc 623 * 624 * Resets the atomic state for @crtc by freeing the state pointer (which 625 * might be NULL, e.g. at driver load time) and allocating a new empty state 626 * object. 627 */ 628 void vmw_du_crtc_reset(struct drm_crtc *crtc) 629 { 630 struct vmw_crtc_state *vcs; 631 632 633 if (crtc->state) { 634 __drm_atomic_helper_crtc_destroy_state(crtc->state); 635 636 kfree(vmw_crtc_state_to_vcs(crtc->state)); 637 } 638 639 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL); 640 641 if (!vcs) { 642 DRM_ERROR("Cannot allocate vmw_crtc_state\n"); 643 return; 644 } 645 646 __drm_atomic_helper_crtc_reset(crtc, &vcs->base); 647 } 648 649 650 /** 651 * vmw_du_crtc_destroy_state - destroy crtc state 652 * @crtc: DRM crtc 653 * @state: state object to destroy 654 * 655 * Destroys the crtc state (both common and vmw-specific) for the 656 * specified plane. 657 */ 658 void 659 vmw_du_crtc_destroy_state(struct drm_crtc *crtc, 660 struct drm_crtc_state *state) 661 { 662 drm_atomic_helper_crtc_destroy_state(crtc, state); 663 } 664 665 666 /** 667 * vmw_du_plane_duplicate_state - duplicate plane state 668 * @plane: drm plane 669 * 670 * Allocates and returns a copy of the plane state (both common and 671 * vmw-specific) for the specified plane. 672 * 673 * Returns: The newly allocated plane state, or NULL on failure. 674 */ 675 struct drm_plane_state * 676 vmw_du_plane_duplicate_state(struct drm_plane *plane) 677 { 678 struct drm_plane_state *state; 679 struct vmw_plane_state *vps; 680 681 vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL); 682 683 if (!vps) 684 return NULL; 685 686 vps->pinned = 0; 687 vps->cpp = 0; 688 689 /* Each ref counted resource needs to be acquired again */ 690 if (vps->surf) 691 (void) vmw_surface_reference(vps->surf); 692 693 if (vps->bo) 694 (void) vmw_bo_reference(vps->bo); 695 696 state = &vps->base; 697 698 __drm_atomic_helper_plane_duplicate_state(plane, state); 699 700 return state; 701 } 702 703 704 /** 705 * vmw_du_plane_reset - creates a blank vmw plane state 706 * @plane: drm plane 707 * 708 * Resets the atomic state for @plane by freeing the state pointer (which might 709 * be NULL, e.g. at driver load time) and allocating a new empty state object. 710 */ 711 void vmw_du_plane_reset(struct drm_plane *plane) 712 { 713 struct vmw_plane_state *vps; 714 715 716 if (plane->state) 717 vmw_du_plane_destroy_state(plane, plane->state); 718 719 vps = kzalloc(sizeof(*vps), GFP_KERNEL); 720 721 if (!vps) { 722 DRM_ERROR("Cannot allocate vmw_plane_state\n"); 723 return; 724 } 725 726 __drm_atomic_helper_plane_reset(plane, &vps->base); 727 } 728 729 730 /** 731 * vmw_du_plane_destroy_state - destroy plane state 732 * @plane: DRM plane 733 * @state: state object to destroy 734 * 735 * Destroys the plane state (both common and vmw-specific) for the 736 * specified plane. 737 */ 738 void 739 vmw_du_plane_destroy_state(struct drm_plane *plane, 740 struct drm_plane_state *state) 741 { 742 struct vmw_plane_state *vps = vmw_plane_state_to_vps(state); 743 744 745 /* Should have been freed by cleanup_fb */ 746 if (vps->surf) 747 vmw_surface_unreference(&vps->surf); 748 749 if (vps->bo) 750 vmw_bo_unreference(&vps->bo); 751 752 drm_atomic_helper_plane_destroy_state(plane, state); 753 } 754 755 756 /** 757 * vmw_du_connector_duplicate_state - duplicate connector state 758 * @connector: DRM connector 759 * 760 * Allocates and returns a copy of the connector state (both common and 761 * vmw-specific) for the specified connector. 762 * 763 * Returns: The newly allocated connector state, or NULL on failure. 764 */ 765 struct drm_connector_state * 766 vmw_du_connector_duplicate_state(struct drm_connector *connector) 767 { 768 struct drm_connector_state *state; 769 struct vmw_connector_state *vcs; 770 771 if (WARN_ON(!connector->state)) 772 return NULL; 773 774 vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL); 775 776 if (!vcs) 777 return NULL; 778 779 state = &vcs->base; 780 781 __drm_atomic_helper_connector_duplicate_state(connector, state); 782 783 return state; 784 } 785 786 787 /** 788 * vmw_du_connector_reset - creates a blank vmw connector state 789 * @connector: DRM connector 790 * 791 * Resets the atomic state for @connector by freeing the state pointer (which 792 * might be NULL, e.g. at driver load time) and allocating a new empty state 793 * object. 794 */ 795 void vmw_du_connector_reset(struct drm_connector *connector) 796 { 797 struct vmw_connector_state *vcs; 798 799 800 if (connector->state) { 801 __drm_atomic_helper_connector_destroy_state(connector->state); 802 803 kfree(vmw_connector_state_to_vcs(connector->state)); 804 } 805 806 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL); 807 808 if (!vcs) { 809 DRM_ERROR("Cannot allocate vmw_connector_state\n"); 810 return; 811 } 812 813 __drm_atomic_helper_connector_reset(connector, &vcs->base); 814 } 815 816 817 /** 818 * vmw_du_connector_destroy_state - destroy connector state 819 * @connector: DRM connector 820 * @state: state object to destroy 821 * 822 * Destroys the connector state (both common and vmw-specific) for the 823 * specified plane. 824 */ 825 void 826 vmw_du_connector_destroy_state(struct drm_connector *connector, 827 struct drm_connector_state *state) 828 { 829 drm_atomic_helper_connector_destroy_state(connector, state); 830 } 831 /* 832 * Generic framebuffer code 833 */ 834 835 /* 836 * Surface framebuffer code 837 */ 838 839 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer) 840 { 841 struct vmw_framebuffer_surface *vfbs = 842 vmw_framebuffer_to_vfbs(framebuffer); 843 844 drm_framebuffer_cleanup(framebuffer); 845 vmw_surface_unreference(&vfbs->surface); 846 847 kfree(vfbs); 848 } 849 850 /** 851 * vmw_kms_readback - Perform a readback from the screen system to 852 * a buffer-object backed framebuffer. 853 * 854 * @dev_priv: Pointer to the device private structure. 855 * @file_priv: Pointer to a struct drm_file identifying the caller. 856 * Must be set to NULL if @user_fence_rep is NULL. 857 * @vfb: Pointer to the buffer-object backed framebuffer. 858 * @user_fence_rep: User-space provided structure for fence information. 859 * Must be set to non-NULL if @file_priv is non-NULL. 860 * @vclips: Array of clip rects. 861 * @num_clips: Number of clip rects in @vclips. 862 * 863 * Returns 0 on success, negative error code on failure. -ERESTARTSYS if 864 * interrupted. 865 */ 866 int vmw_kms_readback(struct vmw_private *dev_priv, 867 struct drm_file *file_priv, 868 struct vmw_framebuffer *vfb, 869 struct drm_vmw_fence_rep __user *user_fence_rep, 870 struct drm_vmw_rect *vclips, 871 uint32_t num_clips) 872 { 873 switch (dev_priv->active_display_unit) { 874 case vmw_du_screen_object: 875 return vmw_kms_sou_readback(dev_priv, file_priv, vfb, 876 user_fence_rep, vclips, num_clips, 877 NULL); 878 case vmw_du_screen_target: 879 return vmw_kms_stdu_dma(dev_priv, file_priv, vfb, 880 user_fence_rep, NULL, vclips, num_clips, 881 1, false, true, NULL); 882 default: 883 WARN_ONCE(true, 884 "Readback called with invalid display system.\n"); 885 } 886 887 return -ENOSYS; 888 } 889 890 891 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = { 892 .destroy = vmw_framebuffer_surface_destroy, 893 .dirty = drm_atomic_helper_dirtyfb, 894 }; 895 896 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv, 897 struct vmw_surface *surface, 898 struct vmw_framebuffer **out, 899 const struct drm_mode_fb_cmd2 900 *mode_cmd, 901 bool is_bo_proxy) 902 903 { 904 struct drm_device *dev = &dev_priv->drm; 905 struct vmw_framebuffer_surface *vfbs; 906 enum SVGA3dSurfaceFormat format; 907 int ret; 908 909 /* 3D is only supported on HWv8 and newer hosts */ 910 if (dev_priv->active_display_unit == vmw_du_legacy) 911 return -ENOSYS; 912 913 /* 914 * Sanity checks. 915 */ 916 917 /* Surface must be marked as a scanout. */ 918 if (unlikely(!surface->metadata.scanout)) 919 return -EINVAL; 920 921 if (unlikely(surface->metadata.mip_levels[0] != 1 || 922 surface->metadata.num_sizes != 1 || 923 surface->metadata.base_size.width < mode_cmd->width || 924 surface->metadata.base_size.height < mode_cmd->height || 925 surface->metadata.base_size.depth != 1)) { 926 DRM_ERROR("Incompatible surface dimensions " 927 "for requested mode.\n"); 928 return -EINVAL; 929 } 930 931 switch (mode_cmd->pixel_format) { 932 case DRM_FORMAT_ARGB8888: 933 format = SVGA3D_A8R8G8B8; 934 break; 935 case DRM_FORMAT_XRGB8888: 936 format = SVGA3D_X8R8G8B8; 937 break; 938 case DRM_FORMAT_RGB565: 939 format = SVGA3D_R5G6B5; 940 break; 941 case DRM_FORMAT_XRGB1555: 942 format = SVGA3D_A1R5G5B5; 943 break; 944 default: 945 DRM_ERROR("Invalid pixel format: %p4cc\n", 946 &mode_cmd->pixel_format); 947 return -EINVAL; 948 } 949 950 /* 951 * For DX, surface format validation is done when surface->scanout 952 * is set. 953 */ 954 if (!has_sm4_context(dev_priv) && format != surface->metadata.format) { 955 DRM_ERROR("Invalid surface format for requested mode.\n"); 956 return -EINVAL; 957 } 958 959 vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL); 960 if (!vfbs) { 961 ret = -ENOMEM; 962 goto out_err1; 963 } 964 965 drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd); 966 vfbs->surface = vmw_surface_reference(surface); 967 vfbs->base.user_handle = mode_cmd->handles[0]; 968 vfbs->is_bo_proxy = is_bo_proxy; 969 970 *out = &vfbs->base; 971 972 ret = drm_framebuffer_init(dev, &vfbs->base.base, 973 &vmw_framebuffer_surface_funcs); 974 if (ret) 975 goto out_err2; 976 977 return 0; 978 979 out_err2: 980 vmw_surface_unreference(&surface); 981 kfree(vfbs); 982 out_err1: 983 return ret; 984 } 985 986 /* 987 * Buffer-object framebuffer code 988 */ 989 990 static int vmw_framebuffer_bo_create_handle(struct drm_framebuffer *fb, 991 struct drm_file *file_priv, 992 unsigned int *handle) 993 { 994 struct vmw_framebuffer_bo *vfbd = 995 vmw_framebuffer_to_vfbd(fb); 996 997 return drm_gem_handle_create(file_priv, &vfbd->buffer->base.base, handle); 998 } 999 1000 static void vmw_framebuffer_bo_destroy(struct drm_framebuffer *framebuffer) 1001 { 1002 struct vmw_framebuffer_bo *vfbd = 1003 vmw_framebuffer_to_vfbd(framebuffer); 1004 1005 drm_framebuffer_cleanup(framebuffer); 1006 vmw_bo_unreference(&vfbd->buffer); 1007 1008 kfree(vfbd); 1009 } 1010 1011 static int vmw_framebuffer_bo_dirty(struct drm_framebuffer *framebuffer, 1012 struct drm_file *file_priv, 1013 unsigned int flags, unsigned int color, 1014 struct drm_clip_rect *clips, 1015 unsigned int num_clips) 1016 { 1017 struct vmw_private *dev_priv = vmw_priv(framebuffer->dev); 1018 struct vmw_framebuffer_bo *vfbd = 1019 vmw_framebuffer_to_vfbd(framebuffer); 1020 struct drm_clip_rect norect; 1021 int ret, increment = 1; 1022 1023 drm_modeset_lock_all(&dev_priv->drm); 1024 1025 if (!num_clips) { 1026 num_clips = 1; 1027 clips = &norect; 1028 norect.x1 = norect.y1 = 0; 1029 norect.x2 = framebuffer->width; 1030 norect.y2 = framebuffer->height; 1031 } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) { 1032 num_clips /= 2; 1033 increment = 2; 1034 } 1035 1036 switch (dev_priv->active_display_unit) { 1037 case vmw_du_legacy: 1038 ret = vmw_kms_ldu_do_bo_dirty(dev_priv, &vfbd->base, 0, 0, 1039 clips, num_clips, increment); 1040 break; 1041 default: 1042 ret = -EINVAL; 1043 WARN_ONCE(true, "Dirty called with invalid display system.\n"); 1044 break; 1045 } 1046 1047 vmw_cmd_flush(dev_priv, false); 1048 1049 drm_modeset_unlock_all(&dev_priv->drm); 1050 1051 return ret; 1052 } 1053 1054 static int vmw_framebuffer_bo_dirty_ext(struct drm_framebuffer *framebuffer, 1055 struct drm_file *file_priv, 1056 unsigned int flags, unsigned int color, 1057 struct drm_clip_rect *clips, 1058 unsigned int num_clips) 1059 { 1060 struct vmw_private *dev_priv = vmw_priv(framebuffer->dev); 1061 1062 if (dev_priv->active_display_unit == vmw_du_legacy && 1063 vmw_cmd_supported(dev_priv)) 1064 return vmw_framebuffer_bo_dirty(framebuffer, file_priv, flags, 1065 color, clips, num_clips); 1066 1067 return drm_atomic_helper_dirtyfb(framebuffer, file_priv, flags, color, 1068 clips, num_clips); 1069 } 1070 1071 static const struct drm_framebuffer_funcs vmw_framebuffer_bo_funcs = { 1072 .create_handle = vmw_framebuffer_bo_create_handle, 1073 .destroy = vmw_framebuffer_bo_destroy, 1074 .dirty = vmw_framebuffer_bo_dirty_ext, 1075 }; 1076 1077 /* 1078 * Pin the bofer in a location suitable for access by the 1079 * display system. 1080 */ 1081 static int vmw_framebuffer_pin(struct vmw_framebuffer *vfb) 1082 { 1083 struct vmw_private *dev_priv = vmw_priv(vfb->base.dev); 1084 struct vmw_buffer_object *buf; 1085 struct ttm_placement *placement; 1086 int ret; 1087 1088 buf = vfb->bo ? vmw_framebuffer_to_vfbd(&vfb->base)->buffer : 1089 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup; 1090 1091 if (!buf) 1092 return 0; 1093 1094 switch (dev_priv->active_display_unit) { 1095 case vmw_du_legacy: 1096 vmw_overlay_pause_all(dev_priv); 1097 ret = vmw_bo_pin_in_start_of_vram(dev_priv, buf, false); 1098 vmw_overlay_resume_all(dev_priv); 1099 break; 1100 case vmw_du_screen_object: 1101 case vmw_du_screen_target: 1102 if (vfb->bo) { 1103 if (dev_priv->capabilities & SVGA_CAP_3D) { 1104 /* 1105 * Use surface DMA to get content to 1106 * sreen target surface. 1107 */ 1108 placement = &vmw_vram_gmr_placement; 1109 } else { 1110 /* Use CPU blit. */ 1111 placement = &vmw_sys_placement; 1112 } 1113 } else { 1114 /* Use surface / image update */ 1115 placement = &vmw_mob_placement; 1116 } 1117 1118 return vmw_bo_pin_in_placement(dev_priv, buf, placement, false); 1119 default: 1120 return -EINVAL; 1121 } 1122 1123 return ret; 1124 } 1125 1126 static int vmw_framebuffer_unpin(struct vmw_framebuffer *vfb) 1127 { 1128 struct vmw_private *dev_priv = vmw_priv(vfb->base.dev); 1129 struct vmw_buffer_object *buf; 1130 1131 buf = vfb->bo ? vmw_framebuffer_to_vfbd(&vfb->base)->buffer : 1132 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup; 1133 1134 if (WARN_ON(!buf)) 1135 return 0; 1136 1137 return vmw_bo_unpin(dev_priv, buf, false); 1138 } 1139 1140 /** 1141 * vmw_create_bo_proxy - create a proxy surface for the buffer object 1142 * 1143 * @dev: DRM device 1144 * @mode_cmd: parameters for the new surface 1145 * @bo_mob: MOB backing the buffer object 1146 * @srf_out: newly created surface 1147 * 1148 * When the content FB is a buffer object, we create a surface as a proxy to the 1149 * same buffer. This way we can do a surface copy rather than a surface DMA. 1150 * This is a more efficient approach 1151 * 1152 * RETURNS: 1153 * 0 on success, error code otherwise 1154 */ 1155 static int vmw_create_bo_proxy(struct drm_device *dev, 1156 const struct drm_mode_fb_cmd2 *mode_cmd, 1157 struct vmw_buffer_object *bo_mob, 1158 struct vmw_surface **srf_out) 1159 { 1160 struct vmw_surface_metadata metadata = {0}; 1161 uint32_t format; 1162 struct vmw_resource *res; 1163 unsigned int bytes_pp; 1164 int ret; 1165 1166 switch (mode_cmd->pixel_format) { 1167 case DRM_FORMAT_ARGB8888: 1168 case DRM_FORMAT_XRGB8888: 1169 format = SVGA3D_X8R8G8B8; 1170 bytes_pp = 4; 1171 break; 1172 1173 case DRM_FORMAT_RGB565: 1174 case DRM_FORMAT_XRGB1555: 1175 format = SVGA3D_R5G6B5; 1176 bytes_pp = 2; 1177 break; 1178 1179 case 8: 1180 format = SVGA3D_P8; 1181 bytes_pp = 1; 1182 break; 1183 1184 default: 1185 DRM_ERROR("Invalid framebuffer format %p4cc\n", 1186 &mode_cmd->pixel_format); 1187 return -EINVAL; 1188 } 1189 1190 metadata.format = format; 1191 metadata.mip_levels[0] = 1; 1192 metadata.num_sizes = 1; 1193 metadata.base_size.width = mode_cmd->pitches[0] / bytes_pp; 1194 metadata.base_size.height = mode_cmd->height; 1195 metadata.base_size.depth = 1; 1196 metadata.scanout = true; 1197 1198 ret = vmw_gb_surface_define(vmw_priv(dev), &metadata, srf_out); 1199 if (ret) { 1200 DRM_ERROR("Failed to allocate proxy content buffer\n"); 1201 return ret; 1202 } 1203 1204 res = &(*srf_out)->res; 1205 1206 /* Reserve and switch the backing mob. */ 1207 mutex_lock(&res->dev_priv->cmdbuf_mutex); 1208 (void) vmw_resource_reserve(res, false, true); 1209 vmw_bo_unreference(&res->backup); 1210 res->backup = vmw_bo_reference(bo_mob); 1211 res->backup_offset = 0; 1212 vmw_resource_unreserve(res, false, false, false, NULL, 0); 1213 mutex_unlock(&res->dev_priv->cmdbuf_mutex); 1214 1215 return 0; 1216 } 1217 1218 1219 1220 static int vmw_kms_new_framebuffer_bo(struct vmw_private *dev_priv, 1221 struct vmw_buffer_object *bo, 1222 struct vmw_framebuffer **out, 1223 const struct drm_mode_fb_cmd2 1224 *mode_cmd) 1225 1226 { 1227 struct drm_device *dev = &dev_priv->drm; 1228 struct vmw_framebuffer_bo *vfbd; 1229 unsigned int requested_size; 1230 int ret; 1231 1232 requested_size = mode_cmd->height * mode_cmd->pitches[0]; 1233 if (unlikely(requested_size > bo->base.base.size)) { 1234 DRM_ERROR("Screen buffer object size is too small " 1235 "for requested mode.\n"); 1236 return -EINVAL; 1237 } 1238 1239 /* Limited framebuffer color depth support for screen objects */ 1240 if (dev_priv->active_display_unit == vmw_du_screen_object) { 1241 switch (mode_cmd->pixel_format) { 1242 case DRM_FORMAT_XRGB8888: 1243 case DRM_FORMAT_ARGB8888: 1244 break; 1245 case DRM_FORMAT_XRGB1555: 1246 case DRM_FORMAT_RGB565: 1247 break; 1248 default: 1249 DRM_ERROR("Invalid pixel format: %p4cc\n", 1250 &mode_cmd->pixel_format); 1251 return -EINVAL; 1252 } 1253 } 1254 1255 vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL); 1256 if (!vfbd) { 1257 ret = -ENOMEM; 1258 goto out_err1; 1259 } 1260 1261 vfbd->base.base.obj[0] = &bo->base.base; 1262 drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd); 1263 vfbd->base.bo = true; 1264 vfbd->buffer = vmw_bo_reference(bo); 1265 vfbd->base.user_handle = mode_cmd->handles[0]; 1266 *out = &vfbd->base; 1267 1268 ret = drm_framebuffer_init(dev, &vfbd->base.base, 1269 &vmw_framebuffer_bo_funcs); 1270 if (ret) 1271 goto out_err2; 1272 1273 return 0; 1274 1275 out_err2: 1276 vmw_bo_unreference(&bo); 1277 kfree(vfbd); 1278 out_err1: 1279 return ret; 1280 } 1281 1282 1283 /** 1284 * vmw_kms_srf_ok - check if a surface can be created 1285 * 1286 * @dev_priv: Pointer to device private struct. 1287 * @width: requested width 1288 * @height: requested height 1289 * 1290 * Surfaces need to be less than texture size 1291 */ 1292 static bool 1293 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height) 1294 { 1295 if (width > dev_priv->texture_max_width || 1296 height > dev_priv->texture_max_height) 1297 return false; 1298 1299 return true; 1300 } 1301 1302 /** 1303 * vmw_kms_new_framebuffer - Create a new framebuffer. 1304 * 1305 * @dev_priv: Pointer to device private struct. 1306 * @bo: Pointer to buffer object to wrap the kms framebuffer around. 1307 * Either @bo or @surface must be NULL. 1308 * @surface: Pointer to a surface to wrap the kms framebuffer around. 1309 * Either @bo or @surface must be NULL. 1310 * @only_2d: No presents will occur to this buffer object based framebuffer. 1311 * This helps the code to do some important optimizations. 1312 * @mode_cmd: Frame-buffer metadata. 1313 */ 1314 struct vmw_framebuffer * 1315 vmw_kms_new_framebuffer(struct vmw_private *dev_priv, 1316 struct vmw_buffer_object *bo, 1317 struct vmw_surface *surface, 1318 bool only_2d, 1319 const struct drm_mode_fb_cmd2 *mode_cmd) 1320 { 1321 struct vmw_framebuffer *vfb = NULL; 1322 bool is_bo_proxy = false; 1323 int ret; 1324 1325 /* 1326 * We cannot use the SurfaceDMA command in an non-accelerated VM, 1327 * therefore, wrap the buffer object in a surface so we can use the 1328 * SurfaceCopy command. 1329 */ 1330 if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height) && 1331 bo && only_2d && 1332 mode_cmd->width > 64 && /* Don't create a proxy for cursor */ 1333 dev_priv->active_display_unit == vmw_du_screen_target) { 1334 ret = vmw_create_bo_proxy(&dev_priv->drm, mode_cmd, 1335 bo, &surface); 1336 if (ret) 1337 return ERR_PTR(ret); 1338 1339 is_bo_proxy = true; 1340 } 1341 1342 /* Create the new framebuffer depending one what we have */ 1343 if (surface) { 1344 ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb, 1345 mode_cmd, 1346 is_bo_proxy); 1347 1348 /* 1349 * vmw_create_bo_proxy() adds a reference that is no longer 1350 * needed 1351 */ 1352 if (is_bo_proxy) 1353 vmw_surface_unreference(&surface); 1354 } else if (bo) { 1355 ret = vmw_kms_new_framebuffer_bo(dev_priv, bo, &vfb, 1356 mode_cmd); 1357 } else { 1358 BUG(); 1359 } 1360 1361 if (ret) 1362 return ERR_PTR(ret); 1363 1364 vfb->pin = vmw_framebuffer_pin; 1365 vfb->unpin = vmw_framebuffer_unpin; 1366 1367 return vfb; 1368 } 1369 1370 /* 1371 * Generic Kernel modesetting functions 1372 */ 1373 1374 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev, 1375 struct drm_file *file_priv, 1376 const struct drm_mode_fb_cmd2 *mode_cmd) 1377 { 1378 struct vmw_private *dev_priv = vmw_priv(dev); 1379 struct vmw_framebuffer *vfb = NULL; 1380 struct vmw_surface *surface = NULL; 1381 struct vmw_buffer_object *bo = NULL; 1382 int ret; 1383 1384 /* returns either a bo or surface */ 1385 ret = vmw_user_lookup_handle(dev_priv, file_priv, 1386 mode_cmd->handles[0], 1387 &surface, &bo); 1388 if (ret) 1389 goto err_out; 1390 1391 1392 if (!bo && 1393 !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) { 1394 DRM_ERROR("Surface size cannot exceed %dx%d", 1395 dev_priv->texture_max_width, 1396 dev_priv->texture_max_height); 1397 goto err_out; 1398 } 1399 1400 1401 vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface, 1402 !(dev_priv->capabilities & SVGA_CAP_3D), 1403 mode_cmd); 1404 if (IS_ERR(vfb)) { 1405 ret = PTR_ERR(vfb); 1406 goto err_out; 1407 } 1408 1409 err_out: 1410 /* vmw_user_lookup_handle takes one ref so does new_fb */ 1411 if (bo) 1412 vmw_bo_unreference(&bo); 1413 if (surface) 1414 vmw_surface_unreference(&surface); 1415 1416 if (ret) { 1417 DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret); 1418 return ERR_PTR(ret); 1419 } 1420 1421 return &vfb->base; 1422 } 1423 1424 /** 1425 * vmw_kms_check_display_memory - Validates display memory required for a 1426 * topology 1427 * @dev: DRM device 1428 * @num_rects: number of drm_rect in rects 1429 * @rects: array of drm_rect representing the topology to validate indexed by 1430 * crtc index. 1431 * 1432 * Returns: 1433 * 0 on success otherwise negative error code 1434 */ 1435 static int vmw_kms_check_display_memory(struct drm_device *dev, 1436 uint32_t num_rects, 1437 struct drm_rect *rects) 1438 { 1439 struct vmw_private *dev_priv = vmw_priv(dev); 1440 struct drm_rect bounding_box = {0}; 1441 u64 total_pixels = 0, pixel_mem, bb_mem; 1442 int i; 1443 1444 for (i = 0; i < num_rects; i++) { 1445 /* 1446 * For STDU only individual screen (screen target) is limited by 1447 * SCREENTARGET_MAX_WIDTH/HEIGHT registers. 1448 */ 1449 if (dev_priv->active_display_unit == vmw_du_screen_target && 1450 (drm_rect_width(&rects[i]) > dev_priv->stdu_max_width || 1451 drm_rect_height(&rects[i]) > dev_priv->stdu_max_height)) { 1452 VMW_DEBUG_KMS("Screen size not supported.\n"); 1453 return -EINVAL; 1454 } 1455 1456 /* Bounding box upper left is at (0,0). */ 1457 if (rects[i].x2 > bounding_box.x2) 1458 bounding_box.x2 = rects[i].x2; 1459 1460 if (rects[i].y2 > bounding_box.y2) 1461 bounding_box.y2 = rects[i].y2; 1462 1463 total_pixels += (u64) drm_rect_width(&rects[i]) * 1464 (u64) drm_rect_height(&rects[i]); 1465 } 1466 1467 /* Virtual svga device primary limits are always in 32-bpp. */ 1468 pixel_mem = total_pixels * 4; 1469 1470 /* 1471 * For HV10 and below prim_bb_mem is vram size. When 1472 * SVGA_REG_MAX_PRIMARY_BOUNDING_BOX_MEM is not present vram size is 1473 * limit on primary bounding box 1474 */ 1475 if (pixel_mem > dev_priv->max_primary_mem) { 1476 VMW_DEBUG_KMS("Combined output size too large.\n"); 1477 return -EINVAL; 1478 } 1479 1480 /* SVGA_CAP_NO_BB_RESTRICTION is available for STDU only. */ 1481 if (dev_priv->active_display_unit != vmw_du_screen_target || 1482 !(dev_priv->capabilities & SVGA_CAP_NO_BB_RESTRICTION)) { 1483 bb_mem = (u64) bounding_box.x2 * bounding_box.y2 * 4; 1484 1485 if (bb_mem > dev_priv->max_primary_mem) { 1486 VMW_DEBUG_KMS("Topology is beyond supported limits.\n"); 1487 return -EINVAL; 1488 } 1489 } 1490 1491 return 0; 1492 } 1493 1494 /** 1495 * vmw_crtc_state_and_lock - Return new or current crtc state with locked 1496 * crtc mutex 1497 * @state: The atomic state pointer containing the new atomic state 1498 * @crtc: The crtc 1499 * 1500 * This function returns the new crtc state if it's part of the state update. 1501 * Otherwise returns the current crtc state. It also makes sure that the 1502 * crtc mutex is locked. 1503 * 1504 * Returns: A valid crtc state pointer or NULL. It may also return a 1505 * pointer error, in particular -EDEADLK if locking needs to be rerun. 1506 */ 1507 static struct drm_crtc_state * 1508 vmw_crtc_state_and_lock(struct drm_atomic_state *state, struct drm_crtc *crtc) 1509 { 1510 struct drm_crtc_state *crtc_state; 1511 1512 crtc_state = drm_atomic_get_new_crtc_state(state, crtc); 1513 if (crtc_state) { 1514 lockdep_assert_held(&crtc->mutex.mutex.base); 1515 } else { 1516 int ret = drm_modeset_lock(&crtc->mutex, state->acquire_ctx); 1517 1518 if (ret != 0 && ret != -EALREADY) 1519 return ERR_PTR(ret); 1520 1521 crtc_state = crtc->state; 1522 } 1523 1524 return crtc_state; 1525 } 1526 1527 /** 1528 * vmw_kms_check_implicit - Verify that all implicit display units scan out 1529 * from the same fb after the new state is committed. 1530 * @dev: The drm_device. 1531 * @state: The new state to be checked. 1532 * 1533 * Returns: 1534 * Zero on success, 1535 * -EINVAL on invalid state, 1536 * -EDEADLK if modeset locking needs to be rerun. 1537 */ 1538 static int vmw_kms_check_implicit(struct drm_device *dev, 1539 struct drm_atomic_state *state) 1540 { 1541 struct drm_framebuffer *implicit_fb = NULL; 1542 struct drm_crtc *crtc; 1543 struct drm_crtc_state *crtc_state; 1544 struct drm_plane_state *plane_state; 1545 1546 drm_for_each_crtc(crtc, dev) { 1547 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 1548 1549 if (!du->is_implicit) 1550 continue; 1551 1552 crtc_state = vmw_crtc_state_and_lock(state, crtc); 1553 if (IS_ERR(crtc_state)) 1554 return PTR_ERR(crtc_state); 1555 1556 if (!crtc_state || !crtc_state->enable) 1557 continue; 1558 1559 /* 1560 * Can't move primary planes across crtcs, so this is OK. 1561 * It also means we don't need to take the plane mutex. 1562 */ 1563 plane_state = du->primary.state; 1564 if (plane_state->crtc != crtc) 1565 continue; 1566 1567 if (!implicit_fb) 1568 implicit_fb = plane_state->fb; 1569 else if (implicit_fb != plane_state->fb) 1570 return -EINVAL; 1571 } 1572 1573 return 0; 1574 } 1575 1576 /** 1577 * vmw_kms_check_topology - Validates topology in drm_atomic_state 1578 * @dev: DRM device 1579 * @state: the driver state object 1580 * 1581 * Returns: 1582 * 0 on success otherwise negative error code 1583 */ 1584 static int vmw_kms_check_topology(struct drm_device *dev, 1585 struct drm_atomic_state *state) 1586 { 1587 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 1588 struct drm_rect *rects; 1589 struct drm_crtc *crtc; 1590 uint32_t i; 1591 int ret = 0; 1592 1593 rects = kcalloc(dev->mode_config.num_crtc, sizeof(struct drm_rect), 1594 GFP_KERNEL); 1595 if (!rects) 1596 return -ENOMEM; 1597 1598 drm_for_each_crtc(crtc, dev) { 1599 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 1600 struct drm_crtc_state *crtc_state; 1601 1602 i = drm_crtc_index(crtc); 1603 1604 crtc_state = vmw_crtc_state_and_lock(state, crtc); 1605 if (IS_ERR(crtc_state)) { 1606 ret = PTR_ERR(crtc_state); 1607 goto clean; 1608 } 1609 1610 if (!crtc_state) 1611 continue; 1612 1613 if (crtc_state->enable) { 1614 rects[i].x1 = du->gui_x; 1615 rects[i].y1 = du->gui_y; 1616 rects[i].x2 = du->gui_x + crtc_state->mode.hdisplay; 1617 rects[i].y2 = du->gui_y + crtc_state->mode.vdisplay; 1618 } else { 1619 rects[i].x1 = 0; 1620 rects[i].y1 = 0; 1621 rects[i].x2 = 0; 1622 rects[i].y2 = 0; 1623 } 1624 } 1625 1626 /* Determine change to topology due to new atomic state */ 1627 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, 1628 new_crtc_state, i) { 1629 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 1630 struct drm_connector *connector; 1631 struct drm_connector_state *conn_state; 1632 struct vmw_connector_state *vmw_conn_state; 1633 1634 if (!du->pref_active && new_crtc_state->enable) { 1635 VMW_DEBUG_KMS("Enabling a disabled display unit\n"); 1636 ret = -EINVAL; 1637 goto clean; 1638 } 1639 1640 /* 1641 * For vmwgfx each crtc has only one connector attached and it 1642 * is not changed so don't really need to check the 1643 * crtc->connector_mask and iterate over it. 1644 */ 1645 connector = &du->connector; 1646 conn_state = drm_atomic_get_connector_state(state, connector); 1647 if (IS_ERR(conn_state)) { 1648 ret = PTR_ERR(conn_state); 1649 goto clean; 1650 } 1651 1652 vmw_conn_state = vmw_connector_state_to_vcs(conn_state); 1653 vmw_conn_state->gui_x = du->gui_x; 1654 vmw_conn_state->gui_y = du->gui_y; 1655 } 1656 1657 ret = vmw_kms_check_display_memory(dev, dev->mode_config.num_crtc, 1658 rects); 1659 1660 clean: 1661 kfree(rects); 1662 return ret; 1663 } 1664 1665 /** 1666 * vmw_kms_atomic_check_modeset- validate state object for modeset changes 1667 * 1668 * @dev: DRM device 1669 * @state: the driver state object 1670 * 1671 * This is a simple wrapper around drm_atomic_helper_check_modeset() for 1672 * us to assign a value to mode->crtc_clock so that 1673 * drm_calc_timestamping_constants() won't throw an error message 1674 * 1675 * Returns: 1676 * Zero for success or -errno 1677 */ 1678 static int 1679 vmw_kms_atomic_check_modeset(struct drm_device *dev, 1680 struct drm_atomic_state *state) 1681 { 1682 struct drm_crtc *crtc; 1683 struct drm_crtc_state *crtc_state; 1684 bool need_modeset = false; 1685 int i, ret; 1686 1687 ret = drm_atomic_helper_check(dev, state); 1688 if (ret) 1689 return ret; 1690 1691 ret = vmw_kms_check_implicit(dev, state); 1692 if (ret) { 1693 VMW_DEBUG_KMS("Invalid implicit state\n"); 1694 return ret; 1695 } 1696 1697 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 1698 if (drm_atomic_crtc_needs_modeset(crtc_state)) 1699 need_modeset = true; 1700 } 1701 1702 if (need_modeset) 1703 return vmw_kms_check_topology(dev, state); 1704 1705 return ret; 1706 } 1707 1708 static const struct drm_mode_config_funcs vmw_kms_funcs = { 1709 .fb_create = vmw_kms_fb_create, 1710 .atomic_check = vmw_kms_atomic_check_modeset, 1711 .atomic_commit = drm_atomic_helper_commit, 1712 }; 1713 1714 static int vmw_kms_generic_present(struct vmw_private *dev_priv, 1715 struct drm_file *file_priv, 1716 struct vmw_framebuffer *vfb, 1717 struct vmw_surface *surface, 1718 uint32_t sid, 1719 int32_t destX, int32_t destY, 1720 struct drm_vmw_rect *clips, 1721 uint32_t num_clips) 1722 { 1723 return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips, 1724 &surface->res, destX, destY, 1725 num_clips, 1, NULL, NULL); 1726 } 1727 1728 1729 int vmw_kms_present(struct vmw_private *dev_priv, 1730 struct drm_file *file_priv, 1731 struct vmw_framebuffer *vfb, 1732 struct vmw_surface *surface, 1733 uint32_t sid, 1734 int32_t destX, int32_t destY, 1735 struct drm_vmw_rect *clips, 1736 uint32_t num_clips) 1737 { 1738 int ret; 1739 1740 switch (dev_priv->active_display_unit) { 1741 case vmw_du_screen_target: 1742 ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips, 1743 &surface->res, destX, destY, 1744 num_clips, 1, NULL, NULL); 1745 break; 1746 case vmw_du_screen_object: 1747 ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface, 1748 sid, destX, destY, clips, 1749 num_clips); 1750 break; 1751 default: 1752 WARN_ONCE(true, 1753 "Present called with invalid display system.\n"); 1754 ret = -ENOSYS; 1755 break; 1756 } 1757 if (ret) 1758 return ret; 1759 1760 vmw_cmd_flush(dev_priv, false); 1761 1762 return 0; 1763 } 1764 1765 static void 1766 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv) 1767 { 1768 if (dev_priv->hotplug_mode_update_property) 1769 return; 1770 1771 dev_priv->hotplug_mode_update_property = 1772 drm_property_create_range(&dev_priv->drm, 1773 DRM_MODE_PROP_IMMUTABLE, 1774 "hotplug_mode_update", 0, 1); 1775 } 1776 1777 int vmw_kms_init(struct vmw_private *dev_priv) 1778 { 1779 struct drm_device *dev = &dev_priv->drm; 1780 int ret; 1781 static const char *display_unit_names[] = { 1782 "Invalid", 1783 "Legacy", 1784 "Screen Object", 1785 "Screen Target", 1786 "Invalid (max)" 1787 }; 1788 1789 drm_mode_config_init(dev); 1790 dev->mode_config.funcs = &vmw_kms_funcs; 1791 dev->mode_config.min_width = 1; 1792 dev->mode_config.min_height = 1; 1793 dev->mode_config.max_width = dev_priv->texture_max_width; 1794 dev->mode_config.max_height = dev_priv->texture_max_height; 1795 1796 drm_mode_create_suggested_offset_properties(dev); 1797 vmw_kms_create_hotplug_mode_update_property(dev_priv); 1798 1799 ret = vmw_kms_stdu_init_display(dev_priv); 1800 if (ret) { 1801 ret = vmw_kms_sou_init_display(dev_priv); 1802 if (ret) /* Fallback */ 1803 ret = vmw_kms_ldu_init_display(dev_priv); 1804 } 1805 BUILD_BUG_ON(ARRAY_SIZE(display_unit_names) != (vmw_du_max + 1)); 1806 drm_info(&dev_priv->drm, "%s display unit initialized\n", 1807 display_unit_names[dev_priv->active_display_unit]); 1808 1809 return ret; 1810 } 1811 1812 int vmw_kms_close(struct vmw_private *dev_priv) 1813 { 1814 int ret = 0; 1815 1816 /* 1817 * Docs says we should take the lock before calling this function 1818 * but since it destroys encoders and our destructor calls 1819 * drm_encoder_cleanup which takes the lock we deadlock. 1820 */ 1821 drm_mode_config_cleanup(&dev_priv->drm); 1822 if (dev_priv->active_display_unit == vmw_du_legacy) 1823 ret = vmw_kms_ldu_close_display(dev_priv); 1824 1825 return ret; 1826 } 1827 1828 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data, 1829 struct drm_file *file_priv) 1830 { 1831 struct drm_vmw_cursor_bypass_arg *arg = data; 1832 struct vmw_display_unit *du; 1833 struct drm_crtc *crtc; 1834 int ret = 0; 1835 1836 1837 mutex_lock(&dev->mode_config.mutex); 1838 if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) { 1839 1840 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 1841 du = vmw_crtc_to_du(crtc); 1842 du->hotspot_x = arg->xhot; 1843 du->hotspot_y = arg->yhot; 1844 } 1845 1846 mutex_unlock(&dev->mode_config.mutex); 1847 return 0; 1848 } 1849 1850 crtc = drm_crtc_find(dev, file_priv, arg->crtc_id); 1851 if (!crtc) { 1852 ret = -ENOENT; 1853 goto out; 1854 } 1855 1856 du = vmw_crtc_to_du(crtc); 1857 1858 du->hotspot_x = arg->xhot; 1859 du->hotspot_y = arg->yhot; 1860 1861 out: 1862 mutex_unlock(&dev->mode_config.mutex); 1863 1864 return ret; 1865 } 1866 1867 int vmw_kms_write_svga(struct vmw_private *vmw_priv, 1868 unsigned width, unsigned height, unsigned pitch, 1869 unsigned bpp, unsigned depth) 1870 { 1871 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK) 1872 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch); 1873 else if (vmw_fifo_have_pitchlock(vmw_priv)) 1874 vmw_fifo_mem_write(vmw_priv, SVGA_FIFO_PITCHLOCK, pitch); 1875 vmw_write(vmw_priv, SVGA_REG_WIDTH, width); 1876 vmw_write(vmw_priv, SVGA_REG_HEIGHT, height); 1877 if ((vmw_priv->capabilities & SVGA_CAP_8BIT_EMULATION) != 0) 1878 vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp); 1879 1880 if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) { 1881 DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n", 1882 depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH)); 1883 return -EINVAL; 1884 } 1885 1886 return 0; 1887 } 1888 1889 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv, 1890 uint32_t pitch, 1891 uint32_t height) 1892 { 1893 return ((u64) pitch * (u64) height) < (u64) 1894 ((dev_priv->active_display_unit == vmw_du_screen_target) ? 1895 dev_priv->max_primary_mem : dev_priv->vram_size); 1896 } 1897 1898 1899 /* 1900 * Function called by DRM code called with vbl_lock held. 1901 */ 1902 u32 vmw_get_vblank_counter(struct drm_crtc *crtc) 1903 { 1904 return 0; 1905 } 1906 1907 /* 1908 * Function called by DRM code called with vbl_lock held. 1909 */ 1910 int vmw_enable_vblank(struct drm_crtc *crtc) 1911 { 1912 return -EINVAL; 1913 } 1914 1915 /* 1916 * Function called by DRM code called with vbl_lock held. 1917 */ 1918 void vmw_disable_vblank(struct drm_crtc *crtc) 1919 { 1920 } 1921 1922 /** 1923 * vmw_du_update_layout - Update the display unit with topology from resolution 1924 * plugin and generate DRM uevent 1925 * @dev_priv: device private 1926 * @num_rects: number of drm_rect in rects 1927 * @rects: toplogy to update 1928 */ 1929 static int vmw_du_update_layout(struct vmw_private *dev_priv, 1930 unsigned int num_rects, struct drm_rect *rects) 1931 { 1932 struct drm_device *dev = &dev_priv->drm; 1933 struct vmw_display_unit *du; 1934 struct drm_connector *con; 1935 struct drm_connector_list_iter conn_iter; 1936 struct drm_modeset_acquire_ctx ctx; 1937 struct drm_crtc *crtc; 1938 int ret; 1939 1940 /* Currently gui_x/y is protected with the crtc mutex */ 1941 mutex_lock(&dev->mode_config.mutex); 1942 drm_modeset_acquire_init(&ctx, 0); 1943 retry: 1944 drm_for_each_crtc(crtc, dev) { 1945 ret = drm_modeset_lock(&crtc->mutex, &ctx); 1946 if (ret < 0) { 1947 if (ret == -EDEADLK) { 1948 drm_modeset_backoff(&ctx); 1949 goto retry; 1950 } 1951 goto out_fini; 1952 } 1953 } 1954 1955 drm_connector_list_iter_begin(dev, &conn_iter); 1956 drm_for_each_connector_iter(con, &conn_iter) { 1957 du = vmw_connector_to_du(con); 1958 if (num_rects > du->unit) { 1959 du->pref_width = drm_rect_width(&rects[du->unit]); 1960 du->pref_height = drm_rect_height(&rects[du->unit]); 1961 du->pref_active = true; 1962 du->gui_x = rects[du->unit].x1; 1963 du->gui_y = rects[du->unit].y1; 1964 } else { 1965 du->pref_width = 800; 1966 du->pref_height = 600; 1967 du->pref_active = false; 1968 du->gui_x = 0; 1969 du->gui_y = 0; 1970 } 1971 } 1972 drm_connector_list_iter_end(&conn_iter); 1973 1974 list_for_each_entry(con, &dev->mode_config.connector_list, head) { 1975 du = vmw_connector_to_du(con); 1976 if (num_rects > du->unit) { 1977 drm_object_property_set_value 1978 (&con->base, dev->mode_config.suggested_x_property, 1979 du->gui_x); 1980 drm_object_property_set_value 1981 (&con->base, dev->mode_config.suggested_y_property, 1982 du->gui_y); 1983 } else { 1984 drm_object_property_set_value 1985 (&con->base, dev->mode_config.suggested_x_property, 1986 0); 1987 drm_object_property_set_value 1988 (&con->base, dev->mode_config.suggested_y_property, 1989 0); 1990 } 1991 con->status = vmw_du_connector_detect(con, true); 1992 } 1993 1994 drm_sysfs_hotplug_event(dev); 1995 out_fini: 1996 drm_modeset_drop_locks(&ctx); 1997 drm_modeset_acquire_fini(&ctx); 1998 mutex_unlock(&dev->mode_config.mutex); 1999 2000 return 0; 2001 } 2002 2003 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc, 2004 u16 *r, u16 *g, u16 *b, 2005 uint32_t size, 2006 struct drm_modeset_acquire_ctx *ctx) 2007 { 2008 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 2009 int i; 2010 2011 for (i = 0; i < size; i++) { 2012 DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i, 2013 r[i], g[i], b[i]); 2014 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8); 2015 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8); 2016 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8); 2017 } 2018 2019 return 0; 2020 } 2021 2022 int vmw_du_connector_dpms(struct drm_connector *connector, int mode) 2023 { 2024 return 0; 2025 } 2026 2027 enum drm_connector_status 2028 vmw_du_connector_detect(struct drm_connector *connector, bool force) 2029 { 2030 uint32_t num_displays; 2031 struct drm_device *dev = connector->dev; 2032 struct vmw_private *dev_priv = vmw_priv(dev); 2033 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2034 2035 num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS); 2036 2037 return ((vmw_connector_to_du(connector)->unit < num_displays && 2038 du->pref_active) ? 2039 connector_status_connected : connector_status_disconnected); 2040 } 2041 2042 static struct drm_display_mode vmw_kms_connector_builtin[] = { 2043 /* 640x480@60Hz */ 2044 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656, 2045 752, 800, 0, 480, 489, 492, 525, 0, 2046 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 2047 /* 800x600@60Hz */ 2048 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840, 2049 968, 1056, 0, 600, 601, 605, 628, 0, 2050 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2051 /* 1024x768@60Hz */ 2052 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048, 2053 1184, 1344, 0, 768, 771, 777, 806, 0, 2054 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 2055 /* 1152x864@75Hz */ 2056 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216, 2057 1344, 1600, 0, 864, 865, 868, 900, 0, 2058 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2059 /* 1280x720@60Hz */ 2060 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74500, 1280, 1344, 2061 1472, 1664, 0, 720, 723, 728, 748, 0, 2062 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2063 /* 1280x768@60Hz */ 2064 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344, 2065 1472, 1664, 0, 768, 771, 778, 798, 0, 2066 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2067 /* 1280x800@60Hz */ 2068 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352, 2069 1480, 1680, 0, 800, 803, 809, 831, 0, 2070 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 2071 /* 1280x960@60Hz */ 2072 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376, 2073 1488, 1800, 0, 960, 961, 964, 1000, 0, 2074 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2075 /* 1280x1024@60Hz */ 2076 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328, 2077 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, 2078 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2079 /* 1360x768@60Hz */ 2080 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424, 2081 1536, 1792, 0, 768, 771, 777, 795, 0, 2082 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2083 /* 1440x1050@60Hz */ 2084 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488, 2085 1632, 1864, 0, 1050, 1053, 1057, 1089, 0, 2086 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2087 /* 1440x900@60Hz */ 2088 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520, 2089 1672, 1904, 0, 900, 903, 909, 934, 0, 2090 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2091 /* 1600x1200@60Hz */ 2092 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664, 2093 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 2094 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2095 /* 1680x1050@60Hz */ 2096 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784, 2097 1960, 2240, 0, 1050, 1053, 1059, 1089, 0, 2098 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2099 /* 1792x1344@60Hz */ 2100 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920, 2101 2120, 2448, 0, 1344, 1345, 1348, 1394, 0, 2102 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2103 /* 1853x1392@60Hz */ 2104 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952, 2105 2176, 2528, 0, 1392, 1393, 1396, 1439, 0, 2106 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2107 /* 1920x1080@60Hz */ 2108 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 173000, 1920, 2048, 2109 2248, 2576, 0, 1080, 1083, 1088, 1120, 0, 2110 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2111 /* 1920x1200@60Hz */ 2112 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056, 2113 2256, 2592, 0, 1200, 1203, 1209, 1245, 0, 2114 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2115 /* 1920x1440@60Hz */ 2116 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048, 2117 2256, 2600, 0, 1440, 1441, 1444, 1500, 0, 2118 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2119 /* 2560x1440@60Hz */ 2120 { DRM_MODE("2560x1440", DRM_MODE_TYPE_DRIVER, 241500, 2560, 2608, 2121 2640, 2720, 0, 1440, 1443, 1448, 1481, 0, 2122 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 2123 /* 2560x1600@60Hz */ 2124 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752, 2125 3032, 3504, 0, 1600, 1603, 1609, 1658, 0, 2126 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2127 /* 2880x1800@60Hz */ 2128 { DRM_MODE("2880x1800", DRM_MODE_TYPE_DRIVER, 337500, 2880, 2928, 2129 2960, 3040, 0, 1800, 1803, 1809, 1852, 0, 2130 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 2131 /* 3840x2160@60Hz */ 2132 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 533000, 3840, 3888, 2133 3920, 4000, 0, 2160, 2163, 2168, 2222, 0, 2134 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 2135 /* 3840x2400@60Hz */ 2136 { DRM_MODE("3840x2400", DRM_MODE_TYPE_DRIVER, 592250, 3840, 3888, 2137 3920, 4000, 0, 2400, 2403, 2409, 2469, 0, 2138 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 2139 /* Terminate */ 2140 { DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) }, 2141 }; 2142 2143 /** 2144 * vmw_guess_mode_timing - Provide fake timings for a 2145 * 60Hz vrefresh mode. 2146 * 2147 * @mode: Pointer to a struct drm_display_mode with hdisplay and vdisplay 2148 * members filled in. 2149 */ 2150 void vmw_guess_mode_timing(struct drm_display_mode *mode) 2151 { 2152 mode->hsync_start = mode->hdisplay + 50; 2153 mode->hsync_end = mode->hsync_start + 50; 2154 mode->htotal = mode->hsync_end + 50; 2155 2156 mode->vsync_start = mode->vdisplay + 50; 2157 mode->vsync_end = mode->vsync_start + 50; 2158 mode->vtotal = mode->vsync_end + 50; 2159 2160 mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6; 2161 } 2162 2163 2164 int vmw_du_connector_fill_modes(struct drm_connector *connector, 2165 uint32_t max_width, uint32_t max_height) 2166 { 2167 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2168 struct drm_device *dev = connector->dev; 2169 struct vmw_private *dev_priv = vmw_priv(dev); 2170 struct drm_display_mode *mode = NULL; 2171 struct drm_display_mode *bmode; 2172 struct drm_display_mode prefmode = { DRM_MODE("preferred", 2173 DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED, 2174 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2175 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) 2176 }; 2177 int i; 2178 u32 assumed_bpp = 4; 2179 2180 if (dev_priv->assume_16bpp) 2181 assumed_bpp = 2; 2182 2183 max_width = min(max_width, dev_priv->texture_max_width); 2184 max_height = min(max_height, dev_priv->texture_max_height); 2185 2186 /* 2187 * For STDU extra limit for a mode on SVGA_REG_SCREENTARGET_MAX_WIDTH/ 2188 * HEIGHT registers. 2189 */ 2190 if (dev_priv->active_display_unit == vmw_du_screen_target) { 2191 max_width = min(max_width, dev_priv->stdu_max_width); 2192 max_height = min(max_height, dev_priv->stdu_max_height); 2193 } 2194 2195 /* Add preferred mode */ 2196 mode = drm_mode_duplicate(dev, &prefmode); 2197 if (!mode) 2198 return 0; 2199 mode->hdisplay = du->pref_width; 2200 mode->vdisplay = du->pref_height; 2201 vmw_guess_mode_timing(mode); 2202 drm_mode_set_name(mode); 2203 2204 if (vmw_kms_validate_mode_vram(dev_priv, 2205 mode->hdisplay * assumed_bpp, 2206 mode->vdisplay)) { 2207 drm_mode_probed_add(connector, mode); 2208 } else { 2209 drm_mode_destroy(dev, mode); 2210 mode = NULL; 2211 } 2212 2213 if (du->pref_mode) { 2214 list_del_init(&du->pref_mode->head); 2215 drm_mode_destroy(dev, du->pref_mode); 2216 } 2217 2218 /* mode might be null here, this is intended */ 2219 du->pref_mode = mode; 2220 2221 for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) { 2222 bmode = &vmw_kms_connector_builtin[i]; 2223 if (bmode->hdisplay > max_width || 2224 bmode->vdisplay > max_height) 2225 continue; 2226 2227 if (!vmw_kms_validate_mode_vram(dev_priv, 2228 bmode->hdisplay * assumed_bpp, 2229 bmode->vdisplay)) 2230 continue; 2231 2232 mode = drm_mode_duplicate(dev, bmode); 2233 if (!mode) 2234 return 0; 2235 2236 drm_mode_probed_add(connector, mode); 2237 } 2238 2239 drm_connector_list_update(connector); 2240 /* Move the prefered mode first, help apps pick the right mode. */ 2241 drm_mode_sort(&connector->modes); 2242 2243 return 1; 2244 } 2245 2246 /** 2247 * vmw_kms_update_layout_ioctl - Handler for DRM_VMW_UPDATE_LAYOUT ioctl 2248 * @dev: drm device for the ioctl 2249 * @data: data pointer for the ioctl 2250 * @file_priv: drm file for the ioctl call 2251 * 2252 * Update preferred topology of display unit as per ioctl request. The topology 2253 * is expressed as array of drm_vmw_rect. 2254 * e.g. 2255 * [0 0 640 480] [640 0 800 600] [0 480 640 480] 2256 * 2257 * NOTE: 2258 * The x and y offset (upper left) in drm_vmw_rect cannot be less than 0. Beside 2259 * device limit on topology, x + w and y + h (lower right) cannot be greater 2260 * than INT_MAX. So topology beyond these limits will return with error. 2261 * 2262 * Returns: 2263 * Zero on success, negative errno on failure. 2264 */ 2265 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data, 2266 struct drm_file *file_priv) 2267 { 2268 struct vmw_private *dev_priv = vmw_priv(dev); 2269 struct drm_mode_config *mode_config = &dev->mode_config; 2270 struct drm_vmw_update_layout_arg *arg = 2271 (struct drm_vmw_update_layout_arg *)data; 2272 void __user *user_rects; 2273 struct drm_vmw_rect *rects; 2274 struct drm_rect *drm_rects; 2275 unsigned rects_size; 2276 int ret, i; 2277 2278 if (!arg->num_outputs) { 2279 struct drm_rect def_rect = {0, 0, 800, 600}; 2280 VMW_DEBUG_KMS("Default layout x1 = %d y1 = %d x2 = %d y2 = %d\n", 2281 def_rect.x1, def_rect.y1, 2282 def_rect.x2, def_rect.y2); 2283 vmw_du_update_layout(dev_priv, 1, &def_rect); 2284 return 0; 2285 } 2286 2287 rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect); 2288 rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect), 2289 GFP_KERNEL); 2290 if (unlikely(!rects)) 2291 return -ENOMEM; 2292 2293 user_rects = (void __user *)(unsigned long)arg->rects; 2294 ret = copy_from_user(rects, user_rects, rects_size); 2295 if (unlikely(ret != 0)) { 2296 DRM_ERROR("Failed to get rects.\n"); 2297 ret = -EFAULT; 2298 goto out_free; 2299 } 2300 2301 drm_rects = (struct drm_rect *)rects; 2302 2303 VMW_DEBUG_KMS("Layout count = %u\n", arg->num_outputs); 2304 for (i = 0; i < arg->num_outputs; i++) { 2305 struct drm_vmw_rect curr_rect; 2306 2307 /* Verify user-space for overflow as kernel use drm_rect */ 2308 if ((rects[i].x + rects[i].w > INT_MAX) || 2309 (rects[i].y + rects[i].h > INT_MAX)) { 2310 ret = -ERANGE; 2311 goto out_free; 2312 } 2313 2314 curr_rect = rects[i]; 2315 drm_rects[i].x1 = curr_rect.x; 2316 drm_rects[i].y1 = curr_rect.y; 2317 drm_rects[i].x2 = curr_rect.x + curr_rect.w; 2318 drm_rects[i].y2 = curr_rect.y + curr_rect.h; 2319 2320 VMW_DEBUG_KMS(" x1 = %d y1 = %d x2 = %d y2 = %d\n", 2321 drm_rects[i].x1, drm_rects[i].y1, 2322 drm_rects[i].x2, drm_rects[i].y2); 2323 2324 /* 2325 * Currently this check is limiting the topology within 2326 * mode_config->max (which actually is max texture size 2327 * supported by virtual device). This limit is here to address 2328 * window managers that create a big framebuffer for whole 2329 * topology. 2330 */ 2331 if (drm_rects[i].x1 < 0 || drm_rects[i].y1 < 0 || 2332 drm_rects[i].x2 > mode_config->max_width || 2333 drm_rects[i].y2 > mode_config->max_height) { 2334 VMW_DEBUG_KMS("Invalid layout %d %d %d %d\n", 2335 drm_rects[i].x1, drm_rects[i].y1, 2336 drm_rects[i].x2, drm_rects[i].y2); 2337 ret = -EINVAL; 2338 goto out_free; 2339 } 2340 } 2341 2342 ret = vmw_kms_check_display_memory(dev, arg->num_outputs, drm_rects); 2343 2344 if (ret == 0) 2345 vmw_du_update_layout(dev_priv, arg->num_outputs, drm_rects); 2346 2347 out_free: 2348 kfree(rects); 2349 return ret; 2350 } 2351 2352 /** 2353 * vmw_kms_helper_dirty - Helper to build commands and perform actions based 2354 * on a set of cliprects and a set of display units. 2355 * 2356 * @dev_priv: Pointer to a device private structure. 2357 * @framebuffer: Pointer to the framebuffer on which to perform the actions. 2358 * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL. 2359 * Cliprects are given in framebuffer coordinates. 2360 * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must 2361 * be NULL. Cliprects are given in source coordinates. 2362 * @dest_x: X coordinate offset for the crtc / destination clip rects. 2363 * @dest_y: Y coordinate offset for the crtc / destination clip rects. 2364 * @num_clips: Number of cliprects in the @clips or @vclips array. 2365 * @increment: Integer with which to increment the clip counter when looping. 2366 * Used to skip a predetermined number of clip rects. 2367 * @dirty: Closure structure. See the description of struct vmw_kms_dirty. 2368 */ 2369 int vmw_kms_helper_dirty(struct vmw_private *dev_priv, 2370 struct vmw_framebuffer *framebuffer, 2371 const struct drm_clip_rect *clips, 2372 const struct drm_vmw_rect *vclips, 2373 s32 dest_x, s32 dest_y, 2374 int num_clips, 2375 int increment, 2376 struct vmw_kms_dirty *dirty) 2377 { 2378 struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS]; 2379 struct drm_crtc *crtc; 2380 u32 num_units = 0; 2381 u32 i, k; 2382 2383 dirty->dev_priv = dev_priv; 2384 2385 /* If crtc is passed, no need to iterate over other display units */ 2386 if (dirty->crtc) { 2387 units[num_units++] = vmw_crtc_to_du(dirty->crtc); 2388 } else { 2389 list_for_each_entry(crtc, &dev_priv->drm.mode_config.crtc_list, 2390 head) { 2391 struct drm_plane *plane = crtc->primary; 2392 2393 if (plane->state->fb == &framebuffer->base) 2394 units[num_units++] = vmw_crtc_to_du(crtc); 2395 } 2396 } 2397 2398 for (k = 0; k < num_units; k++) { 2399 struct vmw_display_unit *unit = units[k]; 2400 s32 crtc_x = unit->crtc.x; 2401 s32 crtc_y = unit->crtc.y; 2402 s32 crtc_width = unit->crtc.mode.hdisplay; 2403 s32 crtc_height = unit->crtc.mode.vdisplay; 2404 const struct drm_clip_rect *clips_ptr = clips; 2405 const struct drm_vmw_rect *vclips_ptr = vclips; 2406 2407 dirty->unit = unit; 2408 if (dirty->fifo_reserve_size > 0) { 2409 dirty->cmd = VMW_CMD_RESERVE(dev_priv, 2410 dirty->fifo_reserve_size); 2411 if (!dirty->cmd) 2412 return -ENOMEM; 2413 2414 memset(dirty->cmd, 0, dirty->fifo_reserve_size); 2415 } 2416 dirty->num_hits = 0; 2417 for (i = 0; i < num_clips; i++, clips_ptr += increment, 2418 vclips_ptr += increment) { 2419 s32 clip_left; 2420 s32 clip_top; 2421 2422 /* 2423 * Select clip array type. Note that integer type 2424 * in @clips is unsigned short, whereas in @vclips 2425 * it's 32-bit. 2426 */ 2427 if (clips) { 2428 dirty->fb_x = (s32) clips_ptr->x1; 2429 dirty->fb_y = (s32) clips_ptr->y1; 2430 dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x - 2431 crtc_x; 2432 dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y - 2433 crtc_y; 2434 } else { 2435 dirty->fb_x = vclips_ptr->x; 2436 dirty->fb_y = vclips_ptr->y; 2437 dirty->unit_x2 = dirty->fb_x + vclips_ptr->w + 2438 dest_x - crtc_x; 2439 dirty->unit_y2 = dirty->fb_y + vclips_ptr->h + 2440 dest_y - crtc_y; 2441 } 2442 2443 dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x; 2444 dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y; 2445 2446 /* Skip this clip if it's outside the crtc region */ 2447 if (dirty->unit_x1 >= crtc_width || 2448 dirty->unit_y1 >= crtc_height || 2449 dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0) 2450 continue; 2451 2452 /* Clip right and bottom to crtc limits */ 2453 dirty->unit_x2 = min_t(s32, dirty->unit_x2, 2454 crtc_width); 2455 dirty->unit_y2 = min_t(s32, dirty->unit_y2, 2456 crtc_height); 2457 2458 /* Clip left and top to crtc limits */ 2459 clip_left = min_t(s32, dirty->unit_x1, 0); 2460 clip_top = min_t(s32, dirty->unit_y1, 0); 2461 dirty->unit_x1 -= clip_left; 2462 dirty->unit_y1 -= clip_top; 2463 dirty->fb_x -= clip_left; 2464 dirty->fb_y -= clip_top; 2465 2466 dirty->clip(dirty); 2467 } 2468 2469 dirty->fifo_commit(dirty); 2470 } 2471 2472 return 0; 2473 } 2474 2475 /** 2476 * vmw_kms_helper_validation_finish - Helper for post KMS command submission 2477 * cleanup and fencing 2478 * @dev_priv: Pointer to the device-private struct 2479 * @file_priv: Pointer identifying the client when user-space fencing is used 2480 * @ctx: Pointer to the validation context 2481 * @out_fence: If non-NULL, returned refcounted fence-pointer 2482 * @user_fence_rep: If non-NULL, pointer to user-space address area 2483 * in which to copy user-space fence info 2484 */ 2485 void vmw_kms_helper_validation_finish(struct vmw_private *dev_priv, 2486 struct drm_file *file_priv, 2487 struct vmw_validation_context *ctx, 2488 struct vmw_fence_obj **out_fence, 2489 struct drm_vmw_fence_rep __user * 2490 user_fence_rep) 2491 { 2492 struct vmw_fence_obj *fence = NULL; 2493 uint32_t handle = 0; 2494 int ret = 0; 2495 2496 if (file_priv || user_fence_rep || vmw_validation_has_bos(ctx) || 2497 out_fence) 2498 ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence, 2499 file_priv ? &handle : NULL); 2500 vmw_validation_done(ctx, fence); 2501 if (file_priv) 2502 vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv), 2503 ret, user_fence_rep, fence, 2504 handle, -1, NULL); 2505 if (out_fence) 2506 *out_fence = fence; 2507 else 2508 vmw_fence_obj_unreference(&fence); 2509 } 2510 2511 /** 2512 * vmw_kms_update_proxy - Helper function to update a proxy surface from 2513 * its backing MOB. 2514 * 2515 * @res: Pointer to the surface resource 2516 * @clips: Clip rects in framebuffer (surface) space. 2517 * @num_clips: Number of clips in @clips. 2518 * @increment: Integer with which to increment the clip counter when looping. 2519 * Used to skip a predetermined number of clip rects. 2520 * 2521 * This function makes sure the proxy surface is updated from its backing MOB 2522 * using the region given by @clips. The surface resource @res and its backing 2523 * MOB needs to be reserved and validated on call. 2524 */ 2525 int vmw_kms_update_proxy(struct vmw_resource *res, 2526 const struct drm_clip_rect *clips, 2527 unsigned num_clips, 2528 int increment) 2529 { 2530 struct vmw_private *dev_priv = res->dev_priv; 2531 struct drm_vmw_size *size = &vmw_res_to_srf(res)->metadata.base_size; 2532 struct { 2533 SVGA3dCmdHeader header; 2534 SVGA3dCmdUpdateGBImage body; 2535 } *cmd; 2536 SVGA3dBox *box; 2537 size_t copy_size = 0; 2538 int i; 2539 2540 if (!clips) 2541 return 0; 2542 2543 cmd = VMW_CMD_RESERVE(dev_priv, sizeof(*cmd) * num_clips); 2544 if (!cmd) 2545 return -ENOMEM; 2546 2547 for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) { 2548 box = &cmd->body.box; 2549 2550 cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE; 2551 cmd->header.size = sizeof(cmd->body); 2552 cmd->body.image.sid = res->id; 2553 cmd->body.image.face = 0; 2554 cmd->body.image.mipmap = 0; 2555 2556 if (clips->x1 > size->width || clips->x2 > size->width || 2557 clips->y1 > size->height || clips->y2 > size->height) { 2558 DRM_ERROR("Invalid clips outsize of framebuffer.\n"); 2559 return -EINVAL; 2560 } 2561 2562 box->x = clips->x1; 2563 box->y = clips->y1; 2564 box->z = 0; 2565 box->w = clips->x2 - clips->x1; 2566 box->h = clips->y2 - clips->y1; 2567 box->d = 1; 2568 2569 copy_size += sizeof(*cmd); 2570 } 2571 2572 vmw_cmd_commit(dev_priv, copy_size); 2573 2574 return 0; 2575 } 2576 2577 int vmw_kms_fbdev_init_data(struct vmw_private *dev_priv, 2578 unsigned unit, 2579 u32 max_width, 2580 u32 max_height, 2581 struct drm_connector **p_con, 2582 struct drm_crtc **p_crtc, 2583 struct drm_display_mode **p_mode) 2584 { 2585 struct drm_connector *con; 2586 struct vmw_display_unit *du; 2587 struct drm_display_mode *mode; 2588 int i = 0; 2589 int ret = 0; 2590 2591 mutex_lock(&dev_priv->drm.mode_config.mutex); 2592 list_for_each_entry(con, &dev_priv->drm.mode_config.connector_list, 2593 head) { 2594 if (i == unit) 2595 break; 2596 2597 ++i; 2598 } 2599 2600 if (&con->head == &dev_priv->drm.mode_config.connector_list) { 2601 DRM_ERROR("Could not find initial display unit.\n"); 2602 ret = -EINVAL; 2603 goto out_unlock; 2604 } 2605 2606 if (list_empty(&con->modes)) 2607 (void) vmw_du_connector_fill_modes(con, max_width, max_height); 2608 2609 if (list_empty(&con->modes)) { 2610 DRM_ERROR("Could not find initial display mode.\n"); 2611 ret = -EINVAL; 2612 goto out_unlock; 2613 } 2614 2615 du = vmw_connector_to_du(con); 2616 *p_con = con; 2617 *p_crtc = &du->crtc; 2618 2619 list_for_each_entry(mode, &con->modes, head) { 2620 if (mode->type & DRM_MODE_TYPE_PREFERRED) 2621 break; 2622 } 2623 2624 if (&mode->head == &con->modes) { 2625 WARN_ONCE(true, "Could not find initial preferred mode.\n"); 2626 *p_mode = list_first_entry(&con->modes, 2627 struct drm_display_mode, 2628 head); 2629 } else { 2630 *p_mode = mode; 2631 } 2632 2633 out_unlock: 2634 mutex_unlock(&dev_priv->drm.mode_config.mutex); 2635 2636 return ret; 2637 } 2638 2639 /** 2640 * vmw_kms_create_implicit_placement_property - Set up the implicit placement 2641 * property. 2642 * 2643 * @dev_priv: Pointer to a device private struct. 2644 * 2645 * Sets up the implicit placement property unless it's already set up. 2646 */ 2647 void 2648 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv) 2649 { 2650 if (dev_priv->implicit_placement_property) 2651 return; 2652 2653 dev_priv->implicit_placement_property = 2654 drm_property_create_range(&dev_priv->drm, 2655 DRM_MODE_PROP_IMMUTABLE, 2656 "implicit_placement", 0, 1); 2657 } 2658 2659 /** 2660 * vmw_kms_suspend - Save modesetting state and turn modesetting off. 2661 * 2662 * @dev: Pointer to the drm device 2663 * Return: 0 on success. Negative error code on failure. 2664 */ 2665 int vmw_kms_suspend(struct drm_device *dev) 2666 { 2667 struct vmw_private *dev_priv = vmw_priv(dev); 2668 2669 dev_priv->suspend_state = drm_atomic_helper_suspend(dev); 2670 if (IS_ERR(dev_priv->suspend_state)) { 2671 int ret = PTR_ERR(dev_priv->suspend_state); 2672 2673 DRM_ERROR("Failed kms suspend: %d\n", ret); 2674 dev_priv->suspend_state = NULL; 2675 2676 return ret; 2677 } 2678 2679 return 0; 2680 } 2681 2682 2683 /** 2684 * vmw_kms_resume - Re-enable modesetting and restore state 2685 * 2686 * @dev: Pointer to the drm device 2687 * Return: 0 on success. Negative error code on failure. 2688 * 2689 * State is resumed from a previous vmw_kms_suspend(). It's illegal 2690 * to call this function without a previous vmw_kms_suspend(). 2691 */ 2692 int vmw_kms_resume(struct drm_device *dev) 2693 { 2694 struct vmw_private *dev_priv = vmw_priv(dev); 2695 int ret; 2696 2697 if (WARN_ON(!dev_priv->suspend_state)) 2698 return 0; 2699 2700 ret = drm_atomic_helper_resume(dev, dev_priv->suspend_state); 2701 dev_priv->suspend_state = NULL; 2702 2703 return ret; 2704 } 2705 2706 /** 2707 * vmw_kms_lost_device - Notify kms that modesetting capabilities will be lost 2708 * 2709 * @dev: Pointer to the drm device 2710 */ 2711 void vmw_kms_lost_device(struct drm_device *dev) 2712 { 2713 drm_atomic_helper_shutdown(dev); 2714 } 2715 2716 /** 2717 * vmw_du_helper_plane_update - Helper to do plane update on a display unit. 2718 * @update: The closure structure. 2719 * 2720 * Call this helper after setting callbacks in &vmw_du_update_plane to do plane 2721 * update on display unit. 2722 * 2723 * Return: 0 on success or a negative error code on failure. 2724 */ 2725 int vmw_du_helper_plane_update(struct vmw_du_update_plane *update) 2726 { 2727 struct drm_plane_state *state = update->plane->state; 2728 struct drm_plane_state *old_state = update->old_state; 2729 struct drm_atomic_helper_damage_iter iter; 2730 struct drm_rect clip; 2731 struct drm_rect bb; 2732 DECLARE_VAL_CONTEXT(val_ctx, NULL, 0); 2733 uint32_t reserved_size = 0; 2734 uint32_t submit_size = 0; 2735 uint32_t curr_size = 0; 2736 uint32_t num_hits = 0; 2737 void *cmd_start; 2738 char *cmd_next; 2739 int ret; 2740 2741 /* 2742 * Iterate in advance to check if really need plane update and find the 2743 * number of clips that actually are in plane src for fifo allocation. 2744 */ 2745 drm_atomic_helper_damage_iter_init(&iter, old_state, state); 2746 drm_atomic_for_each_plane_damage(&iter, &clip) 2747 num_hits++; 2748 2749 if (num_hits == 0) 2750 return 0; 2751 2752 if (update->vfb->bo) { 2753 struct vmw_framebuffer_bo *vfbbo = 2754 container_of(update->vfb, typeof(*vfbbo), base); 2755 2756 ret = vmw_validation_add_bo(&val_ctx, vfbbo->buffer, false, 2757 update->cpu_blit); 2758 } else { 2759 struct vmw_framebuffer_surface *vfbs = 2760 container_of(update->vfb, typeof(*vfbs), base); 2761 2762 ret = vmw_validation_add_resource(&val_ctx, &vfbs->surface->res, 2763 0, VMW_RES_DIRTY_NONE, NULL, 2764 NULL); 2765 } 2766 2767 if (ret) 2768 return ret; 2769 2770 ret = vmw_validation_prepare(&val_ctx, update->mutex, update->intr); 2771 if (ret) 2772 goto out_unref; 2773 2774 reserved_size = update->calc_fifo_size(update, num_hits); 2775 cmd_start = VMW_CMD_RESERVE(update->dev_priv, reserved_size); 2776 if (!cmd_start) { 2777 ret = -ENOMEM; 2778 goto out_revert; 2779 } 2780 2781 cmd_next = cmd_start; 2782 2783 if (update->post_prepare) { 2784 curr_size = update->post_prepare(update, cmd_next); 2785 cmd_next += curr_size; 2786 submit_size += curr_size; 2787 } 2788 2789 if (update->pre_clip) { 2790 curr_size = update->pre_clip(update, cmd_next, num_hits); 2791 cmd_next += curr_size; 2792 submit_size += curr_size; 2793 } 2794 2795 bb.x1 = INT_MAX; 2796 bb.y1 = INT_MAX; 2797 bb.x2 = INT_MIN; 2798 bb.y2 = INT_MIN; 2799 2800 drm_atomic_helper_damage_iter_init(&iter, old_state, state); 2801 drm_atomic_for_each_plane_damage(&iter, &clip) { 2802 uint32_t fb_x = clip.x1; 2803 uint32_t fb_y = clip.y1; 2804 2805 vmw_du_translate_to_crtc(state, &clip); 2806 if (update->clip) { 2807 curr_size = update->clip(update, cmd_next, &clip, fb_x, 2808 fb_y); 2809 cmd_next += curr_size; 2810 submit_size += curr_size; 2811 } 2812 bb.x1 = min_t(int, bb.x1, clip.x1); 2813 bb.y1 = min_t(int, bb.y1, clip.y1); 2814 bb.x2 = max_t(int, bb.x2, clip.x2); 2815 bb.y2 = max_t(int, bb.y2, clip.y2); 2816 } 2817 2818 curr_size = update->post_clip(update, cmd_next, &bb); 2819 submit_size += curr_size; 2820 2821 if (reserved_size < submit_size) 2822 submit_size = 0; 2823 2824 vmw_cmd_commit(update->dev_priv, submit_size); 2825 2826 vmw_kms_helper_validation_finish(update->dev_priv, NULL, &val_ctx, 2827 update->out_fence, NULL); 2828 return ret; 2829 2830 out_revert: 2831 vmw_validation_revert(&val_ctx); 2832 2833 out_unref: 2834 vmw_validation_unref_lists(&val_ctx); 2835 return ret; 2836 } 2837