1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /************************************************************************** 3 * 4 * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 28 #include "vmwgfx_kms.h" 29 #include <drm/drm_plane_helper.h> 30 #include <drm/drm_atomic.h> 31 #include <drm/drm_atomic_helper.h> 32 #include <drm/drm_rect.h> 33 #include <drm/drm_damage_helper.h> 34 35 /* Might need a hrtimer here? */ 36 #define VMWGFX_PRESENT_RATE ((HZ / 60 > 0) ? HZ / 60 : 1) 37 38 void vmw_du_cleanup(struct vmw_display_unit *du) 39 { 40 drm_plane_cleanup(&du->primary); 41 drm_plane_cleanup(&du->cursor); 42 43 drm_connector_unregister(&du->connector); 44 drm_crtc_cleanup(&du->crtc); 45 drm_encoder_cleanup(&du->encoder); 46 drm_connector_cleanup(&du->connector); 47 } 48 49 /* 50 * Display Unit Cursor functions 51 */ 52 53 static int vmw_cursor_update_image(struct vmw_private *dev_priv, 54 u32 *image, u32 width, u32 height, 55 u32 hotspotX, u32 hotspotY) 56 { 57 struct { 58 u32 cmd; 59 SVGAFifoCmdDefineAlphaCursor cursor; 60 } *cmd; 61 u32 image_size = width * height * 4; 62 u32 cmd_size = sizeof(*cmd) + image_size; 63 64 if (!image) 65 return -EINVAL; 66 67 cmd = vmw_fifo_reserve(dev_priv, cmd_size); 68 if (unlikely(cmd == NULL)) { 69 DRM_ERROR("Fifo reserve failed.\n"); 70 return -ENOMEM; 71 } 72 73 memset(cmd, 0, sizeof(*cmd)); 74 75 memcpy(&cmd[1], image, image_size); 76 77 cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR; 78 cmd->cursor.id = 0; 79 cmd->cursor.width = width; 80 cmd->cursor.height = height; 81 cmd->cursor.hotspotX = hotspotX; 82 cmd->cursor.hotspotY = hotspotY; 83 84 vmw_fifo_commit_flush(dev_priv, cmd_size); 85 86 return 0; 87 } 88 89 static int vmw_cursor_update_bo(struct vmw_private *dev_priv, 90 struct vmw_buffer_object *bo, 91 u32 width, u32 height, 92 u32 hotspotX, u32 hotspotY) 93 { 94 struct ttm_bo_kmap_obj map; 95 unsigned long kmap_offset; 96 unsigned long kmap_num; 97 void *virtual; 98 bool dummy; 99 int ret; 100 101 kmap_offset = 0; 102 kmap_num = (width*height*4 + PAGE_SIZE - 1) >> PAGE_SHIFT; 103 104 ret = ttm_bo_reserve(&bo->base, true, false, NULL); 105 if (unlikely(ret != 0)) { 106 DRM_ERROR("reserve failed\n"); 107 return -EINVAL; 108 } 109 110 ret = ttm_bo_kmap(&bo->base, kmap_offset, kmap_num, &map); 111 if (unlikely(ret != 0)) 112 goto err_unreserve; 113 114 virtual = ttm_kmap_obj_virtual(&map, &dummy); 115 ret = vmw_cursor_update_image(dev_priv, virtual, width, height, 116 hotspotX, hotspotY); 117 118 ttm_bo_kunmap(&map); 119 err_unreserve: 120 ttm_bo_unreserve(&bo->base); 121 122 return ret; 123 } 124 125 126 static void vmw_cursor_update_position(struct vmw_private *dev_priv, 127 bool show, int x, int y) 128 { 129 u32 *fifo_mem = dev_priv->mmio_virt; 130 uint32_t count; 131 132 spin_lock(&dev_priv->cursor_lock); 133 vmw_mmio_write(show ? 1 : 0, fifo_mem + SVGA_FIFO_CURSOR_ON); 134 vmw_mmio_write(x, fifo_mem + SVGA_FIFO_CURSOR_X); 135 vmw_mmio_write(y, fifo_mem + SVGA_FIFO_CURSOR_Y); 136 count = vmw_mmio_read(fifo_mem + SVGA_FIFO_CURSOR_COUNT); 137 vmw_mmio_write(++count, fifo_mem + SVGA_FIFO_CURSOR_COUNT); 138 spin_unlock(&dev_priv->cursor_lock); 139 } 140 141 142 void vmw_kms_cursor_snoop(struct vmw_surface *srf, 143 struct ttm_object_file *tfile, 144 struct ttm_buffer_object *bo, 145 SVGA3dCmdHeader *header) 146 { 147 struct ttm_bo_kmap_obj map; 148 unsigned long kmap_offset; 149 unsigned long kmap_num; 150 SVGA3dCopyBox *box; 151 unsigned box_count; 152 void *virtual; 153 bool dummy; 154 struct vmw_dma_cmd { 155 SVGA3dCmdHeader header; 156 SVGA3dCmdSurfaceDMA dma; 157 } *cmd; 158 int i, ret; 159 160 cmd = container_of(header, struct vmw_dma_cmd, header); 161 162 /* No snooper installed */ 163 if (!srf->snooper.image) 164 return; 165 166 if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) { 167 DRM_ERROR("face and mipmap for cursors should never != 0\n"); 168 return; 169 } 170 171 if (cmd->header.size < 64) { 172 DRM_ERROR("at least one full copy box must be given\n"); 173 return; 174 } 175 176 box = (SVGA3dCopyBox *)&cmd[1]; 177 box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) / 178 sizeof(SVGA3dCopyBox); 179 180 if (cmd->dma.guest.ptr.offset % PAGE_SIZE || 181 box->x != 0 || box->y != 0 || box->z != 0 || 182 box->srcx != 0 || box->srcy != 0 || box->srcz != 0 || 183 box->d != 1 || box_count != 1) { 184 /* TODO handle none page aligned offsets */ 185 /* TODO handle more dst & src != 0 */ 186 /* TODO handle more then one copy */ 187 DRM_ERROR("Cant snoop dma request for cursor!\n"); 188 DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n", 189 box->srcx, box->srcy, box->srcz, 190 box->x, box->y, box->z, 191 box->w, box->h, box->d, box_count, 192 cmd->dma.guest.ptr.offset); 193 return; 194 } 195 196 kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT; 197 kmap_num = (64*64*4) >> PAGE_SHIFT; 198 199 ret = ttm_bo_reserve(bo, true, false, NULL); 200 if (unlikely(ret != 0)) { 201 DRM_ERROR("reserve failed\n"); 202 return; 203 } 204 205 ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map); 206 if (unlikely(ret != 0)) 207 goto err_unreserve; 208 209 virtual = ttm_kmap_obj_virtual(&map, &dummy); 210 211 if (box->w == 64 && cmd->dma.guest.pitch == 64*4) { 212 memcpy(srf->snooper.image, virtual, 64*64*4); 213 } else { 214 /* Image is unsigned pointer. */ 215 for (i = 0; i < box->h; i++) 216 memcpy(srf->snooper.image + i * 64, 217 virtual + i * cmd->dma.guest.pitch, 218 box->w * 4); 219 } 220 221 srf->snooper.age++; 222 223 ttm_bo_kunmap(&map); 224 err_unreserve: 225 ttm_bo_unreserve(bo); 226 } 227 228 /** 229 * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots 230 * 231 * @dev_priv: Pointer to the device private struct. 232 * 233 * Clears all legacy hotspots. 234 */ 235 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv) 236 { 237 struct drm_device *dev = dev_priv->dev; 238 struct vmw_display_unit *du; 239 struct drm_crtc *crtc; 240 241 drm_modeset_lock_all(dev); 242 drm_for_each_crtc(crtc, dev) { 243 du = vmw_crtc_to_du(crtc); 244 245 du->hotspot_x = 0; 246 du->hotspot_y = 0; 247 } 248 drm_modeset_unlock_all(dev); 249 } 250 251 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv) 252 { 253 struct drm_device *dev = dev_priv->dev; 254 struct vmw_display_unit *du; 255 struct drm_crtc *crtc; 256 257 mutex_lock(&dev->mode_config.mutex); 258 259 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 260 du = vmw_crtc_to_du(crtc); 261 if (!du->cursor_surface || 262 du->cursor_age == du->cursor_surface->snooper.age) 263 continue; 264 265 du->cursor_age = du->cursor_surface->snooper.age; 266 vmw_cursor_update_image(dev_priv, 267 du->cursor_surface->snooper.image, 268 64, 64, 269 du->hotspot_x + du->core_hotspot_x, 270 du->hotspot_y + du->core_hotspot_y); 271 } 272 273 mutex_unlock(&dev->mode_config.mutex); 274 } 275 276 277 void vmw_du_cursor_plane_destroy(struct drm_plane *plane) 278 { 279 vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0); 280 281 drm_plane_cleanup(plane); 282 } 283 284 285 void vmw_du_primary_plane_destroy(struct drm_plane *plane) 286 { 287 drm_plane_cleanup(plane); 288 289 /* Planes are static in our case so we don't free it */ 290 } 291 292 293 /** 294 * vmw_du_vps_unpin_surf - unpins resource associated with a framebuffer surface 295 * 296 * @vps: plane state associated with the display surface 297 * @unreference: true if we also want to unreference the display. 298 */ 299 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps, 300 bool unreference) 301 { 302 if (vps->surf) { 303 if (vps->pinned) { 304 vmw_resource_unpin(&vps->surf->res); 305 vps->pinned--; 306 } 307 308 if (unreference) { 309 if (vps->pinned) 310 DRM_ERROR("Surface still pinned\n"); 311 vmw_surface_unreference(&vps->surf); 312 } 313 } 314 } 315 316 317 /** 318 * vmw_du_plane_cleanup_fb - Unpins the cursor 319 * 320 * @plane: display plane 321 * @old_state: Contains the FB to clean up 322 * 323 * Unpins the framebuffer surface 324 * 325 * Returns 0 on success 326 */ 327 void 328 vmw_du_plane_cleanup_fb(struct drm_plane *plane, 329 struct drm_plane_state *old_state) 330 { 331 struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state); 332 333 vmw_du_plane_unpin_surf(vps, false); 334 } 335 336 337 /** 338 * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it 339 * 340 * @plane: display plane 341 * @new_state: info on the new plane state, including the FB 342 * 343 * Returns 0 on success 344 */ 345 int 346 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane, 347 struct drm_plane_state *new_state) 348 { 349 struct drm_framebuffer *fb = new_state->fb; 350 struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state); 351 352 353 if (vps->surf) 354 vmw_surface_unreference(&vps->surf); 355 356 if (vps->bo) 357 vmw_bo_unreference(&vps->bo); 358 359 if (fb) { 360 if (vmw_framebuffer_to_vfb(fb)->bo) { 361 vps->bo = vmw_framebuffer_to_vfbd(fb)->buffer; 362 vmw_bo_reference(vps->bo); 363 } else { 364 vps->surf = vmw_framebuffer_to_vfbs(fb)->surface; 365 vmw_surface_reference(vps->surf); 366 } 367 } 368 369 return 0; 370 } 371 372 373 void 374 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane, 375 struct drm_plane_state *old_state) 376 { 377 struct drm_crtc *crtc = plane->state->crtc ?: old_state->crtc; 378 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 379 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 380 struct vmw_plane_state *vps = vmw_plane_state_to_vps(plane->state); 381 s32 hotspot_x, hotspot_y; 382 int ret = 0; 383 384 385 hotspot_x = du->hotspot_x; 386 hotspot_y = du->hotspot_y; 387 388 if (plane->state->fb) { 389 hotspot_x += plane->state->fb->hot_x; 390 hotspot_y += plane->state->fb->hot_y; 391 } 392 393 du->cursor_surface = vps->surf; 394 du->cursor_bo = vps->bo; 395 396 if (vps->surf) { 397 du->cursor_age = du->cursor_surface->snooper.age; 398 399 ret = vmw_cursor_update_image(dev_priv, 400 vps->surf->snooper.image, 401 64, 64, hotspot_x, 402 hotspot_y); 403 } else if (vps->bo) { 404 ret = vmw_cursor_update_bo(dev_priv, vps->bo, 405 plane->state->crtc_w, 406 plane->state->crtc_h, 407 hotspot_x, hotspot_y); 408 } else { 409 vmw_cursor_update_position(dev_priv, false, 0, 0); 410 return; 411 } 412 413 if (!ret) { 414 du->cursor_x = plane->state->crtc_x + du->set_gui_x; 415 du->cursor_y = plane->state->crtc_y + du->set_gui_y; 416 417 vmw_cursor_update_position(dev_priv, true, 418 du->cursor_x + hotspot_x, 419 du->cursor_y + hotspot_y); 420 421 du->core_hotspot_x = hotspot_x - du->hotspot_x; 422 du->core_hotspot_y = hotspot_y - du->hotspot_y; 423 } else { 424 DRM_ERROR("Failed to update cursor image\n"); 425 } 426 } 427 428 429 /** 430 * vmw_du_primary_plane_atomic_check - check if the new state is okay 431 * 432 * @plane: display plane 433 * @state: info on the new plane state, including the FB 434 * 435 * Check if the new state is settable given the current state. Other 436 * than what the atomic helper checks, we care about crtc fitting 437 * the FB and maintaining one active framebuffer. 438 * 439 * Returns 0 on success 440 */ 441 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane, 442 struct drm_plane_state *state) 443 { 444 struct drm_crtc_state *crtc_state = NULL; 445 struct drm_framebuffer *new_fb = state->fb; 446 int ret; 447 448 if (state->crtc) 449 crtc_state = drm_atomic_get_new_crtc_state(state->state, state->crtc); 450 451 ret = drm_atomic_helper_check_plane_state(state, crtc_state, 452 DRM_PLANE_HELPER_NO_SCALING, 453 DRM_PLANE_HELPER_NO_SCALING, 454 false, true); 455 456 if (!ret && new_fb) { 457 struct drm_crtc *crtc = state->crtc; 458 struct vmw_connector_state *vcs; 459 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 460 461 vcs = vmw_connector_state_to_vcs(du->connector.state); 462 } 463 464 465 return ret; 466 } 467 468 469 /** 470 * vmw_du_cursor_plane_atomic_check - check if the new state is okay 471 * 472 * @plane: cursor plane 473 * @state: info on the new plane state 474 * 475 * This is a chance to fail if the new cursor state does not fit 476 * our requirements. 477 * 478 * Returns 0 on success 479 */ 480 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane, 481 struct drm_plane_state *new_state) 482 { 483 int ret = 0; 484 struct drm_crtc_state *crtc_state = NULL; 485 struct vmw_surface *surface = NULL; 486 struct drm_framebuffer *fb = new_state->fb; 487 488 if (new_state->crtc) 489 crtc_state = drm_atomic_get_new_crtc_state(new_state->state, 490 new_state->crtc); 491 492 ret = drm_atomic_helper_check_plane_state(new_state, crtc_state, 493 DRM_PLANE_HELPER_NO_SCALING, 494 DRM_PLANE_HELPER_NO_SCALING, 495 true, true); 496 if (ret) 497 return ret; 498 499 /* Turning off */ 500 if (!fb) 501 return 0; 502 503 /* A lot of the code assumes this */ 504 if (new_state->crtc_w != 64 || new_state->crtc_h != 64) { 505 DRM_ERROR("Invalid cursor dimensions (%d, %d)\n", 506 new_state->crtc_w, new_state->crtc_h); 507 ret = -EINVAL; 508 } 509 510 if (!vmw_framebuffer_to_vfb(fb)->bo) 511 surface = vmw_framebuffer_to_vfbs(fb)->surface; 512 513 if (surface && !surface->snooper.image) { 514 DRM_ERROR("surface not suitable for cursor\n"); 515 ret = -EINVAL; 516 } 517 518 return ret; 519 } 520 521 522 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc, 523 struct drm_crtc_state *new_state) 524 { 525 struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc); 526 int connector_mask = drm_connector_mask(&du->connector); 527 bool has_primary = new_state->plane_mask & 528 drm_plane_mask(crtc->primary); 529 530 /* We always want to have an active plane with an active CRTC */ 531 if (has_primary != new_state->enable) 532 return -EINVAL; 533 534 535 if (new_state->connector_mask != connector_mask && 536 new_state->connector_mask != 0) { 537 DRM_ERROR("Invalid connectors configuration\n"); 538 return -EINVAL; 539 } 540 541 /* 542 * Our virtual device does not have a dot clock, so use the logical 543 * clock value as the dot clock. 544 */ 545 if (new_state->mode.crtc_clock == 0) 546 new_state->adjusted_mode.crtc_clock = new_state->mode.clock; 547 548 return 0; 549 } 550 551 552 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc, 553 struct drm_crtc_state *old_crtc_state) 554 { 555 } 556 557 558 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc, 559 struct drm_crtc_state *old_crtc_state) 560 { 561 struct drm_pending_vblank_event *event = crtc->state->event; 562 563 if (event) { 564 crtc->state->event = NULL; 565 566 spin_lock_irq(&crtc->dev->event_lock); 567 drm_crtc_send_vblank_event(crtc, event); 568 spin_unlock_irq(&crtc->dev->event_lock); 569 } 570 } 571 572 573 /** 574 * vmw_du_crtc_duplicate_state - duplicate crtc state 575 * @crtc: DRM crtc 576 * 577 * Allocates and returns a copy of the crtc state (both common and 578 * vmw-specific) for the specified crtc. 579 * 580 * Returns: The newly allocated crtc state, or NULL on failure. 581 */ 582 struct drm_crtc_state * 583 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc) 584 { 585 struct drm_crtc_state *state; 586 struct vmw_crtc_state *vcs; 587 588 if (WARN_ON(!crtc->state)) 589 return NULL; 590 591 vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL); 592 593 if (!vcs) 594 return NULL; 595 596 state = &vcs->base; 597 598 __drm_atomic_helper_crtc_duplicate_state(crtc, state); 599 600 return state; 601 } 602 603 604 /** 605 * vmw_du_crtc_reset - creates a blank vmw crtc state 606 * @crtc: DRM crtc 607 * 608 * Resets the atomic state for @crtc by freeing the state pointer (which 609 * might be NULL, e.g. at driver load time) and allocating a new empty state 610 * object. 611 */ 612 void vmw_du_crtc_reset(struct drm_crtc *crtc) 613 { 614 struct vmw_crtc_state *vcs; 615 616 617 if (crtc->state) { 618 __drm_atomic_helper_crtc_destroy_state(crtc->state); 619 620 kfree(vmw_crtc_state_to_vcs(crtc->state)); 621 } 622 623 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL); 624 625 if (!vcs) { 626 DRM_ERROR("Cannot allocate vmw_crtc_state\n"); 627 return; 628 } 629 630 crtc->state = &vcs->base; 631 crtc->state->crtc = crtc; 632 } 633 634 635 /** 636 * vmw_du_crtc_destroy_state - destroy crtc state 637 * @crtc: DRM crtc 638 * @state: state object to destroy 639 * 640 * Destroys the crtc state (both common and vmw-specific) for the 641 * specified plane. 642 */ 643 void 644 vmw_du_crtc_destroy_state(struct drm_crtc *crtc, 645 struct drm_crtc_state *state) 646 { 647 drm_atomic_helper_crtc_destroy_state(crtc, state); 648 } 649 650 651 /** 652 * vmw_du_plane_duplicate_state - duplicate plane state 653 * @plane: drm plane 654 * 655 * Allocates and returns a copy of the plane state (both common and 656 * vmw-specific) for the specified plane. 657 * 658 * Returns: The newly allocated plane state, or NULL on failure. 659 */ 660 struct drm_plane_state * 661 vmw_du_plane_duplicate_state(struct drm_plane *plane) 662 { 663 struct drm_plane_state *state; 664 struct vmw_plane_state *vps; 665 666 vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL); 667 668 if (!vps) 669 return NULL; 670 671 vps->pinned = 0; 672 vps->cpp = 0; 673 674 /* Each ref counted resource needs to be acquired again */ 675 if (vps->surf) 676 (void) vmw_surface_reference(vps->surf); 677 678 if (vps->bo) 679 (void) vmw_bo_reference(vps->bo); 680 681 state = &vps->base; 682 683 __drm_atomic_helper_plane_duplicate_state(plane, state); 684 685 return state; 686 } 687 688 689 /** 690 * vmw_du_plane_reset - creates a blank vmw plane state 691 * @plane: drm plane 692 * 693 * Resets the atomic state for @plane by freeing the state pointer (which might 694 * be NULL, e.g. at driver load time) and allocating a new empty state object. 695 */ 696 void vmw_du_plane_reset(struct drm_plane *plane) 697 { 698 struct vmw_plane_state *vps; 699 700 701 if (plane->state) 702 vmw_du_plane_destroy_state(plane, plane->state); 703 704 vps = kzalloc(sizeof(*vps), GFP_KERNEL); 705 706 if (!vps) { 707 DRM_ERROR("Cannot allocate vmw_plane_state\n"); 708 return; 709 } 710 711 __drm_atomic_helper_plane_reset(plane, &vps->base); 712 } 713 714 715 /** 716 * vmw_du_plane_destroy_state - destroy plane state 717 * @plane: DRM plane 718 * @state: state object to destroy 719 * 720 * Destroys the plane state (both common and vmw-specific) for the 721 * specified plane. 722 */ 723 void 724 vmw_du_plane_destroy_state(struct drm_plane *plane, 725 struct drm_plane_state *state) 726 { 727 struct vmw_plane_state *vps = vmw_plane_state_to_vps(state); 728 729 730 /* Should have been freed by cleanup_fb */ 731 if (vps->surf) 732 vmw_surface_unreference(&vps->surf); 733 734 if (vps->bo) 735 vmw_bo_unreference(&vps->bo); 736 737 drm_atomic_helper_plane_destroy_state(plane, state); 738 } 739 740 741 /** 742 * vmw_du_connector_duplicate_state - duplicate connector state 743 * @connector: DRM connector 744 * 745 * Allocates and returns a copy of the connector state (both common and 746 * vmw-specific) for the specified connector. 747 * 748 * Returns: The newly allocated connector state, or NULL on failure. 749 */ 750 struct drm_connector_state * 751 vmw_du_connector_duplicate_state(struct drm_connector *connector) 752 { 753 struct drm_connector_state *state; 754 struct vmw_connector_state *vcs; 755 756 if (WARN_ON(!connector->state)) 757 return NULL; 758 759 vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL); 760 761 if (!vcs) 762 return NULL; 763 764 state = &vcs->base; 765 766 __drm_atomic_helper_connector_duplicate_state(connector, state); 767 768 return state; 769 } 770 771 772 /** 773 * vmw_du_connector_reset - creates a blank vmw connector state 774 * @connector: DRM connector 775 * 776 * Resets the atomic state for @connector by freeing the state pointer (which 777 * might be NULL, e.g. at driver load time) and allocating a new empty state 778 * object. 779 */ 780 void vmw_du_connector_reset(struct drm_connector *connector) 781 { 782 struct vmw_connector_state *vcs; 783 784 785 if (connector->state) { 786 __drm_atomic_helper_connector_destroy_state(connector->state); 787 788 kfree(vmw_connector_state_to_vcs(connector->state)); 789 } 790 791 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL); 792 793 if (!vcs) { 794 DRM_ERROR("Cannot allocate vmw_connector_state\n"); 795 return; 796 } 797 798 __drm_atomic_helper_connector_reset(connector, &vcs->base); 799 } 800 801 802 /** 803 * vmw_du_connector_destroy_state - destroy connector state 804 * @connector: DRM connector 805 * @state: state object to destroy 806 * 807 * Destroys the connector state (both common and vmw-specific) for the 808 * specified plane. 809 */ 810 void 811 vmw_du_connector_destroy_state(struct drm_connector *connector, 812 struct drm_connector_state *state) 813 { 814 drm_atomic_helper_connector_destroy_state(connector, state); 815 } 816 /* 817 * Generic framebuffer code 818 */ 819 820 /* 821 * Surface framebuffer code 822 */ 823 824 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer) 825 { 826 struct vmw_framebuffer_surface *vfbs = 827 vmw_framebuffer_to_vfbs(framebuffer); 828 829 drm_framebuffer_cleanup(framebuffer); 830 vmw_surface_unreference(&vfbs->surface); 831 if (vfbs->base.user_obj) 832 ttm_base_object_unref(&vfbs->base.user_obj); 833 834 kfree(vfbs); 835 } 836 837 /** 838 * vmw_kms_readback - Perform a readback from the screen system to 839 * a buffer-object backed framebuffer. 840 * 841 * @dev_priv: Pointer to the device private structure. 842 * @file_priv: Pointer to a struct drm_file identifying the caller. 843 * Must be set to NULL if @user_fence_rep is NULL. 844 * @vfb: Pointer to the buffer-object backed framebuffer. 845 * @user_fence_rep: User-space provided structure for fence information. 846 * Must be set to non-NULL if @file_priv is non-NULL. 847 * @vclips: Array of clip rects. 848 * @num_clips: Number of clip rects in @vclips. 849 * 850 * Returns 0 on success, negative error code on failure. -ERESTARTSYS if 851 * interrupted. 852 */ 853 int vmw_kms_readback(struct vmw_private *dev_priv, 854 struct drm_file *file_priv, 855 struct vmw_framebuffer *vfb, 856 struct drm_vmw_fence_rep __user *user_fence_rep, 857 struct drm_vmw_rect *vclips, 858 uint32_t num_clips) 859 { 860 switch (dev_priv->active_display_unit) { 861 case vmw_du_screen_object: 862 return vmw_kms_sou_readback(dev_priv, file_priv, vfb, 863 user_fence_rep, vclips, num_clips, 864 NULL); 865 case vmw_du_screen_target: 866 return vmw_kms_stdu_dma(dev_priv, file_priv, vfb, 867 user_fence_rep, NULL, vclips, num_clips, 868 1, false, true, NULL); 869 default: 870 WARN_ONCE(true, 871 "Readback called with invalid display system.\n"); 872 } 873 874 return -ENOSYS; 875 } 876 877 878 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = { 879 .destroy = vmw_framebuffer_surface_destroy, 880 .dirty = drm_atomic_helper_dirtyfb, 881 }; 882 883 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv, 884 struct vmw_surface *surface, 885 struct vmw_framebuffer **out, 886 const struct drm_mode_fb_cmd2 887 *mode_cmd, 888 bool is_bo_proxy) 889 890 { 891 struct drm_device *dev = dev_priv->dev; 892 struct vmw_framebuffer_surface *vfbs; 893 enum SVGA3dSurfaceFormat format; 894 int ret; 895 struct drm_format_name_buf format_name; 896 897 /* 3D is only supported on HWv8 and newer hosts */ 898 if (dev_priv->active_display_unit == vmw_du_legacy) 899 return -ENOSYS; 900 901 /* 902 * Sanity checks. 903 */ 904 905 /* Surface must be marked as a scanout. */ 906 if (unlikely(!surface->scanout)) 907 return -EINVAL; 908 909 if (unlikely(surface->mip_levels[0] != 1 || 910 surface->num_sizes != 1 || 911 surface->base_size.width < mode_cmd->width || 912 surface->base_size.height < mode_cmd->height || 913 surface->base_size.depth != 1)) { 914 DRM_ERROR("Incompatible surface dimensions " 915 "for requested mode.\n"); 916 return -EINVAL; 917 } 918 919 switch (mode_cmd->pixel_format) { 920 case DRM_FORMAT_ARGB8888: 921 format = SVGA3D_A8R8G8B8; 922 break; 923 case DRM_FORMAT_XRGB8888: 924 format = SVGA3D_X8R8G8B8; 925 break; 926 case DRM_FORMAT_RGB565: 927 format = SVGA3D_R5G6B5; 928 break; 929 case DRM_FORMAT_XRGB1555: 930 format = SVGA3D_A1R5G5B5; 931 break; 932 default: 933 DRM_ERROR("Invalid pixel format: %s\n", 934 drm_get_format_name(mode_cmd->pixel_format, &format_name)); 935 return -EINVAL; 936 } 937 938 /* 939 * For DX, surface format validation is done when surface->scanout 940 * is set. 941 */ 942 if (!dev_priv->has_dx && format != surface->format) { 943 DRM_ERROR("Invalid surface format for requested mode.\n"); 944 return -EINVAL; 945 } 946 947 vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL); 948 if (!vfbs) { 949 ret = -ENOMEM; 950 goto out_err1; 951 } 952 953 drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd); 954 vfbs->surface = vmw_surface_reference(surface); 955 vfbs->base.user_handle = mode_cmd->handles[0]; 956 vfbs->is_bo_proxy = is_bo_proxy; 957 958 *out = &vfbs->base; 959 960 ret = drm_framebuffer_init(dev, &vfbs->base.base, 961 &vmw_framebuffer_surface_funcs); 962 if (ret) 963 goto out_err2; 964 965 return 0; 966 967 out_err2: 968 vmw_surface_unreference(&surface); 969 kfree(vfbs); 970 out_err1: 971 return ret; 972 } 973 974 /* 975 * Buffer-object framebuffer code 976 */ 977 978 static void vmw_framebuffer_bo_destroy(struct drm_framebuffer *framebuffer) 979 { 980 struct vmw_framebuffer_bo *vfbd = 981 vmw_framebuffer_to_vfbd(framebuffer); 982 983 drm_framebuffer_cleanup(framebuffer); 984 vmw_bo_unreference(&vfbd->buffer); 985 if (vfbd->base.user_obj) 986 ttm_base_object_unref(&vfbd->base.user_obj); 987 988 kfree(vfbd); 989 } 990 991 static int vmw_framebuffer_bo_dirty(struct drm_framebuffer *framebuffer, 992 struct drm_file *file_priv, 993 unsigned int flags, unsigned int color, 994 struct drm_clip_rect *clips, 995 unsigned int num_clips) 996 { 997 struct vmw_private *dev_priv = vmw_priv(framebuffer->dev); 998 struct vmw_framebuffer_bo *vfbd = 999 vmw_framebuffer_to_vfbd(framebuffer); 1000 struct drm_clip_rect norect; 1001 int ret, increment = 1; 1002 1003 drm_modeset_lock_all(dev_priv->dev); 1004 1005 ret = ttm_read_lock(&dev_priv->reservation_sem, true); 1006 if (unlikely(ret != 0)) { 1007 drm_modeset_unlock_all(dev_priv->dev); 1008 return ret; 1009 } 1010 1011 if (!num_clips) { 1012 num_clips = 1; 1013 clips = &norect; 1014 norect.x1 = norect.y1 = 0; 1015 norect.x2 = framebuffer->width; 1016 norect.y2 = framebuffer->height; 1017 } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) { 1018 num_clips /= 2; 1019 increment = 2; 1020 } 1021 1022 switch (dev_priv->active_display_unit) { 1023 case vmw_du_legacy: 1024 ret = vmw_kms_ldu_do_bo_dirty(dev_priv, &vfbd->base, 0, 0, 1025 clips, num_clips, increment); 1026 break; 1027 default: 1028 ret = -EINVAL; 1029 WARN_ONCE(true, "Dirty called with invalid display system.\n"); 1030 break; 1031 } 1032 1033 vmw_fifo_flush(dev_priv, false); 1034 ttm_read_unlock(&dev_priv->reservation_sem); 1035 1036 drm_modeset_unlock_all(dev_priv->dev); 1037 1038 return ret; 1039 } 1040 1041 static int vmw_framebuffer_bo_dirty_ext(struct drm_framebuffer *framebuffer, 1042 struct drm_file *file_priv, 1043 unsigned int flags, unsigned int color, 1044 struct drm_clip_rect *clips, 1045 unsigned int num_clips) 1046 { 1047 struct vmw_private *dev_priv = vmw_priv(framebuffer->dev); 1048 1049 if (dev_priv->active_display_unit == vmw_du_legacy) 1050 return vmw_framebuffer_bo_dirty(framebuffer, file_priv, flags, 1051 color, clips, num_clips); 1052 1053 return drm_atomic_helper_dirtyfb(framebuffer, file_priv, flags, color, 1054 clips, num_clips); 1055 } 1056 1057 static const struct drm_framebuffer_funcs vmw_framebuffer_bo_funcs = { 1058 .destroy = vmw_framebuffer_bo_destroy, 1059 .dirty = vmw_framebuffer_bo_dirty_ext, 1060 }; 1061 1062 /** 1063 * Pin the bofer in a location suitable for access by the 1064 * display system. 1065 */ 1066 static int vmw_framebuffer_pin(struct vmw_framebuffer *vfb) 1067 { 1068 struct vmw_private *dev_priv = vmw_priv(vfb->base.dev); 1069 struct vmw_buffer_object *buf; 1070 struct ttm_placement *placement; 1071 int ret; 1072 1073 buf = vfb->bo ? vmw_framebuffer_to_vfbd(&vfb->base)->buffer : 1074 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup; 1075 1076 if (!buf) 1077 return 0; 1078 1079 switch (dev_priv->active_display_unit) { 1080 case vmw_du_legacy: 1081 vmw_overlay_pause_all(dev_priv); 1082 ret = vmw_bo_pin_in_start_of_vram(dev_priv, buf, false); 1083 vmw_overlay_resume_all(dev_priv); 1084 break; 1085 case vmw_du_screen_object: 1086 case vmw_du_screen_target: 1087 if (vfb->bo) { 1088 if (dev_priv->capabilities & SVGA_CAP_3D) { 1089 /* 1090 * Use surface DMA to get content to 1091 * sreen target surface. 1092 */ 1093 placement = &vmw_vram_gmr_placement; 1094 } else { 1095 /* Use CPU blit. */ 1096 placement = &vmw_sys_placement; 1097 } 1098 } else { 1099 /* Use surface / image update */ 1100 placement = &vmw_mob_placement; 1101 } 1102 1103 return vmw_bo_pin_in_placement(dev_priv, buf, placement, false); 1104 default: 1105 return -EINVAL; 1106 } 1107 1108 return ret; 1109 } 1110 1111 static int vmw_framebuffer_unpin(struct vmw_framebuffer *vfb) 1112 { 1113 struct vmw_private *dev_priv = vmw_priv(vfb->base.dev); 1114 struct vmw_buffer_object *buf; 1115 1116 buf = vfb->bo ? vmw_framebuffer_to_vfbd(&vfb->base)->buffer : 1117 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup; 1118 1119 if (WARN_ON(!buf)) 1120 return 0; 1121 1122 return vmw_bo_unpin(dev_priv, buf, false); 1123 } 1124 1125 /** 1126 * vmw_create_bo_proxy - create a proxy surface for the buffer object 1127 * 1128 * @dev: DRM device 1129 * @mode_cmd: parameters for the new surface 1130 * @bo_mob: MOB backing the buffer object 1131 * @srf_out: newly created surface 1132 * 1133 * When the content FB is a buffer object, we create a surface as a proxy to the 1134 * same buffer. This way we can do a surface copy rather than a surface DMA. 1135 * This is a more efficient approach 1136 * 1137 * RETURNS: 1138 * 0 on success, error code otherwise 1139 */ 1140 static int vmw_create_bo_proxy(struct drm_device *dev, 1141 const struct drm_mode_fb_cmd2 *mode_cmd, 1142 struct vmw_buffer_object *bo_mob, 1143 struct vmw_surface **srf_out) 1144 { 1145 uint32_t format; 1146 struct drm_vmw_size content_base_size = {0}; 1147 struct vmw_resource *res; 1148 unsigned int bytes_pp; 1149 struct drm_format_name_buf format_name; 1150 int ret; 1151 1152 switch (mode_cmd->pixel_format) { 1153 case DRM_FORMAT_ARGB8888: 1154 case DRM_FORMAT_XRGB8888: 1155 format = SVGA3D_X8R8G8B8; 1156 bytes_pp = 4; 1157 break; 1158 1159 case DRM_FORMAT_RGB565: 1160 case DRM_FORMAT_XRGB1555: 1161 format = SVGA3D_R5G6B5; 1162 bytes_pp = 2; 1163 break; 1164 1165 case 8: 1166 format = SVGA3D_P8; 1167 bytes_pp = 1; 1168 break; 1169 1170 default: 1171 DRM_ERROR("Invalid framebuffer format %s\n", 1172 drm_get_format_name(mode_cmd->pixel_format, &format_name)); 1173 return -EINVAL; 1174 } 1175 1176 content_base_size.width = mode_cmd->pitches[0] / bytes_pp; 1177 content_base_size.height = mode_cmd->height; 1178 content_base_size.depth = 1; 1179 1180 ret = vmw_surface_gb_priv_define(dev, 1181 0, /* kernel visible only */ 1182 0, /* flags */ 1183 format, 1184 true, /* can be a scanout buffer */ 1185 1, /* num of mip levels */ 1186 0, 1187 0, 1188 content_base_size, 1189 SVGA3D_MS_PATTERN_NONE, 1190 SVGA3D_MS_QUALITY_NONE, 1191 srf_out); 1192 if (ret) { 1193 DRM_ERROR("Failed to allocate proxy content buffer\n"); 1194 return ret; 1195 } 1196 1197 res = &(*srf_out)->res; 1198 1199 /* Reserve and switch the backing mob. */ 1200 mutex_lock(&res->dev_priv->cmdbuf_mutex); 1201 (void) vmw_resource_reserve(res, false, true); 1202 vmw_bo_unreference(&res->backup); 1203 res->backup = vmw_bo_reference(bo_mob); 1204 res->backup_offset = 0; 1205 vmw_resource_unreserve(res, false, NULL, 0); 1206 mutex_unlock(&res->dev_priv->cmdbuf_mutex); 1207 1208 return 0; 1209 } 1210 1211 1212 1213 static int vmw_kms_new_framebuffer_bo(struct vmw_private *dev_priv, 1214 struct vmw_buffer_object *bo, 1215 struct vmw_framebuffer **out, 1216 const struct drm_mode_fb_cmd2 1217 *mode_cmd) 1218 1219 { 1220 struct drm_device *dev = dev_priv->dev; 1221 struct vmw_framebuffer_bo *vfbd; 1222 unsigned int requested_size; 1223 struct drm_format_name_buf format_name; 1224 int ret; 1225 1226 requested_size = mode_cmd->height * mode_cmd->pitches[0]; 1227 if (unlikely(requested_size > bo->base.num_pages * PAGE_SIZE)) { 1228 DRM_ERROR("Screen buffer object size is too small " 1229 "for requested mode.\n"); 1230 return -EINVAL; 1231 } 1232 1233 /* Limited framebuffer color depth support for screen objects */ 1234 if (dev_priv->active_display_unit == vmw_du_screen_object) { 1235 switch (mode_cmd->pixel_format) { 1236 case DRM_FORMAT_XRGB8888: 1237 case DRM_FORMAT_ARGB8888: 1238 break; 1239 case DRM_FORMAT_XRGB1555: 1240 case DRM_FORMAT_RGB565: 1241 break; 1242 default: 1243 DRM_ERROR("Invalid pixel format: %s\n", 1244 drm_get_format_name(mode_cmd->pixel_format, &format_name)); 1245 return -EINVAL; 1246 } 1247 } 1248 1249 vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL); 1250 if (!vfbd) { 1251 ret = -ENOMEM; 1252 goto out_err1; 1253 } 1254 1255 drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd); 1256 vfbd->base.bo = true; 1257 vfbd->buffer = vmw_bo_reference(bo); 1258 vfbd->base.user_handle = mode_cmd->handles[0]; 1259 *out = &vfbd->base; 1260 1261 ret = drm_framebuffer_init(dev, &vfbd->base.base, 1262 &vmw_framebuffer_bo_funcs); 1263 if (ret) 1264 goto out_err2; 1265 1266 return 0; 1267 1268 out_err2: 1269 vmw_bo_unreference(&bo); 1270 kfree(vfbd); 1271 out_err1: 1272 return ret; 1273 } 1274 1275 1276 /** 1277 * vmw_kms_srf_ok - check if a surface can be created 1278 * 1279 * @width: requested width 1280 * @height: requested height 1281 * 1282 * Surfaces need to be less than texture size 1283 */ 1284 static bool 1285 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height) 1286 { 1287 if (width > dev_priv->texture_max_width || 1288 height > dev_priv->texture_max_height) 1289 return false; 1290 1291 return true; 1292 } 1293 1294 /** 1295 * vmw_kms_new_framebuffer - Create a new framebuffer. 1296 * 1297 * @dev_priv: Pointer to device private struct. 1298 * @bo: Pointer to buffer object to wrap the kms framebuffer around. 1299 * Either @bo or @surface must be NULL. 1300 * @surface: Pointer to a surface to wrap the kms framebuffer around. 1301 * Either @bo or @surface must be NULL. 1302 * @only_2d: No presents will occur to this buffer object based framebuffer. 1303 * This helps the code to do some important optimizations. 1304 * @mode_cmd: Frame-buffer metadata. 1305 */ 1306 struct vmw_framebuffer * 1307 vmw_kms_new_framebuffer(struct vmw_private *dev_priv, 1308 struct vmw_buffer_object *bo, 1309 struct vmw_surface *surface, 1310 bool only_2d, 1311 const struct drm_mode_fb_cmd2 *mode_cmd) 1312 { 1313 struct vmw_framebuffer *vfb = NULL; 1314 bool is_bo_proxy = false; 1315 int ret; 1316 1317 /* 1318 * We cannot use the SurfaceDMA command in an non-accelerated VM, 1319 * therefore, wrap the buffer object in a surface so we can use the 1320 * SurfaceCopy command. 1321 */ 1322 if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height) && 1323 bo && only_2d && 1324 mode_cmd->width > 64 && /* Don't create a proxy for cursor */ 1325 dev_priv->active_display_unit == vmw_du_screen_target) { 1326 ret = vmw_create_bo_proxy(dev_priv->dev, mode_cmd, 1327 bo, &surface); 1328 if (ret) 1329 return ERR_PTR(ret); 1330 1331 is_bo_proxy = true; 1332 } 1333 1334 /* Create the new framebuffer depending one what we have */ 1335 if (surface) { 1336 ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb, 1337 mode_cmd, 1338 is_bo_proxy); 1339 1340 /* 1341 * vmw_create_bo_proxy() adds a reference that is no longer 1342 * needed 1343 */ 1344 if (is_bo_proxy) 1345 vmw_surface_unreference(&surface); 1346 } else if (bo) { 1347 ret = vmw_kms_new_framebuffer_bo(dev_priv, bo, &vfb, 1348 mode_cmd); 1349 } else { 1350 BUG(); 1351 } 1352 1353 if (ret) 1354 return ERR_PTR(ret); 1355 1356 vfb->pin = vmw_framebuffer_pin; 1357 vfb->unpin = vmw_framebuffer_unpin; 1358 1359 return vfb; 1360 } 1361 1362 /* 1363 * Generic Kernel modesetting functions 1364 */ 1365 1366 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev, 1367 struct drm_file *file_priv, 1368 const struct drm_mode_fb_cmd2 *mode_cmd) 1369 { 1370 struct vmw_private *dev_priv = vmw_priv(dev); 1371 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; 1372 struct vmw_framebuffer *vfb = NULL; 1373 struct vmw_surface *surface = NULL; 1374 struct vmw_buffer_object *bo = NULL; 1375 struct ttm_base_object *user_obj; 1376 int ret; 1377 1378 /* 1379 * Take a reference on the user object of the resource 1380 * backing the kms fb. This ensures that user-space handle 1381 * lookups on that resource will always work as long as 1382 * it's registered with a kms framebuffer. This is important, 1383 * since vmw_execbuf_process identifies resources in the 1384 * command stream using user-space handles. 1385 */ 1386 1387 user_obj = ttm_base_object_lookup(tfile, mode_cmd->handles[0]); 1388 if (unlikely(user_obj == NULL)) { 1389 DRM_ERROR("Could not locate requested kms frame buffer.\n"); 1390 return ERR_PTR(-ENOENT); 1391 } 1392 1393 /** 1394 * End conditioned code. 1395 */ 1396 1397 /* returns either a bo or surface */ 1398 ret = vmw_user_lookup_handle(dev_priv, tfile, 1399 mode_cmd->handles[0], 1400 &surface, &bo); 1401 if (ret) 1402 goto err_out; 1403 1404 1405 if (!bo && 1406 !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) { 1407 DRM_ERROR("Surface size cannot exceed %dx%d", 1408 dev_priv->texture_max_width, 1409 dev_priv->texture_max_height); 1410 goto err_out; 1411 } 1412 1413 1414 vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface, 1415 !(dev_priv->capabilities & SVGA_CAP_3D), 1416 mode_cmd); 1417 if (IS_ERR(vfb)) { 1418 ret = PTR_ERR(vfb); 1419 goto err_out; 1420 } 1421 1422 err_out: 1423 /* vmw_user_lookup_handle takes one ref so does new_fb */ 1424 if (bo) 1425 vmw_bo_unreference(&bo); 1426 if (surface) 1427 vmw_surface_unreference(&surface); 1428 1429 if (ret) { 1430 DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret); 1431 ttm_base_object_unref(&user_obj); 1432 return ERR_PTR(ret); 1433 } else 1434 vfb->user_obj = user_obj; 1435 1436 return &vfb->base; 1437 } 1438 1439 /** 1440 * vmw_kms_check_display_memory - Validates display memory required for a 1441 * topology 1442 * @dev: DRM device 1443 * @num_rects: number of drm_rect in rects 1444 * @rects: array of drm_rect representing the topology to validate indexed by 1445 * crtc index. 1446 * 1447 * Returns: 1448 * 0 on success otherwise negative error code 1449 */ 1450 static int vmw_kms_check_display_memory(struct drm_device *dev, 1451 uint32_t num_rects, 1452 struct drm_rect *rects) 1453 { 1454 struct vmw_private *dev_priv = vmw_priv(dev); 1455 struct drm_rect bounding_box = {0}; 1456 u64 total_pixels = 0, pixel_mem, bb_mem; 1457 int i; 1458 1459 for (i = 0; i < num_rects; i++) { 1460 /* 1461 * For STDU only individual screen (screen target) is limited by 1462 * SCREENTARGET_MAX_WIDTH/HEIGHT registers. 1463 */ 1464 if (dev_priv->active_display_unit == vmw_du_screen_target && 1465 (drm_rect_width(&rects[i]) > dev_priv->stdu_max_width || 1466 drm_rect_height(&rects[i]) > dev_priv->stdu_max_height)) { 1467 DRM_ERROR("Screen size not supported.\n"); 1468 return -EINVAL; 1469 } 1470 1471 /* Bounding box upper left is at (0,0). */ 1472 if (rects[i].x2 > bounding_box.x2) 1473 bounding_box.x2 = rects[i].x2; 1474 1475 if (rects[i].y2 > bounding_box.y2) 1476 bounding_box.y2 = rects[i].y2; 1477 1478 total_pixels += (u64) drm_rect_width(&rects[i]) * 1479 (u64) drm_rect_height(&rects[i]); 1480 } 1481 1482 /* Virtual svga device primary limits are always in 32-bpp. */ 1483 pixel_mem = total_pixels * 4; 1484 1485 /* 1486 * For HV10 and below prim_bb_mem is vram size. When 1487 * SVGA_REG_MAX_PRIMARY_BOUNDING_BOX_MEM is not present vram size is 1488 * limit on primary bounding box 1489 */ 1490 if (pixel_mem > dev_priv->prim_bb_mem) { 1491 DRM_ERROR("Combined output size too large.\n"); 1492 return -EINVAL; 1493 } 1494 1495 /* SVGA_CAP_NO_BB_RESTRICTION is available for STDU only. */ 1496 if (dev_priv->active_display_unit != vmw_du_screen_target || 1497 !(dev_priv->capabilities & SVGA_CAP_NO_BB_RESTRICTION)) { 1498 bb_mem = (u64) bounding_box.x2 * bounding_box.y2 * 4; 1499 1500 if (bb_mem > dev_priv->prim_bb_mem) { 1501 DRM_ERROR("Topology is beyond supported limits.\n"); 1502 return -EINVAL; 1503 } 1504 } 1505 1506 return 0; 1507 } 1508 1509 /** 1510 * vmw_crtc_state_and_lock - Return new or current crtc state with locked 1511 * crtc mutex 1512 * @state: The atomic state pointer containing the new atomic state 1513 * @crtc: The crtc 1514 * 1515 * This function returns the new crtc state if it's part of the state update. 1516 * Otherwise returns the current crtc state. It also makes sure that the 1517 * crtc mutex is locked. 1518 * 1519 * Returns: A valid crtc state pointer or NULL. It may also return a 1520 * pointer error, in particular -EDEADLK if locking needs to be rerun. 1521 */ 1522 static struct drm_crtc_state * 1523 vmw_crtc_state_and_lock(struct drm_atomic_state *state, struct drm_crtc *crtc) 1524 { 1525 struct drm_crtc_state *crtc_state; 1526 1527 crtc_state = drm_atomic_get_new_crtc_state(state, crtc); 1528 if (crtc_state) { 1529 lockdep_assert_held(&crtc->mutex.mutex.base); 1530 } else { 1531 int ret = drm_modeset_lock(&crtc->mutex, state->acquire_ctx); 1532 1533 if (ret != 0 && ret != -EALREADY) 1534 return ERR_PTR(ret); 1535 1536 crtc_state = crtc->state; 1537 } 1538 1539 return crtc_state; 1540 } 1541 1542 /** 1543 * vmw_kms_check_implicit - Verify that all implicit display units scan out 1544 * from the same fb after the new state is committed. 1545 * @dev: The drm_device. 1546 * @state: The new state to be checked. 1547 * 1548 * Returns: 1549 * Zero on success, 1550 * -EINVAL on invalid state, 1551 * -EDEADLK if modeset locking needs to be rerun. 1552 */ 1553 static int vmw_kms_check_implicit(struct drm_device *dev, 1554 struct drm_atomic_state *state) 1555 { 1556 struct drm_framebuffer *implicit_fb = NULL; 1557 struct drm_crtc *crtc; 1558 struct drm_crtc_state *crtc_state; 1559 struct drm_plane_state *plane_state; 1560 1561 drm_for_each_crtc(crtc, dev) { 1562 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 1563 1564 if (!du->is_implicit) 1565 continue; 1566 1567 crtc_state = vmw_crtc_state_and_lock(state, crtc); 1568 if (IS_ERR(crtc_state)) 1569 return PTR_ERR(crtc_state); 1570 1571 if (!crtc_state || !crtc_state->enable) 1572 continue; 1573 1574 /* 1575 * Can't move primary planes across crtcs, so this is OK. 1576 * It also means we don't need to take the plane mutex. 1577 */ 1578 plane_state = du->primary.state; 1579 if (plane_state->crtc != crtc) 1580 continue; 1581 1582 if (!implicit_fb) 1583 implicit_fb = plane_state->fb; 1584 else if (implicit_fb != plane_state->fb) 1585 return -EINVAL; 1586 } 1587 1588 return 0; 1589 } 1590 1591 /** 1592 * vmw_kms_check_topology - Validates topology in drm_atomic_state 1593 * @dev: DRM device 1594 * @state: the driver state object 1595 * 1596 * Returns: 1597 * 0 on success otherwise negative error code 1598 */ 1599 static int vmw_kms_check_topology(struct drm_device *dev, 1600 struct drm_atomic_state *state) 1601 { 1602 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 1603 struct drm_rect *rects; 1604 struct drm_crtc *crtc; 1605 uint32_t i; 1606 int ret = 0; 1607 1608 rects = kcalloc(dev->mode_config.num_crtc, sizeof(struct drm_rect), 1609 GFP_KERNEL); 1610 if (!rects) 1611 return -ENOMEM; 1612 1613 drm_for_each_crtc(crtc, dev) { 1614 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 1615 struct drm_crtc_state *crtc_state; 1616 1617 i = drm_crtc_index(crtc); 1618 1619 crtc_state = vmw_crtc_state_and_lock(state, crtc); 1620 if (IS_ERR(crtc_state)) { 1621 ret = PTR_ERR(crtc_state); 1622 goto clean; 1623 } 1624 1625 if (!crtc_state) 1626 continue; 1627 1628 if (crtc_state->enable) { 1629 rects[i].x1 = du->gui_x; 1630 rects[i].y1 = du->gui_y; 1631 rects[i].x2 = du->gui_x + crtc_state->mode.hdisplay; 1632 rects[i].y2 = du->gui_y + crtc_state->mode.vdisplay; 1633 } else { 1634 rects[i].x1 = 0; 1635 rects[i].y1 = 0; 1636 rects[i].x2 = 0; 1637 rects[i].y2 = 0; 1638 } 1639 } 1640 1641 /* Determine change to topology due to new atomic state */ 1642 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, 1643 new_crtc_state, i) { 1644 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 1645 struct drm_connector *connector; 1646 struct drm_connector_state *conn_state; 1647 struct vmw_connector_state *vmw_conn_state; 1648 1649 if (!du->pref_active && new_crtc_state->enable) { 1650 ret = -EINVAL; 1651 goto clean; 1652 } 1653 1654 /* 1655 * For vmwgfx each crtc has only one connector attached and it 1656 * is not changed so don't really need to check the 1657 * crtc->connector_mask and iterate over it. 1658 */ 1659 connector = &du->connector; 1660 conn_state = drm_atomic_get_connector_state(state, connector); 1661 if (IS_ERR(conn_state)) { 1662 ret = PTR_ERR(conn_state); 1663 goto clean; 1664 } 1665 1666 vmw_conn_state = vmw_connector_state_to_vcs(conn_state); 1667 vmw_conn_state->gui_x = du->gui_x; 1668 vmw_conn_state->gui_y = du->gui_y; 1669 } 1670 1671 ret = vmw_kms_check_display_memory(dev, dev->mode_config.num_crtc, 1672 rects); 1673 1674 clean: 1675 kfree(rects); 1676 return ret; 1677 } 1678 1679 /** 1680 * vmw_kms_atomic_check_modeset- validate state object for modeset changes 1681 * 1682 * @dev: DRM device 1683 * @state: the driver state object 1684 * 1685 * This is a simple wrapper around drm_atomic_helper_check_modeset() for 1686 * us to assign a value to mode->crtc_clock so that 1687 * drm_calc_timestamping_constants() won't throw an error message 1688 * 1689 * Returns: 1690 * Zero for success or -errno 1691 */ 1692 static int 1693 vmw_kms_atomic_check_modeset(struct drm_device *dev, 1694 struct drm_atomic_state *state) 1695 { 1696 struct drm_crtc *crtc; 1697 struct drm_crtc_state *crtc_state; 1698 bool need_modeset = false; 1699 int i, ret; 1700 1701 ret = drm_atomic_helper_check(dev, state); 1702 if (ret) 1703 return ret; 1704 1705 ret = vmw_kms_check_implicit(dev, state); 1706 if (ret) 1707 return ret; 1708 1709 if (!state->allow_modeset) 1710 return ret; 1711 1712 /* 1713 * Legacy path do not set allow_modeset properly like 1714 * @drm_atomic_helper_update_plane, This will result in unnecessary call 1715 * to vmw_kms_check_topology. So extra set of check. 1716 */ 1717 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 1718 if (drm_atomic_crtc_needs_modeset(crtc_state)) 1719 need_modeset = true; 1720 } 1721 1722 if (need_modeset) 1723 return vmw_kms_check_topology(dev, state); 1724 1725 return ret; 1726 } 1727 1728 static const struct drm_mode_config_funcs vmw_kms_funcs = { 1729 .fb_create = vmw_kms_fb_create, 1730 .atomic_check = vmw_kms_atomic_check_modeset, 1731 .atomic_commit = drm_atomic_helper_commit, 1732 }; 1733 1734 static int vmw_kms_generic_present(struct vmw_private *dev_priv, 1735 struct drm_file *file_priv, 1736 struct vmw_framebuffer *vfb, 1737 struct vmw_surface *surface, 1738 uint32_t sid, 1739 int32_t destX, int32_t destY, 1740 struct drm_vmw_rect *clips, 1741 uint32_t num_clips) 1742 { 1743 return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips, 1744 &surface->res, destX, destY, 1745 num_clips, 1, NULL, NULL); 1746 } 1747 1748 1749 int vmw_kms_present(struct vmw_private *dev_priv, 1750 struct drm_file *file_priv, 1751 struct vmw_framebuffer *vfb, 1752 struct vmw_surface *surface, 1753 uint32_t sid, 1754 int32_t destX, int32_t destY, 1755 struct drm_vmw_rect *clips, 1756 uint32_t num_clips) 1757 { 1758 int ret; 1759 1760 switch (dev_priv->active_display_unit) { 1761 case vmw_du_screen_target: 1762 ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips, 1763 &surface->res, destX, destY, 1764 num_clips, 1, NULL, NULL); 1765 break; 1766 case vmw_du_screen_object: 1767 ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface, 1768 sid, destX, destY, clips, 1769 num_clips); 1770 break; 1771 default: 1772 WARN_ONCE(true, 1773 "Present called with invalid display system.\n"); 1774 ret = -ENOSYS; 1775 break; 1776 } 1777 if (ret) 1778 return ret; 1779 1780 vmw_fifo_flush(dev_priv, false); 1781 1782 return 0; 1783 } 1784 1785 static void 1786 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv) 1787 { 1788 if (dev_priv->hotplug_mode_update_property) 1789 return; 1790 1791 dev_priv->hotplug_mode_update_property = 1792 drm_property_create_range(dev_priv->dev, 1793 DRM_MODE_PROP_IMMUTABLE, 1794 "hotplug_mode_update", 0, 1); 1795 1796 if (!dev_priv->hotplug_mode_update_property) 1797 return; 1798 1799 } 1800 1801 int vmw_kms_init(struct vmw_private *dev_priv) 1802 { 1803 struct drm_device *dev = dev_priv->dev; 1804 int ret; 1805 1806 drm_mode_config_init(dev); 1807 dev->mode_config.funcs = &vmw_kms_funcs; 1808 dev->mode_config.min_width = 1; 1809 dev->mode_config.min_height = 1; 1810 dev->mode_config.max_width = dev_priv->texture_max_width; 1811 dev->mode_config.max_height = dev_priv->texture_max_height; 1812 1813 drm_mode_create_suggested_offset_properties(dev); 1814 vmw_kms_create_hotplug_mode_update_property(dev_priv); 1815 1816 ret = vmw_kms_stdu_init_display(dev_priv); 1817 if (ret) { 1818 ret = vmw_kms_sou_init_display(dev_priv); 1819 if (ret) /* Fallback */ 1820 ret = vmw_kms_ldu_init_display(dev_priv); 1821 } 1822 1823 return ret; 1824 } 1825 1826 int vmw_kms_close(struct vmw_private *dev_priv) 1827 { 1828 int ret = 0; 1829 1830 /* 1831 * Docs says we should take the lock before calling this function 1832 * but since it destroys encoders and our destructor calls 1833 * drm_encoder_cleanup which takes the lock we deadlock. 1834 */ 1835 drm_mode_config_cleanup(dev_priv->dev); 1836 if (dev_priv->active_display_unit == vmw_du_legacy) 1837 ret = vmw_kms_ldu_close_display(dev_priv); 1838 1839 return ret; 1840 } 1841 1842 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data, 1843 struct drm_file *file_priv) 1844 { 1845 struct drm_vmw_cursor_bypass_arg *arg = data; 1846 struct vmw_display_unit *du; 1847 struct drm_crtc *crtc; 1848 int ret = 0; 1849 1850 1851 mutex_lock(&dev->mode_config.mutex); 1852 if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) { 1853 1854 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 1855 du = vmw_crtc_to_du(crtc); 1856 du->hotspot_x = arg->xhot; 1857 du->hotspot_y = arg->yhot; 1858 } 1859 1860 mutex_unlock(&dev->mode_config.mutex); 1861 return 0; 1862 } 1863 1864 crtc = drm_crtc_find(dev, file_priv, arg->crtc_id); 1865 if (!crtc) { 1866 ret = -ENOENT; 1867 goto out; 1868 } 1869 1870 du = vmw_crtc_to_du(crtc); 1871 1872 du->hotspot_x = arg->xhot; 1873 du->hotspot_y = arg->yhot; 1874 1875 out: 1876 mutex_unlock(&dev->mode_config.mutex); 1877 1878 return ret; 1879 } 1880 1881 int vmw_kms_write_svga(struct vmw_private *vmw_priv, 1882 unsigned width, unsigned height, unsigned pitch, 1883 unsigned bpp, unsigned depth) 1884 { 1885 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK) 1886 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch); 1887 else if (vmw_fifo_have_pitchlock(vmw_priv)) 1888 vmw_mmio_write(pitch, vmw_priv->mmio_virt + 1889 SVGA_FIFO_PITCHLOCK); 1890 vmw_write(vmw_priv, SVGA_REG_WIDTH, width); 1891 vmw_write(vmw_priv, SVGA_REG_HEIGHT, height); 1892 vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp); 1893 1894 if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) { 1895 DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n", 1896 depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH)); 1897 return -EINVAL; 1898 } 1899 1900 return 0; 1901 } 1902 1903 int vmw_kms_save_vga(struct vmw_private *vmw_priv) 1904 { 1905 struct vmw_vga_topology_state *save; 1906 uint32_t i; 1907 1908 vmw_priv->vga_width = vmw_read(vmw_priv, SVGA_REG_WIDTH); 1909 vmw_priv->vga_height = vmw_read(vmw_priv, SVGA_REG_HEIGHT); 1910 vmw_priv->vga_bpp = vmw_read(vmw_priv, SVGA_REG_BITS_PER_PIXEL); 1911 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK) 1912 vmw_priv->vga_pitchlock = 1913 vmw_read(vmw_priv, SVGA_REG_PITCHLOCK); 1914 else if (vmw_fifo_have_pitchlock(vmw_priv)) 1915 vmw_priv->vga_pitchlock = vmw_mmio_read(vmw_priv->mmio_virt + 1916 SVGA_FIFO_PITCHLOCK); 1917 1918 if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY)) 1919 return 0; 1920 1921 vmw_priv->num_displays = vmw_read(vmw_priv, 1922 SVGA_REG_NUM_GUEST_DISPLAYS); 1923 1924 if (vmw_priv->num_displays == 0) 1925 vmw_priv->num_displays = 1; 1926 1927 for (i = 0; i < vmw_priv->num_displays; ++i) { 1928 save = &vmw_priv->vga_save[i]; 1929 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i); 1930 save->primary = vmw_read(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY); 1931 save->pos_x = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_X); 1932 save->pos_y = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y); 1933 save->width = vmw_read(vmw_priv, SVGA_REG_DISPLAY_WIDTH); 1934 save->height = vmw_read(vmw_priv, SVGA_REG_DISPLAY_HEIGHT); 1935 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID); 1936 if (i == 0 && vmw_priv->num_displays == 1 && 1937 save->width == 0 && save->height == 0) { 1938 1939 /* 1940 * It should be fairly safe to assume that these 1941 * values are uninitialized. 1942 */ 1943 1944 save->width = vmw_priv->vga_width - save->pos_x; 1945 save->height = vmw_priv->vga_height - save->pos_y; 1946 } 1947 } 1948 1949 return 0; 1950 } 1951 1952 int vmw_kms_restore_vga(struct vmw_private *vmw_priv) 1953 { 1954 struct vmw_vga_topology_state *save; 1955 uint32_t i; 1956 1957 vmw_write(vmw_priv, SVGA_REG_WIDTH, vmw_priv->vga_width); 1958 vmw_write(vmw_priv, SVGA_REG_HEIGHT, vmw_priv->vga_height); 1959 vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, vmw_priv->vga_bpp); 1960 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK) 1961 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, 1962 vmw_priv->vga_pitchlock); 1963 else if (vmw_fifo_have_pitchlock(vmw_priv)) 1964 vmw_mmio_write(vmw_priv->vga_pitchlock, 1965 vmw_priv->mmio_virt + SVGA_FIFO_PITCHLOCK); 1966 1967 if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY)) 1968 return 0; 1969 1970 for (i = 0; i < vmw_priv->num_displays; ++i) { 1971 save = &vmw_priv->vga_save[i]; 1972 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i); 1973 vmw_write(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY, save->primary); 1974 vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_X, save->pos_x); 1975 vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y, save->pos_y); 1976 vmw_write(vmw_priv, SVGA_REG_DISPLAY_WIDTH, save->width); 1977 vmw_write(vmw_priv, SVGA_REG_DISPLAY_HEIGHT, save->height); 1978 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID); 1979 } 1980 1981 return 0; 1982 } 1983 1984 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv, 1985 uint32_t pitch, 1986 uint32_t height) 1987 { 1988 return ((u64) pitch * (u64) height) < (u64) 1989 ((dev_priv->active_display_unit == vmw_du_screen_target) ? 1990 dev_priv->prim_bb_mem : dev_priv->vram_size); 1991 } 1992 1993 1994 /** 1995 * Function called by DRM code called with vbl_lock held. 1996 */ 1997 u32 vmw_get_vblank_counter(struct drm_device *dev, unsigned int pipe) 1998 { 1999 return 0; 2000 } 2001 2002 /** 2003 * Function called by DRM code called with vbl_lock held. 2004 */ 2005 int vmw_enable_vblank(struct drm_device *dev, unsigned int pipe) 2006 { 2007 return -EINVAL; 2008 } 2009 2010 /** 2011 * Function called by DRM code called with vbl_lock held. 2012 */ 2013 void vmw_disable_vblank(struct drm_device *dev, unsigned int pipe) 2014 { 2015 } 2016 2017 /** 2018 * vmw_du_update_layout - Update the display unit with topology from resolution 2019 * plugin and generate DRM uevent 2020 * @dev_priv: device private 2021 * @num_rects: number of drm_rect in rects 2022 * @rects: toplogy to update 2023 */ 2024 static int vmw_du_update_layout(struct vmw_private *dev_priv, 2025 unsigned int num_rects, struct drm_rect *rects) 2026 { 2027 struct drm_device *dev = dev_priv->dev; 2028 struct vmw_display_unit *du; 2029 struct drm_connector *con; 2030 struct drm_connector_list_iter conn_iter; 2031 struct drm_modeset_acquire_ctx ctx; 2032 struct drm_crtc *crtc; 2033 int ret; 2034 2035 /* Currently gui_x/y is protected with the crtc mutex */ 2036 mutex_lock(&dev->mode_config.mutex); 2037 drm_modeset_acquire_init(&ctx, 0); 2038 retry: 2039 drm_for_each_crtc(crtc, dev) { 2040 ret = drm_modeset_lock(&crtc->mutex, &ctx); 2041 if (ret < 0) { 2042 if (ret == -EDEADLK) { 2043 drm_modeset_backoff(&ctx); 2044 goto retry; 2045 } 2046 goto out_fini; 2047 } 2048 } 2049 2050 drm_connector_list_iter_begin(dev, &conn_iter); 2051 drm_for_each_connector_iter(con, &conn_iter) { 2052 du = vmw_connector_to_du(con); 2053 if (num_rects > du->unit) { 2054 du->pref_width = drm_rect_width(&rects[du->unit]); 2055 du->pref_height = drm_rect_height(&rects[du->unit]); 2056 du->pref_active = true; 2057 du->gui_x = rects[du->unit].x1; 2058 du->gui_y = rects[du->unit].y1; 2059 } else { 2060 du->pref_width = 800; 2061 du->pref_height = 600; 2062 du->pref_active = false; 2063 du->gui_x = 0; 2064 du->gui_y = 0; 2065 } 2066 } 2067 drm_connector_list_iter_end(&conn_iter); 2068 2069 list_for_each_entry(con, &dev->mode_config.connector_list, head) { 2070 du = vmw_connector_to_du(con); 2071 if (num_rects > du->unit) { 2072 drm_object_property_set_value 2073 (&con->base, dev->mode_config.suggested_x_property, 2074 du->gui_x); 2075 drm_object_property_set_value 2076 (&con->base, dev->mode_config.suggested_y_property, 2077 du->gui_y); 2078 } else { 2079 drm_object_property_set_value 2080 (&con->base, dev->mode_config.suggested_x_property, 2081 0); 2082 drm_object_property_set_value 2083 (&con->base, dev->mode_config.suggested_y_property, 2084 0); 2085 } 2086 con->status = vmw_du_connector_detect(con, true); 2087 } 2088 2089 drm_sysfs_hotplug_event(dev); 2090 out_fini: 2091 drm_modeset_drop_locks(&ctx); 2092 drm_modeset_acquire_fini(&ctx); 2093 mutex_unlock(&dev->mode_config.mutex); 2094 2095 return 0; 2096 } 2097 2098 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc, 2099 u16 *r, u16 *g, u16 *b, 2100 uint32_t size, 2101 struct drm_modeset_acquire_ctx *ctx) 2102 { 2103 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 2104 int i; 2105 2106 for (i = 0; i < size; i++) { 2107 DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i, 2108 r[i], g[i], b[i]); 2109 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8); 2110 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8); 2111 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8); 2112 } 2113 2114 return 0; 2115 } 2116 2117 int vmw_du_connector_dpms(struct drm_connector *connector, int mode) 2118 { 2119 return 0; 2120 } 2121 2122 enum drm_connector_status 2123 vmw_du_connector_detect(struct drm_connector *connector, bool force) 2124 { 2125 uint32_t num_displays; 2126 struct drm_device *dev = connector->dev; 2127 struct vmw_private *dev_priv = vmw_priv(dev); 2128 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2129 2130 num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS); 2131 2132 return ((vmw_connector_to_du(connector)->unit < num_displays && 2133 du->pref_active) ? 2134 connector_status_connected : connector_status_disconnected); 2135 } 2136 2137 static struct drm_display_mode vmw_kms_connector_builtin[] = { 2138 /* 640x480@60Hz */ 2139 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656, 2140 752, 800, 0, 480, 489, 492, 525, 0, 2141 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 2142 /* 800x600@60Hz */ 2143 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840, 2144 968, 1056, 0, 600, 601, 605, 628, 0, 2145 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2146 /* 1024x768@60Hz */ 2147 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048, 2148 1184, 1344, 0, 768, 771, 777, 806, 0, 2149 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 2150 /* 1152x864@75Hz */ 2151 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216, 2152 1344, 1600, 0, 864, 865, 868, 900, 0, 2153 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2154 /* 1280x768@60Hz */ 2155 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344, 2156 1472, 1664, 0, 768, 771, 778, 798, 0, 2157 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2158 /* 1280x800@60Hz */ 2159 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352, 2160 1480, 1680, 0, 800, 803, 809, 831, 0, 2161 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 2162 /* 1280x960@60Hz */ 2163 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376, 2164 1488, 1800, 0, 960, 961, 964, 1000, 0, 2165 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2166 /* 1280x1024@60Hz */ 2167 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328, 2168 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, 2169 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2170 /* 1360x768@60Hz */ 2171 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424, 2172 1536, 1792, 0, 768, 771, 777, 795, 0, 2173 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2174 /* 1440x1050@60Hz */ 2175 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488, 2176 1632, 1864, 0, 1050, 1053, 1057, 1089, 0, 2177 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2178 /* 1440x900@60Hz */ 2179 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520, 2180 1672, 1904, 0, 900, 903, 909, 934, 0, 2181 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2182 /* 1600x1200@60Hz */ 2183 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664, 2184 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 2185 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2186 /* 1680x1050@60Hz */ 2187 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784, 2188 1960, 2240, 0, 1050, 1053, 1059, 1089, 0, 2189 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2190 /* 1792x1344@60Hz */ 2191 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920, 2192 2120, 2448, 0, 1344, 1345, 1348, 1394, 0, 2193 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2194 /* 1853x1392@60Hz */ 2195 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952, 2196 2176, 2528, 0, 1392, 1393, 1396, 1439, 0, 2197 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2198 /* 1920x1200@60Hz */ 2199 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056, 2200 2256, 2592, 0, 1200, 1203, 1209, 1245, 0, 2201 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2202 /* 1920x1440@60Hz */ 2203 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048, 2204 2256, 2600, 0, 1440, 1441, 1444, 1500, 0, 2205 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2206 /* 2560x1600@60Hz */ 2207 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752, 2208 3032, 3504, 0, 1600, 1603, 1609, 1658, 0, 2209 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2210 /* Terminate */ 2211 { DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) }, 2212 }; 2213 2214 /** 2215 * vmw_guess_mode_timing - Provide fake timings for a 2216 * 60Hz vrefresh mode. 2217 * 2218 * @mode - Pointer to a struct drm_display_mode with hdisplay and vdisplay 2219 * members filled in. 2220 */ 2221 void vmw_guess_mode_timing(struct drm_display_mode *mode) 2222 { 2223 mode->hsync_start = mode->hdisplay + 50; 2224 mode->hsync_end = mode->hsync_start + 50; 2225 mode->htotal = mode->hsync_end + 50; 2226 2227 mode->vsync_start = mode->vdisplay + 50; 2228 mode->vsync_end = mode->vsync_start + 50; 2229 mode->vtotal = mode->vsync_end + 50; 2230 2231 mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6; 2232 mode->vrefresh = drm_mode_vrefresh(mode); 2233 } 2234 2235 2236 int vmw_du_connector_fill_modes(struct drm_connector *connector, 2237 uint32_t max_width, uint32_t max_height) 2238 { 2239 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2240 struct drm_device *dev = connector->dev; 2241 struct vmw_private *dev_priv = vmw_priv(dev); 2242 struct drm_display_mode *mode = NULL; 2243 struct drm_display_mode *bmode; 2244 struct drm_display_mode prefmode = { DRM_MODE("preferred", 2245 DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED, 2246 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2247 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) 2248 }; 2249 int i; 2250 u32 assumed_bpp = 4; 2251 2252 if (dev_priv->assume_16bpp) 2253 assumed_bpp = 2; 2254 2255 max_width = min(max_width, dev_priv->texture_max_width); 2256 max_height = min(max_height, dev_priv->texture_max_height); 2257 2258 /* 2259 * For STDU extra limit for a mode on SVGA_REG_SCREENTARGET_MAX_WIDTH/ 2260 * HEIGHT registers. 2261 */ 2262 if (dev_priv->active_display_unit == vmw_du_screen_target) { 2263 max_width = min(max_width, dev_priv->stdu_max_width); 2264 max_height = min(max_height, dev_priv->stdu_max_height); 2265 } 2266 2267 /* Add preferred mode */ 2268 mode = drm_mode_duplicate(dev, &prefmode); 2269 if (!mode) 2270 return 0; 2271 mode->hdisplay = du->pref_width; 2272 mode->vdisplay = du->pref_height; 2273 vmw_guess_mode_timing(mode); 2274 2275 if (vmw_kms_validate_mode_vram(dev_priv, 2276 mode->hdisplay * assumed_bpp, 2277 mode->vdisplay)) { 2278 drm_mode_probed_add(connector, mode); 2279 } else { 2280 drm_mode_destroy(dev, mode); 2281 mode = NULL; 2282 } 2283 2284 if (du->pref_mode) { 2285 list_del_init(&du->pref_mode->head); 2286 drm_mode_destroy(dev, du->pref_mode); 2287 } 2288 2289 /* mode might be null here, this is intended */ 2290 du->pref_mode = mode; 2291 2292 for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) { 2293 bmode = &vmw_kms_connector_builtin[i]; 2294 if (bmode->hdisplay > max_width || 2295 bmode->vdisplay > max_height) 2296 continue; 2297 2298 if (!vmw_kms_validate_mode_vram(dev_priv, 2299 bmode->hdisplay * assumed_bpp, 2300 bmode->vdisplay)) 2301 continue; 2302 2303 mode = drm_mode_duplicate(dev, bmode); 2304 if (!mode) 2305 return 0; 2306 mode->vrefresh = drm_mode_vrefresh(mode); 2307 2308 drm_mode_probed_add(connector, mode); 2309 } 2310 2311 drm_connector_list_update(connector); 2312 /* Move the prefered mode first, help apps pick the right mode. */ 2313 drm_mode_sort(&connector->modes); 2314 2315 return 1; 2316 } 2317 2318 /** 2319 * vmw_kms_update_layout_ioctl - Handler for DRM_VMW_UPDATE_LAYOUT ioctl 2320 * @dev: drm device for the ioctl 2321 * @data: data pointer for the ioctl 2322 * @file_priv: drm file for the ioctl call 2323 * 2324 * Update preferred topology of display unit as per ioctl request. The topology 2325 * is expressed as array of drm_vmw_rect. 2326 * e.g. 2327 * [0 0 640 480] [640 0 800 600] [0 480 640 480] 2328 * 2329 * NOTE: 2330 * The x and y offset (upper left) in drm_vmw_rect cannot be less than 0. Beside 2331 * device limit on topology, x + w and y + h (lower right) cannot be greater 2332 * than INT_MAX. So topology beyond these limits will return with error. 2333 * 2334 * Returns: 2335 * Zero on success, negative errno on failure. 2336 */ 2337 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data, 2338 struct drm_file *file_priv) 2339 { 2340 struct vmw_private *dev_priv = vmw_priv(dev); 2341 struct drm_mode_config *mode_config = &dev->mode_config; 2342 struct drm_vmw_update_layout_arg *arg = 2343 (struct drm_vmw_update_layout_arg *)data; 2344 void __user *user_rects; 2345 struct drm_vmw_rect *rects; 2346 struct drm_rect *drm_rects; 2347 unsigned rects_size; 2348 int ret, i; 2349 2350 if (!arg->num_outputs) { 2351 struct drm_rect def_rect = {0, 0, 800, 600}; 2352 vmw_du_update_layout(dev_priv, 1, &def_rect); 2353 return 0; 2354 } 2355 2356 rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect); 2357 rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect), 2358 GFP_KERNEL); 2359 if (unlikely(!rects)) 2360 return -ENOMEM; 2361 2362 user_rects = (void __user *)(unsigned long)arg->rects; 2363 ret = copy_from_user(rects, user_rects, rects_size); 2364 if (unlikely(ret != 0)) { 2365 DRM_ERROR("Failed to get rects.\n"); 2366 ret = -EFAULT; 2367 goto out_free; 2368 } 2369 2370 drm_rects = (struct drm_rect *)rects; 2371 2372 for (i = 0; i < arg->num_outputs; i++) { 2373 struct drm_vmw_rect curr_rect; 2374 2375 /* Verify user-space for overflow as kernel use drm_rect */ 2376 if ((rects[i].x + rects[i].w > INT_MAX) || 2377 (rects[i].y + rects[i].h > INT_MAX)) { 2378 ret = -ERANGE; 2379 goto out_free; 2380 } 2381 2382 curr_rect = rects[i]; 2383 drm_rects[i].x1 = curr_rect.x; 2384 drm_rects[i].y1 = curr_rect.y; 2385 drm_rects[i].x2 = curr_rect.x + curr_rect.w; 2386 drm_rects[i].y2 = curr_rect.y + curr_rect.h; 2387 2388 /* 2389 * Currently this check is limiting the topology within 2390 * mode_config->max (which actually is max texture size 2391 * supported by virtual device). This limit is here to address 2392 * window managers that create a big framebuffer for whole 2393 * topology. 2394 */ 2395 if (drm_rects[i].x1 < 0 || drm_rects[i].y1 < 0 || 2396 drm_rects[i].x2 > mode_config->max_width || 2397 drm_rects[i].y2 > mode_config->max_height) { 2398 DRM_ERROR("Invalid GUI layout.\n"); 2399 ret = -EINVAL; 2400 goto out_free; 2401 } 2402 } 2403 2404 ret = vmw_kms_check_display_memory(dev, arg->num_outputs, drm_rects); 2405 2406 if (ret == 0) 2407 vmw_du_update_layout(dev_priv, arg->num_outputs, drm_rects); 2408 2409 out_free: 2410 kfree(rects); 2411 return ret; 2412 } 2413 2414 /** 2415 * vmw_kms_helper_dirty - Helper to build commands and perform actions based 2416 * on a set of cliprects and a set of display units. 2417 * 2418 * @dev_priv: Pointer to a device private structure. 2419 * @framebuffer: Pointer to the framebuffer on which to perform the actions. 2420 * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL. 2421 * Cliprects are given in framebuffer coordinates. 2422 * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must 2423 * be NULL. Cliprects are given in source coordinates. 2424 * @dest_x: X coordinate offset for the crtc / destination clip rects. 2425 * @dest_y: Y coordinate offset for the crtc / destination clip rects. 2426 * @num_clips: Number of cliprects in the @clips or @vclips array. 2427 * @increment: Integer with which to increment the clip counter when looping. 2428 * Used to skip a predetermined number of clip rects. 2429 * @dirty: Closure structure. See the description of struct vmw_kms_dirty. 2430 */ 2431 int vmw_kms_helper_dirty(struct vmw_private *dev_priv, 2432 struct vmw_framebuffer *framebuffer, 2433 const struct drm_clip_rect *clips, 2434 const struct drm_vmw_rect *vclips, 2435 s32 dest_x, s32 dest_y, 2436 int num_clips, 2437 int increment, 2438 struct vmw_kms_dirty *dirty) 2439 { 2440 struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS]; 2441 struct drm_crtc *crtc; 2442 u32 num_units = 0; 2443 u32 i, k; 2444 2445 dirty->dev_priv = dev_priv; 2446 2447 /* If crtc is passed, no need to iterate over other display units */ 2448 if (dirty->crtc) { 2449 units[num_units++] = vmw_crtc_to_du(dirty->crtc); 2450 } else { 2451 list_for_each_entry(crtc, &dev_priv->dev->mode_config.crtc_list, 2452 head) { 2453 struct drm_plane *plane = crtc->primary; 2454 2455 if (plane->state->fb == &framebuffer->base) 2456 units[num_units++] = vmw_crtc_to_du(crtc); 2457 } 2458 } 2459 2460 for (k = 0; k < num_units; k++) { 2461 struct vmw_display_unit *unit = units[k]; 2462 s32 crtc_x = unit->crtc.x; 2463 s32 crtc_y = unit->crtc.y; 2464 s32 crtc_width = unit->crtc.mode.hdisplay; 2465 s32 crtc_height = unit->crtc.mode.vdisplay; 2466 const struct drm_clip_rect *clips_ptr = clips; 2467 const struct drm_vmw_rect *vclips_ptr = vclips; 2468 2469 dirty->unit = unit; 2470 if (dirty->fifo_reserve_size > 0) { 2471 dirty->cmd = vmw_fifo_reserve(dev_priv, 2472 dirty->fifo_reserve_size); 2473 if (!dirty->cmd) { 2474 DRM_ERROR("Couldn't reserve fifo space " 2475 "for dirty blits.\n"); 2476 return -ENOMEM; 2477 } 2478 memset(dirty->cmd, 0, dirty->fifo_reserve_size); 2479 } 2480 dirty->num_hits = 0; 2481 for (i = 0; i < num_clips; i++, clips_ptr += increment, 2482 vclips_ptr += increment) { 2483 s32 clip_left; 2484 s32 clip_top; 2485 2486 /* 2487 * Select clip array type. Note that integer type 2488 * in @clips is unsigned short, whereas in @vclips 2489 * it's 32-bit. 2490 */ 2491 if (clips) { 2492 dirty->fb_x = (s32) clips_ptr->x1; 2493 dirty->fb_y = (s32) clips_ptr->y1; 2494 dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x - 2495 crtc_x; 2496 dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y - 2497 crtc_y; 2498 } else { 2499 dirty->fb_x = vclips_ptr->x; 2500 dirty->fb_y = vclips_ptr->y; 2501 dirty->unit_x2 = dirty->fb_x + vclips_ptr->w + 2502 dest_x - crtc_x; 2503 dirty->unit_y2 = dirty->fb_y + vclips_ptr->h + 2504 dest_y - crtc_y; 2505 } 2506 2507 dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x; 2508 dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y; 2509 2510 /* Skip this clip if it's outside the crtc region */ 2511 if (dirty->unit_x1 >= crtc_width || 2512 dirty->unit_y1 >= crtc_height || 2513 dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0) 2514 continue; 2515 2516 /* Clip right and bottom to crtc limits */ 2517 dirty->unit_x2 = min_t(s32, dirty->unit_x2, 2518 crtc_width); 2519 dirty->unit_y2 = min_t(s32, dirty->unit_y2, 2520 crtc_height); 2521 2522 /* Clip left and top to crtc limits */ 2523 clip_left = min_t(s32, dirty->unit_x1, 0); 2524 clip_top = min_t(s32, dirty->unit_y1, 0); 2525 dirty->unit_x1 -= clip_left; 2526 dirty->unit_y1 -= clip_top; 2527 dirty->fb_x -= clip_left; 2528 dirty->fb_y -= clip_top; 2529 2530 dirty->clip(dirty); 2531 } 2532 2533 dirty->fifo_commit(dirty); 2534 } 2535 2536 return 0; 2537 } 2538 2539 /** 2540 * vmw_kms_helper_validation_finish - Helper for post KMS command submission 2541 * cleanup and fencing 2542 * @dev_priv: Pointer to the device-private struct 2543 * @file_priv: Pointer identifying the client when user-space fencing is used 2544 * @ctx: Pointer to the validation context 2545 * @out_fence: If non-NULL, returned refcounted fence-pointer 2546 * @user_fence_rep: If non-NULL, pointer to user-space address area 2547 * in which to copy user-space fence info 2548 */ 2549 void vmw_kms_helper_validation_finish(struct vmw_private *dev_priv, 2550 struct drm_file *file_priv, 2551 struct vmw_validation_context *ctx, 2552 struct vmw_fence_obj **out_fence, 2553 struct drm_vmw_fence_rep __user * 2554 user_fence_rep) 2555 { 2556 struct vmw_fence_obj *fence = NULL; 2557 uint32_t handle = 0; 2558 int ret = 0; 2559 2560 if (file_priv || user_fence_rep || vmw_validation_has_bos(ctx) || 2561 out_fence) 2562 ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence, 2563 file_priv ? &handle : NULL); 2564 vmw_validation_done(ctx, fence); 2565 if (file_priv) 2566 vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv), 2567 ret, user_fence_rep, fence, 2568 handle, -1, NULL); 2569 if (out_fence) 2570 *out_fence = fence; 2571 else 2572 vmw_fence_obj_unreference(&fence); 2573 } 2574 2575 /** 2576 * vmw_kms_update_proxy - Helper function to update a proxy surface from 2577 * its backing MOB. 2578 * 2579 * @res: Pointer to the surface resource 2580 * @clips: Clip rects in framebuffer (surface) space. 2581 * @num_clips: Number of clips in @clips. 2582 * @increment: Integer with which to increment the clip counter when looping. 2583 * Used to skip a predetermined number of clip rects. 2584 * 2585 * This function makes sure the proxy surface is updated from its backing MOB 2586 * using the region given by @clips. The surface resource @res and its backing 2587 * MOB needs to be reserved and validated on call. 2588 */ 2589 int vmw_kms_update_proxy(struct vmw_resource *res, 2590 const struct drm_clip_rect *clips, 2591 unsigned num_clips, 2592 int increment) 2593 { 2594 struct vmw_private *dev_priv = res->dev_priv; 2595 struct drm_vmw_size *size = &vmw_res_to_srf(res)->base_size; 2596 struct { 2597 SVGA3dCmdHeader header; 2598 SVGA3dCmdUpdateGBImage body; 2599 } *cmd; 2600 SVGA3dBox *box; 2601 size_t copy_size = 0; 2602 int i; 2603 2604 if (!clips) 2605 return 0; 2606 2607 cmd = vmw_fifo_reserve(dev_priv, sizeof(*cmd) * num_clips); 2608 if (!cmd) { 2609 DRM_ERROR("Couldn't reserve fifo space for proxy surface " 2610 "update.\n"); 2611 return -ENOMEM; 2612 } 2613 2614 for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) { 2615 box = &cmd->body.box; 2616 2617 cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE; 2618 cmd->header.size = sizeof(cmd->body); 2619 cmd->body.image.sid = res->id; 2620 cmd->body.image.face = 0; 2621 cmd->body.image.mipmap = 0; 2622 2623 if (clips->x1 > size->width || clips->x2 > size->width || 2624 clips->y1 > size->height || clips->y2 > size->height) { 2625 DRM_ERROR("Invalid clips outsize of framebuffer.\n"); 2626 return -EINVAL; 2627 } 2628 2629 box->x = clips->x1; 2630 box->y = clips->y1; 2631 box->z = 0; 2632 box->w = clips->x2 - clips->x1; 2633 box->h = clips->y2 - clips->y1; 2634 box->d = 1; 2635 2636 copy_size += sizeof(*cmd); 2637 } 2638 2639 vmw_fifo_commit(dev_priv, copy_size); 2640 2641 return 0; 2642 } 2643 2644 int vmw_kms_fbdev_init_data(struct vmw_private *dev_priv, 2645 unsigned unit, 2646 u32 max_width, 2647 u32 max_height, 2648 struct drm_connector **p_con, 2649 struct drm_crtc **p_crtc, 2650 struct drm_display_mode **p_mode) 2651 { 2652 struct drm_connector *con; 2653 struct vmw_display_unit *du; 2654 struct drm_display_mode *mode; 2655 int i = 0; 2656 int ret = 0; 2657 2658 mutex_lock(&dev_priv->dev->mode_config.mutex); 2659 list_for_each_entry(con, &dev_priv->dev->mode_config.connector_list, 2660 head) { 2661 if (i == unit) 2662 break; 2663 2664 ++i; 2665 } 2666 2667 if (i != unit) { 2668 DRM_ERROR("Could not find initial display unit.\n"); 2669 ret = -EINVAL; 2670 goto out_unlock; 2671 } 2672 2673 if (list_empty(&con->modes)) 2674 (void) vmw_du_connector_fill_modes(con, max_width, max_height); 2675 2676 if (list_empty(&con->modes)) { 2677 DRM_ERROR("Could not find initial display mode.\n"); 2678 ret = -EINVAL; 2679 goto out_unlock; 2680 } 2681 2682 du = vmw_connector_to_du(con); 2683 *p_con = con; 2684 *p_crtc = &du->crtc; 2685 2686 list_for_each_entry(mode, &con->modes, head) { 2687 if (mode->type & DRM_MODE_TYPE_PREFERRED) 2688 break; 2689 } 2690 2691 if (mode->type & DRM_MODE_TYPE_PREFERRED) 2692 *p_mode = mode; 2693 else { 2694 WARN_ONCE(true, "Could not find initial preferred mode.\n"); 2695 *p_mode = list_first_entry(&con->modes, 2696 struct drm_display_mode, 2697 head); 2698 } 2699 2700 out_unlock: 2701 mutex_unlock(&dev_priv->dev->mode_config.mutex); 2702 2703 return ret; 2704 } 2705 2706 /** 2707 * vmw_kms_create_implicit_placement_proparty - Set up the implicit placement 2708 * property. 2709 * 2710 * @dev_priv: Pointer to a device private struct. 2711 * 2712 * Sets up the implicit placement property unless it's already set up. 2713 */ 2714 void 2715 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv) 2716 { 2717 if (dev_priv->implicit_placement_property) 2718 return; 2719 2720 dev_priv->implicit_placement_property = 2721 drm_property_create_range(dev_priv->dev, 2722 DRM_MODE_PROP_IMMUTABLE, 2723 "implicit_placement", 0, 1); 2724 } 2725 2726 /** 2727 * vmw_kms_suspend - Save modesetting state and turn modesetting off. 2728 * 2729 * @dev: Pointer to the drm device 2730 * Return: 0 on success. Negative error code on failure. 2731 */ 2732 int vmw_kms_suspend(struct drm_device *dev) 2733 { 2734 struct vmw_private *dev_priv = vmw_priv(dev); 2735 2736 dev_priv->suspend_state = drm_atomic_helper_suspend(dev); 2737 if (IS_ERR(dev_priv->suspend_state)) { 2738 int ret = PTR_ERR(dev_priv->suspend_state); 2739 2740 DRM_ERROR("Failed kms suspend: %d\n", ret); 2741 dev_priv->suspend_state = NULL; 2742 2743 return ret; 2744 } 2745 2746 return 0; 2747 } 2748 2749 2750 /** 2751 * vmw_kms_resume - Re-enable modesetting and restore state 2752 * 2753 * @dev: Pointer to the drm device 2754 * Return: 0 on success. Negative error code on failure. 2755 * 2756 * State is resumed from a previous vmw_kms_suspend(). It's illegal 2757 * to call this function without a previous vmw_kms_suspend(). 2758 */ 2759 int vmw_kms_resume(struct drm_device *dev) 2760 { 2761 struct vmw_private *dev_priv = vmw_priv(dev); 2762 int ret; 2763 2764 if (WARN_ON(!dev_priv->suspend_state)) 2765 return 0; 2766 2767 ret = drm_atomic_helper_resume(dev, dev_priv->suspend_state); 2768 dev_priv->suspend_state = NULL; 2769 2770 return ret; 2771 } 2772 2773 /** 2774 * vmw_kms_lost_device - Notify kms that modesetting capabilities will be lost 2775 * 2776 * @dev: Pointer to the drm device 2777 */ 2778 void vmw_kms_lost_device(struct drm_device *dev) 2779 { 2780 drm_atomic_helper_shutdown(dev); 2781 } 2782 2783 /** 2784 * vmw_du_helper_plane_update - Helper to do plane update on a display unit. 2785 * @update: The closure structure. 2786 * 2787 * Call this helper after setting callbacks in &vmw_du_update_plane to do plane 2788 * update on display unit. 2789 * 2790 * Return: 0 on success or a negative error code on failure. 2791 */ 2792 int vmw_du_helper_plane_update(struct vmw_du_update_plane *update) 2793 { 2794 struct drm_plane_state *state = update->plane->state; 2795 struct drm_plane_state *old_state = update->old_state; 2796 struct drm_atomic_helper_damage_iter iter; 2797 struct drm_rect clip; 2798 struct drm_rect bb; 2799 DECLARE_VAL_CONTEXT(val_ctx, NULL, 0); 2800 uint32_t reserved_size = 0; 2801 uint32_t submit_size = 0; 2802 uint32_t curr_size = 0; 2803 uint32_t num_hits = 0; 2804 void *cmd_start; 2805 char *cmd_next; 2806 int ret; 2807 2808 /* 2809 * Iterate in advance to check if really need plane update and find the 2810 * number of clips that actually are in plane src for fifo allocation. 2811 */ 2812 drm_atomic_helper_damage_iter_init(&iter, old_state, state); 2813 drm_atomic_for_each_plane_damage(&iter, &clip) 2814 num_hits++; 2815 2816 if (num_hits == 0) 2817 return 0; 2818 2819 if (update->vfb->bo) { 2820 struct vmw_framebuffer_bo *vfbbo = 2821 container_of(update->vfb, typeof(*vfbbo), base); 2822 2823 ret = vmw_validation_add_bo(&val_ctx, vfbbo->buffer, false, 2824 update->cpu_blit); 2825 } else { 2826 struct vmw_framebuffer_surface *vfbs = 2827 container_of(update->vfb, typeof(*vfbs), base); 2828 2829 ret = vmw_validation_add_resource(&val_ctx, &vfbs->surface->res, 2830 0, NULL, NULL); 2831 } 2832 2833 if (ret) 2834 return ret; 2835 2836 ret = vmw_validation_prepare(&val_ctx, update->mutex, update->intr); 2837 if (ret) 2838 goto out_unref; 2839 2840 reserved_size = update->calc_fifo_size(update, num_hits); 2841 cmd_start = vmw_fifo_reserve(update->dev_priv, reserved_size); 2842 if (!cmd_start) { 2843 ret = -ENOMEM; 2844 goto out_revert; 2845 } 2846 2847 cmd_next = cmd_start; 2848 2849 if (update->post_prepare) { 2850 curr_size = update->post_prepare(update, cmd_next); 2851 cmd_next += curr_size; 2852 submit_size += curr_size; 2853 } 2854 2855 if (update->pre_clip) { 2856 curr_size = update->pre_clip(update, cmd_next, num_hits); 2857 cmd_next += curr_size; 2858 submit_size += curr_size; 2859 } 2860 2861 bb.x1 = INT_MAX; 2862 bb.y1 = INT_MAX; 2863 bb.x2 = INT_MIN; 2864 bb.y2 = INT_MIN; 2865 2866 drm_atomic_helper_damage_iter_init(&iter, old_state, state); 2867 drm_atomic_for_each_plane_damage(&iter, &clip) { 2868 uint32_t fb_x = clip.x1; 2869 uint32_t fb_y = clip.y1; 2870 2871 vmw_du_translate_to_crtc(state, &clip); 2872 if (update->clip) { 2873 curr_size = update->clip(update, cmd_next, &clip, fb_x, 2874 fb_y); 2875 cmd_next += curr_size; 2876 submit_size += curr_size; 2877 } 2878 bb.x1 = min_t(int, bb.x1, clip.x1); 2879 bb.y1 = min_t(int, bb.y1, clip.y1); 2880 bb.x2 = max_t(int, bb.x2, clip.x2); 2881 bb.y2 = max_t(int, bb.y2, clip.y2); 2882 } 2883 2884 curr_size = update->post_clip(update, cmd_next, &bb); 2885 submit_size += curr_size; 2886 2887 if (reserved_size < submit_size) 2888 submit_size = 0; 2889 2890 vmw_fifo_commit(update->dev_priv, submit_size); 2891 2892 vmw_kms_helper_validation_finish(update->dev_priv, NULL, &val_ctx, 2893 update->out_fence, NULL); 2894 return ret; 2895 2896 out_revert: 2897 vmw_validation_revert(&val_ctx); 2898 2899 out_unref: 2900 vmw_validation_unref_lists(&val_ctx); 2901 return ret; 2902 } 2903