1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3  *
4  * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 #include "vmwgfx_kms.h"
29 #include <drm/drm_plane_helper.h>
30 #include <drm/drm_atomic.h>
31 #include <drm/drm_atomic_helper.h>
32 #include <drm/drm_rect.h>
33 
34 /* Might need a hrtimer here? */
35 #define VMWGFX_PRESENT_RATE ((HZ / 60 > 0) ? HZ / 60 : 1)
36 
37 void vmw_du_cleanup(struct vmw_display_unit *du)
38 {
39 	drm_plane_cleanup(&du->primary);
40 	drm_plane_cleanup(&du->cursor);
41 
42 	drm_connector_unregister(&du->connector);
43 	drm_crtc_cleanup(&du->crtc);
44 	drm_encoder_cleanup(&du->encoder);
45 	drm_connector_cleanup(&du->connector);
46 }
47 
48 /*
49  * Display Unit Cursor functions
50  */
51 
52 static int vmw_cursor_update_image(struct vmw_private *dev_priv,
53 				   u32 *image, u32 width, u32 height,
54 				   u32 hotspotX, u32 hotspotY)
55 {
56 	struct {
57 		u32 cmd;
58 		SVGAFifoCmdDefineAlphaCursor cursor;
59 	} *cmd;
60 	u32 image_size = width * height * 4;
61 	u32 cmd_size = sizeof(*cmd) + image_size;
62 
63 	if (!image)
64 		return -EINVAL;
65 
66 	cmd = vmw_fifo_reserve(dev_priv, cmd_size);
67 	if (unlikely(cmd == NULL)) {
68 		DRM_ERROR("Fifo reserve failed.\n");
69 		return -ENOMEM;
70 	}
71 
72 	memset(cmd, 0, sizeof(*cmd));
73 
74 	memcpy(&cmd[1], image, image_size);
75 
76 	cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR;
77 	cmd->cursor.id = 0;
78 	cmd->cursor.width = width;
79 	cmd->cursor.height = height;
80 	cmd->cursor.hotspotX = hotspotX;
81 	cmd->cursor.hotspotY = hotspotY;
82 
83 	vmw_fifo_commit_flush(dev_priv, cmd_size);
84 
85 	return 0;
86 }
87 
88 static int vmw_cursor_update_bo(struct vmw_private *dev_priv,
89 				struct vmw_buffer_object *bo,
90 				u32 width, u32 height,
91 				u32 hotspotX, u32 hotspotY)
92 {
93 	struct ttm_bo_kmap_obj map;
94 	unsigned long kmap_offset;
95 	unsigned long kmap_num;
96 	void *virtual;
97 	bool dummy;
98 	int ret;
99 
100 	kmap_offset = 0;
101 	kmap_num = (width*height*4 + PAGE_SIZE - 1) >> PAGE_SHIFT;
102 
103 	ret = ttm_bo_reserve(&bo->base, true, false, NULL);
104 	if (unlikely(ret != 0)) {
105 		DRM_ERROR("reserve failed\n");
106 		return -EINVAL;
107 	}
108 
109 	ret = ttm_bo_kmap(&bo->base, kmap_offset, kmap_num, &map);
110 	if (unlikely(ret != 0))
111 		goto err_unreserve;
112 
113 	virtual = ttm_kmap_obj_virtual(&map, &dummy);
114 	ret = vmw_cursor_update_image(dev_priv, virtual, width, height,
115 				      hotspotX, hotspotY);
116 
117 	ttm_bo_kunmap(&map);
118 err_unreserve:
119 	ttm_bo_unreserve(&bo->base);
120 
121 	return ret;
122 }
123 
124 
125 static void vmw_cursor_update_position(struct vmw_private *dev_priv,
126 				       bool show, int x, int y)
127 {
128 	u32 *fifo_mem = dev_priv->mmio_virt;
129 	uint32_t count;
130 
131 	spin_lock(&dev_priv->cursor_lock);
132 	vmw_mmio_write(show ? 1 : 0, fifo_mem + SVGA_FIFO_CURSOR_ON);
133 	vmw_mmio_write(x, fifo_mem + SVGA_FIFO_CURSOR_X);
134 	vmw_mmio_write(y, fifo_mem + SVGA_FIFO_CURSOR_Y);
135 	count = vmw_mmio_read(fifo_mem + SVGA_FIFO_CURSOR_COUNT);
136 	vmw_mmio_write(++count, fifo_mem + SVGA_FIFO_CURSOR_COUNT);
137 	spin_unlock(&dev_priv->cursor_lock);
138 }
139 
140 
141 void vmw_kms_cursor_snoop(struct vmw_surface *srf,
142 			  struct ttm_object_file *tfile,
143 			  struct ttm_buffer_object *bo,
144 			  SVGA3dCmdHeader *header)
145 {
146 	struct ttm_bo_kmap_obj map;
147 	unsigned long kmap_offset;
148 	unsigned long kmap_num;
149 	SVGA3dCopyBox *box;
150 	unsigned box_count;
151 	void *virtual;
152 	bool dummy;
153 	struct vmw_dma_cmd {
154 		SVGA3dCmdHeader header;
155 		SVGA3dCmdSurfaceDMA dma;
156 	} *cmd;
157 	int i, ret;
158 
159 	cmd = container_of(header, struct vmw_dma_cmd, header);
160 
161 	/* No snooper installed */
162 	if (!srf->snooper.image)
163 		return;
164 
165 	if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) {
166 		DRM_ERROR("face and mipmap for cursors should never != 0\n");
167 		return;
168 	}
169 
170 	if (cmd->header.size < 64) {
171 		DRM_ERROR("at least one full copy box must be given\n");
172 		return;
173 	}
174 
175 	box = (SVGA3dCopyBox *)&cmd[1];
176 	box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) /
177 			sizeof(SVGA3dCopyBox);
178 
179 	if (cmd->dma.guest.ptr.offset % PAGE_SIZE ||
180 	    box->x != 0    || box->y != 0    || box->z != 0    ||
181 	    box->srcx != 0 || box->srcy != 0 || box->srcz != 0 ||
182 	    box->d != 1    || box_count != 1) {
183 		/* TODO handle none page aligned offsets */
184 		/* TODO handle more dst & src != 0 */
185 		/* TODO handle more then one copy */
186 		DRM_ERROR("Cant snoop dma request for cursor!\n");
187 		DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n",
188 			  box->srcx, box->srcy, box->srcz,
189 			  box->x, box->y, box->z,
190 			  box->w, box->h, box->d, box_count,
191 			  cmd->dma.guest.ptr.offset);
192 		return;
193 	}
194 
195 	kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT;
196 	kmap_num = (64*64*4) >> PAGE_SHIFT;
197 
198 	ret = ttm_bo_reserve(bo, true, false, NULL);
199 	if (unlikely(ret != 0)) {
200 		DRM_ERROR("reserve failed\n");
201 		return;
202 	}
203 
204 	ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map);
205 	if (unlikely(ret != 0))
206 		goto err_unreserve;
207 
208 	virtual = ttm_kmap_obj_virtual(&map, &dummy);
209 
210 	if (box->w == 64 && cmd->dma.guest.pitch == 64*4) {
211 		memcpy(srf->snooper.image, virtual, 64*64*4);
212 	} else {
213 		/* Image is unsigned pointer. */
214 		for (i = 0; i < box->h; i++)
215 			memcpy(srf->snooper.image + i * 64,
216 			       virtual + i * cmd->dma.guest.pitch,
217 			       box->w * 4);
218 	}
219 
220 	srf->snooper.age++;
221 
222 	ttm_bo_kunmap(&map);
223 err_unreserve:
224 	ttm_bo_unreserve(bo);
225 }
226 
227 /**
228  * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots
229  *
230  * @dev_priv: Pointer to the device private struct.
231  *
232  * Clears all legacy hotspots.
233  */
234 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv)
235 {
236 	struct drm_device *dev = dev_priv->dev;
237 	struct vmw_display_unit *du;
238 	struct drm_crtc *crtc;
239 
240 	drm_modeset_lock_all(dev);
241 	drm_for_each_crtc(crtc, dev) {
242 		du = vmw_crtc_to_du(crtc);
243 
244 		du->hotspot_x = 0;
245 		du->hotspot_y = 0;
246 	}
247 	drm_modeset_unlock_all(dev);
248 }
249 
250 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv)
251 {
252 	struct drm_device *dev = dev_priv->dev;
253 	struct vmw_display_unit *du;
254 	struct drm_crtc *crtc;
255 
256 	mutex_lock(&dev->mode_config.mutex);
257 
258 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
259 		du = vmw_crtc_to_du(crtc);
260 		if (!du->cursor_surface ||
261 		    du->cursor_age == du->cursor_surface->snooper.age)
262 			continue;
263 
264 		du->cursor_age = du->cursor_surface->snooper.age;
265 		vmw_cursor_update_image(dev_priv,
266 					du->cursor_surface->snooper.image,
267 					64, 64,
268 					du->hotspot_x + du->core_hotspot_x,
269 					du->hotspot_y + du->core_hotspot_y);
270 	}
271 
272 	mutex_unlock(&dev->mode_config.mutex);
273 }
274 
275 
276 void vmw_du_cursor_plane_destroy(struct drm_plane *plane)
277 {
278 	vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0);
279 
280 	drm_plane_cleanup(plane);
281 }
282 
283 
284 void vmw_du_primary_plane_destroy(struct drm_plane *plane)
285 {
286 	drm_plane_cleanup(plane);
287 
288 	/* Planes are static in our case so we don't free it */
289 }
290 
291 
292 /**
293  * vmw_du_vps_unpin_surf - unpins resource associated with a framebuffer surface
294  *
295  * @vps: plane state associated with the display surface
296  * @unreference: true if we also want to unreference the display.
297  */
298 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps,
299 			     bool unreference)
300 {
301 	if (vps->surf) {
302 		if (vps->pinned) {
303 			vmw_resource_unpin(&vps->surf->res);
304 			vps->pinned--;
305 		}
306 
307 		if (unreference) {
308 			if (vps->pinned)
309 				DRM_ERROR("Surface still pinned\n");
310 			vmw_surface_unreference(&vps->surf);
311 		}
312 	}
313 }
314 
315 
316 /**
317  * vmw_du_plane_cleanup_fb - Unpins the cursor
318  *
319  * @plane:  display plane
320  * @old_state: Contains the FB to clean up
321  *
322  * Unpins the framebuffer surface
323  *
324  * Returns 0 on success
325  */
326 void
327 vmw_du_plane_cleanup_fb(struct drm_plane *plane,
328 			struct drm_plane_state *old_state)
329 {
330 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state);
331 
332 	vmw_du_plane_unpin_surf(vps, false);
333 }
334 
335 
336 /**
337  * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it
338  *
339  * @plane:  display plane
340  * @new_state: info on the new plane state, including the FB
341  *
342  * Returns 0 on success
343  */
344 int
345 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane,
346 			       struct drm_plane_state *new_state)
347 {
348 	struct drm_framebuffer *fb = new_state->fb;
349 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state);
350 
351 
352 	if (vps->surf)
353 		vmw_surface_unreference(&vps->surf);
354 
355 	if (vps->bo)
356 		vmw_bo_unreference(&vps->bo);
357 
358 	if (fb) {
359 		if (vmw_framebuffer_to_vfb(fb)->bo) {
360 			vps->bo = vmw_framebuffer_to_vfbd(fb)->buffer;
361 			vmw_bo_reference(vps->bo);
362 		} else {
363 			vps->surf = vmw_framebuffer_to_vfbs(fb)->surface;
364 			vmw_surface_reference(vps->surf);
365 		}
366 	}
367 
368 	return 0;
369 }
370 
371 
372 void
373 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane,
374 				  struct drm_plane_state *old_state)
375 {
376 	struct drm_crtc *crtc = plane->state->crtc ?: old_state->crtc;
377 	struct vmw_private *dev_priv = vmw_priv(crtc->dev);
378 	struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
379 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(plane->state);
380 	s32 hotspot_x, hotspot_y;
381 	int ret = 0;
382 
383 
384 	hotspot_x = du->hotspot_x;
385 	hotspot_y = du->hotspot_y;
386 
387 	if (plane->state->fb) {
388 		hotspot_x += plane->state->fb->hot_x;
389 		hotspot_y += plane->state->fb->hot_y;
390 	}
391 
392 	du->cursor_surface = vps->surf;
393 	du->cursor_bo = vps->bo;
394 
395 	if (vps->surf) {
396 		du->cursor_age = du->cursor_surface->snooper.age;
397 
398 		ret = vmw_cursor_update_image(dev_priv,
399 					      vps->surf->snooper.image,
400 					      64, 64, hotspot_x,
401 					      hotspot_y);
402 	} else if (vps->bo) {
403 		ret = vmw_cursor_update_bo(dev_priv, vps->bo,
404 					   plane->state->crtc_w,
405 					   plane->state->crtc_h,
406 					   hotspot_x, hotspot_y);
407 	} else {
408 		vmw_cursor_update_position(dev_priv, false, 0, 0);
409 		return;
410 	}
411 
412 	if (!ret) {
413 		du->cursor_x = plane->state->crtc_x + du->set_gui_x;
414 		du->cursor_y = plane->state->crtc_y + du->set_gui_y;
415 
416 		vmw_cursor_update_position(dev_priv, true,
417 					   du->cursor_x + hotspot_x,
418 					   du->cursor_y + hotspot_y);
419 
420 		du->core_hotspot_x = hotspot_x - du->hotspot_x;
421 		du->core_hotspot_y = hotspot_y - du->hotspot_y;
422 	} else {
423 		DRM_ERROR("Failed to update cursor image\n");
424 	}
425 }
426 
427 
428 /**
429  * vmw_du_primary_plane_atomic_check - check if the new state is okay
430  *
431  * @plane: display plane
432  * @state: info on the new plane state, including the FB
433  *
434  * Check if the new state is settable given the current state.  Other
435  * than what the atomic helper checks, we care about crtc fitting
436  * the FB and maintaining one active framebuffer.
437  *
438  * Returns 0 on success
439  */
440 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane,
441 				      struct drm_plane_state *state)
442 {
443 	struct drm_crtc_state *crtc_state = NULL;
444 	struct drm_framebuffer *new_fb = state->fb;
445 	int ret;
446 
447 	if (state->crtc)
448 		crtc_state = drm_atomic_get_new_crtc_state(state->state, state->crtc);
449 
450 	ret = drm_atomic_helper_check_plane_state(state, crtc_state,
451 						  DRM_PLANE_HELPER_NO_SCALING,
452 						  DRM_PLANE_HELPER_NO_SCALING,
453 						  false, true);
454 
455 	if (!ret && new_fb) {
456 		struct drm_crtc *crtc = state->crtc;
457 		struct vmw_connector_state *vcs;
458 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
459 		struct vmw_private *dev_priv = vmw_priv(crtc->dev);
460 		struct vmw_framebuffer *vfb = vmw_framebuffer_to_vfb(new_fb);
461 
462 		vcs = vmw_connector_state_to_vcs(du->connector.state);
463 
464 		/* Only one active implicit framebuffer at a time. */
465 		mutex_lock(&dev_priv->global_kms_state_mutex);
466 		if (vcs->is_implicit && dev_priv->implicit_fb &&
467 		    !(dev_priv->num_implicit == 1 && du->active_implicit)
468 		    && dev_priv->implicit_fb != vfb) {
469 			DRM_ERROR("Multiple implicit framebuffers "
470 				  "not supported.\n");
471 			ret = -EINVAL;
472 		}
473 		mutex_unlock(&dev_priv->global_kms_state_mutex);
474 	}
475 
476 
477 	return ret;
478 }
479 
480 
481 /**
482  * vmw_du_cursor_plane_atomic_check - check if the new state is okay
483  *
484  * @plane: cursor plane
485  * @state: info on the new plane state
486  *
487  * This is a chance to fail if the new cursor state does not fit
488  * our requirements.
489  *
490  * Returns 0 on success
491  */
492 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane,
493 				     struct drm_plane_state *new_state)
494 {
495 	int ret = 0;
496 	struct vmw_surface *surface = NULL;
497 	struct drm_framebuffer *fb = new_state->fb;
498 
499 	struct drm_rect src = drm_plane_state_src(new_state);
500 	struct drm_rect dest = drm_plane_state_dest(new_state);
501 
502 	/* Turning off */
503 	if (!fb)
504 		return ret;
505 
506 	ret = drm_plane_helper_check_update(plane, new_state->crtc, fb,
507 					    &src, &dest,
508 					    DRM_MODE_ROTATE_0,
509 					    DRM_PLANE_HELPER_NO_SCALING,
510 					    DRM_PLANE_HELPER_NO_SCALING,
511 					    true, true, &new_state->visible);
512 	if (!ret)
513 		return ret;
514 
515 	/* A lot of the code assumes this */
516 	if (new_state->crtc_w != 64 || new_state->crtc_h != 64) {
517 		DRM_ERROR("Invalid cursor dimensions (%d, %d)\n",
518 			  new_state->crtc_w, new_state->crtc_h);
519 		ret = -EINVAL;
520 	}
521 
522 	if (!vmw_framebuffer_to_vfb(fb)->bo)
523 		surface = vmw_framebuffer_to_vfbs(fb)->surface;
524 
525 	if (surface && !surface->snooper.image) {
526 		DRM_ERROR("surface not suitable for cursor\n");
527 		ret = -EINVAL;
528 	}
529 
530 	return ret;
531 }
532 
533 
534 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc,
535 			     struct drm_crtc_state *new_state)
536 {
537 	struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc);
538 	int connector_mask = drm_connector_mask(&du->connector);
539 	bool has_primary = new_state->plane_mask &
540 			   drm_plane_mask(crtc->primary);
541 
542 	/* We always want to have an active plane with an active CRTC */
543 	if (has_primary != new_state->enable)
544 		return -EINVAL;
545 
546 
547 	if (new_state->connector_mask != connector_mask &&
548 	    new_state->connector_mask != 0) {
549 		DRM_ERROR("Invalid connectors configuration\n");
550 		return -EINVAL;
551 	}
552 
553 	/*
554 	 * Our virtual device does not have a dot clock, so use the logical
555 	 * clock value as the dot clock.
556 	 */
557 	if (new_state->mode.crtc_clock == 0)
558 		new_state->adjusted_mode.crtc_clock = new_state->mode.clock;
559 
560 	return 0;
561 }
562 
563 
564 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc,
565 			      struct drm_crtc_state *old_crtc_state)
566 {
567 }
568 
569 
570 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc,
571 			      struct drm_crtc_state *old_crtc_state)
572 {
573 	struct drm_pending_vblank_event *event = crtc->state->event;
574 
575 	if (event) {
576 		crtc->state->event = NULL;
577 
578 		spin_lock_irq(&crtc->dev->event_lock);
579 		drm_crtc_send_vblank_event(crtc, event);
580 		spin_unlock_irq(&crtc->dev->event_lock);
581 	}
582 }
583 
584 
585 /**
586  * vmw_du_crtc_duplicate_state - duplicate crtc state
587  * @crtc: DRM crtc
588  *
589  * Allocates and returns a copy of the crtc state (both common and
590  * vmw-specific) for the specified crtc.
591  *
592  * Returns: The newly allocated crtc state, or NULL on failure.
593  */
594 struct drm_crtc_state *
595 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc)
596 {
597 	struct drm_crtc_state *state;
598 	struct vmw_crtc_state *vcs;
599 
600 	if (WARN_ON(!crtc->state))
601 		return NULL;
602 
603 	vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL);
604 
605 	if (!vcs)
606 		return NULL;
607 
608 	state = &vcs->base;
609 
610 	__drm_atomic_helper_crtc_duplicate_state(crtc, state);
611 
612 	return state;
613 }
614 
615 
616 /**
617  * vmw_du_crtc_reset - creates a blank vmw crtc state
618  * @crtc: DRM crtc
619  *
620  * Resets the atomic state for @crtc by freeing the state pointer (which
621  * might be NULL, e.g. at driver load time) and allocating a new empty state
622  * object.
623  */
624 void vmw_du_crtc_reset(struct drm_crtc *crtc)
625 {
626 	struct vmw_crtc_state *vcs;
627 
628 
629 	if (crtc->state) {
630 		__drm_atomic_helper_crtc_destroy_state(crtc->state);
631 
632 		kfree(vmw_crtc_state_to_vcs(crtc->state));
633 	}
634 
635 	vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
636 
637 	if (!vcs) {
638 		DRM_ERROR("Cannot allocate vmw_crtc_state\n");
639 		return;
640 	}
641 
642 	crtc->state = &vcs->base;
643 	crtc->state->crtc = crtc;
644 }
645 
646 
647 /**
648  * vmw_du_crtc_destroy_state - destroy crtc state
649  * @crtc: DRM crtc
650  * @state: state object to destroy
651  *
652  * Destroys the crtc state (both common and vmw-specific) for the
653  * specified plane.
654  */
655 void
656 vmw_du_crtc_destroy_state(struct drm_crtc *crtc,
657 			  struct drm_crtc_state *state)
658 {
659 	drm_atomic_helper_crtc_destroy_state(crtc, state);
660 }
661 
662 
663 /**
664  * vmw_du_plane_duplicate_state - duplicate plane state
665  * @plane: drm plane
666  *
667  * Allocates and returns a copy of the plane state (both common and
668  * vmw-specific) for the specified plane.
669  *
670  * Returns: The newly allocated plane state, or NULL on failure.
671  */
672 struct drm_plane_state *
673 vmw_du_plane_duplicate_state(struct drm_plane *plane)
674 {
675 	struct drm_plane_state *state;
676 	struct vmw_plane_state *vps;
677 
678 	vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL);
679 
680 	if (!vps)
681 		return NULL;
682 
683 	vps->pinned = 0;
684 	vps->cpp = 0;
685 
686 	/* Each ref counted resource needs to be acquired again */
687 	if (vps->surf)
688 		(void) vmw_surface_reference(vps->surf);
689 
690 	if (vps->bo)
691 		(void) vmw_bo_reference(vps->bo);
692 
693 	state = &vps->base;
694 
695 	__drm_atomic_helper_plane_duplicate_state(plane, state);
696 
697 	return state;
698 }
699 
700 
701 /**
702  * vmw_du_plane_reset - creates a blank vmw plane state
703  * @plane: drm plane
704  *
705  * Resets the atomic state for @plane by freeing the state pointer (which might
706  * be NULL, e.g. at driver load time) and allocating a new empty state object.
707  */
708 void vmw_du_plane_reset(struct drm_plane *plane)
709 {
710 	struct vmw_plane_state *vps;
711 
712 
713 	if (plane->state)
714 		vmw_du_plane_destroy_state(plane, plane->state);
715 
716 	vps = kzalloc(sizeof(*vps), GFP_KERNEL);
717 
718 	if (!vps) {
719 		DRM_ERROR("Cannot allocate vmw_plane_state\n");
720 		return;
721 	}
722 
723 	plane->state = &vps->base;
724 	plane->state->plane = plane;
725 	plane->state->rotation = DRM_MODE_ROTATE_0;
726 }
727 
728 
729 /**
730  * vmw_du_plane_destroy_state - destroy plane state
731  * @plane: DRM plane
732  * @state: state object to destroy
733  *
734  * Destroys the plane state (both common and vmw-specific) for the
735  * specified plane.
736  */
737 void
738 vmw_du_plane_destroy_state(struct drm_plane *plane,
739 			   struct drm_plane_state *state)
740 {
741 	struct vmw_plane_state *vps = vmw_plane_state_to_vps(state);
742 
743 
744 	/* Should have been freed by cleanup_fb */
745 	if (vps->surf)
746 		vmw_surface_unreference(&vps->surf);
747 
748 	if (vps->bo)
749 		vmw_bo_unreference(&vps->bo);
750 
751 	drm_atomic_helper_plane_destroy_state(plane, state);
752 }
753 
754 
755 /**
756  * vmw_du_connector_duplicate_state - duplicate connector state
757  * @connector: DRM connector
758  *
759  * Allocates and returns a copy of the connector state (both common and
760  * vmw-specific) for the specified connector.
761  *
762  * Returns: The newly allocated connector state, or NULL on failure.
763  */
764 struct drm_connector_state *
765 vmw_du_connector_duplicate_state(struct drm_connector *connector)
766 {
767 	struct drm_connector_state *state;
768 	struct vmw_connector_state *vcs;
769 
770 	if (WARN_ON(!connector->state))
771 		return NULL;
772 
773 	vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL);
774 
775 	if (!vcs)
776 		return NULL;
777 
778 	state = &vcs->base;
779 
780 	__drm_atomic_helper_connector_duplicate_state(connector, state);
781 
782 	return state;
783 }
784 
785 
786 /**
787  * vmw_du_connector_reset - creates a blank vmw connector state
788  * @connector: DRM connector
789  *
790  * Resets the atomic state for @connector by freeing the state pointer (which
791  * might be NULL, e.g. at driver load time) and allocating a new empty state
792  * object.
793  */
794 void vmw_du_connector_reset(struct drm_connector *connector)
795 {
796 	struct vmw_connector_state *vcs;
797 
798 
799 	if (connector->state) {
800 		__drm_atomic_helper_connector_destroy_state(connector->state);
801 
802 		kfree(vmw_connector_state_to_vcs(connector->state));
803 	}
804 
805 	vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
806 
807 	if (!vcs) {
808 		DRM_ERROR("Cannot allocate vmw_connector_state\n");
809 		return;
810 	}
811 
812 	__drm_atomic_helper_connector_reset(connector, &vcs->base);
813 }
814 
815 
816 /**
817  * vmw_du_connector_destroy_state - destroy connector state
818  * @connector: DRM connector
819  * @state: state object to destroy
820  *
821  * Destroys the connector state (both common and vmw-specific) for the
822  * specified plane.
823  */
824 void
825 vmw_du_connector_destroy_state(struct drm_connector *connector,
826 			  struct drm_connector_state *state)
827 {
828 	drm_atomic_helper_connector_destroy_state(connector, state);
829 }
830 /*
831  * Generic framebuffer code
832  */
833 
834 /*
835  * Surface framebuffer code
836  */
837 
838 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer)
839 {
840 	struct vmw_framebuffer_surface *vfbs =
841 		vmw_framebuffer_to_vfbs(framebuffer);
842 
843 	drm_framebuffer_cleanup(framebuffer);
844 	vmw_surface_unreference(&vfbs->surface);
845 	if (vfbs->base.user_obj)
846 		ttm_base_object_unref(&vfbs->base.user_obj);
847 
848 	kfree(vfbs);
849 }
850 
851 static int vmw_framebuffer_surface_dirty(struct drm_framebuffer *framebuffer,
852 				  struct drm_file *file_priv,
853 				  unsigned flags, unsigned color,
854 				  struct drm_clip_rect *clips,
855 				  unsigned num_clips)
856 {
857 	struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
858 	struct vmw_framebuffer_surface *vfbs =
859 		vmw_framebuffer_to_vfbs(framebuffer);
860 	struct drm_clip_rect norect;
861 	int ret, inc = 1;
862 
863 	/* Legacy Display Unit does not support 3D */
864 	if (dev_priv->active_display_unit == vmw_du_legacy)
865 		return -EINVAL;
866 
867 	drm_modeset_lock_all(dev_priv->dev);
868 
869 	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
870 	if (unlikely(ret != 0)) {
871 		drm_modeset_unlock_all(dev_priv->dev);
872 		return ret;
873 	}
874 
875 	if (!num_clips) {
876 		num_clips = 1;
877 		clips = &norect;
878 		norect.x1 = norect.y1 = 0;
879 		norect.x2 = framebuffer->width;
880 		norect.y2 = framebuffer->height;
881 	} else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
882 		num_clips /= 2;
883 		inc = 2; /* skip source rects */
884 	}
885 
886 	if (dev_priv->active_display_unit == vmw_du_screen_object)
887 		ret = vmw_kms_sou_do_surface_dirty(dev_priv, &vfbs->base,
888 						   clips, NULL, NULL, 0, 0,
889 						   num_clips, inc, NULL, NULL);
890 	else
891 		ret = vmw_kms_stdu_surface_dirty(dev_priv, &vfbs->base,
892 						 clips, NULL, NULL, 0, 0,
893 						 num_clips, inc, NULL, NULL);
894 
895 	vmw_fifo_flush(dev_priv, false);
896 	ttm_read_unlock(&dev_priv->reservation_sem);
897 
898 	drm_modeset_unlock_all(dev_priv->dev);
899 
900 	return 0;
901 }
902 
903 /**
904  * vmw_kms_readback - Perform a readback from the screen system to
905  * a buffer-object backed framebuffer.
906  *
907  * @dev_priv: Pointer to the device private structure.
908  * @file_priv: Pointer to a struct drm_file identifying the caller.
909  * Must be set to NULL if @user_fence_rep is NULL.
910  * @vfb: Pointer to the buffer-object backed framebuffer.
911  * @user_fence_rep: User-space provided structure for fence information.
912  * Must be set to non-NULL if @file_priv is non-NULL.
913  * @vclips: Array of clip rects.
914  * @num_clips: Number of clip rects in @vclips.
915  *
916  * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
917  * interrupted.
918  */
919 int vmw_kms_readback(struct vmw_private *dev_priv,
920 		     struct drm_file *file_priv,
921 		     struct vmw_framebuffer *vfb,
922 		     struct drm_vmw_fence_rep __user *user_fence_rep,
923 		     struct drm_vmw_rect *vclips,
924 		     uint32_t num_clips)
925 {
926 	switch (dev_priv->active_display_unit) {
927 	case vmw_du_screen_object:
928 		return vmw_kms_sou_readback(dev_priv, file_priv, vfb,
929 					    user_fence_rep, vclips, num_clips,
930 					    NULL);
931 	case vmw_du_screen_target:
932 		return vmw_kms_stdu_dma(dev_priv, file_priv, vfb,
933 					user_fence_rep, NULL, vclips, num_clips,
934 					1, false, true, NULL);
935 	default:
936 		WARN_ONCE(true,
937 			  "Readback called with invalid display system.\n");
938 }
939 
940 	return -ENOSYS;
941 }
942 
943 
944 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = {
945 	.destroy = vmw_framebuffer_surface_destroy,
946 	.dirty = vmw_framebuffer_surface_dirty,
947 };
948 
949 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv,
950 					   struct vmw_surface *surface,
951 					   struct vmw_framebuffer **out,
952 					   const struct drm_mode_fb_cmd2
953 					   *mode_cmd,
954 					   bool is_bo_proxy)
955 
956 {
957 	struct drm_device *dev = dev_priv->dev;
958 	struct vmw_framebuffer_surface *vfbs;
959 	enum SVGA3dSurfaceFormat format;
960 	int ret;
961 	struct drm_format_name_buf format_name;
962 
963 	/* 3D is only supported on HWv8 and newer hosts */
964 	if (dev_priv->active_display_unit == vmw_du_legacy)
965 		return -ENOSYS;
966 
967 	/*
968 	 * Sanity checks.
969 	 */
970 
971 	/* Surface must be marked as a scanout. */
972 	if (unlikely(!surface->scanout))
973 		return -EINVAL;
974 
975 	if (unlikely(surface->mip_levels[0] != 1 ||
976 		     surface->num_sizes != 1 ||
977 		     surface->base_size.width < mode_cmd->width ||
978 		     surface->base_size.height < mode_cmd->height ||
979 		     surface->base_size.depth != 1)) {
980 		DRM_ERROR("Incompatible surface dimensions "
981 			  "for requested mode.\n");
982 		return -EINVAL;
983 	}
984 
985 	switch (mode_cmd->pixel_format) {
986 	case DRM_FORMAT_ARGB8888:
987 		format = SVGA3D_A8R8G8B8;
988 		break;
989 	case DRM_FORMAT_XRGB8888:
990 		format = SVGA3D_X8R8G8B8;
991 		break;
992 	case DRM_FORMAT_RGB565:
993 		format = SVGA3D_R5G6B5;
994 		break;
995 	case DRM_FORMAT_XRGB1555:
996 		format = SVGA3D_A1R5G5B5;
997 		break;
998 	default:
999 		DRM_ERROR("Invalid pixel format: %s\n",
1000 			  drm_get_format_name(mode_cmd->pixel_format, &format_name));
1001 		return -EINVAL;
1002 	}
1003 
1004 	/*
1005 	 * For DX, surface format validation is done when surface->scanout
1006 	 * is set.
1007 	 */
1008 	if (!dev_priv->has_dx && format != surface->format) {
1009 		DRM_ERROR("Invalid surface format for requested mode.\n");
1010 		return -EINVAL;
1011 	}
1012 
1013 	vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL);
1014 	if (!vfbs) {
1015 		ret = -ENOMEM;
1016 		goto out_err1;
1017 	}
1018 
1019 	drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd);
1020 	vfbs->surface = vmw_surface_reference(surface);
1021 	vfbs->base.user_handle = mode_cmd->handles[0];
1022 	vfbs->is_bo_proxy = is_bo_proxy;
1023 
1024 	*out = &vfbs->base;
1025 
1026 	ret = drm_framebuffer_init(dev, &vfbs->base.base,
1027 				   &vmw_framebuffer_surface_funcs);
1028 	if (ret)
1029 		goto out_err2;
1030 
1031 	return 0;
1032 
1033 out_err2:
1034 	vmw_surface_unreference(&surface);
1035 	kfree(vfbs);
1036 out_err1:
1037 	return ret;
1038 }
1039 
1040 /*
1041  * Buffer-object framebuffer code
1042  */
1043 
1044 static void vmw_framebuffer_bo_destroy(struct drm_framebuffer *framebuffer)
1045 {
1046 	struct vmw_framebuffer_bo *vfbd =
1047 		vmw_framebuffer_to_vfbd(framebuffer);
1048 
1049 	drm_framebuffer_cleanup(framebuffer);
1050 	vmw_bo_unreference(&vfbd->buffer);
1051 	if (vfbd->base.user_obj)
1052 		ttm_base_object_unref(&vfbd->base.user_obj);
1053 
1054 	kfree(vfbd);
1055 }
1056 
1057 static int vmw_framebuffer_bo_dirty(struct drm_framebuffer *framebuffer,
1058 				    struct drm_file *file_priv,
1059 				    unsigned int flags, unsigned int color,
1060 				    struct drm_clip_rect *clips,
1061 				    unsigned int num_clips)
1062 {
1063 	struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
1064 	struct vmw_framebuffer_bo *vfbd =
1065 		vmw_framebuffer_to_vfbd(framebuffer);
1066 	struct drm_clip_rect norect;
1067 	int ret, increment = 1;
1068 
1069 	drm_modeset_lock_all(dev_priv->dev);
1070 
1071 	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
1072 	if (unlikely(ret != 0)) {
1073 		drm_modeset_unlock_all(dev_priv->dev);
1074 		return ret;
1075 	}
1076 
1077 	if (!num_clips) {
1078 		num_clips = 1;
1079 		clips = &norect;
1080 		norect.x1 = norect.y1 = 0;
1081 		norect.x2 = framebuffer->width;
1082 		norect.y2 = framebuffer->height;
1083 	} else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
1084 		num_clips /= 2;
1085 		increment = 2;
1086 	}
1087 
1088 	switch (dev_priv->active_display_unit) {
1089 	case vmw_du_screen_target:
1090 		ret = vmw_kms_stdu_dma(dev_priv, NULL, &vfbd->base, NULL,
1091 				       clips, NULL, num_clips, increment,
1092 				       true, true, NULL);
1093 		break;
1094 	case vmw_du_screen_object:
1095 		ret = vmw_kms_sou_do_bo_dirty(dev_priv, &vfbd->base,
1096 					      clips, NULL, num_clips,
1097 					      increment, true, NULL, NULL);
1098 		break;
1099 	case vmw_du_legacy:
1100 		ret = vmw_kms_ldu_do_bo_dirty(dev_priv, &vfbd->base, 0, 0,
1101 					      clips, num_clips, increment);
1102 		break;
1103 	default:
1104 		ret = -EINVAL;
1105 		WARN_ONCE(true, "Dirty called with invalid display system.\n");
1106 		break;
1107 	}
1108 
1109 	vmw_fifo_flush(dev_priv, false);
1110 	ttm_read_unlock(&dev_priv->reservation_sem);
1111 
1112 	drm_modeset_unlock_all(dev_priv->dev);
1113 
1114 	return ret;
1115 }
1116 
1117 static const struct drm_framebuffer_funcs vmw_framebuffer_bo_funcs = {
1118 	.destroy = vmw_framebuffer_bo_destroy,
1119 	.dirty = vmw_framebuffer_bo_dirty,
1120 };
1121 
1122 /**
1123  * Pin the bofer in a location suitable for access by the
1124  * display system.
1125  */
1126 static int vmw_framebuffer_pin(struct vmw_framebuffer *vfb)
1127 {
1128 	struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1129 	struct vmw_buffer_object *buf;
1130 	struct ttm_placement *placement;
1131 	int ret;
1132 
1133 	buf = vfb->bo ?  vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1134 		vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1135 
1136 	if (!buf)
1137 		return 0;
1138 
1139 	switch (dev_priv->active_display_unit) {
1140 	case vmw_du_legacy:
1141 		vmw_overlay_pause_all(dev_priv);
1142 		ret = vmw_bo_pin_in_start_of_vram(dev_priv, buf, false);
1143 		vmw_overlay_resume_all(dev_priv);
1144 		break;
1145 	case vmw_du_screen_object:
1146 	case vmw_du_screen_target:
1147 		if (vfb->bo) {
1148 			if (dev_priv->capabilities & SVGA_CAP_3D) {
1149 				/*
1150 				 * Use surface DMA to get content to
1151 				 * sreen target surface.
1152 				 */
1153 				placement = &vmw_vram_gmr_placement;
1154 			} else {
1155 				/* Use CPU blit. */
1156 				placement = &vmw_sys_placement;
1157 			}
1158 		} else {
1159 			/* Use surface / image update */
1160 			placement = &vmw_mob_placement;
1161 		}
1162 
1163 		return vmw_bo_pin_in_placement(dev_priv, buf, placement, false);
1164 	default:
1165 		return -EINVAL;
1166 	}
1167 
1168 	return ret;
1169 }
1170 
1171 static int vmw_framebuffer_unpin(struct vmw_framebuffer *vfb)
1172 {
1173 	struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1174 	struct vmw_buffer_object *buf;
1175 
1176 	buf = vfb->bo ?  vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1177 		vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1178 
1179 	if (WARN_ON(!buf))
1180 		return 0;
1181 
1182 	return vmw_bo_unpin(dev_priv, buf, false);
1183 }
1184 
1185 /**
1186  * vmw_create_bo_proxy - create a proxy surface for the buffer object
1187  *
1188  * @dev: DRM device
1189  * @mode_cmd: parameters for the new surface
1190  * @bo_mob: MOB backing the buffer object
1191  * @srf_out: newly created surface
1192  *
1193  * When the content FB is a buffer object, we create a surface as a proxy to the
1194  * same buffer.  This way we can do a surface copy rather than a surface DMA.
1195  * This is a more efficient approach
1196  *
1197  * RETURNS:
1198  * 0 on success, error code otherwise
1199  */
1200 static int vmw_create_bo_proxy(struct drm_device *dev,
1201 			       const struct drm_mode_fb_cmd2 *mode_cmd,
1202 			       struct vmw_buffer_object *bo_mob,
1203 			       struct vmw_surface **srf_out)
1204 {
1205 	uint32_t format;
1206 	struct drm_vmw_size content_base_size = {0};
1207 	struct vmw_resource *res;
1208 	unsigned int bytes_pp;
1209 	struct drm_format_name_buf format_name;
1210 	int ret;
1211 
1212 	switch (mode_cmd->pixel_format) {
1213 	case DRM_FORMAT_ARGB8888:
1214 	case DRM_FORMAT_XRGB8888:
1215 		format = SVGA3D_X8R8G8B8;
1216 		bytes_pp = 4;
1217 		break;
1218 
1219 	case DRM_FORMAT_RGB565:
1220 	case DRM_FORMAT_XRGB1555:
1221 		format = SVGA3D_R5G6B5;
1222 		bytes_pp = 2;
1223 		break;
1224 
1225 	case 8:
1226 		format = SVGA3D_P8;
1227 		bytes_pp = 1;
1228 		break;
1229 
1230 	default:
1231 		DRM_ERROR("Invalid framebuffer format %s\n",
1232 			  drm_get_format_name(mode_cmd->pixel_format, &format_name));
1233 		return -EINVAL;
1234 	}
1235 
1236 	content_base_size.width  = mode_cmd->pitches[0] / bytes_pp;
1237 	content_base_size.height = mode_cmd->height;
1238 	content_base_size.depth  = 1;
1239 
1240 	ret = vmw_surface_gb_priv_define(dev,
1241 					 0, /* kernel visible only */
1242 					 0, /* flags */
1243 					 format,
1244 					 true, /* can be a scanout buffer */
1245 					 1, /* num of mip levels */
1246 					 0,
1247 					 0,
1248 					 content_base_size,
1249 					 SVGA3D_MS_PATTERN_NONE,
1250 					 SVGA3D_MS_QUALITY_NONE,
1251 					 srf_out);
1252 	if (ret) {
1253 		DRM_ERROR("Failed to allocate proxy content buffer\n");
1254 		return ret;
1255 	}
1256 
1257 	res = &(*srf_out)->res;
1258 
1259 	/* Reserve and switch the backing mob. */
1260 	mutex_lock(&res->dev_priv->cmdbuf_mutex);
1261 	(void) vmw_resource_reserve(res, false, true);
1262 	vmw_bo_unreference(&res->backup);
1263 	res->backup = vmw_bo_reference(bo_mob);
1264 	res->backup_offset = 0;
1265 	vmw_resource_unreserve(res, false, NULL, 0);
1266 	mutex_unlock(&res->dev_priv->cmdbuf_mutex);
1267 
1268 	return 0;
1269 }
1270 
1271 
1272 
1273 static int vmw_kms_new_framebuffer_bo(struct vmw_private *dev_priv,
1274 				      struct vmw_buffer_object *bo,
1275 				      struct vmw_framebuffer **out,
1276 				      const struct drm_mode_fb_cmd2
1277 				      *mode_cmd)
1278 
1279 {
1280 	struct drm_device *dev = dev_priv->dev;
1281 	struct vmw_framebuffer_bo *vfbd;
1282 	unsigned int requested_size;
1283 	struct drm_format_name_buf format_name;
1284 	int ret;
1285 
1286 	requested_size = mode_cmd->height * mode_cmd->pitches[0];
1287 	if (unlikely(requested_size > bo->base.num_pages * PAGE_SIZE)) {
1288 		DRM_ERROR("Screen buffer object size is too small "
1289 			  "for requested mode.\n");
1290 		return -EINVAL;
1291 	}
1292 
1293 	/* Limited framebuffer color depth support for screen objects */
1294 	if (dev_priv->active_display_unit == vmw_du_screen_object) {
1295 		switch (mode_cmd->pixel_format) {
1296 		case DRM_FORMAT_XRGB8888:
1297 		case DRM_FORMAT_ARGB8888:
1298 			break;
1299 		case DRM_FORMAT_XRGB1555:
1300 		case DRM_FORMAT_RGB565:
1301 			break;
1302 		default:
1303 			DRM_ERROR("Invalid pixel format: %s\n",
1304 				  drm_get_format_name(mode_cmd->pixel_format, &format_name));
1305 			return -EINVAL;
1306 		}
1307 	}
1308 
1309 	vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL);
1310 	if (!vfbd) {
1311 		ret = -ENOMEM;
1312 		goto out_err1;
1313 	}
1314 
1315 	drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd);
1316 	vfbd->base.bo = true;
1317 	vfbd->buffer = vmw_bo_reference(bo);
1318 	vfbd->base.user_handle = mode_cmd->handles[0];
1319 	*out = &vfbd->base;
1320 
1321 	ret = drm_framebuffer_init(dev, &vfbd->base.base,
1322 				   &vmw_framebuffer_bo_funcs);
1323 	if (ret)
1324 		goto out_err2;
1325 
1326 	return 0;
1327 
1328 out_err2:
1329 	vmw_bo_unreference(&bo);
1330 	kfree(vfbd);
1331 out_err1:
1332 	return ret;
1333 }
1334 
1335 
1336 /**
1337  * vmw_kms_srf_ok - check if a surface can be created
1338  *
1339  * @width: requested width
1340  * @height: requested height
1341  *
1342  * Surfaces need to be less than texture size
1343  */
1344 static bool
1345 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height)
1346 {
1347 	if (width  > dev_priv->texture_max_width ||
1348 	    height > dev_priv->texture_max_height)
1349 		return false;
1350 
1351 	return true;
1352 }
1353 
1354 /**
1355  * vmw_kms_new_framebuffer - Create a new framebuffer.
1356  *
1357  * @dev_priv: Pointer to device private struct.
1358  * @bo: Pointer to buffer object to wrap the kms framebuffer around.
1359  * Either @bo or @surface must be NULL.
1360  * @surface: Pointer to a surface to wrap the kms framebuffer around.
1361  * Either @bo or @surface must be NULL.
1362  * @only_2d: No presents will occur to this buffer object based framebuffer.
1363  * This helps the code to do some important optimizations.
1364  * @mode_cmd: Frame-buffer metadata.
1365  */
1366 struct vmw_framebuffer *
1367 vmw_kms_new_framebuffer(struct vmw_private *dev_priv,
1368 			struct vmw_buffer_object *bo,
1369 			struct vmw_surface *surface,
1370 			bool only_2d,
1371 			const struct drm_mode_fb_cmd2 *mode_cmd)
1372 {
1373 	struct vmw_framebuffer *vfb = NULL;
1374 	bool is_bo_proxy = false;
1375 	int ret;
1376 
1377 	/*
1378 	 * We cannot use the SurfaceDMA command in an non-accelerated VM,
1379 	 * therefore, wrap the buffer object in a surface so we can use the
1380 	 * SurfaceCopy command.
1381 	 */
1382 	if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)  &&
1383 	    bo && only_2d &&
1384 	    mode_cmd->width > 64 &&  /* Don't create a proxy for cursor */
1385 	    dev_priv->active_display_unit == vmw_du_screen_target) {
1386 		ret = vmw_create_bo_proxy(dev_priv->dev, mode_cmd,
1387 					  bo, &surface);
1388 		if (ret)
1389 			return ERR_PTR(ret);
1390 
1391 		is_bo_proxy = true;
1392 	}
1393 
1394 	/* Create the new framebuffer depending one what we have */
1395 	if (surface) {
1396 		ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb,
1397 						      mode_cmd,
1398 						      is_bo_proxy);
1399 
1400 		/*
1401 		 * vmw_create_bo_proxy() adds a reference that is no longer
1402 		 * needed
1403 		 */
1404 		if (is_bo_proxy)
1405 			vmw_surface_unreference(&surface);
1406 	} else if (bo) {
1407 		ret = vmw_kms_new_framebuffer_bo(dev_priv, bo, &vfb,
1408 						 mode_cmd);
1409 	} else {
1410 		BUG();
1411 	}
1412 
1413 	if (ret)
1414 		return ERR_PTR(ret);
1415 
1416 	vfb->pin = vmw_framebuffer_pin;
1417 	vfb->unpin = vmw_framebuffer_unpin;
1418 
1419 	return vfb;
1420 }
1421 
1422 /*
1423  * Generic Kernel modesetting functions
1424  */
1425 
1426 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev,
1427 						 struct drm_file *file_priv,
1428 						 const struct drm_mode_fb_cmd2 *mode_cmd)
1429 {
1430 	struct vmw_private *dev_priv = vmw_priv(dev);
1431 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1432 	struct vmw_framebuffer *vfb = NULL;
1433 	struct vmw_surface *surface = NULL;
1434 	struct vmw_buffer_object *bo = NULL;
1435 	struct ttm_base_object *user_obj;
1436 	int ret;
1437 
1438 	/*
1439 	 * Take a reference on the user object of the resource
1440 	 * backing the kms fb. This ensures that user-space handle
1441 	 * lookups on that resource will always work as long as
1442 	 * it's registered with a kms framebuffer. This is important,
1443 	 * since vmw_execbuf_process identifies resources in the
1444 	 * command stream using user-space handles.
1445 	 */
1446 
1447 	user_obj = ttm_base_object_lookup(tfile, mode_cmd->handles[0]);
1448 	if (unlikely(user_obj == NULL)) {
1449 		DRM_ERROR("Could not locate requested kms frame buffer.\n");
1450 		return ERR_PTR(-ENOENT);
1451 	}
1452 
1453 	/**
1454 	 * End conditioned code.
1455 	 */
1456 
1457 	/* returns either a bo or surface */
1458 	ret = vmw_user_lookup_handle(dev_priv, tfile,
1459 				     mode_cmd->handles[0],
1460 				     &surface, &bo);
1461 	if (ret)
1462 		goto err_out;
1463 
1464 
1465 	if (!bo &&
1466 	    !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) {
1467 		DRM_ERROR("Surface size cannot exceed %dx%d",
1468 			dev_priv->texture_max_width,
1469 			dev_priv->texture_max_height);
1470 		goto err_out;
1471 	}
1472 
1473 
1474 	vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface,
1475 				      !(dev_priv->capabilities & SVGA_CAP_3D),
1476 				      mode_cmd);
1477 	if (IS_ERR(vfb)) {
1478 		ret = PTR_ERR(vfb);
1479 		goto err_out;
1480  	}
1481 
1482 err_out:
1483 	/* vmw_user_lookup_handle takes one ref so does new_fb */
1484 	if (bo)
1485 		vmw_bo_unreference(&bo);
1486 	if (surface)
1487 		vmw_surface_unreference(&surface);
1488 
1489 	if (ret) {
1490 		DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret);
1491 		ttm_base_object_unref(&user_obj);
1492 		return ERR_PTR(ret);
1493 	} else
1494 		vfb->user_obj = user_obj;
1495 
1496 	return &vfb->base;
1497 }
1498 
1499 /**
1500  * vmw_kms_check_display_memory - Validates display memory required for a
1501  * topology
1502  * @dev: DRM device
1503  * @num_rects: number of drm_rect in rects
1504  * @rects: array of drm_rect representing the topology to validate indexed by
1505  * crtc index.
1506  *
1507  * Returns:
1508  * 0 on success otherwise negative error code
1509  */
1510 static int vmw_kms_check_display_memory(struct drm_device *dev,
1511 					uint32_t num_rects,
1512 					struct drm_rect *rects)
1513 {
1514 	struct vmw_private *dev_priv = vmw_priv(dev);
1515 	struct drm_mode_config *mode_config = &dev->mode_config;
1516 	struct drm_rect bounding_box = {0};
1517 	u64 total_pixels = 0, pixel_mem, bb_mem;
1518 	int i;
1519 
1520 	for (i = 0; i < num_rects; i++) {
1521 		/*
1522 		 * Currently this check is limiting the topology within max
1523 		 * texture/screentarget size. This should change in future when
1524 		 * user-space support multiple fb with topology.
1525 		 */
1526 		if (rects[i].x1 < 0 ||  rects[i].y1 < 0 ||
1527 		    rects[i].x2 > mode_config->max_width ||
1528 		    rects[i].y2 > mode_config->max_height) {
1529 			DRM_ERROR("Invalid GUI layout.\n");
1530 			return -EINVAL;
1531 		}
1532 
1533 		/* Bounding box upper left is at (0,0). */
1534 		if (rects[i].x2 > bounding_box.x2)
1535 			bounding_box.x2 = rects[i].x2;
1536 
1537 		if (rects[i].y2 > bounding_box.y2)
1538 			bounding_box.y2 = rects[i].y2;
1539 
1540 		total_pixels += (u64) drm_rect_width(&rects[i]) *
1541 			(u64) drm_rect_height(&rects[i]);
1542 	}
1543 
1544 	/* Virtual svga device primary limits are always in 32-bpp. */
1545 	pixel_mem = total_pixels * 4;
1546 
1547 	/*
1548 	 * For HV10 and below prim_bb_mem is vram size. When
1549 	 * SVGA_REG_MAX_PRIMARY_BOUNDING_BOX_MEM is not present vram size is
1550 	 * limit on primary bounding box
1551 	 */
1552 	if (pixel_mem > dev_priv->prim_bb_mem) {
1553 		DRM_ERROR("Combined output size too large.\n");
1554 		return -EINVAL;
1555 	}
1556 
1557 	/* SVGA_CAP_NO_BB_RESTRICTION is available for STDU only. */
1558 	if (dev_priv->active_display_unit != vmw_du_screen_target ||
1559 	    !(dev_priv->capabilities & SVGA_CAP_NO_BB_RESTRICTION)) {
1560 		bb_mem = (u64) bounding_box.x2 * bounding_box.y2 * 4;
1561 
1562 		if (bb_mem > dev_priv->prim_bb_mem) {
1563 			DRM_ERROR("Topology is beyond supported limits.\n");
1564 			return -EINVAL;
1565 		}
1566 	}
1567 
1568 	return 0;
1569 }
1570 
1571 /**
1572  * vmw_kms_check_topology - Validates topology in drm_atomic_state
1573  * @dev: DRM device
1574  * @state: the driver state object
1575  *
1576  * Returns:
1577  * 0 on success otherwise negative error code
1578  */
1579 static int vmw_kms_check_topology(struct drm_device *dev,
1580 				  struct drm_atomic_state *state)
1581 {
1582 	struct vmw_private *dev_priv = vmw_priv(dev);
1583 	struct drm_crtc_state *old_crtc_state, *new_crtc_state;
1584 	struct drm_rect *rects;
1585 	struct drm_crtc *crtc;
1586 	uint32_t i;
1587 	int ret = 0;
1588 
1589 	rects = kcalloc(dev->mode_config.num_crtc, sizeof(struct drm_rect),
1590 			GFP_KERNEL);
1591 	if (!rects)
1592 		return -ENOMEM;
1593 
1594 	mutex_lock(&dev_priv->requested_layout_mutex);
1595 
1596 	drm_for_each_crtc(crtc, dev) {
1597 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1598 		struct drm_crtc_state *crtc_state = crtc->state;
1599 
1600 		i = drm_crtc_index(crtc);
1601 
1602 		if (crtc_state && crtc_state->enable) {
1603 			rects[i].x1 = du->gui_x;
1604 			rects[i].y1 = du->gui_y;
1605 			rects[i].x2 = du->gui_x + crtc_state->mode.hdisplay;
1606 			rects[i].y2 = du->gui_y + crtc_state->mode.vdisplay;
1607 		}
1608 	}
1609 
1610 	/* Determine change to topology due to new atomic state */
1611 	for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state,
1612 				      new_crtc_state, i) {
1613 		struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1614 		struct drm_connector *connector;
1615 		struct drm_connector_state *conn_state;
1616 		struct vmw_connector_state *vmw_conn_state;
1617 
1618 		if (!new_crtc_state->enable && old_crtc_state->enable) {
1619 			rects[i].x1 = 0;
1620 			rects[i].y1 = 0;
1621 			rects[i].x2 = 0;
1622 			rects[i].y2 = 0;
1623 			continue;
1624 		}
1625 
1626 		if (!du->pref_active) {
1627 			ret = -EINVAL;
1628 			goto clean;
1629 		}
1630 
1631 		/*
1632 		 * For vmwgfx each crtc has only one connector attached and it
1633 		 * is not changed so don't really need to check the
1634 		 * crtc->connector_mask and iterate over it.
1635 		 */
1636 		connector = &du->connector;
1637 		conn_state = drm_atomic_get_connector_state(state, connector);
1638 		if (IS_ERR(conn_state)) {
1639 			ret = PTR_ERR(conn_state);
1640 			goto clean;
1641 		}
1642 
1643 		vmw_conn_state = vmw_connector_state_to_vcs(conn_state);
1644 		vmw_conn_state->gui_x = du->gui_x;
1645 		vmw_conn_state->gui_y = du->gui_y;
1646 
1647 		rects[i].x1 = du->gui_x;
1648 		rects[i].y1 = du->gui_y;
1649 		rects[i].x2 = du->gui_x + new_crtc_state->mode.hdisplay;
1650 		rects[i].y2 = du->gui_y + new_crtc_state->mode.vdisplay;
1651 	}
1652 
1653 	ret = vmw_kms_check_display_memory(dev, dev->mode_config.num_crtc,
1654 					   rects);
1655 
1656 clean:
1657 	mutex_unlock(&dev_priv->requested_layout_mutex);
1658 	kfree(rects);
1659 	return ret;
1660 }
1661 
1662 /**
1663  * vmw_kms_atomic_check_modeset- validate state object for modeset changes
1664  *
1665  * @dev: DRM device
1666  * @state: the driver state object
1667  *
1668  * This is a simple wrapper around drm_atomic_helper_check_modeset() for
1669  * us to assign a value to mode->crtc_clock so that
1670  * drm_calc_timestamping_constants() won't throw an error message
1671  *
1672  * Returns:
1673  * Zero for success or -errno
1674  */
1675 static int
1676 vmw_kms_atomic_check_modeset(struct drm_device *dev,
1677 			     struct drm_atomic_state *state)
1678 {
1679 	struct drm_crtc *crtc;
1680 	struct drm_crtc_state *crtc_state;
1681 	bool need_modeset = false;
1682 	int i, ret;
1683 
1684 	ret = drm_atomic_helper_check(dev, state);
1685 	if (ret)
1686 		return ret;
1687 
1688 	if (!state->allow_modeset)
1689 		return ret;
1690 
1691 	/*
1692 	 * Legacy path do not set allow_modeset properly like
1693 	 * @drm_atomic_helper_update_plane, This will result in unnecessary call
1694 	 * to vmw_kms_check_topology. So extra set of check.
1695 	 */
1696 	for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
1697 		if (drm_atomic_crtc_needs_modeset(crtc_state))
1698 			need_modeset = true;
1699 	}
1700 
1701 	if (need_modeset)
1702 		return vmw_kms_check_topology(dev, state);
1703 
1704 	return ret;
1705 }
1706 
1707 static const struct drm_mode_config_funcs vmw_kms_funcs = {
1708 	.fb_create = vmw_kms_fb_create,
1709 	.atomic_check = vmw_kms_atomic_check_modeset,
1710 	.atomic_commit = drm_atomic_helper_commit,
1711 };
1712 
1713 static int vmw_kms_generic_present(struct vmw_private *dev_priv,
1714 				   struct drm_file *file_priv,
1715 				   struct vmw_framebuffer *vfb,
1716 				   struct vmw_surface *surface,
1717 				   uint32_t sid,
1718 				   int32_t destX, int32_t destY,
1719 				   struct drm_vmw_rect *clips,
1720 				   uint32_t num_clips)
1721 {
1722 	return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips,
1723 					    &surface->res, destX, destY,
1724 					    num_clips, 1, NULL, NULL);
1725 }
1726 
1727 
1728 int vmw_kms_present(struct vmw_private *dev_priv,
1729 		    struct drm_file *file_priv,
1730 		    struct vmw_framebuffer *vfb,
1731 		    struct vmw_surface *surface,
1732 		    uint32_t sid,
1733 		    int32_t destX, int32_t destY,
1734 		    struct drm_vmw_rect *clips,
1735 		    uint32_t num_clips)
1736 {
1737 	int ret;
1738 
1739 	switch (dev_priv->active_display_unit) {
1740 	case vmw_du_screen_target:
1741 		ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips,
1742 						 &surface->res, destX, destY,
1743 						 num_clips, 1, NULL, NULL);
1744 		break;
1745 	case vmw_du_screen_object:
1746 		ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface,
1747 					      sid, destX, destY, clips,
1748 					      num_clips);
1749 		break;
1750 	default:
1751 		WARN_ONCE(true,
1752 			  "Present called with invalid display system.\n");
1753 		ret = -ENOSYS;
1754 		break;
1755 	}
1756 	if (ret)
1757 		return ret;
1758 
1759 	vmw_fifo_flush(dev_priv, false);
1760 
1761 	return 0;
1762 }
1763 
1764 static void
1765 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv)
1766 {
1767 	if (dev_priv->hotplug_mode_update_property)
1768 		return;
1769 
1770 	dev_priv->hotplug_mode_update_property =
1771 		drm_property_create_range(dev_priv->dev,
1772 					  DRM_MODE_PROP_IMMUTABLE,
1773 					  "hotplug_mode_update", 0, 1);
1774 
1775 	if (!dev_priv->hotplug_mode_update_property)
1776 		return;
1777 
1778 }
1779 
1780 int vmw_kms_init(struct vmw_private *dev_priv)
1781 {
1782 	struct drm_device *dev = dev_priv->dev;
1783 	int ret;
1784 
1785 	drm_mode_config_init(dev);
1786 	dev->mode_config.funcs = &vmw_kms_funcs;
1787 	dev->mode_config.min_width = 1;
1788 	dev->mode_config.min_height = 1;
1789 	dev->mode_config.max_width = dev_priv->texture_max_width;
1790 	dev->mode_config.max_height = dev_priv->texture_max_height;
1791 
1792 	drm_mode_create_suggested_offset_properties(dev);
1793 	vmw_kms_create_hotplug_mode_update_property(dev_priv);
1794 
1795 	ret = vmw_kms_stdu_init_display(dev_priv);
1796 	if (ret) {
1797 		ret = vmw_kms_sou_init_display(dev_priv);
1798 		if (ret) /* Fallback */
1799 			ret = vmw_kms_ldu_init_display(dev_priv);
1800 	}
1801 
1802 	return ret;
1803 }
1804 
1805 int vmw_kms_close(struct vmw_private *dev_priv)
1806 {
1807 	int ret = 0;
1808 
1809 	/*
1810 	 * Docs says we should take the lock before calling this function
1811 	 * but since it destroys encoders and our destructor calls
1812 	 * drm_encoder_cleanup which takes the lock we deadlock.
1813 	 */
1814 	drm_mode_config_cleanup(dev_priv->dev);
1815 	if (dev_priv->active_display_unit == vmw_du_legacy)
1816 		ret = vmw_kms_ldu_close_display(dev_priv);
1817 
1818 	return ret;
1819 }
1820 
1821 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data,
1822 				struct drm_file *file_priv)
1823 {
1824 	struct drm_vmw_cursor_bypass_arg *arg = data;
1825 	struct vmw_display_unit *du;
1826 	struct drm_crtc *crtc;
1827 	int ret = 0;
1828 
1829 
1830 	mutex_lock(&dev->mode_config.mutex);
1831 	if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) {
1832 
1833 		list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1834 			du = vmw_crtc_to_du(crtc);
1835 			du->hotspot_x = arg->xhot;
1836 			du->hotspot_y = arg->yhot;
1837 		}
1838 
1839 		mutex_unlock(&dev->mode_config.mutex);
1840 		return 0;
1841 	}
1842 
1843 	crtc = drm_crtc_find(dev, file_priv, arg->crtc_id);
1844 	if (!crtc) {
1845 		ret = -ENOENT;
1846 		goto out;
1847 	}
1848 
1849 	du = vmw_crtc_to_du(crtc);
1850 
1851 	du->hotspot_x = arg->xhot;
1852 	du->hotspot_y = arg->yhot;
1853 
1854 out:
1855 	mutex_unlock(&dev->mode_config.mutex);
1856 
1857 	return ret;
1858 }
1859 
1860 int vmw_kms_write_svga(struct vmw_private *vmw_priv,
1861 			unsigned width, unsigned height, unsigned pitch,
1862 			unsigned bpp, unsigned depth)
1863 {
1864 	if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1865 		vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch);
1866 	else if (vmw_fifo_have_pitchlock(vmw_priv))
1867 		vmw_mmio_write(pitch, vmw_priv->mmio_virt +
1868 			       SVGA_FIFO_PITCHLOCK);
1869 	vmw_write(vmw_priv, SVGA_REG_WIDTH, width);
1870 	vmw_write(vmw_priv, SVGA_REG_HEIGHT, height);
1871 	vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp);
1872 
1873 	if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) {
1874 		DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n",
1875 			  depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH));
1876 		return -EINVAL;
1877 	}
1878 
1879 	return 0;
1880 }
1881 
1882 int vmw_kms_save_vga(struct vmw_private *vmw_priv)
1883 {
1884 	struct vmw_vga_topology_state *save;
1885 	uint32_t i;
1886 
1887 	vmw_priv->vga_width = vmw_read(vmw_priv, SVGA_REG_WIDTH);
1888 	vmw_priv->vga_height = vmw_read(vmw_priv, SVGA_REG_HEIGHT);
1889 	vmw_priv->vga_bpp = vmw_read(vmw_priv, SVGA_REG_BITS_PER_PIXEL);
1890 	if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1891 		vmw_priv->vga_pitchlock =
1892 		  vmw_read(vmw_priv, SVGA_REG_PITCHLOCK);
1893 	else if (vmw_fifo_have_pitchlock(vmw_priv))
1894 		vmw_priv->vga_pitchlock = vmw_mmio_read(vmw_priv->mmio_virt +
1895 							SVGA_FIFO_PITCHLOCK);
1896 
1897 	if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY))
1898 		return 0;
1899 
1900 	vmw_priv->num_displays = vmw_read(vmw_priv,
1901 					  SVGA_REG_NUM_GUEST_DISPLAYS);
1902 
1903 	if (vmw_priv->num_displays == 0)
1904 		vmw_priv->num_displays = 1;
1905 
1906 	for (i = 0; i < vmw_priv->num_displays; ++i) {
1907 		save = &vmw_priv->vga_save[i];
1908 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i);
1909 		save->primary = vmw_read(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY);
1910 		save->pos_x = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_X);
1911 		save->pos_y = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y);
1912 		save->width = vmw_read(vmw_priv, SVGA_REG_DISPLAY_WIDTH);
1913 		save->height = vmw_read(vmw_priv, SVGA_REG_DISPLAY_HEIGHT);
1914 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID);
1915 		if (i == 0 && vmw_priv->num_displays == 1 &&
1916 		    save->width == 0 && save->height == 0) {
1917 
1918 			/*
1919 			 * It should be fairly safe to assume that these
1920 			 * values are uninitialized.
1921 			 */
1922 
1923 			save->width = vmw_priv->vga_width - save->pos_x;
1924 			save->height = vmw_priv->vga_height - save->pos_y;
1925 		}
1926 	}
1927 
1928 	return 0;
1929 }
1930 
1931 int vmw_kms_restore_vga(struct vmw_private *vmw_priv)
1932 {
1933 	struct vmw_vga_topology_state *save;
1934 	uint32_t i;
1935 
1936 	vmw_write(vmw_priv, SVGA_REG_WIDTH, vmw_priv->vga_width);
1937 	vmw_write(vmw_priv, SVGA_REG_HEIGHT, vmw_priv->vga_height);
1938 	vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, vmw_priv->vga_bpp);
1939 	if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1940 		vmw_write(vmw_priv, SVGA_REG_PITCHLOCK,
1941 			  vmw_priv->vga_pitchlock);
1942 	else if (vmw_fifo_have_pitchlock(vmw_priv))
1943 		vmw_mmio_write(vmw_priv->vga_pitchlock,
1944 			       vmw_priv->mmio_virt + SVGA_FIFO_PITCHLOCK);
1945 
1946 	if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY))
1947 		return 0;
1948 
1949 	for (i = 0; i < vmw_priv->num_displays; ++i) {
1950 		save = &vmw_priv->vga_save[i];
1951 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i);
1952 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY, save->primary);
1953 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_X, save->pos_x);
1954 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y, save->pos_y);
1955 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_WIDTH, save->width);
1956 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_HEIGHT, save->height);
1957 		vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID);
1958 	}
1959 
1960 	return 0;
1961 }
1962 
1963 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv,
1964 				uint32_t pitch,
1965 				uint32_t height)
1966 {
1967 	return ((u64) pitch * (u64) height) < (u64)
1968 		((dev_priv->active_display_unit == vmw_du_screen_target) ?
1969 		 dev_priv->prim_bb_mem : dev_priv->vram_size);
1970 }
1971 
1972 
1973 /**
1974  * Function called by DRM code called with vbl_lock held.
1975  */
1976 u32 vmw_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
1977 {
1978 	return 0;
1979 }
1980 
1981 /**
1982  * Function called by DRM code called with vbl_lock held.
1983  */
1984 int vmw_enable_vblank(struct drm_device *dev, unsigned int pipe)
1985 {
1986 	return -EINVAL;
1987 }
1988 
1989 /**
1990  * Function called by DRM code called with vbl_lock held.
1991  */
1992 void vmw_disable_vblank(struct drm_device *dev, unsigned int pipe)
1993 {
1994 }
1995 
1996 /**
1997  * vmw_du_update_layout - Update the display unit with topology from resolution
1998  * plugin and generate DRM uevent
1999  * @dev_priv: device private
2000  * @num_rects: number of drm_rect in rects
2001  * @rects: toplogy to update
2002  */
2003 static int vmw_du_update_layout(struct vmw_private *dev_priv,
2004 				unsigned int num_rects, struct drm_rect *rects)
2005 {
2006 	struct drm_device *dev = dev_priv->dev;
2007 	struct vmw_display_unit *du;
2008 	struct drm_connector *con;
2009 	struct drm_connector_list_iter conn_iter;
2010 
2011 	/*
2012 	 * Currently only gui_x/y is protected with requested_layout_mutex.
2013 	 */
2014 	mutex_lock(&dev_priv->requested_layout_mutex);
2015 	drm_connector_list_iter_begin(dev, &conn_iter);
2016 	drm_for_each_connector_iter(con, &conn_iter) {
2017 		du = vmw_connector_to_du(con);
2018 		if (num_rects > du->unit) {
2019 			du->pref_width = drm_rect_width(&rects[du->unit]);
2020 			du->pref_height = drm_rect_height(&rects[du->unit]);
2021 			du->pref_active = true;
2022 			du->gui_x = rects[du->unit].x1;
2023 			du->gui_y = rects[du->unit].y1;
2024 		} else {
2025 			du->pref_width = 800;
2026 			du->pref_height = 600;
2027 			du->pref_active = false;
2028 			du->gui_x = 0;
2029 			du->gui_y = 0;
2030 		}
2031 	}
2032 	drm_connector_list_iter_end(&conn_iter);
2033 	mutex_unlock(&dev_priv->requested_layout_mutex);
2034 
2035 	mutex_lock(&dev->mode_config.mutex);
2036 	list_for_each_entry(con, &dev->mode_config.connector_list, head) {
2037 		du = vmw_connector_to_du(con);
2038 		if (num_rects > du->unit) {
2039 			drm_object_property_set_value
2040 			  (&con->base, dev->mode_config.suggested_x_property,
2041 			   du->gui_x);
2042 			drm_object_property_set_value
2043 			  (&con->base, dev->mode_config.suggested_y_property,
2044 			   du->gui_y);
2045 		} else {
2046 			drm_object_property_set_value
2047 			  (&con->base, dev->mode_config.suggested_x_property,
2048 			   0);
2049 			drm_object_property_set_value
2050 			  (&con->base, dev->mode_config.suggested_y_property,
2051 			   0);
2052 		}
2053 		con->status = vmw_du_connector_detect(con, true);
2054 	}
2055 	mutex_unlock(&dev->mode_config.mutex);
2056 
2057 	drm_sysfs_hotplug_event(dev);
2058 
2059 	return 0;
2060 }
2061 
2062 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc,
2063 			  u16 *r, u16 *g, u16 *b,
2064 			  uint32_t size,
2065 			  struct drm_modeset_acquire_ctx *ctx)
2066 {
2067 	struct vmw_private *dev_priv = vmw_priv(crtc->dev);
2068 	int i;
2069 
2070 	for (i = 0; i < size; i++) {
2071 		DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i,
2072 			  r[i], g[i], b[i]);
2073 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8);
2074 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8);
2075 		vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8);
2076 	}
2077 
2078 	return 0;
2079 }
2080 
2081 int vmw_du_connector_dpms(struct drm_connector *connector, int mode)
2082 {
2083 	return 0;
2084 }
2085 
2086 enum drm_connector_status
2087 vmw_du_connector_detect(struct drm_connector *connector, bool force)
2088 {
2089 	uint32_t num_displays;
2090 	struct drm_device *dev = connector->dev;
2091 	struct vmw_private *dev_priv = vmw_priv(dev);
2092 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2093 
2094 	num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS);
2095 
2096 	return ((vmw_connector_to_du(connector)->unit < num_displays &&
2097 		 du->pref_active) ?
2098 		connector_status_connected : connector_status_disconnected);
2099 }
2100 
2101 static struct drm_display_mode vmw_kms_connector_builtin[] = {
2102 	/* 640x480@60Hz */
2103 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
2104 		   752, 800, 0, 480, 489, 492, 525, 0,
2105 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
2106 	/* 800x600@60Hz */
2107 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
2108 		   968, 1056, 0, 600, 601, 605, 628, 0,
2109 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2110 	/* 1024x768@60Hz */
2111 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
2112 		   1184, 1344, 0, 768, 771, 777, 806, 0,
2113 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
2114 	/* 1152x864@75Hz */
2115 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
2116 		   1344, 1600, 0, 864, 865, 868, 900, 0,
2117 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2118 	/* 1280x768@60Hz */
2119 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
2120 		   1472, 1664, 0, 768, 771, 778, 798, 0,
2121 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2122 	/* 1280x800@60Hz */
2123 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
2124 		   1480, 1680, 0, 800, 803, 809, 831, 0,
2125 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
2126 	/* 1280x960@60Hz */
2127 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
2128 		   1488, 1800, 0, 960, 961, 964, 1000, 0,
2129 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2130 	/* 1280x1024@60Hz */
2131 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
2132 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
2133 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2134 	/* 1360x768@60Hz */
2135 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
2136 		   1536, 1792, 0, 768, 771, 777, 795, 0,
2137 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2138 	/* 1440x1050@60Hz */
2139 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
2140 		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
2141 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2142 	/* 1440x900@60Hz */
2143 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
2144 		   1672, 1904, 0, 900, 903, 909, 934, 0,
2145 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2146 	/* 1600x1200@60Hz */
2147 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
2148 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
2149 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2150 	/* 1680x1050@60Hz */
2151 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
2152 		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
2153 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2154 	/* 1792x1344@60Hz */
2155 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
2156 		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
2157 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2158 	/* 1853x1392@60Hz */
2159 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
2160 		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
2161 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2162 	/* 1920x1200@60Hz */
2163 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
2164 		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
2165 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2166 	/* 1920x1440@60Hz */
2167 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
2168 		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
2169 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2170 	/* 2560x1600@60Hz */
2171 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
2172 		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
2173 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2174 	/* Terminate */
2175 	{ DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) },
2176 };
2177 
2178 /**
2179  * vmw_guess_mode_timing - Provide fake timings for a
2180  * 60Hz vrefresh mode.
2181  *
2182  * @mode - Pointer to a struct drm_display_mode with hdisplay and vdisplay
2183  * members filled in.
2184  */
2185 void vmw_guess_mode_timing(struct drm_display_mode *mode)
2186 {
2187 	mode->hsync_start = mode->hdisplay + 50;
2188 	mode->hsync_end = mode->hsync_start + 50;
2189 	mode->htotal = mode->hsync_end + 50;
2190 
2191 	mode->vsync_start = mode->vdisplay + 50;
2192 	mode->vsync_end = mode->vsync_start + 50;
2193 	mode->vtotal = mode->vsync_end + 50;
2194 
2195 	mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6;
2196 	mode->vrefresh = drm_mode_vrefresh(mode);
2197 }
2198 
2199 
2200 int vmw_du_connector_fill_modes(struct drm_connector *connector,
2201 				uint32_t max_width, uint32_t max_height)
2202 {
2203 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2204 	struct drm_device *dev = connector->dev;
2205 	struct vmw_private *dev_priv = vmw_priv(dev);
2206 	struct drm_display_mode *mode = NULL;
2207 	struct drm_display_mode *bmode;
2208 	struct drm_display_mode prefmode = { DRM_MODE("preferred",
2209 		DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED,
2210 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2211 		DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC)
2212 	};
2213 	int i;
2214 	u32 assumed_bpp = 4;
2215 
2216 	if (dev_priv->assume_16bpp)
2217 		assumed_bpp = 2;
2218 
2219 	if (dev_priv->active_display_unit == vmw_du_screen_target) {
2220 		max_width  = min(max_width,  dev_priv->stdu_max_width);
2221 		max_width  = min(max_width,  dev_priv->texture_max_width);
2222 
2223 		max_height = min(max_height, dev_priv->stdu_max_height);
2224 		max_height = min(max_height, dev_priv->texture_max_height);
2225 	}
2226 
2227 	/* Add preferred mode */
2228 	mode = drm_mode_duplicate(dev, &prefmode);
2229 	if (!mode)
2230 		return 0;
2231 	mode->hdisplay = du->pref_width;
2232 	mode->vdisplay = du->pref_height;
2233 	vmw_guess_mode_timing(mode);
2234 
2235 	if (vmw_kms_validate_mode_vram(dev_priv,
2236 					mode->hdisplay * assumed_bpp,
2237 					mode->vdisplay)) {
2238 		drm_mode_probed_add(connector, mode);
2239 	} else {
2240 		drm_mode_destroy(dev, mode);
2241 		mode = NULL;
2242 	}
2243 
2244 	if (du->pref_mode) {
2245 		list_del_init(&du->pref_mode->head);
2246 		drm_mode_destroy(dev, du->pref_mode);
2247 	}
2248 
2249 	/* mode might be null here, this is intended */
2250 	du->pref_mode = mode;
2251 
2252 	for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) {
2253 		bmode = &vmw_kms_connector_builtin[i];
2254 		if (bmode->hdisplay > max_width ||
2255 		    bmode->vdisplay > max_height)
2256 			continue;
2257 
2258 		if (!vmw_kms_validate_mode_vram(dev_priv,
2259 						bmode->hdisplay * assumed_bpp,
2260 						bmode->vdisplay))
2261 			continue;
2262 
2263 		mode = drm_mode_duplicate(dev, bmode);
2264 		if (!mode)
2265 			return 0;
2266 		mode->vrefresh = drm_mode_vrefresh(mode);
2267 
2268 		drm_mode_probed_add(connector, mode);
2269 	}
2270 
2271 	drm_mode_connector_list_update(connector);
2272 	/* Move the prefered mode first, help apps pick the right mode. */
2273 	drm_mode_sort(&connector->modes);
2274 
2275 	return 1;
2276 }
2277 
2278 int vmw_du_connector_set_property(struct drm_connector *connector,
2279 				  struct drm_property *property,
2280 				  uint64_t val)
2281 {
2282 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2283 	struct vmw_private *dev_priv = vmw_priv(connector->dev);
2284 
2285 	if (property == dev_priv->implicit_placement_property)
2286 		du->is_implicit = val;
2287 
2288 	return 0;
2289 }
2290 
2291 
2292 
2293 /**
2294  * vmw_du_connector_atomic_set_property - Atomic version of get property
2295  *
2296  * @crtc - crtc the property is associated with
2297  *
2298  * Returns:
2299  * Zero on success, negative errno on failure.
2300  */
2301 int
2302 vmw_du_connector_atomic_set_property(struct drm_connector *connector,
2303 				     struct drm_connector_state *state,
2304 				     struct drm_property *property,
2305 				     uint64_t val)
2306 {
2307 	struct vmw_private *dev_priv = vmw_priv(connector->dev);
2308 	struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state);
2309 	struct vmw_display_unit *du = vmw_connector_to_du(connector);
2310 
2311 
2312 	if (property == dev_priv->implicit_placement_property) {
2313 		vcs->is_implicit = val;
2314 
2315 		/*
2316 		 * We should really be doing a drm_atomic_commit() to
2317 		 * commit the new state, but since this doesn't cause
2318 		 * an immedate state change, this is probably ok
2319 		 */
2320 		du->is_implicit = vcs->is_implicit;
2321 	} else {
2322 		return -EINVAL;
2323 	}
2324 
2325 	return 0;
2326 }
2327 
2328 
2329 /**
2330  * vmw_du_connector_atomic_get_property - Atomic version of get property
2331  *
2332  * @connector - connector the property is associated with
2333  *
2334  * Returns:
2335  * Zero on success, negative errno on failure.
2336  */
2337 int
2338 vmw_du_connector_atomic_get_property(struct drm_connector *connector,
2339 				     const struct drm_connector_state *state,
2340 				     struct drm_property *property,
2341 				     uint64_t *val)
2342 {
2343 	struct vmw_private *dev_priv = vmw_priv(connector->dev);
2344 	struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state);
2345 
2346 	if (property == dev_priv->implicit_placement_property)
2347 		*val = vcs->is_implicit;
2348 	else {
2349 		DRM_ERROR("Invalid Property %s\n", property->name);
2350 		return -EINVAL;
2351 	}
2352 
2353 	return 0;
2354 }
2355 
2356 /**
2357  * vmw_kms_update_layout_ioctl - Handler for DRM_VMW_UPDATE_LAYOUT ioctl
2358  * @dev: drm device for the ioctl
2359  * @data: data pointer for the ioctl
2360  * @file_priv: drm file for the ioctl call
2361  *
2362  * Update preferred topology of display unit as per ioctl request. The topology
2363  * is expressed as array of drm_vmw_rect.
2364  * e.g.
2365  * [0 0 640 480] [640 0 800 600] [0 480 640 480]
2366  *
2367  * NOTE:
2368  * The x and y offset (upper left) in drm_vmw_rect cannot be less than 0. Beside
2369  * device limit on topology, x + w and y + h (lower right) cannot be greater
2370  * than INT_MAX. So topology beyond these limits will return with error.
2371  *
2372  * Returns:
2373  * Zero on success, negative errno on failure.
2374  */
2375 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data,
2376 				struct drm_file *file_priv)
2377 {
2378 	struct vmw_private *dev_priv = vmw_priv(dev);
2379 	struct drm_vmw_update_layout_arg *arg =
2380 		(struct drm_vmw_update_layout_arg *)data;
2381 	void __user *user_rects;
2382 	struct drm_vmw_rect *rects;
2383 	struct drm_rect *drm_rects;
2384 	unsigned rects_size;
2385 	int ret, i;
2386 
2387 	if (!arg->num_outputs) {
2388 		struct drm_rect def_rect = {0, 0, 800, 600};
2389 		vmw_du_update_layout(dev_priv, 1, &def_rect);
2390 		return 0;
2391 	}
2392 
2393 	rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect);
2394 	rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect),
2395 			GFP_KERNEL);
2396 	if (unlikely(!rects))
2397 		return -ENOMEM;
2398 
2399 	user_rects = (void __user *)(unsigned long)arg->rects;
2400 	ret = copy_from_user(rects, user_rects, rects_size);
2401 	if (unlikely(ret != 0)) {
2402 		DRM_ERROR("Failed to get rects.\n");
2403 		ret = -EFAULT;
2404 		goto out_free;
2405 	}
2406 
2407 	drm_rects = (struct drm_rect *)rects;
2408 
2409 	for (i = 0; i < arg->num_outputs; i++) {
2410 		struct drm_vmw_rect curr_rect;
2411 
2412 		/* Verify user-space for overflow as kernel use drm_rect */
2413 		if ((rects[i].x + rects[i].w > INT_MAX) ||
2414 		    (rects[i].y + rects[i].h > INT_MAX)) {
2415 			ret = -ERANGE;
2416 			goto out_free;
2417 		}
2418 
2419 		curr_rect = rects[i];
2420 		drm_rects[i].x1 = curr_rect.x;
2421 		drm_rects[i].y1 = curr_rect.y;
2422 		drm_rects[i].x2 = curr_rect.x + curr_rect.w;
2423 		drm_rects[i].y2 = curr_rect.y + curr_rect.h;
2424 	}
2425 
2426 	ret = vmw_kms_check_display_memory(dev, arg->num_outputs, drm_rects);
2427 
2428 	if (ret == 0)
2429 		vmw_du_update_layout(dev_priv, arg->num_outputs, drm_rects);
2430 
2431 out_free:
2432 	kfree(rects);
2433 	return ret;
2434 }
2435 
2436 /**
2437  * vmw_kms_helper_dirty - Helper to build commands and perform actions based
2438  * on a set of cliprects and a set of display units.
2439  *
2440  * @dev_priv: Pointer to a device private structure.
2441  * @framebuffer: Pointer to the framebuffer on which to perform the actions.
2442  * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL.
2443  * Cliprects are given in framebuffer coordinates.
2444  * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must
2445  * be NULL. Cliprects are given in source coordinates.
2446  * @dest_x: X coordinate offset for the crtc / destination clip rects.
2447  * @dest_y: Y coordinate offset for the crtc / destination clip rects.
2448  * @num_clips: Number of cliprects in the @clips or @vclips array.
2449  * @increment: Integer with which to increment the clip counter when looping.
2450  * Used to skip a predetermined number of clip rects.
2451  * @dirty: Closure structure. See the description of struct vmw_kms_dirty.
2452  */
2453 int vmw_kms_helper_dirty(struct vmw_private *dev_priv,
2454 			 struct vmw_framebuffer *framebuffer,
2455 			 const struct drm_clip_rect *clips,
2456 			 const struct drm_vmw_rect *vclips,
2457 			 s32 dest_x, s32 dest_y,
2458 			 int num_clips,
2459 			 int increment,
2460 			 struct vmw_kms_dirty *dirty)
2461 {
2462 	struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS];
2463 	struct drm_crtc *crtc;
2464 	u32 num_units = 0;
2465 	u32 i, k;
2466 
2467 	dirty->dev_priv = dev_priv;
2468 
2469 	/* If crtc is passed, no need to iterate over other display units */
2470 	if (dirty->crtc) {
2471 		units[num_units++] = vmw_crtc_to_du(dirty->crtc);
2472 	} else {
2473 		list_for_each_entry(crtc, &dev_priv->dev->mode_config.crtc_list,
2474 				    head) {
2475 			struct drm_plane *plane = crtc->primary;
2476 
2477 			if (plane->state->fb == &framebuffer->base)
2478 				units[num_units++] = vmw_crtc_to_du(crtc);
2479 		}
2480 	}
2481 
2482 	for (k = 0; k < num_units; k++) {
2483 		struct vmw_display_unit *unit = units[k];
2484 		s32 crtc_x = unit->crtc.x;
2485 		s32 crtc_y = unit->crtc.y;
2486 		s32 crtc_width = unit->crtc.mode.hdisplay;
2487 		s32 crtc_height = unit->crtc.mode.vdisplay;
2488 		const struct drm_clip_rect *clips_ptr = clips;
2489 		const struct drm_vmw_rect *vclips_ptr = vclips;
2490 
2491 		dirty->unit = unit;
2492 		if (dirty->fifo_reserve_size > 0) {
2493 			dirty->cmd = vmw_fifo_reserve(dev_priv,
2494 						      dirty->fifo_reserve_size);
2495 			if (!dirty->cmd) {
2496 				DRM_ERROR("Couldn't reserve fifo space "
2497 					  "for dirty blits.\n");
2498 				return -ENOMEM;
2499 			}
2500 			memset(dirty->cmd, 0, dirty->fifo_reserve_size);
2501 		}
2502 		dirty->num_hits = 0;
2503 		for (i = 0; i < num_clips; i++, clips_ptr += increment,
2504 		       vclips_ptr += increment) {
2505 			s32 clip_left;
2506 			s32 clip_top;
2507 
2508 			/*
2509 			 * Select clip array type. Note that integer type
2510 			 * in @clips is unsigned short, whereas in @vclips
2511 			 * it's 32-bit.
2512 			 */
2513 			if (clips) {
2514 				dirty->fb_x = (s32) clips_ptr->x1;
2515 				dirty->fb_y = (s32) clips_ptr->y1;
2516 				dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x -
2517 					crtc_x;
2518 				dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y -
2519 					crtc_y;
2520 			} else {
2521 				dirty->fb_x = vclips_ptr->x;
2522 				dirty->fb_y = vclips_ptr->y;
2523 				dirty->unit_x2 = dirty->fb_x + vclips_ptr->w +
2524 					dest_x - crtc_x;
2525 				dirty->unit_y2 = dirty->fb_y + vclips_ptr->h +
2526 					dest_y - crtc_y;
2527 			}
2528 
2529 			dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x;
2530 			dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y;
2531 
2532 			/* Skip this clip if it's outside the crtc region */
2533 			if (dirty->unit_x1 >= crtc_width ||
2534 			    dirty->unit_y1 >= crtc_height ||
2535 			    dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0)
2536 				continue;
2537 
2538 			/* Clip right and bottom to crtc limits */
2539 			dirty->unit_x2 = min_t(s32, dirty->unit_x2,
2540 					       crtc_width);
2541 			dirty->unit_y2 = min_t(s32, dirty->unit_y2,
2542 					       crtc_height);
2543 
2544 			/* Clip left and top to crtc limits */
2545 			clip_left = min_t(s32, dirty->unit_x1, 0);
2546 			clip_top = min_t(s32, dirty->unit_y1, 0);
2547 			dirty->unit_x1 -= clip_left;
2548 			dirty->unit_y1 -= clip_top;
2549 			dirty->fb_x -= clip_left;
2550 			dirty->fb_y -= clip_top;
2551 
2552 			dirty->clip(dirty);
2553 		}
2554 
2555 		dirty->fifo_commit(dirty);
2556 	}
2557 
2558 	return 0;
2559 }
2560 
2561 /**
2562  * vmw_kms_helper_buffer_prepare - Reserve and validate a buffer object before
2563  * command submission.
2564  *
2565  * @dev_priv. Pointer to a device private structure.
2566  * @buf: The buffer object
2567  * @interruptible: Whether to perform waits as interruptible.
2568  * @validate_as_mob: Whether the buffer should be validated as a MOB. If false,
2569  * The buffer will be validated as a GMR. Already pinned buffers will not be
2570  * validated.
2571  *
2572  * Returns 0 on success, negative error code on failure, -ERESTARTSYS if
2573  * interrupted by a signal.
2574  */
2575 int vmw_kms_helper_buffer_prepare(struct vmw_private *dev_priv,
2576 				  struct vmw_buffer_object *buf,
2577 				  bool interruptible,
2578 				  bool validate_as_mob,
2579 				  bool for_cpu_blit)
2580 {
2581 	struct ttm_operation_ctx ctx = {
2582 		.interruptible = interruptible,
2583 		.no_wait_gpu = false};
2584 	struct ttm_buffer_object *bo = &buf->base;
2585 	int ret;
2586 
2587 	ttm_bo_reserve(bo, false, false, NULL);
2588 	if (for_cpu_blit)
2589 		ret = ttm_bo_validate(bo, &vmw_nonfixed_placement, &ctx);
2590 	else
2591 		ret = vmw_validate_single_buffer(dev_priv, bo, interruptible,
2592 						 validate_as_mob);
2593 	if (ret)
2594 		ttm_bo_unreserve(bo);
2595 
2596 	return ret;
2597 }
2598 
2599 /**
2600  * vmw_kms_helper_buffer_revert - Undo the actions of
2601  * vmw_kms_helper_buffer_prepare.
2602  *
2603  * @res: Pointer to the buffer object.
2604  *
2605  * Helper to be used if an error forces the caller to undo the actions of
2606  * vmw_kms_helper_buffer_prepare.
2607  */
2608 void vmw_kms_helper_buffer_revert(struct vmw_buffer_object *buf)
2609 {
2610 	if (buf)
2611 		ttm_bo_unreserve(&buf->base);
2612 }
2613 
2614 /**
2615  * vmw_kms_helper_buffer_finish - Unreserve and fence a buffer object after
2616  * kms command submission.
2617  *
2618  * @dev_priv: Pointer to a device private structure.
2619  * @file_priv: Pointer to a struct drm_file representing the caller's
2620  * connection. Must be set to NULL if @user_fence_rep is NULL, and conversely
2621  * if non-NULL, @user_fence_rep must be non-NULL.
2622  * @buf: The buffer object.
2623  * @out_fence:  Optional pointer to a fence pointer. If non-NULL, a
2624  * ref-counted fence pointer is returned here.
2625  * @user_fence_rep: Optional pointer to a user-space provided struct
2626  * drm_vmw_fence_rep. If provided, @file_priv must also be provided and the
2627  * function copies fence data to user-space in a fail-safe manner.
2628  */
2629 void vmw_kms_helper_buffer_finish(struct vmw_private *dev_priv,
2630 				  struct drm_file *file_priv,
2631 				  struct vmw_buffer_object *buf,
2632 				  struct vmw_fence_obj **out_fence,
2633 				  struct drm_vmw_fence_rep __user *
2634 				  user_fence_rep)
2635 {
2636 	struct vmw_fence_obj *fence;
2637 	uint32_t handle;
2638 	int ret;
2639 
2640 	ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence,
2641 					 file_priv ? &handle : NULL);
2642 	if (buf)
2643 		vmw_bo_fence_single(&buf->base, fence);
2644 	if (file_priv)
2645 		vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv),
2646 					    ret, user_fence_rep, fence,
2647 					    handle, -1, NULL);
2648 	if (out_fence)
2649 		*out_fence = fence;
2650 	else
2651 		vmw_fence_obj_unreference(&fence);
2652 
2653 	vmw_kms_helper_buffer_revert(buf);
2654 }
2655 
2656 
2657 /**
2658  * vmw_kms_helper_resource_revert - Undo the actions of
2659  * vmw_kms_helper_resource_prepare.
2660  *
2661  * @res: Pointer to the resource. Typically a surface.
2662  *
2663  * Helper to be used if an error forces the caller to undo the actions of
2664  * vmw_kms_helper_resource_prepare.
2665  */
2666 void vmw_kms_helper_resource_revert(struct vmw_validation_ctx *ctx)
2667 {
2668 	struct vmw_resource *res = ctx->res;
2669 
2670 	vmw_kms_helper_buffer_revert(ctx->buf);
2671 	vmw_bo_unreference(&ctx->buf);
2672 	vmw_resource_unreserve(res, false, NULL, 0);
2673 	mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2674 }
2675 
2676 /**
2677  * vmw_kms_helper_resource_prepare - Reserve and validate a resource before
2678  * command submission.
2679  *
2680  * @res: Pointer to the resource. Typically a surface.
2681  * @interruptible: Whether to perform waits as interruptible.
2682  *
2683  * Reserves and validates also the backup buffer if a guest-backed resource.
2684  * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
2685  * interrupted by a signal.
2686  */
2687 int vmw_kms_helper_resource_prepare(struct vmw_resource *res,
2688 				    bool interruptible,
2689 				    struct vmw_validation_ctx *ctx)
2690 {
2691 	int ret = 0;
2692 
2693 	ctx->buf = NULL;
2694 	ctx->res = res;
2695 
2696 	if (interruptible)
2697 		ret = mutex_lock_interruptible(&res->dev_priv->cmdbuf_mutex);
2698 	else
2699 		mutex_lock(&res->dev_priv->cmdbuf_mutex);
2700 
2701 	if (unlikely(ret != 0))
2702 		return -ERESTARTSYS;
2703 
2704 	ret = vmw_resource_reserve(res, interruptible, false);
2705 	if (ret)
2706 		goto out_unlock;
2707 
2708 	if (res->backup) {
2709 		ret = vmw_kms_helper_buffer_prepare(res->dev_priv, res->backup,
2710 						    interruptible,
2711 						    res->dev_priv->has_mob,
2712 						    false);
2713 		if (ret)
2714 			goto out_unreserve;
2715 
2716 		ctx->buf = vmw_bo_reference(res->backup);
2717 	}
2718 	ret = vmw_resource_validate(res);
2719 	if (ret)
2720 		goto out_revert;
2721 	return 0;
2722 
2723 out_revert:
2724 	vmw_kms_helper_buffer_revert(ctx->buf);
2725 out_unreserve:
2726 	vmw_resource_unreserve(res, false, NULL, 0);
2727 out_unlock:
2728 	mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2729 	return ret;
2730 }
2731 
2732 /**
2733  * vmw_kms_helper_resource_finish - Unreserve and fence a resource after
2734  * kms command submission.
2735  *
2736  * @res: Pointer to the resource. Typically a surface.
2737  * @out_fence: Optional pointer to a fence pointer. If non-NULL, a
2738  * ref-counted fence pointer is returned here.
2739  */
2740 void vmw_kms_helper_resource_finish(struct vmw_validation_ctx *ctx,
2741 				    struct vmw_fence_obj **out_fence)
2742 {
2743 	struct vmw_resource *res = ctx->res;
2744 
2745 	if (ctx->buf || out_fence)
2746 		vmw_kms_helper_buffer_finish(res->dev_priv, NULL, ctx->buf,
2747 					     out_fence, NULL);
2748 
2749 	vmw_bo_unreference(&ctx->buf);
2750 	vmw_resource_unreserve(res, false, NULL, 0);
2751 	mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2752 }
2753 
2754 /**
2755  * vmw_kms_update_proxy - Helper function to update a proxy surface from
2756  * its backing MOB.
2757  *
2758  * @res: Pointer to the surface resource
2759  * @clips: Clip rects in framebuffer (surface) space.
2760  * @num_clips: Number of clips in @clips.
2761  * @increment: Integer with which to increment the clip counter when looping.
2762  * Used to skip a predetermined number of clip rects.
2763  *
2764  * This function makes sure the proxy surface is updated from its backing MOB
2765  * using the region given by @clips. The surface resource @res and its backing
2766  * MOB needs to be reserved and validated on call.
2767  */
2768 int vmw_kms_update_proxy(struct vmw_resource *res,
2769 			 const struct drm_clip_rect *clips,
2770 			 unsigned num_clips,
2771 			 int increment)
2772 {
2773 	struct vmw_private *dev_priv = res->dev_priv;
2774 	struct drm_vmw_size *size = &vmw_res_to_srf(res)->base_size;
2775 	struct {
2776 		SVGA3dCmdHeader header;
2777 		SVGA3dCmdUpdateGBImage body;
2778 	} *cmd;
2779 	SVGA3dBox *box;
2780 	size_t copy_size = 0;
2781 	int i;
2782 
2783 	if (!clips)
2784 		return 0;
2785 
2786 	cmd = vmw_fifo_reserve(dev_priv, sizeof(*cmd) * num_clips);
2787 	if (!cmd) {
2788 		DRM_ERROR("Couldn't reserve fifo space for proxy surface "
2789 			  "update.\n");
2790 		return -ENOMEM;
2791 	}
2792 
2793 	for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) {
2794 		box = &cmd->body.box;
2795 
2796 		cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE;
2797 		cmd->header.size = sizeof(cmd->body);
2798 		cmd->body.image.sid = res->id;
2799 		cmd->body.image.face = 0;
2800 		cmd->body.image.mipmap = 0;
2801 
2802 		if (clips->x1 > size->width || clips->x2 > size->width ||
2803 		    clips->y1 > size->height || clips->y2 > size->height) {
2804 			DRM_ERROR("Invalid clips outsize of framebuffer.\n");
2805 			return -EINVAL;
2806 		}
2807 
2808 		box->x = clips->x1;
2809 		box->y = clips->y1;
2810 		box->z = 0;
2811 		box->w = clips->x2 - clips->x1;
2812 		box->h = clips->y2 - clips->y1;
2813 		box->d = 1;
2814 
2815 		copy_size += sizeof(*cmd);
2816 	}
2817 
2818 	vmw_fifo_commit(dev_priv, copy_size);
2819 
2820 	return 0;
2821 }
2822 
2823 int vmw_kms_fbdev_init_data(struct vmw_private *dev_priv,
2824 			    unsigned unit,
2825 			    u32 max_width,
2826 			    u32 max_height,
2827 			    struct drm_connector **p_con,
2828 			    struct drm_crtc **p_crtc,
2829 			    struct drm_display_mode **p_mode)
2830 {
2831 	struct drm_connector *con;
2832 	struct vmw_display_unit *du;
2833 	struct drm_display_mode *mode;
2834 	int i = 0;
2835 	int ret = 0;
2836 
2837 	mutex_lock(&dev_priv->dev->mode_config.mutex);
2838 	list_for_each_entry(con, &dev_priv->dev->mode_config.connector_list,
2839 			    head) {
2840 		if (i == unit)
2841 			break;
2842 
2843 		++i;
2844 	}
2845 
2846 	if (i != unit) {
2847 		DRM_ERROR("Could not find initial display unit.\n");
2848 		ret = -EINVAL;
2849 		goto out_unlock;
2850 	}
2851 
2852 	if (list_empty(&con->modes))
2853 		(void) vmw_du_connector_fill_modes(con, max_width, max_height);
2854 
2855 	if (list_empty(&con->modes)) {
2856 		DRM_ERROR("Could not find initial display mode.\n");
2857 		ret = -EINVAL;
2858 		goto out_unlock;
2859 	}
2860 
2861 	du = vmw_connector_to_du(con);
2862 	*p_con = con;
2863 	*p_crtc = &du->crtc;
2864 
2865 	list_for_each_entry(mode, &con->modes, head) {
2866 		if (mode->type & DRM_MODE_TYPE_PREFERRED)
2867 			break;
2868 	}
2869 
2870 	if (mode->type & DRM_MODE_TYPE_PREFERRED)
2871 		*p_mode = mode;
2872 	else {
2873 		WARN_ONCE(true, "Could not find initial preferred mode.\n");
2874 		*p_mode = list_first_entry(&con->modes,
2875 					   struct drm_display_mode,
2876 					   head);
2877 	}
2878 
2879  out_unlock:
2880 	mutex_unlock(&dev_priv->dev->mode_config.mutex);
2881 
2882 	return ret;
2883 }
2884 
2885 /**
2886  * vmw_kms_del_active - unregister a crtc binding to the implicit framebuffer
2887  *
2888  * @dev_priv: Pointer to a device private struct.
2889  * @du: The display unit of the crtc.
2890  */
2891 void vmw_kms_del_active(struct vmw_private *dev_priv,
2892 			struct vmw_display_unit *du)
2893 {
2894 	mutex_lock(&dev_priv->global_kms_state_mutex);
2895 	if (du->active_implicit) {
2896 		if (--(dev_priv->num_implicit) == 0)
2897 			dev_priv->implicit_fb = NULL;
2898 		du->active_implicit = false;
2899 	}
2900 	mutex_unlock(&dev_priv->global_kms_state_mutex);
2901 }
2902 
2903 /**
2904  * vmw_kms_add_active - register a crtc binding to an implicit framebuffer
2905  *
2906  * @vmw_priv: Pointer to a device private struct.
2907  * @du: The display unit of the crtc.
2908  * @vfb: The implicit framebuffer
2909  *
2910  * Registers a binding to an implicit framebuffer.
2911  */
2912 void vmw_kms_add_active(struct vmw_private *dev_priv,
2913 			struct vmw_display_unit *du,
2914 			struct vmw_framebuffer *vfb)
2915 {
2916 	mutex_lock(&dev_priv->global_kms_state_mutex);
2917 	WARN_ON_ONCE(!dev_priv->num_implicit && dev_priv->implicit_fb);
2918 
2919 	if (!du->active_implicit && du->is_implicit) {
2920 		dev_priv->implicit_fb = vfb;
2921 		du->active_implicit = true;
2922 		dev_priv->num_implicit++;
2923 	}
2924 	mutex_unlock(&dev_priv->global_kms_state_mutex);
2925 }
2926 
2927 /**
2928  * vmw_kms_screen_object_flippable - Check whether we can page-flip a crtc.
2929  *
2930  * @dev_priv: Pointer to device-private struct.
2931  * @crtc: The crtc we want to flip.
2932  *
2933  * Returns true or false depending whether it's OK to flip this crtc
2934  * based on the criterion that we must not have more than one implicit
2935  * frame-buffer at any one time.
2936  */
2937 bool vmw_kms_crtc_flippable(struct vmw_private *dev_priv,
2938 			    struct drm_crtc *crtc)
2939 {
2940 	struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
2941 	bool ret;
2942 
2943 	mutex_lock(&dev_priv->global_kms_state_mutex);
2944 	ret = !du->is_implicit || dev_priv->num_implicit == 1;
2945 	mutex_unlock(&dev_priv->global_kms_state_mutex);
2946 
2947 	return ret;
2948 }
2949 
2950 /**
2951  * vmw_kms_update_implicit_fb - Update the implicit fb.
2952  *
2953  * @dev_priv: Pointer to device-private struct.
2954  * @crtc: The crtc the new implicit frame-buffer is bound to.
2955  */
2956 void vmw_kms_update_implicit_fb(struct vmw_private *dev_priv,
2957 				struct drm_crtc *crtc)
2958 {
2959 	struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
2960 	struct drm_plane *plane = crtc->primary;
2961 	struct vmw_framebuffer *vfb;
2962 
2963 	mutex_lock(&dev_priv->global_kms_state_mutex);
2964 
2965 	if (!du->is_implicit)
2966 		goto out_unlock;
2967 
2968 	vfb = vmw_framebuffer_to_vfb(plane->state->fb);
2969 	WARN_ON_ONCE(dev_priv->num_implicit != 1 &&
2970 		     dev_priv->implicit_fb != vfb);
2971 
2972 	dev_priv->implicit_fb = vfb;
2973 out_unlock:
2974 	mutex_unlock(&dev_priv->global_kms_state_mutex);
2975 }
2976 
2977 /**
2978  * vmw_kms_create_implicit_placement_proparty - Set up the implicit placement
2979  * property.
2980  *
2981  * @dev_priv: Pointer to a device private struct.
2982  * @immutable: Whether the property is immutable.
2983  *
2984  * Sets up the implicit placement property unless it's already set up.
2985  */
2986 void
2987 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv,
2988 					   bool immutable)
2989 {
2990 	if (dev_priv->implicit_placement_property)
2991 		return;
2992 
2993 	dev_priv->implicit_placement_property =
2994 		drm_property_create_range(dev_priv->dev,
2995 					  immutable ?
2996 					  DRM_MODE_PROP_IMMUTABLE : 0,
2997 					  "implicit_placement", 0, 1);
2998 
2999 }
3000 
3001 
3002 /**
3003  * vmw_kms_set_config - Wrapper around drm_atomic_helper_set_config
3004  *
3005  * @set: The configuration to set.
3006  *
3007  * The vmwgfx Xorg driver doesn't assign the mode::type member, which
3008  * when drm_mode_set_crtcinfo is called as part of the configuration setting
3009  * causes it to return incorrect crtc dimensions causing severe problems in
3010  * the vmwgfx modesetting. So explicitly clear that member before calling
3011  * into drm_atomic_helper_set_config.
3012  */
3013 int vmw_kms_set_config(struct drm_mode_set *set,
3014 		       struct drm_modeset_acquire_ctx *ctx)
3015 {
3016 	if (set && set->mode)
3017 		set->mode->type = 0;
3018 
3019 	return drm_atomic_helper_set_config(set, ctx);
3020 }
3021 
3022 
3023 /**
3024  * vmw_kms_suspend - Save modesetting state and turn modesetting off.
3025  *
3026  * @dev: Pointer to the drm device
3027  * Return: 0 on success. Negative error code on failure.
3028  */
3029 int vmw_kms_suspend(struct drm_device *dev)
3030 {
3031 	struct vmw_private *dev_priv = vmw_priv(dev);
3032 
3033 	dev_priv->suspend_state = drm_atomic_helper_suspend(dev);
3034 	if (IS_ERR(dev_priv->suspend_state)) {
3035 		int ret = PTR_ERR(dev_priv->suspend_state);
3036 
3037 		DRM_ERROR("Failed kms suspend: %d\n", ret);
3038 		dev_priv->suspend_state = NULL;
3039 
3040 		return ret;
3041 	}
3042 
3043 	return 0;
3044 }
3045 
3046 
3047 /**
3048  * vmw_kms_resume - Re-enable modesetting and restore state
3049  *
3050  * @dev: Pointer to the drm device
3051  * Return: 0 on success. Negative error code on failure.
3052  *
3053  * State is resumed from a previous vmw_kms_suspend(). It's illegal
3054  * to call this function without a previous vmw_kms_suspend().
3055  */
3056 int vmw_kms_resume(struct drm_device *dev)
3057 {
3058 	struct vmw_private *dev_priv = vmw_priv(dev);
3059 	int ret;
3060 
3061 	if (WARN_ON(!dev_priv->suspend_state))
3062 		return 0;
3063 
3064 	ret = drm_atomic_helper_resume(dev, dev_priv->suspend_state);
3065 	dev_priv->suspend_state = NULL;
3066 
3067 	return ret;
3068 }
3069 
3070 /**
3071  * vmw_kms_lost_device - Notify kms that modesetting capabilities will be lost
3072  *
3073  * @dev: Pointer to the drm device
3074  */
3075 void vmw_kms_lost_device(struct drm_device *dev)
3076 {
3077 	drm_atomic_helper_shutdown(dev);
3078 }
3079