1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /************************************************************************** 3 * 4 * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 28 #include <drm/drm_atomic.h> 29 #include <drm/drm_atomic_helper.h> 30 #include <drm/drm_damage_helper.h> 31 #include <drm/drm_fourcc.h> 32 #include <drm/drm_plane_helper.h> 33 #include <drm/drm_rect.h> 34 #include <drm/drm_sysfs.h> 35 #include <drm/drm_vblank.h> 36 37 #include "vmwgfx_kms.h" 38 39 /* Might need a hrtimer here? */ 40 #define VMWGFX_PRESENT_RATE ((HZ / 60 > 0) ? HZ / 60 : 1) 41 42 void vmw_du_cleanup(struct vmw_display_unit *du) 43 { 44 drm_plane_cleanup(&du->primary); 45 drm_plane_cleanup(&du->cursor); 46 47 drm_connector_unregister(&du->connector); 48 drm_crtc_cleanup(&du->crtc); 49 drm_encoder_cleanup(&du->encoder); 50 drm_connector_cleanup(&du->connector); 51 } 52 53 /* 54 * Display Unit Cursor functions 55 */ 56 57 static int vmw_cursor_update_image(struct vmw_private *dev_priv, 58 u32 *image, u32 width, u32 height, 59 u32 hotspotX, u32 hotspotY) 60 { 61 struct { 62 u32 cmd; 63 SVGAFifoCmdDefineAlphaCursor cursor; 64 } *cmd; 65 u32 image_size = width * height * 4; 66 u32 cmd_size = sizeof(*cmd) + image_size; 67 68 if (!image) 69 return -EINVAL; 70 71 cmd = VMW_FIFO_RESERVE(dev_priv, cmd_size); 72 if (unlikely(cmd == NULL)) 73 return -ENOMEM; 74 75 memset(cmd, 0, sizeof(*cmd)); 76 77 memcpy(&cmd[1], image, image_size); 78 79 cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR; 80 cmd->cursor.id = 0; 81 cmd->cursor.width = width; 82 cmd->cursor.height = height; 83 cmd->cursor.hotspotX = hotspotX; 84 cmd->cursor.hotspotY = hotspotY; 85 86 vmw_fifo_commit_flush(dev_priv, cmd_size); 87 88 return 0; 89 } 90 91 static int vmw_cursor_update_bo(struct vmw_private *dev_priv, 92 struct vmw_buffer_object *bo, 93 u32 width, u32 height, 94 u32 hotspotX, u32 hotspotY) 95 { 96 struct ttm_bo_kmap_obj map; 97 unsigned long kmap_offset; 98 unsigned long kmap_num; 99 void *virtual; 100 bool dummy; 101 int ret; 102 103 kmap_offset = 0; 104 kmap_num = (width*height*4 + PAGE_SIZE - 1) >> PAGE_SHIFT; 105 106 ret = ttm_bo_reserve(&bo->base, true, false, NULL); 107 if (unlikely(ret != 0)) { 108 DRM_ERROR("reserve failed\n"); 109 return -EINVAL; 110 } 111 112 ret = ttm_bo_kmap(&bo->base, kmap_offset, kmap_num, &map); 113 if (unlikely(ret != 0)) 114 goto err_unreserve; 115 116 virtual = ttm_kmap_obj_virtual(&map, &dummy); 117 ret = vmw_cursor_update_image(dev_priv, virtual, width, height, 118 hotspotX, hotspotY); 119 120 ttm_bo_kunmap(&map); 121 err_unreserve: 122 ttm_bo_unreserve(&bo->base); 123 124 return ret; 125 } 126 127 128 static void vmw_cursor_update_position(struct vmw_private *dev_priv, 129 bool show, int x, int y) 130 { 131 u32 *fifo_mem = dev_priv->mmio_virt; 132 uint32_t count; 133 134 spin_lock(&dev_priv->cursor_lock); 135 vmw_mmio_write(show ? 1 : 0, fifo_mem + SVGA_FIFO_CURSOR_ON); 136 vmw_mmio_write(x, fifo_mem + SVGA_FIFO_CURSOR_X); 137 vmw_mmio_write(y, fifo_mem + SVGA_FIFO_CURSOR_Y); 138 count = vmw_mmio_read(fifo_mem + SVGA_FIFO_CURSOR_COUNT); 139 vmw_mmio_write(++count, fifo_mem + SVGA_FIFO_CURSOR_COUNT); 140 spin_unlock(&dev_priv->cursor_lock); 141 } 142 143 144 void vmw_kms_cursor_snoop(struct vmw_surface *srf, 145 struct ttm_object_file *tfile, 146 struct ttm_buffer_object *bo, 147 SVGA3dCmdHeader *header) 148 { 149 struct ttm_bo_kmap_obj map; 150 unsigned long kmap_offset; 151 unsigned long kmap_num; 152 SVGA3dCopyBox *box; 153 unsigned box_count; 154 void *virtual; 155 bool dummy; 156 struct vmw_dma_cmd { 157 SVGA3dCmdHeader header; 158 SVGA3dCmdSurfaceDMA dma; 159 } *cmd; 160 int i, ret; 161 162 cmd = container_of(header, struct vmw_dma_cmd, header); 163 164 /* No snooper installed */ 165 if (!srf->snooper.image) 166 return; 167 168 if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) { 169 DRM_ERROR("face and mipmap for cursors should never != 0\n"); 170 return; 171 } 172 173 if (cmd->header.size < 64) { 174 DRM_ERROR("at least one full copy box must be given\n"); 175 return; 176 } 177 178 box = (SVGA3dCopyBox *)&cmd[1]; 179 box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) / 180 sizeof(SVGA3dCopyBox); 181 182 if (cmd->dma.guest.ptr.offset % PAGE_SIZE || 183 box->x != 0 || box->y != 0 || box->z != 0 || 184 box->srcx != 0 || box->srcy != 0 || box->srcz != 0 || 185 box->d != 1 || box_count != 1) { 186 /* TODO handle none page aligned offsets */ 187 /* TODO handle more dst & src != 0 */ 188 /* TODO handle more then one copy */ 189 DRM_ERROR("Cant snoop dma request for cursor!\n"); 190 DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n", 191 box->srcx, box->srcy, box->srcz, 192 box->x, box->y, box->z, 193 box->w, box->h, box->d, box_count, 194 cmd->dma.guest.ptr.offset); 195 return; 196 } 197 198 kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT; 199 kmap_num = (64*64*4) >> PAGE_SHIFT; 200 201 ret = ttm_bo_reserve(bo, true, false, NULL); 202 if (unlikely(ret != 0)) { 203 DRM_ERROR("reserve failed\n"); 204 return; 205 } 206 207 ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map); 208 if (unlikely(ret != 0)) 209 goto err_unreserve; 210 211 virtual = ttm_kmap_obj_virtual(&map, &dummy); 212 213 if (box->w == 64 && cmd->dma.guest.pitch == 64*4) { 214 memcpy(srf->snooper.image, virtual, 64*64*4); 215 } else { 216 /* Image is unsigned pointer. */ 217 for (i = 0; i < box->h; i++) 218 memcpy(srf->snooper.image + i * 64, 219 virtual + i * cmd->dma.guest.pitch, 220 box->w * 4); 221 } 222 223 srf->snooper.age++; 224 225 ttm_bo_kunmap(&map); 226 err_unreserve: 227 ttm_bo_unreserve(bo); 228 } 229 230 /** 231 * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots 232 * 233 * @dev_priv: Pointer to the device private struct. 234 * 235 * Clears all legacy hotspots. 236 */ 237 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv) 238 { 239 struct drm_device *dev = dev_priv->dev; 240 struct vmw_display_unit *du; 241 struct drm_crtc *crtc; 242 243 drm_modeset_lock_all(dev); 244 drm_for_each_crtc(crtc, dev) { 245 du = vmw_crtc_to_du(crtc); 246 247 du->hotspot_x = 0; 248 du->hotspot_y = 0; 249 } 250 drm_modeset_unlock_all(dev); 251 } 252 253 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv) 254 { 255 struct drm_device *dev = dev_priv->dev; 256 struct vmw_display_unit *du; 257 struct drm_crtc *crtc; 258 259 mutex_lock(&dev->mode_config.mutex); 260 261 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 262 du = vmw_crtc_to_du(crtc); 263 if (!du->cursor_surface || 264 du->cursor_age == du->cursor_surface->snooper.age) 265 continue; 266 267 du->cursor_age = du->cursor_surface->snooper.age; 268 vmw_cursor_update_image(dev_priv, 269 du->cursor_surface->snooper.image, 270 64, 64, 271 du->hotspot_x + du->core_hotspot_x, 272 du->hotspot_y + du->core_hotspot_y); 273 } 274 275 mutex_unlock(&dev->mode_config.mutex); 276 } 277 278 279 void vmw_du_cursor_plane_destroy(struct drm_plane *plane) 280 { 281 vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0); 282 283 drm_plane_cleanup(plane); 284 } 285 286 287 void vmw_du_primary_plane_destroy(struct drm_plane *plane) 288 { 289 drm_plane_cleanup(plane); 290 291 /* Planes are static in our case so we don't free it */ 292 } 293 294 295 /** 296 * vmw_du_vps_unpin_surf - unpins resource associated with a framebuffer surface 297 * 298 * @vps: plane state associated with the display surface 299 * @unreference: true if we also want to unreference the display. 300 */ 301 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps, 302 bool unreference) 303 { 304 if (vps->surf) { 305 if (vps->pinned) { 306 vmw_resource_unpin(&vps->surf->res); 307 vps->pinned--; 308 } 309 310 if (unreference) { 311 if (vps->pinned) 312 DRM_ERROR("Surface still pinned\n"); 313 vmw_surface_unreference(&vps->surf); 314 } 315 } 316 } 317 318 319 /** 320 * vmw_du_plane_cleanup_fb - Unpins the cursor 321 * 322 * @plane: display plane 323 * @old_state: Contains the FB to clean up 324 * 325 * Unpins the framebuffer surface 326 * 327 * Returns 0 on success 328 */ 329 void 330 vmw_du_plane_cleanup_fb(struct drm_plane *plane, 331 struct drm_plane_state *old_state) 332 { 333 struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state); 334 335 vmw_du_plane_unpin_surf(vps, false); 336 } 337 338 339 /** 340 * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it 341 * 342 * @plane: display plane 343 * @new_state: info on the new plane state, including the FB 344 * 345 * Returns 0 on success 346 */ 347 int 348 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane, 349 struct drm_plane_state *new_state) 350 { 351 struct drm_framebuffer *fb = new_state->fb; 352 struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state); 353 354 355 if (vps->surf) 356 vmw_surface_unreference(&vps->surf); 357 358 if (vps->bo) 359 vmw_bo_unreference(&vps->bo); 360 361 if (fb) { 362 if (vmw_framebuffer_to_vfb(fb)->bo) { 363 vps->bo = vmw_framebuffer_to_vfbd(fb)->buffer; 364 vmw_bo_reference(vps->bo); 365 } else { 366 vps->surf = vmw_framebuffer_to_vfbs(fb)->surface; 367 vmw_surface_reference(vps->surf); 368 } 369 } 370 371 return 0; 372 } 373 374 375 void 376 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane, 377 struct drm_plane_state *old_state) 378 { 379 struct drm_crtc *crtc = plane->state->crtc ?: old_state->crtc; 380 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 381 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 382 struct vmw_plane_state *vps = vmw_plane_state_to_vps(plane->state); 383 s32 hotspot_x, hotspot_y; 384 int ret = 0; 385 386 387 hotspot_x = du->hotspot_x; 388 hotspot_y = du->hotspot_y; 389 390 if (plane->state->fb) { 391 hotspot_x += plane->state->fb->hot_x; 392 hotspot_y += plane->state->fb->hot_y; 393 } 394 395 du->cursor_surface = vps->surf; 396 du->cursor_bo = vps->bo; 397 398 if (vps->surf) { 399 du->cursor_age = du->cursor_surface->snooper.age; 400 401 ret = vmw_cursor_update_image(dev_priv, 402 vps->surf->snooper.image, 403 64, 64, hotspot_x, 404 hotspot_y); 405 } else if (vps->bo) { 406 ret = vmw_cursor_update_bo(dev_priv, vps->bo, 407 plane->state->crtc_w, 408 plane->state->crtc_h, 409 hotspot_x, hotspot_y); 410 } else { 411 vmw_cursor_update_position(dev_priv, false, 0, 0); 412 return; 413 } 414 415 if (!ret) { 416 du->cursor_x = plane->state->crtc_x + du->set_gui_x; 417 du->cursor_y = plane->state->crtc_y + du->set_gui_y; 418 419 vmw_cursor_update_position(dev_priv, true, 420 du->cursor_x + hotspot_x, 421 du->cursor_y + hotspot_y); 422 423 du->core_hotspot_x = hotspot_x - du->hotspot_x; 424 du->core_hotspot_y = hotspot_y - du->hotspot_y; 425 } else { 426 DRM_ERROR("Failed to update cursor image\n"); 427 } 428 } 429 430 431 /** 432 * vmw_du_primary_plane_atomic_check - check if the new state is okay 433 * 434 * @plane: display plane 435 * @state: info on the new plane state, including the FB 436 * 437 * Check if the new state is settable given the current state. Other 438 * than what the atomic helper checks, we care about crtc fitting 439 * the FB and maintaining one active framebuffer. 440 * 441 * Returns 0 on success 442 */ 443 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane, 444 struct drm_plane_state *state) 445 { 446 struct drm_crtc_state *crtc_state = NULL; 447 struct drm_framebuffer *new_fb = state->fb; 448 int ret; 449 450 if (state->crtc) 451 crtc_state = drm_atomic_get_new_crtc_state(state->state, state->crtc); 452 453 ret = drm_atomic_helper_check_plane_state(state, crtc_state, 454 DRM_PLANE_HELPER_NO_SCALING, 455 DRM_PLANE_HELPER_NO_SCALING, 456 false, true); 457 458 if (!ret && new_fb) { 459 struct drm_crtc *crtc = state->crtc; 460 struct vmw_connector_state *vcs; 461 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 462 463 vcs = vmw_connector_state_to_vcs(du->connector.state); 464 } 465 466 467 return ret; 468 } 469 470 471 /** 472 * vmw_du_cursor_plane_atomic_check - check if the new state is okay 473 * 474 * @plane: cursor plane 475 * @state: info on the new plane state 476 * 477 * This is a chance to fail if the new cursor state does not fit 478 * our requirements. 479 * 480 * Returns 0 on success 481 */ 482 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane, 483 struct drm_plane_state *new_state) 484 { 485 int ret = 0; 486 struct drm_crtc_state *crtc_state = NULL; 487 struct vmw_surface *surface = NULL; 488 struct drm_framebuffer *fb = new_state->fb; 489 490 if (new_state->crtc) 491 crtc_state = drm_atomic_get_new_crtc_state(new_state->state, 492 new_state->crtc); 493 494 ret = drm_atomic_helper_check_plane_state(new_state, crtc_state, 495 DRM_PLANE_HELPER_NO_SCALING, 496 DRM_PLANE_HELPER_NO_SCALING, 497 true, true); 498 if (ret) 499 return ret; 500 501 /* Turning off */ 502 if (!fb) 503 return 0; 504 505 /* A lot of the code assumes this */ 506 if (new_state->crtc_w != 64 || new_state->crtc_h != 64) { 507 DRM_ERROR("Invalid cursor dimensions (%d, %d)\n", 508 new_state->crtc_w, new_state->crtc_h); 509 ret = -EINVAL; 510 } 511 512 if (!vmw_framebuffer_to_vfb(fb)->bo) 513 surface = vmw_framebuffer_to_vfbs(fb)->surface; 514 515 if (surface && !surface->snooper.image) { 516 DRM_ERROR("surface not suitable for cursor\n"); 517 ret = -EINVAL; 518 } 519 520 return ret; 521 } 522 523 524 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc, 525 struct drm_crtc_state *new_state) 526 { 527 struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc); 528 int connector_mask = drm_connector_mask(&du->connector); 529 bool has_primary = new_state->plane_mask & 530 drm_plane_mask(crtc->primary); 531 532 /* We always want to have an active plane with an active CRTC */ 533 if (has_primary != new_state->enable) 534 return -EINVAL; 535 536 537 if (new_state->connector_mask != connector_mask && 538 new_state->connector_mask != 0) { 539 DRM_ERROR("Invalid connectors configuration\n"); 540 return -EINVAL; 541 } 542 543 /* 544 * Our virtual device does not have a dot clock, so use the logical 545 * clock value as the dot clock. 546 */ 547 if (new_state->mode.crtc_clock == 0) 548 new_state->adjusted_mode.crtc_clock = new_state->mode.clock; 549 550 return 0; 551 } 552 553 554 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc, 555 struct drm_crtc_state *old_crtc_state) 556 { 557 } 558 559 560 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc, 561 struct drm_crtc_state *old_crtc_state) 562 { 563 struct drm_pending_vblank_event *event = crtc->state->event; 564 565 if (event) { 566 crtc->state->event = NULL; 567 568 spin_lock_irq(&crtc->dev->event_lock); 569 drm_crtc_send_vblank_event(crtc, event); 570 spin_unlock_irq(&crtc->dev->event_lock); 571 } 572 } 573 574 575 /** 576 * vmw_du_crtc_duplicate_state - duplicate crtc state 577 * @crtc: DRM crtc 578 * 579 * Allocates and returns a copy of the crtc state (both common and 580 * vmw-specific) for the specified crtc. 581 * 582 * Returns: The newly allocated crtc state, or NULL on failure. 583 */ 584 struct drm_crtc_state * 585 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc) 586 { 587 struct drm_crtc_state *state; 588 struct vmw_crtc_state *vcs; 589 590 if (WARN_ON(!crtc->state)) 591 return NULL; 592 593 vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL); 594 595 if (!vcs) 596 return NULL; 597 598 state = &vcs->base; 599 600 __drm_atomic_helper_crtc_duplicate_state(crtc, state); 601 602 return state; 603 } 604 605 606 /** 607 * vmw_du_crtc_reset - creates a blank vmw crtc state 608 * @crtc: DRM crtc 609 * 610 * Resets the atomic state for @crtc by freeing the state pointer (which 611 * might be NULL, e.g. at driver load time) and allocating a new empty state 612 * object. 613 */ 614 void vmw_du_crtc_reset(struct drm_crtc *crtc) 615 { 616 struct vmw_crtc_state *vcs; 617 618 619 if (crtc->state) { 620 __drm_atomic_helper_crtc_destroy_state(crtc->state); 621 622 kfree(vmw_crtc_state_to_vcs(crtc->state)); 623 } 624 625 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL); 626 627 if (!vcs) { 628 DRM_ERROR("Cannot allocate vmw_crtc_state\n"); 629 return; 630 } 631 632 crtc->state = &vcs->base; 633 crtc->state->crtc = crtc; 634 } 635 636 637 /** 638 * vmw_du_crtc_destroy_state - destroy crtc state 639 * @crtc: DRM crtc 640 * @state: state object to destroy 641 * 642 * Destroys the crtc state (both common and vmw-specific) for the 643 * specified plane. 644 */ 645 void 646 vmw_du_crtc_destroy_state(struct drm_crtc *crtc, 647 struct drm_crtc_state *state) 648 { 649 drm_atomic_helper_crtc_destroy_state(crtc, state); 650 } 651 652 653 /** 654 * vmw_du_plane_duplicate_state - duplicate plane state 655 * @plane: drm plane 656 * 657 * Allocates and returns a copy of the plane state (both common and 658 * vmw-specific) for the specified plane. 659 * 660 * Returns: The newly allocated plane state, or NULL on failure. 661 */ 662 struct drm_plane_state * 663 vmw_du_plane_duplicate_state(struct drm_plane *plane) 664 { 665 struct drm_plane_state *state; 666 struct vmw_plane_state *vps; 667 668 vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL); 669 670 if (!vps) 671 return NULL; 672 673 vps->pinned = 0; 674 vps->cpp = 0; 675 676 /* Each ref counted resource needs to be acquired again */ 677 if (vps->surf) 678 (void) vmw_surface_reference(vps->surf); 679 680 if (vps->bo) 681 (void) vmw_bo_reference(vps->bo); 682 683 state = &vps->base; 684 685 __drm_atomic_helper_plane_duplicate_state(plane, state); 686 687 return state; 688 } 689 690 691 /** 692 * vmw_du_plane_reset - creates a blank vmw plane state 693 * @plane: drm plane 694 * 695 * Resets the atomic state for @plane by freeing the state pointer (which might 696 * be NULL, e.g. at driver load time) and allocating a new empty state object. 697 */ 698 void vmw_du_plane_reset(struct drm_plane *plane) 699 { 700 struct vmw_plane_state *vps; 701 702 703 if (plane->state) 704 vmw_du_plane_destroy_state(plane, plane->state); 705 706 vps = kzalloc(sizeof(*vps), GFP_KERNEL); 707 708 if (!vps) { 709 DRM_ERROR("Cannot allocate vmw_plane_state\n"); 710 return; 711 } 712 713 __drm_atomic_helper_plane_reset(plane, &vps->base); 714 } 715 716 717 /** 718 * vmw_du_plane_destroy_state - destroy plane state 719 * @plane: DRM plane 720 * @state: state object to destroy 721 * 722 * Destroys the plane state (both common and vmw-specific) for the 723 * specified plane. 724 */ 725 void 726 vmw_du_plane_destroy_state(struct drm_plane *plane, 727 struct drm_plane_state *state) 728 { 729 struct vmw_plane_state *vps = vmw_plane_state_to_vps(state); 730 731 732 /* Should have been freed by cleanup_fb */ 733 if (vps->surf) 734 vmw_surface_unreference(&vps->surf); 735 736 if (vps->bo) 737 vmw_bo_unreference(&vps->bo); 738 739 drm_atomic_helper_plane_destroy_state(plane, state); 740 } 741 742 743 /** 744 * vmw_du_connector_duplicate_state - duplicate connector state 745 * @connector: DRM connector 746 * 747 * Allocates and returns a copy of the connector state (both common and 748 * vmw-specific) for the specified connector. 749 * 750 * Returns: The newly allocated connector state, or NULL on failure. 751 */ 752 struct drm_connector_state * 753 vmw_du_connector_duplicate_state(struct drm_connector *connector) 754 { 755 struct drm_connector_state *state; 756 struct vmw_connector_state *vcs; 757 758 if (WARN_ON(!connector->state)) 759 return NULL; 760 761 vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL); 762 763 if (!vcs) 764 return NULL; 765 766 state = &vcs->base; 767 768 __drm_atomic_helper_connector_duplicate_state(connector, state); 769 770 return state; 771 } 772 773 774 /** 775 * vmw_du_connector_reset - creates a blank vmw connector state 776 * @connector: DRM connector 777 * 778 * Resets the atomic state for @connector by freeing the state pointer (which 779 * might be NULL, e.g. at driver load time) and allocating a new empty state 780 * object. 781 */ 782 void vmw_du_connector_reset(struct drm_connector *connector) 783 { 784 struct vmw_connector_state *vcs; 785 786 787 if (connector->state) { 788 __drm_atomic_helper_connector_destroy_state(connector->state); 789 790 kfree(vmw_connector_state_to_vcs(connector->state)); 791 } 792 793 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL); 794 795 if (!vcs) { 796 DRM_ERROR("Cannot allocate vmw_connector_state\n"); 797 return; 798 } 799 800 __drm_atomic_helper_connector_reset(connector, &vcs->base); 801 } 802 803 804 /** 805 * vmw_du_connector_destroy_state - destroy connector state 806 * @connector: DRM connector 807 * @state: state object to destroy 808 * 809 * Destroys the connector state (both common and vmw-specific) for the 810 * specified plane. 811 */ 812 void 813 vmw_du_connector_destroy_state(struct drm_connector *connector, 814 struct drm_connector_state *state) 815 { 816 drm_atomic_helper_connector_destroy_state(connector, state); 817 } 818 /* 819 * Generic framebuffer code 820 */ 821 822 /* 823 * Surface framebuffer code 824 */ 825 826 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer) 827 { 828 struct vmw_framebuffer_surface *vfbs = 829 vmw_framebuffer_to_vfbs(framebuffer); 830 831 drm_framebuffer_cleanup(framebuffer); 832 vmw_surface_unreference(&vfbs->surface); 833 if (vfbs->base.user_obj) 834 ttm_base_object_unref(&vfbs->base.user_obj); 835 836 kfree(vfbs); 837 } 838 839 /** 840 * vmw_kms_readback - Perform a readback from the screen system to 841 * a buffer-object backed framebuffer. 842 * 843 * @dev_priv: Pointer to the device private structure. 844 * @file_priv: Pointer to a struct drm_file identifying the caller. 845 * Must be set to NULL if @user_fence_rep is NULL. 846 * @vfb: Pointer to the buffer-object backed framebuffer. 847 * @user_fence_rep: User-space provided structure for fence information. 848 * Must be set to non-NULL if @file_priv is non-NULL. 849 * @vclips: Array of clip rects. 850 * @num_clips: Number of clip rects in @vclips. 851 * 852 * Returns 0 on success, negative error code on failure. -ERESTARTSYS if 853 * interrupted. 854 */ 855 int vmw_kms_readback(struct vmw_private *dev_priv, 856 struct drm_file *file_priv, 857 struct vmw_framebuffer *vfb, 858 struct drm_vmw_fence_rep __user *user_fence_rep, 859 struct drm_vmw_rect *vclips, 860 uint32_t num_clips) 861 { 862 switch (dev_priv->active_display_unit) { 863 case vmw_du_screen_object: 864 return vmw_kms_sou_readback(dev_priv, file_priv, vfb, 865 user_fence_rep, vclips, num_clips, 866 NULL); 867 case vmw_du_screen_target: 868 return vmw_kms_stdu_dma(dev_priv, file_priv, vfb, 869 user_fence_rep, NULL, vclips, num_clips, 870 1, false, true, NULL); 871 default: 872 WARN_ONCE(true, 873 "Readback called with invalid display system.\n"); 874 } 875 876 return -ENOSYS; 877 } 878 879 880 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = { 881 .destroy = vmw_framebuffer_surface_destroy, 882 .dirty = drm_atomic_helper_dirtyfb, 883 }; 884 885 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv, 886 struct vmw_surface *surface, 887 struct vmw_framebuffer **out, 888 const struct drm_mode_fb_cmd2 889 *mode_cmd, 890 bool is_bo_proxy) 891 892 { 893 struct drm_device *dev = dev_priv->dev; 894 struct vmw_framebuffer_surface *vfbs; 895 enum SVGA3dSurfaceFormat format; 896 int ret; 897 struct drm_format_name_buf format_name; 898 899 /* 3D is only supported on HWv8 and newer hosts */ 900 if (dev_priv->active_display_unit == vmw_du_legacy) 901 return -ENOSYS; 902 903 /* 904 * Sanity checks. 905 */ 906 907 /* Surface must be marked as a scanout. */ 908 if (unlikely(!surface->metadata.scanout)) 909 return -EINVAL; 910 911 if (unlikely(surface->metadata.mip_levels[0] != 1 || 912 surface->metadata.num_sizes != 1 || 913 surface->metadata.base_size.width < mode_cmd->width || 914 surface->metadata.base_size.height < mode_cmd->height || 915 surface->metadata.base_size.depth != 1)) { 916 DRM_ERROR("Incompatible surface dimensions " 917 "for requested mode.\n"); 918 return -EINVAL; 919 } 920 921 switch (mode_cmd->pixel_format) { 922 case DRM_FORMAT_ARGB8888: 923 format = SVGA3D_A8R8G8B8; 924 break; 925 case DRM_FORMAT_XRGB8888: 926 format = SVGA3D_X8R8G8B8; 927 break; 928 case DRM_FORMAT_RGB565: 929 format = SVGA3D_R5G6B5; 930 break; 931 case DRM_FORMAT_XRGB1555: 932 format = SVGA3D_A1R5G5B5; 933 break; 934 default: 935 DRM_ERROR("Invalid pixel format: %s\n", 936 drm_get_format_name(mode_cmd->pixel_format, &format_name)); 937 return -EINVAL; 938 } 939 940 /* 941 * For DX, surface format validation is done when surface->scanout 942 * is set. 943 */ 944 if (!has_sm4_context(dev_priv) && format != surface->metadata.format) { 945 DRM_ERROR("Invalid surface format for requested mode.\n"); 946 return -EINVAL; 947 } 948 949 vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL); 950 if (!vfbs) { 951 ret = -ENOMEM; 952 goto out_err1; 953 } 954 955 drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd); 956 vfbs->surface = vmw_surface_reference(surface); 957 vfbs->base.user_handle = mode_cmd->handles[0]; 958 vfbs->is_bo_proxy = is_bo_proxy; 959 960 *out = &vfbs->base; 961 962 ret = drm_framebuffer_init(dev, &vfbs->base.base, 963 &vmw_framebuffer_surface_funcs); 964 if (ret) 965 goto out_err2; 966 967 return 0; 968 969 out_err2: 970 vmw_surface_unreference(&surface); 971 kfree(vfbs); 972 out_err1: 973 return ret; 974 } 975 976 /* 977 * Buffer-object framebuffer code 978 */ 979 980 static void vmw_framebuffer_bo_destroy(struct drm_framebuffer *framebuffer) 981 { 982 struct vmw_framebuffer_bo *vfbd = 983 vmw_framebuffer_to_vfbd(framebuffer); 984 985 drm_framebuffer_cleanup(framebuffer); 986 vmw_bo_unreference(&vfbd->buffer); 987 if (vfbd->base.user_obj) 988 ttm_base_object_unref(&vfbd->base.user_obj); 989 990 kfree(vfbd); 991 } 992 993 static int vmw_framebuffer_bo_dirty(struct drm_framebuffer *framebuffer, 994 struct drm_file *file_priv, 995 unsigned int flags, unsigned int color, 996 struct drm_clip_rect *clips, 997 unsigned int num_clips) 998 { 999 struct vmw_private *dev_priv = vmw_priv(framebuffer->dev); 1000 struct vmw_framebuffer_bo *vfbd = 1001 vmw_framebuffer_to_vfbd(framebuffer); 1002 struct drm_clip_rect norect; 1003 int ret, increment = 1; 1004 1005 drm_modeset_lock_all(dev_priv->dev); 1006 1007 ret = ttm_read_lock(&dev_priv->reservation_sem, true); 1008 if (unlikely(ret != 0)) { 1009 drm_modeset_unlock_all(dev_priv->dev); 1010 return ret; 1011 } 1012 1013 if (!num_clips) { 1014 num_clips = 1; 1015 clips = &norect; 1016 norect.x1 = norect.y1 = 0; 1017 norect.x2 = framebuffer->width; 1018 norect.y2 = framebuffer->height; 1019 } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) { 1020 num_clips /= 2; 1021 increment = 2; 1022 } 1023 1024 switch (dev_priv->active_display_unit) { 1025 case vmw_du_legacy: 1026 ret = vmw_kms_ldu_do_bo_dirty(dev_priv, &vfbd->base, 0, 0, 1027 clips, num_clips, increment); 1028 break; 1029 default: 1030 ret = -EINVAL; 1031 WARN_ONCE(true, "Dirty called with invalid display system.\n"); 1032 break; 1033 } 1034 1035 vmw_fifo_flush(dev_priv, false); 1036 ttm_read_unlock(&dev_priv->reservation_sem); 1037 1038 drm_modeset_unlock_all(dev_priv->dev); 1039 1040 return ret; 1041 } 1042 1043 static int vmw_framebuffer_bo_dirty_ext(struct drm_framebuffer *framebuffer, 1044 struct drm_file *file_priv, 1045 unsigned int flags, unsigned int color, 1046 struct drm_clip_rect *clips, 1047 unsigned int num_clips) 1048 { 1049 struct vmw_private *dev_priv = vmw_priv(framebuffer->dev); 1050 1051 if (dev_priv->active_display_unit == vmw_du_legacy) 1052 return vmw_framebuffer_bo_dirty(framebuffer, file_priv, flags, 1053 color, clips, num_clips); 1054 1055 return drm_atomic_helper_dirtyfb(framebuffer, file_priv, flags, color, 1056 clips, num_clips); 1057 } 1058 1059 static const struct drm_framebuffer_funcs vmw_framebuffer_bo_funcs = { 1060 .destroy = vmw_framebuffer_bo_destroy, 1061 .dirty = vmw_framebuffer_bo_dirty_ext, 1062 }; 1063 1064 /** 1065 * Pin the bofer in a location suitable for access by the 1066 * display system. 1067 */ 1068 static int vmw_framebuffer_pin(struct vmw_framebuffer *vfb) 1069 { 1070 struct vmw_private *dev_priv = vmw_priv(vfb->base.dev); 1071 struct vmw_buffer_object *buf; 1072 struct ttm_placement *placement; 1073 int ret; 1074 1075 buf = vfb->bo ? vmw_framebuffer_to_vfbd(&vfb->base)->buffer : 1076 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup; 1077 1078 if (!buf) 1079 return 0; 1080 1081 switch (dev_priv->active_display_unit) { 1082 case vmw_du_legacy: 1083 vmw_overlay_pause_all(dev_priv); 1084 ret = vmw_bo_pin_in_start_of_vram(dev_priv, buf, false); 1085 vmw_overlay_resume_all(dev_priv); 1086 break; 1087 case vmw_du_screen_object: 1088 case vmw_du_screen_target: 1089 if (vfb->bo) { 1090 if (dev_priv->capabilities & SVGA_CAP_3D) { 1091 /* 1092 * Use surface DMA to get content to 1093 * sreen target surface. 1094 */ 1095 placement = &vmw_vram_gmr_placement; 1096 } else { 1097 /* Use CPU blit. */ 1098 placement = &vmw_sys_placement; 1099 } 1100 } else { 1101 /* Use surface / image update */ 1102 placement = &vmw_mob_placement; 1103 } 1104 1105 return vmw_bo_pin_in_placement(dev_priv, buf, placement, false); 1106 default: 1107 return -EINVAL; 1108 } 1109 1110 return ret; 1111 } 1112 1113 static int vmw_framebuffer_unpin(struct vmw_framebuffer *vfb) 1114 { 1115 struct vmw_private *dev_priv = vmw_priv(vfb->base.dev); 1116 struct vmw_buffer_object *buf; 1117 1118 buf = vfb->bo ? vmw_framebuffer_to_vfbd(&vfb->base)->buffer : 1119 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup; 1120 1121 if (WARN_ON(!buf)) 1122 return 0; 1123 1124 return vmw_bo_unpin(dev_priv, buf, false); 1125 } 1126 1127 /** 1128 * vmw_create_bo_proxy - create a proxy surface for the buffer object 1129 * 1130 * @dev: DRM device 1131 * @mode_cmd: parameters for the new surface 1132 * @bo_mob: MOB backing the buffer object 1133 * @srf_out: newly created surface 1134 * 1135 * When the content FB is a buffer object, we create a surface as a proxy to the 1136 * same buffer. This way we can do a surface copy rather than a surface DMA. 1137 * This is a more efficient approach 1138 * 1139 * RETURNS: 1140 * 0 on success, error code otherwise 1141 */ 1142 static int vmw_create_bo_proxy(struct drm_device *dev, 1143 const struct drm_mode_fb_cmd2 *mode_cmd, 1144 struct vmw_buffer_object *bo_mob, 1145 struct vmw_surface **srf_out) 1146 { 1147 struct vmw_surface_metadata metadata = {0}; 1148 uint32_t format; 1149 struct vmw_resource *res; 1150 unsigned int bytes_pp; 1151 struct drm_format_name_buf format_name; 1152 int ret; 1153 1154 switch (mode_cmd->pixel_format) { 1155 case DRM_FORMAT_ARGB8888: 1156 case DRM_FORMAT_XRGB8888: 1157 format = SVGA3D_X8R8G8B8; 1158 bytes_pp = 4; 1159 break; 1160 1161 case DRM_FORMAT_RGB565: 1162 case DRM_FORMAT_XRGB1555: 1163 format = SVGA3D_R5G6B5; 1164 bytes_pp = 2; 1165 break; 1166 1167 case 8: 1168 format = SVGA3D_P8; 1169 bytes_pp = 1; 1170 break; 1171 1172 default: 1173 DRM_ERROR("Invalid framebuffer format %s\n", 1174 drm_get_format_name(mode_cmd->pixel_format, &format_name)); 1175 return -EINVAL; 1176 } 1177 1178 metadata.format = format; 1179 metadata.mip_levels[0] = 1; 1180 metadata.num_sizes = 1; 1181 metadata.base_size.width = mode_cmd->pitches[0] / bytes_pp; 1182 metadata.base_size.height = mode_cmd->height; 1183 metadata.base_size.depth = 1; 1184 metadata.scanout = true; 1185 1186 ret = vmw_gb_surface_define(vmw_priv(dev), 0, &metadata, srf_out); 1187 if (ret) { 1188 DRM_ERROR("Failed to allocate proxy content buffer\n"); 1189 return ret; 1190 } 1191 1192 res = &(*srf_out)->res; 1193 1194 /* Reserve and switch the backing mob. */ 1195 mutex_lock(&res->dev_priv->cmdbuf_mutex); 1196 (void) vmw_resource_reserve(res, false, true); 1197 vmw_bo_unreference(&res->backup); 1198 res->backup = vmw_bo_reference(bo_mob); 1199 res->backup_offset = 0; 1200 vmw_resource_unreserve(res, false, false, false, NULL, 0); 1201 mutex_unlock(&res->dev_priv->cmdbuf_mutex); 1202 1203 return 0; 1204 } 1205 1206 1207 1208 static int vmw_kms_new_framebuffer_bo(struct vmw_private *dev_priv, 1209 struct vmw_buffer_object *bo, 1210 struct vmw_framebuffer **out, 1211 const struct drm_mode_fb_cmd2 1212 *mode_cmd) 1213 1214 { 1215 struct drm_device *dev = dev_priv->dev; 1216 struct vmw_framebuffer_bo *vfbd; 1217 unsigned int requested_size; 1218 struct drm_format_name_buf format_name; 1219 int ret; 1220 1221 requested_size = mode_cmd->height * mode_cmd->pitches[0]; 1222 if (unlikely(requested_size > bo->base.num_pages * PAGE_SIZE)) { 1223 DRM_ERROR("Screen buffer object size is too small " 1224 "for requested mode.\n"); 1225 return -EINVAL; 1226 } 1227 1228 /* Limited framebuffer color depth support for screen objects */ 1229 if (dev_priv->active_display_unit == vmw_du_screen_object) { 1230 switch (mode_cmd->pixel_format) { 1231 case DRM_FORMAT_XRGB8888: 1232 case DRM_FORMAT_ARGB8888: 1233 break; 1234 case DRM_FORMAT_XRGB1555: 1235 case DRM_FORMAT_RGB565: 1236 break; 1237 default: 1238 DRM_ERROR("Invalid pixel format: %s\n", 1239 drm_get_format_name(mode_cmd->pixel_format, &format_name)); 1240 return -EINVAL; 1241 } 1242 } 1243 1244 vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL); 1245 if (!vfbd) { 1246 ret = -ENOMEM; 1247 goto out_err1; 1248 } 1249 1250 drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd); 1251 vfbd->base.bo = true; 1252 vfbd->buffer = vmw_bo_reference(bo); 1253 vfbd->base.user_handle = mode_cmd->handles[0]; 1254 *out = &vfbd->base; 1255 1256 ret = drm_framebuffer_init(dev, &vfbd->base.base, 1257 &vmw_framebuffer_bo_funcs); 1258 if (ret) 1259 goto out_err2; 1260 1261 return 0; 1262 1263 out_err2: 1264 vmw_bo_unreference(&bo); 1265 kfree(vfbd); 1266 out_err1: 1267 return ret; 1268 } 1269 1270 1271 /** 1272 * vmw_kms_srf_ok - check if a surface can be created 1273 * 1274 * @width: requested width 1275 * @height: requested height 1276 * 1277 * Surfaces need to be less than texture size 1278 */ 1279 static bool 1280 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height) 1281 { 1282 if (width > dev_priv->texture_max_width || 1283 height > dev_priv->texture_max_height) 1284 return false; 1285 1286 return true; 1287 } 1288 1289 /** 1290 * vmw_kms_new_framebuffer - Create a new framebuffer. 1291 * 1292 * @dev_priv: Pointer to device private struct. 1293 * @bo: Pointer to buffer object to wrap the kms framebuffer around. 1294 * Either @bo or @surface must be NULL. 1295 * @surface: Pointer to a surface to wrap the kms framebuffer around. 1296 * Either @bo or @surface must be NULL. 1297 * @only_2d: No presents will occur to this buffer object based framebuffer. 1298 * This helps the code to do some important optimizations. 1299 * @mode_cmd: Frame-buffer metadata. 1300 */ 1301 struct vmw_framebuffer * 1302 vmw_kms_new_framebuffer(struct vmw_private *dev_priv, 1303 struct vmw_buffer_object *bo, 1304 struct vmw_surface *surface, 1305 bool only_2d, 1306 const struct drm_mode_fb_cmd2 *mode_cmd) 1307 { 1308 struct vmw_framebuffer *vfb = NULL; 1309 bool is_bo_proxy = false; 1310 int ret; 1311 1312 /* 1313 * We cannot use the SurfaceDMA command in an non-accelerated VM, 1314 * therefore, wrap the buffer object in a surface so we can use the 1315 * SurfaceCopy command. 1316 */ 1317 if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height) && 1318 bo && only_2d && 1319 mode_cmd->width > 64 && /* Don't create a proxy for cursor */ 1320 dev_priv->active_display_unit == vmw_du_screen_target) { 1321 ret = vmw_create_bo_proxy(dev_priv->dev, mode_cmd, 1322 bo, &surface); 1323 if (ret) 1324 return ERR_PTR(ret); 1325 1326 is_bo_proxy = true; 1327 } 1328 1329 /* Create the new framebuffer depending one what we have */ 1330 if (surface) { 1331 ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb, 1332 mode_cmd, 1333 is_bo_proxy); 1334 1335 /* 1336 * vmw_create_bo_proxy() adds a reference that is no longer 1337 * needed 1338 */ 1339 if (is_bo_proxy) 1340 vmw_surface_unreference(&surface); 1341 } else if (bo) { 1342 ret = vmw_kms_new_framebuffer_bo(dev_priv, bo, &vfb, 1343 mode_cmd); 1344 } else { 1345 BUG(); 1346 } 1347 1348 if (ret) 1349 return ERR_PTR(ret); 1350 1351 vfb->pin = vmw_framebuffer_pin; 1352 vfb->unpin = vmw_framebuffer_unpin; 1353 1354 return vfb; 1355 } 1356 1357 /* 1358 * Generic Kernel modesetting functions 1359 */ 1360 1361 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev, 1362 struct drm_file *file_priv, 1363 const struct drm_mode_fb_cmd2 *mode_cmd) 1364 { 1365 struct vmw_private *dev_priv = vmw_priv(dev); 1366 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; 1367 struct vmw_framebuffer *vfb = NULL; 1368 struct vmw_surface *surface = NULL; 1369 struct vmw_buffer_object *bo = NULL; 1370 struct ttm_base_object *user_obj; 1371 int ret; 1372 1373 /* 1374 * Take a reference on the user object of the resource 1375 * backing the kms fb. This ensures that user-space handle 1376 * lookups on that resource will always work as long as 1377 * it's registered with a kms framebuffer. This is important, 1378 * since vmw_execbuf_process identifies resources in the 1379 * command stream using user-space handles. 1380 */ 1381 1382 user_obj = ttm_base_object_lookup(tfile, mode_cmd->handles[0]); 1383 if (unlikely(user_obj == NULL)) { 1384 DRM_ERROR("Could not locate requested kms frame buffer.\n"); 1385 return ERR_PTR(-ENOENT); 1386 } 1387 1388 /** 1389 * End conditioned code. 1390 */ 1391 1392 /* returns either a bo or surface */ 1393 ret = vmw_user_lookup_handle(dev_priv, tfile, 1394 mode_cmd->handles[0], 1395 &surface, &bo); 1396 if (ret) 1397 goto err_out; 1398 1399 1400 if (!bo && 1401 !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) { 1402 DRM_ERROR("Surface size cannot exceed %dx%d", 1403 dev_priv->texture_max_width, 1404 dev_priv->texture_max_height); 1405 goto err_out; 1406 } 1407 1408 1409 vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface, 1410 !(dev_priv->capabilities & SVGA_CAP_3D), 1411 mode_cmd); 1412 if (IS_ERR(vfb)) { 1413 ret = PTR_ERR(vfb); 1414 goto err_out; 1415 } 1416 1417 err_out: 1418 /* vmw_user_lookup_handle takes one ref so does new_fb */ 1419 if (bo) 1420 vmw_bo_unreference(&bo); 1421 if (surface) 1422 vmw_surface_unreference(&surface); 1423 1424 if (ret) { 1425 DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret); 1426 ttm_base_object_unref(&user_obj); 1427 return ERR_PTR(ret); 1428 } else 1429 vfb->user_obj = user_obj; 1430 1431 return &vfb->base; 1432 } 1433 1434 /** 1435 * vmw_kms_check_display_memory - Validates display memory required for a 1436 * topology 1437 * @dev: DRM device 1438 * @num_rects: number of drm_rect in rects 1439 * @rects: array of drm_rect representing the topology to validate indexed by 1440 * crtc index. 1441 * 1442 * Returns: 1443 * 0 on success otherwise negative error code 1444 */ 1445 static int vmw_kms_check_display_memory(struct drm_device *dev, 1446 uint32_t num_rects, 1447 struct drm_rect *rects) 1448 { 1449 struct vmw_private *dev_priv = vmw_priv(dev); 1450 struct drm_rect bounding_box = {0}; 1451 u64 total_pixels = 0, pixel_mem, bb_mem; 1452 int i; 1453 1454 for (i = 0; i < num_rects; i++) { 1455 /* 1456 * For STDU only individual screen (screen target) is limited by 1457 * SCREENTARGET_MAX_WIDTH/HEIGHT registers. 1458 */ 1459 if (dev_priv->active_display_unit == vmw_du_screen_target && 1460 (drm_rect_width(&rects[i]) > dev_priv->stdu_max_width || 1461 drm_rect_height(&rects[i]) > dev_priv->stdu_max_height)) { 1462 VMW_DEBUG_KMS("Screen size not supported.\n"); 1463 return -EINVAL; 1464 } 1465 1466 /* Bounding box upper left is at (0,0). */ 1467 if (rects[i].x2 > bounding_box.x2) 1468 bounding_box.x2 = rects[i].x2; 1469 1470 if (rects[i].y2 > bounding_box.y2) 1471 bounding_box.y2 = rects[i].y2; 1472 1473 total_pixels += (u64) drm_rect_width(&rects[i]) * 1474 (u64) drm_rect_height(&rects[i]); 1475 } 1476 1477 /* Virtual svga device primary limits are always in 32-bpp. */ 1478 pixel_mem = total_pixels * 4; 1479 1480 /* 1481 * For HV10 and below prim_bb_mem is vram size. When 1482 * SVGA_REG_MAX_PRIMARY_BOUNDING_BOX_MEM is not present vram size is 1483 * limit on primary bounding box 1484 */ 1485 if (pixel_mem > dev_priv->prim_bb_mem) { 1486 VMW_DEBUG_KMS("Combined output size too large.\n"); 1487 return -EINVAL; 1488 } 1489 1490 /* SVGA_CAP_NO_BB_RESTRICTION is available for STDU only. */ 1491 if (dev_priv->active_display_unit != vmw_du_screen_target || 1492 !(dev_priv->capabilities & SVGA_CAP_NO_BB_RESTRICTION)) { 1493 bb_mem = (u64) bounding_box.x2 * bounding_box.y2 * 4; 1494 1495 if (bb_mem > dev_priv->prim_bb_mem) { 1496 VMW_DEBUG_KMS("Topology is beyond supported limits.\n"); 1497 return -EINVAL; 1498 } 1499 } 1500 1501 return 0; 1502 } 1503 1504 /** 1505 * vmw_crtc_state_and_lock - Return new or current crtc state with locked 1506 * crtc mutex 1507 * @state: The atomic state pointer containing the new atomic state 1508 * @crtc: The crtc 1509 * 1510 * This function returns the new crtc state if it's part of the state update. 1511 * Otherwise returns the current crtc state. It also makes sure that the 1512 * crtc mutex is locked. 1513 * 1514 * Returns: A valid crtc state pointer or NULL. It may also return a 1515 * pointer error, in particular -EDEADLK if locking needs to be rerun. 1516 */ 1517 static struct drm_crtc_state * 1518 vmw_crtc_state_and_lock(struct drm_atomic_state *state, struct drm_crtc *crtc) 1519 { 1520 struct drm_crtc_state *crtc_state; 1521 1522 crtc_state = drm_atomic_get_new_crtc_state(state, crtc); 1523 if (crtc_state) { 1524 lockdep_assert_held(&crtc->mutex.mutex.base); 1525 } else { 1526 int ret = drm_modeset_lock(&crtc->mutex, state->acquire_ctx); 1527 1528 if (ret != 0 && ret != -EALREADY) 1529 return ERR_PTR(ret); 1530 1531 crtc_state = crtc->state; 1532 } 1533 1534 return crtc_state; 1535 } 1536 1537 /** 1538 * vmw_kms_check_implicit - Verify that all implicit display units scan out 1539 * from the same fb after the new state is committed. 1540 * @dev: The drm_device. 1541 * @state: The new state to be checked. 1542 * 1543 * Returns: 1544 * Zero on success, 1545 * -EINVAL on invalid state, 1546 * -EDEADLK if modeset locking needs to be rerun. 1547 */ 1548 static int vmw_kms_check_implicit(struct drm_device *dev, 1549 struct drm_atomic_state *state) 1550 { 1551 struct drm_framebuffer *implicit_fb = NULL; 1552 struct drm_crtc *crtc; 1553 struct drm_crtc_state *crtc_state; 1554 struct drm_plane_state *plane_state; 1555 1556 drm_for_each_crtc(crtc, dev) { 1557 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 1558 1559 if (!du->is_implicit) 1560 continue; 1561 1562 crtc_state = vmw_crtc_state_and_lock(state, crtc); 1563 if (IS_ERR(crtc_state)) 1564 return PTR_ERR(crtc_state); 1565 1566 if (!crtc_state || !crtc_state->enable) 1567 continue; 1568 1569 /* 1570 * Can't move primary planes across crtcs, so this is OK. 1571 * It also means we don't need to take the plane mutex. 1572 */ 1573 plane_state = du->primary.state; 1574 if (plane_state->crtc != crtc) 1575 continue; 1576 1577 if (!implicit_fb) 1578 implicit_fb = plane_state->fb; 1579 else if (implicit_fb != plane_state->fb) 1580 return -EINVAL; 1581 } 1582 1583 return 0; 1584 } 1585 1586 /** 1587 * vmw_kms_check_topology - Validates topology in drm_atomic_state 1588 * @dev: DRM device 1589 * @state: the driver state object 1590 * 1591 * Returns: 1592 * 0 on success otherwise negative error code 1593 */ 1594 static int vmw_kms_check_topology(struct drm_device *dev, 1595 struct drm_atomic_state *state) 1596 { 1597 struct drm_crtc_state *old_crtc_state, *new_crtc_state; 1598 struct drm_rect *rects; 1599 struct drm_crtc *crtc; 1600 uint32_t i; 1601 int ret = 0; 1602 1603 rects = kcalloc(dev->mode_config.num_crtc, sizeof(struct drm_rect), 1604 GFP_KERNEL); 1605 if (!rects) 1606 return -ENOMEM; 1607 1608 drm_for_each_crtc(crtc, dev) { 1609 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 1610 struct drm_crtc_state *crtc_state; 1611 1612 i = drm_crtc_index(crtc); 1613 1614 crtc_state = vmw_crtc_state_and_lock(state, crtc); 1615 if (IS_ERR(crtc_state)) { 1616 ret = PTR_ERR(crtc_state); 1617 goto clean; 1618 } 1619 1620 if (!crtc_state) 1621 continue; 1622 1623 if (crtc_state->enable) { 1624 rects[i].x1 = du->gui_x; 1625 rects[i].y1 = du->gui_y; 1626 rects[i].x2 = du->gui_x + crtc_state->mode.hdisplay; 1627 rects[i].y2 = du->gui_y + crtc_state->mode.vdisplay; 1628 } else { 1629 rects[i].x1 = 0; 1630 rects[i].y1 = 0; 1631 rects[i].x2 = 0; 1632 rects[i].y2 = 0; 1633 } 1634 } 1635 1636 /* Determine change to topology due to new atomic state */ 1637 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, 1638 new_crtc_state, i) { 1639 struct vmw_display_unit *du = vmw_crtc_to_du(crtc); 1640 struct drm_connector *connector; 1641 struct drm_connector_state *conn_state; 1642 struct vmw_connector_state *vmw_conn_state; 1643 1644 if (!du->pref_active && new_crtc_state->enable) { 1645 VMW_DEBUG_KMS("Enabling a disabled display unit\n"); 1646 ret = -EINVAL; 1647 goto clean; 1648 } 1649 1650 /* 1651 * For vmwgfx each crtc has only one connector attached and it 1652 * is not changed so don't really need to check the 1653 * crtc->connector_mask and iterate over it. 1654 */ 1655 connector = &du->connector; 1656 conn_state = drm_atomic_get_connector_state(state, connector); 1657 if (IS_ERR(conn_state)) { 1658 ret = PTR_ERR(conn_state); 1659 goto clean; 1660 } 1661 1662 vmw_conn_state = vmw_connector_state_to_vcs(conn_state); 1663 vmw_conn_state->gui_x = du->gui_x; 1664 vmw_conn_state->gui_y = du->gui_y; 1665 } 1666 1667 ret = vmw_kms_check_display_memory(dev, dev->mode_config.num_crtc, 1668 rects); 1669 1670 clean: 1671 kfree(rects); 1672 return ret; 1673 } 1674 1675 /** 1676 * vmw_kms_atomic_check_modeset- validate state object for modeset changes 1677 * 1678 * @dev: DRM device 1679 * @state: the driver state object 1680 * 1681 * This is a simple wrapper around drm_atomic_helper_check_modeset() for 1682 * us to assign a value to mode->crtc_clock so that 1683 * drm_calc_timestamping_constants() won't throw an error message 1684 * 1685 * Returns: 1686 * Zero for success or -errno 1687 */ 1688 static int 1689 vmw_kms_atomic_check_modeset(struct drm_device *dev, 1690 struct drm_atomic_state *state) 1691 { 1692 struct drm_crtc *crtc; 1693 struct drm_crtc_state *crtc_state; 1694 bool need_modeset = false; 1695 int i, ret; 1696 1697 ret = drm_atomic_helper_check(dev, state); 1698 if (ret) 1699 return ret; 1700 1701 ret = vmw_kms_check_implicit(dev, state); 1702 if (ret) { 1703 VMW_DEBUG_KMS("Invalid implicit state\n"); 1704 return ret; 1705 } 1706 1707 for_each_new_crtc_in_state(state, crtc, crtc_state, i) { 1708 if (drm_atomic_crtc_needs_modeset(crtc_state)) 1709 need_modeset = true; 1710 } 1711 1712 if (need_modeset) 1713 return vmw_kms_check_topology(dev, state); 1714 1715 return ret; 1716 } 1717 1718 static const struct drm_mode_config_funcs vmw_kms_funcs = { 1719 .fb_create = vmw_kms_fb_create, 1720 .atomic_check = vmw_kms_atomic_check_modeset, 1721 .atomic_commit = drm_atomic_helper_commit, 1722 }; 1723 1724 static int vmw_kms_generic_present(struct vmw_private *dev_priv, 1725 struct drm_file *file_priv, 1726 struct vmw_framebuffer *vfb, 1727 struct vmw_surface *surface, 1728 uint32_t sid, 1729 int32_t destX, int32_t destY, 1730 struct drm_vmw_rect *clips, 1731 uint32_t num_clips) 1732 { 1733 return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips, 1734 &surface->res, destX, destY, 1735 num_clips, 1, NULL, NULL); 1736 } 1737 1738 1739 int vmw_kms_present(struct vmw_private *dev_priv, 1740 struct drm_file *file_priv, 1741 struct vmw_framebuffer *vfb, 1742 struct vmw_surface *surface, 1743 uint32_t sid, 1744 int32_t destX, int32_t destY, 1745 struct drm_vmw_rect *clips, 1746 uint32_t num_clips) 1747 { 1748 int ret; 1749 1750 switch (dev_priv->active_display_unit) { 1751 case vmw_du_screen_target: 1752 ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips, 1753 &surface->res, destX, destY, 1754 num_clips, 1, NULL, NULL); 1755 break; 1756 case vmw_du_screen_object: 1757 ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface, 1758 sid, destX, destY, clips, 1759 num_clips); 1760 break; 1761 default: 1762 WARN_ONCE(true, 1763 "Present called with invalid display system.\n"); 1764 ret = -ENOSYS; 1765 break; 1766 } 1767 if (ret) 1768 return ret; 1769 1770 vmw_fifo_flush(dev_priv, false); 1771 1772 return 0; 1773 } 1774 1775 static void 1776 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv) 1777 { 1778 if (dev_priv->hotplug_mode_update_property) 1779 return; 1780 1781 dev_priv->hotplug_mode_update_property = 1782 drm_property_create_range(dev_priv->dev, 1783 DRM_MODE_PROP_IMMUTABLE, 1784 "hotplug_mode_update", 0, 1); 1785 1786 if (!dev_priv->hotplug_mode_update_property) 1787 return; 1788 1789 } 1790 1791 int vmw_kms_init(struct vmw_private *dev_priv) 1792 { 1793 struct drm_device *dev = dev_priv->dev; 1794 int ret; 1795 1796 drm_mode_config_init(dev); 1797 dev->mode_config.funcs = &vmw_kms_funcs; 1798 dev->mode_config.min_width = 1; 1799 dev->mode_config.min_height = 1; 1800 dev->mode_config.max_width = dev_priv->texture_max_width; 1801 dev->mode_config.max_height = dev_priv->texture_max_height; 1802 1803 drm_mode_create_suggested_offset_properties(dev); 1804 vmw_kms_create_hotplug_mode_update_property(dev_priv); 1805 1806 ret = vmw_kms_stdu_init_display(dev_priv); 1807 if (ret) { 1808 ret = vmw_kms_sou_init_display(dev_priv); 1809 if (ret) /* Fallback */ 1810 ret = vmw_kms_ldu_init_display(dev_priv); 1811 } 1812 1813 return ret; 1814 } 1815 1816 int vmw_kms_close(struct vmw_private *dev_priv) 1817 { 1818 int ret = 0; 1819 1820 /* 1821 * Docs says we should take the lock before calling this function 1822 * but since it destroys encoders and our destructor calls 1823 * drm_encoder_cleanup which takes the lock we deadlock. 1824 */ 1825 drm_mode_config_cleanup(dev_priv->dev); 1826 if (dev_priv->active_display_unit == vmw_du_legacy) 1827 ret = vmw_kms_ldu_close_display(dev_priv); 1828 1829 return ret; 1830 } 1831 1832 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data, 1833 struct drm_file *file_priv) 1834 { 1835 struct drm_vmw_cursor_bypass_arg *arg = data; 1836 struct vmw_display_unit *du; 1837 struct drm_crtc *crtc; 1838 int ret = 0; 1839 1840 1841 mutex_lock(&dev->mode_config.mutex); 1842 if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) { 1843 1844 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 1845 du = vmw_crtc_to_du(crtc); 1846 du->hotspot_x = arg->xhot; 1847 du->hotspot_y = arg->yhot; 1848 } 1849 1850 mutex_unlock(&dev->mode_config.mutex); 1851 return 0; 1852 } 1853 1854 crtc = drm_crtc_find(dev, file_priv, arg->crtc_id); 1855 if (!crtc) { 1856 ret = -ENOENT; 1857 goto out; 1858 } 1859 1860 du = vmw_crtc_to_du(crtc); 1861 1862 du->hotspot_x = arg->xhot; 1863 du->hotspot_y = arg->yhot; 1864 1865 out: 1866 mutex_unlock(&dev->mode_config.mutex); 1867 1868 return ret; 1869 } 1870 1871 int vmw_kms_write_svga(struct vmw_private *vmw_priv, 1872 unsigned width, unsigned height, unsigned pitch, 1873 unsigned bpp, unsigned depth) 1874 { 1875 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK) 1876 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch); 1877 else if (vmw_fifo_have_pitchlock(vmw_priv)) 1878 vmw_mmio_write(pitch, vmw_priv->mmio_virt + 1879 SVGA_FIFO_PITCHLOCK); 1880 vmw_write(vmw_priv, SVGA_REG_WIDTH, width); 1881 vmw_write(vmw_priv, SVGA_REG_HEIGHT, height); 1882 vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp); 1883 1884 if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) { 1885 DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n", 1886 depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH)); 1887 return -EINVAL; 1888 } 1889 1890 return 0; 1891 } 1892 1893 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv, 1894 uint32_t pitch, 1895 uint32_t height) 1896 { 1897 return ((u64) pitch * (u64) height) < (u64) 1898 ((dev_priv->active_display_unit == vmw_du_screen_target) ? 1899 dev_priv->prim_bb_mem : dev_priv->vram_size); 1900 } 1901 1902 1903 /** 1904 * Function called by DRM code called with vbl_lock held. 1905 */ 1906 u32 vmw_get_vblank_counter(struct drm_crtc *crtc) 1907 { 1908 return 0; 1909 } 1910 1911 /** 1912 * Function called by DRM code called with vbl_lock held. 1913 */ 1914 int vmw_enable_vblank(struct drm_crtc *crtc) 1915 { 1916 return -EINVAL; 1917 } 1918 1919 /** 1920 * Function called by DRM code called with vbl_lock held. 1921 */ 1922 void vmw_disable_vblank(struct drm_crtc *crtc) 1923 { 1924 } 1925 1926 /** 1927 * vmw_du_update_layout - Update the display unit with topology from resolution 1928 * plugin and generate DRM uevent 1929 * @dev_priv: device private 1930 * @num_rects: number of drm_rect in rects 1931 * @rects: toplogy to update 1932 */ 1933 static int vmw_du_update_layout(struct vmw_private *dev_priv, 1934 unsigned int num_rects, struct drm_rect *rects) 1935 { 1936 struct drm_device *dev = dev_priv->dev; 1937 struct vmw_display_unit *du; 1938 struct drm_connector *con; 1939 struct drm_connector_list_iter conn_iter; 1940 struct drm_modeset_acquire_ctx ctx; 1941 struct drm_crtc *crtc; 1942 int ret; 1943 1944 /* Currently gui_x/y is protected with the crtc mutex */ 1945 mutex_lock(&dev->mode_config.mutex); 1946 drm_modeset_acquire_init(&ctx, 0); 1947 retry: 1948 drm_for_each_crtc(crtc, dev) { 1949 ret = drm_modeset_lock(&crtc->mutex, &ctx); 1950 if (ret < 0) { 1951 if (ret == -EDEADLK) { 1952 drm_modeset_backoff(&ctx); 1953 goto retry; 1954 } 1955 goto out_fini; 1956 } 1957 } 1958 1959 drm_connector_list_iter_begin(dev, &conn_iter); 1960 drm_for_each_connector_iter(con, &conn_iter) { 1961 du = vmw_connector_to_du(con); 1962 if (num_rects > du->unit) { 1963 du->pref_width = drm_rect_width(&rects[du->unit]); 1964 du->pref_height = drm_rect_height(&rects[du->unit]); 1965 du->pref_active = true; 1966 du->gui_x = rects[du->unit].x1; 1967 du->gui_y = rects[du->unit].y1; 1968 } else { 1969 du->pref_width = 800; 1970 du->pref_height = 600; 1971 du->pref_active = false; 1972 du->gui_x = 0; 1973 du->gui_y = 0; 1974 } 1975 } 1976 drm_connector_list_iter_end(&conn_iter); 1977 1978 list_for_each_entry(con, &dev->mode_config.connector_list, head) { 1979 du = vmw_connector_to_du(con); 1980 if (num_rects > du->unit) { 1981 drm_object_property_set_value 1982 (&con->base, dev->mode_config.suggested_x_property, 1983 du->gui_x); 1984 drm_object_property_set_value 1985 (&con->base, dev->mode_config.suggested_y_property, 1986 du->gui_y); 1987 } else { 1988 drm_object_property_set_value 1989 (&con->base, dev->mode_config.suggested_x_property, 1990 0); 1991 drm_object_property_set_value 1992 (&con->base, dev->mode_config.suggested_y_property, 1993 0); 1994 } 1995 con->status = vmw_du_connector_detect(con, true); 1996 } 1997 1998 drm_sysfs_hotplug_event(dev); 1999 out_fini: 2000 drm_modeset_drop_locks(&ctx); 2001 drm_modeset_acquire_fini(&ctx); 2002 mutex_unlock(&dev->mode_config.mutex); 2003 2004 return 0; 2005 } 2006 2007 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc, 2008 u16 *r, u16 *g, u16 *b, 2009 uint32_t size, 2010 struct drm_modeset_acquire_ctx *ctx) 2011 { 2012 struct vmw_private *dev_priv = vmw_priv(crtc->dev); 2013 int i; 2014 2015 for (i = 0; i < size; i++) { 2016 DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i, 2017 r[i], g[i], b[i]); 2018 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8); 2019 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8); 2020 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8); 2021 } 2022 2023 return 0; 2024 } 2025 2026 int vmw_du_connector_dpms(struct drm_connector *connector, int mode) 2027 { 2028 return 0; 2029 } 2030 2031 enum drm_connector_status 2032 vmw_du_connector_detect(struct drm_connector *connector, bool force) 2033 { 2034 uint32_t num_displays; 2035 struct drm_device *dev = connector->dev; 2036 struct vmw_private *dev_priv = vmw_priv(dev); 2037 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2038 2039 num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS); 2040 2041 return ((vmw_connector_to_du(connector)->unit < num_displays && 2042 du->pref_active) ? 2043 connector_status_connected : connector_status_disconnected); 2044 } 2045 2046 static struct drm_display_mode vmw_kms_connector_builtin[] = { 2047 /* 640x480@60Hz */ 2048 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656, 2049 752, 800, 0, 480, 489, 492, 525, 0, 2050 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 2051 /* 800x600@60Hz */ 2052 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840, 2053 968, 1056, 0, 600, 601, 605, 628, 0, 2054 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2055 /* 1024x768@60Hz */ 2056 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048, 2057 1184, 1344, 0, 768, 771, 777, 806, 0, 2058 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, 2059 /* 1152x864@75Hz */ 2060 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216, 2061 1344, 1600, 0, 864, 865, 868, 900, 0, 2062 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2063 /* 1280x768@60Hz */ 2064 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344, 2065 1472, 1664, 0, 768, 771, 778, 798, 0, 2066 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2067 /* 1280x800@60Hz */ 2068 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352, 2069 1480, 1680, 0, 800, 803, 809, 831, 0, 2070 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, 2071 /* 1280x960@60Hz */ 2072 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376, 2073 1488, 1800, 0, 960, 961, 964, 1000, 0, 2074 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2075 /* 1280x1024@60Hz */ 2076 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328, 2077 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, 2078 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2079 /* 1360x768@60Hz */ 2080 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424, 2081 1536, 1792, 0, 768, 771, 777, 795, 0, 2082 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2083 /* 1440x1050@60Hz */ 2084 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488, 2085 1632, 1864, 0, 1050, 1053, 1057, 1089, 0, 2086 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2087 /* 1440x900@60Hz */ 2088 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520, 2089 1672, 1904, 0, 900, 903, 909, 934, 0, 2090 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2091 /* 1600x1200@60Hz */ 2092 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664, 2093 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, 2094 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2095 /* 1680x1050@60Hz */ 2096 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784, 2097 1960, 2240, 0, 1050, 1053, 1059, 1089, 0, 2098 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2099 /* 1792x1344@60Hz */ 2100 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920, 2101 2120, 2448, 0, 1344, 1345, 1348, 1394, 0, 2102 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2103 /* 1853x1392@60Hz */ 2104 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952, 2105 2176, 2528, 0, 1392, 1393, 1396, 1439, 0, 2106 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2107 /* 1920x1200@60Hz */ 2108 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056, 2109 2256, 2592, 0, 1200, 1203, 1209, 1245, 0, 2110 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2111 /* 1920x1440@60Hz */ 2112 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048, 2113 2256, 2600, 0, 1440, 1441, 1444, 1500, 0, 2114 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2115 /* 2560x1600@60Hz */ 2116 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752, 2117 3032, 3504, 0, 1600, 1603, 1609, 1658, 0, 2118 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, 2119 /* Terminate */ 2120 { DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) }, 2121 }; 2122 2123 /** 2124 * vmw_guess_mode_timing - Provide fake timings for a 2125 * 60Hz vrefresh mode. 2126 * 2127 * @mode - Pointer to a struct drm_display_mode with hdisplay and vdisplay 2128 * members filled in. 2129 */ 2130 void vmw_guess_mode_timing(struct drm_display_mode *mode) 2131 { 2132 mode->hsync_start = mode->hdisplay + 50; 2133 mode->hsync_end = mode->hsync_start + 50; 2134 mode->htotal = mode->hsync_end + 50; 2135 2136 mode->vsync_start = mode->vdisplay + 50; 2137 mode->vsync_end = mode->vsync_start + 50; 2138 mode->vtotal = mode->vsync_end + 50; 2139 2140 mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6; 2141 mode->vrefresh = drm_mode_vrefresh(mode); 2142 } 2143 2144 2145 int vmw_du_connector_fill_modes(struct drm_connector *connector, 2146 uint32_t max_width, uint32_t max_height) 2147 { 2148 struct vmw_display_unit *du = vmw_connector_to_du(connector); 2149 struct drm_device *dev = connector->dev; 2150 struct vmw_private *dev_priv = vmw_priv(dev); 2151 struct drm_display_mode *mode = NULL; 2152 struct drm_display_mode *bmode; 2153 struct drm_display_mode prefmode = { DRM_MODE("preferred", 2154 DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED, 2155 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2156 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) 2157 }; 2158 int i; 2159 u32 assumed_bpp = 4; 2160 2161 if (dev_priv->assume_16bpp) 2162 assumed_bpp = 2; 2163 2164 max_width = min(max_width, dev_priv->texture_max_width); 2165 max_height = min(max_height, dev_priv->texture_max_height); 2166 2167 /* 2168 * For STDU extra limit for a mode on SVGA_REG_SCREENTARGET_MAX_WIDTH/ 2169 * HEIGHT registers. 2170 */ 2171 if (dev_priv->active_display_unit == vmw_du_screen_target) { 2172 max_width = min(max_width, dev_priv->stdu_max_width); 2173 max_height = min(max_height, dev_priv->stdu_max_height); 2174 } 2175 2176 /* Add preferred mode */ 2177 mode = drm_mode_duplicate(dev, &prefmode); 2178 if (!mode) 2179 return 0; 2180 mode->hdisplay = du->pref_width; 2181 mode->vdisplay = du->pref_height; 2182 vmw_guess_mode_timing(mode); 2183 2184 if (vmw_kms_validate_mode_vram(dev_priv, 2185 mode->hdisplay * assumed_bpp, 2186 mode->vdisplay)) { 2187 drm_mode_probed_add(connector, mode); 2188 } else { 2189 drm_mode_destroy(dev, mode); 2190 mode = NULL; 2191 } 2192 2193 if (du->pref_mode) { 2194 list_del_init(&du->pref_mode->head); 2195 drm_mode_destroy(dev, du->pref_mode); 2196 } 2197 2198 /* mode might be null here, this is intended */ 2199 du->pref_mode = mode; 2200 2201 for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) { 2202 bmode = &vmw_kms_connector_builtin[i]; 2203 if (bmode->hdisplay > max_width || 2204 bmode->vdisplay > max_height) 2205 continue; 2206 2207 if (!vmw_kms_validate_mode_vram(dev_priv, 2208 bmode->hdisplay * assumed_bpp, 2209 bmode->vdisplay)) 2210 continue; 2211 2212 mode = drm_mode_duplicate(dev, bmode); 2213 if (!mode) 2214 return 0; 2215 mode->vrefresh = drm_mode_vrefresh(mode); 2216 2217 drm_mode_probed_add(connector, mode); 2218 } 2219 2220 drm_connector_list_update(connector); 2221 /* Move the prefered mode first, help apps pick the right mode. */ 2222 drm_mode_sort(&connector->modes); 2223 2224 return 1; 2225 } 2226 2227 /** 2228 * vmw_kms_update_layout_ioctl - Handler for DRM_VMW_UPDATE_LAYOUT ioctl 2229 * @dev: drm device for the ioctl 2230 * @data: data pointer for the ioctl 2231 * @file_priv: drm file for the ioctl call 2232 * 2233 * Update preferred topology of display unit as per ioctl request. The topology 2234 * is expressed as array of drm_vmw_rect. 2235 * e.g. 2236 * [0 0 640 480] [640 0 800 600] [0 480 640 480] 2237 * 2238 * NOTE: 2239 * The x and y offset (upper left) in drm_vmw_rect cannot be less than 0. Beside 2240 * device limit on topology, x + w and y + h (lower right) cannot be greater 2241 * than INT_MAX. So topology beyond these limits will return with error. 2242 * 2243 * Returns: 2244 * Zero on success, negative errno on failure. 2245 */ 2246 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data, 2247 struct drm_file *file_priv) 2248 { 2249 struct vmw_private *dev_priv = vmw_priv(dev); 2250 struct drm_mode_config *mode_config = &dev->mode_config; 2251 struct drm_vmw_update_layout_arg *arg = 2252 (struct drm_vmw_update_layout_arg *)data; 2253 void __user *user_rects; 2254 struct drm_vmw_rect *rects; 2255 struct drm_rect *drm_rects; 2256 unsigned rects_size; 2257 int ret, i; 2258 2259 if (!arg->num_outputs) { 2260 struct drm_rect def_rect = {0, 0, 800, 600}; 2261 VMW_DEBUG_KMS("Default layout x1 = %d y1 = %d x2 = %d y2 = %d\n", 2262 def_rect.x1, def_rect.y1, 2263 def_rect.x2, def_rect.y2); 2264 vmw_du_update_layout(dev_priv, 1, &def_rect); 2265 return 0; 2266 } 2267 2268 rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect); 2269 rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect), 2270 GFP_KERNEL); 2271 if (unlikely(!rects)) 2272 return -ENOMEM; 2273 2274 user_rects = (void __user *)(unsigned long)arg->rects; 2275 ret = copy_from_user(rects, user_rects, rects_size); 2276 if (unlikely(ret != 0)) { 2277 DRM_ERROR("Failed to get rects.\n"); 2278 ret = -EFAULT; 2279 goto out_free; 2280 } 2281 2282 drm_rects = (struct drm_rect *)rects; 2283 2284 VMW_DEBUG_KMS("Layout count = %u\n", arg->num_outputs); 2285 for (i = 0; i < arg->num_outputs; i++) { 2286 struct drm_vmw_rect curr_rect; 2287 2288 /* Verify user-space for overflow as kernel use drm_rect */ 2289 if ((rects[i].x + rects[i].w > INT_MAX) || 2290 (rects[i].y + rects[i].h > INT_MAX)) { 2291 ret = -ERANGE; 2292 goto out_free; 2293 } 2294 2295 curr_rect = rects[i]; 2296 drm_rects[i].x1 = curr_rect.x; 2297 drm_rects[i].y1 = curr_rect.y; 2298 drm_rects[i].x2 = curr_rect.x + curr_rect.w; 2299 drm_rects[i].y2 = curr_rect.y + curr_rect.h; 2300 2301 VMW_DEBUG_KMS(" x1 = %d y1 = %d x2 = %d y2 = %d\n", 2302 drm_rects[i].x1, drm_rects[i].y1, 2303 drm_rects[i].x2, drm_rects[i].y2); 2304 2305 /* 2306 * Currently this check is limiting the topology within 2307 * mode_config->max (which actually is max texture size 2308 * supported by virtual device). This limit is here to address 2309 * window managers that create a big framebuffer for whole 2310 * topology. 2311 */ 2312 if (drm_rects[i].x1 < 0 || drm_rects[i].y1 < 0 || 2313 drm_rects[i].x2 > mode_config->max_width || 2314 drm_rects[i].y2 > mode_config->max_height) { 2315 VMW_DEBUG_KMS("Invalid layout %d %d %d %d\n", 2316 drm_rects[i].x1, drm_rects[i].y1, 2317 drm_rects[i].x2, drm_rects[i].y2); 2318 ret = -EINVAL; 2319 goto out_free; 2320 } 2321 } 2322 2323 ret = vmw_kms_check_display_memory(dev, arg->num_outputs, drm_rects); 2324 2325 if (ret == 0) 2326 vmw_du_update_layout(dev_priv, arg->num_outputs, drm_rects); 2327 2328 out_free: 2329 kfree(rects); 2330 return ret; 2331 } 2332 2333 /** 2334 * vmw_kms_helper_dirty - Helper to build commands and perform actions based 2335 * on a set of cliprects and a set of display units. 2336 * 2337 * @dev_priv: Pointer to a device private structure. 2338 * @framebuffer: Pointer to the framebuffer on which to perform the actions. 2339 * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL. 2340 * Cliprects are given in framebuffer coordinates. 2341 * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must 2342 * be NULL. Cliprects are given in source coordinates. 2343 * @dest_x: X coordinate offset for the crtc / destination clip rects. 2344 * @dest_y: Y coordinate offset for the crtc / destination clip rects. 2345 * @num_clips: Number of cliprects in the @clips or @vclips array. 2346 * @increment: Integer with which to increment the clip counter when looping. 2347 * Used to skip a predetermined number of clip rects. 2348 * @dirty: Closure structure. See the description of struct vmw_kms_dirty. 2349 */ 2350 int vmw_kms_helper_dirty(struct vmw_private *dev_priv, 2351 struct vmw_framebuffer *framebuffer, 2352 const struct drm_clip_rect *clips, 2353 const struct drm_vmw_rect *vclips, 2354 s32 dest_x, s32 dest_y, 2355 int num_clips, 2356 int increment, 2357 struct vmw_kms_dirty *dirty) 2358 { 2359 struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS]; 2360 struct drm_crtc *crtc; 2361 u32 num_units = 0; 2362 u32 i, k; 2363 2364 dirty->dev_priv = dev_priv; 2365 2366 /* If crtc is passed, no need to iterate over other display units */ 2367 if (dirty->crtc) { 2368 units[num_units++] = vmw_crtc_to_du(dirty->crtc); 2369 } else { 2370 list_for_each_entry(crtc, &dev_priv->dev->mode_config.crtc_list, 2371 head) { 2372 struct drm_plane *plane = crtc->primary; 2373 2374 if (plane->state->fb == &framebuffer->base) 2375 units[num_units++] = vmw_crtc_to_du(crtc); 2376 } 2377 } 2378 2379 for (k = 0; k < num_units; k++) { 2380 struct vmw_display_unit *unit = units[k]; 2381 s32 crtc_x = unit->crtc.x; 2382 s32 crtc_y = unit->crtc.y; 2383 s32 crtc_width = unit->crtc.mode.hdisplay; 2384 s32 crtc_height = unit->crtc.mode.vdisplay; 2385 const struct drm_clip_rect *clips_ptr = clips; 2386 const struct drm_vmw_rect *vclips_ptr = vclips; 2387 2388 dirty->unit = unit; 2389 if (dirty->fifo_reserve_size > 0) { 2390 dirty->cmd = VMW_FIFO_RESERVE(dev_priv, 2391 dirty->fifo_reserve_size); 2392 if (!dirty->cmd) 2393 return -ENOMEM; 2394 2395 memset(dirty->cmd, 0, dirty->fifo_reserve_size); 2396 } 2397 dirty->num_hits = 0; 2398 for (i = 0; i < num_clips; i++, clips_ptr += increment, 2399 vclips_ptr += increment) { 2400 s32 clip_left; 2401 s32 clip_top; 2402 2403 /* 2404 * Select clip array type. Note that integer type 2405 * in @clips is unsigned short, whereas in @vclips 2406 * it's 32-bit. 2407 */ 2408 if (clips) { 2409 dirty->fb_x = (s32) clips_ptr->x1; 2410 dirty->fb_y = (s32) clips_ptr->y1; 2411 dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x - 2412 crtc_x; 2413 dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y - 2414 crtc_y; 2415 } else { 2416 dirty->fb_x = vclips_ptr->x; 2417 dirty->fb_y = vclips_ptr->y; 2418 dirty->unit_x2 = dirty->fb_x + vclips_ptr->w + 2419 dest_x - crtc_x; 2420 dirty->unit_y2 = dirty->fb_y + vclips_ptr->h + 2421 dest_y - crtc_y; 2422 } 2423 2424 dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x; 2425 dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y; 2426 2427 /* Skip this clip if it's outside the crtc region */ 2428 if (dirty->unit_x1 >= crtc_width || 2429 dirty->unit_y1 >= crtc_height || 2430 dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0) 2431 continue; 2432 2433 /* Clip right and bottom to crtc limits */ 2434 dirty->unit_x2 = min_t(s32, dirty->unit_x2, 2435 crtc_width); 2436 dirty->unit_y2 = min_t(s32, dirty->unit_y2, 2437 crtc_height); 2438 2439 /* Clip left and top to crtc limits */ 2440 clip_left = min_t(s32, dirty->unit_x1, 0); 2441 clip_top = min_t(s32, dirty->unit_y1, 0); 2442 dirty->unit_x1 -= clip_left; 2443 dirty->unit_y1 -= clip_top; 2444 dirty->fb_x -= clip_left; 2445 dirty->fb_y -= clip_top; 2446 2447 dirty->clip(dirty); 2448 } 2449 2450 dirty->fifo_commit(dirty); 2451 } 2452 2453 return 0; 2454 } 2455 2456 /** 2457 * vmw_kms_helper_validation_finish - Helper for post KMS command submission 2458 * cleanup and fencing 2459 * @dev_priv: Pointer to the device-private struct 2460 * @file_priv: Pointer identifying the client when user-space fencing is used 2461 * @ctx: Pointer to the validation context 2462 * @out_fence: If non-NULL, returned refcounted fence-pointer 2463 * @user_fence_rep: If non-NULL, pointer to user-space address area 2464 * in which to copy user-space fence info 2465 */ 2466 void vmw_kms_helper_validation_finish(struct vmw_private *dev_priv, 2467 struct drm_file *file_priv, 2468 struct vmw_validation_context *ctx, 2469 struct vmw_fence_obj **out_fence, 2470 struct drm_vmw_fence_rep __user * 2471 user_fence_rep) 2472 { 2473 struct vmw_fence_obj *fence = NULL; 2474 uint32_t handle = 0; 2475 int ret = 0; 2476 2477 if (file_priv || user_fence_rep || vmw_validation_has_bos(ctx) || 2478 out_fence) 2479 ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence, 2480 file_priv ? &handle : NULL); 2481 vmw_validation_done(ctx, fence); 2482 if (file_priv) 2483 vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv), 2484 ret, user_fence_rep, fence, 2485 handle, -1, NULL); 2486 if (out_fence) 2487 *out_fence = fence; 2488 else 2489 vmw_fence_obj_unreference(&fence); 2490 } 2491 2492 /** 2493 * vmw_kms_update_proxy - Helper function to update a proxy surface from 2494 * its backing MOB. 2495 * 2496 * @res: Pointer to the surface resource 2497 * @clips: Clip rects in framebuffer (surface) space. 2498 * @num_clips: Number of clips in @clips. 2499 * @increment: Integer with which to increment the clip counter when looping. 2500 * Used to skip a predetermined number of clip rects. 2501 * 2502 * This function makes sure the proxy surface is updated from its backing MOB 2503 * using the region given by @clips. The surface resource @res and its backing 2504 * MOB needs to be reserved and validated on call. 2505 */ 2506 int vmw_kms_update_proxy(struct vmw_resource *res, 2507 const struct drm_clip_rect *clips, 2508 unsigned num_clips, 2509 int increment) 2510 { 2511 struct vmw_private *dev_priv = res->dev_priv; 2512 struct drm_vmw_size *size = &vmw_res_to_srf(res)->metadata.base_size; 2513 struct { 2514 SVGA3dCmdHeader header; 2515 SVGA3dCmdUpdateGBImage body; 2516 } *cmd; 2517 SVGA3dBox *box; 2518 size_t copy_size = 0; 2519 int i; 2520 2521 if (!clips) 2522 return 0; 2523 2524 cmd = VMW_FIFO_RESERVE(dev_priv, sizeof(*cmd) * num_clips); 2525 if (!cmd) 2526 return -ENOMEM; 2527 2528 for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) { 2529 box = &cmd->body.box; 2530 2531 cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE; 2532 cmd->header.size = sizeof(cmd->body); 2533 cmd->body.image.sid = res->id; 2534 cmd->body.image.face = 0; 2535 cmd->body.image.mipmap = 0; 2536 2537 if (clips->x1 > size->width || clips->x2 > size->width || 2538 clips->y1 > size->height || clips->y2 > size->height) { 2539 DRM_ERROR("Invalid clips outsize of framebuffer.\n"); 2540 return -EINVAL; 2541 } 2542 2543 box->x = clips->x1; 2544 box->y = clips->y1; 2545 box->z = 0; 2546 box->w = clips->x2 - clips->x1; 2547 box->h = clips->y2 - clips->y1; 2548 box->d = 1; 2549 2550 copy_size += sizeof(*cmd); 2551 } 2552 2553 vmw_fifo_commit(dev_priv, copy_size); 2554 2555 return 0; 2556 } 2557 2558 int vmw_kms_fbdev_init_data(struct vmw_private *dev_priv, 2559 unsigned unit, 2560 u32 max_width, 2561 u32 max_height, 2562 struct drm_connector **p_con, 2563 struct drm_crtc **p_crtc, 2564 struct drm_display_mode **p_mode) 2565 { 2566 struct drm_connector *con; 2567 struct vmw_display_unit *du; 2568 struct drm_display_mode *mode; 2569 int i = 0; 2570 int ret = 0; 2571 2572 mutex_lock(&dev_priv->dev->mode_config.mutex); 2573 list_for_each_entry(con, &dev_priv->dev->mode_config.connector_list, 2574 head) { 2575 if (i == unit) 2576 break; 2577 2578 ++i; 2579 } 2580 2581 if (i != unit) { 2582 DRM_ERROR("Could not find initial display unit.\n"); 2583 ret = -EINVAL; 2584 goto out_unlock; 2585 } 2586 2587 if (list_empty(&con->modes)) 2588 (void) vmw_du_connector_fill_modes(con, max_width, max_height); 2589 2590 if (list_empty(&con->modes)) { 2591 DRM_ERROR("Could not find initial display mode.\n"); 2592 ret = -EINVAL; 2593 goto out_unlock; 2594 } 2595 2596 du = vmw_connector_to_du(con); 2597 *p_con = con; 2598 *p_crtc = &du->crtc; 2599 2600 list_for_each_entry(mode, &con->modes, head) { 2601 if (mode->type & DRM_MODE_TYPE_PREFERRED) 2602 break; 2603 } 2604 2605 if (mode->type & DRM_MODE_TYPE_PREFERRED) 2606 *p_mode = mode; 2607 else { 2608 WARN_ONCE(true, "Could not find initial preferred mode.\n"); 2609 *p_mode = list_first_entry(&con->modes, 2610 struct drm_display_mode, 2611 head); 2612 } 2613 2614 out_unlock: 2615 mutex_unlock(&dev_priv->dev->mode_config.mutex); 2616 2617 return ret; 2618 } 2619 2620 /** 2621 * vmw_kms_create_implicit_placement_proparty - Set up the implicit placement 2622 * property. 2623 * 2624 * @dev_priv: Pointer to a device private struct. 2625 * 2626 * Sets up the implicit placement property unless it's already set up. 2627 */ 2628 void 2629 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv) 2630 { 2631 if (dev_priv->implicit_placement_property) 2632 return; 2633 2634 dev_priv->implicit_placement_property = 2635 drm_property_create_range(dev_priv->dev, 2636 DRM_MODE_PROP_IMMUTABLE, 2637 "implicit_placement", 0, 1); 2638 } 2639 2640 /** 2641 * vmw_kms_suspend - Save modesetting state and turn modesetting off. 2642 * 2643 * @dev: Pointer to the drm device 2644 * Return: 0 on success. Negative error code on failure. 2645 */ 2646 int vmw_kms_suspend(struct drm_device *dev) 2647 { 2648 struct vmw_private *dev_priv = vmw_priv(dev); 2649 2650 dev_priv->suspend_state = drm_atomic_helper_suspend(dev); 2651 if (IS_ERR(dev_priv->suspend_state)) { 2652 int ret = PTR_ERR(dev_priv->suspend_state); 2653 2654 DRM_ERROR("Failed kms suspend: %d\n", ret); 2655 dev_priv->suspend_state = NULL; 2656 2657 return ret; 2658 } 2659 2660 return 0; 2661 } 2662 2663 2664 /** 2665 * vmw_kms_resume - Re-enable modesetting and restore state 2666 * 2667 * @dev: Pointer to the drm device 2668 * Return: 0 on success. Negative error code on failure. 2669 * 2670 * State is resumed from a previous vmw_kms_suspend(). It's illegal 2671 * to call this function without a previous vmw_kms_suspend(). 2672 */ 2673 int vmw_kms_resume(struct drm_device *dev) 2674 { 2675 struct vmw_private *dev_priv = vmw_priv(dev); 2676 int ret; 2677 2678 if (WARN_ON(!dev_priv->suspend_state)) 2679 return 0; 2680 2681 ret = drm_atomic_helper_resume(dev, dev_priv->suspend_state); 2682 dev_priv->suspend_state = NULL; 2683 2684 return ret; 2685 } 2686 2687 /** 2688 * vmw_kms_lost_device - Notify kms that modesetting capabilities will be lost 2689 * 2690 * @dev: Pointer to the drm device 2691 */ 2692 void vmw_kms_lost_device(struct drm_device *dev) 2693 { 2694 drm_atomic_helper_shutdown(dev); 2695 } 2696 2697 /** 2698 * vmw_du_helper_plane_update - Helper to do plane update on a display unit. 2699 * @update: The closure structure. 2700 * 2701 * Call this helper after setting callbacks in &vmw_du_update_plane to do plane 2702 * update on display unit. 2703 * 2704 * Return: 0 on success or a negative error code on failure. 2705 */ 2706 int vmw_du_helper_plane_update(struct vmw_du_update_plane *update) 2707 { 2708 struct drm_plane_state *state = update->plane->state; 2709 struct drm_plane_state *old_state = update->old_state; 2710 struct drm_atomic_helper_damage_iter iter; 2711 struct drm_rect clip; 2712 struct drm_rect bb; 2713 DECLARE_VAL_CONTEXT(val_ctx, NULL, 0); 2714 uint32_t reserved_size = 0; 2715 uint32_t submit_size = 0; 2716 uint32_t curr_size = 0; 2717 uint32_t num_hits = 0; 2718 void *cmd_start; 2719 char *cmd_next; 2720 int ret; 2721 2722 /* 2723 * Iterate in advance to check if really need plane update and find the 2724 * number of clips that actually are in plane src for fifo allocation. 2725 */ 2726 drm_atomic_helper_damage_iter_init(&iter, old_state, state); 2727 drm_atomic_for_each_plane_damage(&iter, &clip) 2728 num_hits++; 2729 2730 if (num_hits == 0) 2731 return 0; 2732 2733 if (update->vfb->bo) { 2734 struct vmw_framebuffer_bo *vfbbo = 2735 container_of(update->vfb, typeof(*vfbbo), base); 2736 2737 ret = vmw_validation_add_bo(&val_ctx, vfbbo->buffer, false, 2738 update->cpu_blit); 2739 } else { 2740 struct vmw_framebuffer_surface *vfbs = 2741 container_of(update->vfb, typeof(*vfbs), base); 2742 2743 ret = vmw_validation_add_resource(&val_ctx, &vfbs->surface->res, 2744 0, VMW_RES_DIRTY_NONE, NULL, 2745 NULL); 2746 } 2747 2748 if (ret) 2749 return ret; 2750 2751 ret = vmw_validation_prepare(&val_ctx, update->mutex, update->intr); 2752 if (ret) 2753 goto out_unref; 2754 2755 reserved_size = update->calc_fifo_size(update, num_hits); 2756 cmd_start = VMW_FIFO_RESERVE(update->dev_priv, reserved_size); 2757 if (!cmd_start) { 2758 ret = -ENOMEM; 2759 goto out_revert; 2760 } 2761 2762 cmd_next = cmd_start; 2763 2764 if (update->post_prepare) { 2765 curr_size = update->post_prepare(update, cmd_next); 2766 cmd_next += curr_size; 2767 submit_size += curr_size; 2768 } 2769 2770 if (update->pre_clip) { 2771 curr_size = update->pre_clip(update, cmd_next, num_hits); 2772 cmd_next += curr_size; 2773 submit_size += curr_size; 2774 } 2775 2776 bb.x1 = INT_MAX; 2777 bb.y1 = INT_MAX; 2778 bb.x2 = INT_MIN; 2779 bb.y2 = INT_MIN; 2780 2781 drm_atomic_helper_damage_iter_init(&iter, old_state, state); 2782 drm_atomic_for_each_plane_damage(&iter, &clip) { 2783 uint32_t fb_x = clip.x1; 2784 uint32_t fb_y = clip.y1; 2785 2786 vmw_du_translate_to_crtc(state, &clip); 2787 if (update->clip) { 2788 curr_size = update->clip(update, cmd_next, &clip, fb_x, 2789 fb_y); 2790 cmd_next += curr_size; 2791 submit_size += curr_size; 2792 } 2793 bb.x1 = min_t(int, bb.x1, clip.x1); 2794 bb.y1 = min_t(int, bb.y1, clip.y1); 2795 bb.x2 = max_t(int, bb.x2, clip.x2); 2796 bb.y2 = max_t(int, bb.y2, clip.y2); 2797 } 2798 2799 curr_size = update->post_clip(update, cmd_next, &bb); 2800 submit_size += curr_size; 2801 2802 if (reserved_size < submit_size) 2803 submit_size = 0; 2804 2805 vmw_fifo_commit(update->dev_priv, submit_size); 2806 2807 vmw_kms_helper_validation_finish(update->dev_priv, NULL, &val_ctx, 2808 update->out_fence, NULL); 2809 return ret; 2810 2811 out_revert: 2812 vmw_validation_revert(&val_ctx); 2813 2814 out_unref: 2815 vmw_validation_unref_lists(&val_ctx); 2816 return ret; 2817 } 2818